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Power-awareness indicates the scalability of the system energy with changing conditions 

and quality requirements. Energy-efficient power-aware design is highly desirable for 

DSP functions that encounter a wide diversity of operating scenarios in battery powered 
wireless sensor network systems. The DSP functions extensively make use of the 

multiply-and-accumulate (MAC) operation, which makes the multiplication function as 
most power-consuming task. Therefore it is essential to implement the power-efficient 

multipliers for power-aware DSPs. 

Addressing power-awareness, a novel reconfigurable pipelined Booth multiplier using 2-
dimensional pipeline gating scheme is proposed. This technique is to gate the clock to 

registers in both vertical direction (data flow direction in pipeline) and horizontal 
direction (within each pipeline stage). For signed multipliers using 2's complement 
representation, sign extension, which wastes power and causes longer delay, could be 

avoided by implementing this technique. Our multiplier based on the gated input signals 
implements a 16-bit, 8bit or 4-bit multiplication operation. 

The proposed reconfigurable pipelined Booth multiplier was first modeled in VHDL and 
functionally verifiedd using Mentor Graphics ModelSim simulator. After functional 

validation, the architecture was synthesized for appropriate time and area constraints 

using Synopsys Design Compiler. TSMC 90nm CMOS technology and standard cell 
library were used. The power analysis of the gate level structure was done using 
Synopsys VCS and PrimePower tool. 

For the 8-bit and 4-bit computations, the proposed Booth multiplier leads to a 61 % and 

87% power consumption reduction over a non-scalable Booth multiplier, respectively. 
The proposed scalable pipelined Booth multiplier proves to be globally 48% more power 

efficient than a non-scalable pipelined Booth multiplier, and also it has fast speed due to 
pipelining. 
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Chapter 1 
INTRODUCTION 

With the increasing popularity of battery-powered portable applications and the dramatic 
decrease in feature size, demanding the chips that consume smallest amount of power. 

Even in the case of non-portable applications the amount of power consumed has become 

so high that they require expensive packaging and heat sinks. Thus, power has become 

one of the major design constraints along with area and timing. 

Many low power techniques have been developed to match different circuits and 

conditions [1]-[2]. Bhardwaj et al., [3] introduced a new measurement, power-awareness, 

to indicate the ability of the system power to scale with changing conditions and quality 

requirements. Scalability is an important figure-of-merit since it allows the end user to 

implement operational policy [3], just like the user of mobile multimedia equipment 

needs to select between better quality and longer battery operation time. The examples 

include that a well-designed system must gracefully degrade its quality and performance 

as the available energy resources are depleted [4]. In such systems like digital camera, 

users are allowed to select certain parameters like resolution. After user selects a 

resolution, there will be a short period of time to allow the system to set up. During this 

period, the CPU will configure itself and set up the control to the whole system. Such 

parameters will not change frequently. After each change, the new value will remain 

stable for sometime. So for a power aware system in these applications, on-the-fly control 
is not needed. 

The power dissipation in CMOS circuit has three components: switching power, short-

circuit power, and leakage power. Among these components, switching power is the 

dominant figure. When a node in circuit is switching, the load capacitance on this node 

will dissipate power due to the charging/discharging operation. If the switching activity 

could be reduced, the total power dissipation will be saved. For Boolean non-pipelined 

multipliers, starting from reset-to-zero state, low input precision calculation (like 

0001x0001) dissipates much less power than high input precision calculation (like 
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1111 x 1111) because there are much less switching activities in internal nodes. Here the 

input precision is defined as the number of useful input bits (without padded 0's in high 

order bits) during the calculation. For example, the input precision of 0101 is 3, while the 

input precision of 1000 is 4. So, Boolean non-pipelined multipliers are said to have 

natural power awareness to the changing of input precisions. 

1.1 Previous Work 

Several techniques have been developed to reduce the power dissipation in multipliers. 

Huang et al., [5] introduced a 2-dimensional signal gating method for low power array 

multiplier design. This approach provides gating lines for both multiplicand and 

multiplier operands. By deactivated different regions in the multiplier, power dissipation 

could be reduced. This approach is for non-pipelined array multiplier and cannot be 

extended to pipelined design because it cannot reduce the switching activities in registers. 

