
DEVELOPING VERIFICATION ENVIRONMENT
FOR.

THE USB 2.0 AND WIRELESS 'LISB PHYSICAL LAYER

A DISSERTATION

Submitted in partial fulfillment of the
.'requirements for the award of the degree

of
:..MASTER OF TECHNOLOGY"

in
ELECTRONICS AND COMMUNICATION ENGINEERING

(With Specialization in Communication Systems)

By

SRINIVA-S KUMAR KATA

DEPARTMENT OF ELECTRONICS AND COMPUTER ENGINEERING•
-INDIAN INSTITUTE OF TECHNOLOGY ROORKEE

ROORKEE -247.667 (INDIA)
February, 2008

CANDIDATE'S DECLARATION

I hereby declare that the work, which is being presented in this dissertation, entitled
"DEVELOPING VERIFICATION ' ENVIRONMENT FOR THE USB 2.0 AND
WIRELESS USB- PHYSICAL LAYER", being submitted in partial fulfillment of the

requirements for the award of the degree of MASTER OF TECHNOLOGY with
specialization in COMMUNICATION SYSTEMS, in the Department of Electronics
and Computer Engineering, Indian Institute of Technology, Roorkee is an authentic
record of my own work carried out from January 2007 to July 2007 on "USB 2.0" only,
under guidance and supervision of, Mr. Jatinder Verma, Project Manager, Freescale

Semiconductors Pvt Ltd INDIA, and continued on Wireless USB from July 2007 to

February 2008, the total duration from January 2007 to February 2008 - under guidance
and supervision of, Dr. Arun Kumar, Professor, Department of Electronics and Computer
Engineering, Indian Institute of Technology Roorkee, Roorkee.

The results embodied in this dissertation have not submitted for the award of any other
Degree or Diploma.

Date: February, 2008 	 x 5~
Place: Roorkee 	 SRINIVAS KUMAR KATA

CERTIFICATE

This is to certify that the statement made by the candidate is correct to the best of my

knowledge and belief.

(Ext ma! Guide)
Mr. Jatinder Verma
Project Manager
Freescale Semiconductors Pvt Ltd
Noida -201301 UP (INDIA)

(Internal Guide)
Dr. Arun Kumar

Professor, E&C Department

Indian Institute of technology, Roorkee
Roorkee — 247 667, (INDIA)

Freescale Semiconductor India Pvt. Ltd. Express Trade Towers, Floor Nos. 5.6 & 7, Plot It 15 & 16, Sector-16 A,
Nolda-201 301 U.P. (India)
Tel: +91-120-4395000 Fax: +91-120-4395199
Regd. Office : F-40, South Extension Part-I, New Delhi-110 049

..d

.~=~' ~raescaleTM
semiconductor

July 13 ,2007

A

TRAINING CERTIFICATE

TO WHOMSOEVER IT MAY CONCERN

This is to certify that Srinivas Kumar Kata was working with our organization as
Project-Trainee during the period 15-Jan-07 to 13-July-07 and has successfully
completed his Project in the area of `Developing Verification Environment for the
USB 2.0 & OTG".

We wish his all the best for future endeavors.

For Freescale Semiconductor India Private Limited. 	-

Jatinder Verma
Design Manager.

ACKNOWLEDGEMENTS

It gives me immense pleasure to acknowledge the help and cooperation that I received
during this final semester project work.

I take this opportunity to extend my sincere thanks to my project manager, Mr.
Jatinder Verma, who has the attitude and the substance of a genius, and leads his
innovative team most effectively. I thank him for giving me an opportunity of
working in this interesting field with his outstanding team.

I would like to place on record my earnest thanks to Mr. Narendra Reddy, who
continually and convincingly conveyed a spirit of adventure in regard . to my
internship. He showed me different ways to approach a problem. A special thanks
goes to him for his insightful comments & encouragement. Without his guidance and
persistent help this dissertation would not have been possible.

I thank my project internal ,guide, Dr. Arun Kumar, for giving me the opportunity to
work in a very interesting area, for always being patient and cooperative during this
project work and for his support and guidance throughout my post graduate studies at
IIT Roorkee.

I also express my heartfelt thanks to Dr. D.KMehra, Professor and Head, Department
of E & C Engineering, IIT Roorkee for his support and encouragement during the
course of my project work.

ABSTRACT

KEYWORDS: Universal Serial Bus Protocol (USB), OTG, UTMI, UTMI+, ULPI,
VCS, SystemVerilog.

Freescale Semiconductors is working upon devising an integrated circuit for cellular
subscriber device platforms, which aims at satisfying the requirements of high-tier
products in the 2008-2009 time frame. Our focus is on one of its modules i.e., the
USB 2.0 with OTG Support.

The USB2.0 protocol is a Serial protocol used at the interface for communication
between the Host and the Device. It exploits differential data transmit advantage by
just having 2 data lines. It is used to connect the external devices to the processor
peripheral. The processor peripheral has IP bus interface to the other. Device
peripheral will be USB compliant. There is OTG support which is capable of

interchanging the roles of Host and Device. UTMI, UTMI+, ULPI interfaces which
are introduced for the ease of modeling the USB protocol implementation for the IP
vendors are also supported. All the simulations are compiled and run by using the tool

VCS.

This project work aims at creation and simulation of a SystemVerilog based USB
Verification IP for verifying the USB 2.0 OTG design. SystemVerilog provides a set
of hardware. oriented modeling constructs within the context of C++ and Verilog and
is emerging as a standard for high-level design, modeling & verification. The USB
VIP supports USB2.0 functionality with OTG support for all the Interfaces
Serial/UTM+/ULPI and all the speeds Low-/Full-/High-speed.

The Wireless USB is a Wireless protocol which is compatible with the existing
USB2.0 which requires no wire connectors. The Physical Layer of the Wireless USB
is implemented and verified in MATLAB which verifies all the modules present in
the Physical Layer of the Wireless USB. The Program in MATLAB is done using
ordinary OFDM instead of Multi Band OFDM as mentioned in the Standard.

Contents

CANDIDATE'S DECLARATION 	 i
ACKNOWLEDGEMENT 	 ii
ABSTRACT 	 iii
ABBREVIATIONS 	 iv

Chapter 1 INTRODUCTION 	 1

1.1 Motivation 	 1
1.2 Statement of the Problem 	 2
1.3 Organization of the Report 	 2

Chapter 2 UNIVERSAL SERIAL BUS 	 3

2.1 Goals for the Universal Serial Bus 	 3
2.2 Feature List 	 3
2.3 Architecture overview of the USB 	 4

2.3.1 USB System 	 4
2.3.2 Physical Interface 	 5
2.3.3 Power 	 5
2.3.4 Bus Protocol 	 5
2.3.4 Robustness 	 6
2.3.5 System Configuration 	 6

2.4 USB Communication Flow 	 6

Chapter 3 PROTOCOL ASPECTS 9
3.1 About USB2.0 Protocol 9
3.2 Transfer Types 14
3.3 Device States 17
3.4 OTG Specification 21

3.4.1 Introduction 21
3.4.2 Session Request Protocol 22
3.4.3 Host Negotiation Protocol 23

3.5 USB 2.0 Transceiver Macrocell Interface (UTMI) Specification 25
3.5.1 Introduction 25
3.5.2 USB 2.0 Transceiver Macrocell (UTM) 26

3.5.3 System Interface Signals with Description 27

3.5.4 Data Receiving and Transmitting 30

3.6 UTMI+ Specification 31

3.6.1 Introduction 31

3.6.2 UTMI + signals other than UTMI 33

3.7 ULPI Specification 35

3.7.1 Introduction 35

3.7.2 Interface signals of ULPI 37

3.7.3 ULPI Command Bytes 38

3.7.4 Register Operations 40

3.8 Simulation Results 41

3.8.1 Serial Interface 41

3.8.2 UTMI+ Interface 42

3.8.3 ULPI Interface 44

Chapter 4 WIRELESS USB PHYSICAL LAYER 46

4.1 General Introduction 46

4.1.1 Architecture Overview 46

4.1.2 Bus Protocol 46

4.1.3 Robustness 46

4.1.4 Security 47

4.1.5 System Configuration 47

4.2 PHY General Description 47

4.3 MAC General Description 48

4.4 Features Assumed from the PHY 48

4.5 P14Y Layer Partitioning 49

4.6 PLCP Sublayer 50

4.6.1 PPDU 50

4.6.2 PLCP Preamble 51

4.6.3 PLCP Header 52

4.6.4 PSDU 54

4.6.5 Data Scrambler 54

4.6.6 Tail Bits 55

4.6.7 Convolutional Encoder 55

4.6.8 Bit Interleaving 	 56

4.6.9 Constellation Mapping 	 56

4.6.10 OFDM Modulation 	 57

Chapter 5 SIMULATION OF WIRELESS USB PHYSICAL LAYER 	59

5.1 Simulation Environment 	 59

5.2 Design Flow of Simulation 	 59

5.2.1 Transmitter 	 59

5.2.2 Receiver 	 62

5.3 Results 	 63

-5.4 MATLAB Code 	 64

Chapter 6 CONCLUSION 	 77

Chapter 7 References. 	 78

APPENDIX 	 79

ABBREVIATIONS

USB 2.0 	- Universal Serial Bus with High-speed support

OTG - On-The-Go Support

UTMI - USB 2.0 Transceiver Macrocell Interface

UTMI+ - UTMI with OTG support

ULPI - UTMI+ Low Pin Interface

IP - Intellectual Property

VIP - Verification IP

SRP - Session Request Protocol

HNP - Host Negotiation Protocol

PID - Packet Identifier

ENDP - END Point number

SOF - Start of Frame

EOP - End of Packet

ABS - Advanced Encryption Standard

CCM - Counter Mode Encryption and Cipher Block Chaining Message

Authentication Code

PLCP - Physical Layer Convergence Protocol

PLME - Physical Layer Management Entity

PMD - Physical Medium Dependent

PPDU - PLCP Protocol Data Unit

PSDU - PHY Service Data Unit

UWB - Ultra Wideband

1. INTRODUCTION

1.1 Motivation
The original motivation for the Universal Serial Bus (USB) [1] came from three

interrelated considerations:
1. Connection of the PC to the telephone: It is well understood that the merge

of computing and communication will be the basis for the next generation of
productivity applications. The USB provides a ubiquitous link that can be used

across a wide range of PC-to-telephone interconnects.

2. Ease-of-use: The combination of user-friendly graphical interfaces and the
hardware and software mechanisms associated with new-generation bus

architectures have made computers less confrontational and easier to

reconfigure. However, from the end user's point of view, the PCs .UO
interfaces, such as serial/parallel ports, keyboard /mouse /joystick interfaces,

etc., do not have the attributes of plug-and-play.

3. Port expansion: The addition of external peripherals continues to be

constrained by port availability. The lack of a bidirectional, low-cost, low-to-

mid speed peripheral bus has held back the creative proliferation of

peripherals such as telephone/faxlmodem adapters, answering machines,

scanners, PDAs, keyboards, mice, etc. Existing interconnects are optimized for

one or two point products. As each new function or capability is added to the

PC, a new interface has been defined to address this need.

The more recent motivation for USB 2.0 stems- from the fact that PCs have

increasingly higher performance and are capable of processing vast amounts of data.
At the same time, PC peripherals have added more performance and functionality.

User applications such as digital imaging demand a high performance connection
between the PC and these increasingly sophisticated peripherals. USB 2.0 addresses

this need by adding a third transfer rate of 480 Mb/s to the 12 Mb/s and 1.5 Mb/s
originally defined for USB. USB 2.0 is a natural evolution of USB, delivering the
desired bandwidth increase while preserving the original motivations for USB and

maintaining full compatibility with existing peripherals.

Wireless USB: As technology innovation marches forward, Wireless technologies are

becoming more and more capable and cost effective. Ultra-Wideband (UWB) radio

1

technology, in particular, has characteristics that much traditional USB usage models
very well. UWB supports high bandwidth (480Mb/s) but only at limited range (-3

mts). Applying this wireless technology to USB frees the user from worrying about
cables, it makes USB even easier to use. Because no physical ports are required, port
expansion, or even finding the USB port, is no longer a problem. _ Losing the cable

also means losing a source of power for peripheral which are powered by bus but not
for self-powered.
Thus USB (wired or wireless) continues to be the answer to connectivity for the PC

architecture. It is a fast, bi-directional, isochronous, low-cost, dynamically attachable

interface.

1.2 Statement of the Problem
This work is aimed for the Verification of the USB 2.0 OTG Support as it is required
before producing the design into a chip. To verify the design, a Verification IP is

required to do all the verifications supported by USB 2.0 Protocol. There are 3 types
of speeds supported by the protocol. There are 3 types of interfaces supported by the

protocol. The Vendor has to verify all the interfaces .in all speeds for USB2.0 protocol
and OTG supplement.

This work also aims at the verification Wireless USB protocol at physical layer using
the MATLAB.

1.3 Organization of Report
The report is organized in six chapters including this chapter. Chapter one gives an

overview of the introduction and motivation, summarizes the problem statement for
the thesis work. Chapter two gives overview of USB architecture and communication

flow of the USB 2.0. Chapter three gives description of protocol types of packets,

transactions and transfers and also explains the On-The-Go supplement, UTMI,
UTMI+, ULPI specifications along with results obtained from the simulation. Chapter

four deals with the introduction of the Wireless USB protocol from the Physical layer
point of view. The fifth chapter deals with the simulation done, results obtained and

code for wireless USB Physical Layer in MATLAB.

2

1 2. UNIVERSAL SERIAL BUS

2.1 Goals for the Universal Serial Bus
The USB is specified to be an industry-standard extension to the PC architecture with
a focus on PC peripherals that enable consumer and business applications. The

following criteria were applied in defining the architecture for the USB [1]:
1. Ease-of-use for PC peripheral expansion.
2. Low-cost solution that supports transfer rates up to 480 Mb/s.
3. Full support for real-time data for voice, audio, and video.
4. Protocol flexibility for mixed-mode isochronous data transfers and

asynchronous messaging.

5. Provision of a standard interface capable of quick diffusion into product.
6. Enabling new classes of devices that augment the PCs capability.

2.2 Feature List
The USB Specification provides a selection of attributes that can achieve multiple
price/performance integration points and can enable functions that allow

differentiation at the system and component level. Features are categorized by the

following benefits:
1. Easy to use for end user with self-identifying peripherals, automatic mapping

of function to driver and configuration and dynamically attachable and

reconfigurable peripherals.

2. Wide range of bandwidths ranging from a few kb/s to several hundred Mb/s,

capable of supporting 127 physical devices, supports transfer of multiple data

and message streams between the host and devices with Low protocol

overhead.
3. Guaranteed bandwidth, low latencies appropriate for telephony, audio, video,

etc.

4. Flexibility in packet sizes, data rates and flow control for buffer handling.

5. Robustness for Error handling/fault recovery mechanism, Dynamic insertion
and removal of devices.

6. Protocol is simple to implement with plug-and-play architecture and leverages

existing operating system interfaces.

3

7. Low-cost implementation.
8. Architecture upgradeable to support multiple USB Host Controllers in a

system.

2.3 Architecture overview of the USB
The USB is a cable bus that supports data exchange between a host computer and a
wide range of simultaneously accessible peripherals. The attached peripherals share

USB bandwidth through a host scheduled, token-based protocol. The bus allows

peripherals to be attached, configured, used, and detached while the host and other

peripherals are in operation.

2.3.1 USB System
A USB system is described by three definitional areas:

1. USB Interconnect.

2. USB Host.

3. USB Devices.

USB Interconnect
The USB interconnect is the manner in which USB devices are connected to and
communicate with the host. This includes the following:

• Bus Topology: Connection model between USB devices and the host.

• Inter-layer Relationships: In terms of a capability stack, the USB tasks that are

performed at each layer in the system.

• Data Flow Models: The manner in which data moves in the system over the

USB between producers and consumers.

• USB Schedule: The USB provides a shared interconnect. Access to

interconnect is scheduled in order to support isochronous data transfers and to

eliminate arbitration overhead.

USB Host
There is only one host in any USB system. The USB interface to the host computer

system is referred to as the Host Controller. The Host Controller may be implemented

in a combination of hardware, firmware, or software. A root hub is integrated within

the host system to provide one or more attachment points.

USB Devices
USB devices are one of the following:

1. Hubs, which provide additional attachment points to the USB

0

2. Functions, which provide capabilities to the system, such as an ISDN
connection, a digital joystick, or speakers

USB devices present a standard USB interface in terms of the following:
1. Their comprehension of the USB protocol.
2. Their response to standard USB operations, such as configuration and reset.
3. Their standard capability descriptive information.

2.3.2 Physical Interface
The USB transfers signal and power over a four-wire cable. The signaling occur over

two wires (D+/D-) on each point-to-point segment. The power is transmitted over one
wire Vbus.

2.3.3 Power
There are two aspects of power:

1. Power distribution over the USB deals with the issues of how USB devices
consume power provided by the host over the USB.USB devices that rely

totally on power from the cable are called bus-powered devices. In contrast,
those that have an alternate source of power are called self-powered devices.

2. Power management deals with how the USB System Software and devices fit

into the host-based power management system. The USB System Software

interacts with the host's power management system to handle system power

events such as suspend or resume.

2.3.4 Bus Protocol
The USB is a polled bus. The Host Controller initiates all data transfers. Most bus

transactions involve the transmission of up to three packets. Each transaction begins

when the Host Controller, on a scheduled basis, sends a USB packet describing the
type and direction of transaction, the USB device address, and endpoint number. The
USB data transfer model between a source or destination on the host and an endpoint

on a device is referred to as_a pipe. Pipes come into existence when a USB device is

configured. One message pipe, the Default Control Pipe, always exists once a device

is powered, in order to provide access to the devices configuration, status, and control

information.

