
RUNTIME SCALABLE POWER-AWARE BOOTH
MULTIPLIER USING 2-DIMENSIONAL PIPELINE GATING

A DISSERTATION
Submitted in partial fulfillment of the

requirements for the award of the degree

of
MASTER OF TECHNOLOGY

in

ELECTRONICS AND COMMUNICATION ENGINEERING
(With Specialization in Semiconductor Devices and VLSI Technology)

By

SRINIVAS BANDARI

0"

DEPARTMENT OF ELECTRONICS AND COMPUTER ENGINEERING
INDIAN INSTITUTE OF TECHNOLOGY ROORKEE

ROORKEE - 247 667 (INDIA)

JUNE, 2007

CANDIDATE'S DECLARATION

I hereby declare that the work, which is presented in this dissertation report, entitled

"RUNTIME SCALABLE POWER-AWARE BOOTH MULTIPLIER USING 2-

DIMENSIONAL PIPELINE GATING", being submitted in partial fulfillment of the

requirements for the award of the degree of Master of Technology in Electronics and

Communication Engineering with specialization in Semiconductor Devices & VLSI

Technology, in the Department of Electronics and Computer Engineering, Indian

Institute of Technology, Roorkee is an authentic record of my own work carried out from

July 2006 to June 2007, under guidance and supervision of Dr.S.Dasgupta, Assistant

Professor, Department of Electronics and Computer Engineering, Indian Institute of

Technology, Roorkee.

The results embodied in this dissertation have not submitted for the award of any other

Degree or Diploma.

Date : 2- 	 2_C L ,/

Place: Roorkee 	 SRINIVAS BANDARI

CERTIFICATE

This is to certify that the statement made by the candidate is correct to the best of my

knowledge and belief.

Date: 	2 Fù 	I 	 Dr. S.Dasgupta,

Place: Roorkee 	 Assistant Professor, E&CE Department,

Indian Institute of Technology Roorkee,

Roorkee — 247 667, (INDIA)

ACKNOWLEDGEMENT

I wish to express my deep sense of gratitude and sincere thanks to Dr.S.Dasgupta,

Assistant Professor, Department of Electronics and Computer Engineering, IIT Roorkee

for his valuable guidance. This work is the reflection of his thoughts, ideas, and concepts

and above all, his efforts. I am highly indebted to him for his kind and valuable

suggestions and his valuable time during the period of the work. The huge quantum of

knowledge I had gained during his inspiring guidance would be immensely beneficial for

my future endeavors. Apart from that I am also very grateful to Prof.A.K.Saxena for his

valuable guidance during my dissertation work.

Also, I feel indebted to all those endless researchers all over the world whose work I have

used in my project. Their sincerity and devotion motivates me the most.

I am also thankful to all my friends for their continuous support and enthusiastic help.

Date:

Place: Roorkee 	 SRINIVAS BANDARI

Power-awareness indicates the scalability of the system energy with changing conditions

and quality requirements. Energy-efficient power-aware design is highly desirable for

DSP functions that encounter a wide diversity of operating scenarios in battery powered
wireless sensor network systems. The DSP functions extensively make use of the

multiply-and-accumulate (MAC) operation, which makes the multiplication function as
most power-consuming task. Therefore it is essential to implement the power-efficient

multipliers for power-aware DSPs.

Addressing power-awareness, a novel reconfigurable pipelined Booth multiplier using 2-
dimensional pipeline gating scheme is proposed. This technique is to gate the clock to

registers in both vertical direction (data flow direction in pipeline) and horizontal
direction (within each pipeline stage). For signed multipliers using 2's complement
representation, sign extension, which wastes power and causes longer delay, could be

avoided by implementing this technique. Our multiplier based on the gated input signals
implements a 16-bit, 8bit or 4-bit multiplication operation.

The proposed reconfigurable pipelined Booth multiplier was first modeled in VHDL and
functionally verifiedd using Mentor Graphics ModelSim simulator. After functional

validation, the architecture was synthesized for appropriate time and area constraints

using Synopsys Design Compiler. TSMC 90nm CMOS technology and standard cell
library were used. The power analysis of the gate level structure was done using
Synopsys VCS and PrimePower tool.

For the 8-bit and 4-bit computations, the proposed Booth multiplier leads to a 61 % and

87% power consumption reduction over a non-scalable Booth multiplier, respectively.
The proposed scalable pipelined Booth multiplier proves to be globally 48% more power

efficient than a non-scalable pipelined Booth multiplier, and also it has fast speed due to
pipelining.

111

CONTENTS

CANDIDATE'S DECLARATION i
CERTIFICATE i
ACKNOWLEDGEMENT ii
ABSTRACT iii
CONTENTS iv
CHAPTER 1: INTRODUCTION 1

1.1 	Previous. work 2

1.2 	Statement of the problem 3
1.3 	Organization of the thesis 3

CHAPTER 2: MULTIPLIERS 5
2.1 Multiplier Background 5

2.1.1 	Basic binary multiplier 5
2.2 Partial product generation 6

2.2.1 	Booth Encoding 6
2.2.1 	Modified Booth Encoding (MBE) 7

2.3 . Carry Save Adder Tree (CSAT) 8
2.4 Fast Adders 9

2.5 Multiplier types 10
2.5.1 	Sequential multipliers 10
2.5.2 	Array multipliers 11

2.5.3 	Tree multipliers 12

CHAPTER 3: POWER CONSUMPTION 14
3.1 _ Defining Static Power 14
3.2 	Defining Dynamic Power 16

3.2.1 	Switching Power 16
3.2.2 	Internal Power 18

3.3 	Low power or energy design techniques 19
3.3.1 	Pipelining 19

iv

3.3.2 Clock gating 	 20
3.3.3 Voltage scaling 	 22
3.3.4 Delay balancing 	 22
3.3.5 Transition activity reduction 	 23

CHAPTER 4: MULTIPLIER ARCIiITECTURES 	 25

4.1 The architecture of the 2-dimensional pipelined gated Booth multiplier 25

4.1.1 Pipelined Gating Technique 25
4.1.2 Booth Encoder and Partial Product Generator Unit 28
4.1.3 Partial product reduction units 28
4.1.4 Multiplexer Unit 30
4.1.5 Ripple carry adder 30

4.2 The architecture of the 1-dimensional pipeline gated Booth multiplier 30

4.2.1 Pipelined Gating Technique 30
4.2.2 Booth Encoder and Partial Product Generator Unit 32
4.2.3 Partial product reduction units 32
4.2.4 Multiplexer Unit 34
4.2.5 Ripple carry adder 34

4.3 The architecture of the non-pipeline gated booth multiplier 	 34

CHAPTER 5: RESULTS AND ANALYSIS 36
CHAPTER 6: CONCLUSION 49
REFERENCES 51
APPENDIX A 54
APPENDIX B 71
APPENDIX C 85

v

Chapter 1
INTRODUCTION

With the increasing popularity of battery-powered portable applications and the dramatic
decrease in feature size, demanding the chips that consume smallest amount of power.

Even in the case of non-portable applications the amount of power consumed has become

so high that they require expensive packaging and heat sinks. Thus, power has become

one of the major design constraints along with area and timing.

Many low power techniques have been developed to match different circuits and

conditions [1]-[2]. Bhardwaj et al., [3] introduced a new measurement, power-awareness,

to indicate the ability of the system power to scale with changing conditions and quality

requirements. Scalability is an important figure-of-merit since it allows the end user to

implement operational policy [3], just like the user of mobile multimedia equipment

needs to select between better quality and longer battery operation time. The examples

include that a well-designed system must gracefully degrade its quality and performance

as the available energy resources are depleted [4]. In such systems like digital camera,

users are allowed to select certain parameters like resolution. After user selects a

resolution, there will be a short period of time to allow the system to set up. During this

period, the CPU will configure itself and set up the control to the whole system. Such

parameters will not change frequently. After each change, the new value will remain

stable for sometime. So for a power aware system in these applications, on-the-fly control
is not needed.

The power dissipation in CMOS circuit has three components: switching power, short-

circuit power, and leakage power. Among these components, switching power is the

dominant figure. When a node in circuit is switching, the load capacitance on this node

will dissipate power due to the charging/discharging operation. If the switching activity

could be reduced, the total power dissipation will be saved. For Boolean non-pipelined

multipliers, starting from reset-to-zero state, low input precision calculation (like

0001x0001) dissipates much less power than high input precision calculation (like

Introduction

1111 x 1111) because there are much less switching activities in internal nodes. Here the

input precision is defined as the number of useful input bits (without padded 0's in high

order bits) during the calculation. For example, the input precision of 0101 is 3, while the

input precision of 1000 is 4. So, Boolean non-pipelined multipliers are said to have

natural power awareness to the changing of input precisions.

1.1 Previous Work

Several techniques have been developed to reduce the power dissipation in multipliers.

Huang et al., [5] introduced a 2-dimensional signal gating method for low power array

multiplier design. This approach provides gating lines for both multiplicand and

multiplier operands. By deactivated different regions in the multiplier, power dissipation

could be reduced. This approach is for non-pipelined array multiplier and cannot be

extended to pipelined design because it cannot reduce the switching activities in registers.

Bhardwaj et al., [3] introduced a selective method to design power-aware multiplier. This

method is also for non-pipelined designs and brings high area cost. Meier et al., [6]

introduced a polarity-inversion technique for the adders in signed multiplier. •This

technique does not solve the sign extension problem so that the multiplicands in lower

precision still cannot be processed directly. Lee et al, [7] introduced a reduced

architecture based on the redundancy of lower order bits in some DSP applications. This

technique is not for general use and does not solve the sign extension problem in signed

multiplier.

Kim et al., [8] introduced a clock gating method to design reconfigurable multiplier. This

method is to selectively disable pipeline stages by gating clocks and to select correct

results by multiplexers. Very little additional area cost is needed (only several AND2

gates and multiplexers) to implement this technique. Good power and latency saving can

be achieved due to the reduced switching activities of registers in corresponding pipeline

stages. The outputs of the multiplier are selected from different stages to ensure the

correctness and obtain latency reduction. This technique can be seen as 1 -dimensional

pipeline gating because it only considers gating clocks to unnecessary stages along data

-2-

Introduction

flow direction. As the computational width of multiplier growing from 4-bit, 8-bit, to 32-

bit and 64-bit, 1-dimensional pipeline gating is far from enough.

Jia Di, [9]-[10] has proposed a 2-dimensional clock gating, that is, gate the clock to the

registers in both vertical direction (data flow direction in pipeline) and horizontal

direction (within each pipeline stage) and applied it to an array multiplier and used the

multiplier for FIR application.

H. Lee, [11] has applied 2-dimensional signal gating to the booth multiplier, but is area

inefficient as the partial product reduction tree is not shamble. Also it consumes more

power in case of 16-bit multiplication.

1.2 Statement of the problem

Deeply pipelined multipliers are used in systems that need either high throughput or

accurate timing control, like retimed FIR filters [12]. In pipelined multipliers, each

pipeline stage contains a number of registers. Clock is connected to each register. In each

clock cycle, a transition will occur on the clock input node of each register. This

transition is independent of input data and will cause power dissipation even when the

current input data of the register is the same as the current data output. Since in deeply

pipelined designs, the number of registers is much larger than that of other elements,

these designs, do not have the natural power awareness to the changing of input precision

due to the large portion of power dissipated on clock input nodes.

To solve these problems and improve the power awareness of deeply pipelined

multipliers, a technique, 2-dimensional pipeline gating, is applied to the Booth multiplier.

This technique is to gate the clock to the registers in both vertical direction (data flow

direction in pipeline) and horizontal direction (within each pipeline stage). The additional

area cost to implement this technique to design array multipliers is small.

1.3 Organization of the thesis

The thesis is divided into six chapters.

BIB

Introduction

The first chapter is specifies the problem and previous work carried out in the low power

multiplier area.

In the second chapter we deal with the basics of multiplication and various types of

multipliers.

In the third chapter we explain various sources of power consumption in CMOS circuits

and give some methods of reducing power.

The fourth chapter elaborates the architectures of various multipliers designed.

In the fifth chapter we present the analysis procedure, output waveforms after synthesis

and the analysis of the results.

In the last chapter the thesis is concluded.

Multipliers

2.2 Partial product generation

Partial product generation is the very first step in binary multiplier. These are the

intermediate terms which are generated based on the value of multiplier. If the multiplier

bit is 0', then partial product row is also zero, and if it is '1', then the multiplicand is

copied as it is. From the 2nd bit multiplication onwards, each partial product row is

shifted one unit to the left as shown in the above mentioned example. In signed

multiplication, the sign bit is also extended to the left. Partial product generators for a

conventional multiplier consist of a series of logic AND gates as shown in Figure 3.

Careful optimization of the partial-product generation can lead to some substantial delay

and area reduction.

X O 	 Xi 	X, 	X3 	}{a 	X, 	X6 	X,

Y;

PPi p 	PP11 	PP1 2 	PP13 	1, P14 	PP1 5 	pp16 	Pp17

Figure 2.2 Partial product generation logic

2.2.1 Booth Encoding

Booth encoding is a method used for the reduction of the number of partial products

proposed by A.D. Booth in 1951 [13]. A binary number X consisting of m bits

represented in 2's complement format can be described as

X=-2'n X1 + 2t1 Xm-I + 2m-? X 	+ 	 (2.1)

Rewriting Eq.2. I using 2 = 2a+' -2`' leads to

X=-2'n (X»,-1 -X,n) + 2
jn-1 (X n-,

-X1)
	+ 2tn-2 (Xm-3 -Xin-7) + 	 (2.2)

Considering the first 3 bits of X, we can determine whether to add Y, 2Y or 0 to partial

product

Multipliers

Chapter 2
MULTIPLIERS

2.1. Multiplier Background

2.1.1. Basic binary multiplier

The operation of multiplication is rather simple in digital electronics. It has its origin

from the classical algorithm for the product of two binary numbers. This algorithm uses

addition and shift left operations to calculate the product of two numbers. Two examples

are presented below.

10 X 8 =80

1010
X1000

0000
0000

0000
1010

1010000

1010
X 0100

0000
0000

111010
00000

11101000

Figure 2.1 Basic binary multiplication

The left example shows the multiplication procedure of two unsigned binary digits while

the one on the right is for signed multiplication. The first digit is called Multiplicand and

the second Multiplier. The only difference between signed and unsigned multiplication is

that we have to extend the sign bit in the case of signed one, as depicted in the given right

example in Partial product row 3. Based upon the above procedure, we can deduce that

any multiplication had three basic steps.

I) Partial product generation.

2) Partial product accumulation.

3) Final addition.

-5-

Multipliers

2.2.2 Modified Booth Encoding (MBE)

Modified booth encoding was invented by O.L. Macsorley in 1961 [14]. MBE is an

enhanced form of Booth encoding. A binary number X = x, xm_2,....., xo consisting of
m bits represented in 2's complement form can be mathematically expressed as

X=-2mx,n_, +Exi2' , 0<i<m-2
	

(2.3)

Equivalently, representation of X in base 4 is as follows:

X=d; 4 	, 0<i<m/2-1 	 (2.4)

The digits di are chosen from the ensemble {-2,-1, 0, 1, 2} according to Table 2.1.

X2;+1 X2j X21 Increment
0 0 0 0
0 01 Y
0 11110 Y
0 11 2Y
1 00 -2Y
1 0 1 -Y
1 1 0 -Y
1 1 1 0

Table 2.1 Modified Booth encoding table [24]

For each step i, three bits of multiplier X i.e. x2;_1, x2;, x2;+1 are considered and the

corresponding value of d; is obtained from Table 2.1. There are few points to remember

here[23].

1. Zero must always be concatenated to the right of X, i.e. x_1 is considered to be 0.

2. m must always be even.

There are two unavoidable consequences when utilizing MBE as sign extension

prevention and negative encoding 16]. The combination of these two results in the

formation of one additional partial product row, which requires more hardware and the

system, also becomes slower. The advantage of using MBE is that the number of partial

-7-

Multipliers

products are reduced to m/2. This, in turn, reduces the hardware burden and increases the

speed of multiplier.

2.3 Carry_ Save Adder Tree (CSAT)

Carry Save Adder (CSA) can be used to reduce the number of addition cycles as well as

to make each cycle faster. Carry save adder is also-called a compressor. A full adder takes

3 inputs and produces 2 outputs i.e. sum and carry, hence it is called a 3:2 compressor. In

CSA, the output carry is not passed to the neighboring cell but is saved and passed to the

cell one position down. In order to add the partial products in correct order, Carry save

adder tree (CSAT) is used. An example to understand the operation of CSAT is shown in

Figure 2.3. Suppose we have 4 partial products, each consisting of 4 bits.

6 5 4 3 2 1 0 bit position

	

Figure 2.3 Bit positions in multiplier 	 -

The. first step is to rearrange the partial products according to bit positions as shown in

Figure 2.4.

6 	5 	4 3 	2 	1 0 	bit position

Figure 2.4 Rearranging bits in multiplier

The longest path consists of 4 terms at bit position 3. The fmal step is to determine the

number of half and full adders required to complete the addition operation. A 9-input

CSAT is shown in Figure 2.5.

If in the level j of the tree, the number of bits is n, then k= n/3 full-adders should be used

for the summation. The k generated carry signals are sent to the level j+1 of the tree i+l.

-8-

Multipliers

Since the number of bits to sum has been reduced by three fold at each level, the depth of

the Wallace tree is 0 (logN)[15], where N is the initial number of bits.

in! in2 in3 	 in4 in5 in6 	 in7 in8 in9

Figure 2.5 9-input reduction tree[22]

2.4. Fast Adders

The final step in completing the multiplication procedure is to add the final terms in the

final adder. This is normally called "Vector-merging" adder. The choice of the final

adder depends on the structure of the accumulation array[15]. Following is a list of fast

adders which are normally used.

1. Carry look-ahead adder

2. Simple carry skip adder

3. Multilevel carry skip adder

4. Carry- select adder

5. Conditional sum adder

6. Hybrid adder

7. Ripple carry adder

S

Multipliers

2.5. Multiplier types

Multipliers are categorized relative to their applications, architecture and the way the

partial products are produced and summed up. Based on all these, a designer might find

following types of multipliers.

2.5.1. Sequential multipliers

The sequential multiplier is shown in the figure 2.6. The generations of the partial

products require NXM two bit AND gates. Most of the area of the multiplier is devoted

to the adding of the N partial products, which require (N-1) M-bit adders. The shifting of

the partial products for their proper alignment is performed by simple routing and does

not require any logic. The over all structure can easily be compacted into a rectangle,

resulting in a very efficient layout[15].

Yo

Figure 2.6 Sequential multiplier

-10-

Multipliers

2.5.2. Array multipliers
In array multipliers, the counters and compressors are connected in a serial fashion for all

it slices of the Partial Product parallelogram. As can be seen in Figure 2.7, the array

topology is a two-dimensional structure that fits nicely on the VLSI planar process. Array

multipliers can be pipelined to decrease the clock period at the expense of latency.

In this type of array, the output of each row of counters (3:2 compressors) is the input to

the next row of counters. In the simple array, each row of [3:2] compressors adds a partial

product to the partial sum, generating a new partial sum and a sequence of carries. The

delay of the array depends on the depth of the array. Therefore, the summing time for the

simple array is N-2 [3:2] compressor delays, where N is the number of partial products.

The drawback of this type of array is the hardware is underutilized. The counters are used
only once in the calculation of the result, - for the remaining time, they are idle. This

drawback can be diminished by pipelining the array so that several multiplications can

occur simultaneously. Pipelining would increase the throughput of the multiplier, but

would also increase the latency and area of the multiplier. A fully pipelined array is

normally avoided, since the array would be faster than the clock of processor. Figure 2.7

depicts the layout of a simple array topology. The dots represent the partial products.

Figure 2.7 Array topology

Multipliers

2.5.3. Tree multipliers

In order to speed up the process of addition of partial products, tree based structure is

used. In tree architecture, the compressors are connected for each bit slice in the PP

parallelogram. Normally, they are used in parallel. Although the trees are faster than

arrays, they both use the same number of compressors to reduce the partial products. The

first tree structure was introduced by Wallace. Wallace showed that PPs can be reduced

by connecting [3:2] compressors in parallel in a tree topology.

Wallace trees are irregular in the sense that the informal description does not specify a

systematic method for the compressor interconnections. However, it is an efficient

implementation of adding partial products in parallel. The Wallace tree operates in three

steps[16] :

1. Multiply: Each bit of multiplicand is ANDed with each bit of multiplier yielding n2

results. Depending on the position of the multiplied bits, the wires carry different

weights.

2. Addition: As long as there are more than 3 wires with the same weights add a

following layer. Take 3 wires of same weight and input them into a full adder. The result

will be an output wire of half-adder and if only one is left, connect it to the next layer.

3. Group the wires in two numbers and add in a conventional adder. A typical Wallace

tree architecture is shown in Figure 2.8.

-12-

Multipliers

Figure 2.8 Wallace Tree

-13-

Power Consumption

Chapter 3
POWER CONSUMPTION

Power consumption is one of the basic parameters of any kind of Integrated Circuit (IC).

Power and performance are always traded off to meet the system requirements. Power

has a direct impact on system cost.