Bhardwaj et al., [3] introduced a selective method to design power-aware multiplier. This 

method is also for non-pipelined designs and brings high area cost. Meier et al., [6] 

introduced a polarity-inversion technique for the adders in signed multiplier. •This 

technique does not solve the sign extension problem so that the multiplicands in lower 

precision still cannot be processed directly. Lee et al, [7] introduced a reduced 

architecture based on the redundancy of lower order bits in some DSP applications. This 

technique is not for general use and does not solve the sign extension problem in signed 

multiplier. 

Kim et al., [8] introduced a clock gating method to design reconfigurable multiplier. This 

method is to selectively disable pipeline stages by gating clocks and to select correct 

results by multiplexers. Very little additional area cost is needed (only several AND2 

gates and multiplexers) to implement this technique. Good power and latency saving can 

be achieved due to the reduced switching activities of registers in corresponding pipeline 

stages. The outputs of the multiplier are selected from different stages to ensure the 

correctness and obtain latency reduction. This technique can be seen as 1 -dimensional 

pipeline gating because it only considers gating clocks to unnecessary stages along data 
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flow direction. As the computational width of multiplier growing from 4-bit, 8-bit, to 32-

bit and 64-bit, 1-dimensional pipeline gating is far from enough. 

Jia Di, [9]-[10] has proposed a 2-dimensional clock gating, that is, gate the clock to the 

registers in both vertical direction (data flow direction in pipeline) and horizontal 

direction (within each pipeline stage) and applied it to an array multiplier and used the 

multiplier for FIR application. 

H. Lee, [11] has applied 2-dimensional signal gating to the booth multiplier, but is area 

inefficient as the partial product reduction tree is not shamble. Also it consumes more 

power in case of 16-bit multiplication. 

1.2 Statement of the problem 

Deeply pipelined multipliers are used in systems that need either high throughput or 

accurate timing control, like retimed FIR filters [12]. In pipelined multipliers, each 

pipeline stage contains a number of registers. Clock is connected to each register. In each 

clock cycle, a transition will occur on the clock input node of each register. This 

transition is independent of input data and will cause power dissipation even when the 

current input data of the register is the same as the current data output. Since in deeply 

pipelined designs, the number of registers is much larger than that of other elements, 

these designs, do not have the natural power awareness to the changing of input precision 

due to the large portion of power dissipated on clock input nodes. 

To solve these problems and improve the power awareness of deeply pipelined 

multipliers, a technique, 2-dimensional pipeline gating, is applied to the Booth multiplier. 

This technique is to gate the clock to the registers in both vertical direction (data flow 

direction in pipeline) and horizontal direction (within each pipeline stage). The additional 

area cost to implement this technique to design array multipliers is small. 

1.3 Organization of the thesis 

The thesis is divided into six chapters. 

BIB 
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The first chapter is specifies the problem and previous work carried out in the low power 

multiplier area. 

In the second chapter we deal with the basics of multiplication and various types of 

multipliers. 

In the third chapter we explain various sources of power consumption in CMOS circuits 

and give some methods of reducing power. 

The fourth chapter elaborates the architectures of various multipliers designed. 

In the fifth chapter we present the analysis procedure, output waveforms after synthesis 

and the analysis of the results. 

In the last chapter the thesis is concluded. 
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2.2 Partial product generation 

Partial product generation is the very first step in binary multiplier. These are the 

intermediate terms which are generated based on the value of multiplier. If the multiplier 

bit is 0', then partial product row is also zero, and if it is '1', then the multiplicand is 

copied as it is. From the 2nd bit multiplication onwards, each partial product row is 

shifted one unit to the left as shown in the above mentioned example. In signed 

multiplication, the sign bit is also extended to the left. Partial product generators for a 

conventional multiplier consist of a series of logic AND gates as shown in Figure 3. 

Careful optimization of the partial-product generation can lead to some substantial delay 

and area reduction. 

X O 	 Xi 	X, 	X3 	}{a 	X, 	X6 	X, 

Y;  

PPi p 	PP11 	PP1 2 	PP13 	1, P14 	PP1 5 	pp16 	Pp17 

Figure 2.2 Partial product generation logic 

2.2.1 Booth Encoding 

Booth encoding is a method used for the reduction of the number of partial products 

proposed by A.D. Booth in 1951 [13]. A binary number X consisting of m bits 

represented in 2's complement format can be described as 

X=-2'n X1  + 2t1  Xm-I + 2m-? X 	+ 	 (2.1) 

Rewriting Eq.2. I using 2 = 2a+' -2`' leads to 

X=-2'n (X»,-1 -X,n ) + 2
jn-1 (X  n-, 

-X1) 
	+ 2tn-2 (Xm-3  -Xin-7) + 	 (2.2) 

Considering the first 3 bits of X, we can determine whether to add Y, 2Y or 0 to partial 

product 
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Chapter 2 
MULTIPLIERS  

2.1. Multiplier Background 

2.1.1. Basic binary multiplier 

The operation of multiplication is rather simple in digital electronics. It has its origin 

from the classical algorithm for the product of two binary numbers. This algorithm uses 

addition and shift left operations to calculate the product of two numbers. Two examples 

are presented below. 