2.3.4 Robustness
There are several attributes of the USB that contribute to its robustness:

1. Signal integrity using differential drivers, receivers, and shielding.

2. CRC protection over control and data fields.

5 	 r

F

3. Detection of attach and detach and system-level configuration of resources.

4. Self-recovery in protocol, using timeouts for lost or corrupted packets.

5. Flow control for streaming data to ensure isochrony and hardware buffer
management.

5. Data and control pipe constructs for ensuring independence from adverse

interactions between functions.

2.3.5 System Configuration
The USB supports USB devices attaching to and detaching from the USB at any time.

Consequently, system software must accommodate dynamic changes in the physical

bus topology.

2.4 USB Communication Flow
The USB provides a communication services between software on the host and its

USB function. Functions can have different communication flow requirements for
different client-to-function interactions. The USB provides better overall bus

utilization by allowing the separation of the different communication flows to a USB
function. Each communication flow makes use of some bus access to accomplish

communication between client and function. Each communication flow is terminated

at an endpoint on a device. Device endpoints are used to identify aspects of each

communication flow.

The Functions performed by the blocks in the below diagram are

1. Client Software: Software that executes on the host, corresponding to a USB

device. This client software is typically supplied with the operating system or

provided along with the USB device.

2. USB System Software: Software that supports the USB in a particular

operating system. The USB System Software is typically supplied with the

operating system, independently of particular USB devices or client software.

3. USB Host Controller (Host Side Bus Interface): The hardware and software

that allows USB devices to be attached to a host.

4. USB Logical Device: A USB logical device appears to the USB system as a

collection of endpoints. Endpoints are grouped into endpoint sets that

implement an interface. Interfaces are views to the function.

5. USB Physical Device:- A piece of hardware on the end of a USB cable that

performs some useful end user function.

2

Host: 	 Interconnect 	 Physical Device

I 	I
Client SW

manages an tnteif`uce

UrT6ra 	110 US_6 — --- format -'-•----.._..

USB System SW
manages devlcsa

;Tranarara 	US13

9-framed

3.

maRa
USB Host 	 USB Bus

Interface
tfa®t USB e FramedData

iE

7rrsneactfons
.uww....uuuuww,..uuwww w..uou~

Pipe. represents connection abe racLlon
Catwoon t%3 ttaa nfa7 ontitiee

Date ircmapprt meclrantarn

UE5-reievallt [ormn oitraneportaa data

~- -..._.___

. 1nierface x

Function
a cotl9c"On of f

•

j Pipe Bundle
to an Interlace

p Interraee- 	No Usa
apeclria 	Format

: 1 USS Logical

•
Pipe

Endpoint
 Zero

Device
a colrectlon or

endpoints Defarilt
toEnlpclnlZero

EiGtn Per
En J point

US9
Fram3d
[data

p USB Bus
Interface

SIE
re

• ♦w.......o....uw,uu... •..a_wwww......,
USB

?ried .a 	al,
Electrical,
Pzotocot

Fig 2.1: USB Host/Device Detailed View

The USB System Software manages the device using the Default Control Pipe. Client

software manages an interface using pipe bundles (associated with an endpoint set).

Client software requests that data be moved across the USB between a buffer on the
host and an endpoint on the USB device. The Host Controller (or USB device,

depending on transfer direction) packetizes the data to move it over the USB. The
Host Controller also coordinates when bus access is used to move the packet of data

over the USB.
Software on the host communicates with a logical device via a set of communication

flows. The set of communication flows are selected by the device software/hardware
designer(s) to efficiently match the communication requirements of the device to the

transfer characteristics provided by the USB.

h

Device Endpoints
An endpoint is a uniquely identifiable portion of a USB device that is the terminus of
a communication flow between the host and device. Each USB logical device is

composed of a collection of independent endpoints. Each logical device has a unique
address assigned by the system at device attachment time. Each endpoint on a device

is given at design time a unique device-determined identifier called the endpoint

number. Each endpoint has a device-determined direction of data flow. The

combination of the device address, endpoint number, and direction allows each
endpoint to be uniquely referenced. Each endpoint is a simplex connection that

supports data flow in one direction: either input (from device to host) or output (from
host to device).

Pipes
Pipes represent the ability to move data between software on the host via a memory

buffet and an endpoint on a device. There are two types of pipes: stream and message.

Stream data has no USB-defined structure, while message data does. Pipes have
associations of data bandwidth, transfer service type, and endpoint characteristics like

directionality and buffer sizes.

Frames and Microframes
USB establishes a 1 millisecond time base called a frame on a full-/low-speed bus and

a 125 us time base called a microframe on a high-speed bus. A (micro) frame can

contain several transactions. Each transfer type defines what transactions are allowed

within a (micro) frame for an endpoint.

3. PROTOCOL ASPECTS

3.1 About USB2.0 Protocol
Byte/Bit Ordering
USB follows the little-endian order, i.e., LSB to MSB for both individual bits and
fields.

SYNC Field [1]
All packets begin with a synchronization (SYNC) field, which is used by the input

circuitry to align incoming data with the local clock. The SYNC pattern used for low-
/full-speed transmission is required to be 3 KJ pairs followed by 2 K's for a total of

eight symbols. The SYNC pattern used for high-speed transmission is required to be
15 KJ pairs followed by 2 K's, for a total of 32 symbols.

EOP Width
The width of the SEO in the EOP is approximately 2 * TPERIOD i.e., for full-speed

transmissions between 160 ns and 175 ns and for low-speed transmissions between

1.25 us and 1.50 us. In high-speed signaling, a bit stuff error is intentionally generated

to indicate EOP. A receiver is required to interpret any bit stuff error as an EOP.

Packet Field Formats
Packet bit definitions . are displayed in unencoded data format. All packets have
distinct Start-of- Packet (SOP) delimiter which is part of the SYNC field and the End-

of-Packet (EOP) delimiter.

Packet Identifier Field (Pm): A P1D consists of a four-bit packet type field which

gives type of packet followed by a four-bit check field which is one's complement of

packet type field which ensures reliable decoding of the PID so that the remainder of

the packet is interpreted correctly.

• The understanding between the host and device is taken in packet form.

1. Token

FEILD PID ADDRESS ENDP CRC5

BITS 8 7 4 5

Fig 3.1: Token packet format

2. Start of Frame
FEILD PID Frame number CRC5
BITS 8 11 5

Fig 3.2: SOF packet format

3. Data
FEILD PID DATA CRC 16

BITS 8 0-8192 16
Fig 3.3: Data packet format

Address Fields:
Function endpoints are addressed using two fields: the function address field and the
endpoint field. A function needs to fully decode both address and endpoint fields.

• Address Field: Address Field <6:0> - 128 possible addresses of function ports.
Function address zero is reserved as the default address and may not be
assigned to any other use.

• Endpoint Field: Endpoint Field<3:0> - 16 possible varieties of combinations
of transfers. All functions must support a control pipe at endpoint number zero
(the Default Control Pipe). Low-speed devices support a maximum of three
pipes per function. Full-speed and high-speed functions may support up to a
maximum of 16 IN and OUT endpoints.

Frame Number Field: The frame number field is an 11-bit field that is incremented
by the host on a per-frame basis. The frame number field rolls over upon reaching its

maximum value of 7FFH and is sent only in SOF tokens at the start of each (micro)

frame.
Data Field: Thedata field may range from zero to 1,024 bytes and must be an
integral number of bytes. Data bits within each byte are shifted out LSB first.

• Low speed data field is of 0-8 bytes

• Full speed data field is of 0-511 bytes

• High speed data field is of 0-1023 bytes

Cyclic Redundancy Checks: Token and data packet CRCs provide 100% coverage

for all single- and double-bit errors.

• Token CRC - A five-bit CRC field is provided for tokens and covers the
ADDR and ENDP fields of IN, SETUP, and OUT tokens or the time stamp

10

field of an SOF token. The PING and SPLIT special tokens also include a
five-bit CRC field. The generator polynomial is:

G(X) = X5 + X2 +1

The binary bit pattern that represents this polynomial is 00101B. If all token

bits are received without error, the five-bit residual at the receiver will be

01100B.

• Data CRC - The data CRC is a 16-bit polynomial applied over the data field of
a data packet. The generating polynomial is:

G(X)= X'6 +X'5 +X2 +1

The binary bit pattern that represents this polynomial is 1000000000000101B.

If all data and CRC bits are received without error, the 16-bit residual will be

1000000000001101B.

- 	Handshake Packets
FEILD 	 PID

BITS 	 8
Fig 3.4: Handshake packet format

Handshake packets consist of only a PID. Handshake packets are used to report the
status of a data transaction and can return values indicating successful reception of

data, command acceptance or rejection, flow control, and halt conditions. There are

four types of handshake packets and one special handshake packet:

• ACK may be issued either when sequence bits match and the receiver
accepted data correctly or when sequence bits mismatch and the sender and

receiver must resynchronize to each other

• NAK can only be returned by functions in the data phase of IN transactions or

the handshake phase of OUT or PING transactions.

• STALL indicates that a function is unable to transmit or receive data, or that a

control pipe request is not supported. Functional STALL is when the Halt
feature associated with the endpoint is set. Protocol STALL is returned during
the Data or Status stage of a control transfer, and the STALL condition

terminates at the beginning of the next control transfer (setup).

• NYET is returned by a hub in response to a split-transaction when the full-

/low-speed transaction has not yet been completed or the hub is otherwise not

11

able to handle the split-transaction. It is returned by a high-speed endpoint as

part of the PING protocol.

• ERR is a high-speed only handshake that is returned to allow a high-speed

hub to report an error on a full-/low-speed bus.
SPLIT

Host controllers and hubs support one additional transaction type called split

transactions. This transaction type allows full- and low-speed devices to be attached
to hubs operating at high-speed. These transactions involve only host controllers and

hubs and are not visible to devices.
PING

The host controller queries the high-speed device endpoint with, a PING special token.

The endpoint either responds to the PING with a NAK or an ACK handshake. A NAK

handshake indicates that the endpoint does not have space for a wMaxPacketSize data

payload.

Transaction [1]
The mutual transfer of packets (token, data and acknowledgement) between the host

and the device is called transaction. It may be of 2 levels or 3 levels.

The protocol overhead for each transaction includes:

• A SYNC field (packet): either 8 bits (full-/low-speed) or 32 bits (high-speed).

• A PID byte (packet): includes PID and PID invert (check) bits.

• An EOP (packet): 3 bits (full-/low-speed) or 8 bits (high-speed).

• In a token packet, the endpoint number, device address, and CRC5 fields (16

bits total).

• In a data packet, CRC 16 fields (16 bits total).

• For transaction with multiple packets, the inter packet gap or bus turnaround

time required.
For these calculations, there is assumed to be no bit-stuffing required.

Responses for the transactions from host and function for particular tokens

12

Table 3.1 Function and Host Responses to IN Transactions

Host SENDS IN TOKEN
Function Receives 	correctly 	and Receives Received Endpoint 	is 	not
Responses sends data packet. incorrectly correctly 	but supporting 	the
in 	one 	of and 	gives has no data to function 	to
way no transmit gives transmit the 	data

response NAK. so gives STALL
How 	the If 	data If 	data Retries Retries later. Sets the Endpoint
host reacts packet 	is packet 	is later Configuration and

received not correct Retries 	by
correctly discards sending IN token
gives ACK data

Table 3.2 Function Responses to OUT Transactions

Host SENDS OUT and DATA PACKETS

Function Receives Receives Received correctly Endpoint 	is 	not
Responses correctly 	and incorrectly 	and but cannot accept supporting 	the
in 	one 	of gives ACK gives 	no data 	so 	gives function 	to
way response NAK. transmit the 	data

so gives STALL

How 	the - Retries later Retries later. Sets the Endpoint

Host reacts Configuration

and 	Retries 	by
sending OUT and

DATA token

Function Response to a SETUP Transaction
SETUP defines a special type of host-to-function data transaction that permits the host

to initialize an endpoint's synchronization bits to those of the host. Upon receiving a

SETUP token, a function must accept the data. A function may not respond to a

SETUP token with either STALL or NAK, and the receiving function must accept the
data packet that follows the SETUP token. If a non-control endpoint receives a

SETUP token, it must ignore the transaction and return no response.

13

3.2 Transfer Types
The USB transports data through a pipe between a memory buffer associated with a
software client on the host and an endpoint on the USB device. Data transported by

message pipes is carried in a USB-defined structure, but the USB allows device-
specific structured data to be transported within the USB-defined message data
payload. The USB also defines that data moved over the bus is packetized for any

pipe (stream or message), but ultimately the formatting and interpretation of the data
transported in the data payload of a bus transaction is the responsibility of the client

software and function using the pipe.
Each transfer type determines various characteristics of the communication flow

including the following:

1. Data format imposed by the USB.

2. Direction of communication flow.

3. Packet size constraints.

4. Bus access constraints.

5. Latency constraints.

6. Required data sequences.

7. Error handling

The USB defines four transfer types:

Control Transfers [1]
Control transfers minimally have two transaction stages: Setup and Status.

• Bursty, non-periodic, host software-initiated request/response communication,

typically used for command/status operations.

• A control transfer may optionally contain a Data stage between the Setup and

Status stages. The amount of data to be sent during the data stage and its
direction are specified during the Setup stage. The Status stage of a control

transfer is the last transaction in the sequence.
Table3.3 Status Stage Responses

Status Response Control Write Transfer
(sent during data phase)

Control Read Transfer(sent

during handshake phase)

Function completes Zero-length data packet ACK handshake

Function has an error STALL handshake STALL handshake

Function is busy NAK handshake NAK handshake

14

• The protocol STALL condition lasts until the receipt of the next SETUP
transaction, and the function will return STALL in response to any IN or OUT

transaction on the pipe until the SETUP transaction is received.
Bulk Transaction
The bulk transfer type is designed to support devices that need to communicate
relatively large amounts of data at highly variable times that can use any available
bandwidth.

Requesting a pipe with a bulk transfer type provides the requester with the following:
1. Access to the USB' on a bandwidth-available basis,
2. Retry of transfers, in the case of delivery failure due to errors on the bus,
3. Guaranteed delivery of data but no guarantee of bandwidth or latency.

The following are features of the Bulk Transactions

• Non-periodic, large-packet bursty communication, typically used for data that

can use any available bandwidth and can also be delayed until bandwidth is
available.

• Bulk transactions use a three-phase transaction consisting of token, data and

handshake packets are characterized by the ability to guarantee error-free
delivery of data between the host and a function by means of error detection

and retry.

• If the data is received without error by the function, it will return one of three

(or four including NYET, for a high-speed device) handshakes: ACK, NAK,

STALL.

Interrupt Transaction
The interrupt transfer type is designed to support those devices that need to send or

receive data infrequently but with bounded service periods. Requesting a pipe with an

interrupt transfer type provides the requester with the following:

1. Guaranteed maximum service period for the pipe.

2. Retry of transfer attempts at the next period, in the case of occasional delivery

failure due to error on the bus

The following are features of the Interrupt Transactions

• Low-frequency, bounded-latency communication.

• If the endpoint has no new interrupt information to return the function returns

a NAK handshake during the data phase.

15

• If the Halt feature is set for the interrupt endpoint, the function will return a

STALL handshake.
Isochronous Transaction
In the USB environment, requesting an isochronous transfer type provides the
requester with the following:

• Guaranteed access to USB bandwidth with bounded 'latency.

• Guaranteed constant data rate through the pipe as long as data is provided.

• No retry in the case of a delivery failure due to error.

The USB isochronous transfer type is designed to support isochronous sources and
destinations.

• Periodic, continuous communication between host and device, typically used
for time-relevant information.

• Isochronous transactions have a token and data phase, but no handshake

phase.

• A high-speed Host Controller must be able to accept and send DATAO,

DATA1, DATA2, or MDATA PIDs in data packets.

• High bandwidth, high-speed isochronous transactions support data PD

sequencing.

There are 3 different speeds and 4 different types of transfers that USB supports and

each with different payload sizes depending on the need of the endpoints only

required types of transfers are supported by the protocol and each in appropriate

proportion of available bandwidth. Here are the types of speeds, transfers and payload

sizes (Packet Size constraints).
Table 3.4 Transfers, Speeds with Max Payload

Packet Control Interrupt Bulk Isochronous

Constraints

Low-speed 8 8 N/A N/A

Payload(max)

Full-speed 64 64 8/16/32/64 1023

Payload(max)

High-speed 64 1024 512 1024

Payload(max)

16

Data Format USB-defined no data content no data no data content

structure structure content structure
structure

Direction Bi-directional Stream pipe, stream pipe, uni-directional
uni-directional uni-directional

Bus Access part of each bus frequency On bandwidth- Required bus
Constraints (micro)frame is and (micro) available access period.

reserved frame basis.

Endpoint Used In ,Out In or Out In or Out In or Out

3.3 Device States

There are few possible states where the device works. Bus Enumeration is the process

that the device goes into for participating in the transfers along with the Host.

1. Attached [1]
A USB device may be attached or detached from the USB. The current level on
the resistor rises indicating the new connection. The Speed of the device will be

detected at the time of attach.

• If the pull-up resistor of USB device is on D- line then the host will

move to Low-speed clock after detecting the device

• If the pull-up resistor of USB device is on D+ line then the host will
move to Full-speed clock and at the time of reset changes to High-

speed depending on negotiation.
The device will permitted to data transfer only after the reset state

2. Powered
USB devices may obtain power from an external source and/or from the USB

through the host to which they are attached. Externally powered USB devices are

termed self- powered. If the device gets power through the Host it is termed as

bus-powered. A device may support both or either of self-powered and bus-
powered configurations.