There are two types of power dissipation. One is the maximum power dissipation which

is related to the peak of the instantaneous current and the other is the average power

dissipation. The peak current has an effect on the supply voltage noise due to the power

line resistance. It can cause heating of the device, thus resulting in performance

degradation. From the battery lifetime point of view, the average power dissipation is
more important.

The power dissipated in a circuit falls into two broad categories:

1. Static power

2. Dynamic power

3.1 Defining Static Power

Static power is the power dissipated by a gate when it is not switching, that is, when it is

inactive or static. Static power is dissipated in several ways. The largest percentage of

static power results from source-to-drain subthreshold leakage, which is caused by

reduced threshold voltages that prevent the gate from completely turning off. Static

power is also dissipated when current leaks between the diffusion layers and the

substrate. For this reason, static power is often called leakage power.

The static or steady state power dissipation of a circuit is expressed by the following

relation[15]

Pstar = Ismr VDD 	 (3.1)

-14-

Power Consumption

Where, Is.t is the current that flows through the circuit in the absence of switching
activity.

Ideally the portion of static current should be zero as the PMOS and NMOS transistors
are never on simultaneously in steady-state operation. But unfortunately, there exits a
leakage current flowing through the reverse-biased diode junctions of the transistors
located between the source/drain and the substrate as shown in Figure 3.1.

There are two types of leakage currents: reverse-bias diode leakage on the transistor

drains; and sub-threshold leakage through the channel of an "off' device. The magnitude
of these currents is set predominantly by the processing technology.

The diode leakage occur when a transistor is turned off and another active transistor
charges up/down the drain with respect to the bulk potential of the former. In the case of
the inverter with a high input voltage, the output voltage will be low because the NMOS
transistor is on. The PMOS transistor will be turned off, but its drain-to-bulk voltage will
be equal to the supply voltage VDD. The leakage current density is temperature sensitive,
so current density can increase dramatically at higher temperatures.

VDD

VDD

Vout = VDD

Drain Leakage
Current

Subthreshold current

Figure.3.1 Sources of leakage currents in CMOS inverter (for Vin = 0 V).

The other source of .leakage current is the sub-threshold current of the transistors. MOS

transistor can experience a drain-source current, even when VAS is smaller than the

threshold voltage. The closer the threshold voltage is to zero volts, the larger the leakage

-15-

Power Consumption

current at VGS = 0 V and the larger the static power consumption. To offset this effect, the

threshold voltage of the device has generally been kept high enough.

3.2 Defining Dynamic Power
Dynamic power is the power dissipated when the circuit is active. A circuit is active

anytime the voltage on a net change due to some stimulus applied to the circuit. Because

voltage on an input net can change without necessarily resulting in a logic transition on

the output, dynamic power can be dissipated even when an output net doesn't change its

logic state.

The dynamic power of a circuit is composed of two kinds of power:

1. Switching power

2. Internal power

3.2.1 Switching Power
The switching power of a driving cell is the power dissipated by the charging and

discharging of the load capacitance at the output of the cell. The total load capacitance at

the output of a driving cell is the sum of the net and gate capacitances on the driving

output. Because such charging and discharging are the result of the logic transitions at the

output of the cell, switching power increases as logic transitions increase. Therefore, the

switching power of a cell is a function of both the total load capacitance at the cell output

and the rate of logic transitions.

VDD

tYDD

your

CL

Figure 3.2 Equivalent circuit during the low-to-high transition.

-16-

Power Consumption

Each time the capacitor CL gets charged through the PMOS transistor, its voltage rises

from 0 to VDD, and a certain amount of energy is drawn from the power supply. Part of

this energy is dissipated in the PMOS device, while the remainder is stored on the load

capacitor. During the high-to-low transition, this capacitor is discharged, and the stored

energy is dissipated in the NMOS transistor..

The values of the energy EVDD, taken from the supply during the transition, as well as the

energy Ec, stored on the capacitor at the end of the transition, can be derived by

integrating the instantaneous power over the period of interest. The corresponding

waveforms of v0u1(t) and iVDD(t) are pictured in figure 3.3.

a4r:ge 	ischarge 	i

Figure 3.3 Output voltages and supply current during
(dis)charge of CL.

00 	 °D 	,.L _ 	 VDD

EVDD = f ZVDD (t)v,,., t = VDD J CL UV
dt r t = VDDCL f dvout VDDCL 	 (3.2)

0 	 0 	 0

00 	 00 	 VDD 	C V2
Ec = f 1VDD (t)v.,dt = f CL dt,vourdt = CL f vout dVou, = L

2 DD 	(3.3)
0 	 0 	 0

during the low-to-high transition, CL is loaded with a charge CLVDD. Providing this charge

requires an energy from the supply equal to CL VD (Q x VDD). The energy stored on the

capacitor equals CLVDD /2. This means that only half of the energy supplied by the power

source is stored on CL. The other half has been dissipated by the PMOS transistor. Notice

-17-

Power Consumption

that this energy dissipation is independent of the size (and hence the resistance) of the

PMOS device! During the discharge phase, the charge is removed from the capacitor, and

its energy is dissipated in the NMOS device. Once again, there is no dependence on the

size of the device. Each switching cycle (consisting of an L—*H and an H—>L transition)

takes a fixed amount of energy, equal to CLVDD. In order to compute the power

consumption, we have to take into account how often the device is switched. If the gate is

switched on and offfo~i times per second, the power consumption equals

Pdy„ =CL VDD .fo-1
	

(3.4)

fo-*l represents the frequency of energy-consuming transitions, this is 0-~1 transitions for

static CMOS.

3.2.2 Internal Power
The finite slope of the input signal causes a direct current path between VDD and GND for
a short period of time during switching, while the NMOS and the PMOS transistors are

conducting simultaneously. Internal power includes power dissipated by a momentary

short circuit between the P and N transistors of a gate, called short-circuit power.

Short circuit currents occur when the rise/fall time at the input of a gate is larger than the

output rise/fall time. For the ideal case of a step input, the transistors change state

immediately, one turning on and other turning off. There is not a conductive path from

the supply to ground. For real circuits, however, the input signal will have some finite

rise/fall time. While the condition V SV j,<_Vdd—V1., holds for the input voltage, there will

be a conductive path open because both devices are on. The longer the input rise/fall

time, the longer the short-circuit current will continue to flow, and the average short-

circuit current will increase. To minimize the total average short-circuit current power, it

is desirable to have equal input and output edge times. Short-circuit current power is

either linearly or quadratic dependent on the supply voltage, depending on the size of the

channel length. While reducing the supply increases the duration of the current linearly

due to increased rise/fall times, the peak magnitude of the current is reduced linearly

(velocity saturation) such that the average current is approximately constant and the

average power is just a linear function of supply voltage (P=IV). For larger devices that

Power Consumption

are not velocity saturated, the average current is approximately linear with supply voltage

so that the average power is a quadratic function of supply voltage

We can'compute the average power consumption as follows.

psc = tscVddjpeakf =CscVdd,f
	

(3.5)

t5 represents the time both devices are conducting.

For most ICs, the short-circuit power dissipated is approximately 5-10% of the total

dynamic power, if the supply is lowered to below the sum of the thresholds of the

transistors i.e. Vdj<V„+Vtp. However, short-circuit currents will be eliminated because

both devices cannot be on at the same time for all values of input voltage.

3.3 Low power or energy design techniques

Power consumption becomes an issue in complex electronic systems where cost is

extremely important. Reducing power consumption is an important design task for IC

engineers. Power is important for portable equipment like mobile, laptop, PDA, GPS,

hearing aids and wrist watch etc. The requirement is a long life battery and a light system

which is only possible if the equipment consumes bare minimum power. Lowering power

also reduces the cost for cooling system and makes the chip package smart reducing the

size of the device. There are a number of low power techniques available for CMOS

circuits. Some of them are discussed in subsequent sections.

3.3.1 Pipelining

Pipelining is a popular design technique to reduce power consumption by increasing the

throughput of logic blocks and processors to reduce frequency and supply voltage[2].

Pipelining is used to reduce power consumption, as illustrated in Figure 3.4. The idea is

to insert registers after some appropriate distance in the circuit. The system response

becomes faster than before. In order to maintain the previous delay, the supply voltage is

reduced which reduces the power consumption.

- 19 -

CG I 	.I Functional Unit

CLK

Figure 3.5 Clock-gating principle[2].

A[N-1]
wI M 	 P1 	MSB

B[N-1] 	 I COMPARATOR

	

A 	 P1 A>B

CLK

I
A[N 2:Q] 	REG 	 COMPARATOR

far 	 A>B
bits

C 	REG 	 0 to N-2 	 FOR
LOGIC 	 L ..4>

K 	 Bits 0 TO N-2

BLOC K I 	 I
REG
far 	 CONDITIONALLY
bits 	 P SWTR HED

0toN2

GATED CLK

Figure 3.6 Using gated clocks to reduce power[18].

Assume a pipelined system for comparing the output of two numbers from a block of

combinational logic as shown in Fig. 3.6, the first pipeline stage is a combinational block

and the next pipeline stage is a comparator which performs the function A > B, where A
and B are generated in the first stage (i.e., from the combinational block). If the most
significant bits, A [N -1] and B[N-1], are different. then the computation of A > B can be

performed strictly from the MSB's and therefore the comparator logic for bits A[N-2: 0]
and B[N-2 : 0] is not required (and hence the logic can be powered down). If the data is

assumed to be random (i.e., there is a 50% chance that A[N - 1] and B [N - 1] are
different), the power savings can be quite significant. One approach to accomplish this is

to gate the clocks as shown in Fig. 3.6. The XNOR output of the A [N -1] and B[N - 1] is
latched by a special register to generate a gated clock. This gated clock is then used to
clock the lower order registers.

-21-

A
~ ' func-

tion B F1 fork B
tion

C F2 _.i {.T: frequency f

A
func-
tion

B F1 funs-

Baseline:
Power:
P,=f * C * v2 .

Pipeline:

Power:
P2=f*C*1.2 *

•As F I or F2 are faster
than
F I + F2, one can reduce
Vdd.

Figure 3.4 Pipeline for low power[2].

3.3.2 Clock gating

Clock gating is very effective in reducing the power consumption in digital circuits. The

goal of this technique is to disable or suppress transitions from propagating to parts of the

clock path (i.e., flip-flops, clock network, and logic) under a certain condition computed

by clock-gating circuits. The savings are mainly due to the switching capacitance

reduction in the clock network.and the switching activity in the logic fed by the storage

elements because unnecessary transitions are not loaded when the clock is not active.

Clock gating (CG) is illustrated- in Figure 3.5. A block CG, which inhibits the clock

signal when the idle condition is true, is associated with each sequential functional unit..

The clock signal is computed by function Fcg. CLK is the system clock and CLKG the

gated clock of the functional unit. Clock-gating techniques have been successfully

implemented in many-microprocessors.

-20-

Power Consumption

different), the power savings can be quite significant. One approach to accomplish this is

to gate the clocks as shown in Fig. 3.6. The XNOR output of the A IN -1] and BIN - 1] is
latched by a special register to generate a gated clock. This gated clock is then used to

clock the lower order registers.

3.3.3 Voltage scaling
In CMOS circuits, the dominant component of power consumption is proportional

to VDD f, where VDD is voltage and! is frequency. Energy is product of power and time.

The time to run a certain number of cycles is inversely proportional to frequency, so

energy per cycle is proportional to VD . At a given voltage, the maximum frequency at

which the circuit can run safely decreases with decreasing voltage. Thus, the system can

reduce energy consumption by reducing supply voltage, but this necessitates running at a

slower speed.

3.3.4 Delay balancing.
Glitches in the circuit consume a considerable amount of power. They are produced by a

delay in the arrival of input signals at a certain gate in the circuit. Delay balancing is then

used to minimize the glitches which in return save power. Suppose we want to add four

inputs A, B, C and D. One way to add them is to feed the inputs sequentially as shown in

Figure 3.7 (a). Suppose the delay of one adder is Tadd. The inputs A and B arrive at the
same time at adder 1 but there exits a delay of 1 Tadd and 2 Tadd between the inputs
arriving at adder 2 and 3 respectively. This would produce glitches at the output node. In

order to remove glitches, we have to balance the delays at the inputs of each adder.

Figure 3.7 (b) shows a modified architecture in which the delays are balanced at the input

of each adder.

Power Consumption

A 	B 	 A 	B 	C 	D

Output

(a)

Output

(b)

Figure 3.7 Delay balancing example

3.3.5 Transition activity reduction

The power consumption is directly proportional to the transition or switching activity of

the circuit. So reducing transition activity will also reduce the power consumption of the

circuit. To reduce the transition activity in complex electronic systems, some special

encodings are used for data and address busses. These encodings are very effective in

reducing the power consumption. These are Limited Weight Codes (LWC), Zero-

transition encoding (TO), Bus-invert encoding (BI), TO BI encoding, Dual TO encoding

etc. an example of Bus invert encoding is shown in Table 1. In bus-invert encoding, an

extra line is used. If the extra bit is zero, the original bits are kept intact and they are

inverted if the extra bit is 1. The overhead is one extra bit line but the number of

transitions is reduced significantly which in turn reduces the power consumption.

-23-

Power Consumption

Input sequence Number of
Transitions
Number of
Transitions

Bus_invert
Encoded
sequence

New number
of
transitions

0000 1 00000 1
0001 1 00001 1
0010 2 00010 2
0011 1 00011 1
0100 3 1 1011 2
0101 1 1 1010 1
0110 2 1 1001 2
0111 1 1 1000 1
1000 4 01000 1
Total

transitions 16 12

Table 3.1 Bus invert encoding[19]

-24-

Multiplier Architectures

Chapter 4

MULTIPLIER ARCHITECTURES

This chapter describes architectures of all the three implemented multipliers in detail.

4.1 The architecture of the 2-dimensional pipelined gated Booth multiplier

In 2-D gating technique, clock is gated to registers in both vertical direction (data flow

direction in pipeline) and horizontal direction (within each pipeline stage). The proposed

power-aware scalable 2-D pipeline gated Booth multiplier consists of a shared radix-4

Booth encoder, a shared and configurable partial product generation unit, shared and

pipelined partial product reduction unit ,a multiplexer and a shared final ripple carry

adder shown in Figure 4.1. Based on the gated input signals the gated clock signals are

generated that appropriately selects required parts of the multiplier and multiplicand

operands, the booth encoder and partial product generator unit, the partial product

reduction units, and ripple carry adder unit for given data precision.

Depending on the number of multiplier bits, the Booth encoder and partial product

generator adjust the number of partial products generated while maintaining the unused

partial product generator sections in static condition. For shorter precisions the unused

parts of the partial product reduction and ripple carry adder units are deactivated using

gated clock signals. The final product is generated from the active parts of the booth

encoder, partial product generator, partial product reduction, and ripple carry adder units.

The functional units of the proposed 16-bit multiplier are described below

4.1.1 Pipelined Gating Technique

Latched-based clock gating technique used in each of the five pipeline stages enables the

multiplier circuit to deactivate the unused part of the logic and avoid excessive power-

consumption in each multiplication operation. Synopsys Power Compiler was utilized for

generating a latch-based clock gating circuit. Each pipeline stage in the proposed

- 25 -

Multiplier Architectures

multiplier is optimized to minimize the amount of switching in the logic between the

pipeline stages and also within the pipeline registers.

In the first stage pipeline registers is partitioned into three states, the most significant 8-

bits of the input operand are gated only if gated signal 3 high, and the middle 4-bits are

gated if both gated signal 3 and gated signal 2 are high, and finally the least 4-bits are

gated when all the gated signals are high.

The second pipeline stage is after the Booth encoder and the Partial product generator

unit. Depending on the gated clock signals it allows required partial product bits to the

next stage. Gated clockl allows only the first 5bits of the first and second partial

products. Gated clock2 allows first 9 bits of the second and third partial products and next

higher order 4 bits of the first and second partial product bits. And Gated clock3 allows

17 bits of rest of the four partial products and next higher order 8 bits of first four partial

products.

The third pipeline stage, after first partial product reduction block, is gated by either

Gated clock2 or Gated clock3. First 15 bits of first and second rows and first 8 bits of the

third row at the output of first partial product reduction unit are gated by the Gated

clock2. The rest of the 16 bits in first and second rows, 8 bits in third row, 10 bits in

fourth row and 3 bits in the fifth row are gated by gated clock3.

The fourth pipeline stage, after second partial product reduction block, is gated only by

Gated clock3.

The fifth pipeline stage, after MUX and final partial product reduction block, is gated by

either of Gated clock1, Gated clock2 or Gated clock3. First 8 bits of first and second rows

output of final partial product reduction unit are gated by the Gated clock1. Next higher

order 8 bits of first and second rows output of final partial product reduction unit are

gated by the Gated clock2. The rest of the 16 bits in first and second rows are gated by

gated clock3.

- 26 -

Multiplier Architectures

Figure 4.1 2D-Power-aware reconfigurable pipelined Booth multiplier. Figure

-27- 27-

Multiplier Architectures

The final pipeline stage, after ripple carry adder, is gated by either of Gated clock1, Gated

clock2 or Gated clock3. First 8 bits output of ripple carry adder are gated by the Gated

clock1. Next higher order 8. bits output of ripple carry adder are gated by the Gated

clock2. The rest of the 16 bits are gated by gated clock3.

4.1.2 Booth Encoder and Partial Product Generator Unit

Booth encoder and partial product generator unit is configurable and can be shared

between the 16-bit, 8-bit and 4-bit multiplication modes. The total numbers of partial

products (PP) generated are N/2 (N = max. number of multiplier bits), where PP; is can be

zero, complement, twice, twice the complement of the multiplicand or multiplicand

depending on the multiplier bits. The 4-bit multiplication mode only requires first two of

the partial products and 8-bit multiplication requires only first four partial products.

There are three types of configuration modes for the partial product, which are consistent

with the operation modes of the power-aware multiplier. In the 4-bit multiplication,

partial products are of 5 bit length, in the 8-bit multiplication partial products are of 9-bit

length and in the 16-bit multiplication they are of 17-bit length. Depending on the

multiplier and multiplicand bits that are gated in the pipeline stage before this block, only

the required partial products are generated and the rest of the bits are held in the static

state.

4.1.3 Partial product reduction units

Partial product reduction units are shared between all of 16-bit, 8-bit and 4-bit

multiplication modes. All partial product reduction units employ either [3:2] compressors

or [2:2] compressors for reduction of partial products.

The partial product summation is done in a Wallace-tree structure. Wallace-tree is

divided into three blocks. After the first block, the first three rows contain bits in case of

the 8-bit multiplication and after the second reduction the first three rows are the rows

after reduction in case of the 16-bit multiplication. Outputs of both of the reduction units

along with the two rows after the Booth-encoder and partial product generation unit are

applied to the multiplexer unit, which are then passed to the final reduction unit for final

reduction depending on the mode of multiplication along with their correction vector.

-28-

Multiplier Architectures

The final reduction unit reduces the three rows into two 32-bit rows which are then added

to the ripple carry adder unit.

The compressor configuration for each of the blocks is shown in the figures 4.2 through

4.4 (in final reduction the bits shown are in case of 16-bit multiplication).

! I1L1
y4

------------- -----------

Figure 4.2 First Reduction Unit.

£
* c, ---------------- x

Figure 4.3 Second Reduction Unit.

H
3:2 compressor 	2:2 compressor

Figure 4.4 Final Reduction Unit (last row is in case of 16 bit multiplication)

x x x x x x x x xx xx x x x xx x xxx x x xx x x xxx xx
x x x x •x 0 0 X

Figure 4.5 Input to the ripple carry adder

-29 -

Multiplier Architectures

4.1.4 Multiplexer Unit

This block selects the outputs from booth encoder and partial product generation unit,

first second partial product reduction unit or second partial product reduction unit. In

addition, it also adds the correction vectors required for sign extension prevention based

on the type of multiplication (16- , 8- or 4- bit). The output of this stage is given to final

partial product reduction unit.

4.1.5 Ripple carry adder

The ripple carry adder is also shared unit between all of the 16-bit, 8-bit and 4-bit

multiplications. The bits that are not used for the particular mode of multiplication are

held at static condition.

4.2 The architecture of the 1-dimensional pipeline gated Booth multiplier

In 1-D gating technique, clock is gated to registers in vertical direction (data flow

direction in pipeline) or in horizontal direction (within each pipeline stage). Gating in

vertical direction is used in the thesis.

The reconfigurable 1-D pipeline gated Booth multiplier similar to 2-D pipeline gated

multiplier consists of a shared radix-4 Booth encoder, a shared partial product generation

unit, shared and pipelined partial product reduction unit, a multiplexer and a shared final

ripple carry adder. Only difference is that the gating is applied only in vertical direction.

The functional units of the 1D pipeline gated 16-bit multiplier are described below

4.2.1 Pipelined Gating Technique

In the first stage pipeline registers is partitioned into three states for multiplier, the most

significant 8-bits of multiplier are gated only if gated signal 3 high, and the middle 4-bits

are gated if both gated signal 3 and gated signal 2 are high, and finally the least 4-bits are

gated when all the gated signals are high.

Mille

Multiplier Architectures

PRODUCT

Figure 4.2. 1D Power-aware scalable pipelined Booth multiplier.