10 X 8 =80 

1010 
X1000 

0000 
0000 

0000 
1010 

1010000 

1010 
X 0100 

0000 
0000 

111010 
00000 

11101000 

Figure 2.1 Basic binary multiplication 

The left example shows the multiplication procedure of two unsigned binary digits while 

the one on the right is for signed multiplication. The first digit is called Multiplicand and 

the second Multiplier. The only difference between signed and unsigned multiplication is 

that we have to extend the sign bit in the case of signed one, as depicted in the given right 

example in Partial product row 3. Based upon the above procedure, we can deduce that 

any multiplication had three basic steps. 

I) Partial product generation. 

2) Partial product accumulation. 

3) Final addition. 
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2.2.2 Modified Booth Encoding (MBE) 

Modified booth encoding was invented by O.L. Macsorley in 1961 [14]. MBE is an 

enhanced form of Booth encoding. A binary number X = x, xm_2,....., xo consisting of 
m bits represented in 2's complement form can be mathematically expressed as 

X=-2mx,n_, +Exi2' , 0<i<m-2 
	

(2.3) 

Equivalently, representation of X in base 4 is as follows: 

X=d;  4 	, 0<i<m/2-1 	 (2.4) 

The digits di are chosen from the ensemble {-2,-1, 0, 1, 2} according to Table 2.1. 

X2;+1 X2j X21 Increment 
0 0 0 0 
0 01 Y 
0 11110 Y 
0 11 2Y 
1 00 -2Y 
1 0 1 -Y 
1 1 0 -Y 
1 1 1 0 

Table 2.1 Modified Booth encoding table [24] 

For each step i, three bits of multiplier X i.e. x2;_1, x2;, x2;+1 are considered and the 

corresponding value of d;  is obtained from Table 2.1. There are few points to remember 

here[23]. 

1. Zero must always be concatenated to the right of X, i.e. x_1  is considered to be 0. 

2. m must always be even. 

There are two unavoidable consequences when utilizing MBE as sign extension 

prevention and negative encoding 16]. The combination of these two results in the 

formation of one additional partial product row, which requires more hardware and the 

system, also becomes slower. The advantage of using MBE is that the number of partial 
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products are reduced to m/2. This, in turn, reduces the hardware burden and increases the 

speed of multiplier. 

2.3 Carry_ Save Adder Tree (CSAT) 

Carry Save Adder (CSA) can be used to reduce the number of addition cycles as well as 

to make each cycle faster. Carry save adder is also-called a compressor. A full adder takes 

3 inputs and produces 2 outputs i.e. sum and carry, hence it is called a 3:2 compressor. In 

CSA, the output carry is not passed to the neighboring cell but is saved and passed to the 

cell one position down. In order to add the partial products in correct order, Carry save 

adder tree (CSAT) is used. An example to understand the operation of CSAT is shown in 

Figure 2.3. Suppose we have 4 partial products, each consisting of 4 bits. 

6 5 4 3 2 1 0 bit position 

	

Figure 2.3 Bit positions in multiplier 	 - 

The. first step is to rearrange the partial products according to bit positions as shown in 

Figure 2.4. 

6 	5 	4 3 	2 	1 0 	bit position 

Figure 2.4 Rearranging bits in multiplier 

The longest path consists of 4 terms at bit position 3. The fmal step is to determine the 

number of half and full adders required to complete the addition operation. A 9-input 

CSAT is shown in Figure 2.5. 

If in the level j of the tree, the number of bits is n, then k= n/3 full-adders should be used 

for the summation. The k generated carry signals are sent to the level j+1 of the tree i+l. 

-8- 



Multipliers 

Since the number of bits to sum has been reduced by three fold at each level, the depth of 

the Wallace tree is 0 (logN)[15], where N is the initial number of bits. 

in! in2 in3 	 in4 in5 in6 	 in7 in8 in9 

Figure 2.5 9-input reduction tree[22] 

2.4. Fast Adders 

The final step in completing the multiplication procedure is to add the final terms in the 

final adder. This is normally called "Vector-merging" adder. The choice of the final 

adder depends on the structure of the accumulation array[15]. Following is a list of fast 

adders which are normally used. 