3. Default Address
Host assigns a default address to the device initially after powered it gives the
default address and zero-endpoint address. In this state the transfers between the

host and device will take place through the default control pipe.

17

RESET PROCESS:

A device that is capable of high-speed operation determines whether it will

operate at high-speed as a part of the reset process. After detecting SEO for 2.5us
the device recognizes that host is resetting. The reset for Low-speed is for waiting

IOms in SEO state.

• The HS Detection Handshake is Set along with the reset signaling which is

of atleast lOms.

• A device has up to 6 ms after the reset process starting to assert a

minimum of a 1 ms' Chirp K.

• If the host is of HS capable then it has to respond for this Chirp K state

within 100 us of its completion.

• Then the host has to assert with Chirp K and Chirp J states alternately for

at least 3 times and each of the state having an interval of 40-60 us.

• As soon as the device detects the 3 KJ sequences it sets into HS mode by

removing the D+ Pull-up resistor and asserts HS terminations, reverts to

HS default state and waits for end of reset.

• The channel has to be again set back to SEO for atleast of 100 us upto a

maximum of 500 us. Reset must wake a device from the Suspend state.

• The reset signaling is compatible with low-/full-speed reset.

After the device is successfully reset, the device must also respond successfully to

device and configuration descriptor requests and return appropriate information.

Attached

Hub Reset
or 	Hub

Deconhgured Configured

Suspended Powered 	gus Activity

Power 7
Interruptio 	 Reset

Inactive
Detaul{ ` 	 Suspended

Reset 	 ~ 	,mil Bus Activity 	 ~.

c7
Address
Assigned

Bus

Address 	
Inoclive 	

SusPendeo 	i,
t 	 `~ 	BUS Activity

Device 	Device
aconfigured Configured

Bus 	/Inactive
Configured 	 I Suspended

Bus Activity

Fig 3.5: VISIBLE DEVICE STATES

18

4. Address
All USB devices use the default address when initially powered or after the device

has been reset. Each USB device is assigned a unique address by the host after

attachment or after reset. A USB device responds to requests on its default pipe
whether the device is currently assigned a unique, address or is using the default

address. The host assigns a unique address depending on the hub to which the

device is attached.
5. Configured
Before a USB device's function may be used, the device must be configured.

From the device's perspective, configuration involves correctly processing the

request with a non-zero configuration value. After reading the device descriptors

the host configures the device. Configuring a device or changing an alternate
setting causes all of the status and configuration values associated with endpoints

in the affected interfaces to be set to their default values.
Descriptor

• Descriptors are also defined that can be used to contain different
information on the device. Control transfers provide the transport

mechanism to access device descriptors and make requests of a device

to manipulate its behavior.

• In order to determine the maximum packet size for the Default Control

Pipe, the USB System Software reads the device descriptor. The host

will read the first eight bytes of the device descriptor. The device

always responds with at least these initial bytes in a single packet.

After the host reads the initial part of the device descriptor, it is
guaranteed to have read this default pipe's wMaxPacketSize field (byte

7 of the device descriptor). The host reads the device descriptor to

determine what actual maximum data payload size this USB device's

default pipe can use.

6. Suspended
In order to conserve power, USB devices automatically enter the suspended state.

When the device has observed no bus traffic for a specified period attached device

must be prepared to suspend at any time they are powered. A USB device exits
suspend mode when there is bus activity. A USB device may also request the host

to exit suspend mode or selective suspend by using electrical signaling to indicate

19

remote wakeup. The SOF token will occur once per (micro) frame to keep full-
/high-speed devices from suspending.

While in the Suspend state, a device must continue to provide power to its D+
(full-/high-speed) or D- (low-speed) pull-up resistor to maintain an idle so that the

upstream hub can maintain the correct connectivity status for the device. When a
device operating in high-speed mode detects that the data lines have been in the

high-speed idle state for at least 3.0 ms, it must revert to the full-speed
configuration no later than 3.125 ms after the start of the idle state. No earlier than

100us and no later than 875 us after reverting to full-speed, the device must

sample the state of the line. If the state is a full-speed J, the device continues with

the suspend process. SEO would have indicated that the downstream facing port

was driving reset, and the device would have gone into the High-speed Detection

Handshake. When the resume occurs, the device or host transceiver must revert to

high-speed without theneed for a reset.

Resume
Resume signaling is used by the host or a device to bring a suspended bus

segment back to the active condition. Hubs play an important role in the
propagation and generation of resume signaling. It must send the resume signaling

for at least 20 ms and then end the resume signaling in one of two ways,

depending on the speed at which its port was operating when it was suspended. If

the port was in low-/full-speed when suspended, the resume signaling must be

ended with a standard, low-speed EOP (two low-speed bit times of SEO followed

by a J). If the port was operating in high-speed when it was suspended, the resume

signaling must be ended with a transition to the high-speed idle state.

Remote wakeup
Remote wakeup allows a suspended USB device to signal a host that may also be

suspended. This notifies the host that it should resume from its suspended mode, if

necessary, and service the external event that triggered the suspended USB device

to signal the host. If a device supports remote wakeup, it must also allow the

capability to be enabled and disabled using the standard USB requests. The device

can signal the system to resume operation if its remote wakeup capability has been

enabled by the USB System Software. The remote wakeup device must hold the

resume signaling for at least Ims but for no more than 15ms.

20

3.4 OTG Specification
3.4.1 Introduction [2]
This section is used to describe the feature requires for an ordinary device to become

an On-The-Go device which is capable of initiating a new session from a session end
state and also negotiate with the host to become host. An ordinary device can be
connected to an OTG capable device and data can be transferred as the ordinary USB

2.0 except with low-speed transactions. In addition to being fully compliant USB2.0
device, an OTG device must include the following features and characteristics .

• A limited Host capability

• Full-speed operation as a device

• Full-speed support as a Host

• Session Request Protocol

• Host Negotiation Protocol

• One, and only one connection, a Mini-AB receptacle

• Minimum current output on Vbus.

The USB 2.0 specification defines the following connector pairs:

• Standard-A plug and receptacle for the host;

• Standard-B plug and receptacle for the peripheral; and

• Min-B plug and receptacle as alternative connectors for the peripheral.

The OTG supplement defines the following connector components:

• Mini-A plug,

• Mini-A receptacle, and

• Mini-AB receptacle.
The Mini-AB receptacle accepts either a Mini-A plug or a Mini-B plug.

21

3.4.2 Session Request Protocol

4.4v

VBUS 2.0v

V 1~VVA_SESS_VLD
o.8v

12

4 3
-- 	 ------ 	Bus Reset

i

t 	 - 	-- 	---I
13

i
~ 	 1 ~ 	 t

'-4 /

---------------I `-

VIH

Data Line
VIL

Driven by A-device
in A-device SRP

	

Driven by A-device 	-- - - - 	A-device pull-down
Driven by A-device

	

—. " Driven by B-device 	— — — 	B-device pull-up in B-device SRP

Fig 3.6 SRP Timing

Purpose: In order to conserve power, an A-device is allowed to leave the VBUS

turned off when the bus is not being used. If the B-device wants to use the bus when
VBUS is turned off, then it requires some way of requesting the A-device to supply

power on VBUS.
SRP is to be used as follows: An OTG device is required to respond to SRP if it ever

turns off VBUS while an A-plug is inserted. An OTG device that keeps VBUS turned

on whenever an A-plug is inserted will never have a need to respond to SRP.
Methods used by an OTG device: There are 2 methods called "data-line passing" and

"Vbus pulsing" which a B-device uses to request the A-device begin session which is

called Session Request Protocol.

Initial Conditions:

1. The B-device may not attempt to start a new session until it has determined that the

A-device should have detected the end of the previous session. The A-device detects
the end of a session by sensing that Vbus has dropped below its session valid

threshold.

2. The B-device must detect that both the D+ and D- data lines must have been low

(SEO) for atleast Tb se0_srp min. This ensures that the A-device has detected a

disconnect condition from the device.

22

These initial conditions define the period after which the A-device will properly
recognize SRP from the B-device. When the above conditions satisfy any previous

session on the A-device is over and a new session may start.
Data-line Pulsing: To indicate a request for a new session using the data-line pulsing
SRP, the B-device waits until the initial conditions are met and then turns on its data
line pull-up resistor D+ for a period within the range specified by Tb_data_pls. The

duration of such a data line pulse is sufficient to allow the A-device to reject spurious
voltage transients on the data lines.

Vbus Pulsing: The B-device drives Vbus anytime after the initial conditions are met

and data line pulsing has concluded. Vbus is driven for a period that is long enough,
max to be charged to Vb_otg_out min and will not be charged above Vb hst out

max. There are 2 scenarios that a B-device could encounter when pulsing Vbus to

initiate SRP. In one scenario, the B-device is connected to an A-device that responds

to the Vbus pulsing SRP, where the B-device can drive Vbus above the A-device

session valid threshold in order to wake up the A-device. When driving such an A-

device, the B-device shall ensure that Vbus goes above Vb_otg_out min, but does not

exceed Vb—otg_out max. In second scenario, the B-device is attached to a standard

host; the B-device shall not drive Vbus above Vb hst out max. This insures that no

damage is done to standard hosts that are not designed to withstand a voltage

externally applied to Vbus.

Duration of SRP: The maximum time allowed for the B-device to complete all of its

SRP initiation activities is Tb srp_init max. The SRP activities include all those

activities that transpire while the B-device is not monitoring the state of the Vbus.
Response time of A-device: The A-device may be designed to respond to either of the
methods of SRP. After initiating SRP, the B-device is required to wait at least

Tb_srp_fail min for the A-device to respond, before informing the user that the

communication attempt has failed. For this reason, it is recommended that the A-

device is to turn on Vbus and generate a bus reset.

3.4.3 Host Negotiation Protocol [2]
HNP is used to transfer control of a connection from the default host (A-device) to

default peripheral (B-device). This is accomplished by having the A-device condition
the B-device to be able to take control of the bus, and then having the A-device

present an opportunity for the B-device to take control.

23

10

1 I
I

. 	1 	_T 	_......._.__%_ ..._.......... 	..

VOH

A-device
VOL

Vol

B-device
Vol

VIII
Composite D+

VIL

Fig 3.7 Timing Diagram of the HNP for HS devices

The sequence of events for HNP as observed on the USB, are as shown in above

figure

• A-device finishes using bus and stops all bus activity (i.e., suspends the bus).

• B-device detects that bus is idle for more than Ta aidl bdis min and begins

HNP by turning off pull-up on D+. This allows the bus to discharge to the SEO
state. If the bus was operating in HS mode, the B-device will first enter the

full-speed mode and turn on its D+ pull-up resistor for atleast Tb fs_bdis min

before turning off its pull up to start the HNP sequence.

• The A-device detects the SEO on the bus and recognizes this as a request from

the B-device to become Host. The A-device responds by turning on its D+

pull-up within Ta bdis_acon max of first detecting the SEO on the bus.

• After waiting long enough to insure that the D+ line cannot be high due to the

residual effect of the B-device pull-up, the B-device sees that the D+ line is

high and D- line is low. This indicates that the A-device has recognized the
HNP request from the B-device. The B-device becomes Host and asserts bus

reset within Tb_acon bseO max to start using the bus.

• When the B-device completes using the bus, it stops all the bus activity.

• A-device detects lack of bus activity for more than Ta bidl_adis min and turns
off its D+ pull-up. If the A-device has no further need to communicate with

the B-device, the A-device may turn off Vbus and end the session.

• B-device turns on its pull-up.

24

• After waiting long enough to insure that the D+ line cannot be high due to the

residual effect of the A-device pull-up, the A-device sees that the D+, line is
high(and D- line is low) indicating that the B-device is signaling a connect and
is ready to respond as a peripheral. The A-device becomes host and asserts bus
reset to start using the bus.

The timers in this section are defined in appendix.

3.5 USB 2.0 Transceiver Macrocell Interface (UTMI) Specification
3.5.1 Introduction 13]
High volume USB 2.0 devices will be designed using ASIC technology with

embedded USB 2.0 support. For full-speed USB devices the operating frequency was

low enough to allow data recovery to be handled in a vendors VHDL code, with the
ASIC vendor providing only a simple level translator to meet the USB signaling
requirements. Today's gate arrays operate comfortably between 30 and 60MHz. With

USB 2.0 signaling running at hundreds of MHz, the existing design methodology

must change. As operating frequencies go up it becomes more difficult to compile

VHDL code without modification. This section defines the USB 2.0 Transceiver

Macrocell Interface (UTMI) and many operational aspects of the USB 2.0 Transceiver

Macrocell (UTM). The intent of the UTMI is to accelerate USB 2.0 peripheral

development. ASIC vendors and foundries will implement the UTM and add it to

their device libraries. Peripheral and IP vendors will be able to develop their designs,

insulated from the high-speed and analog circuitry issues associated with the USB 2.0
interface, thus minimizing the time and risk of their development cycles. There are
assumed to be three major functional blocks in a USB 2.0 peripheral ASIC design: the

UTM, the Serial Interface Engine (SIE), and the Device specific logic.

ASIC

Device
Specific
Logic

Sraiu1Ixztes.L=acc Exigixic

Endpoint Logic
SIE

Control
Logic

Endpoint Logic

Endpoint Logic

liSB2.0 	i3SR2[l
Transceiver
.Macrocell

Fig 3.8 ASIC Functional Blocks

25

3.5.2 USB 2.0 Transceiver Macrocell (UTM):
This block handles the low level USB protocol and signaling. This includes features

such as data serialization and deserialization, bit stuffing and clock recovery and
synchronization. The primary focus of this block is to shift the clock domain of the
data from the USB 2.0 rate to one that is compatible with the general logic in the

ASIC.
Some key features of the USB 2.0 Transceiver are:

• Eliminates high speed USB 2.0 logic design for peripheral developers.

• Standard Transceiver interface enables multiple IP sources for USB 2.0 S1E

VHDL.

Hs xcvR

Ate+ HS 00.Hicily M 	IAl 	NRZi
1]I DQ~dcr trJIM—

(

IW

31:~L rd ___.---

I
Receiv

31"
ai,m Parnitel

?Gnif
I

-. I
RX Dato

FS XC'IR
F:cv FS DtL &

Oata
eC°L

i r 	S~-, t
State -

ParaII
Tx Getz,

Reg ,i+ 	,

L
states/
Caaitsd

R-9
Reg Reg ~.r~

1111 __
Xnnt

fFl- 	t3A2t Bit

Anaiag From End Ezlemal

Encoder

Cak

Stotler

CLK aAryf]I t1V~U~1~3L'f

ControE ~" Ù"~
[.Ogif

Fig 3.9: UTM Functional Block Diagram

• Supports 480 Mbps "High Speed" (HS)/ 12 Mbps "Full Speed": (FS), FS Only

and "Low Speed" (LS) Only 1.5 Mbps serial data transmission rates.

• Utilizes 8-bit parallel interface to transmit and receive USB 2.0 cable data.

• SYNC/EOP generation and checking.

• High Speed and Full Speed operation to support the development of "Dual

Modell devices.

• Data and clock recovery from serial stream on the USB.

• Bit-stuffing/unstuffing, bit stuff error detection.

• Holding registers to stage transmit and receive data.

• Logic to facilitate resume signaling.

• Logic to facilitate wake up and suspend detection.

0

• Ability to switch between FS and HS terminations/signaling.

• Single parallel data clock output with on-chip PLL to generate higher speed

serial data clocks.

16-bit interface

Dataln(15:&) 	Dataout(9
Dataln(T:O) 	Dataouti

DataBusl 6 8

Reset

SuspendM

XcvrSelect
TermSelect

Opmode(1:D) 	uneState(1

Fig 3.10: UTMI INTERFACE SIGNALS with respect to PHY

3.5.3 System Interface Signals with Description
Table 3.7 UTMI Signals

Name Directi Active Description

on Level

CLK Output Rising- This output is used for clocking receive and transmit

Edge parallel data.
60 MHz HS/FS, with 8-bit interface

30 MHz HS/FS, with 16-bit interface

48 MHz FS Only, with 8-bit interface

6 MHz LS Only, with 8-bit interface

Reset Input High Reset all state machines in the UTM.

XcvrSelect Input N/A This signal selects between the FS and HS transceivers

0: HS transceiver enabled

1: FS transceiver enabled
This signal is not provided in FS Only and LS Only

transceiver implementations.

27

TermSelect Input N/A Signal selects between the FS and HS terminations
0: HS termination enabled
1: FS termination enabled
This signal is not provided in FS Only and LS Only
transceiver implementations.

SuspendM Input Low Places the Macrocell in a mode that draws minimal
power from supplies.
0: Macrocell circuitry drawing suspend current
1: Macrocell circuitry drawing normal current

LineState Output N/A These signals reflect the current state of the single

(0-1) ended receivers.
DM[1] DP [0] Description
0 	0 	0: SEO

0 	1 	1: 'J' State

1 	0 	2: 'K' State

1 	1 	3: SE1

OpMode Input N/A These signals select between various modes:

(0-1) [1] [0] Description
0 	0 	0: Normal Operation

0 	1 	1: Non-Driving
1 	0 	2: Disable Bit Stuffing and NRZI encoding

1 	1 	3: Reserved

Databus16_ Input High Set for 16- bit data bus.

8
DP Bidir N/A USB data pin Data+

DM Bidir N/A USB data pin Data-

Dataln0-7 Input N/A 8-bit parallel USB data input bus.
When DataBus168 = 1 this bus transfers the low byte

of 16-bit transmit data.
When DataBusl6 8 = 0 all transmit data is
Transferred over this bus.