-31-

Multiplier Architectures

All of the multiplicand bits are passed.

The second pipeline stage is after the Booth encoder and the Partial product generator

unit. Depending on the gated clock signals it allows required partial product bits to the

next stage. Gated clock! allows first and second partial products. Gated clock2 allows

second and third partial products. And Gated clock3 rest of the four partial products.

The third pipeline stage, after first partial product reduction block, is gated by r Gated

clock2.

The fourth pipeline stage, after second partial product reduction block, is gated by Gated

clock3.

The fifth pipeline stage, after MUX and final partial product reduction block, is gated by

either of Gated clock!.

The final pipeline stage, after ripple carry adder, is gated by Gated clock!.

4.2.2 Booth Encoder and Partial Product Generator Unit

This unit is not configurable, unlike the 2-D case. All the partial products generated are

of 17-bits. But, depending on the multiplier bits passed some or all of the partial products

are valid and remaining partial products are held in a static condition.

4.2.3 Partial product reduction units
Similar to 2-D case, partial product summation is done in a Wallace-tree structure.

Wallace-tree is divided into three blocks. After the first block, the first three rows contain

bits in case of the 8-bit multiplication and after the second reduction the first three rows

are the rows after reduction in case of the 16-bit multiplication. Outputs of both of the

reduction units along with the two rows after the Booth-encoder and partial product

generation unit are applied to the multiplexer unit, which are then passed to the final

reduction unit for final reduction depending on the mode of multiplication along with

their correction vector. The final reduction unit reduces the three rows into two 32-bit

rows which are then added to the ripple carry adder unit.

- 32 -

Multiplier Architectures

The compressor configuration for each of the blocks is shown in the figures 4.7 through
4.9 (in final reduction the bits shown are in case of 16-bit multiplication).

__________1

BE 5 e. 	If

- F
I

------ -----

-------------------------- , 1 -
Figure 4.7 First Reduction Unit.

S. j, 	,
------- —---t-- --------------- ---------------
__ — • ..z••-

Figure 4.8 Second Reduction Unit.

ci
3:2 compressor 	2:2 compressor

Figure 4.9 Final Reduction Unit.

x I x I X- 1 x I x 1 0 10 	C
Figure 4.10 Input to the ripple carry adder

-33-

Multiplier Architectures

4.2.4 Multiplexer Unit

This block selects the outputs from booth encoder and partial product generation unit,

first second partial product reduction unit or second partial product reduction unit. In

addition, it also adds the correction vector required for sign extension prevention only in

case of 16-bit multiplication, in 8-bit and 4-bit multiplication partial products are sign

extended to 16-bit and 8-bit respectively. The output of this stage is given to final partial

product reduction unit.

4.2.5 Ripple carry adder

The ripple carry adder is also shared unit between all of the 16-bit, 8-bit and 4-bit

multiplications.

4.3 The architecture of the non-pipeline gated booth multiplier

The non-pipeline gated Booth multiplier consists of a radix-4 Booth encoder, a partial

product generation unit, partial product reduction unit and a fmal ripple carry adder, is

shown in figure 4.12. Booth encoder, the partial product generation unit and ripple carry

adder are same as the 1D case. The partial product reduction unit is an optimized

Wallace-tree, shown in figure 4.1 1(the last column is the 31(1 column in the reduction

tree).

L N L
G N

L
O N

L
G N

L 2 L
C N

L 2 L
G N

L
C N

L
G N

L
C N

L
C N

L
G N

L
C N

L
C N

L
O N

L
O N

L
O N

L
O N

L
O N

L
O N

L
O N

L
C N

L
C N

L
C N

L
G N

L
G N

L
O N

L
C N N N

L
N
L

N N
L

N
L

N
L

N
L

N N
L

N N
L

N
L

N
L

N
L

N
L

N N N N N N
L

N N N N N N N
LL
E E E E E E E E

L.

E E
LK

E E E E E E E E E E E E E E E E E E E
0
C)

0
0

0
o

0
Q

0 o 0 0 0 0 0 0 0 U 0 u 0 U 0 U 0 0 0 0 0 0 0 0 0 U 0 0 0 0 0 0 0 0 0 U 0 0 0 U 0 0 0 U 0 0 0 0 0 U
N N N N N N N N N N N N N N N ' N N N N N N N N N N N N N N
N N M M 'U V O \O N S 00 00 as 00 0% S 00 D [- V1 'O v1 M V N M

Figure 4.11 Wallace tree reduction

-34-

Multiplier Architectures

Multiplier 	 Multiplicand

PRODUCT

Figure 4.12 Booth multiplier

- 35 -

Results and Analaysis

Chapter 5
RESULTS AND ANALYSIS

The proposed reconfigurable pipelined Booth multiplier was first modeled in VHDL and

functionally verified using Modelsim simulator. VHDL simulations were conducted

using uniformly distributed random input test vectors with a supply voltage of IV under

typical conditions. After functional validation, the architecture was synthesized for

appropriate time and area constraints using SYNOPSYS Design Compiler [20]. TSMC

90nm CMOS technology and standard cell library were used.

Figure 5.1 through 5.9 shows the outputs of the synthesized non-clock gated, 1-

dimensional pipeline gated and 2-dimensional pipeline gated circuits at different

multiplication modes (16-bit, 8-bit and 4-bit).

The power analysis of the gate level structure has been conducted using Synopsys VCS

and Primepower tools [21]. Figures 5.10 and 5.11 shows comparison of peak and average

power consumption for different Booth multipliers in different input precisions (16-bit, 8-
bit, 4-bit).

From the figures 5.10 and 5.11 and tables 5.1, several observations are made:

1. Among the three multipliers in each figure, the designs using 1-D and 2-D

pipeline gating techniques have lower power dissipations compared to the non-

pipelined gating designs under different input precision.

2. Among all three multipliers, the designs using 2-D pipeline gating techniques

show significant power savings over the corresponding designs using 1-D pipeline

gating technique. This advantage is not large in 8-bit multiplication (19.8% under

equal input precision probability), but becomes much greater in 4-bit

multiplication (44.22% under equal input precision probability), and 16-bit

-36-

Results and Analaysis

multiplication have almost same power consumption. The reason for this

difference is that as the length of multiplication goes up, the number of registers

and the components that are active increases. 1-D pipeline gating technique only

deals with the vertical pipeline stage increment, while 2-D pipeline gating

technique controls the registers in both directions.

3. The area overhead of implementing 2-D over 1-D techniques is very small (0.18%

in 6-stage 16-bit multiplier).

4. Peak power dissipation affects the system reliability in operating under power

constraints. 1-D and 2-D pipeline gating techniques both have the ability to

reduce system peak power dissipation. But the same as average power dissipation,

2-D technique has great advantage over 1-D technique under different input.

precisions.

5. Area overhead for 6-stage 1-D and 2-D pipeline gating techniques over non-

pipeline technique are 17.8% and 18% respectively for 6-pipeline stages. Area is

more because the number registers required are more.

The pipeline latency reduction of the designs using non-pipeline gating, 1-D and 2-D

pipeline gating techniques is the same.

-37-

O

U
..r

E

00

4°

cn
0

U ~
O

r.+

O

a

O

0

N

N

bA

W

0
cC U

A

VI

r.,

cc
tiD

d
U ~
O
U

O

4+
O

O

O

M

t0,

W

O

K.

m

U

m

i

i

IO dam'

N ~
E

'C!

E
O

it

aA

0

t)

w

an

i

a~

on
x
U
O
U

C.
.O

i
N
^C~

s.,

0

0
sz

a.,

U
i-+

[Cf

bA

b~A

ai

O

O
00

tn

9b
w

Results and Analaysis

Figure 5.10. Average power dissipation of various multipliers under different input

precisions (for 500MHz 6-stage pipeline)

Peak Power
2.50E-01

o No Gating

2.00E-01 	 ■ 1-dimensional Gating
o 2-dimensional gating

1.50E-01

0 1.00E-01

5.00E-02

0.00E+00
16 bit 	8 bit 	 4 bit

Figure 5.11. Peak power dissipation of various multipliers under different input

precisions (for 500MHz 6-stage pipeline)

-47-

Results and Analaysis

Area Overhead (in percentage)

1D vs 2D 0.18%

ID vs non gated 17.84%

2D vs non gated 18.06%

-48-

Conclusion

Chapter 6
CONCLUSION AND FUTURE SCOPE

A novel reconfigurable pipelined Booth multiplier using 2-dimensional pipeline gating

scheme is proposed. This technique is to gate the clock to registers in both vertical

direction (data flow direction in pipeline) and horizontal direction (within each pipeline

stage). For signed multipliers using 2's complement representation, sign extension, which

wastes power and causes longer delay, could be avoided by implementing this technique.

Our multiplier based on the gated input signals implements a 16-bit, 8bit or 4-bit

multiplication operation. The relation and difference between this 2-D technique and

existing 1-D technique are discussed. A set of Booth multipliers is designed using both

techniques. Simulation results show that 2-D pipeline gating technique has great

advantage over 1-D technique in terms of average and peak power savings while
maintaining the same latency reduction rate. 2-D and 1-D pipeline technique can be

applied with some additional area.

For the 8-bit and 4-bit computations, the proposed Booth multiplier leads to a 61% and

87% power consumption reduction over a non-scalable Booth multiplier, respectively.

The proposed scalable pipelined Booth multiplier proves to be globally 48% more power
efficient than a non-scalable pipelined Booth multiplier, and also it has fast speed due to
pipelining.

6.1 Scope of future work

Following are the suggestions for future work

1) Further increase scalability of the multiplier for lesser number of bits. This can

reduce the power consumption further..

2) Use this multiplier in any of the DSP applications and verify the power savings.

Conclusion

3) Increase the number pipeline stages to further reduce the power consumption and

increase the clock frequency. However, excessive increase in number of pipeline

stages can clock frequency to a large value that a processor cannot support. Thus,

it is not advised to increase pipeline stages excessively.

-50-

REFERENCES

[1] A. P. Chandrakasan, S. Sheng, and R. W. Brodersen "Low-power CMOS digital
design,"IEEE Journal of Solid-State Circuits, Volume:27, Issue:4, Apr. 1992,
pages 473-484.

[2] Christian Piguet, "Low-Power CMOS Circuits Technology, Logic Design and
CAD Tools," CRC Press, 2005.

[3] Manish Bhardwaj, R. Min, and A. P. Chandrakasan, "Quantifying and Enhancing
Power Awareness of VLSI Systems," IEEE Transactions on VLSI Systems,
2001, Volume 9, Issue 6, pages 757-772.

[4] S. H. Nawab, J. M. Winograd, "Approximate signal processing," 1995

International Conference on Acoustics, Speech, and Signal Processing, May 9-
12, Pages 2857 -2860 vol.5.

[5] Z. Huang. M. D. Ercegovac, "Two-dimensional signal gating for low-power array
multiplier design," IEEE International Symposium on Circuits and Systems,
2002, Volume 1, pages 489-492

[6] P. C. H. Meier, R. A. Rutenber, L. R. Carley, "Inverse polarity techniques for
high-speed/low-power multipliers," International Symposium on Low Power
Electronics and Design, pages 264-266, 1999

[7] K. H. Lee, C. S. Rim, "A hardware reduced multiplier for low power design,"
Proceedings of the second IEEE Asia Pacific Conference on ASICs. Pages 331-
334, 2000

-51=

[8] S. Kim, M. C. Papaefthymiou, "Reconfigurable low energy multiplier for

multimedia system design," Proceedings of IEEE Computer Society Workshop

on VLSI, 2000 pages 129-134.

[9] Jia Di, J. S. Yuan and R. Demara, "High Throughput Power-aware FIR Filter

Design Based On Fine-grain Pipelining Multipliers and Adders," Proceedings of
the IEEE Computer Society Annual Symposium on VLSI, pages 260- 261, Feb.

[10] Jia Di and J. S. Yuan, "Run-time reconfigurable power-aware pipelined signed

array multiplier design for DSP applications". IEEE International Symposium

on Circuits and Systems, 2003, pages 405-408.

[11] Hanho Lee, "A Power-Aware Scalable Pipelined Booth Multiplier," IEEE

International SOC Conference Proceedings, sept. 2004 pages 123- 126

[12] B.Parhami, "Computer arithmetic — algorithms and hardware designs," Oxford
University Press, 1999.

[13] A. D. Booth, "A signed binary multiplication technique", Quart. J.Math., vol. IV,
pt. 2, 1951.

[14] 0. L MacSorley, "High-speed Arithmetic in Binary Computers," IRE Proc., vol.
49, pages 67-91, 1961.

[15] Jan M. Rabaey,Anantha Chandrakasan and Borivoje Nikolic, "Digital Integrated

Circuits -A Design Perspective," 2"d Edition, Prentice Hall Electronics and
VLSI series, 2005.

[16] S.Shah, A. J. Al-Khalili, D. Al- Khalili "Comparison of 32-bit Multipliers for

Various Performance Measure," The 12th International Conference on

Microelectronics, Tehran, Oct. 31- Nov. 2, 2000.

-52-

[17] Gensuke Goto, Tomio Sato, Masao Nakajima, and Takao Sukemura, "A 54x54-b
Regularly Structured Tree Multiplier", JSSC, col. 27, no. 9, September 1992.

[18] A. P. Chandrakasan, and R. W. Brodersen "Minimizing Power Consumption in
Digital CMOS Circuits" Proceedings of the IEEE. Apr 1995, Issue: 4 pages 498-
523 Vol. 83

[19] U. Narayanan, K.S. Chung, T. Kim, "Enhanced Bus Invert Encodings for Low-
Power," ISCAS, pages V-25 - V-28, vol. 5,2002.

[20] Himanshu Bhatnagar, "Advanced ASIC chip synthesis using Synopsys Design

Compiler, Physical Compiler and PrimeTime," Kluwer Academic Publishers,
2002, Second edition.

[21] https://solvnet.s~nopsys.com/

[22] Niel H.E. Weste and Kamaran Eshraghian, "Principles of CMOS VLSI Design :

A Systems Perspective," TMH,2005.

[23] Oklobdzija, V.G., Villeger, D., Liu, S.S., "A method for speed optimized partial

product reduction and generation of fast parallel multipliers using an algorithmic

approach," IEEE Transactions on Computers, Vol. 45, No, 3, pages 294-305,

March 1996.

[24] Jalil Fadavi-Ardekani, "M x N Booth Encoded Multiplier Generator Using

Optimized Wallace Trees", IEEE Transactians on VLSI systems,Vol. 1 , No.2,
pages 120-125, June 1993.

- 53 -

APPENDIX-A

A.1. 2-Dimensional pipeline gated Booth multiplier

library IEEE;
use IEEE. STD_LOGIC_ 1164.ALL;
use IEEE. STD_LOGIC_ARITH.ALL;
use IEEE. STD LOGIC UNSIGNED.ALL;

entity multiplier is
Generic (m: integer: =16; n: integer: =16);
Port (elk: in STD_LOGIC;

gsI, gs2, gs3: in std logic;
mcand: in STD_ LOGIC_ VECTOR (n-I downto 0);
mier: in STD_LOGIC_VECTOR (m-1 downto 0);
prod: out STD_LOGIC_VECTOR (m+n-1 downto 0));

end multiplier;
--------------------------ARHITECTURE OF 2D BOOTH MULTIPLIER
architectureBehavioral of multiplier is
type ary is array (0 to m/2-1) of STD_LOGIC_VECTOR (n+l downto 0);
type aryl is array (0 to 5) of STD_LOGIC_VECTOR(m+n downto .1);
type ary2 is array (0 to 2) of STD__LOGIC_VECTOR(m+n downto 1);
type ary3 is array (0 to 1) of STD_LOGIC_VECTOR(m+n downto 1);
subtype word is std_logic_vector (n-I downto 0);
signal loadl, load2, load3, gclk1, gclk2, gclk3:std_logic;
signal pps, pps0: ary;
signal pps1, ppsl0, pps20: aryl;
signal pps2: ary2;
signal"pps3: ary2;
signal pps4, pps40: ary3;
signal pps5: std_logic_vector (m+n downto 1);
---------------------------------BOOTH-ENCODER AND PP GENERATOR
PROCEDUREBooth_PP _gen (a: in std_logic_vector (2 downto 0); md: in
std_logic_vector; PP: out std_logic vector; topbit: out std logic) is
variable bb 	: std_logic_vector (md'range);
variable psum : std_logic_vector (md'range);
variable b_bar : std_logic_vector (md'range);
variable two_b : std_logic vector (md'range);
variable two_b_bar: std logic_vector (md'range);
variable cin 	: std_logic;

begin
two_b:=md (md'le$-1 downto 0) &

P01;

b_bar:=not md;
two b bar:=not two b;
case a is

-54-

when "001" I "010" =>
bb: = md;
cin:='0';

when "011" =>
bb: = twob;
cin: ='O';

when "100" =>
bb:= two_b_bar;
cin:=' 1';

when "101"I"110"=>
bb:= b_bar;
cin:='l';

when others =>
bb:=(others=>'O');
cin:='O';

end case;

case a is
when "001 "J"010"I "011 " => topbit:=not md(md'left);
when "100"I"101 "I" 110" => topbit:=md(md'left);
when "000"I" 111 "=>topbit:=' 1';
when others =>topbit:='O';

end case;
PP:=bb&cin;

end Booth PP_gen;

Procedure Booth PP_gen after(a; in std_logic_vector(2 downto 0);md:in
std_logic_vector;PP:out std logic_vector;fr:out std_logic;topbit: out std_logic)is

variable bb 	: std_logic_vector (md'left-1 downto md'right);
variable psum : std_logic vector (md'left- i downto md'right);
variable b_bar : std_logic_vector (md'left-1 downto md'right);
variable two_b : std_logic_vector (md'left-1 downto md'right);
variable two_b_bar : std_logic_vector (md'left-1 downto md'right);

begin
two_b:=md(md'left-1 downto md'right) ;
b_bar:=not md(md'left downto md'right+l);
two_b bar:=not two b;
case a is

when "001" 1 "010" =>
bb:= md(md'left downto md'right+l);

when "011" =>
bb:= two b;

when "100" =>
bb:= two_b_bar;

when "101" j "110" =>

-55-

bb:= b_bar;
when others =>

bb:=(others=>'O');
end case;

case a is
when "001"I"010"I"011" _> topbit:=not md(md'le$);
when "100"1"101"I"110" => topbit:=md(md'left);
when "000" 1" 111 "=>topbit:=' 1';
when others =>topbit:='O';

end case;
PP:=bb(bb'left downto bb'right+l);
fr:=bb(bb'right);

end Booth PP_gen_after;
--
-- [2:2] compressor
PROCEDURECSA ha(a:in std_logic ;b: in std_logic ;s: out std_logic; c: out std_logic)
is
begin

s:= a xor b;
c:=aandb;

end PROCEDURE CSA ha;
--
-- [3:2] compressor
PROCEDURECSA_fa(a:in std_logic ;b: in std_logic ;d : in std_logic ;s: out std_logic;
c: out std_logic) is
begin

s:= a xor b xor d;
c:= (a and b) or (a and d) or (b and d);

end PROCEDURE CSA fa;

---RCA--------------------------------------
PROCEDURE rca (a : in std_logic_vector; b: in std_logic_vector;sum:out
std logic_vector) is

variable c: std_logic_vector(a'range);
variable nc:std_logic;

begin

for i in a'right to a'left loop
if i=a'right then

CSA fa(a(i),b(i),'0',sum(i),c(i));
elsif i/=a'left and i/=a'right then

CSA_fa(a(i),b(i),c(i- 1),sum(i),c(i));
else

C SA_fa(a(i),b(i), c (i-1), sum(i),nc);
end if;

end loop;

-56-

end PROCEDURE rca;

--------------------BEGINNING ARHITECTURE OF 2D BOOTH MULTIPLIER ----
Begin
----------------------------------Clock Gating Logic ---
GATED_CLKs: process (clk,gsl, gs2, gs3)
begin

if clk='O' then
loadl<=gsl;
load2<=gs2;
load3<=gs3;

end if ;
gclk 1 <= gs 1 and elk;
gclk2<= gs2 and elk;
gclk3<= gs3 and elk;

end process GATED CLKs;

--- PIPELINE REGISTER I ----------------------------
GATING_MD_MR4: process(gclkl,mcandl,mierl)
begin
if gclkl'event and gclkl='1' then

mier(3 downto 0)<=mierl (3 downto 0);
mcand(3 downto 0)<=mcand l (3 downto 0);

end if;
end process GATING MD MR4;

GATING_MD_MR8: process(gclk2,mcand l ,mier 1)
begin
if gclk2'event and gclk2=' l' then

mier(7 downto 4) <=mierl(7 downto 4) ;
mcand(7 downto 4) <=mcandl (7 downto 4) ;

end if;
end process GATING MD MR8;

GATING_MD_MR 16: process(gclk3,mcand l ,mier l)
begin
if gclk3'event and gclk3=' 1' then

mier(15 downto 8)<=mierl(15 downto 8);
mcand(15 downto 8)<=mcandl(15 downto 8);

end if; .
end process GATING MD MR16;
--
---PPS generation--
PPGEN: process (mier,mcand,gs 1,gs2,gs3)

variable tl,t2,t3,t4,t5,t6,t7,t8,t9,t10,t11,t12:std_logic;
variable ppv : ary;

