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ABSTRACT 

With the rapid development of wireless communications, the available bandwidth 

for wireless applications becomes more and more insufficient. Therefore, to improve data 

rate without expending bandwidth becomes a main goal in modern communication 

system design. Recently, two wireless communication schemes, which can be used to 

effectively combat with multi-path fading, are widely investigated around the world. One 

is the multiple-input multiple-output (MIMO) technology and another is the space-time 

coding (STC). As a result, a combined system, MIMO-STC, can be used for wireless 

communications to jointly explore the advantages of the above two strategies. 

In the study of MIMO-STC systems, the space-time block codes (STBC) and the 

space-time trellis codes (STTC) are two efficient coding approaches. The former can be 

used to offer a full diversity gain, and the later can provide the systems with a large 

coding gain. Since 2003, -super-orthogonal space-time trellis codes (SOSTTC) a new 

coding method processing the merits of both STBC and STTC, have been developed. 

In this dissertation, S.OSTTCs scheme along with MPSK constellation are used 

for high speed wireless communications of a MIMO-STC system. To examine the 

performance of the proposed SOSTTC system based on the optimal design of set 

partitioning for BPSK, QPSK and 8-PSK modulation schemes. In simulations, the frame 

error rate (FER) versus the received SNR performance results show that SOSTTCs have 

better coding gain than that of the corresponding STTCs. The decoding complexity of 

SOSTTC is lower than the decoding complexity of STTC. 

. According to the above results, as the number of states of SOSTTCs increases 

their performance improves, and the decoding complexity becomes higher .Coding gain 

distance (CGD) is a good indicator of performance for a large number of receive antenna 

[18]. 
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Chapter 1 

I.A. Introduction 

With the integration of multimedia and internet applications in next generation. 

wireless communications, the demand for wide-band high data rate communication 

services is growing. As the .available radio spectrum is limited, higher data rates can be 

achieved only by designing more efficient signaling techniques [1].  Among many cutting 

edge wireless technologies, a new class of transmission techniques, known as Multiple-

Input Multiple-Output (MIMO) technique, has emerged as an important technology 

leading to promising link capacity gains of several fold increase in achievable data rates 

and spectral efficiency. However, the key question is how to exploit this new capability 

of MIMO wireless communications in a computationally efficient manner. 

Space-time coding (STC) techniques have been identified as the solution [3], as it 

is a set of practical signal design techniques aimed at approaching the information 

theoretic capacity limit of MIMO channels. Space-time coding is based on introducing 

joint correlation in transmitted signals in both the space and time domains. Through this 

approach, simultaneous diversity and coding gains can be obtained, as well as high 

spectral efficiencies [1]. 

Wireless communication system, where the transmitter contains N transmit 

antennas and the decoder contains M receive antennas. The goal of space-time coding is 

to achieve the maximum diversity of NM, the maximum coding gain, and the highest 

possible data rates. In addition, the decoding complexity is very important. In a typical 

wireless communication system the mobile transceiver has a limited available power 

through a battery and should be a small physical device. To improve the battery life, low 

complexity encoding and decoding is very crucial. Generally, the base station is not as 

restricted in terms of power and physical size .There is multiple independent antennas in 

a base station. Therefore, in many practical situations, a very low complexity system with 

multiple transmit antennas is desirable. Space-time block coding is a scheme to provide 
these properties. 
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1.2 Motivation of Research 

Recently, several transmit diversity techniques have been proposed, among them, 

Alamouti [2] proposed a very simple transmit diversity scheme using orthogonal transmit 

code design so-called space-time block code (STBC). With multiple transmit antennas, 

STBC can easily be designed and can achieve the same diversity gain as that of 

maximum-ratio receiver combining (MRRC) scheme. In addition, Tarokh [1] [8] 

introduced a space-time trellis coded modulation scheme (STTCM) over Rayleigh fading 

channels, which can obtain full transmit diversity gain as well as signal-to-noise ratio 

(SNR) advantage, so-called coding gain. ST-MTCM introduced by D. Divsalar [5] 

focuses on the trellis codes with parallel paths. It is well known that it is impossible to 

achieve maximum transmit diversity gain when trellis codes contain parallel paths using 

STTCM scheme. However, ST-MTCM scheme proposed a new scheme to achieve the 

maximum diversity and a larger coding gain compared to Tarokh's STTCM codes; ST-

MTCM uses a trellis code with each branch corresponding to multiple transmissions from 

each transmit antenna so as to achieve full rank. In order to improve system performance, 

the coding gain distance (CGD), which is the distance between two parallel paths for any 

fixed state transition, that is different lengths error event, should be maximized. 

The set partitioning structures are used to maximize the CGD, and obtain the 

criteria for maximizing the CGD theoretically for MPSK. Different SOSTTC [9] [10] 

codes are designed to meet these criteria which guarantee that the CGD corresponding 

to length-1 or more than 2 error event is as large as possible, thus achieving the 

maximum coding gain. Due to the multiple transmission in each state transition, however, 

this scheme cannot achieve full transmit rate. The full-rate transmission satisfies b 

bits/s//Hz' transmission, where b = log2M with MPSK modulation. This dissertation 

presents a systematic code design, so as to obtain full rate and maintain good coding gain. 

STBC is simply an orthogonal design focusing mainly on obtaining full transmit• 

rate, diversity gain, and a simple decoding scheme, but coding gain cannot be achieved. 

In contrast, although the decoding complexity is very high, ST-MTCM provides full 

diversity gain as well as better coding gain. Inspired by the orthogonal transmit matrix 

design in STBC, a new scheme is proposed. Which uses STBC's orthogonal transmit 

matrix for ST-MTCM scheme in order to achieve full rate. Besides, theoretical matrix 
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assignment for good coding gain can be done. There are some similar schemes proposed 

based on STBC. Siwamogsatham and Fitz [7] [14] introduced some specific code designs 

by using STBC combined with trellis codes that can achieve better coding gain and full 

transmit rate, full diversity gain . In a similar way, super-orthogonal space-time trellis 

codes (SO-STTC) introduced by combines STBC with STTC in order to design codes for 

any given number of states in a more systematic way, and guarantees the full diversity 

gain and maximum coding gain for the proposed structure with optimal set partitioning. 

Space-time trellis coding is the extension of trellis-coded modulation (TCM) to 

wireless communication links using more than a single transmit antenna in order to 

improve the error performance [4]. A high-performance sub-class of space-time trellis 

codes for two transmit antennas is known as "super-orthogonal space-time trellis codes" 

where the state transitions of the encoder trellis diagram are labeled with matrices built 

according to Alamoufi's scheme [2] and applying Ungerboeck's rules [4]. While an 

appropriate partitioning technique was known for phase-shift keying (PSK). There are no 

full-rate complex-valued orthogonal designs for more than two transmit antennas. To 

provide full-rate with simple pair-wise decoding strategies, super-quasi-orthogonal space-

time codes (SQOSTTCs) have been introduced in [6] [11] for four transmit antennas and 

PSK signal constellations. 

1.3 Statement of Problem 
(a.) This dissertation presents the design of super-orthogonal space-time trellis 

codes (SOSTTCs) to transmit information over a multiple. antenna wireless 
communication system. 

(b.) Based on the space-time design criteria, this dissertation developed a optimal 

design of set partitioning structures with respect to coding gain distance (CGD) using M-

PSK. 

(c.) Finally, this work extends the performance evaluation of super-orthogonal 

space-time trellis codes and . modified Viterbi decoding techniques based on the 

parameterized class of space-time block codes(STBCs) through simulation. 
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1.4 Outline of Dissertation 
This dissertation is divided in four chapters. The first chapter gives an 

introduction to space-time coding of wireless communication systems, motivation of 

research, problem of statement and the outline of the dissertation. 

In chapter 2., design of optimal set partitioning structures using M-PSK are 

presented. The number of orthogonal design matrices (STBCs) increases, this scheme 

provides a sufficient number of constellation matrices to design a trellis code with the 

highest possible rate. Also, it allows a systematic design of super-orthogonal space-time 

trellis codes. 

In Chapter 3, the analysis of coding gain distance for error events with different 

path lengths of SOSTTCs is presented, the aim of calculations is find out dominant path 

in the trellis structure. Finally, the standard reduced-complexity ML decoder for an 

orthogonal space-time block code is studied[18] [21]and [22]. 

In Chapter 4, the algorithm and simulation results are discussed for different 

states of SOSTTCs using different rates, which demonstrate the frame-error rate(FER) 

versus SNR(dB) for quasi-static Rayleigh channels[19]. Finally, the conclusions and 

further research for higher coding gain advantage are presented. 

0 



Chapter 2 

Super-Orthogonal Space-Time Trellis Codes 

2.1 Introduction 
STBCs provide full diversity and small decoding complexity. STBCs can be 

considered as modulation schemes for multiple transmit antennas and as such do not 

provide coding gains. Full rate STBCs do not exist for every possible number of transmit 

antennas. On the other hand, STTCs [ 1 ] [ 12] are designed to achieve full diversity and 

high coding gains while requiring a higher decoding complexity. The STTCs are 

designed either manually or by computer search. In this chapter a systematic method to 

design space-time trellis codes is presented. Another way of achieving high coding gains 

is to concatenate an outer trellis code that has been designed for the AWGN channel with 

a STBC. If orthogonal matrices generated by a STBC is considered, as a point in a high 

dimensional space. The outer trellis code's task is to select one of these high dimensional 

signal points, based on the current state and the input bits. In Ungerboeck [3], it is shown 

that for the slow fading channel, the trellis code should be based on the set partitioning 

concepts of "Ungerboeck codes" for the AWGN channel. The main idea behind super-

orthogonal space-time trellis codes (SOSTTCs) is to consider STBCs as modulation 

schemes for multiple transmit antennas. 

2.2 Space-Time Code Design Criteria 
In order to come up with a design criterion, first it is needed to quantify the 

effects of mistaking two codewords with each other. If two codeword C and C2  are 

considered, of a space-time code , the size of a codeword is a Tx N matrix. If codeword 
C' transmitted as 

1 	I 	I 

	

CI I 	CI 2 	.. 	CI  , 

1 	l 	 ] 

	

C' _ C2 1 	C2 2 .. Cz.  N 	
(2.1) 

CT1 CT2 .. CTN  
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An error occurs if - the decoder mistakenly decides that codeword C2 has been 
transmitted 

	

2 	2 	 2 

	

Cl 1 	Cl 2 	.. 	Cl N 

	

2 	2 	 2 
C2 _ c21 Cz 2 .. C2 N 	 (2.2) 

	

2 	2 	 2 
CTS CT2 .. CTN 

If the codebook contains only C' and d, then the pairwise error probability of 
transmitting C' and detecting it as C2 is denoted as P(C' -~ C2 ) .When the codebook 
contains I codewords, using the union bound, the probability of error when C' 
transmitted, is upper bounded by [ 1 ] 

P(error / C') < P(C' _4 C2 ) 	 (2.3) 
i=2 

Difference matrix C2 - C' is denoted as D(C', C2) and a matrix 
A (C' ,C2)=  [D" (C ' , C Z) . D (C ' , C2) ] 

2 P(C -~ C) 	
4rM 

( fln=1 A. )M yrM 	 (2.4) 

Where, 

M is the number of receiving antennas, 

r is rank of a matrix A (C1, C2) and 
,2 , , .1 , .........; is the eigen values of matrix A and 

y is signal to noise ratio. 

Right side of equation 2.4 can be represented as (GGy) 

Where, 

Gd= diversity gain 

G,= coding gain 

Then, the diversity of code is equal to product of rank of matrix A(C',C2) and M 

(i.e rM) The coding gain relates to the product of the nonzero eigenvalues of matrix 

A(C',C2) or equivalently the determinant of matrix A(C',C2). The coding gain distance 

(CGD) between codewords C' and C2 is defined as COD (C',C2)=det(A(C1,C2)).These 

two criteria for designing Space-time codes are called rank and determinant criteria. 

2 



2.3 Alamouti code 
In this code STBC is considered as modulation schemes for multiple transmit 

antennas that provide full diversity and very low complexity encoding and decoding. If a 

system has two transmit antenna (N=2) and one receive antenna(M=1), employing 

Alamouti code as in Figure 2.1 [2]. 

Anti Ant2 

sl' s2 	Transmit 	timeI 	sl 	s2 2b 	Symbol  
bits 	calculation 	 antennas 	time2 	—S; 	s~ 

Fig. 2.1. Transmitter block diagram for Alamouti code. 

To transmit b bits/cycle, a modulation scheme that maps every b bits to one 

symbol from a constellation with 2b symbols is used. The constellation can be any real or 

complex constellation. The transmitter picks two symbols from the constellation using a 

block of 2b bits. If sl and S2 are the selected symbols for a block of 2b bits, the transmitter 

sends s1 from antenna one and s2 from antenna two at time one. Then at time two, it 

transmits —s2 and .s, from antennas one and two, respectively. Therefore, the transmitted 

codeword is 

C= 1  s'* sµ 	 (2.S) 
—s2 s, 

To check if the code provides full diversity, rank of all possible difference 

matrices D(C, C') is calculated For different pair of symbols (s; , sZ) , the corresponding 

codeword is given by 

C' = s' 	s2 
—s2* s; 	 (2.6) 

The difference matrix D(C, C') is given by difference of matrices C and C. 

The determinant of the difference matrix, det[D(C, C')] = (Is, - s, 2 +s _s22)2  is zero if 

and only if s; = s1 and sz = s2 . Therefore, D(C, C') is always full rank when C # C' and 
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the Alamouti code satisfies the determinant criterion. It provides a diversity of 2M for M 
receive antennas and therefore is a full diversity code. The code word distance matrix A 

- r0 	 (2.7) 

This matrix has two identical eigenvalues. The minimum eigen values is equal to 

the minimum squared Euclidian distance in the signal constellation. Hene, the minimum 

distance between any two transmitted sequences remains the same as in the uncoded 

system. This implies that the coding gain is one. The Alamouti code provides two 

important properties: 

1. Simple decoding: Each symbol is decoded separately using only linear processing. 

2. Maximum diversity: The code satisfies the rank criterion and therefore provides the 

maximum possible diversity. 