DataIn8-15 Input N/A An 8-bit parallel USB data input bus that transfers the
high byte of 16-bit transmit data. These signals are

28

only valid when DataBus16_8 = 1.

TXValid Input High Indicates that the Dataln bus is valid. The assertion of

TXValid initiates SYNC on the USB. The negation of

TXValid initiates EOP on the USB.

TXValidH 'Input High When DataBus16_8 = 1, this signal indicates that the

Dataln (8-15) bus contains valid transmit data.

TXReady Output High If TXValid is asserted, the SIE must always have data
available for clocking in to the TX Holding Register

on the rising edge of CLK.

DataOutO-7 Output N/A 8-bit parallel USB data output bus. When

DataBusl6_8 = 1 this bus transfers the low byte of 16-

bit receive data. When DataBus16 8 = 0 all receive

data is transferred over this bus.

DataOut8- Output N/A An 8-bit parallel USB data output bus that transfers

15 the high byte of 16-bit receives data. These signals are

only valid when DataBus16_8 = 1.

RXValid Output High Indicates that the DataOut bus has valid data. The

Receive Data Holding Register is full and ready to be

unloaded. The SIE is expected to latch the DataOut

bus on the clock edge.

RXValidH Output High When DataBus16_8 = 1 this signals indicates that the

DataOut (8-15) bus is presenting valid receive data.

RXActive Output High Indicates that receive state machine has detected

SYNC and is active. RXActive is negated after a Bit

Stuff Error or an EOP is detected.

RXError Output High 0 	Indicates no error.

1 	Indicates that a receive error has been detected.

If asserted, it will force the negation of RXValid on

the next rising edge of CLK

29

3.5.4 Data Receiving and Transmitting

• RXActive and RXValid are sampled on the rising edge of CLK.

• The receiver is always looking for SYNC.

• The Macrocell asserts RXActive when SYNC is detected (Strip SYNC state).

• The Macrocell negates RXActive when an EOP is detected (Strip EOP state).

• When RXActive is asserted, RXValid will be asserted if the RX Holding
Register is full.

• RXValid will be negated if the RX Holding Register was not loaded during
the previous byte time.

• This will occur if 8 stuffed bits have been accumulated.

• The SIE must be ready to consume a data byte if RXActive and RXValid are
asserted (RX Data state).

• In FS mode, if a bit stuff error is detected- then Receive State Machine will
negate RXActive and RXValid.

CLK

RXActive

DataOut(7:©)

RXValid

RXError

DP/DM _ 	sieveX PJD 	Data 	Dafa 	Data 	Data 	CRC 	CRC 	EOP Xn

	

4— 	CRC-16 Computation ~I

Fig 3.11: Receive Timing for Data Packet (with CRC-16)

Transmit must be asserted to enable any transmissions.

• The SIE asserts TXValid to begin a transmission.

• . The SIE negates TXValid to end a transmission.

• After the SIE asserts TXValid it can assume that the transmission has started
when it detects TXReady asserted.

• The SIE assumes that the UTM has consumed a data byte if TXReady and
TXValid are asserted.

• The SIE must have valid packet information (PID) asserted on the Dataln bus

coincident with the assertion of TXValid. Depending on the UTM

30

implementation, TXReady may be asserted by the Transmit State Machine as

soon as one CLK after the assertion of TXValid.

• TXValid and TXReady are sampled on the rising edge of CLK.

• The Transmit State Machine does NOT automatically generate Packet ID's
(PIDs) or CRC. When transmitting, the SIE is always expected to present a

PID as the first byte of the data stream and if appropriate, CRC as the last

bytes of the data stream.

• The SIE must use LineState to verify a Bus Idle condition before asserting

TXValid state.
The SIE negates TXValid to complete a packet. Once negated, the Transmit State

Machine will never reassert TXReady until after- the EOP has been loaded into the

Transmit Shift Register. Note that the UTM Transmit State Machine can be ready to

start another packet immediately, however the SIE must conform to the minimum

inter-packet delays identified in the USB 2.0 Specification.

CLK

TXValid

Dataln(7:0)

TXReady

DP/DM

Fig 3.12: Transmit Timing for a Data packet

3.6 UTMI+ Specification

3.6.1 Introduction [4]
Purpose: The existing UTMI specification describes an interface only for USB2.0
peripherals. The intention of this UTMI+ specification is to extend the UTMI

specification to standardize the interface for USB2.0 hosts and USB2.0 OTG

peripherals. The UTMI+ specification defines and standardizes the interoperability

characteristics with existing USB2.0 hosts and peripherals. Any transceiver core that

has an interface compliant with UTMI+, has all signals compliant with UTMI. A
transceiver core with UTMI+ interface can be used for USB2.0 peripheral, host or

On-the-Go device designs that support LS, FS and HS traffic:

31

Additional signals for UTM1+: USB OTG peripherals have some additional

capabilities and therefore some new. signals need to be implemented.
1. A USB OTG dual role peripheral needs to be capable to distinguish between a

mini-A and mini-B plug.
2. A USB OTG peripheral has to know if Vbus is below or above a certain voltage

level.

Fig 3.13: UTMI+ Interface with respect to PHY 	-

3. A USB OTG peripheral must be able to drive Vbus and charge or discharge Vbus.

4. A USB OTG dual role peripheral needs to be able to switch the pull-up resistor on

DP and the pull-down resistor on both DP and DM.

5. The downstream facing port iof a host controller must have 15 k Ohm pull-down

resistors on both DP and DM lines.

6. The host controller must be able to detect disconnect of a peripheral. This is

possible for a FS peripheral by using LineState.

Therefore an additional signal needs to be implemented. To make the design of the

digital SIE easier, this new disconnect signal will be used in both speeds (HS/FS) to

indibate if there is a device connected or not.

32

3.6.2 UTMI + signals other than UTMI
Table 3.9 UTMI+ Signals

NAME DIRECTION ACTIVE DESCRIPTION

STATE

The id signal is indicating the state of the ID pin on the USB mini receptacle

IdPullup Input Low Signal that enables the sampling of the analog

Id line.
Ob: Sampling of Id pin is disabled.

Ib: Sampling of Id pin is enabled.

IdDig Output Indicates whether the connected plug is a mini-

A or B. This is valid when IdPullup is set to

1b.

Ob : connected plug is a mini-A

lb : connected plug is a mini-B

These are the signals which indicate the Link layer about the Strength of the Vbus.

AValid Output High Indicates if the session for an A-peripheral is

valid (0.8V < Vth < 2V).

Ob : Vbus < 0.8V Ib : Vbus > 2V

BValid Output High Indicates if the session for a B-peripheral is

valid (0.8V < Vth < 4V).

Ob : Vbus < 0.8V lb : Vbus > 4V

VbusValid Output High- Indicates if the voltage on Vbus is at a valid

level for operation (4.4V < Vth < 4.75V).

Ob : Vbus <4.4V 	lb: Vbus > 4.75V

SessEnd Output Low Indicates if the voltage on Vbus (0.2V < Vth <
0.8V).

lb : Vbus <0.2V 	Ob : Vbus > 0.8V

When the charge pump is not integrated within the transceiver macrocell then the optional

DrvVbus signal may be omitted from the macrocell.

DrvVbus Input High This signal enables to drive 5V on Vbus

Ob : do not drive Vbus

lb : drive 5V on Vbus

ChrgVbu Input Low The signal enables charging Vbus.

33

s lb : charge Vbus through a resistor

Ob : do not charge Vbus through a resistor

DischrgV Input Low The signal enables discharging Vbus.

bus lb: discharge Vbus through a resistor

Ob: do not discharge Vbus through a resistor

These two signals are used to switch on the 15k Ohm pull-down resistors on both DP and
DM for a host. For a peripheral both signals should been set to Ob. For a host controller

both signals should been set to lb.

DpPulldo Input Ob : Pull-down resistor not connected to DP

wn lb : Pull-down resistor connected to DP

DmPulld Input Ob : Pull-down resistor not connected to DM

own lb : Pull-down resistor connected to DM

This signal is used for all types of peripherals connected to it. It is only valid when
DpPulldown and DmPulldown are 1b. If DpPulldown and DmPulldown are not lb then

the behavior of HostDisconnect is undefined

HostDisc Output Low If a device is connected, then the value of this

onnect signal will be Ob else lb

These signals are only used when OpMode is set to 1 lb. While OpMode is set to 1 l the

automatic generation of SYNC and EOP is disabled. These signals make it also possible to

transmit high-speed USB packets while the transceiver is put into OpMode = 11b.

TxBitstuf Input High Ob : Bit stuffing is disabled

fEnable lb : Bit stuffing is enabled

TxBitstuf Input High Ob : Bit stuffing is disabled

fEnableH lb : Bit stuffing is enabled

The FsLsSerialMode signal indicates how the digital core signals the FS and LS packets to

the transceiver. The reason to add FsLsSerialMode to the interface is to make it possible to

reuse existing FS/LS host controller IP without changing its interface.

FsLsSeria Input High Ob: The parallel interface.

Mode 1 b: FS and LS packets are sent using the serial

interface.

Tx Enabl Input Active low output enable signal.

e N

Tx_DAT Input Differential data at D+/D- output

34

Tx SE0 Input Force Single-Ended Zero

Rx DP Output Single-ended receive data, positive terminal.
The data is valid if FsLsSerialMode is set to lb

Rx DM Output Single-ended receive data, negative terminal

The data is only valid if FsLsSerialMode is set
to lb

Rx RCV Output Receive data, The data is only valid if
FsLsSerialMode is set to lb

3.7 UTMI+ Low Pin Interface Specification
3.7.1 Introduction [5]
Purpose: ULPI defines a PHY to Link interface of 8 or 12 signals that allows a lower

pin count option for connecting to an external transceiver that may be based on the

UTMI+ specification. The pin count reduction is achieved by having relatively static
UTMI+ signals be accessed through registers and by providing a bi-directional data

bus that carries USB data and provides a means of accessing register data on the ULPI

transceiver.
If a ULPI PHY design is based on an internal UTMI+ core, then that core must

implement the following UTMI+ features.

• LineState must accurately reflect D+/D- to within 2-3 clocks.

• Filtering to prevent spurious SEO/SE1 states appearing on LineState due to

skew between D+ and D-.

• The PHY must internally block the USB receive path during transmit. The

receive path can be unblocked when the EOP is detected internally.

• TXReady must be used for all types of data transmitted, including chirp.

35

r
up

it tecfaae

USB
cabae

{'J7la!
Pump

Capactcr

Fig 3.14: ULPI Interface with respect to PHY

OTG/Hastll?eripheral C if'e I Akj'

ULPt Pi IV

UTMI+ ULPI lsnk 	ULPI Irrferi ce Wr. pper
Link "Cc rc 	 Wrappe

Fig 3.15: ULPI system from UTMI+ with wrappers

36

3.7.2 Interface signals of ULPI
Table 3.10 ULPI Signals

Signal Direction Description

clock UO Interface clock. The PHY must be capable of providing a
60Mhz output clock. All interface signals are synchronous to

clock.

data I/O Bi-directional data buses, driven low by link during idle. Bus
ownership is determined by dir. Link and PHY initiate data •

transfers by driving a non-zero pattern onto the data bus. Driven
00h by the Link when the ULPI bus is idle. Bus widths allowed

are

• 8-bit data timed on rising-edge of the clock.

• 4-bit data timed on rising and falling edges of the clock.

dir OUT Controls the direction of the data bus. When the PHY has data

to transfer to the Link, it drives dir high to take ownership of the
bus. When the PHY has no data to transfer it drives dir low and

monitors the bus for Link activity. The PHY pulls dir high

whenever the interface cannot accept data from the link.

stp IN If the Link is sending data to the PHY, stp indicates the last byte

was on the bus in the previous cycle. If the PHY is sending data

to the link, stp forces the PHY to end its transfer.

nxt OUT The PHY asserts the signal to throttle the data, except register
read command and RX CMD. Identical to RXValid during USB

receive, and TXReady during USB transmit. When the Link is
sending data to the PHY, nxt indicates when the current byte
has been accepted by the PHY. The PHY is not allowed to

assert nxt during the first cycle of the TX CMD driven by Link.

The link places the next byte on the data bus in the following

clock cycle. When the PHY is sending data to the Link, nxt

indicates when a new byte is available for the Link to consume.

3.7.3 ULPI Command Bytes [5]

ULPI modifies the original UMTI+ data stream so that it can fit more data types.
Redundancy in the PID byte during transmit is overloaded with the ULPI transmit

commands (TX CHID). Unused data bytes in the receive stream are overloaded with
receive commands (RX CMD) ULPI defines a Transmit Command byte that is sent

by the Link and a Receive Command byte that is sent the PHY.

Transmit command Byte (TX CHID): The TXCMD byte consists of a 2-bit
command code and a 6-bit payload. The data which is transmitted from Link to PHY

is send with the TX CMD byte as the first byte. The PHY will decode the TX CMD

and transmit the data to Device in the USB structure only.
Table 3.11 Transmit command (TX CMD) byte format

Byte Command Command V 	Command Description
Name Code Payload

data 7:6 data 5:0
Special 00b 000000b No operation. 00h is the idle value of the data

(NOOP) bus. The Link drives NOOP by default.

XXXXXXb Reserved Command Space. Values other than

(RSVD) those above will give undefined behavior.

Transmit Olb 000000b Transmit USB data that does not have a PID,

(NOPID) such as chirp and resume signaling. The PHY

starts transmitting on the USB beginning with

the next data byte.

OOXXXXb Transmit USB packet. data(3:0) indicates USB

(PID) packet identifier PID(3:0)

XXXXXXb Reserved Command Space. Values other than

(RSVD) those above will give undefined behavior.

RegWrite I Ob 101111b Extended register write command. 8-bit address

(EXTW) available in the next cycle.

XXXXXXb Register write command with 6-bit immediate

(REGW) address.

RegRead 1 lb 10111 lb Extended register read command. 8-bit address

(EXTR) available in the next cycle.

XXXXXXb Register read command with 6-bit immediate

(REGR) address.

38

Receive Command Byte (RX CMD): The Receive Command byte is sent by the

PHY to update the Link with LineState, USB receive, disconnect and OTG status

information.

Table 3.12 RX CMD Byte format

data Name Description and Value

1:0 LineState UTMI+ LineState signals

data(0) = LineState(0)

data(1) = LineState(1)

3:2 VbusState Encoded Vbus Voltage state.

Value Vbus Voltage SessEnd SessValid VbusValid

00 Vbus 1 0 0

01 0 0 0

10 X 1 0

11 x x 1

5:4 RxEvent Encoded UTMI event signals

Value RxActive RxError HostDisconnect

00 0 0 0

01 1 0 0

10 1 1 0

11 x x 1

6 ID Set to the value of IdGnd (UTMI+ IdDig) valid 50ms after IdPullup

is set to lb.

7 alt int Asserted when a non-USB interrupt occurs. This bit must be set

when an unmasked event occurs on any bit in the Carkit interrupt
Latch register. The Link must read the Carkit Interrupt Latch

register to determine the source of the interrupt.

When to send an RX CMD: An RX CMD is sent only in Synchronous Mode, and

conveys two types of information to the Link. The first is USB receive information.
The Second is interrupt events. All information is encoded into the single RX CMD

byte.

39

USB Receive information includes LineState, RXActive and RXError. The PHY
gains the ownership of the data bus by asserting dir and waiting 1 cycle as turnaround

time and de-assert nxt and drive an RX CMD with respective event observed. After a

USB transmit, the PHY must send an RX CIV1D with LineState indicating EOP of the

Link.
Interrupt events include HostDisconnect, Vbus, IdGnd, and alternative sources such
as Carkit interrupts. An RX CMD is sent to the Link whenever these events are

detected, and the corresponding USB interrupt Enable Rising or USB interrupt Enable

Falling registers are set.

3.7.4 Register Operations
ULPI provides a set of registers in the PHY that are accessed by the Link to control
PHY functionality.. The Link can read or write register bytes, set and clear register bits

as needed using the TX CMD byte by RegRead and RegWrite operations.

Immediate RegWrite and Extended RegWrite Operation
For the Immediate RegWrite the Link sends the register write command

(8'b10XXXXXX) and waits for nxt to assert. In the cycle after nxt asserts, the link

sends the register write data and waits for nxt to assert again. When nxt asserts the

second time, the Link asserts stp in the following cycle to complete the operation.
For Extended RegWrite it takes one more cycle as TX CNID is 8'hAF fixed first byte

and when nxt is asserted it puts the 8-bit extended address on the data bus and then

puts the write data on the bus.

"clock

data[7:01

•.di e

stp.

nxt

Fig 3.16 Extended RegWrite operation

Immediate RegRead and Extended RegRead Operation
For the Immediate RegRead the Link sends the register read command

(8'bI IXXXXXX) and waits for nxt to assert. In the cycle after nxt asserts, the PRY
will take over the bus and waits for 1 cycle turnaround and then puts the required data

from the Registers and then turns down the dir giving the control to link. Then the
Link reads the data on bus continues its operation.

For Extended RegRead it takes one more cycle as TX CMD is 8'hEF fixed first byte

and when nxt is asserted it puts the 8-bit extended address on the data bus and then

reads the data on the bus a cycle later.

Mock

dat t7 O]

dir

stp

nxt f 	 L

1 	 S 	 3 	 f 	 i

3.17 Immediate RegRead operation

The important Registers used in the Normal operation and the On-The-Go

Supplement are Function Control Register, OTG Control Register and USB Interrupt

Status Register.

3.8 Simulation Results
The snapshots of the simulations done for USB 2.0 for three interfaces in several

scenarios are shown below.

3.8.1 Serial Interface
The below snapshot shows the Device Chirp K and Host Chirp KJ Sequence during

high-speed reset with successful speed negotiation.