-57-

variable a: std logic_vector(2 downto 0);
variable gckl,gck2,gck3 :std_logic;
variable mux:std_logic vector(2 downto 0);

begin
gckl:=gs1;
gck2:=gs2;
gck3:=gs3;
---------------------------- 4-bit --------------------------------
a:=mier(1 downto 0) &'0';
Booth_PP_gen(a,mcand(3 downto 0),ppv(0)(4 downto 0),tl);
a:=mier(3 downto 1);
Booth_PP_gen(a,mcand(3 downto 0),ppv(1)(4 downto 0),t3);
------- ---- --------------- 8-bit --------------------------------
a:=mier(1 downto 0) &'O';
Booth_PP_gen after(a,mcand(7 downto 3),ppv(0)(8 downto 6),t2,t5);
a:=mier(3 downto 1);
Booth_PP_gen after(a,mcand(7 downto 3),ppv(l)(8 downto 6),t4,t6);
a:=mier(5 downto 3) ;
Booth_PP_gen(a,mcand(7 downto 0),ppv(2)(8 downto 0),t7);
a:=mier(7 downto 5);
Booth_PP_gen(a,mcand (7 downto 0),ppv(3)(8 downto 0),t8);
------- ---- --------------- 16-bit --------------------------------
a:=mier(1 downto 0) &'0';
Booth_PP_gen_after(a,mcand(l5 downto 7),ppv(0)(16 downto

10),t9,ppv(0)(17));
- 	a:=mier(3 downto 1);

Booth_PP_gen_after(a,mcand(l 5 downto 7),ppv(l)(16 downto
1 0),t 1.0,ppv(1)(17));

a:=mier(5 downto 3) ;
Booth_PP_gen affter(a,mcand(15 downto 7),ppv(2)(16 downto

1 0),t 11 ,ppv(2) (17));
a:=mier(7 downto 5);
Booth_PP_gen_after(a,mcand (15 downto 7),ppv(3)(16 downto

10),t 12,ppv(3) (17));
a:=mier(9 downto 7) ;
Booth_PP_gen(a,mcand,ppv(4)(16 downto 0),ppv(4)(17));
a:=mier(1 1 downto 9);
Booth_PP_gen(a,mcand,ppv(5)(16 downto 0),ppv(5)(17));
a:=mier(13 downto 11) ;
Booth_PP_gen(a,mcand,ppv(6)(16 downto 0),ppv(6)(17));
a:=mier(15 downto 13);
Booth_PP_gen(a,mcand,ppv(7)(16 downto 0),ppv(7)(17));
------- ---- —TOPS---

mux:=gckl &gck2&gck3;
tops:case mux is

-58-

when "100" _> 	 ppv(0)(5):=t1;
ppv(1)(5):=t3;
ppv(0)(9):='0';
ppv(1)(9):='0';
Ppv(2)(9):='0';
ppv(3)(9):='0';

when "110"=> 	 ppv(0)(5):=t2;
ppv(1)(5):=t4;
ppv(0)(9):=t5;
ppv(1)(9) :=t6;
PPv(2)(9):=t7;
PPv(3)(9):=t8;

when "III" _>
PPv(0)(5):=t2;
ppv(l)(5):=t4;
PPv(0)(9):=t9;
ppv(1)(9):=t10;
ppv(2)(9):=tl 1;
ppv(3)(9):=t12;

when others => 	 ppv(0)(5):='O';
ppv(1)(5):='0;
ppv(0)(9):='O ;
ppv(1)(9):='0;
ppv(2)(9):='O';
ppv(3)(9):='O';

end case tops;
PPsO<—PPv;

end process PP_GEN;

PIPELINE REGISTER 2
PPSO GCLK1: process(gclkl)
begin

if gclkl'event and gclkl='1' then
pps(0)(5 downto 0)<=ppsO(0)(5 downto 0);
pps(1)(5 downto 0)<=ppsO(1)(5 downto 0);

end if ;
end process PPSO_GCLK1;

PPSO GCLK2: process(gclk2)
begin

if gclk2'event and gclk2=' 1 then

-59-

pps(0)(9 downto 6)<=pps0(0)(9 downto 6);
pps(1)(9 downto 6)<=ppsO(1)(9 downto 6);
pps(2)(9 downto 0)<=pps0(2)(9 downto 0);
pps(3)(9 downto 0)<=ppsO(3)(9 downto 0);

end if ;
end process PPSO_GCLK2;
PPSO_GCLK3: process(gclk3)
begin

if gclk3'event and gclk3=' 1' then
pps(0)(17 downto 10)<=pps0(0)(17 downto 10);
pps(1)(17 downto 10)<=pps0(1)(17 downto 10);
pps(2)(17 downto 10)<=pps0(2)(17 downto 10);
pps(3)(17 downto 10)<=pps0(3)(17 downto 10);
pps(4)<=ppsO(4);
pps(5)<=ppsO(5);
pps(6)<=ppsO(6);
pps(7)<=ppsO(7);

end if ;
end process PPSO_GCLK3;

PP Reduction I ---
PPS_REDN1: process (pps)
variable ppvl : ary;
variable ppv2,ppv3: aryl;
begin

ppvl:=pps;
--------------STAGE!

ppv2 (1) (1) :=ppv 1(0) (0);
ppv2(0)(1):=ppv 1(0)(1);
ppv2(0)(2):=ppv 1 (0)(2);
u3:csa_fa(ppvl (0)(3),ppvl (1)(1),ppv 1(1)(0),ppv2(0)(3),ppv2(1)(4));
u4:csa_ha(ppv 1(0)(4),ppvl (1)(2),ppv2(0)(4),ppv2(1)(5));
u5 :csa_fa(ppv 1 (0)(5),ppv 1(1)(3),ppv 1(2)(1),ppv2(0) (5),ppv2(1)(6));

ppv2(2)(5):=ppv 1 (2)(0);

u6:csa fa(ppvl(0)(6),ppvl(1)(4),ppv1(2)(2),ppv2(0)(6),ppv2(1)(7));

u7:csa—fa(ppv 1(0)(7),ppv 1(1)(5),ppv 1 (2)(3),ppv2 (0)(7),ppv2(1)(8));
ul_7: csa ha(ppv1(3)(1),ppv1(3)(0),ppv2(2)(7),ppv2(3)(8));

u8:csa_fa(ppvl (0)(8),ppvl (I)(6),ppvl (2)(4),ppv2(0)(8),ppv2(1)(9));
ppv2(2)(8):=ppv 1 (3)(2);

u9:csa_fa(ppv 1 (0)(9),ppvl (1)(7),ppv1(2)(5),ppv2(0)(9),ppv2(1)(10));
ppv2(2)(9):=ppv 1(3)(3);

'I

ul_9:csa ha(ppv1(4)(1),ppvl(4)(0),ppv2(3)(9),ppv2(3)(10));

ul 0:csa_fa(ppv 1(3)(4),ppv 1(1)(8),ppv 1 (2)(6),ppv2(0)(10),ppv2(1)(11));
ul_l0:csa ha(ppvl(0)(10),ppvl(4)(2),ppv2(2)(10),ppv2(3)(11));

ul l:csa fa(ppv1(3)(5),ppv1(1)(9),ppvl (2)(7),ppv2(0)(11),ppv2(1)(12));
ul_l l :csa_fa(ppv 1 (5)(0),ppvl (4)(3),ppvl (5)(1),ppv2(2)(11),ppv2(3)(12));
ppv2(4)(11):=ppv 1(0)(11);

ul2: csa_ha(ppv 1(2)(8),ppv 1(3)(6),ppv2 (0)(1 2),ppv2(1)(13));
ul_12:csa_ha(ppvl (0)(12),ppv1(1)(10),ppv2(2)(12),ppv2(3)(13));
u2_12:csa ha(ppvl(4)(4),ppvl(5)(2),ppv2(4)(12),ppv2(5)(13));

ul 3 :csa_ha(ppvl (2)(9),ppv 1 (3)(7),ppv2 (0)(13),ppv2(1)(14));
ul _13 :csa_fa(ppv 1(6)(0),ppv 1(6)(1),ppv l (5)(3),ppv2(2) (13),ppv2(3)(14));
u2_l3:csa fa(ppvl(0)(13),ppvl(1)(11),ppvl(4)(9),ppv2(4)(13),ppv2(5)(14));

ul 4:csa fa(ppv1(0)(14),ppv1(1)(12),ppvl (2)(10),ppv2(2)(14),ppv2(3)(15));
ul _14: csa_fa(ppv 1(6)(2),ppv 1 (4)(6),ppvl (5)(4),ppv2(4)(14),ppv2(5)(15));
ppv2(0)(14):=ppv l (3)(8);

ul 5:csa_fa(ppv l (0)(1 5),ppv l (1)(1 3),ppv l(2)(11),ppv2(1)(15),ppv2(2)(16));
ul _15: csa_fa(ppv l (6)(3),ppvl (4)(7),ppvl (5)(5),ppv2(2)(1 5),ppv2(3)(16));
u2_15:csa_ha(ppv 1 (7)(0),ppvl (7)(1),ppv2(4)(15),ppv2(5)(16));
ppv2(0)(15):=ppv 1(3)(9);

ul 6:csa_fa(ppv l (0)(1 6),ppvl (1)(14),ppv 1(2)(12),ppv2(0)(16),ppv2(1)(17));
ul_16:csa fa(ppv1(3)(10),ppv1(4)(8),ppv1(5)(6),ppv2(1)(16),ppv2(2)(17));
u2_16:csa_ha(ppv 1 (6)(4),ppv l (7)(2),ppv2(4)(16),ppv2(5)(17));
u 1 7:csa_fa(ppv 1(0)(17),ppv 1(1)(15),ppv 1(2)(13),ppv2(0)(17),ppv2(1)(18));
u1_17:csa_fa(ppv 1(3)(11),ppv 1 (4)(9),ppv 1 (5)(7),ppv2(3)(1 7),ppv2(4)(18));
u2_17:csa ha(ppv 1 (6)(5),ppv 1(7)(3),ppv2(4)(17),ppv2(5)(18));

ul 8 :csa_fa(ppv 1(1)(16),ppv 1(2)(14),ppv 1(3)(12),ppv2(2)(18),ppv2(3) (19));
ul_18:csa_fa(ppv1(4)(10),ppv1(5)(8),ppv 1 (6)(6),ppv2(3)(1 8),ppv2(4)(1 9));
ppv2(0)(18):=ppv 1(7)(4);

ul 9:csa_fa(ppvl (1)(17),ppv1(2)(15),ppv1(3)(13),ppv2(0)(19),ppv2(1)(20));
u 1_19: csa_fa(ppv 1 (4)(1 1),ppvl (5)(9),ppv 1 (6)(7),ppv2(I)(19),ppv2(2)(20));
ppv2(2)(19):=ppv 1 (7)(5);

u20:csa_fa(ppv 1(2)(16),ppv 1(3)(14),ppvl (4)(12),ppv2(0)(20),ppv2(1)(21));
ul_20:csa fa(ppvl(5)(10),ppvl(6)(8),ppvl(7)(6),ppv2(3)(20),ppv2(3)(21));

u21:csa_fa(ppv 1(2)(17),ppv 1 (3)(1 5),ppvl (4)(13),ppv2(0)(21),ppv2(1)(22));
ul_21:csa fa(ppvl(5)(11),ppvl(6)(9),ppvl(7)(7),ppv2(2)(21),ppv2(3)(22));

-61-

u22:csa_fa(ppv 1(3)(16),ppv 1(4)(14),ppvl (5)(12),ppv2(0)(22),ppv2(1)(23));
ul 22:csa ha(ppv1(6)(10),ppvl (7)(8),ppv2(2)(22),ppv2(3)(23));

u23 :csa_fa(ppv 1(3) (17),ppv 1 (4)(1 5),ppvl (5)(1 3),ppv2(0)(23),ppv2(1)(24));
ul 23:csa ha(ppv1(6)(11),ppv1(7)(9),ppv2(2)(23),ppv2(2)(24));

u24:csa_fa(ppvl (4)(16),ppv 1 (5)(l 4),ppvl (6)(l2),ppv2(0)(24),ppv2(1)(25));
ppv2(3)(24):=ppv 1(7)(10);

u25:csa fa(ppvl(4)(17),ppvl(5)(15),ppv1(6)(13),ppv2(0)(25),ppv2(1)(26));
ppv2(2)(25):=ppvl (7)(1 1);
u26:csa fa(ppv1(5)(16),ppv1(6)(14),ppv1(7)(12),ppv2(0)(26),ppv2(1)(27));

u27:csa_fa(ppvl (5)(17),ppv 1 (6)(1 5),ppvl (7)(13),ppv2(0)(27),ppv2(1)(28));

u28:csa_ha(ppv 1(6)(16),ppv 1 (7)(1 4),ppv2(0)(28),ppv2(1)(29));

u29:csa ha(ppvl(6)(17),ppv1(7)(15),ppv2(0)(29),ppv2(1)(30));

ppv2(0)(3 0) := ppv 1(7)(16);
ppv2(0)(3 1):= ppv 1(7)(17);
------------------------------STAGE 2-------------
ppv3(0)(1):=ppv2(0)(1);
ppv3(0)(2):=ppv2(0)(2);
ppv3(0)(3):=ppv2(0)(3);
ppv3(1)(1):=ppv2(1)(1);
ppv3 (0)(4) :=ppv2(0)(4);
ppv3 (1)(4) :=ppv2(1)(4);
ppv3(0)(5):=ppv2(0)(5);
ppv3 (1)(5):=ppv2(1)(5);
ppv3(2)(5):=ppv2(2)(5);
ppv3(0)(6):=ppv2(0)(6);
ppv3(1)(6):=ppv2(1)(6);

ppv3 (0)(7):=ppv2(0)(7);
ppv3(1)(7):=ppv2(1)(7);
ppv3 (2)(7):=ppv2 (2)(7);

ul_0_8:csa_fa(ppv2(0)(8),ppv2(1)(8),ppv2(2)(8),ppv3(0)(8),ppv3(1)(9));
ppv3(1)(8):=ppv2(3)(8);

ul_0_9:csa fa(ppv2(0)(9),ppv2(1)(9),ppv2(2)(9),ppv3(0)(9),ppv3(1)(1 0));
ppv3(2)(9):=ppv2(3)(9);

ul_0_10:csa ha(ppv2(0)(10),ppv2(1)(10),ppv3(0)(10),ppv3(1)(11));

-62-

ul_1_l0:csa ha(ppv2(2)(10),ppv2(3)(10),ppv3(2)(10),ppv3(3)(11));

ul_0_I l :csa_ha(ppv2(0)(11),ppv2(1)(11),ppv3 (0)(11),ppv3 (1)(12));
ul_1_l l :csa fa(ppv2(2)(11),ppv2(3)(11),ppv2(4)(11),ppv3(2)(11),ppv3(3)(12));

ul_0_12:csa_ha(ppv2(0)(12),ppv2(1)(12),ppv3 (0)(1 2),ppv3(1)(13));
ul_1_12:csa fa(ppv2(2)(12),ppv2(3)(12),ppv2(4)(12),ppv3(2)(12),ppv3(3)(13));

ul_0_ 13:csa_fa(ppv2(2)(13),ppv2(3)(13),ppv2(4)(13),ppv3(2)(13),ppv3(3)(14));
ul_1_13:csa_ha(ppv2(0)(13),ppv2(1)(13),ppv3(0)(13),ppv3 (1)(14));
ppv3 (4)(13):=ppv2(5)(13);

ul_0_14:csa_ha(ppv2(0)(14),ppv2(1)(14),ppv3(0)(14),ppv3(1)(15));
ul_1_14:csa fa(ppv2(2)(14),ppv2(3)(14),ppv2(4)(14),ppv3(2)(14),ppv3(3)(15));
ppv3(4)(14):=ppv2(5)(14);

ppv3(0)(15):=ppv2(0)(15);
ul_0_15:csa fa(ppv2(3)(15),ppv2(1)(15),ppv2(2)(15),ppv3(2)(15),ppv3(2)(16));
ul_1_15:csa ha(ppv2(5)(15),ppv2(4)(15),ppv3(4)(15),ppv3(3)(16));

ul_0_16:csa_fa(ppv2(0)(16),ppv2(1)(16),ppv2(2)(16),ppv3 (0)(16),ppv3(1)(17));
ul_1_16:csa_fa(ppv2(3)(16),ppv2(4)(16),ppv2(5)(16),ppv3(1)(16),ppv3(2)(17));

ul_0_17:csa_fa(ppv2(0)(17),ppv2(1)(17),ppv2(2)(17),ppv3(0)(17),ppv3(1)(18));
ul_1_l7:csa fa(ppv2(3)(17),ppv2(4)(17),ppv2(5)(17),ppv3(3)(17),ppv3(3)(18));

ul _0_18:csa_fa(ppv2(0)(18),ppv2(1)(18),ppv2(2)(18),ppv3 (0)(1 8),ppv3(1)(1 9));
ul_1_18:csa fa(ppv2(3)(18),ppv2(4)(18),ppv2(5)(18),ppv3(2)(18),ppv3(3)(19));

ul_O_19:csa fa(ppv2(0)(19),ppv2(1)(19),ppv2(2)(19),ppv3(0)(19),ppv3(1)(20));
u l _ 1 _ 19: cs a_ha(ppv2 (3) (19),ppv2 (4) (19),ppv3 (2)(1 9),ppv3 (3) (20));

ul_0_20:csa fa(ppv2(0)(20),ppv2(1)(20),ppv2(2)(20),ppv3(0)(20),ppv3(1)(21));
ppv3(2)(20):=ppv2(3)(20);

ul_0_21:csa fa(ppv2(0)(21),ppv2(1)(21),ppv2(2)(21),ppv3(0)(21),ppv3(1)(22));
ppv3(2)(2 1):=ppv2(3)(2 1);

ul_0_22:csa fa(ppv2(0)(22),ppv2(1)(22),ppv2(2)(22),ppv3(0)(22),ppv3(1)(23));
ppv3(2)(22):=ppv2(3)(22);

u1_0_23:csa fa(ppv2(0)(23),ppv2(1)(23),ppv2(2)(23),ppv3(0)(23),ppv3(1)(24));
ppv3 (2)(23):=ppv2(3)(23);

u 1_0_24: csa_fa(ppv2(0)(24),ppv2 (1)(24),ppv2(2)(24),ppv3 (0)(24),ppv3(1)(25));
ppv3 (2)(24):=ppv2(3)(24);

-63-

ul_O 25:csa fa(ppv2(0)(25),ppv2(1)(25),ppv2(2)(25),ppv3(0)(25),ppv3(1)(26));

ul _0_26: csa_ha(ppv2(0)(26),ppv2(1)(26),ppv3(0)(26),ppv3(1)(27));
ul _0_27: csa_ha(ppv2(0) (27),ppv2 (1)(27),ppv3 (0) (27),ppv3 (1)(28));
ul _0_28: csa_ha(ppv2(0)(28),ppv2(1)(28),ppv3 (0)(28),ppv3 (1)(29));
ul _0_29: csa_ha(ppv2(0)(29),ppv2 (1)(29),ppv3 (0) (29),ppv3 (1)(3 0));
ul _0_30: csa_ha(ppv2(0)(30),ppv2(1)(30),ppv3(0)(3 0),ppv3(1)(3 1));

ppv3 (0)(31) :=ppv2(0)(3 1);
ppv3(1)(2):='O';
ppv3(1)(3):='0;
ppv3(2)(4 downto 1):=(others=>'O');
ppv3(2)(6):='0';
ppv3(2)(8):='0';
pps 10<=ppv3;

end process PPS REDN1;

-- PIPELINE REGISTER 3 ----------------------------------
PPS 1_GCLK2:process (gclk2)
begin

if gclk2'event and gclk2=' 1' then
ppsl(0)(15 downto 1)<=ppslO(0)(15 downto 1);
ppsl(1)(15 downto 1)<=pps10(1)(15 downto 1);
pps l (2)(8 downto 1)<=pps 10(2)(8 downto 1);

end if ;
end process PPS1_GCLK2;

PPS 1_GCLK3:process (gclk3)
begin.

if gclk3 'event and gclk3=' 1' then
pps 1(0)(31 downto 16)<=pps 10(0)(31 downto 16);
pps 1(1)(31 downto 16)<=pps 10(1)(31 downto 16);
ppsl (2)(24 downto 9)<=pps 10(2)(24 downto 9);
pps 1(3)(20 downto 1 1)<=pps 10(3)(20 downto 11);
ppsl(4)(15 downto 13)<=ppsl0(4)(15 downto 13);

end if ;
end process PPSl_GCLK3;

PP Reduction 2 -------------------------------
PPS REDN2 : process (ppsl)
variable ppv4,ppv5,ppv6: aryl;

begin
ppv4:=pps1;

------------------------------STAGE 1---------------
ppv5(0)(10 downto 1):= ppv4(0)(10 downto 1);