2.4 Orthogonal Design of STBC 
Assuming, the path gains from transmit antennas one and two to the receive 

antenna as a, and a2 , respectively. Then, the decoder receives signals r, and r2 at times 

one and two, respectively, such that 
r,=a,s,+a2s2 +r1, 
r2 =-a,s2 +a2s1 +172 	 (2.8) 

For a coherent detection scheme where the receiver knows the channel path gains a, and 

a2 , the maximum-likelihood detection amounts to minimizing the decision metric 

to decode s, and s2 and minimi e 	 2 
~s, 

 

2 	 (2.9) 

Ise laz +r2a, l 

Therefore, the decoding consists of first calculating 
sl = 11a~ +r2a2 

Yz = r,a2 — rza; 	 (2.10) 



Thus, to decodes,, the receiver finds the closet symbol to s`i in the constellation. 

Similarly, the decoding of s2 consists of finding the closest symbol to sz in the 

constellation. 

Equation (2.8) can be written as 

(71 r) _ (s1, sz )Q + (rl, ,17) 	 (2.11) 

and a, az 

(a2 —a` (2.12) 
 ~ 

Multiplying above equation (2.11) by S2' gives 

S1 ,s2
J

= (Y ,r2) =(la, 2+az Z )(s, ,sz)+N 	 (2.13) 

Where, N is also a Gaussian noise, equation (2.13) consists of two separate 

equations for decoding the two transmitted symbols. This equation is the main reason for 

the first property of simple maximum likelihood (ML) decoding. The second property 

comes from the factor a, z + l az z in the right side of equation(2.13). When there is only 

one transmit antenna available, the power of the signal is affected by a factor a 2 of due 

to the path gain In a deep faded environment a 2 is very small and the noise dominates 

the signal. Thus, (2.13) shows that using the Almaouti code a, 2 + (a2 z should be small 

for a noise dominated channel. To have a small al z + a2 I 2 ,both a1 2 and ]a2 z must be 

small. It is less likely, as a, and a2 are independent. 

Derviation of (2.13) shows that the following equation is the main reason for 

both properties of the Alamouti code. 
Q.SZH = (a1 2 + az z)Iz 	 (2.14) 

Where I2 is 2 x 2 identity matrix If the structure of the Alamouti code is represented by 

the generator matrix 

G= x~ xz 	 (2.15) 
—x2 x1 

The inner product of rows G is zero. Hence, the transmitted symbols are orthogonal. 

(2.14) is a result of the orthogonality of the columns of G and the following property 

r 



G.GH =(Ix1~ 2 +Ix2')I2 	 (2.16). 

2.4.1 Orthogonal matrices 
A design of a full-rate full-diversity complex STBC is the scheme proposed in 

Section 2.4, which is defined by the following generator matrix 

x1 X2 
G(xi , x2) _ 

(_X2 X1 	 (2.17) 

The code is designed for N = 2 transmit antennas and any number of receive antennas. 

Using a constellation with L = 2b points, the code transmits 2b bits every two symbol 

intervals. For each block, 2b bits arrive at the encoder and the encoder chooses two 

modulation symbols Si and S2. Then, replacing x ] and x2 by Si and s2 respectively, to 

arrive at G (s I, S2), the encoder transmits Si from antenna one and S2 from antenna two at 

time one. Also, the encoder transmits —s2 from antenna one and s, from antenna two at 

time two. This scheme provides diversity gain, but no additional coding gain. There are 

other codes which provide behavior similar to those of (2.17) for the same rate and 

number of transmit antennas. When multiplying an orthogonal design by a unitary matrix 

results in another orthogonal design. The set of all such codes which only use x1 , x2, and 

their conjugates with positive or negative signs are listed below: 

x1 xZ —x1 x2 x1 —x2 x1 x2 

X2 x] X2 X1 x2 —X1 

—x1 —x2 	— xl 	x2 	x] —x2 ( —x1 —x2 
» > 	s 

X2 —x] 	—xi 	XI ) X2 —xj 	—x2 x~ J 	 (2.18) 

As the inner product of rows of all matrices is zero. Hence transmitted symbols 

are orthogonal to each other. The union of all these codes is called "super-orthogonal 

code" set C. Using just one of the constituent codes from C, all possible orthogonal 2 x 2 

matrices for a given constellation can not be generated using Equation (2.17). In BPSK 

constellation, it can be shown that one can build all possible 2 x 2 orthogonal matrices 

using two of the codes in C. 

The following four 2 x 2 constellation matrices can be generated using the code 

in (2.17): 

1 1 —1 —1 —1 1 1 —1 

—1 1 1 —1 —1 L1)' 1 1 	
(2.19) 

10 



There are four other possible distinct orthogonal 2 x 2 matrices 

—1 1 1 —1 1 1 —1 —1 

1 1-1 —11 —1-1 1 	 (2.20) 

Another orthogonal STBC is obtained by multiplying an orthogonal STBC by a 

unitary matrix from right or left. As a particular case if generator matrix is multiplied by 

following unitary matrix from right by the following unitary matrix: 

u=  1 e  0 
	 (2.21) 

0 1 

The result is the rotation of the first column of the generator matrix. To create 

these additional matrices, the following code from the set C is used: 

—x, x, _ x, x, —1 0 
xz x; —xz x; 0 1 

	
(2.22) 

Which, represents a phase shift of the signals transmitted from antenna one by it. 

A set including all 2 x 2 orthogonal matrices from (2.19) and (2.20) can be denoted as 02. 

The rank of the difference between any two distinct matrices within either (2.19) or 

(2.20) is 2. However, the rank of a difference matrix between any two elements in (2.19) 

and (2.20) is 1. In the case full diversity design, the difference of codewords matrices is 

full rank matrix. By using more than one code from set C, all possible 2 x 2 orthogonal 

matrices from 02 can be obtained. Therefore, the scheme provides a sufficient number of 

constellation matrices to design a trellis code with the highest possible rate. Also, it 

allows a systematic design of space-time trellis codes using the available knowledge 

about trellis-coded modulation (TCM) [4] and multiple TCM (MTCM) [5]. 

2.5 Super-orthogonal codes 
2.5.1 A parameterized class of STBCs 

Multiplying the Alamouti code in (2.17) from the right by the unitary matrix U in 

(2.21) results in the following class of orthogonal designs 

G(x„ x2 , e) = G(x„ x2  ).0 = X1  of  B x2 	 (2.23) 
(—x;e j' x,. 
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When 0 = 0, provides the code in (2.17). So, Let G(xi, x2, 0) be denoted by G(xl, 

X2). The encoder uses 2b input bits to select si and S2. Then, replacing x1 and x2 in G(xi, 

x2, 0) with s I and s2 respectively, results in G (s 1, s2, 0). First, s I d B' and s2 are transmitted 

from the first and second transmit antennas, respectively. Second, —s2 dB  and s, are 

transmitted from the two antennas. Concentrating on the case for which the set of 

transmitted signals are the same as the 'constellation points. In other words, the signal 

alphabet is not expanded. 0 is picked such that for any choice of Si and s2 from the 

original constellation points, the resulting transmitted signals are also from the same 

constellation. For an L-PSK, the constellation signals can be represented by ei27 L  , l = 0, 

1, ... , L — 1. selecting 8 = 27c1'/L, where l' = 0, 1, ... , L — 1 to avoid constellation 

expansion. In this case, the resulting transmitted signals are also members of the L-PSK 

constellation. Since the transmitted signals are from a PSK constellation, the peak-to-

average power ratio of the transmitted signals is equal to one. This not only increases the 

number of signals in the constellation, but also there is no need for an amplifier to 

provide a higher linear operation region. Using 0 = 0, n and 0= 0, n/2, r, 3rri2 for BPSK 

and QPSK, respectively. By using G(xi , x2, 0) and G(xi , x2, ir) for the BPSK constellation, 

all 2 x 2 orthogonal matrices in 02 can be generated. In fact, G(xi, X2,  0) is the code in 

(2.17) and G(x1, x2, ir) is the code in (2.21). By using (2.17) and (2.21), the set of 

transmitted signals consists of Si,  s2, s; , —s2,-- s1 ,— s; . Combination of these two codes 

can be called a super-orthogonal code. 

In general, a super-orthogonal code consists of the union of a few orthogonal 

codes, like the ones in (2.20). A special case is when the super-orthogonal code consists 

of only one orthogonal code, for design only 9 = 0. Therefore, the set of orthogonal codes 

is a subset of the set of super-orthogonal codes. Obviously, the number of orthogonal 

matrices that a super-orthogonal code provides is more than, or in the worst case equal to, 

the number of orthogonal matrices that an orthogonal code provides. Therefore, while the 

super-orthogonal code does not extend the constellation alphabet of the transmitted 

signals, it does expand .the number of available orthogonal matrices. This is of great 

benefit and crucial in the design of full-rate, full-diversity trellis codes. Another 

advantage of super-orthogonal codes lies in the fact that the code is parameterized. A 

design of a super-orthogonal code is the union of G(xi, x2, 0) for an L-PSK constellation 
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where 0 = 2irl '/L, and 1' = 0, 1. .. L - 1. The expansion of the orthogonal matrices," that 

is a positive result of using super-orthogonal codes, and "the expansion of the signal 

constellation," that is usually a negative side effect. The super-orthogonal code expands 

the number of available orthogonal matrices and, this is the main reason it can design 

full-rate trellis codes that provide full diversity. It has no negative side effect either in 

terms of expanding the transmitted signal constellation. 

2.5.2 Set partitioning for orthogonal codewords 

This section provides a set partitioning for the codewords of an orthogonal code 

and shows how to maximize the coding gain. The minimum of the determinant of the 

matrix A(C' ,CC) = DH(C' , CC) D(C', C) over all possible pairs of distinct codewords d 

and C3 corresponds to the coding gain for a full diversity code. This value is called 

Coding Gain Distance (CGD). Then, CGD is used instead of Euclidean distance to define 

a set partitioning similar to Ungerboeck's set partitioning [4]. Firstly, on the case where 

code in (2.17) is utilized. Also, BPSK constellation is used. Consider a four-way 

partitioning of the codewords of the orthogonal code as shown in Figure 2.2 for BPSK. 

The numbers at the leaves of the tree in the figure represent BPSK indices. Each pair of 

indices represents a 2 x 2 codeword built by the corresponding pair of symbols in the 

constellation. 

At the root of the tree, the minimum determinant of A(C' , CC) among all possible 

pairs of codewords (C' , C' ) is 16. At the first level of partitioning, the highest 

determinant that can be obtained is 64. This is obtained by a set partitioning in which 

subsets Po and P1 use different transmitted signal elements for different transmit antennas. 

At the next level of partitioning, four sets Poo, P11, P01 and P» are present with only one 

codeword per set. 

The best set partitioning is the one for which the minimum CGD of the sets at each 

level of the tree is-maximum among all possible cases. To find guidelines for partitioning 

the sets, formulas to calculate CGDs, are derived. For an L-PSK constellation, let each 

signal is represented by s = ei", l = 0, 1, .. . , L — 1, where cv = 27r/L. Two distinct pairs 

of constellation symbols (s; = elk'°', s' = e'1'°') and (s~ = eft2 , s2 = e"2°') and the 

corresponding 2 x 2 orthogonal codewords C and C are considered. 
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minimum 
CGD 
16 

Poo 	Pol 	P10 	 P]1 
00 	11 	01 	10 

Fig. 2.2. Set Partitioning for BPSK; each pair of binary numbers 
represents the pair of symbol indices in a STBC 

When there is no ambiguity (C',C2) is omitted in the calculation of matrices 

D(C', C2) and A(C',C2), from A and D. For parallel transitions in a trellis, 

e'k'e' — e'k20' 	e'`'o' — e'`Z(' 
2.24 D= e ~ CO — 	e-,k w_ e-1k20) 

A = D H D 
Then, cofactors of A are 

(e'k' w — e'k2) )(e' 	— e 'k2) ) + (e'1' w — e''2 	 )(e-'r,(U — e-11120) ) 

= 4- 2cos[w(k2 —k,)]- 2cos[w(l2 —1,)] 

(e — e'k2) )(e'`2w — el/lw )+(e" — e 2C" )(eik'a) —e 2°)) = 0 (e' _e  @(e' ) -e )+(e' er-e'k2 	(e'l'~' --e'l20') =0 
(e'i2w — e'h') )(e ''20) — e 1') + (e 'k'o' — 	)(e'' 	— e'k2( ) 
= 4- 2cos[co(k2 — k,)]-2cos[a (12 —1,)] 

(2.25a) 

4-2cos[w(k2 —k,)]-2cos[w(lz —1,)] 	 0 
A = 

0 	 4-2cos[w(k2 —k,)]-2cos[w(l2 —1,)] 
(2.25b) 

Using (2.24), CGD can be calculated by 

det(A) = {4 — 2 cos[a(kz — k, )] -- 2 cos[w(l2 _/)]}2 
	 (2.26) 
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So far, the codewords corresponding to parallel transitions are considered only. 