!fl

The SOF packets send preceded by the SYNC and followed by EOP.

The Serial Interface where the device is getting attached at the beginning and goes

into Reset and going into High speed. Then transactions taking place and then the

device goes suspended state and into disconnected state and then connects as Host

using HNP in High-speed and do the transactions and then give back the original host

its state.

3.8.2 UTMI+ Interface
Transactions in the UTMI+ the SOF starting after the reset and then OUT transaction

on TX lines and received ACK packet from the PRY on RX Lines.

42

The reset task where the A-device is Link and the B-device is PRY which keeps
LineState as 2 for chirp K and Link sends chirp KJ sequence in response on the TX

lines.

Suspend and Resume in UTMI+ are seen in the figure which shows SuspendM signal

is made Low at the time of suspend and made high after resume.

43

SRP in UTMI+ is shown in the below figure which shows all the 4 stages Initial

Condition 1, 2, data line pulsing and Vbus pulsing with respect to UTMI+ signals.

3.8.3 ULPI Interface
The Transactions in the ULPI Interface can be seen where the PHY sends the RX

CMD whenever the change in the LineState in PHY is seen or on completion of Data

or ACK packets.

HS Reset in ULPI is seen here the Link is B-device and PHY is the A-device. The
Link will be sending the Chirp K for becoming the HS device then PHY after

receiving the TX CMD (NOPID) will wait till the end of Chirp and then gives chirp

KJ sequence in the form of RX CMD's to the Link so that both will come High-speed

after reset.

HNP in ULPI is shown in the figure below where the A-device will end the session

and B-device will get disconnected state and then A-device will attach to the B-device

as device so the B-device (original) will reset the A-device (original) as Host.

45

4. WIRELESS USB PHYSICAL LAYER

4.1 General Introduction
Wireless USB is logical evolution of USB. There are several key design areas to be

met, they are Leverage the existing USB infrastructure, Preserve the USB model of
smart host and simple device, Provide effective power management mechanisms,

Provide security, Ease of use and Wire Adapter to upgrade wired USB devices.

4.1.1 Architecture Overview [6]
Wireless USB is a logical bus that supports data exchange between a host device and

a wide range of simultaneously accessible peripherals. The attached peripherals share

bandwidth through a host-scheduled, TDMA Protocol. The bus allows peripherals to

be attached configured, used, and detached while the host and other peripherals are in

operation. Security definitions are provided to assure secure associations between

hosts and devices, and to assure private communication.
Wireless USB connects USB devices with the USB Host using a `hub and spoke'
model. The Wireless USB host is the `hub' at the center, and each device sits at the

end of a `spoke' having a point-to-point connection with the host which have a

maximum of 127 devices.

4.1.2 Bus Protocol
Wireless USB is a polled, TDMA based protocol, similar to wired USB. The Host

controller initiates all data transfers. To increase the efficiency of the physical layer

by eliminating costly transitions between sending and receiving, hosts combine
multiple token information into a single packet, in that packet, the host indicates the

specific time when the appropriate devices should either listen for an OUT data

packet, or transmit an IN data packet or handshake. Wireless USB defines new
maximum packet sizes for some endpoint types to enhance channel efficiency.

Similarly, some new flow control mechanisms are defined to enhance channel

efficiency and to allow more power-friendly designs. New mechanisms are defined

for isochronous pipes to deal with the lower reliability of the wireless medium.

4.1.3 Robustness
There are several attributes of wireless USB that contribute to its robustness [6]:

• The physical layer is designed for reliable communication and robust error

detection and correction.

46

• Detection of attach and detach and system-level configuration of resources.

• Self-recovery in protocol, using timeouts for lost or corrupted packets.

• Flow control, buffering and retries ensure isochrony and hardware buffer

management.
4.1.4 Security
All hosts and all devices must support Wireless USB security. The security
mechanisms ensure that both hosts and devices are able to authenticate their

communication partner and that communications between host and devices are

private. The security mechanisms are based on AES-128/CCM encryption, providing

integrity checking as well as encryption. Communications between host and device

are encrypted using `keys' that only the authenticated host and authenticated device

possess.

4.1.5 System Configuration
Unlike wired USB, Wireless USB devices `attach' to a host by sending the host a
message at a well defined time. The host and device then authenticate each other

using their unique IDs and the appropriate security keys.

4.2 PHY General Description
The Ecma Standard specifies the Ultra Wideband (UWB) physical layer (PHY) for a

wireless personal area network (PAN), utilizing the unlicensed 3,100=10,600 MHz
frequency band [7], supports data rates of 53.3 Mb/s, 80 Mb/s, 106.7 Mb/s, 160 Mb/s,

200 Mb/s, 320 Mb/s, 400 Mb/s, and 480 Mb/s. Support for transmitting and receiving

data rates of 53.3, 106.7, and 200 Mb/s shall be mandatory.

The UWB spectrum is divided into 14 bands, each with a bandwidth of 528 MHz. The

first 12 bands are then grouped into 4 band groups consisting of 3 bands. The last two

bands are grouped into a fifth band group. A sixth band group is also defined within

the spectrum of the first four, consistent with usage within worldwide spectrum
regulations. At least one of the band groups shall be supported. The Ecma Standard

specifies a Multi Band Orthogonal Frequency Division Modulation (MBOFDM)

scheme to transmit information. A total of 110 sub-carriers (100 data carriers and 10
guard carriers) are used per band to transmit the information. In addition, 12 pilot

subcarriers allow for coherent detection. Frequency-domain spreading, time-domain

47

spreading, and forward error correction (FEC) coding are used to vary the data rates.

The FEC used is a convolutional code with coding rates of 1/3, 1/2, 5/8 and 3/4.

4.3 MAC General Description
The MAC is a sublayer of the Data Link Layer defined in the OSI basic reference.

model. The MAC service is provided by means of the MAC service access point
(MAC SAP) to a single MAC service client, usually a higher layer protocol or

adaptation layer. The MAC sublayer is represented by a device address. The MAC

sublayer in turn relies on the service provided by the PHY layer via the PHY service

access point (PHY SAP). The MAC protocol applies between MAC sublayer peers.

Device address: Individual MAC sublayers are addressed and are associated with a

volatile abbreviated address called a DevAddr. DevAddrs are 16-bit values, generated

locally, without central coordination. Consequently, it is possible for a single value to
ambiguously identify two or more MAC entities. The MAC addressing scheme

includes multicast and broadcast address values. A multicast address identifies a

group of MAC entities. The broadcast address identifies all MAC entities.

4.4 Features Assumed from the PHY
A MAC sublayer is associated with a single PHY layer via the PHY SAP. The MAC

sublayer requires the following features provided by the PHY:

• Frame transmission in both single frame and burst mode.

• Frame reception for both single frame and burst mode transmission.

• PLCP header error indication for both PHY and MAC header structures.

• Clear channel assessment for estimation of medium activity.

• Range measurement timestamps if MAC range measurement is supported.
Frames are transmitted by the PHY from the source device and delivered to the

destination device in identical bit order. The start of a frame refers to the leading edge

of the first symbol of the PHY frame at the local antenna and the end of a frame refers
to the trailing edge of the last symbol of the PHY frame. Frame transmission and

reception are supported by the exchange of parameters between the MAC sublayer

and the PHY layer. These parameters allow the MAC sublayer to control, and be
informed of, the frame transmission mode, the frame payload data rate and length, the
frame preamble, the PHY channel and other PHY-related parameters. In single frame

48

transmission, the MAC sublayer has full control of frame timing. In burst mode

transmission, the MAC sublayer has control of the first frame timing and the PHY

provides accurate timing for the remaining frames in the burst.

The MAC service provides:

1

	

	 • Communication between cooperating devices within radio range on a single

channel using the PHY.

• A distributed, reservation-based channel access mechanism.

• A prioritized, contention-based channel access mechanism.

• A synchronization facility for coordinated applications.

• Mechanisms for handling mobility and interference situations.

• Device power management by scheduling of frame transmission and

reception.

• Secure communication with data authentication and encryption using

cryptographic algorithms.

• A mechanism for measuring the distance between two devices.

The architecture of this MAC service is fully distributed. All devices provide all

required MAC functions and optional functions as determined by the application. No

device acts as a central coordinator.

4.5 PHY Layer Partitioning
The following section describes the PHY services provided to the MAC. The PHY

layer consists.of two protocol functions:

• A PHY convergence function, which adapts the capabilities of the physical

medium dependent (PMD) device to the PHY service. This function is

supported by the physical layer convergence protocol (PLCP), which defines a
method of mapping the PLCP service data units (PSDU) into a framing format

suitable for sending and receiving user data and management information

between two or more stations using the associated PMD device.

• A PMD device whose function defines the characteristics and method of
transmitting and receiving data through a wireless medium between two or

more stations, each using the Ecma PHY.

41

PAY Function: The PHY contains three functional entities: the PMD function, the

PHY convergence function, and the layer management function. The PHY service is

provided to the MAC through the PHY service primitives.
PLCP sublayer: In order to allow the MAC to operate with minimum dependence on

the PMD sublayer, the PHY convergence sublayer is defined. This function simplifies

the PHY service interface to the MAC services.

PMD sublayer: The PMD sublayer provides a means to send and receive data

between two or more stations.

PITY layer management entity (PLME): The PLME performs management of the

local PHY functions in conjunction with the MAC management

4.6 PLCP Sublayer

This section provides a method for converting a PSDU into PL Protocol Data

Unit (PPDU). During the transmission, the PSDU shall be pre-dp d lw

preamble and a PLCP header in order to create the PPDU. At the receiv1h°e PLCP

preamble and PLCP header serve as aids in the demodulation, decoding, and delivery

of the PSDU.

4.6.1 PPDU [7]
The format for the PPDU, which is composed of three components: the PLCP

preamble, the. PLCP header, and the PSDU. The components are listed in the order of

transmission. The PLCP preamble is the first component of the PPDU and can be

further decomposed into a packet/frame synchronization sequence, and a channel
estimation sequence. The goal of the PLCP preamble is to aid the receiver in timing

synchronization, carrier-offset recovery, and channel estimation.

The PLCP header is the second component of the PPDU. The goal of this component
is to convey necessary information about both the PHY and the MAC to aid in

decoding of the PSDU at the receiver. The PLCP header can be further decomposed

into a PHY header,. MAC header, Header Check Sequence (HCS), Tail bits, and

Reed-Solomon parity bits. Tail bits are added between the PHY header and MAC

header, HCS and Reed-Solomon parity bits and at the end of.the PLCP header in

order to return the convolutional encoder to the "zero state". The Reed-Solomon

parity bits are added in order to improve the robustness of the PLCP header.

	

3 bit, 	5 tails 	L its 	2 bits 	2 bats 	2 bits 	I bit 	list 	3 bits 	I bit 	Slits

	

SCRA&MI.LR 	 BURST PREAMBLE 	 BXNDGROU Resitved 	RATE 	LE G]}i 	Received 	LVIT 	R imed_ 	A40DE 	' YPE 	TXTFC 	LSB 	Rtxened

r+r"rrrrrrr rrw

	

t 	 ~.rr+rr

PITY 	Tail 	MAC 	NHS Tail 	Recd-Solomon Tail 	 Frus Payload 	 FCS Tait 	Pad
Heads 	Bits 	Header 	Bits 	Parity Bits 	Bits 	 VariableLetsgh 0-4 095Octcts 	Bits 	its

6 obits 10 octets 2 octets 6 bits 	6 octets 	4 bit% ~ 	 4 octets 6 Litt 	4

%

PLC? Preamble 	 PLOP] leac r 	 PSDU

ii 	391R4bs 	53,3 .320 8b's,40 Mb/s. 110
1 	_^00 Mb/s. 320 Mb's, d00;l~1h!c, 48014 h's

Fig 4.1: Standard PPDU Structure

The PSDU is the last component of the PPDU. This component is formed by

concatenating the frame payload with the frame check sequence (FCS), tail bits, and

finally pad bits, which are inserted in order to align the data stream on the boundary
of the symbol interleaver.

When transmitting the packet, the PLCP preamble is sent first, followed by the PLCP

header, and finally by the PSDU. The PLCP header is a codeword of a systematic

Reed-Solomon code, appended with tail bits as explained above. The systematic part

of the PLCP header is always sent at a data rate of 39.4 Mb/s. The PSDU is sent at the

desired data rate of 53.3 Mb/s, 80 Mb/s, 106.7 Mb/s, 160 Mb/s, 200 Mb/s, 320 Mb/s,

400 Mb/s or 480 Mb/s. The least-significant bit (LSB) of an octet shall be the first bit

transmitted.

4.6.2 PLCP Preamble
A PLCP preamble shall be added prior to the PLCP header to aid the receiver in

timing synchronization, carrier-offset recovery, and channel estimation. There are two

types of preambles: standard PLCP preamble and a burst PLCP preamble. A unique

preamble sequence shall be assigned to each time-frequency code (TFC). The

preamble is defined to be a real baseband signal, which shall be inserted into the real

portion of the complex baseband signal. The PLCP preamble consists of two portions:

a time-domain portion (packet / frame synchronization sequence) followed by a

frequency-domain portion (channel estimation sequence). The burst preamble shall

only be used in the burst mode when a burst of packets is transmitted, separated by a

minimum inter-frame separation time (pMIFS). For data rates of 200 Mb/s and lower,

all the packets in the burst shall use the Standard PLCP preamble.
However, for data rates higher than 200 Mb/s, the first packet shall use the Standard

PLCP preamble, while the remaining packets may use either the Standard PLCP

51

preamble or the burst PLCP preamble. Support for transmission and reception of burst

PLCP preamble is mandatory for all supported data rates above 200Mbps. The

preamble type (PT) bit in the PHY header describes the type of preamble that shall be

used in the next packet.

4.6.3 PLCP Header
A PLCP header shall be added after the PLCP preamble to convey information about

both the PHY and the MAC that is needed at the receiver in order to successfully
decode the PSDU.

The scrambled and Reed-Solomon encoded PLCP header shall be formed as defined

in:

1. Format the PHY header based on information provided by the MAC.

2. Calculate the HCS value (2 octets) over the combined PHY and MAC headers.

3. The resulting HCS value is appended to the MAC header. The resulting

combination (MAC Header + HCS) is scrambled.

4. Apply a shortened Reed-Solomon code (23, 17) to the concatenation of the

PHY header (5 octets), scrambled MAC header and HCS (12 octets).

5. Insert 6 tail bits after the PHY header, 6 tail bits after the scrambled MAC

header and HCS, and append the 6 parity octets and 4 tail bits at the end to

form the scrambled and Reed-Solomon encoded PLCP header.
The resulting scrambled and Reed-Solomon encoded PLCP header is encoded, using a

R=1/3, K=7 convolutional code, interleaved using a bit interleaver, mapped onto a

QPSK constellation, and finally, the resulting complex values are loaded onto the data

subcarriers for the IDFT in order to create the baseband signal.

(1) PRY Header.

The PHY header contains information about the data rate of the MAC frame body, the

length of the frame payload (which does not include the FCS), the seed identifier for

the data scrambler, and information about the next packet — whether it is being sent in
burst mode and whether it employs a burst preamble or not.

The PHY header field shall be composed of 40 bits, numbered from 0 to 39. Bits 3-7

shall encode the RATE field, which conveys the information about the type of

modulation, the coding rate, and the spreading factor used to transmit the MAC frame

body. Bits 8-19 shall encode the LENGTH field, with the least-significant bit being

transmitted first. Bits 22-23 shall encode the seed value for the initial state of the

scrambler, which is used to synchronize the descrambler of the receiver. Bit 26 shall

encode whether or not the packet is being transmitted in burst mode. Bit 27 shall
encode the preamble type (Standard or burst preamble) used in the next packet if in
burst mode. Bits 28-30 shall be used to indicate the lower 3 LSBs of the TFC (TI -
T3) used at the transmitter. Bit 31 shall be used to indicate the LSB of the band group
used at the transmitter. Bit 34 shall be used to indicate the MSB of the TFC (T4) used
at the transmitter. All other bits which are not defined in this sectione shall be

understood to be reserved for future use and shall be set to ZERO.

PHY Header
MAC

Header

HarderCteek
Sequence
Catcutaticsn

"lies

S crnrnblcd
Append and MAC Headw * HCS
Scramble

Shortens
{23.i7j

6 Zero Bits

1....

6 Zero Bits

1...

Reed-s000rmcn Code 4 Zero Bits

_
PHd 	Tail S a rnhled MAC deader HC Tall 1 Reed- nlnm Tail

Her der 	Bid BSt Panty 	i Bits

4O bits 	6 bits 98 bits Obits 4B Faits 4 tits

Fig 4.2 Scrambled and RS Encoded PLCP Header

(2) RS Outer Code for PLCP Header

The PLCP header shall use a systematic (23, 17) Reed-Solomon outer code to

improve upon the robustness of the R = 1/3, K = 7 inner convolutional code. The
Reed-Solomon code is defined over OF (28) with a primitive polynomial
p (z) = z8 + z4 + z3 + z2 + 1, where a is the root of the polynomial p (z).
The generator polynomial is obtained by shortening a systematic (255, 249) Reed-
Solomon code, which is specified by the generator polynomial

g(x) _ f 1 (x — at) = x6 + 126x5 + 4x4 + 158x3 + 58x2 + 49x + 117, where g(x) is the
generator polynomial over F, x E F and the coefficients are given in decimal notation.
(3) Header Check Sequence

The combination of PHY header and the MAC header shall be protected with a 2

octet CCITT CRC-16 header check sequence (HCS). The CCITT CRC-16 HCS shall
be the ones complement of the remainder generated by the modulo-2 division of the
combined PHY and MAC headers by the polynomial: x16 + x12 + x5 + 1.