-64-

ppv5(1)(10 downto 1):= ppv4(1)(10 downto 1);
ppv5(2)(10 downto 5):= ppv4(2)(10 downto 5);

u2_ 11:csa_fa(ppv4(0)(11),ppv4(1)(11),ppv4(2)(11),ppv5(0)(11),ppv5(1)(12));
ppv5(1)(1 1):=ppv4(3)(1 1);

u2 12:csa_fa(ppv4(0)(12),ppv4(1)(12),ppv4(2)(12),ppv5 (0)(12),ppv5(1)(13));
ppv5(2)(12):=ppv4(3)(12);

u2_13:csa_fa(ppv4(0)(13),ppv4(1)(13),ppv4(2)(13),ppv5(0)(13),ppv5(1)(14));
u21_13:csa ha(ppv4(3)(13),ppv4(4)(13),ppv5(2)(13),ppv5(3)(14));

u2_14:csa fa(ppv4(0)(14),ppv4(1)(14),ppv4(2)(14),ppv5(0)(14),ppv5(1)(15));
u21_14:csa_ha(ppv4(3)(14),ppv4(4)(14),ppv5(2)(14),ppv5(3)(15));

u2_15:csa fa(ppv4(0)(15),ppv4(1)(15),ppv4(2)(15),ppv5(0)(15),ppv5(1)(16));
u22_15:csa_ha(ppv4(3)(15),ppv4(4)(15),ppv5(2)(15),ppv5(3)(16));

u2_1 6:csa_fa(ppv4(0)(1 6),ppv4(1)(1 6),ppv4(2)(1 6),ppv5(0)(1 6),ppv5(1)(17));
ppv5(2)(16):=ppv4(3)(16);

u2_17:csa_fa(ppv4(0)(17),ppv4(1)(17),ppv4(2)(17),ppv5(0)(17),ppv5(1)(18));
ppv5 (2)(17) :=ppv4(3)(17);

u2_18:csa fa(ppv4(0)(18),ppv4(1)(18),ppv4(2)(18),ppv5(0)(18),ppv5(1)(19));
ppv5(2)(18):=ppv4(3)(18);

u2_19:csa fa(ppv4(0)(19),ppv4(1)(19),ppv4(2)(19),ppv5(0)(19),ppv5(I)(20));
ppv5 (2)(19):=ppv4(3)(19);

u2_20:csa fa(ppv4(0)(20),ppv4(1)(20),ppv4(2)(20),ppv5(0)(20),ppv5(1)(21));
ppv5 (2) (20):=ppv4(3) (20);

u2_2 1: csa_fa(ppv4 (0)(21),ppv4(1)(21),ppv4(2)(21),ppv5 (0) (21),ppv5 (1)(22));
u2_22:csa fa(ppv4(0)(22),ppv4(1)(22),ppv4(2)(22),ppv5(0)(22),ppv5(1)(23));
u2_23: csa_fa(ppv4(0)(23),ppv4(1)(23),ppv4(2)(23),ppv5 (0)(23),ppv5(1)(24));
u2_24:csa fa(ppv4(0)(24),ppv4(1)(24),ppv4(2)(24),ppv5(0)(24),ppv5(1)(25));
u2_25:csa_ha(ppv4(0)(25),ppv4(1)(25),ppv5(0)(25),ppv5(1)(26));
u2_26:csa ha(ppv4(0)(26),ppv4(1)(26),ppv5(0)(26),ppv5(1)(27));
u2_27: csa_ha(ppv4(0)(27),ppv4(1)(27),ppv5(0)(27),ppv5(1)(28));
u2_28: csa_ha(ppv4(0)(28),ppv4(1)(28),ppv5(0)(28),ppv5(1)(29));
u2_29:csa ha(ppv4(0)(29),ppv4(1)(29),ppv5(0)(29),ppv5(1)(30));
u2_3 O:csa_ha(ppv4(0)(30),ppv4(1)(30),ppv5(0)(30),ppv5(l)(31));
u2 31:csa ha(ppv4(0)(31),ppv4(1)(31),ppv5(0)(31),ppv5(0)(32));

-65-

ppv5(2)(1 1):='O ;
-----------------------------------STAGE 2--------------------------

ppv6(0)(13 downto 1):= ppv5(0)(13 downto 1);
ppv6(1)(13 downto 1):= ppv5(1)(13 downto 1);
ppv6(2)(13 downto 5):= ppv5(2)(13 downto 5);

u2_1_14:csa_fa(ppv5(0)(14),ppv5 (1)(14),ppv5(2)(14),ppv6(0)(14),ppv6(1)(15));
ppv6(1)(14) :=ppv5(3)(1 4);
u2_1_15:csa_fa(ppv5(0)(15),ppv5(l)(15),ppv5(2)(15),ppv6(0)(15),ppv6(1)(16));
ppv6(2)(15):=ppv5 (3)(15);

u2_1_16:csa fa(ppv5(0)(16),ppv5(1)(16),ppv5(2)(16),ppv6(0)(16),ppv6(1)(17));
ppv6(2)(16):=ppv5(3)(16);

u2_1_17:csa_fa(ppv5(0)(17),ppv5(1)(17),ppv5(2)(17),ppv6(0)(17),ppv6(1)(18));
u2_1_18:csa_fa(ppv5(0)(18),ppv5(1)(18),ppv5 (2)(18),ppv6(0)(18),ppv6(1)(19));
u2_1_19:csa fa(ppv5(0)(19),ppv5(1)(19),ppv5(2)(19),ppv6(0)(19),ppv6(l)(20));
u2_1_20:csa_fa(ppv5(0)(20),ppv5 (1)(20),ppv5 (2)(20),ppv6(0)(20),ppv6(1)(21));
u2_1_2 1 :csa_ha(ppv5 (0)(21),ppv5(1)(21),ppv6(0)(21),ppv6(1)(22));
u2_1_22:csa_ha(ppv5 (0)(22),ppv5(1)(22),ppv6(0)(22),ppv6(1)(23));
u2_1_23:csa_ha(ppv5 (0)(23),ppv5(1)(23),ppv6(0)(23),ppv6(1)(24));
u2_1_24:csa ha(ppv5(0)(24),ppv5(1)(24),ppv6(0)(24),ppv6(1)(25));
u2_1_25:csa_ha(ppv5 (0)(25),ppv5(1)(25),ppv6(0)(25),ppv6(1)(26));
u2_1_26:csa_ha(ppv5 (0)(26),ppv5(1)(26),ppv6(0)(26),ppv6(1)(27));
u2_1_27:csa ha.(ppv5(0)(27),ppv5(1)(27),ppv6(0)(27),ppv6(1)(28));
u2_1_28:csa_ha(ppv5 (0)(28),ppv5(1)(28),ppv6(0)(28),ppv6(1)(29));
u2_1_29:csa_ha(ppv5 (0)(29),ppv5 (1)(29),ppv6(0)(29),ppv6(1)(30));
u2_1_30:csa_ha(ppv5(0)(30),ppv5(1)(30),ppv6(0)(30),ppv6(l)(31));
u2_1_31:csa_ha(ppv5(0)(31),ppv5(1)(31),ppv6(0)(31),ppv6(1)(32));

ppv6(0)(32):=ppv5(0)(32);
ppv6(2)(14):='O';
pps20<=ppv6;

end process PPS REDN2;

-- PIPELINE REGISTER 4 ---------------------------------
PPS2_GCLK3: process(gclk3)
begin

if gclk3'event and gclk3='1' then
pps2(0)(32 downto 1)<=pps20(0)(32 downto 1);
pps2(1)(32 downto 1)<=pps20(1)(32 downto 1);
pps2(2)(16 downto 5)<= pps20(2)(16 downto 5);

end if ;
end process PPS2_GCLK3;

MUX Process
MUX_process: process(ppsl,pps2,pps,gs 1,gs2,gs3)

variable m: std_logic_vector(2 downto 0);
variable cv 1: std_logic_vector (3 downto 0);
variable cv2: std_logic_vector (7 downto 0);
variable cv3: std_logic_vector (15 downto 0);

variable cif: integer range -2**(3) to (2**_(3))-1;
variable ci2: integer range -2**(7) to (2**(7))-1;
variable ci3: integer range -2**(15) to (2**(15))-1;

begin
m:=gs 1 &gs2&gs3;
cil:= -(((2**4)-1)/3);
cv I std_ logic_vector(conv_unsigned(ci l ,4));
ci2:= -(((2**8)-1)/3);
cv2 := std_logic_vector(conv_unsigned(ci2,8));
ci3 := -(((2 * * 16)-1)/3);
cv3 := std logic_vector(conv unsigned(ci3,16));

gating:case m is
when "111'=>

pps3(0)(32 downto 1)<=pps2(0)(32 downto 1);
pps3(1)(32 downto 1)<=pps2(1)(32 downto 1);
pps3(2)(4 downto 1)<=(others=>'O');
pps3(2)(16 downto 5)<= pps2(2)(16 downto 5);
pps3(2)(32 downto 17)<= cv3;

when "110"=>
pps3(0)(15 downto 1)<=ppsl(0)(15 downto 1);
pps3(0)(32 downto 16)<=(others=>'O');
pps3(1)(15 downto 1)<=ppsl(1)(15 downto 1);
pps3(1)(32 downto 16)<=(others=>'O');
pps3(2)(4 downto 1)<=(others=>'O');
pps3(2)(8 downto 5)<=pps 1 (2)(8 downto 5);
pps3(2)(16 downto 9)<=cv2;
pps3(2)(32 downto 17)<=(others=>'O');

when "100" =>
pps3(0)(5 downto 1)<=pps(0)(5 downto 1);
pps3(0)(32 downto 6)<=(others=>'O');
pps3(1)(1)<=pps(0)(0);
PPs3(l)(2)<='0 ;
pps3(1)(7 downto 3)<=pps(1)(5 downto 1);
pps3(1)(32 downto 8)<=(others=>'O');
pps3(2)(2 downto 1)<=(others=>'0');
pps3 (2)(3)<=pps(1)(0);
PPs3.(2)(4)<='O';
pps3(2)(8 downto 5)<=cvl;
pps3(2)(32 downto 9)<=(others=>'O');

-67-

when others =>
for i in 0 to 2 loop

pps3 (i)<=(others=>'0');
end loop;

end case gating;

end process MUX_process;

--------------------------------- PP Reduction 3
PPS REDN final : process(pps3)

variable ppv7:ary2;
variable ppv8:ary3;
variable ncl:std_logic;

begin

ppv7:=pps3;
ppv8(0)(2 downto 1):= ppv7(0)(2 downto 1);
ppv8(l)(2 downto 1):= ppv7(1)(2 downto 1);
ppv8(1)(3):= '0';
u F_3:csa fa(ppv7(0)(3),ppv7(1)(3),ppv7(2)(3),ppv8(0)(3),ppv8(1)(4));
u F_4:csa_ha(ppv7(0)(4),ppv7(1)(4),ppv8(0)(4),ppv8(1)(5));
u_F_5:csa_fa(ppv7(0)(5),ppv7(1)(5),ppv7(2)(5),ppv8(0)(5),ppv8 (1)(6));
u F_6:csa_fa(ppv7(0)(6),ppv7(1)(6),ppv7(2)(6),ppv8(0)(6),ppv8(1)(7));
u F_7:csa_fa(ppv7(0)(7),ppv7(1)(7),ppv7(2)(7),ppv8(0)(7),ppv8(1)(8));
u F_8:csa fa(ppv7(0)(8),ppv7(1)(8),ppv7(2)(8),ppv8(0)(8),ppv8(1)(9));
u F_9:csa fa(ppv7(0)(9),ppv7(1)(9),ppv7(2)(9),ppv8(0)(9),ppv8(1)(10));
u F_10:csa fa(ppv7(0)(10),ppv7(1)(10),ppv7(2)(10),ppv8(0)(10),ppv8(1)(11));
u F_11:csa_fa(ppv7(0)(11),ppv7(1)(11),ppv7(2)(11),ppv8(0)(11),ppv8(1)(12));

u F_12:csa_fa(ppv7(0)(12),ppv7(1)(12),ppv7(2)(12),ppv8(0)(12),ppv8(1)(13));
u F_13:csa fa(ppv7(0)(13),ppv7(1)(13),ppv7(2)(13),ppv8(0)(13),ppv8(1)(14));
u F_14:csa fa(ppv7(0)(14),ppv7(1)(14),ppv7(2)(14),ppv8(0)(14),ppv8(1)(15));
u F_15:csa_fa(ppv7(0)(15),ppv7(1)(15),ppv7(2)(15),ppv8(0)(15),ppv8(1)(16));
u_F_l6:csa fa(ppv7(0)(16),ppv7(1)(16),ppv7(2)(16),ppv8(0)(16),ppv8(1)(17));
u_F_17:csa fa(ppv7(0)(17),ppv7(1)(17),ppv7(2)(17),ppv8(0)(17),ppv8(1)(18));
u_F_18:csa fa(ppv7(0)(18),ppv7(1)(18),ppv7(2)(18),ppv8(0)(18),ppv8(l)(19));
u_F_19:csa_fa(ppv7(0)(19),ppv7(1)(19),ppv7(2)(19),ppv8(0)(19),ppv8 (1)(20));
u F_20:csa_fa(ppv7(0)(20),ppv7(1)(20),ppv7(2)(20),ppv8(0)(20),ppv8 (1)(21));
u F_21:csa_fa(ppv7(0)(21),ppv7(1)(21),ppv7(2)(21),ppv8(0)(21),ppv8(1)(22));
u F_22:csa_fa(ppv7(0)(22),ppv7(1)(22),ppv7(2)(22),ppv8(Q)(22),ppv8(1)(23));
u_F 23:csa fa(ppv7(0)(23),ppv7(1)(23),ppv7(2)(23),ppv8(0)(23),ppv8(1)(24));
u F_24:csa_fa(ppv7(0)(24),ppv7(1)(24),ppv7(2)(24),ppv8(0)(24),ppv8(1)(25));
u_F_25 :csa_fa(ppv7(0)(25),ppv7(1)(25),ppv7(2)(25),ppv8(0)(25),ppv8(1)(26));
u_F_26:csa fa(ppv7(0)(26),ppv7(1)(26),ppv7(2)(26),ppv8(0)(26),ppv8(1)(27));
u F_27:csa_fa(ppv7(0)(27),ppv7(1)(27),ppv7(2)(27),ppv8(0)(27),ppv8(1)(28));
u F 28:csa fa(ppv7(0)(28),ppv7(1)(28),ppv7(2)(28),ppv8(0)(28),ppv8(1)(29));

-68-

u F_29:csa_fa(ppv7(0)(29),ppv7(1)(29),ppv7(2)(29),ppv8(0)(29),ppv8(1)(30));
u F_30:csa fa(ppv7(0)(30),ppv7(1)(30),ppv7(2)(30),ppv8(0)(30),ppv8(1)(31));
u F_31:csa fa(ppv7(0)(31),ppv7(1)(31),ppv7(2)(31),ppv8(0)(31),ppv8(1)(32));
u F_32:csa_fa(ppv7(0)(32),ppv7(1)(32),ppv7(2)(32),ppv8(0)(32),nc1);

pps40<=ppv8;
end process PPS REDN final;
--
--- PIPELINE REGISTER 5 -----------------------------------
PPSf GCLK1: process(gclkl)
begin

if gclkl'event and gclkl='1' then
pps4(0)(8 downto 1)<=pps40(0)(8 downto 1);
pps4(1)(8 downto 1)<=pps40(1)(8 downto 1);

end if ;
end process PPSf GCLK 1;

PPSf GCLK2: process(gclk2)
begin

if gclk2'event and gclk2=' 1' then
pps4(0)(16 downto 9)<=pps4O(0)(16 downto 9);
pps4(1)(16 downto 9)<=pps4O(1)(16 downto 9);

end if ;
end process PPSf GCLK2;

PPSfGCLK3: process(gclk3)
begin

if gelk3'event and gclk3=' 1' then
pps4(0)(32 downto 17)<=pps40(0)(32 downto 17);
pps4(1)(32 downto 17)<=pps4O(l)(32 downto 17);

end if ;
end process PPSf GCLK3;
--
--RCA---
RIPPLE:process (pps4)
variable ppv9:ary3;
variable ppvl0: std_logic_vector(m+n downto 1);
begin

ppv9:=pps4;
rca(ppv9(0),ppv9(I),ppv 10);
pps5<=ppv 10;

end process RIPPLE;

---------------------------------- ------- PIPELINE REGISTER 6 ------------------------
PROD_GCLK 1:process(gclk 1)
begin

if gclkl'event and gclkl='1' then

'S

prod(? downto 0)<=pps5(8 downto 1);
end if ;

end process PROD GCLK1;

PROD_GCLK2:process(gclk2)
begin

if gclk2'event and gclk2='1' then
prod(16 downto 8)<=pps5(17 downto 9);

end if;

end process PROD_GCLK2;

PROD_GCLK3:process(gclk3)
begin

if gclk3'event and gclk3=' l' then
prod(31 downto 17)<=pps5(32 downto 18);

end if ;
end process PROD GCLK3;
--
end Behavioral;
---------------------------- END OF 2D-MULTIPLIER ARCHITECTURE---------------------

-70-

APPENDIX-B

B. 1-Dimensional pipeline gated Booth multiplier

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE. STD—LOG IC—ARITH. ALL;
use IEEE.STD LOGIC UNSIGNED. ALL;

entity multiplier _id is
generic (m:integer :=16; n: integer:=16);
Port (mierl : in STD LOGIC_ VECTOR (m-1 downto 0);

mcandl : in STD _LOGIC _VECTOR (n-1 downto 0);
clk: in STD LOGIC;
gsl : in STD_LOGIC;
gs2 : in STD_LOGIC;
gs3 : in STD_LOGIC;
prod : out STD_LOGIC_VECTOR (m+n-1 downto 0));

end multiplier 1 d;
--------------------------ARHITECTURE OF I D BOOTH MULTIPLIER
architectureBehavioral of multiplier 1 d is

type ary is array(O to m/2-1) of STD_ LOGIC_ VECTOR(n+1 downto 0);
type aryl is array(0 to 6) of STD_LOGIC_VECTOR(m+n downto 1);
type ary2 is array(O to 2) of STD_ LOGIC_ VECTOR(m+n downto 1);
type ary3 is array(0 to 1) of STD_ LOGIC_ VECTOR(m+n downto 1);
subtype word is std_logic_vector(n- I downto 0);

signal load l ,load2,load3,gclk l ,gclk2,gclk3:std_logic;
signal mier:STD_LOGIC_VECTOR (m-I downto 0);
signal mcand:STD_LOGIC_VECTOR (n-I downto 0);
signal pps,pps0 : ary;
signal pps l ,pps 10,pps20: aryl;
signal pps2: ary2;
signal pps3: ary2;
signal pps4,pps4O:ary3;
signal pps5: std_ logic_vector(m+n downto 1);
--------------------------------BOOTH ENCODER AND PP GENERATOR
PROCEDUREBooth_PP_gen(a:in std_logic_vector(2 downto 0);md: in
std_logic_vector;PP:out std_logic_vector) is

variable bb 	: std_logic_vector (md'range);
variable psum 	: std_logic_vector (md'range);
variable b_bar : std_logic_vector (md'range);
variable two_b : std_logic_vector (md'range);
variable two_b_bar : std_logic_vector (md'range);
variable cin 	: std_logic;

-71-

variable topbit : std_logic;
begin

two b:=md(md'left-1 downto 0) & '0';
b bar:=not md;
two bbar:=not two b;

case a is
when "001" ("010" => bb:= md;

cin:='O';
when "011" => bb:= twob;

cin:='O';
when "100" => bb:= two_b_bar;

cin:='1;
when 	"101" I "110" _> bb:= b_bar;

cin:='1;
when others => bb:=(others=>'O');

cin:='O';
end case;

top: case a is
when "001"I"010"I"011" => topbit:=not md(md'left);
when "100"I" 101 "i" 110" => topbit:=md(md'left);
when "000" I" 111 "=>topbit:=' 1';
when others =>topbit:='O';

end case top;

PP:=topbit&bb&cin;
end Booth_PP_gen;

-------------------------- -------------------- [2:2] compressor--
PROCEDURE CSA_ha(a:in std_logic ;b: in std_logic;s: out std_logic;c: out std_logic) is
begin
s:=axorb;
c:= a and b;
end PROCEDURE CSA ha;

-- [3:2] compressor------------------------ ----------------
PROCEDURE CSA_fa(a:in std_logic ;b: in std_logic ;d : in std_logic ;s: out std_logic;
c: out std_logic) is
begin

s:= a xor b xor d;
c:= (a and b) or (a and d) or (b and d);

end PROCEDURE CSA fa;
--
---RCA--

-72-

PROCEDURE rca (a : in std_logic_vector; b: in std_logic vector;sum:out
std logic vector) is
variable c: std_logic_vector(a'range);
variable nc:std_logic;
begin
for i in a'right to a'left loop
if i=a'right then

CSA_fa(a(i),b(i),'O',sum(i),c(i));
elsif i/=a'lefft then

CSA_fa(a(i),b(i),c(i- 1),sum(i),c(i));
else
CSA_fa(a(i),b(i),c(i-1),sum(i),nc);
end if;

end loop;
end PROCEDURE rca;
--------------------BEGINNING ARHITECTURE OF 1D BOOTH MULTIPLIER
Begin
----------------------------------Clock Gating Logic ---
GATED_CLKs: process (clk,gsl, gs2, gs3,loadl,load2,load3)
begin

if clk='O then
loadl <=gs 1;
load2<=gs2;
load3<=gs3;

end if ;
gclkl<= loadl and clk;
gclk2<= load2 and clk;
gclk3<= load3 and clk;

end process GATED CLKs;