These codewords are transmitted over two time slots and are represented by 2 x 2 

matrices. This is good enough for the purpose of set partitioning similar to the case of 

TCM suggested by Ungerboeck [4]. However, to calculate the minimum CGD of the 

code, codewords that includes more than one trellis transition. If two codewords are 

considered , that diverge from state zero and remerge after P trellis transitions, the size of 

the corresponding difference matrix D is 2P x 2. In fact, such a difference matrix can be 

represented as the concatenation of P difference matrices corresponding to the P 

transitions that construct the path. The set of constellation symbols are denoted for the 

first codeword by (s1, s2 ) p = (e jklPO) , e'`' ~' ) , p=1,2......,P and for the second codeword 

by (4,4 )P = (ejklp w , e'~2 ) , p = 1, 2, ... , P. D° be denoted as the difference matrix of 

the pth transition and AP = D" -D° for p = 1, 2, .. . , P. For the above two codewords, D 
is obtained as 

DI 
D2 

D=~ (2.27) 

Dp 

The matrix A be calculated using (2.27) as 

P  A=DHD=~AP 	 (2.28)  
p=1 

Therefore, matrix A is still a diagonal 2 x 2 matrix, that is Al2 = A21 = 0. The CGD 

between the above codewords that differ in P transitions can be calculated by 
P 	 2 

det(A) = Z{4-2cos[w(k2 —k p )]-2cos[w(l2 —l,P)]} 
P=1 J 	(2.29) 

(2.29) includes a sum of P terms and each of these terms is non-negative. Therefore, the 

following inequality holds: 
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P 
	 2 

	

det(A) = 	{4 —2 cos[w(k2 — k;)] —2 cos[w(l2 — l; )]} 
P=1 

	

>— 	{4-2cos[w(k2 —k;)]-2cos[w(lz — l,P)]}
2  

P=J 
P 

det(AP.) 	 (2.30) 

The coding gain of such a STTC is dominated by parallel transitions , based on 

the coding distances calculated as given by equation (2.26) and (2.28). The optimal set 

partitioning for BPSK, QPSK, and 8-PSK are demonstrated in Figures 2.2, 2.3, and 2.4 

respectively. 

To calculate the CGD between two codewords, in which a codeword is 

represented by a pair of symbols, can use (2.26) or the corresponding pair of indices. It is 

apparent that increasing the Euclidean distance between the first symbols of the first and 

second symbol pairs will increase the CGD. The CGD also increases as, the Euclidean 

distance between the second symbols be increased. Therefore, a rule of thumb in set 

partitioning is to choose the codewords that contain signal elements with highest 

maximum Euclidean distance from each other as the leaves of the set-partitioning tree. 

In the design of set partitioning using QPSK in Figure 2.3, s = e!'"2, 1= 0, 1, 2, 3 

are the QPSK signal constellation elements and k = 0, 1, 2, 3 represent s = I, j,-1,—j, 

respectively. The maximum.minimum CGD in this case is 64, when lki — k21 = 2 and Ili — 

121 = 2 in (2.26). Based on the above constellation elements, leaf codewords in Figure 2.2 

are chosen. 

At the second level of the tree from the bottom, it is impossible to have both ski — 
k21 and 1l, — 121 equal to 2 in all cases. The next highest value for minimum CGD is 16 

when (kl — k2j = 2, hi — 121 = 0 or lkl — k2I = 0, 11, — 12! = 2. Therefore, the subtrees are 

grouped in the second level such that the worst case is when 1k1  — k2 1 = 2, Il i  — 12! = 0 or Ik j  
— k21 = 0, 1l, — 121 = 2. The subtrees keeps grouping to maximize the minimum CGD at 

each level of set partitioning. Similar strategies are used for other signal constellations. 

Figures 2.2, 2.3, and 2.4 are concluded, as the minimum CGD increases (or remains the 
same) as one level down in the tree moves. The branches at each level can be used to 

design a trellis code with a specific rate. Higher coding gain necessitates the use of 

redundancy resulting in reduced rate. 
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minimum 
CGD  
4 

16 

16 

64 
00,22 02,20 11,33 13,31 01,23 03,21 10,32 

	
12,30 

Fig. 2.3. Set partitioning of QPSK; each pair of binary numbers represents the 
pair of symbol indices in a STBC 
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CGD  
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25 

54 
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76 
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56 
16 

74 
34 

40 62 42 64 Si 73 S3  71 
05 
41 63 	43 61 50 72 52 70 

Fig. 2.4. Set partitioning for 8-PSK; each pair of binary numbers 
represents the pair of symbol indices in a STBC 
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2.5.3 Set partitioning for super-orthogonal codewords 

This section provides set partitioning for super-orthogonal codes and shows how 

to maximize the coding gain without sacrificing the rate. Code construction based on a 

super-orthogonal set is as follows. A constituent STBC be assigned to all transitions from 

a state. The adjacent states are typically assigned to one of the other constituent STBCs 

from the super-orthogonal code. Similarly, the same STBC can be assigned to branches 

that are merging into a state. 

It is thus assured that every pair of codewords diverging from (or merging to) a 

state achieves full diversity because the pair is from the same orthogonal code with the 

same rotation parameter 9. On the other hand, for codewords with different 9, it is 

possible that they do not achieve full diversity. Since these codewords are assigned to 

different states, the resulting trellis code would provide full diversity despite the fact that 

a pair of codewords in a super-orthogonal code may not achieve full diversity. It is 

possible to come up with Designs that do not follow this rule and still provide full 

diversity. Similar to the case of orthogonal designs, it remains to do the set partitioning 

such that the minimum CGD is maximized at each level of partitioning. 

This set partitioning should be done for all possible orthogonal 2 x 2 codewords, 

for every possible rotation. In other words, the set of all possible 2 x 2 matrices are 

needed to partition, generated by the class of codes in (2.22). Based on the design criteria 

in Section (2.1), first, to achieve full diversity be needed to make sure. Therefore, first, 

the set of all codewords are partitioned into subsets with the same rotation. In other 

words, the first step of the set partitioning is only based on the rotation parameter 0. 

Then, the set of all codewords should be partitioned with the same rotation parameter 0 as 

the case of orthogonal designs with 0= 0 are obtained. 

In what follows, the set partitioning for the sets with different rotations can 

shown, results in the same set partitioning trees as that of the orthogonal design with 0 = 

0 in Section (2.5.2). Similar to the case of 0 = 0, two distinct pairs of constellation 

symbols (s = e'k'w s' = e'`'°') and (s z  = e3k=0' s z  = e'`Z°') are considered. z 	 1 	2 

The corresponding codewords are denoted by CB 1  and C°2  and the corresponding 

difference matrix by D° . 
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For parallel transitions in a trellis, the following be founded 

ej °e'B — e'
k2W e;s 	eA —0i 

De = e_~ 0)e~e _ e_illwe~e e_ jk'w — e_~k2w 	(2.31) 

= D.0 
where, U is the rotation matrix in (2.21) and D is the difference matrix for 0 = 0 in 

(2.24). To calculate the CGD, matrix AB = D911 DB is needed using (2.31). 
AB =U H DH DU=U"AU=A 	 (2.32) 

Where, A = DH • D is a diagonal matrix calculated in (2.25) and L/' • A • U = A. As 

a result of (2.32), the CGD between two codewords is only a function of the 

corresponding constellation symbols and the same for any rotation 0. Therefore, the 

formulas to calculate the CGDs have been developed in Section (2.5.2). A good set 

partitioning for 0 = 0 as presented in Section (2.5.2) is also good for any other rotation. 

Figures 2.2, 2.3, and 2.4 shows set partitioning for BPSK, QPSK, and 8-PSK, 

respectively. 

So far, the set partitioning for super-orthogonal codes have represented by first 

partitioning based on the rotation parameter 0 and then the constellation pairs. The 

rationale behind such a two step partitioning is the fact that, Section (2.1) be presented, 

the rank criterion be needed to consider first, to achieve full diversity and then the 

determinant criterion to obtain the highest possible coding gain. Since the second step of 

set partitioning is the same for, all rotation parameters, the complete set-partitioning tree 

is not shown. 

In fact, to specify a subset, the rotation parameter 0 be mentioned or the 

corresponding orthogonal STBC G(xi, X2, 0) and a set from the set, partitioning for 0 = 0. 

Another way of presenting the codewords is to specify the complete set-partitioning tree. 

Although the first representation is more compact and easier to use, yet Figure 2.5 

illustrates the set partitioning of superorthogonal codewords for a BPSK constellation 

using rotations 0 = 0, x. Unlike Figure 2.2, the 2 x 2 matrices are used instead of the 

corresponding index pairs. A pair of indices and a rotation identifies the 2 X 2 codeword 

uniquely. Also, the superscripts in Figure 2.5. represent the rotation. Therefore, the left 

half of the tree in Figure 2.5.is the same as the tree in Figure 2.2 for 0 = 0. Similarly, the 

right half of the tree in Figure 2.5. is the same as the tree. in Figure 2.2 for 0 = n. The 
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minimum 
CGD 
4 

16 

16 

Pi 

compact representation in Figures 2.2, 2.3, and 2.4 uses this fact to remove a need for 

explicitly adding the parameter 0 in the set partitioning process. 

64 	 -- 	-1a 

i i 	—1 —1~ i —1 —1 1 (1 1' 1 	1 (-1 —1 1 

—1 1J 	1 —1J 	1 . 	—1 —1 	1 1)-1 —1) L—' 'J 1 

Fig.2.5. Set partitioning of super-orthogonal codewords for BPSK 
and 0= 0,t; complete tree 

2.5.4 Design of SOSTTCs 
In this section, the proposed set-partitioning scheme be use to design full-

diversity full-rate space-time trellis codes. For each Design of SOSTTC, one subset be 

assigned to each branch of the trellis. Each subset represents a number of 2 x 2 matrices. 

Each subset corresponds to a rotation parameter and a set of possible symbol pairs. The 

superscript of the subset corresponds to the rotation parameter 0. 

If the superscript of the subset is 0, G(xl, x2, 0) be used, the STBC in (2.23) with 

rotation parameter 0, to transmit. The set of possible symbol pairs for a given rotation 

parameter 0 is the same as that of the same subset with superscript 0 = 0. For Design, for 

QPSK corresponds to G(xl, x2, 7r) and the subset P10 in Figure 2.3. 

Lemma 2.1 For a STTC with rate b bits//jHz and a diversity r, at least 2b(r-1) 

states are needed [1]. 



Design 2.5.1 The .fig2 .contains two different representation of the same code. In 

the left representation, the STBC G(x 1, x2, 0) is explicitly mentioned and the subsets are 

from Figure 2.2 or 2.3. In the right representation, the rotation parameter is the 

superscript of the corresponding subset. Figure 2.6 demonstrates the codes for a two-state 

trellis providing a minimum CGD of 48(dominant path when path P=2 ,(3. 14)) and 16 at 

rates 1 bit/§/Hz , using BPSK and 2 bits/s/Hz using QPSK, respectively. There is no 

equivalent two-state space-time trellis code (STTC) [13]using QPSK due to Lemma 2.1. 

G(xi, X2, 0) P°°  p°   t 

G(xi, X2, it) 

Fig. 2.6 A twQ-state code SOSTTC ; r=lbit/s/Hz using BPSK or r=2 
bit/s/Hz using QPSK 

00 01 

10 11 
Fig. 2.7. A two-state code STTC ; b=lbit/s/Hz using BPSK 

The minimum value of CGD among all possible pairs of codewords is used as an 

indication of performance of the code.In the case STTCs, any valid codeword starts from 

state zero and ends at state zero.Consider p=2 transitions STTC Figure (2.7) .First path 

stays in state zero during both transitions.The second path goes to state one in first 

transition and merge in the second transition.The corresponding codewords are 

	

C1  _ 1 1 	and 	C,2  — 1 —1 
• 1 1 	 —1 1 

Therefore, CGD (DHD) is 16. This value is less than with respect to two states SOSTTC 

using BPSK. 
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Design 2.5.2 Figure 2.8 shows a four-state, design of SOSTTC. In the Figure 2.8 

representation, the rotation parameter is the superscript of the corresponding subset. 

• 1' o 	°0  

o 

P°  P°  o 

P" P°'t  

Fig.2.8. A four-state code SOSTTC; r=1 bit/s/Hz using BPSK or r=2 
bit/s/Hz using QPSK 

When BPSK uses and the corresponding set partitioning in Figure 2.2 the rate of 

the code is one. G(xi, x2, 0) be also used, when departing from states zero and two and 

use G(xl, X2, 'c) when departing from states one and three. The minimum CGD of this 

code is 64 which can 'be found in Figure 2.2 and Table 2.1. In Section (2.4.3), parallel 

transitions are dominant in calculating the minimum CGD for this code. If QPSK 

constellation be used and the corresponding set partitioning in Figure 2.3, the result is a 

four-state SOSTTC at rate 2 bitsi "s!Hz`,•. The minimum CGD for this 2 bits/ 's!Hz ,. code is 

equal to 16 which is greater than 4, the CGD of the corresponding STTC. 

Let the generating matrices for the four state STTCs Figure 2.9 are 
02 

01 	
01 

G= 1 0 	and 	G= 2 0 
11 

1 0 • 
In the Figure 2.9 with BPSK, assume the pairs of paths are 0000 and 0120. The 

corresponding codewords are 

_ 1 1 1 	 _ 1 —1 —1 2 -  
C _ 1 1 1 	and C 	—1 1 —1 

Thus, CGD is • 48, which is less than with respect to four states SOSTTC with 

BPSK. 
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Fig. 2.9. A four-state code STTC; r=1 bit/s/Hz and r=2 bit/(s(Hz) using BPSK 
and QPSK respectively 

In Figure 2.9 with QPSK case, assume the pairs of paths are 000 and 010. The 

corresponding codewords are 1 1 
CI

_ 
 1 1 and Cz—  j I 

Hence, COD is 4, which is less than with respect to four states SOSTTC with 

QPSK. 

Design 2.5.3 Figure 2.10 shows 3 bits/s/Hz. SOSTTC using 8-PSK and the 

corresponding set partitioning of Figure 2.4. The minimum CGD for this code is equal to 

2.69. Detail analysis of the coding gain calculations is presented in Chapter 3. Based on 

Lemma 2.1, there is no four-state STTC with 8-PSK. 