4.6.4 PSDU
The PSDU is the last major component of the PPDU and shall be constructed as:

1. Form the non-scrambled PSDU by appending the frame payload with the
4 octet FCS, six tail bits, and a sufficient number of pad bits in order to

ensure that the PSDU is aligned on the interleaver boundary.

2. The resulting combination is scrambled according to 4.6.5

3. The six tail bits in the PSDU shall be produced by replacing the six

scrambled zero bits with six non-scrambled zero bits.

The resulting scrambled PSDU is encoded, using a R = 1/3, K = 7 convolutional code

and punctured to achieve the appropriate coding rate, interleaved using a bit

interleaver, mapped onto either a QPSK or DCM constellation, and finally, the

resulting complex values are loaded onto the data subcarriers of the OFDM symbol in

• order to create the real or complex baseband signal, depending on the desired data

rate.

Pad bits: Pad bits shall be appended after the 6 tail bits prior to scrambling and

encoding in order to ensure that the resulting PSDU is aligned with the boundaries of
the bit interleaver.

Frame Payload 	FCS 	6 Zero Bits 	Pad Bits (rail Bits)

Append and
Scramble

6 Zero Bits

Scrambled 	Scrambled 	Unscrambledd 	Scrar Wed
Frame Paylaad 	FOS 	 TaitHi:s 	Pad Bits

32 bits 	 6 bits

Fig 4.3 Scrambled PSDU

4.6.5 Data Scrambler
A side-stream scrambler shall be used to whiten only portions of the PLCP header,

i.e., the MAC header and HCS, and the entire PSDU. In addition, the scrambler shall

be initialized to a seed value specified by the MAC at the beginning of the MAC
header and then re-initialized to the same seed value at the beginning of the PSDU.

54

The polynomial generator, g(D), for the pseudo-random binary sequence (PRBS)

generator shall be:

g(D) = 1 + D14 + D15, where D is a single bit delay element.

Using this generator polynomial, the corresponding PRBS, x[n], is generated as

x[n] = x[n — 14] Q+ x[n — 15], n = 0, 1, 2, ... 	where "Q+" denotes modulo-2

addition.

4.6.6 Tail Bits
The tail bit fields are required to return the convolutional encoder to the "zero state".

This procedure improves the error probability of the convolutional decoder, which

relies on the future bits when decoding the message stream. The tail bit fields after the

PHY header and the HCS shall consist of six non-scrambled zeros, and the tail bit

field after the Reed- Solomon parity bit field shall be a punctured tail bit sequence

consisting of four non-scrambled zeros. The tail bit field following the scrambled

frame check sequence shall be produced by replacing the six scrambled zero bits with

six non-scrambled zero bits.

4.6.7 Convolutional Encoder
The convolutional encoder shall use the rate R = 1/3 code with generator polynomials,
gO = 1338, gl = 1658, and g2 = 1718. The bit denoted as "A" shall be the first bit

generated by the encoder, followed by the bit denoted as "B", and finally, by the bit

denoted as "C". Additional coding rates are derived from the "mother" rate R = 1/3

convolutional code by employing "puncturing". Puncturing is a procedure for

omitting some of the encoded bits at the transmitter (thus reducing the number of

transmitted bits and increasing the coding rate) and inserting a dummy "zero" metric
into the decoder at the receiver in place of the omitted bits. In each of these cases, the

tables shall be filled in with encoder output bits from left to right. For the last block of

bits, the process shall be stopped at the point at which encoder output bits are

exhausted, and the puncturing pattern applied to the partially filled block. The PLCP

header shall be encoded using a coding rate of R = 1/3. The encoder shall start from

the all-zero state. After the encoding process for the PLCP header has been
completed, the encoder shall be reset to the all-zero state before the encoding starts

for the PSDU; in other words, the encoding of the PSDU shall also start from the all-

zero state. The PSDU shall be encoded using the appropriate coding rate of R = 1/3,

1/2, 5/8, or 3/4.

55

lnpit

Fig 4.4: Convolutional encoder: rate R = 1/3, constraint length K = 7

Decoding is done by the Viterbi algorithm.
Scrambled andRS

Endoded 	 Bit 	 QPSK 	 4FD]d PLCP Header 	 ConwLieanal 	 Interleawr 	 Or DCM)ldodnlabor Or Scambled 	 ExKOdar 	 I apPK PSDU

Fig 4.5 Encoding process for the scrambled, Reed-Solomon encoded PLCP header or Scrambled PSDU

4.6.8 Bit interleaving
The coded and padded bit stream shall be interleaved prior to modulation to provide

robustness against burst errors. The bit interleaving operation is performed in three

distinct stages:

(1) Symbol interleaving, which permutes the - bits across 6 consecutive OFDM

symbols, enables the PRY to exploit frequency diversity within a band group.

(2) Intra-symbol tone interleaving, which permutes the bits across the data

subcarriers within an OFDM symbol, exploits frequency diversity across

subcarriers and provides robustness against narrow-band interferers.

(3) Intra-symbol cyclic shifts, which cyclically shift the bits in successive OFDM

symbols by deterministic amounts, enables modes that employ time-domain

spreading and the fixed frequency interleaving (FFI) modes to better exploit

frequency diversity.

Input to 	 Symbol 	 Tone 	 Cyclic 	 Interleaved

Interleaver 	 interleaver 	 Interteaver 	 Shifter 	 Output

Fig 4.6 Various Stages of Bit interleaver

4.6.9 Constellation mapping
This section describes the techniques for mapping the coded and interleaved binary

data sequence onto a complex constellation. For data rates 200 Mb/s and lower the

binary data shall be mapped onto a QPSK constellation. For data rates 320 Mb/s and
above the binary data shall be mapped onto a multi-dimensional constellation using a

dual-carrier modulation (DCM) technique.

56

(1) QPSK

The coded and interleaved binary serial input data, b[iJ where i = 0, 1, 2, ..., shall be
divided into groups of two bits and converted into a complex number representing one
of the four QPSK constellation points. The conversion shall be performed according

to the Gray-coded constellation mapping, with the input bit, b[2k] where k = 0, 1, 2,
..., being the earliest of the two in the stream. The output values, d[k] where k = 0, 1,

2, ..., are formed by multiplying (2xb[2k]-1) + j(2xb[2k+1]-1) value by a
normalization factor of KMOD, as described in the following equation:

d[k] = KMOD x [(2xb[2k]-1) +j(2xb[2k+1]-1)] , where k = 0, 1, 2, ...,

The normalization factor KMOD = 1// for a QPSK constellation.

(2) Dual-carrier modulation (DCM)
The coded and interleaved binary serial input data, b[i] where i = 0, 1, 2, ... shall be
divided into groups of 200 bits and converted into 100 complex numbers using a

technique called dual-carrier modulation. The conversion shall be performed as

follows:

• The 200 coded bits are grouped into 50 groups of 4 bits. Each group is

represented as (b[g(k)], b[g(k)+1], b[g(k) + 50], b[g(k) + 51]), where k E [0,

49] and

2k
g(k)_f2k + 	

kE[0,24]
50 kE[25,49]•

• Each group of 4 bits (b[g(k)],' b[g(k)+1], b[g(k) + 50], b[g(k) + 51]) shall be

mapped onto a four-dimensional constellation, as defined in Figure 25, and

converted into two complex numbers (d[k], d[k + 50]).

• The complex numbers shall be normalized using a normalization factor

KMOD.

The normalization factor KMOD = 1/ 10 is used for the dual-carrier modulation.

4.6.10 OFDM modulation[8]
The Ecma Standard specifies a Multi Band Orthogonal Frequency Division

Modulation (MBOFDM) scheme to transmit information. A 128-pt (I)FFT is used to

create the ODFM symbols at a fixed rate of 242.42ns irrespective of requested data-

rate. Each OFDM symbol has a 37-sample zero value guard appended to the end of
the symbol giving a total OFDM symbol time (termed interval time) of 312.5ns. Each

OFDM symbol is made from 100 data sub-carriers, 12 pilot subcarriers, 10 guard sub-

57

carriers (copy of the outer 5 data subcarriers to each symbol) and 6 null-valued pilots
(5 high frequency and the DC term).

Data subcarriers
The mapping between the stream of complex values and the data subcarriers is
dependent on the portion of the PPDU and the data rate. The instantaneous data-rates

available are 53.3, 80, 106.7, 160, 200, 320, 400 and 480 Mbit/sec formed by a
mixture of various puncturing, time and frequency spreading (diversity). For data
rates of 200 Mbit/sec and below, a Time-Domain Spreading (TDS) scheme is

employed to send an OFDM symbol on a carrier in one channel of the selected BG

and then to send the same OFDM symbol. For data rates of 53.3, 80 Mbit/sec (and the

PLCP Header), a Frequency-Domain Spreading (FDS) scheme is employed to QPSK

map a complex-value onto 2 IFFT sub-carriers thus improve performance in

Frequency Selective Fading.

Guard subcarriers
For each OFDM symbol, starting with the channel estimation sequence within the
PLCP preamble, there shall be 'ten subcarriers, 5 on each edge of the occupied

frequency band, allocated as guard subcarriers. The relationship between the power

Ievels of the guard subcarriers and that of the data subcarriers shall be implementation

dependent. This relationship shall remain constant within a packet, i.e., from the start

of the channel -estimation .sequence to the end of the packet. The 10 guard subcarriers

are located on either edge of the OFDM symbol; at logical frequency subcarriers -61,

-60, ..., -57, and 57, 58, ..., 61.

Pilot subcarriers
In all of the OFDM symbols following the PLCP preamble, twelve of the subcarriers

shall be dedicated to pilot signals in order to allow for coherent detection and to
provide robustness against frequency offsets and phase noise. These pilot signals shall

be placed in logical frequency subcarriers -55, -45, -35, -25, -15, -5, 5, 15, 25, 35, 45,

and 55.

5. SIMULATION OF WIRELESS USB PROTOCOL

PHYSICAL LAYER

5.1 Simulation Environment
The Simulation is done mainly for 2 components of PLCP Protocol Data Unit (PPDU)

they PLCP Header and PHY Service Data Unit (PSDU). The PLCP header and PSDU
data are transmitted as per the standard Ecma, apart from the Multiband OFDM

implementation every other aspect of the Physical layer is verified as mentioned in the

specification. The receiver part is also implemented and verified at every stage.

Results obtained for different SNR values are shown in results section. The final

verification is done to check the required sequence of the FCS decoded in the

receiver.

5.2 Design Flow of Simulation
5.2.1 Transmitter
PLCP Header

PHY Header MAC
I 	Header

Header Check
Sequence
Galcdalion

1NCS

Scrambled
Append and MAC Header+ HCS
Scramble

Shortened
(23,17)

6 Zero Bits 6 Zero Bits Reed-Solomon Code 4 Zero Bits

H _
PI fY 	Tait S 	"b]edM1AGHesder+JICS Tail

Bits
Reed-Solomon

ParityBlts
Tail
Blts Header 	Bits

40 bits 	6 bits 56 bits 6 bits 48 bits 4 tits

Fig 5.1 Scrambled and RS Encoded PLCP Header

Steps:
1) Getting the input PHY Header of 40 bits and MAC Header of 80 bits.

2) Calculating the 16 bit Header Check Sequence for the Combined PHY and

MAC Header with 2 octet CCITT CRC-16 polynomial x16+x12+x5+1.

3} Appending the obtained HCS to the MAC Header.
4) Scrambling the resultant value using the data scrambler

59

x[n] = x[n — 14] Q+ x[n — 15], n = 0, 1, 2, ... where "c+ " denotes modulo-2

addition.
Calculating the RS Parity bits for the Scrambled MAC Header combined with

HCS and PHY Header.
RS Encoder: Reed-Solomon code over GF (28) with a primitive polynomial

p (z) = z8 + z4 + z3 + z2 + 1, where a is the root of the polynomial p (z) is
used. The shortened (255,249) RS code is used for calculating the parity bits.

Shortening operation pre-appends 232 zero elements to the incoming 17 octet

message as follows

message = 0, i = 17, ..., 248, where the 17 octet message is formed by

concatenating the 5 octets from the PHY header to the 12 octets from the

scrambled MAC header and HCS.

5) Adding appropriate tail bits like 6 zero tail bits after PHY Header and 6 zero

tail bits after Appended and Scrambled MAC Header with HCS and 4 zero tail

bits at the end ofthe RS parity bits.

Steps 1 to 6 are specific to PLCP Header and PSDU have only a few steps, after

which both the PLCP Header and PSDU will have a common implementation of

Convolutional Encoder, Bit Interleaving, QPSK mapper and OFDM modulation

before transmitting.

Scrambled and RS
Endoded 	 Bit 	 QPSK

PLCP Header 	Coto z1 	 Intezkaver 	 Os DCM 	 moan,
Or Scembled 	 Encoder 	 Mippe=

PSDU

Fig 5.2 Encoding process of scrambled and RS Encoded PLCP Header or Scrambled PSDU

6) Convolutional Encoder of length = 7 and Rate =1/3 with the trellis polynomial

formed with coefficients [133 165 171].

7) Bit Interleaving has 3 stages internally:

• Inter-Symbol Interleaver which permutes the bits across 6 consecutive

OFDM symbols, enables the PHY to exploit frequency diversity within

a band group with the following equation

a' [L] s 	
L
 j 	1V

6
	

rod @~ 1sicps)1
C.SpS D

Where a[i] is the previous sequence from the Convolutional encoder

3117

And as [i] is the interleaved sequence after stage I.

• Intra-symbol tone interleaving, which permutes the bits across the data

subcarriers within an OFDM symbol, exploits frequency diversity

across subcarriers and provides robustness against narrow-band

interferers with the following equation

aT[i] = as
IkVrintl

+ 10 x mod(j, NTtnt)]

where as [i] is the input to the Tone interleaver and aT [i] is the output

of intra-symbol tone interleaving.

• Intra-symbol cyclic shifts, which cyclically shift the bits in successive

OFDM symbols by deterministic amounts, enables modes that employ

time-domain spreading and the fixed frequency interleaving (FFI)

modes to better exploit frequency diversity with the following equation

b[i] = aT [m(i) x NCBPS + mod(i + m(i) x N CYC? NCBPS)]

Where b[i] is the output of the cyclic shifter and aT [i] is the input to

the cyclic shift.

8) QPSK mapper first converts the binary values to two different columns and

then transposes them and append element wise to form symbols, and again
they are converted into complex QPSK values and send as input to OFDM

modulator.

9) OFDM modulation is done by implementing the 50 point IFFT which are

obtained from the QPSK mapper. As the part of the channel noise White noise

is added to check with conditions that occur in wireless medium.

PSDU
Frame Payload 	FCS 	6 Zero Bits 	Pad Bits (Tail Bits)

Append and
Scramble

6 Zero Bits

Scrambled 	Scrambled 	Unscrambled 	Scrambled
Frame "Payload 	FCS 	 Tail Bits 	Pad Sits

32 bits 	 a bits

Fig 5.3: Scrambled PSDU

Steps:

1) Append the Frame Payload which is the same data as PHY level data of USB
2.0 and FCS calculated using the following Standard generator polynomial of

degree 32:
G(X)=X32 +X26 +X23 +X22 +X16 +X12 ±Xll +X10 +X8 +X7 +X5 ±X4 ±X2 +X+1

2) 6 zero bits and the Pad bits which are calculated from the payload bytes are
appended to make the PSDU align with boundary of OFDM symbols.

3) Scramble the sequence obtained as per data scrambler defined above step 4.

4) The resultant scrambled data of Frame Payload, FCS and Pad bits are taken
from scrambled output but the 6 zero bits appended are again appended to

scrambled data to form scrambled PSDU.
The obtained scrambled PSDU follow the same process from steps 7 to 10 as above.

5.2.2 Receiver
At the Receiver the reverse steps are followed.

PLCP Header
First the PLCP Header is transmitted so when it is received, the receiver demodulates

the OFDM symbols by using FFT into QPSK symbols and the obtained symbols are

converted to the serialized data is obtained. The obtained serialized data is

deinterleaved and then decoded with Viterbi decoder. The obtained data is compared

with the data which is send to the Convolutional encoder. Then the data obtained is
RS decoded and then compared with the data which is send to the RS encoder. After

that the data is descrambled with the same seed to obtain the PHY and MAC Header

along with the HCS.

PSDU
For PSDU the data received is demodulated with FFT into QPSK symbols and the

obtained symbols are converted to the serialized data is obtained. The obtained
serialized data is deinterleaved and then decoded with Viterbi decoder. The length of

the Frame Payload is calculated from the PHY header obtained in the above process

and the data and FCS are separated from PSDU. Thus separated data is processed

with the FCS calculation by appending the 32 bit zeros and calculating the FCS over

the actual Frame payload appended with FCS calculated in transmitter. As per the
specification of Wireless USB protocol the result should be a particular standard

62

sequence. The sequence is [1 1 0 0 0 1 1 1 0 0 0 0 0 1 0 0 1 1 0 1 1 1 0 1 0 11 1 1 01
1]

5.3 Results
The results of the simulation with various SNR values are shown below:

1. SNR = 2

Comparison is wrong, not received correct demodulated PLCP data

Comparison is wrong, not received correct demodulated PSDU data

Comparison is wrong, deinterleaved wrong PLCP data

Comparison is wrong, deinterleaved wrong PSDU Data

Comparison is wrong, required PLCP data not recovered by viterbi decoder

Comparison is wrong, required PSDU data not recovered by viterbi decoder

Comparison is correct, required PLCP data headers

Comparison is correct, required descrambled PLCP data

Comparison is wrong, required descrambled PSDU data not obtained

Comparison is correct, required FCS decoded, Frame payload received is

correct

The simulation result is not constant all the time and varies for SNR = 2.