--- PIPELINE REGISTER 1
PIPELINING_MD: process(clk,mcandl)
begin
if clk'event and clk='1' then

mcand<=mcand1;
end if
end process PIPELINING MD;

PIPELINING_MR1: process(gclkl,mierl)
begin
if gclkl'event and gclkl='1' then

. mier(3 downto 0)<=mierl(3 downto 0);
end if;
end process PIPELINING MR1;

PIPELINING MR2: process(gclk2,mierl)

-73-

begin
if gclk2'event and gclk2=' l' then

mier(7 downto 4)<=mierl(7 downto 4);
end if;
end process PIPELINING MR2;

PIPELINING_MR3: process(gclk3,mierl)
begin
if gc1k3'event and gclk3='1' then

mier(15 downto 8)<=mierl(15 downto 8);
end if;
end process PIPELINING MR3;

PP Generation
PP_GEN:process (mier,mcand)

variable ppv : ary;
variable a: std_logic_vector(2 downto 0);
variable mux:std_logic_vector(2 downto 0);
begin

---------------- 	4- bits -
a:=mier(1 downto 0) &'0';
Booth_PP_gen(a,mcand,ppv(0));
a:=mier(3 downto 1);
Booth_PP_gen(a,mcand,ppv(1));
------- ---- -- 	8- bits --------------------------------
a:=mier(5 downto 3);
Booth_PP_gen(a,mcand,ppv(2));
a:=mier(7 dowinto 5);
Booth_PP_gen(a,mcand ,ppv(3));
------- ---- ----- 	16-bits --------------------------------
a:=mier(9 downto 7) ;
B o oth_PP_gen(a,mcand,ppv(4));
a:=mier(11 downto 9);
B ooth_PP_gen(a,mcand,ppv(5));
a:=mier(13 downto 11) ;
Booth_PP gen(a,mcand,ppv(6));
a:=mier(15 downto 13);
B ooth_PP_gen(a,mcand,ppv(7));
------- ---- —TOPS---

pps0<=ppv;
end process PP GEN;

--- PIPELINE REGISTER 2
PPSO_GCLK1: process(gclkl,pps0)
begin

if gclkl'event and gclkl='1' then

-74-

pps(0)<=ppsO(0);
pps(1)<=pps0(1);

end if ;
end process PPSO_GCLKI;

PPSO GCLK2: process(gclk2,pps0)
begin

if gclk2'event and gclk2=' 1' then
Pps(2)<=PPsO(2);
pps(3)<=ppsO(3);

end if ;
end process PPSO_GCLK2;

PPSO GCLK3: process(gclk3,pps0)
begin

if gclk3'event and gclk3=' 1' then
pps(4)<=ppsO(4);
pps(5)<=ppsO(5);
pps(6)<=ppsO(6);
pps(7)<=pps0(7);

end if ;
end process PPSO_GCLK3;

PP Reduction 1 ---
PPS_REDN1: process (pps)
variable ppv 1 : ary;
variable ppv2,ppv3: aryl;
begin

PPvl :=pps;
-------------------------------STAGE 1--------------------------
ppv2(1)(1):=ppv 1 (0)(0);
ppv2(0)(4 downto 1):=ppvl(0)(4 downto 1);
ppv2(1)(4 downto 3) := ppv1(1)(2 downto 1);
ppv2(2)(3):=ppv 1(1)(0);

u5:csa. fa(ppv1(0)(5),ppv1(1)(3),ppvl(2)(1),ppv2(0)(5),ppv2(1)(6));
ppv2(1)(5):=ppv 1(2)(0);

u6:csa fa(ppv1(0)(6),ppvl(1)(4),ppvl(2)(2),ppv2(0)(6),ppv2(1)(7));
u7:csa_fa(ppv 1 (0)(7),ppvl (1)(5),ppvl (2)(3),ppv2(0)(7),ppv2(1)(8));
ul_7: csa ha(ppvl(3)(1),ppvl(3)(0),ppv2(2)(7),ppv2(3)(8));

u8:csa_fa(ppv 1 (0)(8),ppv 1(1)(6),ppvl (2)(4),ppv2(0)(8),ppv2(1)(9));
ppv2(2)(8):=ppv 1 (3)(2);

u9:csa_fa(ppv 1 (0)(9),ppv l (1)(7),ppv l (2)(5),ppv2(0)(9),ppv2(1)(10));

-75-

ppv2(2)(9):=ppv 1 (3)(3);
ul_9:csa_ha(ppv 1(4)(1),ppvl (4)(0),ppv2(3)(9),ppv2(4)(10));

ul0:csa_fa(ppv 1(0)(10),ppv 1(1)(8),ppv 1 (2)(6),ppv2(0)(1 0),ppv2(1)(1 1));
ppv2(2)(10) :=ppv 1 (3)(4); 	 V
ppv2(3)(1 0):=ppv 1(4)(2);

ul 1:csa fa(ppvl(0)(11),ppvl(1)(9),ppv1(2)(7),ppv2(0)(11),ppv2(1)(12));
ul_l1:csa fa(ppv1(5)(0),ppvl(4)(3),ppvl(5)(1),ppv2(3)(11),ppv2(4)(12));
ppv2(2)(1 1):=ppv 1(3)(5);

u12:csa ha(ppvl(5)(2),ppvl(4)(4),ppv2(3)(12),ppv2(4)(13));
ul_12:csa_fa(ppv1(0)(12),ppv1(1)(10),ppv1(2)(8),ppv2(0)(12),ppv2(1)(13));
ppv2(2)(1 2):=ppv 1(3)(6);

ul3:csa fa(ppvl (2)(9),ppvl(1)(11),ppv1(0)(13),ppv2(0)(13),ppv2(1)(14));
ul_13:csa fa(ppv1(4)(5),ppvl (6)(1),ppvl(5)(3),ppv2(3)(13),ppv2(4)(14));
ppv2(2)(13):=ppv 1(3)(7);
ppv2(5)(13):=ppv 1(6)(0);
u14:csa_fa(ppvl (0)(14),ppv 1(1)(12),ppvl (2)(1 0),ppv2(0)(1 4),ppv2(1)(1 5));
ul_14:csa_fa(ppv I (6)(2),ppvl (4)(6),ppvl (5)(4),ppv2(3)(14),ppv2(4)(15));
ppv2(2)(14):=ppv 1(3)(8);

ul5:csa fa(ppv1(0)(15),ppvl(1)(13),ppvl(2)(11),ppv2(0)(15),ppv2(1)(16));
ul_15:csa fa(ppv1(6)(3),ppvl (4)(7),ppvl (5)(5),ppv2(3)(1 5),ppv2(4)(1 6));
u2_15:csa ha(ppvl(7)(0),ppvl(7)(1),ppv2(5)(15),ppv2(6)(16));
ppv2(2)(15):=ppv 1(3)(9);

ul 6 :csa_fa(ppvl (0)(16),ppv 1(1)(14),ppvl (2)(12),ppv2(0)(16),ppv2(1)(17));
ul_16:csa_fa(ppv 1(6)(4),ppvl (4)(8),ppvl (5)(6),ppv2(3)(16),ppv2(4)(17));
ppv2(2)(1 6):=ppvl(3)(10);
ppv2(5)(16) :=ppv 1(7)(2);

ul 7:csa_fa(ppvl (0)(17),ppv 1(1)(1 5),ppvl (2)(1 3),ppv2(0)(1 7),ppv2(1)(18));
ul_17: csa_fa(ppv 1(6)(5),ppvl (4)(9),ppvl (5)(7),ppv2(3)(17),ppv2(3)(18));
ppv2(2)(17):=ppv 1(3)(11);
ppv2(5)(17):=ppv 1(7)(3);

u18:csa_fa(ppv l (1)(16),ppv l (2)(14),ppvl (3)(12),ppv2(0)(18),ppv2(1)(19));
u l _18: csa_fa(ppv 1(4)(10),ppv 1(5)(8),ppv 1(6)(6),ppv2(2)(18),ppv2(3)(19));
ppv2(4)(18):=ppv 1(7)(4);

ul 9 :csa_fa(ppv 1(1)(17),ppv 1(2)(15),ppvl (3)(1 3),ppv2(0)(1 9),ppv2(1)(20));
ul_19:csa fa(ppv1(4)(11),ppv1(5)(9),ppvl(6)(7),ppv2(2)(19),ppv2(3)(20));
ppv2(4)(1 9):=ppv 1(7)(5);

-76-

u20:csa_ha(ppv 1 (2)(1 6),ppvl (3)(14),ppv2(0)(20),ppv2(1)(21));
ul 20:csa_fa(ppv 1 (5)(1 0),ppv 1 (6)(8),ppv 1 (4)(1 2),ppv2(2)(20),ppv2(3)(2 1));
ppv2(4)(20) :=ppv 1(7)(6);

u21:csa ha(ppvl(2)(17),ppvl(3)(15),ppv2(0)(21),ppv2(1)(22));
ul_21:csa fa(ppvl(5)(11),ppvl(6)(9),ppvl(4)(13),ppv2(2)(21),ppv2(3)(22));
ppv2(4)(2 1):=ppvl (7)(7);

ppv2(0)(22):=ppvl (3)(16);
u22:csa fa(ppvl(6)(10),ppv1(4)(14),ppvl(5)(12),ppv2(2)(22),ppv2(3)(23));
ppv2(4)(22):=ppvl (7)(8);

ppv2(0)(23):=ppvl (3)(17);
u23:csa fa(ppv1(6)(11),ppv1(4)(15),ppvl(5)(13),ppv2(1)(23),ppv2(2)(24));
ppv2(2)(23) ppvl(7)(9);

u24:csa_fa(ppvl (4)(16),ppv 1 (5)(1 4),ppvl (6)(12),ppv2(0)(24),ppv2(1)(25));
ppv2(1)(24):=ppv1(7)(10);

u25:csa fa(ppv1(4)(17),ppv1(5)(15),ppv1(6)(13),ppv2(0)(25),ppv2(1)(26));
ppv2(2)(25):=ppv 1(7)(11);

u26:csa fa(ppv1(5)(16),ppvl(6)(14),ppv1(7)(12),ppv2(0)(26),ppv2(1)(27));

u27:csa fa(ppvl(5)(17),ppvl(6)(15),ppv1(7)(13),ppv2(0)(27),ppv2(1)(28));

u28:csa_ha(ppv 1 (6)(1 6),ppvl (7)(1 4),ppv2(0)(28),ppv2(1)(29));

u29:csa ha(ppv1(6)(17),ppvl(7)(15),ppv2(0)(29),ppv2(1)(30));

ppv2(0)(30):= ppvl(7)(16);
ppv2(0)(3 1):= ppv 1(7)(17);
ppv2(1)(2):='O';
------------------------------STAGE 2--------------------------
ppv3(0)(7 downto 1):=ppv2(0)(7 downto 1);
ppv3(1)(7 downto 1):=ppv2(1)(7 downto 1);
ppv3(2)(3):=ppv2(2)(3);
ppv3(2)(7):=ppv2(2)(7);

ul_0_8:csa_fa(ppv2(0)(8),ppv2(1)(8),ppv2(2)(8),ppv3(0)(8),ppv3 (1)(9));
ppv3(1)(8):=ppv2(3)(8);

ul_0_9:csa_fa(ppv2(0)(9),ppv2(1)(9),ppv2(2)(9),ppv3(0)(9),ppv3 (1)(10));
ppv3(2)(9):=ppv2(3)(9);

ul_0_10:csa_fa(ppv2(0)(10),ppv2(1)(10),ppv2(2)(10),ppv3(0)(10),ppv3(1)(11));

-77-

ul_1_l 0:csa_ha(ppv2(3)(10),ppv2(4)(10),ppv3(2)(10),ppv3 (3)(11));

ul_0_l l :csa_fa(ppv2(0)(11),ppv2(1)(11),ppv2(2)(11),ppv3 (0)(11),ppv3(1)(12));
ppv3(2)(11):=ppv2(3)(11);

ul_0_12: csa_fa(ppv2(0)(12),ppv2(1)(12),ppv2(2)(12),ppv3(0)(12),ppv3(1)(13));
ul_l_12:csa ha(ppv2(3)(12),ppv2(4)(12),ppv3(2)(12),ppv3(3)(13));

ul_0_13:csa_fa(ppv2(0)(13),ppv2(1)(13),ppv2(2)(13),ppv3(0)(13),ppv3 (1)(14));
ul_1_13:csa_fa(ppv2(3)(13),ppv2(4)(13),ppv2(5)(13),ppv3 (2)(13),ppv3 (3)(14));

ul_0_14:csa_fa(ppv2(0)(14),ppv2(1)(14),ppv2(2)(14),ppv3(0)(14),ppv3 (1)(15));
ul_1_14: csa_ha(ppv2(3)(14),ppv2(4)(14),ppv3 (2)(14),ppv3 (3)(15));

ul_0_15: csa_fa(ppv2(0)(15),ppv2(1)(15),ppv2(2)(15),ppv3(0)(15),ppv3(1)(16));
ul_I_15:csa fa(ppv2(3)(15),ppv2(4)(15),ppv2(5)(15),ppv3(2)(15),ppv3(3)(16));

ul_0_16: csa_fa(ppv2(0)(16),ppv2(1)(16),ppv2(2)(16),ppv3(0)(16),ppv3 (1)(17));
ul_1_16: csa_fa(ppv2(3)(16),ppv2(4)(16),ppv2(5)(16),ppv3(2)(16),ppv3(3)(17));
ppv3(4)(16):=ppv2(6)(16);

ul_0_17: csa_fa(ppv2(0)(17),ppv2(1)(17),ppv2(2)(17),ppv3(0)(17),ppv3(1)(18));
ul_1_17:csa fa(ppv2(3)(17),ppv2(4)(17),ppv2(5)(17),ppv3(2)(17),ppv3(3)(18));

ul_0_18: csa_fa(ppv2(0)(18),ppv2(1)(18),ppv2(2)(18),ppv3 (0)(18),ppv3(1)(19));
ul_1_18:csa ha(ppv2(3)(18),ppv2(4)(18),ppv3(2)(18),ppv3(3)(19));

ul _0_19: csa_ha(ppv2(0)(19),ppv2.(1)(19),ppv3 (0)(19),ppv3 (1)(20));
ul _1_19:csa_fa(ppv2(2)(19),ppv2(3)(19),ppv2(4)(19),ppv3 (2)(19),ppv3(3)(20));

ul_0 20:csa_ha(ppv2(0)(20),ppv2(1)(20),ppv3(0)(20),ppv3(1)(21));
ul_1_20:csa fa(ppv2(2)(20),ppv2(3)(20),ppv2(4)(20),ppv3(2)(20),ppv3(3)(21));

ul _0_21: csa_ha(ppv2(0)(21),ppv2(1)(21),ppv3 (0)(21),ppv3 (1)(22));
ul_1 21:csa fa(ppv2(2)(21),ppv2(3)(21),ppv2(4)(21),ppv3(2)(21),ppv3(3)(22));

u1. 0_22: csa_ha(ppv2 (0)(22),ppv2 (1)(22),ppv3 (0)(22),ppv3 (1)(23));
ul _l 22: csa_fa(ppv2(2)(22),ppv2(3)(22),ppv2(4)(22),ppv3 (2)(22),ppv3 (3)(23));

ul_0 23:csa_fa(ppv2(3)(23),ppv2(1)(23),ppv2(2)(23),ppv3(2)(23),ppv3(1)(24));
ppv3 (0) (23) :=ppv2(0) (2 3);

ul_0 24:csa fa(ppv2(0)(24),ppv2(1)(24),ppv2(2)(24),ppv3(0)(24),ppv3(1)(25));

ul _0_25: csa_fa(ppv2(0)(25),ppv2(1)(25),ppv2(2)(25),ppv3 (0)(25),ppv3(1)(26));

-78-

ul_0_26:csa ha(ppv2(0)(26),ppv2(1)(26),ppv3(0)(26),ppv3(1)(27));
ul_0_27:csa_ha(ppv2(0)(27),ppv2(l)(27),ppv3(0)(27),ppv3(1)(28));
u l _0_28: csa_ha(ppv2(0)(28),ppv2 (1)(28),ppv3 (0)(2 8),ppv3 (1) (29));
ul_0_29:csa ha(ppv2(0)(29),ppv2(1)(29),ppv3(0)(29),ppv3(1)(30));
ul_0_30:csa ha(ppv2(0)(30),ppv2(1)(30),ppv3(0)(30),ppv3(1)(31));

ppv3 (0')(31):=ppv2(0) (3 1);
ppv3(2)(6 downto 4):=(others=>'O');
ppv3(2)(2 downto 1):=(others=>'O');
Ppv3(2)(8):='0';
ppv3(3)(12):='O';
pps 10<=ppv3;

end process PPS REDN1;

PIPELINE REGISTER 3 ----------------------------------
PPS 1_GCLK2:process (gclk2)
begin

if gclk2'event and gclk2='1' then
ppsl(0)(31 downto 1)<=ppslO(0)(23 downto 1);
ppsl(1)(31 downto 1)<=pps1O(1)(23 downto 1);
ppsl(2)(24 downto 1)<=ppslO(2)(7 downto 1);
pps l (3)(23 downto 1 1)<=pps 10(3)(23 downto 11);
pps 1 (4)(1 6)<=pps 10(4)(16);

end if ;
end process PPS1_GCLK2;
--

PP Reduction 2 ---
PPS REDN2 : process (ppsl)

variable ppv4,ppv5,ppv6: aryl;
begin
ppv4:=ppsl;

------------------------------STAGE 1----------------
ppv5(0)(10 downto 1):= ppv4(0)(10 downto 1);
ppv5(l)(10 downto 1):= ppv4(1)(10 downto 1);
ppv5(2)(10 downto 3):= ppv4(2)(10 downto 3);

u2_11:csa_fa(ppv4(0)(11),ppv4(1)(11),ppv4(2)(11),ppv5(0)(I 1),ppv5(1)(12));
ppv5(1)(I 1):=ppv4(3)(1 1);

u2_12:csa fa(ppv4(0)(12),ppv4(1)(12),ppv4(2)(12),ppv5(0)(12),ppv5(1)(13));

u2_13:csa_fa(ppv4(0)(13),ppv4(1)(13),ppv4(2)(13),ppv5 (0)(13),ppv5(1)(14));
ppv5(2)(13):=ppv4(3)(13);

u2_14: csa_fa(ppv4(0)(14),ppv4(1)(14),ppv4(2)(14),ppv5 (0)(14),ppv5(1)(15));
ppv5(2)(14) :=ppv4(3)(14);

-79-

u2_15:csa_fa(ppv4(0)(15),ppv4(1)(15),ppv4(2)(15),ppv5(0)(15),ppv5(1)(16));
ppv5(2)(15):=ppv4(3)(15);

u2_16:csa_fa(ppv4(0)(16),ppv4(1)(16),ppv4(2)(16),ppv5(0)(16),ppv5(1)(17));
u2_1_1 6 : c sa_ha(ppv4 (3) (16),ppv4 (4) (16),ppv5 (2) (16),ppv5 (3)(17));

u2_17:csa_fa(ppv4(0)(17),ppv4(1)(17),ppv4(2)(17),ppv5(0)(17),ppv5(1)(18));
ppv5(2) (17):=ppv4(3)(17);

u2_18:csa_fa(ppv4(0)(18),ppv4(1)(18),ppv4(2)(18),ppv5(0)(18),ppv5(1)(19));
ppv5(2)(18):=ppv4(3)(18);

u2_19:csa_fa(ppv4(0)(19),ppv4(1)(19),ppv4(2)(19),ppv5 (0)(19),ppv5(1)(20));
ppv5 (2) (19) :=ppv4(3)(19);

u2_20:csa_fa(ppv4(0)(20),ppv4(l)(20),ppv4(2)(20),ppv5 (0)(20),ppv5(1)(21));
ppv5(2)(20):=ppv4(3)(20);

u2_2'l :csa_fa(ppv4(0)(21),ppv4(1)(21),ppv4(2)(21),ppv5 (0)(21),ppv5(1)(22));
ppv5 (2)(21):=ppv4(3)(21);
u2_22:csa_fa(ppv4(0)(22),ppv4(1)(22),ppv4(2)(22),ppv5(0)(22),ppv5(1)(23));
ppv5 (2)(22):=ppv4(3)(22);
u2_23:csa_fa(ppv4(0)(23),ppv4(1)(23),ppv4(2)(23),ppv5(0)(23),ppv5(1)(24));
ppv5 (2)(23):=ppv4(3)(23);

u2_24:csa ha(ppv4(0)(24),ppv4(1)(24),ppv5(0)(24),ppv5(1)(25));
u2_25: csa_ha(ppv4(0)(25),ppv4(1)(25),ppv5 (0)(25),ppv5 (1)(26));
u2_26:csa ha(ppv4(0)(26),ppv4(1)(26),ppv5(0)(26),ppv5(1)(27));
u2_27:csa_ha(ppv4(0)(27),ppv4(1)(27),ppv5 (0)(27),ppv5 (1)(28));
u2_2 8:csa_ha(ppv4(0)(28),ppv4(1)(28),ppv5 (0)(28),ppv5 (1)(29));
u2_29:csa_ha(ppv4(0)(29),ppv4(1)(29),ppv5 (0)(29),ppv5 (1)(30));
u2_30:csa ha(ppv4(0)(30),ppv4(1)(30),ppv5(0)(30),ppv5(1)(31));
u2_31: csa_ha(ppv4(0)(31),ppv4 (1) (31),ppv5 (0)(3 1),ppv5 (0)(32));
ppv5(2)(12 downto 11):=(others=>'O');
-----------------------------------STAGE 2--------------------------
ppv6(0)(16 downto 1):= ppv5(0)(16 downto 1);
ppv6(1)(16 downto 1):= ppv5(1)(16 downto 1);
ppv6(2)(16 downto 3):= ppv5(2)(16 downto 3);

u2_1_17:csa fa(ppv5(0)(17),ppv5(1)(17),ppv5(2)(17),ppv6(0)(17),ppv6(1)(18))
ppv6(1)(17):=ppv5(3)(17);

u2_1_18:csa_fa(ppv5(0)(18),ppv5(1)(18),ppv5(2)(18),ppv6(0)(18),ppv6(1)(19));
u2_1_19:csa_fa(ppv5(0)(19),ppv5(1)(19),ppv5(2)(19),ppv6(0)(19),ppv6(1)(20));
u2_1 20:csa_fa(ppv5(0)(20),ppv5(1)(20),ppv5(2)(20),ppv6(0)(20),ppv6(l)(21));