STTCs [ 11-17] are designed manually or by computer search strategies, and 

SOSTTCs are systematically designed a code for an arbitrary trellis, and rate using the 

above set partitioning. While so far designs of full-rate codes have been described, in 

general, codes with lower rates can be designed to provide higher coding gains. The 

design method is exactly the same while using different subsets. Utilizing different levels 

of the set partitioning to design SOSTTCs provides a trade-off between rate and coding 

gain as well. One design of a non full-rate SOSTTC with higher coding gain is provided 

below Figure 2.11. 
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Fig. 2.10. A four-state code SOSTTC; r=3 bit/s/Hz (8-PSK). 

In general, fora b-bit constellation, 221  pairs of symbols exist to be partitioned at 

the leaves of the tree. Half of these pairs can be used for transmission from each state of 

Figure 2.11 over two time slots. The other half should be reserved for using in other 

states to avoid a catastrophic code. Therefore, this code can transmit 221/2 = 22b-1  

codewords or 2b — 1 bits per two time slots. As a result, the rate of the code is (b — 0.5) 

bits/- s/Hz for a b-bit constellation and the code cannot transmit the maximum possible 

rate of b bits/-  sf Hz' . 

Design 2.5.4 A four-state rate 2.5 bits/'s/Hz. code using 8-PSK with a CGD of 4 

is shown in Figure 2.11. The maximum possible rate using 8-PSK is 3 and a design that 

provides a CGD of 2.69 is shown in Figure 2.10. 

Similar to conventional trellis codes, there is always a trade-off between coding 

gain and the complexity. Codes with different number of states and at different rates can 

be systematically designed using the set partitioning in Figures 2.2, 2.3, and 2.4 or similar 

set partitioning for other constellations. The rules for assigning different sets to different 

transitions in the trellis are similar to the general rules of thumb defined in [4] and [5] to 

design MTCM schemes. First based on the required rate, a constellation select and use 

the corresponding set partitioning. The choice of the constellation also defines the valid 

rotation angles, 0, that would not create an expansion of the transmitted signal 
constellation. 
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The corresponding set partitioning is used in the design of the trellis code. Since, 

presentation of the set partitioning was based on a two step algorithm, describe the 

resulting two-step design method in the sequel. 

	

F00: 
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Fig. 2.11. A four-state code; r=2.5 bit/s/Hz (8-PSK). 

Utilizing the valid values of 0 in (2.23) defines the valid codewords in the set of 

super-orthogonal codes. Then, a constituent orthogonal code be assigned from the set of 

super-orthogonal code's to all transitions from a state. This is equivalent to assigning a 

rotation parameter to each, state. Typically, another constituent orthogonal code be 

assigned or equivalent rotation parameter to the adjacent states. Similarly, the same 

orthogonal code can be assigned, equivalently the same rotation parameter, to branches 

that are merging into a state. 

It is thus assured that any path that diverges from (or merges to) the correct path_is 

full rank. Then, different sets from the set partitioning for 0 = 0, or any other rotation, are 

assigned to different transitions similar to the way that we assign sets in a regular 

MTCM. To avoid a catastrophic code, the subsets are assigned such that for the same 

input bits in different states either the rotation angles or the assigned subsets are different. 

Since the process of set partitioning is done to maximize the minimum CUD at each 

level, the upper bound on the coding gain of the resulting SOSTTC due to parallel 

transitions is also maximum. 
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Table 2.1. CGD values for different codes 

Figure No. of states rate(bits/sec/Hz) minimum CGD Minimum CGD in [1] 
2.8(BPSK) 4 1 64 - 
2.8(QPSK) 4 2 16 4 
2.10 4 3 2.69 - 
2.5(BPSK) 2 1 48 - 
2.5(QPSK) .2 2 16 - 
2.11 4 2.5 4 - 
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Chapter 3 

Analysis of CGD 
In this chapter, the coding gain be derived of different SOSTTCs that, in Section 

2.5 be introduced. To find the dominant path for CGD calculation in the trellis be needed. 

Section 2.5 be consider specific designs first, and calculate their coding gains. Then, it 

generalizes the methods that, the calculation of these coding gains have used to show 

how to calculate the coding gain of any SOSTTC. 

3.1 Error events with path length of three 
Let us first consider the trellis of the code in Figure 2.8. Parallel transitions 

between two states may. be considered as different transitions each containing one 

possible 2 x 2 symbol matrix. Two codewords may only differ in P = 1 trellis transition if 

they both start and end in the same state. However, due to the structure of the trellis, it is 

impossible to have two codewords which differ in P = 2 trellis transitions. 

C(e jk~tu ,e j'to ,0) 	C(ej"10) e jf~to
, 0) 	C(ejk;m ,e jl;m ,0) 

C(e jkZ 0 

l a " e jL,- , 0 ) 

Fig. 3.1. Two typical paths differing in P=3 transitions 
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Because, for design, if two codewords diverge from state zero, they have to go 
through at least three transitions to remerge as shown in Figure 3.1. Therefore, the 

smallest value of P excluding parallel transitions is three. For P = 3, a typical case 
consider, where the first codeword stays at state zero. For the second codeword, the first 

and third transitions, diverging and merging to state zero, use C(x i , X2, 0) and the second 
transition uses C(xl, x2, 0) as in Figure 3.1. Using similar calculations as equation (2.26) 

it can be obtained as 

det(A) = (a + b, + c)(a + b2 + c) — d (3.1) 

Where a, b1, b2, c, d? 0, and 
a = 4— 2 cos[o (kk — k )] — 2 cos[w(l2 — 11)] 
c=4-2cos[co(k2 —k13)]-2cos[w(1 —l)] 

b, = 4 — 2 cos[w(kz — k,) + 0] — 2 cos[rw(l2 — l~ )] 
b2 =4-2cos[a (k2 —k, )]-2cos[w(l2 —l;)+0] 
d = (2-2 cos 9)(2-2cos[w(k2 —k; +1,2 —l2)+8] (3.2) 

For 0=,r, 
b, = 4 + 2 cos[w(k2 — k, )] — 2 cos[co(ll —l)]  
b2 = 4 — 2 cos[co(k2 — k, )] + 2 cos[co(l2 —l)]  
d =8(I+cos[co(k2 —k; +12 —1,2)] (3.3) 

Since 

a,b1 ,b2 ,c,d ? 0, 
min det(A) > (min a + min b, + min c)(inin a + min b2 + min c) — max d (3.4) 

Design 3.1.1 In this design, the four-state code considers in Figure 2.19. using 

BPSK and transmitting r = 1 bit/ s/Hz.. For CGD analysis assume two codewords 

diverging from state zero and remerging after P transitions to state zero. For parallel 

transitions, that is P = 1, min det (A) = 64 is calculated from (2.26). For a BPSK 

constellation, w = n, min a = min b1 = min b2 = min c = 4, and max d = 16 is used. 

Therefore, Inequality (3.4) results in 
min det(A) >-128 	 (3.5) 



Also fork' — k'—Z'—k2 —k2 —h= lz —k3 — k3 -13 =0 and l' -13- 1 in(3.1) 

det(A) =128 is obtained, which means 

	

min det(A) <_ 128 
	

(3.6) 

Combining Inequalities (3.5) and (3.6) provides 

	

. min det(A) 128 	 (3.7) 

which is greater than 64. Similarly, the minimum value of the CGD when P> 3 is greater 

than the minimum value of the CGD when P = 3 is obtained . This proves that the 

minimum CGD for the code is dominated by parallel transitions and is equal to 64. 

Design 3.1.2 In this design, the four-state code in Figure 2.8 considers using 

QPSK and transmitting r = 2 bits/ s/Hz . Again, two codewords are assumed diverging 

from state zero and remerging after P transitions to state zero. Using (2.26), min det 

(A)=16 is calculated for parallel transitions. Also, ro = 7r/2, min a = min c = 2, min b, _ 

min b2 = 4, and max d = 16 is used. Therefore, Inequality (3.4) results in 

min det(A) >_ 48 
	

(3.8) 

= 48 is obtained, which means 
min det(A) <_ 48 	 (3.9) 

combining Inequalities (3.8) and (3.9) shows 
min det(A) = 48 	 (3.10) 

which is greater than 16. Again, the minimum value of the CGD when P > 3 is greater 

than the minimum value of the CGD when P = 3. Therefore, the minimum CGD of the 

code is dominated by parallel transitions and is equal to 16. 

3.2 Error events with path length of two 

Two codewords are considered diverging from state zero and remerging after P = 

2 transitions to state zero in Figure 3.2. For parallel transitions, that is P = 1, the CGD 

can be calculated from (2.26). 
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C(e;kco e )l;w 
-0) Qe1 (0 ,e 	,0) 

e 	0) 
	 C(e;k2w e;12a) e) 

Fig. 3.2. Two typical paths differing in P=2 transitions 

A case is considered, where the first codeword stays at state zero. For the second 

codeword, the, first transition diverging from state zero uses C(xl, x2, 0) and the second 

transition remerging to state zero uses C(xl, X2, 0) as in Figure 3.2. The rotation 

parameters are used as 0 = 7r/2, n, 37r/2 in Figure 2.10, 0 = 7c in Figures 2.6. It can be 

shown that 
det(A) = (a + b)(a + b2 ) - d = a2 + a(b, + b2 ) + b,b2 - d 	(3.11) 

Where 
a = 4-2  cos[a(k2 — k, )] —2 cos[w(12 —11 )] 

b, =4-2cos[w(k2 —k,)+0]-2cos[w(l2 _12 )] 
b2 =4-2cos[w(k2 — k,2 )] -2cos[w(l2 — 12 ) -8] 

d =(2-2cos0)(2-2cos[w(k2 —k; +l; —1Z)+0] 	(3.12) 

and a, b1, b2, d >_ 0. Since a only depends on (k2 , k; ,l , l; ), b, + b2 is not negative, and b1, 

b2, d are independent of (k2 , k, ,12 ,1,) one can first calculate (min a) and then calculate 

min det(A). The following formula be used to find min det(A ): 

mindet(A)= (min a)2 +min[(mina)(b,+b2 )+b,b2 —d] 	(3.13) 

Equation (3.13) is. used to calculate the CGD for trellises with P = 2 and also tabulate for 

different constellations and. 'rotations (0) in Table 3.1. In Table 3.1, the notations of 
Figure 3.2 are used. 

where, with the notation (k1'' l) E P' (k2 112 ) E PZ (k ~ l') e P' and (k z l Z ) E p2 1 	1 	1 	 1 	z 	z 	z 

Design 3.2.1 In this design, the coding gain is calculated for the BPSK code in 

Figure (2.6 ). Two codewords are assumed diverging from state zero and remerging after 
P transitions to state zero. 

30 



For parallel transitions, P = 1, the CGD can be calculated from (2.26) which is 64. 

For P = 2, min a=4 and 
min det(A) =16 + min[4(b, +b2 ) +blbz —d]  = 48<64 	(3.14) 

Therefore, CGD=48 and the- coding gain is dominated by paths with P = 2 transitions. 

Table 3.1. Minimum det(A) from (3.13) for different constellations 

and rotations 

Constellation 0 

	

p' 	p2 

 

>  > 
p' 
z 

pz 
z 

min 

det(A) 

Parallel 

CGD 

BPSK TE po p p 48 64 

BPSK po p po 48 64 

QPSK po p p 24 16 

QPSK n Po P Po 20 16 

QPSK n/2, 3't/2 Po P, P, 12 16 

8-PSK 1'00. Po 	Iii I'oo 5.03 4 

8-PSK 7E poo pp Po .5.37 4 

Design 3.2.2 For the QPSK code in Figure (2.6.), the CGD for parallel transitions, 

P = 1, is 16. For P = 2, since min a = 2, 
min det(A) = 4 + min[2(b, + bz ) + b,b2 —d]  = 20>16 	 (3.15) 

Therefore, CGD of Figure 2.6•with QPSK is 16. 
Design 3.2.3 The coding gain in Figure 2.10 is dominated by paths with P = 2 

transitions. Using (3.13) and Table 3.1, when P=1, the minimum CGD is 2.69 as is 

tabulated in Table 2.1. 

The importance of picking the right set of rotations are emphasized, and subsets 

in providing the maximum coding gain. The minimum CGD is not always enough in 

comparing two codes with each other. As an Design, the four-state be considered, rate 3 

bits/(s/ Hz code in Figure 3.3. 0 = 3~r/4, 57r/4 are selected for states one and three in 

Figure 3.3 instead of 9 = ir2; 3r/2 in Figure 2.10, 
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Po Poo PO '? 

P 3~s14 P3R14 	 p3,7- /4 P3R /4 
00 	01 	10 	11 

P~ P' P" P'T 00 	0l 	to 	n 

5i/4 P5,r/4 	5ir/4 P57r/4 
00 	10 	10 	11 

Fig. 3.3. A four-state code SOSTTC; r=3 bit/s/Hz (8-
PSK). 

The code in Figure 3.3 is an interesting design, where starting from state zero, 

parallel transitions are dominant and the CGD is 4. However, other error events should be 

considered with length two, where the parallel transitions are not dominant. For Design, 

starting from state one and staying at state one for two transitions, an error event with P = 

2 can be a path diverging from state one to state two and remerging to state one in the 

second transition. This error event can be part of two codewords with length four as 

illustrated in Figure 3.4. The CGD for such a path is 1.03 which is lower than 2.69 and 4. 

There are other paths with P = 2 providing different CGDs. Therefore, for the code in 

Figure 3.4, minimum CGD is not a good indicator of the performance. In addition to 

minimum CGD, one needs to consider the path weights, that is multiplicity of error 

events. 