1. Carry look-ahead adder 

2. Simple carry skip adder 

3. Multilevel carry skip adder 

4. Carry- select adder 

5. Conditional sum adder 

6. Hybrid adder 

7. Ripple carry adder 

S 
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2.5. Multiplier types 

Multipliers are categorized relative to their applications, architecture and the way the 

partial products are produced and summed up. Based on all these, a designer might find 

following types of multipliers. 

2.5.1. Sequential multipliers 

The sequential multiplier is shown in the figure 2.6. The generations of the partial 

products require NXM two bit AND gates. Most of the area of the multiplier is devoted 

to the adding of the N partial products, which require (N-1) M-bit adders. The shifting of 

the partial products for their proper alignment is performed by simple routing and does 

not require any logic. The over all structure can easily be compacted into a rectangle, 

resulting in a very efficient layout[ 15]. 

Yo 

Figure 2.6 Sequential multiplier 

-10- 
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2.5.2. Array multipliers 
In array multipliers, the counters and compressors are connected in a serial fashion for all 

it slices of the Partial Product parallelogram. As can be seen in Figure 2.7, the array 

topology is a two-dimensional structure that fits nicely on the VLSI planar process. Array 

multipliers can be pipelined to decrease the clock period at the expense of latency. 

In this type of array, the output of each row of counters (3:2 compressors) is the input to 

the next row of counters. In the simple array, each row of [3:2] compressors adds a partial 

product to the partial sum, generating a new partial sum and a sequence of carries. The 

delay of the array depends on the depth of the array. Therefore, the summing time for the 

simple array is N-2 [3:2] compressor delays, where N is the number of partial products. 

The drawback of this type of array is the hardware is underutilized. The counters are used 
only once in the calculation of the result, - for the remaining time, they are idle. This 

drawback can be diminished by pipelining the array so that several multiplications can 

occur simultaneously. Pipelining would increase the throughput of the multiplier, but 

would also increase the latency and area of the multiplier. A fully pipelined array is 

normally avoided, since the array would be faster than the clock of processor. Figure 2.7 

depicts the layout of a simple array topology. The dots represent the partial products. 

Figure 2.7 Array topology 
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2.5.3. Tree multipliers 

In order to speed up the process of addition of partial products, tree based structure is 

used. In tree architecture, the compressors are connected for each bit slice in the PP 

parallelogram. Normally, they are used in parallel. Although the trees are faster than 

arrays, they both use the same number of compressors to reduce the partial products. The 

first tree structure was introduced by Wallace. Wallace showed that PPs can be reduced 

by connecting [3:2] compressors in parallel in a tree topology. 

Wallace trees are irregular in the sense that the informal description does not specify a 

systematic method for the compressor interconnections. However, it is an efficient 

implementation of adding partial products in parallel. The Wallace tree operates in three 

steps[ 16] : 

1. Multiply: Each bit of multiplicand is ANDed with each bit of multiplier yielding n2  

results. Depending on the position of the multiplied bits, the wires carry different 

weights. 

2. Addition: As long as there are more than 3 wires with the same weights add a 

following layer. Take 3 wires of same weight and input them into a full adder. The result 

will be an output wire of half-adder and if only one is left, connect it to the next layer. 

3. Group the wires in two numbers and add in a conventional adder. A typical Wallace 

tree architecture is shown in Figure 2.8. 

-12- 
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Figure 2.8 Wallace Tree 
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Chapter 3 
POWER CONSUMPTION 

Power consumption is one of the basic parameters of any kind of Integrated Circuit (IC). 

Power and performance are always traded off to meet the system requirements. Power 

has a direct impact on system cost. 

There are two types of power dissipation. One is the maximum power dissipation which 

is related to the peak of the instantaneous current and the other is the average power 

dissipation. The peak current has an effect on the supply voltage noise due to the power 

line resistance. It can cause heating of the device, thus resulting in performance 

degradation. From the battery lifetime point of view, the average power dissipation is 
more important. 

The power dissipated in a circuit falls into two broad categories: 

1. Static power 

2. Dynamic power 

3.1 Defining Static Power 

Static power is the power dissipated by a gate when it is not switching, that is, when it is 

inactive or static. Static power is dissipated in several ways. The largest percentage of 

static power results from source-to-drain subthreshold leakage, which is caused by 

reduced threshold voltages that prevent the gate from completely turning off. Static 

power is also dissipated when current leaks between the diffusion layers and the 

substrate. For this reason, static power is often called leakage power. 