2. SNR = 5
Comparison is wrong, not received correct demodulated PLCP data

Comparison is wrong, not received correct demodulated PSDU data

Comparison is wrong, deinterleaved wrong PLCP data

Comparison is wrong, deinterleaved wrong PSDU Data

Comparison is correct, required PLCP data recovered by viterbi decoder

Comparison is correct, required PSDU data recovered by viterbi decoder

Comparison is correct, required PLCP data headers

Comparison is correct, required descrambled PLCP data

Comparison is correct, required descrambled PSDU data

Comparison is correct, required FCS decoded, Frame payload received is

correct

3. SNR=15

Comparison is correct, received demodulated PLCP data
Comparison is correct, received demodulated PSDU data

Comparison is correct, required PLCP data deinterleaved
Comparison is correct, required deinterleaved PSDU data

Comparison is correct, required PLCP data recovered by viterbi decoder

Comparison is correct, required PSDU data recovered by viterbi decoder
Comparison is correct, required PLCP data headers

Comparison is correct, required descrambled PLCP data

Comparison is correct, required descrambled PSDU data
Comparison is correct, required FCS decoded, Frame payload received is

correct

5.4 MATLAB Code
The code for Wireless USB Physical layer Protocol in MATLAB is given below.

% PLCP HEADER AND PSDU
Ole;
% PHY Header
PHYH=[0000010011000000000000010010100100000000];

% TAIL BITS
TAIL1=[000000];

% MACH HEADER
%MACH = zeros (1.80);
MACH=[1100101101000011011011000011001001110010011011001
0110000110111011011111101011101];

% .HCS CALCULATION
% GENERATOR POLYNOMIAL OF POWER 16
gx=[1 000 10000001 00001]; -

% MAC Header Appended to PITY Header for calculation of Header Check
% Sequence
MACHPHYH = [PHYH MACH];

% APPENDING 16 zeros for calculating the HCS.
MACHPHYH ZERO =[MACHPHYH zeros(1, 16)];

The first 1.6 bits of the input bit sequence are complemented.
hcs = bitcmp(MACHPHYH ZERO(1:16),1);

% Mathematically, the CRC value corresponding to a given frame
% is defined by the flowing procedure.
% The bit sequence is divided by G(x), producing a remainder
% R(x) of degree <= 15.
for i=1:length(MACHPHYH)

nm=[hcs MACHPHYH_ZERO(i+16)];
if nm(1)==1

hcs=xor(nm(2: 17),gx(2:17));

GZ1

else
hcs=nm(2:17);

end
end

% Taking Absolute value to complement
hcs = abs(hcs);

%Bit Complementing to get the actual HCS Value.
hcs = bitcmp(hes,1);

% APPEND THE OBTAINED HCS VALUE TO MACH HEADER
APPEND_SCRAMBLE BFR = [MACH hcs];

% SCRAMBLER
% TO SCRAMBLE TIIE APPENDED DATA.
%poly g[D] = 1+D^14=D^15;
g=[1 0000000000000 1 1];

% FIRST SEED IS TAKEN AND INITIAL VALUE IS TAKEN
s=[00);

% FINDING THE SCRAMBLED DATA IN ANOTHER METHOD
% THE SEED VALUE WHICH IS USED TO SCRAMBLE THE DATA
seed—value = [0 1 1 1 1 1 1 1 1 1 1 1 1 1 1];

% DATA SCRAMBLING
for i=1:size(APPEND_SCRAMBLE_BFR,2)

% XORing of bit X15 and bit X14
xor out= bitxor(seed_value(15), seed_value(14));
% randomized data value
APPEND SCRAMBLE_AFTER(i)= bitxor(xor_out, APPEND_SCRAMBLE_BFR(i));
% new seed value
seed_value=[xor_out seed_value(1:14)];

end

%APPEND SCRAMBLE AFTER = randomized data;

% TAIL BITS TO BE APPENDED.
TAIL2=[000000];

% RS ENCODER
% Number of bits per symbol
m=8;
% THE TOTAL BYTES AFTER THE ENCODER
n=255;
% NUMBER OF BYTES INPUT TO ENCODER
k = 249;

% BITS INSERTED TO THE ACTUAL DATA TO GET THE TOTAL OF 249 BYTES AS INPUT
% TO ENCODER
Insert bits = zeros(1,1856);

% DATA APPENDING TO GET THE INPUT.
DATA RS = [Insert bits PHYH APPEND SCRAMBLE AFTER];

%LENGTH OF DATA IN BYTES
length(DATA_RS)/8;

65

% CONVERTING TO BYTES
DATA_RS = reshape(DATA RS,8,length(DATA_RS)/8);

% BYTES IN COLUMN MATRIX
DATA_RS = DATA_RS';

% CONVERTING TO CLOUMN MATRIX WITH ROWS OF BITS
DATA_RS = bi2de(DATA RS,'1eft-msb');

Tx 1;
if Tx ==1

% TAKE THE TRANSPOOSE OF THE VECTOR TO PERFORM THE RS ENCODING
TRAN_DATARS=[DATA RS'];
% Genero el vector de Galois, el polinomio generador del codigo y, por
% ultimo codifico los simbolos con el algoritino de Reed-Salomon:
msg = gf([TRANNDATA_RS],m) ;
if n=k

codeRS = msg;
elseif n- k

codeRS = irsenc(msg,n,k);
end
DATA_AFR_RS = codeRS.x;

elseif TxO
yk = DATABFR3;
msg = gf(fyk],m);
if n=k

codeRS = yk;
elseif n~-=k

codeRS = rsdec(msg',n,k);
codeRS = codeRS.x;

end
DATA_AFR_RS = codeRS(I:end-1);

end

%Rounding off the decimal values(BYTE)
DATA AFR RS = double(DATA AFR RS);

%Converting back to binary form from the cieeimal(BYTE)
DATA AFR RS = de2bi(DATA AFR RS,8,'1eft-msb');

%Reshaping of the bits after performing RS Encoding
DATA AFR_RS = reshape(DATA AFR RS', 1; length(DATA AFR RS)*8);

% RS ENCODER PARITY BITS CALCULATED
RSPBITS = DATA AFR RS(1993:2040);

% TAIL ADDED AT TFIE END TO KEEP FROM THE INTERFERENCE OF NEXT SYMBOL
TAIL3 = [0 0 0 0];

%PLOP DATA READY FOR CONVOLUTIONAL ENCODER
PLCP DATA = [PHYH TAIL1 APPEND _SCRAMBLE AFTER TAIL2 RSPBITS TAIL3];

% AFTER SENDING THE PLCP DATA, PSDU DATA ISA GIVEN TO CONVOLUTIONAL
DECODER
% FRAME PAYLOAD WHICH IS COMPATIBLE WITH USB2.0 PROTOCOL.. AFTER
CALCULATING

% CRC
FRAME' PAYLOAD=[1001 01100000000000000000];

% DATA TO APPEND AT THE END OF THE PAYLOAD TO GET RIGTH SHIFT
FCSI = zeros(1,32);

% GENERATOR POLYNOMIAL OF POWER 32 TO GET THE 32 BIT FRAME CHECK
SEQUENCE
gx=[100000100110000010001110110110111];

% APPENEDED VALUE TO CALCULATE THE FCS
TOTAL BFR FCS = [FRAME PAYLOAD FCS1];

% COMPLEMENTING THE FIRST 32 BITS BEFORE CALCULATING THE FCS
FCS = bitcmp(TOTAL_BFR_FCS(1:32), 1);

% The bit sequence is divided by G(x), producing a remainder
% R(x)ofdegree<=31.
for i=l:length(FRAME_PAYLOAD)

nm = [FCS TOTAL_BFR FCS(i+32)];
if nm(1)=1

FCS = xor(nm(2:33),gx(2:33));
else

FCS = nm(2:33);
end

end

%TAKING ABSOLUTE VALUE BEFORE COMPLEMENTING
FCS = abs(FCS);

% COMPLEMENT VALUE OBTAINED TO GET THE ACTUAL FCS VALUE.
FCS_COMP = bitcmp(FCS,I);

% TAIL BITS
TAIL = [0 0 0 0 0 0];

% TOTAL INFORMATION BITS PER A SYSMBOLS
NIBP6S = 200;

% PAD BITS FOR ALAIGNING DATA TO RQUIRED LENGTH
PAD BITS = zeros(1,(NIBP6S*ceil((8*(length(FRAME_PAYLOAD)/8) + 38)/NIBP6S) -
(8*(length(FRAME_PAYLOAD)/8) + 38)));

% APPENDED PSDU DATA BEFORE SCRAMBLING
APP DATA BFRSCR = [FRAME PAYLOAD FCS_COMP TAIL PAD BITS];

% THE SEED VALUE WHICH IS USED TO SCRAMBLE THE DATA
seed value [0 1 1 1 1 1 1 1 1 1 1 1 1 1 1];

% data randomization
for i=1:size(APP_DATA_BFR_SCR,2)

% XORina of bit X15 and bit X14
xor out= bitxor(seed_value(15), seed_value(14));
%randomized data value
APP_DATA AFR 'SCR(i)= bitxor(xor_out, APP DATA_BFR_SCR(i));
%netiv seed value
seed_value=[xor_out seed_value(1:14)];

end

67

% SCRAMBLED FRAME PAYLOAD DATA.
SCR FRAME PAYLOAD = APP DATA AFR SCR(1:length(FRAME_PAYLOAD));

% SCRAMBLED FCS CALCULATED
SCR FCS = APP _DATA AFR SCR(length(FRAME PAYLOAD)+1 :
length(FRAME PAYLOAD)+ 32);

% SCRAMBLED PAD BITS
SCR—PAD—BITS = APP DATA AFR SCR(length(FRAME PAYLOAD)+ 39: end);

% MAKING SURE THAT TAIL BITS ARE ADDED AT CORRECT PLACES
% SCRAMBLE!) PSDU DATA TO CONVOLUTIONAL ENCODER
PSDU DATA = [SCR—FRAME—PAYLOAD SCR FCS TAIL SCR—PAD—BITS];

% COMMON FOR PLCP & PSDU
% CONVLUTIONAL ENCODER k =7 R = 1/3
Conslen =7;

% Polynomials with which the convolutional Encoder is constructed.
GenPol = [133 165 171];

% Trellis obtained from the length and generator polynomial
Tr = poly2trellis(Conslen, GenPol);

% PLCP CNVOLUTIOANLLY ENCODED DATA
PLCP CONY DATA = convenc(PLCP DATA, Tr);

% PSDU CNVOLUTIOANLLY ENCODED DATA
PSDU_CONV DATA = convenc(PSDU DATA, Tr);

% INTERLEAVER(data): interleave all encoded data with a block size
% corresponding to the number of coded bits per the allocated subchannels
% per OFDM symbol (Ncbps)
Ncbp6s = 600;
Ncbps = 100;
s= ceil(2/2);

% SYMBOL INTERLEAVER.
for k = O:Ncbp6s-1

mk = 6*mod(k,Ncbps)+floor(k/Ncbps);
firstPerm_interleaved_plcp_data(k+1) = PLCP_CONV_DATA(mk+1);
firstPerm_interleaved_psdu_data(k+l) = PSDU_CONV_DATA(mk+1);

end
clear k;
clear mk;

% INTRA SYMBOL TONE INTRELEAVING
NTint = 10;
for 1= 1: Ncbp6s/Ncbps

% second permutation according to eqn. 72
for k=O:Ncbps-1

jk=floor(k/10)+ 10 * mod(k,10) ;
Secondperm_interleaved_plcp_data(((1-1)*Ncbps)+ k+l)=firstPerm_interleaved_plcp_data(((1-

1)*Ncbps)+ jk+l);
Secondperm_interleaved_psdu_data(((1-1)*Ncbps)+ k+1)=firstPerm_interleaved_psdu_data(((1-

1)*Ncbps)+ jk+1);

68

end
end

% INTRA -SYMBOL CYCLIC INTERLEAVER
Ncyc = 33;
for p = 0 : Ncbp6s-1

kp = floor(p/Ncbps)*Ncbps + mod((p + floor(p/Ncbps)*Ncyc), Ncbps);
Final_plcp_data (p+l) = Secondperm_interleaved_plcp_data(kp+l);
Final_psdu_data (p+l) = Secondperm_interleaved_psdu_data(kp+1);

end

% MAPPER AND OFDM TRANSMITTER & RECEIVER AND DEIVIAPPER
Fd = 1; 	 % symbol rate (1Hz)
Fs = I *Fd; 	% number of sample per symbol
M = 4; 	 % kind(range) of symbol (0,1,2,3)

Ndata = 300; 	% all transmitted data symbol
Sdata = 50; 	% 50 data symbol per frame to ifft
Slen = 50; 	% 50 length symbol for IFFT
Nsym = Ndata/Sdata; 	% number of frame -> Nsym frame

%vector initialization
plcp_z0=zeros(Slen,2);
plcp_z 1=zeros(Ndata/S data* Slen, 1);

Kmod = 1/sgrt(2);

% Convertint eh binary values to QPSK symbols
for pl = 1: Ncbp6s/2

I(pl) = 2*(Fina1_plcp_data(2*pl-1))-1;
Q(pl) = 2*(Final_plcp_data(2*pl))-1;

end
I = I';
Q=QI; 	 -

QpskVal= [I Q];
plcp_data = Kmod * QpskVal ;

%covert to complex number
plcp_Y2 = amodce(plcp_ data, 1,'gam');
clear plcp_data;

for j1 :Nsym;

for i=I:Sdata;
plcp_Y3(i+Slen/2-Sdata/2,1) = plcp_Y2(i+(j- 1)* Sdata, 1);

end

for i=1:Slen;
plcp_Y4(((j-1)*Slen)+i) = plcp_Y3(i,1);

end

plcp_z0=ifft(plcp_Y3);

for i=1:Slen;
plcp_z 1(((j-1) *Slen)+i)=plcp_zO(i, l);

end

end

% Adding White Noise.
plcp_z2 = awgn(plcp_z1,15,'measured');

for j=1:Nsym;

for i=1:Sdata;
plcp_Y5(i+Slen/2-Sdata/2,1) = plcp_z2(i+(j-1)*Sdata,1);

end

plcp_Y6=fft(pIcp_Y5);

for i=1:Slen;
plcp_Y7(((j- I)*Slen)+i)=plcp_Y6(i, l);

end

end

plcp_Y7;

plcp_Demoddata = plcp_Y7/Kmod ;

% Converting the Qpsk sysmbols to binary values
plcp_Demoddata = plcp_Demoddata;
plcp_demodulated_symbol = gamdemod(plcp_Demoddata,4);
plcp_demodulated_bin_symbol = de2bi(plcp_demodulated_symbol,2);
Cl = plep_demodulated_bin_symbol(: ,1);
C2 = plcp_demodulated_bin_symbol(: ,2);
plcp_order_changed_demod_data = [C2 Cl];
plcp_demod_data = plcp_order_changed_demoddata;

for ij = 1: Ncbp6s
plcp_final_demod_data(ij) = plcp_demod_data(ij);

end

if(plcp_final_demod_data == Final_plcp_data)
display('Coniparison is correct, received demodulated PLCP data');

else
display('Comparison is wrong, not received correct demodulated PLCP data');

end

% MAPPER AND OFDM TRANSMITTER & RECEIVER AND DEMAPPER

Fd = 1; 	 % symbol rate (1Hz)
Fs = 1 *Fd; 	% number of sample per symbol
M = 4; 	 % kind(range) of symbol (0, 1,2,3)

Ndata = 300; 	% all transmitted data symbol
Sdata = 50; 	% 50 data symbol per frame to ifft
Slen = 50; 	% 50 length symbol for IFFT
Nsym = Ndata/Sdata; 	% number of frame -> Nsym frame

vector initialization
ps du_zO=zeros (S len,2);

70

psdu_z 1=zeros(Ndata/S data* S len,1);

Kmod = 1/sqrt(2);

%Converting into the QPSK. modulated sysnmbols.
for p1 = 1: Ncbp6s/2

psdu_I(pl) = 2*(Finhl_psdu_data(2*pl-1))-1;
psdu_Q(pl) = 2*(Final_psdu_data(2*pl))-1;

end
psdu_I = psdu_I';
psdu_Q = psdu_Q';
psdu_QpskVal = [ps'du_I psdu Q];
psdu_data = Kmod * psdu_QpskVal ;

%covert to complex number
psdu_Y2 = amodce(psdu_data,I,'gam');

for j=1:Nsym;

for i=1:Sdata;
psdu_Y3(i+Slen/2-Sdata/2,1) = psdu_Y2(i+(j-1)*Sdata,1);

end

for i=1:Slen;
psdu_Y4(((j-1)*Slen)+i) = psdu_Y3 (i, 1);

end

psdu_zO=ifft(psdu_Y3);

for i=1:Slen;
psdu_zl ((0-1) *Slen)+i)=psduz0(i, I);

end

end

% Adding the White Noise in the channel.
psdu_z2 = awgn(psdu_z1,15,'measured');

for j=1:Nsym;

for i=1:Sdata;
psdu_Y5(i+Slen/2-Sdata/2,1) = psdu_z2(i+(j-1)*Sdata,1);

end

psdu_Y6=fft(psdu_Y5);

for i=1:Slen;
psdu_Y7(((j-1)*Slen)+i) = psdu_Y6(i, 1);

end

end

% The FFT demodulated data of the Receiver
psdu_Y7;

% Normalising the Demodulated data
psdu_Demoddata = psdu_Y7/Kmod ;