3.3 Decoding Techniques 
In general, it is typically more difficult an M-TCM scheme than a single-

dimension TCM counterpart because a potentially much larger number of transition 

branches are required for an M-TCM encoder to achieve the same data rate. This can be a 

main disadvantage of an M-TCM scheme. 

In this dissertation, the concept of orthogonality has been used to ease data 

decoding since the orthogonal space —time block code is used as the inner code. 
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Fig. 3.4. Two paths with length four differing in P=2 transitions 

3.3.1 Simplified ML Decoder 

Essentially, the decoding process for current concatenated scheme can be divided 

into 2 parts: parallel-transition and non-parallel transition processing. Once the former 

task is completed, the latter is straightforward via the Viterbi algorathim. The parallel-

transition processing, which include likelihood computation and determination of the 

most-likely branch among a partition of parallel transitions is typically more complicated 

but can be greatly eased by exploiting signal orthogonality. 

The standard reduced-complexity ML decoder for an orthogonal space-_ 	block 

code was a provided in [6]. It utilizes the signal orthogonality property to express the 

likelihood function in terms of a sum of functions that depend only on each information 

symbol encoded by the block code. Therefore, these symbols can be decoded 

individually, given that they are independent to one another. Unlike_ in the case of a 

generic joint ML decoder, the complexity of the standard simplified ML decoder does not 

grow exponentially with data rate and code block size. 

First, block code can decompose a given a partition transitions into smaller 

subsets of transitions labeled with codewords that correspond to the outputs of a 

standalone block code with inputs drawn from smaller constellations. The standard 

simplified ML decoding algorithm can then be used to determine the most-likely branch 

within each subset of parallel transitions[21] and [22]. This greatly reduces decoding 

complexity, especially when the cardinality of these subsets is large. At this point, several 

local ML decisions are obtained (one from each subset of parallel transitions). 
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The final ML decision for the current parallel-transition is obtained by an 

exhaustive search for the candidate with the maximum value ' of the joint likelihood 

function. This algorithm is repeated for every distinct partition of parallel transitions. The 

decomposition of parallel transitions is done to enable reduced-complexity decoding 

algorithm with the set partitioning concept to improve coding gain, although they are 

closely related. 

To demonstrate the idea of the simplified ML decoding finds the most likely valid 

path that starts from state zero and merges to state zero after L + Q blocks, where L is the 

total number of transmitted orthogonal blocks and Q is memory size of trellis, to 

guarantee a return to state zero. Each state transition corresponds to the transmission of 

two symbols in two time slots from two transmit antennas. For receive antenna m be 

assumed, rlrm , YZ m are received at the two time slots of block 1. Assuming fixed path gains 

a, m and a2 m throughout the transmission of a codeword, obtained as 
1' 	' iol 	' Y.m = al msle +a2,,S2 +77l,m 

12 m = —ai m (s2 ).
• 
ei +a2,,,, (sl)s + ~2 m 	

(3.16) 

where, r~ and 72 m are noise samples for block 1. The Viterbi algorithm can be used for 

the ML decoding of SOSTTCs. Since, the parallel transitions for SOSTTCs are allowed, 

at each step, the best transition among all parallel transitions should find. Then, the best 

parallel transition be used to calculate the path metrics in the Viterbi alg 	- The 

branch metric of the lth block is given by 

- al msi e'BI - a2 ,s2 + Y2 m + al,m (s2 )# ei0' - a271,(S ) « 
2 

	 (3.17) 
m=1 

Expanding the branch metric in (3.17) and removing the constant terms results in the 

following branch metric: 
M 	( 

~ 2R { Y l a` m (S' )e-i6' — Y l à  (S' ) 	(s )̀  e 9' — Y'm a` (s` )` } 	(3.18) 2,m ., 2 	2,m 2,rn 1 	lm lm 	2,m 
m=1 

For each block, the rotation, the path gains, and the received signals are known at 

the receiver. Therefore, the branch metric in (3.18) is only a function of transmitted 

signals and can be denoted by 2J' (s; , s). Therefore, the first step is to find the valid pair 

(s; , s2) among all parallel transitions that minimizes J' (s; , s). To use the orthogonality 

of the STBC, one may utilize the fact that is a function of s; and s2 .. Similar to the case 
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of an orthogonal STBC, this can be used to simplify the search for the transition with the 

minimum branch metric among all parallel transitions. 

J!(s,sz)=J'(si)+JJ(sz) 
where 

J! (s) — —R j1r2,maz,m +(Ylm )* al,me~e isl } 

J' (s2)=-R {[r1 alme'' -(rlm)*a2m]S2 } 	
(3.19) 

However, while the orthogonality of the blocks results in a simpler ML decoding, Y 	 p 	 g, 
the derivation of such a simpler ML decoding is not the same as that of a block code. 

Although, J, (s;) is only a function ofs; since not all possible (s', sZ) pairs are allowed 

for each trellis transition, s; and sl are not independent. Similarly, JJ (si) is a function 

of s; and because of the correlation between s2 and s; . In other words, the input 

symbols of the orthogonal STBC are not independent and therefore the separate decoding 

is not possible. For each branch, among all possible parallel transitions, the valid 

pair (s; , s2)) should found, that provides the minimum Jr (s; , s). If the symbol s' should 

found, that minimizes J, (s;)) and the symbol s2 that minimizes JZ (s2) , the resulting 

pair of symbols (s;, s2) may not be a valid pair for the considered transition. Therefore, 

such a pair does not provide the best pair among all possible parallel transitions. On the 

other hand, it is possible to divide the set of all parallel pairs to subsets for which the 

symbol pairs (s', s2 ) are independent. Then, the simple separate decoding, or equivalently 

separate minimization of Jl (s;)) and JZ (s), is done for each subset. Finally, the best pair 

can be found that minimizes J' (s; , sZ) among the best pairs of different subsets. In other 

words, to utilize the reduced complexity, the set partitioning be needed to combined and 

the separate decoding for each orthogonal STBC building block. To elaborate the 

simplified decoding method, the subsets are provided for which the symbols s; and s? are 

independent for different PSK constellations. 

For any other constellation, the set partitioning can be combined and the separate 

decoding for each orthogonal STBC building block in a similar way. Utilizing such a 

combination makes it possible to reduce the complexity of the branch metric calculations 
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for parallel transitions. After finding the best parallel branch for each transition, the ML 

decoder finds the most likely path. 

First, the path metrics are needed to calculate using the best branch 

metrics J 1  (s; , s). The path metric of a valid path is the sum of the branch metrics for the 

branches that form the path. The most likely path is the one which has the minimum path 

gain. The ML decoder finds the set of constellation symbols (s; , s2) , I = 1, 2, ... , L + Q 

that constructs a valid path and solves the following minimization problem with all 

symbols s; , sZ , s; , sZ , ..:.., s; +Q , sZ +Q 
L+Q 

J'  (si' s2) 	 (3.20) 
1=1 

A valid path starts at state zero and returns to state zero after L + Q transitions. Viterbi 
algorithm implemented on (3.20) gives the optimal path [21]. 
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Chapter 4 

Algorithm and Simulation Results 
4.1 Algorithm of SOSTTCs 

METHOD FOR DESIGING A SOSTTC FOR DIVERSE 

TRANSMISSION COMMUNICATIONS SYSTEM,  

SELECT A DIVERSITY FACTOR FOR THE COMMUNICATIONS 

SYSTEM 

!lr 
SELECT A RATE FOR THE COMMUNICATIONS SYSTEM 

SELECT A NUMBER OF STATES FOR THE CODE 

1r 

SELECT A SOSTTC HAVING THE SELECTED NUMBER OF 

STATES 

"V 

SELECT A SOSTTC SET PARTITIONING STRUCTURE THAT 
CORRESPONDS TO THE SELECTED RATE 

USE THE SELECTED TRELLIS STRUCTURE AND THE SELECTED 

SET PARTITIONING STRUCTURE TO ASSIGN PARTICULAR 

VALUESS TO A SET OF TRANSMISSION VARIABLE FOR EACH 

POSSIBLE COBINATION OF INPUT VALUES 
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A diversity factor is selected for the communication system to be implemented. 

This diversity factor represents the number of transmission elements to be included in the 

transmitters of the system. Generally, a diversity factor of two is selected. Also, a rate is 

selected for the communications system or code to be implemented. In this thesis, a rate 

of 1,2, or 3 bits/second/hertz is selected. The selected rate represents the number of 

transmitted in the given period of time. Once the rate has been selected, other aspects of 

the communications system and code are fixed. For design, a rate of 1 bit/second/hertz 

means that the system will have a constellation size of 2 (a BPSK system).A rate of 2 

bit/second/hertz means the system will have a constellation size of 4(a QPSK system). 

In general, the constellation size( L) will equal 2b  where b represents the selected 

rate. The selection of a number of states for the code, in this thesis the number of sates is 

2,4, or 8.Selecting a higher states for a given rate selection improves the performance of 

the code. For design, selecting a higher of states will improve coding gain distance 
(CGD).The set partitioning structure Figs 2.2 - 2.4 will decide the CGD. In this thesis 

selects a trellis structure according to the requirement that has the number of selected 

states. As described above, Figs. 2.6 - 2.11 illustrates trellis structures .Trellis structure 

Figure 2.6 is a two. states trellis-structure. It can be used, for design different rate 1 

bit/second/hertz and rate 2 bit/second/hertz. A set partitioning according to the structure 

is selected that corresponds to the rate. 

4.2 Simulation of Two States SOSTTC 

4.2.1 Two states SOSTTC with BPSK 

The encoder receives one state bit (BA) and one modulation bit (BB) at a time To, 

and the transmission variables (XI, X2, O) equal. Trellis structure Figure 2.6 will now be 

used in combination with set partitioning structure Figure 2.2 to assign particular values 

to transmission variables[20] X1, X2, and O for each combination of input values. 

Space-time block code C(X1, X2, 0) is associated with state 1, and space-time 
block code C(X1 , X2,n) is associated with state 2. 

Two states SOSTTC in state 1 with BPSK: 



(0, 0, 0) if the encoder is in state 1, state bit (BA) equals 0, and modulation bit 
(Be) equals 0. 

(1, 1, 0) if the encoder is in state 1, state bit (BA) equals 0, and modulation bit 

(BB) equals 1. 

(0, 1, it) if the encoder is in state 1, state bit (BA) equals 1, and modulation bit 

(BB) equals 0. 

(1, 0, it) if the encoder is in state 1, state bit (BA) equals 1, and modulation bit 

(BB) equals 1. 

Two states SOSTTC in state 2 with BPSK: 

The encoder receives one state bit (B A) and one modulation bit (BB) at a time To, 

and the transmission variables (XI , X2, 0) equal: 

(0, 0, 0) if the encoder is in state 2, state bit (BA) equals 1, and modulation bit 

(BB) equals 0. 
(1, 1, 0) if the encoder is in state 2, state bit (BA) equals 1, and modulation bit 

(BB) equals 1. 

(0, 1, it) if the encoder is in state 2, state bit (BA) equals 0, and modulation bit 

(BB) equals 0. 

(1, 0, it) if the encoder is in state 2, state bit (BA) equals 0, and modulation bit 

(BB) equals 1. 

Then, the encoded codewords of two states SOSTTC are modulated using BPSK. 

These modulated codewords of SOSTTC are passed through a quasi-static flat Rayleigh 

fading model for the channel. There are two path gains independent complex Gaussian 

channels and are fixed during the transmission of one frame. Each frame consists of 130 

transmissions out of each transmit antenna. 

Decoding of 2 states SOSTTC using BPSK: 

For a BPSK constellation and the corresponding set partitioning in Figure 2.5, the 

sets Po = {00, 11 } and PI = {O1, 10} only contain two pairs . The root set P = {00, 11, 01, 

10} provides independent symbols s; and s'  . Since all possible combinations of indices 0 

and 1 exist in this set, and minimize J, (si) and J, (s;) separately. Any resulting symbol 
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pair (s;, s2) will be a valid pair using modified ML Viterbi decoding technique. Finally, 

simulation results are plotted between the frame error rate (FER) of symbols and SNR 

(dB). 

Simulation Parameters: 

Transmit antenna (Nt) =2 

Receive antenna (Nr) =1 

Frame- size = 130 

Total number of frames= 1000 

Channel =2 independent complex Gaussian path-gains for quasi-static 

Rayleigh channel. 
SNR= 10 dB to 22 dB 

Result 1: Simulation of 2 states SOSTTC using BPSK (2 transmit antenna 
and 1 receive antenna) 

Fig. 4.1. Two states SOSTTC-BPSK with 2 transmit antenna and 1 receive 
antenna. 



4.2.2 Two states SOSTTC using QPSK 

The encoder receives one state bit (BA) and three modulation bits (BB) at a time 

To, and the transmission variables (XI, X2, O) equal. Trellis structure Figure 2.5 will now 

be used in combination with set partitioning structure Figure 2.3 to assign particular 

values to transmission variables [20] X1, X2, and O for each combination of input 

values. 

Space-time block code 'C(Xi, X2, 0) is associated with state 1, and space-time 

block code C(X1, X2,it) is associated with state 2. 

Two states SOSTTC in state 1 with QPSK: 

(0, 0, 0) if the encoder is in state 1, the state bit (BA) equals 0, and the modulation 

bits (BB) equal 000. 

(2, 2, 0) if the encoder is in state 1, the state bit (BA) equals 0, and the modulation bits 

(BB) equal 001. 

(0, 2, 0) if the encoder is in state 1, the state bit (BA) equals 0, and the modulation bits 

(BB) equal 010. 

(2, 0, 0) if the encoder is in state 1, the state bit (BA) equals 0, and the modulation bits 

(BB) equal 011. 

(1, 1, 0) if the encoder is in state 1, the state bit (BA) equals 0, and the modulation bits 

(BB) equal 100. 

(3, 3, 0) if the encoder is in state 1, the state bit (BA) equals 0, and the modulation bits 

(BB) equal 101. 