:1

u2_1_21:csa_fa(ppv5(0)(21),ppv5(1)(21),ppv5(2)(21),ppv6(0)(21),ppv6(1)(22));
u2_1_22:csa_fa(ppv5(0)(22),ppv5(1)(22),ppv5(2)(22),ppv6(0)(22),ppv6(1)(23));
u2_1_23 :csa_faQpv5(0)(23),ppv5 (1)(23),ppv5(2)(23),ppv6(0)(23),ppv6(1)(24));
u2-1_24:csa ha(ppv5(0)(24),ppv5(1)(24),ppv6(0)(24),ppv6(1)(25));
u2_1_25:csa_ha(ppv5(0)(25),ppv5(1)(25),ppv6(0)(25),ppv6(1)(26));
u2_1_26:csa ha(ppv5(0)(26),ppv5(1)(26),ppv6(0)(26),ppv6(1)(27));
u2_1 27: csa_ha(ppv5 (0)(27),ppv5 (1)(27),ppv6(0)(27),ppv6(1)(28));
u2_1_28:csa ha(ppv5(0)(28),ppv5(1)(28),ppv6(0)(28),ppv6(1)(29));
u2_1_29 :csa ha(ppv5(0)(29),ppv5(1)(29),ppv6(0)(29),ppv6(1)(30));
u2_1_3 0 : csa_ha(ppv5 (0) (3 0),pp v5 (1) (3 0),ppv6 (0) (3 0),ppv6 (1) (3 1));
u2_1_31:csa_ha(ppv5(0)(31),ppv5(1)(31),ppv6(0)(31),ppv6(1)(32));

ppv6(0)(32):=ppv5(0)(32);
pps20<=ppv6;

end process PPS REDN2;

PIPELINE REGISTER 3
PPS2 GCLK3: process(gclk3)
begin

if gclk3'event and gclk3=' 1' then
pps2(0)(32 downto 1)<=pps20(0)(32 downto 1);
pps2(1)(32 downto 1)<=pps20(1)(32 downto 1);
pps2(2)(16 downto 3)<= pps20(2)(16 downto 3);

end if ;
end process PPS2_GCLK3;
--
--- MUX Process ---
MUX_process: process(pps 1,pps2,pps,gs 1,gs2,gs3)
variable m:std_logic_vector(2 downto 0);
variable cv3: std_logic_vector (15 downto 0);
variable ci3: integer range -2**(15) to (2**(15))-1;
begin
m:=gs 1 &gs2&gs3;
ci3:= -(((2* * 16)-1)/3);
cv3 := std _logic _ vector(conv_unsigned(ci3,16));
gating: case m is

when "111"=>
pps3(0)(32 downto 1)<=pps2(0)(32 downto 1);
pps3(1)(32 downto 1)<=pps2(1)(32 downto 1);
pps3(2)(2 downto 1)<=(others=>'O');
pps3(2)(16 downto 3)<= pps2(2)(16 downto 3);
pps3(2)(32 downto 17)<= cv3;

when "110"=>
pps3(0)(16 downto 1)<=pps 1(0)(16 downto 1);
pps3(0)(32 downto 17)<=(others=>'O');
pps3(1)(15 downto 1)<=ppsl(1)(15 downto 1);
pps3(1)(32 downto 16)<=(others=>'O');

-81-

pps3(2)(8 downto 1)<=ppsl(2)(8 downto 1);
pps3(2)(32 downto 9)<=(others=>'O');

when "l00"=>
pps3(0)(8 downto 1)<=pps(0)(8 downto 1);
pps3(0)(32 downto 9)<=(others=>'O');
pps3(1)(l)<=pps(0)(0);
Pps3(1)(2)<='0';
pps3(1)(8 downto 3)<=pps(l)(6 downto 1);
pps3(1)(32 downto 9)<=(others=>'O');
pps3(2)(2 downto 1)<=(others=>'O');
Pps3 (2)(3)<=Pps(1)(0);
pps3(2)(4)<='O';
pps3(2)(32 downto 5)<=(others=>'O');

when others=>
for i in 0 to 2 loop

pps3(i)<=(others=>'O');
end loop;

end case gating;
end process MUX_process;

PP Reduction 3
PPS_REDN_final : process(pps3)
variable ppv7:ary2;
variable ppv8:ary3;
variable ncl:std_logic;
begin
ppv7:=pps3;

ppv8(0)(2 downto 1):= ppv7(0)(2 downto 1);
ppv8(1)(2 downto 1):= ppv7(1)(2 downto 1);
ppv8(1)(3):='0';

u F_3:csa fa(ppv7(0)(3),ppv7(1)(3),ppv7(2)(3),ppv8(0)(3),ppv8(1)(4));
u_F_4: csa_ha(ppv7(0)(4),ppv7(1)(4),ppv8(0)(4),ppv8 (1)(5));
u F_5:csa_ha(ppv7(0)(5),ppv7(1)(5),ppv8(0)(5),ppv8(1)(6));
u_F_6:csa_ha(ppv7(0)(6),ppv7(1)(6),ppv8(0)(6),ppv8(1)(7));
u_F_7:csa_fa(ppv7(0)(7),ppv7(1)(7),ppv7(2)(7),ppv8(0)(7),ppv8(1)(8));
u F_8:csa_ha(ppv7(0)(8),ppv7(1)(8),ppv8(0)(8),ppv8(1)(9));
u_F_9 :csa_fa(ppv7(0)(9),ppv7(1)(9),ppv7(2)(9),ppv8(0)(9),ppv8(1)(10));
u_F_l0:csa fa(ppv7(0)(10),ppv7(l)(10),ppv7(2)(10),ppv8(0)(10),ppv8(l)(11));
u F_l1:csa ha(ppv7(0)(11),ppv7(1)(11),ppv8(0)(11),ppv8(1)(12));
u_F_12:csa ha(ppv7(0)(12),ppv7(1)(12),ppv8(0)(12),ppv8(1)(13));
u_F_13:csa fa(ppv7(0)(13),ppv7(1)(13),ppv7(2)(13),ppv8(0)(13),ppv8(1)(14));
u_F_14:csa fa(ppv7(0)(14),ppv7(1)(14),ppv7(2)(14),ppv8(0)(l4),ppv8(l)(15));
u_F_15:csa fa(ppv7(0)(15),ppv7(1)(15),ppv7(2)(15),ppv8(0)'(15),ppv8(1)(16));
u_F_l6:csa fa(ppv7(0)(16),ppv7(1)(16),ppv7(2)(16),ppv8(0)(16),ppv8(1)(17));
u F_17:csa fa(ppv7(0)(17),ppv7(1)(17),ppv7(2)(17),ppv8(0)(17),ppv8(1)(18));

u_F_18:csa_fa(ppv7(0)(18),ppv7(1)(18),ppv7(2)(18),ppv8(0)(18),ppv8(1)(19));
u F_19:csa fa(ppv7(0)(19),ppv7(1)(19),ppv7(2)(19),ppv8(0)(19),ppv8(1)(20));
u_F_20:csa_fa(ppv7(0)(20),ppv7(1)(20),ppv7(2)(20),ppv8(0)(20),ppv8(1)(21));
u F_21:csa_fa(ppv7(0)(21),ppv7(1)(21),ppv7(2)(21),ppv8(0)(21),ppv8(I)(22));
u F 22:csa fa(ppv7(0)(22),ppv7(1)(22),ppv7(2)(22),ppv8(0)(22),ppv8(1)(23));
u F_23:csa_fa(ppv7(0)(23),ppv7(1)(23),ppv7(2)(23),ppv8(0)(23),ppv8(1)(24));
u F_24:csa_fa(ppv7(0)(24),ppv7(1)(24),ppv7(2)(24),ppv8(0)(24),ppv8(1)(25));
u F_25:csa_fa(ppv7(0)(25),ppv7(1)(25),ppv7(2)(25),ppv8(0)(25),ppv8(1)(26));
u F_26:csa_fa(ppv7(0)(26),ppv7(I)(26),ppv7(2)(26),ppv8(0)(26),ppv8(1)(27));
u F_27:csa_fa(ppv7(0)(27),ppv7(1)(27),ppv7(2)(27),ppv8(0)(27),ppv8(1)(28));
u F_28:csa fa(ppv7(0)(28),ppv7(1)(28),ppv7(2)(28),ppv8(0)(28),ppv8(1)(29));
u F_29:csa_fa(ppv7(0)(29),ppv7(1)(29),ppv7(2)(29),ppv8(0)(29),ppv8(1)(30));
u F_30:csa_fa(ppv7(0)(30),ppv7(1)(30),ppv7(2)(30),ppv8(0)(30),ppv8(1)(31));
u F_31:csa fa(ppv7(0)(31),ppv7(1)(31),ppv7(2)(31),ppv8(0)(31),ppv8(1)(32));
u F_32:csa fa(ppv7(0)(32),ppv7(l)(32),ppv7(2)(32),ppv8(0)(32),nc1);

pps40<=ppv8;
end process PPS REDN final;

--
PIPELINE REGISTER 5 -----------------------------------

PPSf GCLK1: process(gclkl)
begin

if gclkl'event and gclkl='l' then
pps4(0)(32 downto 1)<=pps40(0)(8 downto 1);
pps4(1)(32 downto 1)<=pps40(1)(8 downto 1);
end if:

end process PPSf GCLK1;
--
--RCA---
RIPPLE:process (pps4)
variable ppv9:ary3;
variable ppv10: std_logic_vector(m+n downto 1);
begin
ppv9:=pps4;
rca(ppv9 (0),ppv9(1),ppv 10);
pps5<=ppv 10;
end process RIPPLE;

--- PIPELINE REGISTER 6 -----------------------------------
PROD_GCLK l :process(gclkl)
begin

if gclkl'event and gclkl='1' then
prod(31 downto 0)<=pps5(32 downto 1);
end if;

end process PROD_GCLK1;
end Behavioral;

END OF 1D-MULTIPLIER ARCHITECTURE---------------------

- 83 -

APPENDIX-C

C. Non-pipeline gated Booth multiplier

library IEEE;
use IEEE. STD_LOGIC_1164.ALL;
use IEEE. STD_LOGIC_ARITH.ALL;
use IEEE. STD LOGIC_UNSIGNED.ALL;

entity multiplier_p is
Generic (m:integer :=16;n: integer :=16);

Port (mier: in STD_LOGIC_VECTOR (m-1 downto 0);
mcand : in STD_LOGIC_VECTOR (n-1 downto 0);
clk: in STD_LOGIC;
prod : out STD_LOGIC_VECTOR (m+n-1 downto 0));

end multiplier_p;
---------------------------ARHITECTURE OF 1D BOOTH MULTIPLIER
architectureBehavioral of multiplier_p is
type ary is array(O to m/2-1) of STD_LOGIC_VECTOR(n+1 downto 0);
type aryl is array(0 to 5) of STD_LOGIC_VECTOR(m+n downto 1);
type ary2 is array(O to 2) of STD_LOGIC_VECTOR(m+n downto 1);
type ary3 is array(0 to 1) of STD_LOGIC_VECTOR(m+n downto 1);

signal p_prodO,p_prod l ,p_prod2,p_prod3,p_prod4,p_prod5 : STD_LOGIC_VECTOR(
m+n-1 downto 0);
signal pps: ary;
--------------------------------BOOTH ENCODER AND PP GENERATOR
PROCEDUREBooth_PP_gen(a:in std_logic_vector(2 downto 0);md: in
std logic_vector;PP:out std_logic_vector)
is

variable bb : std_logic_vector (md'range);
variable psum : std_logic_vector (md'range);
variable b bar : std_logic_vector (md'range);
variable two_b : std_logic_vector (md'range);
variable two_b_bar : std_logic_vector (md'range);
variable cin : std logic;
variable topbit : std_logic;
variable topout : std logic;

begin
two b:=md(md'left-1 downto 0) &'0';
b bar:=not md;
two b bar:=not two b;

case a is

-84-

when "001" 1 "010" =>
bb:= md;
cin:='O';

when "011 " _>
bb:= two_b;
cin:='0 ;

when "100" =>
bb:= two_b bar;
cin:='1;

when "101"I "110" =>
bb:= b_bar;
cin:='1;

when others =>
bb:=(others=>'0');
cin:='0 ;

end case;

top: case a is
when "001"1"010"1"011" => topbit:=not md(md'left);
when "100"1" 101 "J"110" => topbit:=md(md'left);
when "000"I" 111 "=>topbit:=' 1';
when others =>topbit:='O';

end case top;

PP:=topbit&bb&cin;

end Booth PP_gen;

-- [2:2] compressor
PROCEDURECSA ha(a:in std logic ;b: in std logic;s: out std logic;c: out std_logic) is
begin
s:= a xor b;
c:= a and b;
end PROCEDURE CSA ha;

--------------------------------[3:2] [3:2] compressor------------------------------=---------
PROCEDURE CSA fa(a:in std_logic ;b: in std_logic ;d : in std_logic ;s: out std_logic;
c: out std_logic) is
begin

s:= a xor b xor d;
c:= (a and b) or (a and d) or (b and d);

end PROCEDURE CSA fa;

---RCA--
PROCEDURE rca (a : in std_logic vector; b: in std_logic vector;sum:out
std logic_vector) is

-85-

variable c: std_logic_vector(a'range);
variable nc:std_logic;
begin
for i in a'right to a'Ieft loop
if i=a'right then

CSA fa(a(i),b(i),'O',sum(i),c(i));
elsif i/=a'left then

CSA_fa(a(i),b(i),c(i- 1),sum(i),c(i));
else
CSA_fa(a(i),b(i),c(i- 1),sum(i),nc);
end if

end loop;
end PROCEDURE rca;
-BEGINNING ARHITECTURE OF NON PIPELINE GATED BOOTH MULTIPLIER -
Begin
--
-- PP Generation ---
PP_GEN:process (mier,mcand)

variable ppv : ary;
variable a: std logic_vector(2 downto 0);

begin
a:=mier(1 downto 0) &'0';
Booth_PP_gen(a,mcand,ppv(0));
a:=mier(3 downto 1);
Booth_PP_gen(a,mcand,ppv(1));
a:=mier(5 downto 3);
B ooth_PP_gen(a,mcand,ppv(2));
a:=mier(7 downto 5);
Booth_PP_gen(a,mcand ,ppv(3));
a:=mier(9 downto 7) ;
B ooth_PP_gen(a,mcand,ppv(4));
a:=mier(11 downto 9);
Booth_PP_gen(a,mcand,ppv(5)) ;
a:=mier(13 downto 11) ;
B ooth_PP_gen(a,mcand,ppv(6));
a:=mier(15 downto 13);
B ooth_PP_gen(a,mcand,ppv(7));

pps<=PPv;
end process PP GEN;
--
----------------------- --------------------PP Reduction------- ------------------------------------
PPS_REDN: process (pps)

variable ppvl : ary;
variable ppv2,ppv3: aryl;
variable ppv4,ppv5,ppv6: aryl;
variable ppv7:ary2;

variable ppv8:ary3;
variable nc 1: std_logic;
variable cv3: std_ logic_ vector (15 downto 0);
variable ci3: integer range -2**(15) to (2**(15))-1;
variable ppv10: std logic_vector(m+n downto 1);

begin
ppvl pps;
-------------------------------STAGE
ppv2(1)(1) :=ppv 1(0)(0);
ppv2(0)(1):=ppv 1(0)(1);
ppv2(0)(2):=ppv 1(0)(2);

u3:csa_fa(ppv 1(0)(3),ppv 1(1)(1),ppv 1(1)(0),ppv2(0)(3),ppv2(1)(4));
u4 : csa_ha(ppv 1(0) (4),ppv l (1) (2),ppv2(0)(4),ppv2(1) (5));
u5:csa_fa(ppv 1(0)(5),ppv 1(1)(3),ppvl (2)(1),ppv2(0)(5),ppv2(1)(6));
ppv2(2)(5):=ppv 1(2)(0);

u6:csa_fa(ppv 1 (0)(6),ppv 1(1)(4),ppvl (2)(2),ppv2(0)(6),ppv2(1)(7));

u7:csa fa(ppv1(0)(7),ppvl(1)(5),ppvl(2)(3),ppv2(0)(7),ppv2(1)(8));
ul_7: csa ha(ppvl(3)(1),ppvl(3)(0),ppv2(2)(7),ppv2(3)(8));

u8:csa fa(ppv1(0)(8),ppvl (1)(6),ppv 1 (2)(4),ppv2(0)(8),ppv2(1)(9));
ppv2(2)(8):=ppv 1(3)(2);

u9:csa_fa(ppv 1(0)(9),ppvl (1)(7),ppv 1 (2)(5),ppv2(0)(9),ppv2(1)(10));
u 1 _9:csa_fa(ppv 1(3)(3),ppv 1(4)(1),ppv 1 (4)(0),ppv2(2)(9),ppv2(2)(10));

u 10:csa_fa(ppv 1(3)(4),ppv 1(1)(8),ppv 1(2)(6),ppv2(0)(10),ppv2(1)(11));
ul _10:csa_ha(ppv 1(0)(10),ppv 1 (4)(2),ppv2(3)(1 0),ppv2(3)(11));

ul l:csa fa(ppvl(3)(5),ppvl(1)(9),ppvl(2)(7),ppv2(0)(11),ppv2(1)(12));
u 1 _l l :csa_fa(ppv 1(5)(0),ppvl (4)(3),ppvl (5)(1),ppv2(2)(11),ppv2(3)(12));
ppv2(4)(1 1):=ppv 1(0)(11);

u l 2:csa_fa(ppv 1(2)(8),ppv 1(3)(6),ppv 1(4)(4),ppv2(0)(12),ppv2(1)(13));
ul_l2:csa fa(ppv1(0)(12),ppv1(1)(10),ppvl(5)(2),ppv2(2)(12),ppv2(3)(13));

u l 3 :csa_fa(ppv 1(2)(9),ppv 1(3)(7),ppv 1 (4)(5),ppv2(0)(1 3),ppv2(1)(14));
u1_13:csa_fa(ppv 1(6)(0),ppvl (6)(1),ppvl (5)(3),ppv2(2)(13),ppv2(3)(14));
u2_13:csa_ha(ppv1(0)(13),ppv1(1)(11),ppv2(4)(13),ppv2(5)(14));
u14:csa_fa(ppv 1(0)(14),ppv 1(1)(12),ppv 1 (2)(1 0),ppv2(2)(1 4),ppv2(3)(15));

u l_14:csa_fa(ppv 1(3)(8),ppv1(4)(6),ppv1(5)(4),ppv2(0)(14),ppv2(1)(15));
ppv2(4)(14):=ppv1(6)(2);