71

% Converting the QPSK modulated symbols back to binary sysmbols.
psdu_Demoddata = psdu_Demoddata';
psdu_demodulated symbol = gamdemod(psdu_Demoddata,4);
psdu_demodulated__bin_symbol = de2bi(psdu_demodulated_symbol,2);
Cl = psdu_demodulated_bin_symbol(: ,1);
C2 = psdu_demodulated_bin_symbol(: ,2);
psdu_order changed_demod data = [C2 Cl];

% taking transpose to get demodulated data
psdu_demod_data = psdu_order changed_demod data;

% Convert to serial data
for ij = 1: Ncbp6s

psdu_final_demod_data(ij) = psdu_demod_data(ij);
end

% PSDU DATA COMPARISON
if(psdu_final_demod_data == Final_psdu_data)

display('Comparison is correct, received demodulated PSDU data');
else

display('Cornparison is wrong, not received correct demodulated PSDU data');
end

% DE Interleaver
Ncyc 33;
for p = 0 : Ncbp6s-1

kp = floor(p/Ncbps)*Nebps + mod((p ± floor(p/Ncbps)*Ncyc), Ncbps);
Secondperm_deinterleaved_plcp_data(kp+l) = plcp final_demod_data(p+l) ;
Secondperm_deinterleaved_psdu_data(kp+l) = psdu_final_demod_data(p+ 1);

end

%second permutation
NTint = 10;
for I = 1: Ncbp6s/Ncbps

for k=0:Ncbps-1
jk= floor(k/10)+ 10 * mod(k,10);
firstPerm_deinterleaved_plcp_data(((1-1)*Ncbps)+ jk+l) _

Secondperm_deinterleaved_pIcp_data(((I-1)*Ncbps)+ k± 1);
firstPerm_deinterleaved_psdu_data(((1-1)*Ncbps)+ jk+l)

Secondperm_deinterleaved_psdu_data(((1-1)*Ncbps)+ k+1);
end

end

% first permutation
for k = O:Ncbp6s-1

mk = 6*mod(k,Ncbps)+floor(kfNcbps);
deinter plcp_data(mk+1)=firstPerm_deimerleaved plcp_data(k+1);
deinter_psdu_data(mk+l)=firstPerm_deinterleaved psdu_data(k+l);

end

% Comparision of PLCP deinterleaved data with data in transmiter before
% sending to interleaver.
if(deinter plcp_data == PLCP_CONV DATA)

display('Comparison is correct, required PLCP data deinterleaved');
else

display('Comparison is wrong, deinterleaved wrong PLCP data');
end

72

if(deinter_psdu_data = PSDU_CONV_DATA)
display('Comparison is correct, required deinterleaved PSDU data');

else
display('Compari.son is wrong. deinterleaved wrong PSDU Data');

end

% VITERBI DECODER

%VITERBI DECODER FOR PLCP DATA
convdecod_plcp_data = vitdec(deinter_plcp_data,Tr,7,'trunc','hard');

%VITERBI DECODER FOR PSDU DATA
convdecod_psdu_data = vitdec(deinter_psdu_data,Tr,7,'trunc','hard');

%'Comparison of the PLCP DATA before convolutional Encoder
if(convdecod_plcp_data == PLCP_DATA)

display('Comparison is correct, required PLCP data recovered by viterbi decoder');
else

display('Comparison is wrong, required PLCP data not recovered by viterbi decoder');
end

% Comparison of the-PS.DU DATA before convolutional Encoder
if(convdecod_psdu data == PSDU_DATA)

display('Comparison is correct, required PSDU data recovered by viterbi decoder');
else

display('Comparison is wrong. required PSDU data not recovered by viterbi decoder');
end

% Extracting PHY HEADER from viterbi decoded PLCP Data
data_phy = convdecod_plcp_data(1:40);

% Finding the length of Data from PCLP packet Header
data len = data_phy(9:20);

% Measuring the Length in Bytes
frame _len_bytes = data_len(1) + 2*data_len(2) + 4*data_len(3)+ 8*data_len(4) + 16*data_len(5) +
32*data_len(6) + 64*data_len(7) + 128*data_len(8) + 256*data_len(9) + 512*data_len(10)
+1024*datalen(11) + 2048*data len(12);

% Length in bits
frame lenbits = 8*frame len bytes;

% Mac Header from viterbi decoded PLCP Header
data apnd_mac = convdecod_plcp_data(47:142);

% Buffer filled with zeros to decode the RS parity bits.
buff = zeros(1,1856);

% RS PARITY bits
rs_parity = convdecod_plcp_data(149:196);

% PLCP data which is to be RS decoded
plcp_req_redecode = [buff data_phy data_apnd_mac rs_parity];

% RS DECODER

73

Tx=0;
m1=8;
n = 255;
k = 249;
l ength(p l cp_r eq_r e decode);
plcp_req_redecode = reshape(plcp req_redecode,8,length(plcp_req_redecode)/8)';
plcp_req redecode = bi2de(plcp_req redecode,'left-msb');

% Decoder
if Tx == 0
plcp_yk2 = plcp req_redecode;

msg = gf([plcp_yk2l,m);
if n=k

codeRS = yk2;
elseif n--=k

codeRS = rsdec(msg',n,k);
codeRS = codeRS.x;

end
PLCP_DATA_DECODED_RS = codeRS(l:end);

end

% Converting the data to double
PLCP—DATA—DECODED—RS = double (PLCP—DATA—DECODED—RS);

% converting the PLCP decoded data to binary data
PLCP—DATA—DECODED—RS = de2bi (PLCP DATA DECODED RS,8,'left-msb');

% Reshaping to the serial mode from the parallel
PLCP_DATA_DECODED_RS = reshape (PLCP_DATA_DECODED_RS', 1,
length(PLCP DATA DECODED RS)*8);

% PHY MAC Headers.
plcp_req_redecod_data = PLCP DATA DECODED RS(end-135:end);

% PRY HEADER RECOVERED
PHY_recovered = plcp_req_redecod data(1:40);

% MAC HEADER RECOVERED
APPANDSCR DEC = plcp_req_redecod data(41:136);

% Comparison of the Combined MAC HEADER & SCRAMBLED
if(APPANDSCR_DEC == APPEND_ SCRAMBLE_ AFTER)

display('Comparison is correct, required PLCP data headers');
else

display('Comparison is wrong, required PLCP data not obtained');
end

% DESCRAMBLER
seed valuel = [0 1 1 1 1 1 1 1 1 1 1 1 1 1 1];

% data randomization
for i=1:size(APPANDSCR DEC,2)

%XORirigofbitXl5 and bit X14
xor out = bitxor(seed value 1(15), seed_valuel(14));

%randomized data value
randomized data 1(i) = bitxor(xor out, APPANDSCR DEC(i));

74

%new seed value
seed_value 1 = [xor_out seed_value 1(1:14)];

end

% Comparing Descrambled PLCP data FinalHeader.
if(randomized_datal = APPEND SCRAMBLE_BFR)

display('Comparison is correct, required descrambled PLCP data');
else

display('Compaiison is wrong, required descambled PLCP data not obtained');
end

% The seed value which has to be taken
seed valuel = [0 1 1 1 1 1 1 1 1 1 1 1 1 1 1];

% data randomization
for i=1.:size(convdecod_psdu_data,2)

% XORing of bit Xl5 X15 and bit X14
xor_out = bitxor(seed valuel(15), seed valuel(14));

%randomized data value
randomized data1(i) = bitxor(xor out, convdeeod_psdu_data(i));

%new seed value
seed_valueI = [xor_out seed_value 1(1:14)];

end

% The Received Frame payload data with the 32 bits FCS appended
FRAME—PAYLOAD DEC = randomized datal(1:frame_len bits + 32);

% Tail Bits
TAIL = [0 0 0 0 0 0];

% The pad bits extracted from the De-randomized convolutional decoded data
• PADBITS REC = randomized datal(frame len bits + 39 : end);

data obtained from descrambler
randomized data2 = [FRAME PAYLOAD DEC TAIL PADBITS REC];

% Comparing the descambled PSDU data
if(randomized_data2 == APP_DATA_BFR_SCR)

display('Comparison is correct, required descrambled PSDU data');
else

display('Comparison is wrong, required descrambled PSDU data not obtained');
end

% The 32 zeros which has to appended to calculate the FCS
FCS append_REC = zeros(1,32);

% Data appended with zero FCS
temp_frame_demoddata = [FRAME—PAYLOAD—DEC FCS_append_REC];

% Complementing the first 32 bits of the data appended
FCS_DEC = bitcmp(temp_frame_demod data(1:32),1);

75

% The FCS calculation
for i=1 aength(FRAME_ PAYLOAD _DEC)

nm2 = [FCS_DEC temp_frame_demod_data(i+32)];
if nm2(1)1

FCS_DEC = xor(nm2(2:33),gx(2:33));
else

FCS_DEC = nm2(2:33);
end

end

% The Absolute value of the FCS obtained
FCS_DEC = abs(FCS DEC);

%. The standard FCS sequence .as per specification
FCS_REQ= [1 1000111000001001101110101111011];

% Comparing the FCS obtained with the above sequence.
if(FCS_DEC = FCS_REQ)

display(Cornparison is correct, required FCS decoded, Frame payload received is correct`);.
else

display('Comparison is wrong, required FCS not obtained, error in the Frame payload');
end

clear all;

76

6. CONCLUSION

Thus Verification Environment for the USB 2.0 protocol with OTG support is
developed as a standalone IP. The VIP id developed to support all the Speeds,

Interfaces and Tasks with USB2.0 and OTG support. The VIP is developed for the

directed environment. The VIP is working in the test bench environment for the

UTMI+ interface. The Wireless USB is implemented as per the Ecma standard and
the protocol is verified for a specific packet following the normal OFDM approach

which is backward compatible to the wired USB.

Scope for Future Work
There are few tasks yet to be implemented like Carkit, FsLsSerialmode and

LowPowerMode which are given in ULPI Specification. The OFDM implemented for

the Wireless USB is ordinary and can be enhanced to Multiband.OFDM, the standard

called MBOA. The Wireless USB protocol is verified only for a particular packet

which can be randomized and can be implemented for a transaction. 	V

7. References

1) "USB 2.0 Specification", Compaq, Hewlett-Packard, Intel, Lucent, Microsoft,
NEC, Philips, Revision 2.0, April 27th, 2000,
(www.usb.org/developers/docs.htrril).

2) "On-The-Go Supplement to the USB 2:0 Specification", Revision 1.2, April
4th, 2006, (www.usb.org/developers/onthego).

3) Steve McGowan, "USB 2.0 Transceiver Macrocell Interface Specification",
version 1.05, March 29th, 2001,
(www.intel.com/techno1ogy/usb/down1oad/2_0_Xcvr_Macroce11_1_05 .pdf).

4) "UTMI+ 	Specification", 	Revision 	1.0, 	February 25th, 	2004,
(www.ulpi.org/documents.html), (ULPI and UTMI+ specifications (Zip File)).

5) "UTMI+ Low Pin Interface (ULPI) Specification", Revision 1.1, October 20 x̀',
2004, (www.ulpi.org/doc'uments.html), (ULPI and UTMI+ specifications (Zip
File)).

6) ECMA-368, "High Rate Ultra Wideband PHY and MAC Standard",
December 2007,
http://www,ecma-iternational. org//publications/standards/Ecma-3 68.htm.

7) "Wireless Universal Serial Bus Specification", by Agere, Hewlett-Packard,
Intel, Microsoft, NEC, Philips, Samsung, Revision 1.0, May 12 t̀', 2005.

8) R. S. Sherratt, "Design Considerations for the Multiband OFDM Physical
Layer in Consumer Electronic Products", IEEE Tenth International
Symposium on Consumer Electronics, Page(s):! — 5, ISCE '06.

78

APPENDIX

A. OTG VOLTAGE AND TIMINGS
VOLTAGE LEVELS:

Parameter Symbol Min Max Units (volts)
A-device Vbus Valid Va vbus vld 4.4 4.75 V
A-device Session Valid Va sess vld 0.8 2.0 V
B-device Session Valid Vb- sess vld 0.8 4.0 V
B-device Session End Vb sess end 0.2 0.8 V
B-device (SRP capable) to Host
Output Voltage

Vb hst out 0 2.0 V

B-device (SRP capable) to OTG
device Output Voltage

Vb_otg_out 2.1 5.25 V

TIMINGS: A-DEVICE

Parameter N irn Symbol "State: Min' Max' Units
SRP Response 1 TA_ 0P,, As aj te,. 4'9: sec
Watt for VBus.Riso2 2 T&..WAILVRISE await_vrlse - 1.00 ms
B- Connect ;Long 17 noun 3 Ta 	cow_i i s await pcon ; 100 mss
B-connect to A-reset 3 TAsconr_ARsr a walLbcon 30 sec
Wait for S-Connect- 4 TA wnir I3cotJ wait bcai► 1; ic 	; r
A- Idle ;tozB.DIsconnec[' S Tn'. 	tpi eoES a_ suspend 200 s
B- Disconnect =to-A-Connect, 6 ' TA oois_ACON a=suspend gn
'B Idle.to=A-Disconnect 7 T&B DL_AO►s a_ eripheral , 3 s.
,.Local D[Scot r~ect`to Data
Litie.Dlsct arge,

g TLcrs.aser a w It. iccn 5 N s

B= Connect =Short -Debounce TA s aN_sD awaitbcou 2;5, l.5
B Connect Short_ Debounce
Windov~►

10 Tkar oN_soaiwi e a w it bcoii 100 ms.

B-DEVICE

,F?~ra~ietei` ,+ltirrt Syrttbot` 'State,; Mtn ° ,MaX?" 	•` ° UnCt;

SEO T1meBefare SRP 1i F;TB 	 EO sp bIdie
2.. m

Data-Line Pulse T[m 2 Ta r3Ara_RLs ti stpyinit 5 1O
SRI? Initiate TIme 13 Ta RP NIT b.srpjiit 10 rSE
SRP Fail Tune` ,'14 TB sRp= aii sr P-=ii~it , 5 6' sec
Session VaiLci to 	Coruiect 15 TB ssVLD B ory b1 ,~ ~ 1 sec

to Idie to B Disconnect =16 TB.j\I0iT_sraisf >t`eriptterat p r4 150; ms
"Tir e t~t~N~enB clevice~H~
i~ FS transiti~irt cfilrt~tg

suse`ncl,:anc1:8.cle,Utce; 1,7 TB Fs.ed s uerlP hst. _p 'i 6X75 tits.
iLsonnect;

Lcical Discattnect;to Data
Lttie~Qis Et

ig: Tt c~isd tasty ; H, u 	taiAAQn . , 25 rte

A SE4 to;8 R set 19 TejisEo_8Rsr b. wai[®aciin: 3.125 USB 2 02 ms.:

-Connoct DebouncQ 20 iTa AC0N BN t wwair_aeon ? s..
A Canract'1a`BSEO 2j1 1"T gnc 	t gst b vu t_acdn I ms

Function Control Register Fields

Field name Bit Access Reset Description

XcvrSelect 1: rd/wr/s/ Olb Selects the required transceiver speed

0 c 00b: Enable HS transceiver

01b: Enable FS transceiver

10b: Enable LS transceiver
1lb: Enable FS transceiver for LS packets

TermSelec 2 rd/wr/s/ Ob Controls the internal 1.5K ohm pull-up resistor

t c and 45 ohm Hs terminations. Control over the

bus resistors changes depending on XcvrSelect,
OpMode, DpPulldown and DmPulldown.

OpMode 4: rd/wr/s/ 00b Selects the required bit encoding style during

3 c transmit

00b: Normal operation

Olb: Non-driving

10b: disable bit-stuff and NRZI encoding

11 b: Optional. Do not automatically add SYNC
and EOP when transmitting. Must be used only
for HS packets.

Reset 5 rd/wr/s/ Ob Resets the State machine running the PHY.
C

SuspendM 6 rd/wr/s/ lb Puts PHY in Low Power Mode when bit is set
c Low and PHY automatically sets this bit to 1

when exited from Low Power Mode
Ob: Low Power Mode
1 b: Powered

Reserved 7 rd/wr/s/ Ob Reserved
C

OTG Control Register Fields
Field name Bit Access Reset Description

IdPullup 0 rd/wr/s/c Ob Connects a pull-up to the ID line and enables
sampling of the signal level
Ob: Disable sampling of ID line S
lb: Enable sampling of ID line.

DpPulldown 1 rd/wr/s/c lb Enables the 15k ohm pull-down resistor on
D+.

Ob: Pull-down resistor not connected to D+.
lb: Pull-down resistor connected to D+.

DmPulldown 2 rd/wr/s/c lb Enables the 15k ohm pull-down resistor on
D-.
Ob: Pull-down resistor not connected to D-.
lb: Pull-down resistor connected to D-.

DischrgVbus 3 rd/wr/s/c Ob Discharge Vbus through a resistor.
Ob: do not discharge Vbus.
lb: discharge Vbus.

ChrgVbus 4 rd/wr/s/c Ob Charge Vbus through Resistor
Ob: do not charge Vbus
lb: charge Vbus.

81

DtvVbus 5 rd/wr/s/c Ob Signals the internal charge pump or external
supply to drive 5v on Vbus

Ob: do not drive Vbus
1b: drive 5V on Vbus.

DrvVbus 6 rd/wr/s/c Ob Selects between the internal and the external

External 5V Vbus supply.

Ob: Drive Vbus using the internal charge

pump. 	 V
1 b: Drive Vbus using external supply.

UseExternal 7 rd/wr/s/c Ob Tells the PHY to use an external Vbus over-

Vbuslndicator current indicator.

Ob: Use the internal OTG comparator.

1 b: Use external Vbus valid indicator signal.

82 V

	Title
	Abstract
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Conclusion
	References
	Appendix