(1, 3, 0) if the encoder is in state 1, the state bit (BA) equals 0, and the modulation bits 

(BB) equal 110. 

(3, 1, 0) if the encoder is in state 1, the state bit (BA) equals 0, and the modulation bits 

(BB) equal 111. 

(0, 1, it) if the encoder is in state 1, the state bit (BA) equals 1, and the modulation bits 

(BB) equal 000 

(2, 3, a) if the encoder is in state 1, the state bit (BA) equals 1, and the modulation bits 

(BB) equal 001. 

(0, 3, it) if the encoder is in state 1, the state bit (BA) equals 1, and the modulation bits 

(BB) equal 010. 
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(2, 1, it) if the encoder is in state 1, the state bit (BA) equals 1, and the modulation bits 

(BB) equal 011. 

(1, 0, a) if the encoder is in state 1, the state bit (BA) equals 1, and the modulation bits 

(BB) equal 100. 

(3, 2, it) if the encoder is in state 1, the state bit (BA) equals 1, and the modulation bits 

(BB) equal 101. 

(1, 2, it) if the encoder is in state 1, the state bit (BA) equals 1, and the modulation bits 

(BB) equal 110. 

(3, 0, it) if the encoder is in state 1, the state bit (BA) equals 1, and the modulation bits 

(BB) equals 111. 

Two state SOSTTC in state 2 with QPSK: 

The encoder receives one state bit (BA) and three modulation bits (BB) at a time 

To, and the transmission variables (XI , X2, O) equal: 

(0, 1, 0) if the encoder is in state 2, the state bit (BA) equals 1, and the modulation bits 

(BB) equal 000. 

(2, 3, 0) if the encoder is in state 2, the state bit (BA) equals 1, and the modulation 

bits (BB) equal 001. 

(0, 3, 0) if the encoder is in state 2, the state bit (BA) equals 1, and the modulation 

bits (BB) equal 010. 

(2, 1, 0) if the encoder is in state 2, the state bit (BA) equals 1, and the modulation 

bits (BB) equal 011. . 

(1, 0, 0) if the encoder is in state 2, the state bit (BA) equals 1, and the modulation 

bits (BB) equal 100. 

(3, 2, 0) if the encoder is in state 2, the state bit (BA) equals 1, and the modulation 

bits (BB) equal 101. 

(1, 2, 0) if the encoder is in state 2, the state bit (BA) equals 1, and the modulation 

bits (BB) equal 110. 

(3, 0, 0) if the encoder is in state 2, the state bit (BA) equals 1, and the modulation 

bits (BB) equal 111. 
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(0, 0, n) if the encoder is in state 2, the state bit (BA) equals 0, and the modulation 
bits (BB) equal 000. 

(2, 2, it) if the encoder is in state 2, the state bit (BA) equals 0, and the modulation 
bits (BB) equal 001,. 

(0, 2, it) if the encoder is in state 2, the state bit (BA) equals 0, and the modulation 
bits (BB) equal 010. 

(2, 0, it) if the encoder is in state 2, the state bit (BA) equals 0, and the modulation 
bits (BB) equal 011. 

(1, 1, it) if the encoder is in state 2, the state bit (BA) equals 0, and the modulation 
bits (BB) equal 100. 

(3, 3, n) if the encoder is in state 2, the state bit (BA) equals 0, and the modulation 
bits (BB) equal 101. 

(1, 3, it) if the encoder is in state 2, the state bit (BA) equals 0, and the modulation 
bits (Ba) equal 110. 

(3, 1, it) if the encoder is in state 2, the state bit (BA) equals 0, and the modulation 
bits (BB) equals 111. 

Then, the encoded codewords of two states SOSTTC are modulated using QPSK. 

These modulated codewords of SOSTTC are passed through a quasi-static flat Rayleigh 

fading model for the channel. There are two path gains independent complex Gaussian 

random variables and are fixed during the transmission of one frame. Each frame 

consists of 130 transmissions out of each transmit antenna. 

Decoding of 2 states SOSTTC using •QPSK 

For a QPSK constellation and the corresponding set partitioning in Figure 2.3, the 
sets Poo, Pot, Pio, and Pll provide independent pairs. If Po  is used, first to divide it into 
two subsets Po  = Poo  u Po, Then, to find the best pairs in Poo  and Pot  using the separate 

minimization of J; (s;) and J, (si) . Finally, to compare the branch metric J' (s; , s2 ) for 

these two pairs and find the minimum among the two. Similarly for P1, first to divide it 
into two subsets Po  = Poo  u Po, and find the minimum branch metric of each of these two 

subsets. Then, the best parallel transition between the two selected transitions is the one 
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that has a lower branch metric. Finally, simulation results are plotted between the frame 

error rate (FER) and SNR (dB). 

Simulation Parameters: 

Transmit antenna (Nt) =2 

Receive antenna (Nr) = I 

Frame- size = 130 

Total number of frames= 1000 

Channel = 2 independent complex Gaussian path-gains for quasi-static 

Rayleigh channel. 

SNR= 10 dB to 22 dB 

Result 2: Simulation of 2 states SOSTTC using QPSK (2 transmit antenna 

and 1 receive antenna) 
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Fig. 4.2. Two states SOSTTC QPSK with 2 transmit antenna and 1 receive 
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The simulation results 1 and 2 are combined together. The more coding gain 

advantage SOSTTC with rate 1 bit/f Hz , with respect to SOSTTC with rate 2 

bits/s/Hz '.The number of states is same for both case.The decoding complexity is larger 

in the case SOSTTC-QPSK(rate 2 bry). As, from the set partitioning structures 

more number of parallel paths in trellis transitions are used in the case of modified 

Viterbi decoding. Hence, there is trade off between the coding gain and rate of 

codewords. 

Result 3 : Trade off between Coding gain and rate of symbols.( 1 receive 

antenna)  100  -_-_-_-_-__--_-_-_-_-_-_-_-_-_-_-__-:-_-_-_-_-_-_-------------- 

__-- --r-------- ;---------- _ ----E 	0 	Rate 1 SOSTCC 
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Fig. 4.3. Two states SOSTTCs BPSK and QPSK with 2 transmit antenna 

and 1 receive antenna. 
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Result 4: Trade off between Coding gain and rate of symbols.( 2 receive 

antenna) 

In this case, number of receiving antennas is two. The simulation gap between the 

paths is larger. As, there are four independent complex Gaussian path-gains used, the 

diversity factor becomes four. The coding gain distance parameter is more prominent, 

due to increase in receiving antenna number [18]. 

Simulation Parameters: 

Transmit antenna (Nt) =2 

Receive antenna (Nr) =2 

Frame- size = 130 

Total number of frames=1000 

Channel = 4 independent complex Gaussian path-gains for quasi-static 

Rayleigh channel. 

SNR= 10 dB to 22 dB 
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Fig. 4.4. Two states SOSTTC-BPSK and QPSK with 2 transmit antenna and 

2 receive antenna. 
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Result 5: Advantage of coding gain 2 states SOSTTC with respect to 2 

states STTC with QPSK. 

The coding gain advantage of SOSTTC is better than the corresponding STTC. 

The constellation size of codewords is not expanded in case of SOSTTC, but orthogonal 

design matrices expand. But in the case, STTCs, the constellation size for transmitted 

codewords are increased. Analytically as shown in design (2.5), the more CGD of 

SOSTTC than corresponding STTC. The decoding complexity of STTC is more than 

SOSTTCs. 
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I I I 
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Fig. 4.5. Two states SOSTTC-BPSK and STTC-BPSK with 2 transmit 

antenna and 1 receive antenna. 
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4.3 Simulation of 4 states SOSTTCs 

4.3.1 Four states SOSTTC using BPSK 
The system of space-time block code C(X,, X2, 0) is associated with state 1, space-

time block code C(X1, X2, it) is associated with state 2, space-time block code C(X I , X2, 
0) is associated with state 3, and space-time block code C(XI, X2, it) is associated with 

state 4. 

The encoder receives one state bit (BA) and one modulation bit (BB) at a time To, 

and the transmission variables (XI , X2, O) equal 

(0, 0, 0) if the encoder is in state 1, state bit (BA) equals 0, and modulation bit 

(Be) equals 0. 

(1, 1, 0) if the encoder is in state 1, state bit (BA) equals 0, and modulation bit 

(BB) equals 1. 

(0, 1, it) if the encoder is in state 1, state bit (BA) equals 1, and modulation bit 

(B$) equals 0. 

(1, 0, it) if the encoder is in state 1, state bit (BA) equals 1, and modulation bit 

(BB) equals 1. 

Similarly, the transmission variables are designed for state 2, 3 and 4 as result(l). 

Then, these encoded codewords of two states SOSTTC are modulated with BPSK. These 

modulated codewords of SOSTTC are passed through a quasi-static flat Rayleigh fading 

model for the channel. There are two path gains independent complex Gaussian random 

variables and fixed during the transmission of one frame. Each frame consists of 130 

transmissions out of each transmit antenna. 

Similarly, decoding of 4 states SOSTTC with BPSK are carried out same as 

result (1).The optimal design of set partitioning Figure 2.2 and using orthogonality of 

STBC as in modified ML decoding done .Finally, simulation results are plotted between 

the frame error rate of symbols and SNR (10 to 22 dB). 

Simulation Parameters: 

Transmit antenna (Nt) =2 

Receive antenna (Nr) =1 

Frame- size = 130 



Total number of frames= 1000 

Channel = 2 independent path-gains of complex Gaussian for Rayleigh 
channel. 

SNR= 10 dB to 22 dB 

Result 6: Simulation of 4 states SOSTTC using BPSK (2 transmit antenna 

and 1 receive antenna) 
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4.3.1 Four states SOSTTC using QPSK 

The encoder receives one state bit (BA) and three modulation bits (BB) at a time 
To, and the transmission variables (XI , X2, O) equal: 

(0, 0, 0) if the encoder is in state 1, state bit (BA) equals 0, and the modulation bits 

(BB) equal 000. 

(2, 2, 0) if the encoder is in state 1, state bit (BA) equals 0, and the modulation 

bits (BB) equal 001. 

(0, 2, 0) if the encoder is in state 1, state bit (BA) equals 0, and the modulation bits 

(BB) equal 010. 

(2, 0, 0) if the encoder is in state 1, state bit (BA) equals 0, and the modulation 

bits (BB) equal 011. 

(1, 1, 0) if the encoder is in state 1, state bit (BA) equals 0, and the modulation 

bits (BB) equal 100. 

(3, 3, 0) if the encoder is in state 1, state bit (BA) equals 0, and the modulation 

bits (BB) equal 101. 

(1, 3, 0) if the encoder is in state 1, state bit (BA) equals 0, and the modulation 

bits (BB) equal 110. ' 

(3, 1, 0) if the encoder is in state 1, state bit (BA) equals 0, and the modulation bits 

(BB) equal 111. 

(0, 1, it) if the encoder is in state 1, state bit (BA) equals 1, and the modulation 

bits (BB) equal 000. 

(2, 3, it) if the encoder is in state 1, state bit (BA) equals 1, and the modulation 

bits (BB) equal 001. 

(0, 3, it) if the encoder is in state 1, state bit (BA) equals 1, and the modulation 

bits (BB) equal 010. 

(2, 1, 71) if the encoder is in state 1, state bit (BA) equals 1, and the modulation 

bits (BB) equal 011. 

Similarly, the transmission variables are designed for state 2, 3 and 4 as result 

(2). Then, these encoded codewords of two states SOSTTC are modulated with QPSK. 

These modulated codewords of SOSTTC are passed through a quasi-static flat Rayleigh 

fading model for the channel. There are two path gains independent complex Gaussian 
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random variables and are fixed during the transmission of one frame. Each frame consists 

of 130 transmissions out of each transmit antenna. 

Similarly, decoding of 4 states SOSTTC with QPSK are carried out same as 

result (2).The optimal design of set partitioning Figure 2.3 and using orthogonality of 

STBC as in modified ML decoding done .Finally, simulation results are plotted between 

the frame error rate (FER) of transmitted symbols and SNR (10 to 22 dB). 

Simulation Parameters: 

Transmit 'antenna (Nt) =2, Receive antenna (Nr) = 1, Frame- size = 130 

Total number of frames=1000 

Channel = 2 independent path-gains of complex Gaussian for Rayleigh 

channel. 

SNR= 10 dB to 22 dB 

Result 7: Simulation of 4 states SOSTTC using QPSK (2 transmit antenna 

and 1 receive antenna): 
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Result 8: Trade off between Coding gain and rate of codewords, 2 states and 

4 states SOSTTC. (1 receive antenna) 

The simulation results 6 and 7 are combined together. The more coding gain 

advantage 4 states SOSTTC with rate 1 bit/4/Hz with respect to SOSTTC with rate 2 

bits/s/Hz'.The decoding complexity is larger in the case SOSTTC-QPSK(rate 2 

j/4). As, from the set partitioning structures , more number of parallel paths in 

trellis transitions are used in the case of modified Viterbi decoding. Hence, there is trade 

off between the coding gain and rate of codewords. 

Simulation Parameters: 

Transmit antenna (Nt) =2 
Receive antenna (Nr) =1 

Frame- size = 130 

Total number of frames= 1000 

Channel = 2 independent path-gains complex of Gaussian for Rayleigh 
channel. 
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Fig. 4.8. Trade off between Coding gain and rate of codewords, 2 states and 

4 states SOSTTC (1 receive antenna). 
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Conclusion 
A new code design for super-orthogonal space-time trellis codes with full rate, 

full diversity gain is introduced in this dissertation. These codes guarantee full rate and 

full diversity gain as well as maximum coding gain for each MPSK modulation scheme. 