-87-

ul 5 : csa_fa(ppv 1(0)(15),ppv 1(1)(13),ppv l (2)(1 1),ppv2(2)(1 5),ppv2(3)(16));
ul_ 15:csa_fa(ppv 1(3)(9),ppvl (4)(7),ppvl (5)(5),ppv2(0)(15),ppv2(1)(16));
u2_ 15:csa_fa(ppv 1(6)(3),ppvl (7)(0),ppv l (7)(1),ppv2(4)(15),ppv2(5)(16));

ul 6:csa_fa(ppvl (0)(16),ppv 1(1)(14),ppvl (2)(12),ppv2(0)(16),ppv2(1)(17));
ul_ 16:csa_fa(ppv 1(3)(10),ppv 1(4)(8),ppvl (5)(6),ppv2(2)(16),ppv2(3)(17));
u2_16:csa_ha(ppv 1(6)(4),ppv 1 (7)(2),ppv2(4)(1 6),ppv2(5)(17));

ul 7:csa_fa(ppv 1(0)(17),ppv 1(1)(15),ppvl (2)(13),ppv2(0)(17),ppv2(1)(18));
ul _ 17:csa_fa(ppv 1(3)(11),ppv 1 (4)(9),ppv 1 (5)(7),ppv2(2)(1 7),ppv2(3)(1 8));
u2_17:csa ha(ppv 1 (6)(5),ppv 1 (7)(3),ppv2(4)(1 7),ppv2(5)(18));

ul 8:csa_fa(ppv 1(1)(1 6),ppvl (2)(14),ppv1(3)(12),ppv2(0)(18),ppv2(1)(19));
ul_18:csa_fa(ppv 1(4)(10),ppv 1 (5)(8),ppv 1 (6)(6),ppv2(2)(1 8),ppv2(3)(1 9));
ppv2(4)(18):=ppv 1 (7)(4);

ul9:csa fa(ppv1(1)(17),ppv1(2)(15),ppvl (3)(13),ppv2(0)(19),ppv2(1)(20));
ul_19:csa_fa(ppv 1(4)(11),ppv 1 (5)(9),ppv 1 (6)(7),ppv2(2)(1 9),ppv2(3)(20));
ppv2(4)(19):=ppv 1(7)(5);

u20:csa fa(ppvl (2)(16),ppv 1 (3)(1 4),ppvl (4)(12),ppv2(0)(20),ppv2(1)(21));
ul 20:csa fa(ppv1(5)(10),ppv1(6)(8),ppv1(7)(6),ppv2(2)(20),ppv2(3)(21));

u21:csa_fa(ppvl (2)(17),ppv 1(3)(15),ppv 1(4)(13),ppv2(0)(21),ppv2(1)(22));
ul_21:csa fa(ppvl(5)(11),ppvl(6)(9),ppvl(7)(7),ppv2(2)(21),ppv2(3)(22));

u22:csa_fa(ppvl (3)(16),ppv 1(4)(14),ppvl (5)(12),ppv2(0)(22),ppv2(1)(23));
ul 22:csa_ha(ppvl(6)(10),ppv 1(7)(8),ppv2(2)(22),ppv2(3)(23));

u23:csa_fa(ppv 1(3)(17),ppv 1(4)(15),ppv 1(5)(13),ppv2(0)(23),ppv2(1)(24));
ul_23:csa ha(ppv1(6)(11),ppvl(7)(9),ppv2(2)(23),ppv2(2)(24));

u24:csa_fa(ppvl (4)(16),ppv 1(5)(14),ppv 1(6)(12),ppv2(0)(24),ppv2(1)(25));
ppv2(3)(24):=ppv 1(7)(10);

u25: csa_fa(ppv 1(4)(17),ppv 1(5)(15),ppv 1 (6)(1 3),ppv2(0)(25),ppv2(1)(26));
ppv2(2)(25):=ppv 1(7)(11);

u26:csa_fa(ppv 1(5)(16),ppv 1(6)(14),ppvl (7)(1 2),ppv2(0)(26),ppv2(1)(27));

u27:csa fa(ppvl(5)(17),ppvl(6)(15),ppvl(7)(13),ppv2(0)(27),ppv2(1)(28));

u28:csa ha(ppvl(6)(16),ppvl(7)(14),ppv2(0)(28),ppv2(1)(29));

u29:csa ha(ppv1(6)(17),ppvl (7)(15),ppv2(0)(29),ppv2(1)(30));

-88-

ppv2(0)(3 0) := ppv 1(7)(16);
ppv2(0)(3 1):= ppv 1(7)(17);
------------------------------STAGE 2--------------------------
ppv3 (0)(1):= ppv2(0)(1);
ppv3 (0)(2) :=ppv2(0)(2);
ppv3 (0)(3):=ppv2 (0)(3);
ppv3 (1)(1):= ppv2(1)(1);
ppv3(0)(4):= ppv2(0)(4);
ppv3 (1)(4): =ppv2 (1)(4);

ul _0_5:csa_fa(ppv2(0)(5),ppv2(1)(5),ppv2(2)(5),ppv3 (0)(5),ppv3 (1)(6));

ul_0_6:csa_ha(ppv2(0)(6),ppv2(1)(6),ppv3(0)(6),ppv3 (1)(7));
ul__0_7:csa_fa(ppv2(0)(7),ppv2(1)(7),ppv2(2)(7),ppv3(0)(7),ppv3 (1)(8));
ul_0_8:csa_fa(ppv2(0)(8),ppv2(1)(8),ppv2(2)(8),ppv3(0)(8),ppv3 (1)(9));
ppv3(2)(8) =ppv2(3)(8);
ul_0_9:csa_fa(ppv2(0)(9),ppv2(1)(9),ppv2(2)(9),ppv3(0)(9),ppv3 (1)(10));
u1_0_10:csa_fa(ppv2(0)(10),ppv2(1)(10),ppv2(2)(10),ppv3 (0)(10),ppv3 (1)(11));
ppv3 (2) (10):=ppv2(3)(10);

ul_0_l l :csa_fa(ppv2(0)(11),ppv2(1)(11),ppv2(2)(11),ppv3(0)(11),ppv3 (1)(12));
ul_1_l 1 :csa_ha(ppv2(3)(1 1),ppv2(4)(11),ppv3(2)(1 1),ppv3 (3)(12));

u 1 _0_ 12: csa_fa(ppv2 (0)(12),ppv2(1)(12),ppv2(2)(12),ppv3 (0)(1 2),ppv3(1)(13));
ppv3 (2)(12):=ppv2(3)(12);

ul_0_13:csa fa(ppv2(0)(13),ppv2(1)(13),ppv2(2)(13),ppv3(0)(13),ppv3(1)(14));
ul_1_13:csa ha(ppv2(3)(13),ppv2(4)(13),ppv3(2)(13),ppv3(3)(14));

u 1_0_1 4:csa_fa(ppv2(0)(i4),ppv2 (1)(14),ppv2(2)(14),ppv3 (0)(14),ppv3(1)(15));
ul_1_14:csa_fa(ppv2(3)(14),ppv2(4)(14),ppv2(5)(14),ppv3 (2)(14),ppv3(3)(15));

ul_0_15: csa_fa(ppv2(0)(15),ppv2(1)(15),ppv2(2)(15),ppv3(0)(15),ppv3(1)(16));
u 1_1_15:csa_ha(ppv2(3)(15),ppv2(4)(15),ppv3(2)(15),ppv3(3)(16));

ul_0_16: csa_fa(ppv2(0)(16),ppv2(1)(16),ppv2(2)(16),ppv3(0)(16),ppv3(1)(17));
ul_l_l6:csa fa(ppv2(3)(16),ppv2(4)(16),ppv2(5)(16),ppv3(2)(16),ppv3(3)(17));

ul_0_17:csa fa(ppv2(0)(17),ppv2(1)(17),ppv2(2)(17),ppv3(0)(17),ppv3(1)(18));
u l _ 1 _ 17: csa_fa(ppv2(3)(1 7),ppv2(4)(17),ppv2(5)(17),ppv3 (2)(17),ppv3 (3)(18));

u1_0_18: csa_fa(ppv2(0)(18),ppv2(1)(18),ppv2(2)(18),ppv3(0)(18),ppv3(1)(19));
ul_1_18:csa_fa(ppv2(3)(18),ppv2(4)(18),ppv2(5)(18),ppv3(2)(18),ppv3(3)(19));

ul_0_19: csa_fa(ppv2(0)(19),ppv2(1)(19),ppv2(2)(19),ppv3(0)(19),ppv3(1)(20));
u1_1_l9:csa ha(ppv2(3)(19),ppv2(4)(19),ppv3(2)(19),ppv3(3)(20));

-89-

ul_0_20:csafa(ppv2(0)(20),ppv2(1)(20),ppv2(2)(20),ppv3(0)(20),ppv3(1)(21));
ppv3(2)(20)_ ppv2(3)(20);

ul_0_21:csa fa(ppv2(0)(21),ppv2(1)(21),ppv2(2)(21),ppv3(0)(21),ppv3(1)(22));
PPv3(2)(21):=ppv2(3)(21);

u l _0_22: csa_fa(ppv2(0)(22),ppv2(1)(22),ppv2(2) (22),ppv3 (0) (22),ppv3 (1)(23));
ppv3(2)(22):=ppv2(3)(22);

u1_0_23 :csa_fa(ppv2(0)(23),ppv2(1)(23),ppv2(2)(23),ppv3 (0)(23),ppv3(1)(24));
ppv3 (2)(23):=ppv2(3)(23);

ul_0_24:csa_fa(ppv2(0)(24),ppv2(1)(24),ppv2(2)(24),ppv3(0)(24),ppv3(1)(25));
ppv3 (2)(24):=ppv2(3)(24);

ul_0_25 :csa_fa(ppv2(0)(25),ppv2(1)(25),ppv2(2)(25),ppv3 (0)(25),ppv3 (1)(26));

u1_0_26:csa ha(ppv2(0)(26),ppv2(1)(26),ppv3(0)(26),ppv3(1)(27));
ul_0_27:csa_ha(ppv2(0)(27),ppv2(1)(27),ppv3(0)(27),ppv3(1)(28));
ul_0_28:csa ha(ppv2(0)(28),ppv2(1)(28),ppv3(0)(28),ppv3(1)(29));
ul_0_29:csa ha(ppv2(0)(29),ppv2(1)(29),ppv3(0)(29),ppv3(1)(30));
ul_0_30:csa_ha(ppv2(0)(3 0),ppv2(1)(30),ppv3(0)(3 0),ppv3(1)(3 1));

ppv3(0)(3 1) :=ppv2(0)(3 1);
ppv3(1)(2):='O';
ppv3(1)(3):='0';
ppv3(1)(5):='0';
ppv3(2)(7 downto 1):=(others=>'O');
ppv3(3)(32 downto 21):=(others=>'O');

ppv4:=ppv3;
------------------------------STAGE 3------------
ppv5(0)(7 downto 1):= ppv4(0)(7 downto 1);
ppv5(1)(1):=ppv4(1)(1);
ppv5 (1)(4):=ppv4(1)(4);
ppv5 (1)(6):=ppv4(1)(6);
ppv5 (1)(7):=ppv4(1)(7);

u3_8 :csa_fa(ppv4(0)(8),ppv4(1)(8),ppv4(2)(8),ppv5(0)(8),ppv5(1)(9));
u3_9:csa ha(ppv4(0)(9),ppv4(1)(9),ppv5(0)(9),ppv5(1)(10));
u3_10:csa_fa(ppv4(0)(10),ppv4(1)(10),ppv4(2)(10),ppv5 (0)(10),ppv5(1)(11));
u3_11:csa_fa(ppv4(0)(11),ppv4(1)(11),ppv4(2)(11),ppv5 (0)(11),ppv5(1)(12));
u3_12:csa_fa(ppv4(0)(12),ppv4(1)(12),ppv4(2)(12),ppv5(0)(12),ppv5(1)(13));
ppv5(2)(12):=ppv4(3)(12);

u3_13:csa_fa(ppv4(0)(13),ppv4(1)(13),ppv4(2)(13),ppv5 (0)(13),ppv5(1)(14));
u3_14:csa fa(ppv4(0)(14),ppv4(1)(14),ppv4(2)(14),ppv5(0)(14),ppv5(1)(15));
ppv5 (2)(.14):=ppv4(3)(14);

u3_15:csa_fa(ppv4(0)(15),ppv4(l)(15),ppv4(2)(15),ppv5(0)(15),ppv5(1)(16));
ppv5(2)(15):=ppv4(3)(15);

u3_16:csa_fa(ppv4(0)(16),ppv4(1)(16),ppv4(2)(16),ppv5(0)(16),ppv5(1)(17));
ppv5(2)(16):=ppv4(3)(16);

u3_17:csa fa(ppv4(0)(17),ppv4(1)(17),ppv4(2)(17),ppv5(0)(17),ppv5(1)(18));
ppv5(2)(17):=ppv4(3)(17);

u3_18:csa fa(ppv4(0)(18),ppv4(l)(18),ppv4(2)(18),ppv5(0)(18),ppv5(1)(19));
ppv5 (2)(18):=ppv4(3)(18);

u3_19:csa fa(ppv4(0)(19),ppv4(1)(19),ppv4(2)(19),ppv5(0)(19),ppv5(1)(20));
ppv5 (2)(19):=ppv4(3)(19);

u3_20: csa_fa(ppv4(0)(20),ppv4(1)(20),ppv4(2) (20),ppv5 (0) (20),ppv5 (1)(21));
ppv5 (2)(20):=ppv4(3)(20);

u3_21:csa fa(ppv4(0)(21),ppv4(1)(21),ppv4(2)(21),ppv5(0)(21),ppv5(1)(22));
u3_22:csa_fa(ppv4(0)(22),ppv4(1)(22),ppv4(2)(22),ppv5(0)(22),ppv5(1)(23));
u3_23 :csa fa(ppv4(0)(23),ppv4(1)(23),ppv4(2)(23),ppv5(0)(23),ppv5(1)(24));
u3_24:csa_fa(ppv4(0)(24),ppv4(1)(24),ppv4(2)(24),ppv5(0)(24),ppv5(1)(25));
u3_25 : csa_ha(ppv4(0) (25),ppv4(1) (25),ppv5 (0)(25),ppv5 (1)(26));
u3_26:csa ha(ppv4(0)(26),ppv4(1)(26),ppv5(0)(26),ppv5(1)(27));
u3_27:csa_ha(ppv4(0)(27),ppv4(1)(27),ppv5 (0)(27),ppv5(1)(28));
u3_28:csa_ha(ppv4(0)(28),ppv4(1)(28),ppv5(0)(28),ppv5(1)(29));
u3_29:csa ha(ppv4(0)(29),ppv4(1)(29),ppv5(0)(29),ppv5(1)(30));
u3_30:csa_ha(ppv4(0)(30),ppv4(1)(30),ppv5 (0)(30),ppv5(1)(31));
u3_31:csa ha(ppv4(0)(31),ppv4(1)(31),ppv5(0)(31),ppv5(0)(32));
ppv5(0)(31):=ppv4(0)(31);
ppv5 (2) (12):=ppv4(3)(12);
ppv5(2)(20 downto 14):=ppv4(3)(20 downto 14);

------------------------------STAGE 4--------------------------

ppv6(0)(11 downto 1):= ppv5(0)(11 downto 1);
ppv6(1)(1):=ppv5 (1)(1);
ppv6(1)(4):=ppv5 (1)(4);
ppv6(1)(6):=ppv5(1)(6);
ppv6(1)(7):=ppv5(1)(7);
ppv6(l)(11 downto 9):= ppv5(1)(11 downto 9);
ppv6(l)(12):='0;

-91 -

u4_1_12: csa_fa(ppv5(0)(12),ppv5 (1)(12),ppv5(2)(12),ppv6(0)(12),ppv6(1)(13));
u4_1_13:csa ha(ppv5(0)(13),ppv5(1)(13),ppv6(0)(13),ppv6(l)(14));
u4_1_ 14: csa_fa(ppv5(0)(14),ppv5 (1)(14),ppv5(2)(14),ppv6(0)(14),ppv6(1)(15));
u4_1_15:csa fa(ppv5(0)(15),ppv5(1)(15),ppv5(2)(15),ppv6(0)(15),ppv6(1)(16));
u4_1_ 16: csa_fa(ppv5(0)(16),ppv5 (1)(16),ppv5(2)(16),ppv6(0)(16),ppv6(1)(17));
u4_1_17:csa_fa(ppv5(0)(17),ppv5(1)(17),ppv5 (2)(17),ppv6(0)(17),ppv6(1)(18));
u4 1_18:csa fa(ppv5(0)(18),ppv5(1)(18),ppv5(2)(18),ppv6(0)(18),ppv6(I)(19));
u4__1_19:csa_fa(ppv5(0)(19),ppv5 (1)(19),ppv5 (2)(19),ppv6(0)(19),ppv6(1)(20));
u4_1_20: csa_fa(ppv5(0)(20),ppv5(1)(20),ppv5(2)(20),ppv6(0)(20),ppv6(1)(21));
u4_1_21:csa ha(ppv5(0)(21),ppv5(1)(21),ppv6(0)(21),ppv6(1)(22));
u4_1_22: csa_ha(ppv5 (0)(22),ppv5(1)(22),ppv6(0)(22),ppv6(1)(23));
u4_1_23: csa_ha(ppv5(0)(23),ppv5(1)(23),ppv6(0)(23),ppv6(1)(24));
u4_1_24:csa ha(ppv5(0)(24),ppv5(1)(24),ppv6(0)(24),ppv6(1)(25));
u4_1_25:csa ha(ppv5(0)(25),ppv5(1)(25),ppv6(0)(25),ppv6(1)(26));
u4_1_26: csa_ha(ppv5 (0)(26),ppv5 (1)(26),ppv6(0)(26),ppv6(1)(27));
u4_1_27: csa_ha(ppv5 (0)(27),ppv5(1)(27),ppv6(0)(27),ppv6(1)(28));
u4_1_28: csa_ha(ppv5 (0)(28),ppv5 (1)(28),ppv6(0)(28),ppv6(1)(29));
u4_1_29: csa_ha(ppv5 (0)(29),ppv5(1)(29),ppv6(0)(29),ppv6(1)(30));
u4_1_30: csa_ha(ppv5 (0)(3 0),ppv5(1)(30),ppv6(0)(30),ppv6(1)(3 1));
u4_1_3 1 :csa_haQpv5 (0)(31),ppv5(1)(31),ppv6(0)(31),ppv6(1)(32));

ppv6(0)(32):=ppv5 (0)(32);
ppv6(1)(2):='0';

ppv6(1)(3):='0;
ppv6(1)(5):='0';
ppv6(1)(8):='0;
------------------------------STAGE
ppv7(0):=ppv6(0);
ppv7(1):=ppv6(1);
ci3 := -(((2* * 16)-1)/3);
cv3 std logic_vector(conv unsigned(ci3,16));

ppv7(2)(32 downto 17):=cv3;
ppv8(0)(16 downto 1):= ppv7(0)(16 downto 1);
ppv8(1)(16 downto 1):= ppv7(1)(16 downto 1);
ppv8(1)(17):='0 ;

u_F_17:csa fa(ppv7(0)(17),ppv7(1)(17),ppv7(2)(17),ppv8(0)(17),ppv8(1)(18));
u_F_l8:csa fa(ppv7(0)(18),ppv7(1)(18),ppv7(2)(18),ppv8(0)(18),ppv8(1)(19));

u_F_19:csa fa(ppv7(0)(19),ppv7(1)(19),ppv7(2)(19),ppv8(0)(19),ppv8(I)(20));
u_F 20:csa_fa(ppv7(0)(20),ppv7(1)(20),ppv7(2)(20),ppv8(0)(20),ppv8(1)(21));
u F_21:csa fa(ppv7(0)(21),ppv7(1)(21),ppv7(2)(21),ppv8(0)(21),ppv8(1)(22));
u_F 22:csa fa(ppv7(0)(22),ppv7(1)(22),ppv7(2)(22),ppv8(0)(22),ppv8(1)(23));
u_F_23:csa_fa(ppv7(0)(23),ppv7(1)(23),ppv7(2)(23),ppv8(0)(23),ppv8(1)(24));
u_F_24: c sa_fa(ppv7(0) (24),ppv7(1)(24),ppv7(2)(24),ppv8(0) (24),ppv8 (1)(2 5));
u F 25:csa_fa(ppv7(0)(25),ppv7(1)(25),ppv7(2)(25),ppv8(0)(25),ppv8(I)(26));

-92-

u_F_26 :csa_fa(ppv7(0)(26),ppv7(1)(26),ppv7(2)(26),ppv8(0)(26),ppv8(1)(27));
u_F_27:csa_fa(ppv7(0)(27),ppv7(1)(27),ppv7(2)(27),ppv8(0)(27),ppv8(I)(28));
u_F_28 :csa_fa(ppv7(0)(2 8),ppv7(1)(28),ppv7(2)(28),ppv8(0)(28),ppv8(1)(29));
uF_29:csa_fa(ppv7(0)(29),ppv7(1)(29),ppv7(2)(29),ppv8(0)(29),ppv8(I)(30));
u_F_30:csa_fa(ppv7(0)(3 0),ppv7(1)(30),ppv7(2)(3 0),ppv8(0)(30),ppv8(1)(3 1));
u_F_3 I :csa_fa(ppv7(0)(3 1),ppv7(1)(3 1),ppv7(2)(3 1),ppv8(0)(3 1),ppv8(1)(32));
u_F_32:csa_fa(ppv7(0)(32),ppv7(1)(32),ppv7(2)(32),ppv8(0)(32),nc 1);

rca(ppv8(0),ppv8(I),ppv 10);
p prodO(3 I downto 0)<=ppv 10(32 downto 1);

end process PPS_REDN;
--------------- 	PIPELINING LOGIC (six stages) 	------------------------------
PIPELINING : process(clk)
begin

if clk'event and clk=' l'then
p prod 1 <=p prodO;
p_prod2<=p prod 1;
p_prod3<=p_prod2;
p prod4<=p prod3;
p prod5<=p prod4;
prod<=p prod5;

end if;
end process PIPELINING;

end Behavioral;

-93-

	Title
	Abstract
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	References
	Untitled