These codes are systematically design using orthogonal design of space time block code 

(STBC) at different rates and for different trellis structures. The orthogonal designs of 

STBC are used as the building blocks in SOSTTCs. The decoding complexity remains 

low, while full diversity is obtained. The optimal set partitioning structures are designed 

for MPSK, based on the maximization of coding gain distance (CGD) of SOSTTCs. 

There are trade off between rate and coding gain for achieving full diversity of different 

SOSTTCs. These codes have generally higher coding gain compare to the corresponding 

space-time trellis codes. 

The constellation size of transmitted codewords are not expanded in the original 

constellation for symbols of each SOSTTC, which provides the better coding gain than 

STTCs. Simulation results demonstrated that the coding gain advantage is better in the 

case of the higher states SOSTTCs. 

Further studies 

Due to the limitation of design, orthogonal-STBCs matrices for complex 

constellation symbols are not available and full rate of transmitted symbols is not 

possible. Hence, the new systematic structure of super-quasi-orthogonal space-time trellis 

codes needs be explored. 

For higher coding gain (CGD), QAM can be used in the optimal design of set-

partitioning structures for wireless communication system of SOSTTCs. In addition, 

when a broadband wireless connection is considered, it is necessary to extend this work 

to frequency-selective channels. 
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Appendix 1. 

Matlab Program 

%% Function for Encoder of 2 states SOSTTC using BPSK techniques %% 

function [codeword,rotation,current_state]=encoding21 (symbol _per _frame,x 1,x2) 
S0=[0, 1;]; 

Sl=[1, 0;]; 

current_state=0; 

for i=1: symbol_per_frame, 

switch current state, 

case 0, 

switch x2(i), 

case 0, 

codeword(i, 1 )=x 1(i);' 

codeword(i,2)=S0(x 1(i)+•l ); 

rotation(i)=0; 

current_state=0; 

case 1, 

codeword(i, 1 )=x 1(i); 

codeword(i,2)=S 1 (x 1(i)+ 1); 

rotation(i)=pi; 

current _state= l; 

otherwise, 

display('encoding input is error'); 
end; 

case 1, 

switch x2(i), 

case 0, 

codeword(i, 1 )=x 1(i); 

codeword(i,2)=S I (x 1(i)+1); 

rotation(i)=0; 

lx 



current state=0; 

case 1, 

codeword(i, l)=x 1(i); 

codeword(i,2)=S 0(x 1 (i)+ 1); 

rotation(i)=pi; 

current state 1; 

otherwise, 

display('encoding input is error'); 

end; 

otherwise('encoding input is error'); 

end; 

end; 

Function for BPSK symbols 

function[ symb 1, symb2]=BPSKmapping2 1 (symbol per_frame,codeword); 

for i=1: symbol_per_frame, 

switch codeword(i, 1), 

case 0, 

symb l (i)=-1; 

easel, 

symb i (i)=1; 

otherwise, 

display('mapping 1 is error'); 

end; 

switch codeword(i,2), 

case 0, 

symb2(i)=- 1; 

case 1 

symb2(i)=1; 

otherwise, 

display('mappintg 2 is error'); 

end; 

x 



end; 

% Function Rayleigh Channel % 

function H=rayleigh2 1 (Nr,Nt) 

H=zeros(Nr,Nt); 

R=eye(Nr*Nt); 

X=randn(Nr*Nt, 1)/sgrt(2)+j *randn(Nr*Nt, l)/sgrt(2); 

H=reshape(R'*X,Nr,Nt); 

% % main program for 2 state SOSTTC using BPSK %% 

Nt=2; 

Nr=1; 

min_snr=10; 

max snr=22; 

interval =2 

symbol per frame=130; 

avg power=2.0; 

times= 10000; 

kkk=1; 

tot_errbit=zeros(I ,(max_snr-min_snr)/2+ 1); 

S(1,:,:)=[-1,-1;1,1;]; 

S(2,:,:)=[-1,1; 1 -1;]; 

mapping=[0,1;]; 

for i=1:2, 

state=mapping(i); 

for k=1:2; 

x2=mapping(k); 

if [state x2]==[0 0] 

table(i, k, :)=[1, 1]; 

elseif [state x2]== [0 1] 

table(i, k, :)=[2,-1]; 

elseif [state x2]==[ 1 0] 

table(i, k, :)=[2, 1]; 

xi 



elseif [state x2]==[ 1 1 ] 
table(i, k, :)=[1, -1]; 

end; 

end; 

end; 
for snr=min snr:interval:max snr 

display(snr); 
sigma =sqrt(avg_power/(2 * 10^(snr/10))); 

error number=0; 

for repeat=1:times 

% Generate random data 

x l =rand(1, symbol_per_frame)>0.5; 

x2=rand(1, symbol_per_frame)>0.5; 
x2(symbol_per_frame)=0; 
H=rayleigh2 1 (Nr,Nt); 

[codeword,rotation]=encoding21(symbol_per_frame, x l , x2); 

%BPSK mapping 

[symb1, symb2]=BP SKmapping21(symbol_perframe, codeword); 

% Space-Time transmitting 

for i=1:symbol_per_frame, 

p=exp(j *rotation(i)); 

C=[p*symb 1(i) -p*conj(symb2(i)); symb2(i) conj(symb 1(i));]; 

r(i,:)=H*C+sigma*(randn(Nr,Nt)+j *randn(Nr,Nt)); 

end; 

%path matric 

[state]=vtb_decoding21(symbol_per frame,H, r,table); 
%ML decoding  
x=1; 

for i=symbol_per_frame:-1:1, 

decoding x 1(i)=state(i, x,. 2); 

decoding_x2(i)=state(i, x, 4); 
x=state(i, x, 1); 

end; 

xii 



%FER( ofdm symbol error ratio) calculation 

if (sum(abs(decoding_x 1 -x l ))+sum(abs(decoding_x2-x2)))—=O 

error numb er=error number+ 1; 

end; 

end; %for repeat 

FER(kkk)=error .number/(times); 

display(FER(kkk)); 

kkk=kkk+ 1; 

end; %for SNR_in dB 

% Plot results 

semilogy(min_snr:interval:max_snr, FER,'r-'); 

legend('* SOSTTC 1 state'); 

title('\bfl bit/sec/Hz'); 

ylabel('\bfFrame Error Probability'); 

xlabel('\bfSNR(dB)'); 

hold off; 

%% Function of ML viterbi decoding %% 

function[state;decodirig_x 1 ]=vtb_decoding2 1 (symbolper_frame, H,r,table); 

S(1,:,:)=[-1,-l;1,1;]; 
S(2,:,:)=[-1,1;1,-1;]; 

h=abs(H(1,1))A2+abs(H(1,2))^2; 

for i=1:2, 

for m=1:2, 

BX(i,m)=h- 

2*real(r(1,1)*conj(H(1,1)*S(table(l,i, l ),m, l)*table(1,i,2))+r(l,2)*conj(H(1,2))* 

S(table( 1 ,i, 1 ),m, 1)); 

BY(i,m)=h-2*real(r(1,1) *conj(H(  1  ,2)*  S(table( 1 ,i, 1),m,2))-r( 1 ,2)*conj(H(  1,1 ))* 

S(table( 1 ,i, 1 ),m,2) * conj (table( 1 ,i ,2))); 

end 

path(i,:)=BX(i,:)+BY(i,:); 

[y, x]=min(path(i,:)); 

state(l ,i,:)_[ 1,x-1,y,i-.1.]; 



end; 

for k=2:symbol_per_frame, % path matric calculation 

for i=1:2, 

for m=1:2, 

BX(i,m)=h- 2*real(r(k,l)*conj(H(1,1)*S(table(1,i,1),m,l)*table(1,i,2))+ 

r(k,2)*conj(H(1,2))*S(table(1,i,1),m,1)); 	% decoding xl 

BY(i,m)=h-2*real(r(k,1)*conj(H(1,2)* S(table(1,i, l ),m,2))-r(k,2)*conj (H(1,1))* 

S(table( 1 ,i, 1 ),m,2)*conj(table(  1 ,i,2))); 	% decoding x2 

BX 1(i,m)=h-2 *real(r(k, l) * conj (H( 1,1 )*S(table(2,i,  1 ),m, l)*table(2,i,2))+ 
r(k,2)*conj(H(1 ,2))*S(table(2,i, 1 ),m, 1)); 	% decoding xl 

BY1(i,m)=h-2*real(r(k,1)*conj(H(1,2)*S(table(2,i,1),m,2))- 

r(k,2)*conj(H(1,1))*S(table(2,i,1),m,2)*conj(table(2,i,2))); 	% decoding x2 

end 

path 1 (i,:)=BX(i,:)+BY(i,:); 

path2(i,:)=BX1 (i,:)+BY1 (i,:); 

[yl ,x 1 ]=min(path 1(i, :)); 

[y2,x2 ] =min(p ath2(i, :) ); 

zz(1)=y l+state(k-1,1,3); 

zz(2)=y2+state(k- 1,2,3); 

[y, x]=min(zz); 

switch x, 

case 1, 

state(k, i,:)=[1,x1-1.;  y,i-1]; 

case 2, 

state(k, i, :)=[2,x2-1, y,i-1]; 

otherwise, 

display('matric is error'); 

end; 

end; 

end; 

% % Function for Encoder 2 states SOSTTC using QPSK %% 
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function [code,rota]=encoderQ2(symbol_per_frame,x11, x22, table) 

current state=0; 

for i=1: symbol_per_frame, 

switch current state, 

case 0, 

switch x22(1), 

case 0, 

if [x 11(i,:)]==[0 0 0] 

code(i,1)=0; 

code(i,2)=0; 
rota(i)=0; 

current_state=0; 
elseif [xl 1(i,:)]==[0 0 1] 
code(i,1)=2; 

code(i,2)=2; 
rota(i)=0; 

current state=0; 

elseif [x 11(i,:)]==[0 1 0] 
code(i, 1)=0; 

code(i,2)=2; 

rota(i)=0; 

current state=0; 

elseif [x 11(i,:)]==[0 1 1 ] 

code(i,1)=2; 

code(i,2)=0; 
rota(i)=0; 

current state=0; 

elseif [xl 1(i,:)]==[1 0 0] 

code(i, l)=1; 

code(i,2)= 1; 

rota(i)=0; 

current state= 0; 

elseif [x 11(i,:)]==[ 1 0 1 ] 
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code(i, 1)=3; 

code(i,2)=3; 

rota(i)=0; 

current state=0; 

elseif [x 11(i,:)]==[ 1 1 0] 

code(i, l)=1;. 

code(i,2)=3; 

rota(i)=0; . 

current state=0; 

elsei f xl 1(i,:)]==[1 1 1] 

code(i, 1)=3; 

code(i,2)=1; 

rota(i)=0; 

current state=0; 

end; 

case 1, 

if [x11(1,:)]==[0 0 0] 

code(i, 1)=0; 

code(i,2) =1; 	 0 

rota(i)=pi; 

current state= 1; 

elseif [xl l (i,:)]==[0 0 1 ] 

code(i,1)=2; 

code(i,2)=3 

rota(i)=pi; 

current state=1; 

elseif [x 11(i,:)]==[0 1 0] 

code(i, l)=0; 

code(i,2)=3; 

rota(i)=pi; 

current_state=l; 

elseif [xl l (i,:)]==[0 1 1 ] 

code(i, 1)=2; 
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code(i,2)=1; 

rota(i)=pi; 

current state= 1; 

elseif [x 11(i,:)]=={1 0 0] 

code(i,1)=1; 

code(i,2)=0; 

rota(i)=pi; 

current_state=1; 

elseif [x 11(i,:)]==[ 1 0 1 ] 

code(i,1)=3; 

code(i,2)=2; 

rota(i)=pi; 

current state= 1; 

elseif [x l 1(i,:)]==[ 1 1 0] 

code(i, l)=1; 

code(i,2)=2; 

rota(i)=pi; 

current state= 1; 

elseif [x l 1(i,:)]==[ 1 1 1 ] 

code(i,1)=3; 

code(i,2)=0; 

rota(i)=pi; 

current state= 1; 

end; 

otherwise, 

display('encoding input is error'); 

end 

case 1, 

switch x22(i), 

case 0, 

ifIxl l(i,:)]==[0 0 0] 

code(i,1)=0; 

code(i,2)=1; 
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rota(i)=0; 

current state=0; 

elseif [xl 1.(i,:)]==[0 0 1] 

code(i, 1 )=2; 

code(i,2)=3; 

rota(i)=0; 

current_state=0; 

elseif [x l 1(i,:)]==[0 1 0] 

code(i,1)=0; 

code(i,2)=3; 

rota(i)=0; 

current_state=0; 

elseif [xl 1(i,:)]==[0 1 1 ] 

code(i, 1)=2; 

code(i,2)= 1; 

rota(i)=0; 

current state=0; 

elseif [xl1(i,:)]==[1 0 0] 

code(i, l)=1; 

code(i,2)=0; 

rota(i)=0; 

current state=0; 

elseif [x1 1(i,:)]==[1 0 1] 

code(i,1)=3 ; 

code(i,2)=2; 

rota(i)=0; 

current state=0; 

elseif [xl 1(i,:)]==[1 1 0] 

code(, l)=1; 

code(i,2)=2; 

rota(i) =0; 

current_state=0; 

elseif [xl 1(i,:)]==[ 1 1 1 ] 
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code(i,1)=3; 

code(i,2)=O; 

rota(i)=0; 

current state=0; 

end; 

case 1, 

if [x 11(i,:)] ==[0 0 0] 

code(i,1)=0; 

code(i,2)=0; 

rota(i)=pi; 

current state= 1; 

elseif [x11(i,:)]==[0 0 1 ] 

code(i,1)=2; 

code(i,2)=2; 

rota(i)=pi; 

current state= 1; 

elseifjxl 1(i,:)]==[0 1 0] 

code(i,1)=0; 

code(i,2)=2; 

rota(i)=pi; 

current state= l; 

elseif[x 11(i,:)]==[0 1 1 ] 

code(i,1)=2; 

code(i,2)=0; 

rota(i)=pi; 

current state= 1; 

elseif [xl l(i,:)]==[1 0 0] 

code(i, 1)= 1; 

code(i,2)= 1; 

rota(i)=pi; 

current _state= l; 

elseiff xl 1(i,:)]==[1  0 1 ] 

code(i;1)=3; 
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code(i,2)=3; 

rota(i)=pi; 

current state= 1; 

elseif [x 11(i,:)]==[ 1 1 0] 

code(i,1)=1; 

code(i,2)=3; 

rota(i)=pi; 

current_state= 1; 

elseif [xl l(i,:)]==[1 1 1] 

code(1,1)=3; 

code(i,2)=,1; 

rota(i)=pi; 

current state= 1; 

end; 

otherwise('encoding input is error'); 

end; 

otherwise, 

display('encoding input is error'); 

end; 

end; 

%% Function for QPSK modulation %% 

function[ symb1, symb2]=QPSKmapping2(symbol_per frame,code); 

for i=1 :symbolper frame, 
switch code(i,1), 

case 0, 

symbl(i)=1; 

case 1, 

symb 1(i)=j; 

case 2, 

symb 1 (i)=- 1; 

case 3, 

symb 1 (i)= j; 
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otherwise, 

display('mapping 1 is error'); 

end; 

switch code(i,2), 

case 0, 

symb2(i)=1; 

case 1, 

symb2(i) j; 

case 2, 

symb2(i)=-1; 

case 3, 
symb2(i)= j; 

otherwise, 

display('mappintg 2 is error'); 
end; 

end; 

%% main program for 2 states SOSTTC using QPSK with 1 receive antenna % 

Nt=2; 

Nr=1; 

min_snr=10; 

max_snr=22; 

interval=2; 

symbol _per_ frame= 130; 
avg power=2.0; 
times= 1000; 

kkk=1; 

tot—err bit=zeros(.1,(max snr-minsnr)/2+1); 

S(1,:,:)=[1,1;-1,-1;]; 

S(2,:,:)[1,-1; -11;]; 

R(2,:,:)=U, j;-J,J;]; 

T(1,:,:)=[1,-1;1,-1;]; 
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T(2,:,:)=[l, J; J,J;]; 

U(1,.,.)=[j,-J,J, J,], 

mapping=[0,1;]; 
for i=1:2, 

state=mapping(i); 
for k=1:2; 
x2=mapping(k); 

if [state x2]==[0 0] 
table(i, k, :)=[1, 1]; 

elseif [state x2] ==[0 1 ] 
table(i, k, :)= [2,-1]; 

elseif [state x2] ==[ 1 0] 
table(i, k, :) =[2, 1]; 

elseif [state x2]==[ 1 1 ] 
table(i, k, :)=[1, -1]; 

end; 
end; 

end; 
for snr=min snr:interval:max snr 

display(snr); 
sigma =sgrt(avg power/(2* 10^(snr/ 10))); 

error number=0; 
for repeat= 1 :times 

% Generate random data 
x 1=rand(symbol per frame, l)>0.5; 
x2=rand(symbol per_frame,1)>0.5; 
x3=rand(symbol per_frame,1)>0.5; 
xl 1=[xl x2 x3]; 
x22=rand(l ,symbol per_frame)>0.5; 
x22(symbol_per_frame)=0; 

H=rayleigh3 f(Nr,Nt); 
[code,rota]=encoderQ2(symbol_per frame, x 11, x22); 



% QPSK mapping 

[symb 1, symb2]=QPSKmapping2(symbol_per_frame, code); 

% Space-Time transmitting 

for i=1: symbol_per_frame, 

p=exp(j *rota(i)); 

C=[p*symb1(i) -p*conj(symb2(i)); symb2(i) conj(symb1(i));]; 

r(i,:)=H*C+sigma*(randn(Nr,Nt)+j *randn(Nr,Nt)); 

end; 

%path matric 

[state]=vtb_decodingQ2(symbol_per_frame,H, r,table); 

%ML decoding 

x=1; 

for i=symbol_per_frame:-1:1, 

decoding_x 1(i)=state(i, x, 2); 

decoding_x2(i)=state(i, x, 4); 

x=state(i, x, 1); 

end; 

% FER( frame error ratio ) calculation 

if (sum(abs(decoding_x1-x3'))+sum(abs(decoding_x2-x22))) =O 

error number=error number+ 1; 

end; 

end; %for repeat• 

FER(kkk)=error number/(times); 

display(FER(kkk)); 

kkk=kkk+1; 

end; %for SNR in dB 

title('space-time trellis codes'); 

ylabel('FER (Frame error -  ratio)'); 

semilogy(min_snr:interval:max_snr, FER); 

Function for Viterbi decoding using QPSK %% 

function[state,decoding_x1]=vtb_decodingQ2(symbol_perframe, H,r,table); 



S(1,:,:)=[1,1;-1,-1;],; 

S(2,:,:)=[1,-1; -11;]; 

R(1,:,:)=[I,J; J,  J;]; 

R(2,:,:)=[1, J; J,j;]; 
T(1,:,:)=[1,-1;1,-1;]; 

T(2,:,:)=[j,-j ;  j,j;]; 

U(1; ,)=[1, TJ, J,], 
U(2,:,:)=[1,-1;-1,1;]; 

h=abs(H(1,1))^2+abs(H(1,2))^2; 

for i=1:2, 

for m=1:2,  

BX(i,m)=h-2 *real(r(1,1) *conj (H(1,1)* S(table(1,i,1),m,1)* 

table( 1 ,i,2))+r(1 ,2)*conj  (H( 1 ,2))*  S(table( 1 ,i, I ),m, 1)); 

BY(i,m)=h-2*real(r(1,1')*conj (H(1,2)*S(table(1,i, l ),m,2))- 

r(1,2)*conj(H(1,1))*S(table(l,i, l),m,2)*conj(table(1,i,2))); 

BX 1(i,m)=h-2*real(r(1,1)*conj (H(1,1)*R(table(l ,i, 1 ),m, 1 )*table(  1 ,i,2))+ 

r(1,2)*conj(H(1,2))*R(table(l,i, l ),m,1)); 

BY I (i,m)=h-2*real(r(1,1)*conj(H(1,2)*R(table(1,i,1),m,2))- 

r(1,2)*conj(H(1,1))*R(table(1,i;1),m,2)*conj(table(1,i,2))); 

BX2(i,m)=h-2*real(r(1,1)*conj(H(1,1)*T(table(1,i, l ),m, l)*table(1,i,2))+ 

r(1,2)*conj(H(1,2))*T(table(1,i, l ),m, 1)); 

BY2(i,m)=h-2 *real(r(1,1) * conj (H(1,2)*T(table(1,i,1),m;2))- 

r(1,2)*conj(H(1,1))*T(table(1,i,1),m,2)*conj(table(1,i,2))); 

BX3 (i,m)=h-2*real(r(1,1)*conj(H(1,1)*U(table(l ,i, 1 ),m, 1 )*table(  1 ,i,2))+ 

r( 1 ,2)*conj(H( 1 ,2))*U(table(  1 ,i, 1 ),m, 1)); 

BY3(i,m)=h-2*real(r(1,1)*conj (H( 1 ,2)*U(table(  1 ,i, 1 ),m,2))- 

r(1 ,2)*conj(H(1  , 1 ))*U(table(1  ,i,  1),m,2)*conj(table(1  ,i,2))); 

end 

path(i,:)=BX(i,:)+BY(i,:); 

pathl (i,:)=BX1(i,:)+BY.1(i,:); 

path2(i,:)=BX2(i,:)+BY2(i,:); 

p ath3 (i, :)=B X3 (i, :)+B Y 3 (i, : ); 
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Z 1=min( path(i,:), pathl (i,:)); 

Z2=min( path2(i, :) ,path3(i,:) ); 

Z3=min(Z 1,Z2); 

[y x]=min( Z3) ; 

state( 1 ,i,:)=[ l ,x- l,y,i-1 ]; 

end; 

for k=2:symbol_aer_frame, % path matric calculation 

for i=1:2, 

for m=1:2, 

BX(i,m)=h-2*real(r(k,1)*conj (H(1,1)* S(table(1 ,i, 1 ),m, l)*table(1,i,2))+ 
r(k,2)*conj(H(1,2))*S(table(l ,i, 1),m, 1)); 	% decoding xl 

BY(i,m)=h-2*real(r(k,1)*conj (H(1,2)* S(table(1,i,1),m,2))- 

r(k,2)*conj(H(1,1))'k S(table( 1 ,i, 1 ),m,2)*conj(table(  1 ,i,2))); 	% decoding x2 

BX 1(i,m)=h-2*real(r(k, l )* conj (H(1,1)* S(table(2,i, 1 ),m, l)*table(2,i,2))+ 

r(k,2)*conj(H(1,2)) * S(table(2,i, 1 ),m, 1)); 	% decoding xl 

BY 1(i,m)=h-2*real(r(k,1)*conj(H(1,2)* S(table(2,i, 1 ),m,2))- 
r(k,2)*conj(H( 1,1)) * S(table(2,i, 1 ),m,2) *conj(table(2,i,2))); 	% decoding x2 

BX 11(i,m)=h-2 *real(r(k, l)*conj(H(1,1) *R(table(  1 ,i, l ),m, l)*table(1,i,2))+ 

r(k,2)*conj(H(1,2))*R(table(1,i,1),m,1)); 	% decoding xl 

BY 11(i,m)=h-2*real(r(k,1)* conj (H(1,2)*R(table(1,i,1),m,2))- 

r(k,2)*conj(H(1,1))*R(table(1,i,1),m,2)*conj(table(1,i,2))); 	% decoding x2 

BX 12(i,m)=h-2 *real(r(k, l )* conj(H(1,1) *R(table(2,i,1),m, l)*table(2,i,2))+ 
r(k,2)*conj(H( 1  ,2))*R(table(2,i, 1 ),m, 1)); 	% decoding xl 

BY! 2(i,m)=h-2*real(r(k;  l)*conj(H(1,2)*R(table(2,i,1),m,2))- 

r(k,2)*conj(H(1,1))*R(table(2,i,1),m,2)*conj(table(2,i,2))); 	% decoding x2 

BX21(i,m)=h-2*real(r(k, l)*conj (H( 1, 1 )*T(table(  1 ,i, l ),m, l)*table(1,i,2))+ 

r(k,2)*conj(H(1,2))*T(table(1,i,I),m,1)); 	% decoding x1 

BY21(i,m)=h-2*real(r(k, l)*conj(H(1,2)*T(table(1,i,1),m,2))- 

r(k,2)*conj(H(1,1))*T(table(1,i,1),m,2)*conj(table(1,i,2))); 	% decoding x2 

BX22(i,m)=h-2*real(r(k, l)*conj(H(1,1)*T(table(2,i,1),m, l)*table(2,i,2))+ 

r(k,2)*conj (H( 1 ,2))*T(table(2,i,  1 ),m, 1)); 	% decoding xl 

BY22(i,rn)=h-2*real(r(k, 1)*conj (H( 1,2) *T(table(2,i,  1 ),m,2))- 
r(k,2)* conj (H( 1,1 ))*T(table(2,i,  1  ),m,2)*  conj (table(2,i,2))); 	% decoding x2 
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BX31(i,m)=h-2*real(r(k,1)*conj(H(1,1)*U(table(1,i,1),m, 1 )*table(  1 ,i,2))+ 
r(k,2)*conj(H(1,2))*U(table(1,i,1),m,1)); 	% decoding x1 

BY31(i,m)=h-2*real(r(k,1)*conj (H(1,2) *U(table(1,i,1),m,2))- 

r(k,2)*conj(H(1,1))*U(table(1,i,1),m,2)*conj(table(1,i,2))); 	% decoding x2 
BX32(i,m)=h-2*real(r(k, l)*conj(H(1,1)*U(table(2,i,1),m, l)*table(2,i,2))+ 

r(k,2)*conj(H( 1  ,2))*U(table(2,i,  1 ),m, 1)); 	% decoding xl 

BY32(i,m)=h-2*real(r(k, l )* conj (H( 1,2) *U(table(2,i,  1 ),m,2))- 

% decoding x2 r(k,2)*conj(H(1,1))*U(table(2,i,1),m,2)*conj(table(2,i,2))); 

end 

path 1 (i, :)=BX(i,:)+BY(i,:); 

path2(i,:)=BX1(i,:)+BY1(i,:); 

pathl l (i,:)=BX11(i,:)+BY11(i,:); 

path 12(i,:)=BX 1 2(i,:)+BY 1 2(i, :); 

path2l (i,:)=BX21(i,:)+BY21(i,:); 

path22(i, :)=BX22(i,:)+BY22 (i, : ); 

path3 1 (i, :)=BX3 1 (i, :)+BY3 1 (i,:); 

path32(i,:)=BX32(i,:)+BY32(i,:); 

Z1=min(pathl(i,:), pathl 1(i,:)); 

Z2=min(pathl l (i,:) ,path 1 2(i,:)); 

Z3=min(Z1, Z2); 

Z 11 =min(path2 1 (i,:) ,path22(i, : )); 

Z22=min( path31(i,:) ,path32(i,:)) ; 

Z33=min(Z11, Z22); 

[yl xl]=min(Z3); 

[y2 x2]=min(Z33); 

zz(1)=y l +state(k-1,1,3); 

zz(2)=y2+state(k-1,2,3); 

[y, x]=min(zz); 

switch x, 

case 1, 

state(k, i,:)=[1,xl-1, y,i-1]; 

case 2, 

state(k, i, :)=[2,x2-1, y,i-1]; 
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otherwise, 

display('matric is error'); 

end; 

end; 

end; 
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