The static or steady state power dissipation of a circuit is expressed by the following 

relation[15] 

Pstar = Ismr VDD 	 (3.1) 
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Where, Is.t  is the current that flows through the circuit in the absence of switching 
activity. 

Ideally the portion of static current should be zero as the PMOS and NMOS transistors 
are never on simultaneously in steady-state operation. But unfortunately, there exits a 
leakage current flowing through the reverse-biased diode junctions of the transistors 
located between the source/drain and the substrate as shown in Figure 3.1. 

There are two types of leakage currents: reverse-bias diode leakage on the transistor 

drains; and sub-threshold leakage through the channel of an "off' device. The magnitude 
of these currents is set predominantly by the processing technology. 

The diode leakage occur when a transistor is turned off and another active transistor 
charges up/down the drain with respect to the bulk potential of the former. In the case of 
the inverter with a high input voltage, the output voltage will be low because the NMOS 
transistor is on. The PMOS transistor will be turned off, but its drain-to-bulk voltage will 
be equal to the supply voltage VDD. The leakage current density is temperature sensitive, 
so current density can increase dramatically at higher temperatures. 

VDD 

VDD 

Vout = VDD 

Drain Leakage 
Current 

Subthreshold current 

Figure.3.1 Sources of leakage currents in CMOS inverter (for Vin = 0 V). 

The other source of .leakage current is the sub-threshold current of the transistors. MOS 

transistor can experience a drain-source current, even when VAS is smaller than the 

threshold voltage. The closer the threshold voltage is to zero volts, the larger the leakage 
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current at VGS = 0 V and the larger the static power consumption. To offset this effect, the 

threshold voltage of the device has generally been kept high enough. 

3.2 Defining Dynamic Power 
Dynamic power is the power dissipated when the circuit is active. A circuit is active 

anytime the voltage on a net change due to some stimulus applied to the circuit. Because 

voltage on an input net can change without necessarily resulting in a logic transition on 

the output, dynamic power can be dissipated even when an output net doesn't change its 

logic state. 

The dynamic power of a circuit is composed of two kinds of power: 

1. Switching power 

2. Internal power 

3.2.1 Switching Power 
The switching power of a driving cell is the power dissipated by the charging and 

discharging of the load capacitance at the output of the cell. The total load capacitance at 

the output of a driving cell is the sum of the net and gate capacitances on the driving 

output. Because such charging and discharging are the result of the logic transitions at the 

output of the cell, switching power increases as logic transitions increase. Therefore, the 

switching power of a cell is a function of both the total load capacitance at the cell output 

and the rate of logic transitions. 

VDD 

tYDD 

your 

CL 

Figure 3.2 Equivalent circuit during the low-to-high transition. 
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Each time the capacitor CL  gets charged through the PMOS transistor, its voltage rises 

from 0 to VDD, and a certain amount of energy is drawn from the power supply. Part of 

this energy is dissipated in the PMOS device, while the remainder is stored on the load 

capacitor. During the high-to-low transition, this capacitor is discharged, and the stored 

energy is dissipated in the NMOS transistor.. 

The values of the energy EVDD, taken from the supply during the transition, as well as the 

energy Ec, stored on the capacitor at the end of the transition, can be derived by 

integrating the instantaneous power over the period of interest. The corresponding 

waveforms of v0u1(t) and iVDD(t) are pictured in figure 3.3. 

a4r:ge 	ischarge 	i 

Figure 3.3 Output voltages and supply current during 
(dis)charge of CL. 

00 	 °D 	,.L _ 	 VDD 

EVDD = f ZVDD (t )v,,., t  = VDD J CL UV
dt  r t = VDDCL  f dvout VDDCL 	 (3.2) 

0 	 0 	 0 

00 	 00 	 VDD 	C V2 
Ec = f 1VDD (t)v.,dt = f CL dt,vourdt = CL f vout dVou, =  L

2  DD 	(3.3) 
0 	 0 	 0 

during the low-to-high transition, CL is loaded with a charge CLVDD. Providing this charge 

requires an energy from the supply equal to CL VD  ( Q x VDD). The energy stored on the 

capacitor equals CLVDD /2. This means that only half of the energy supplied by the power 

source is stored on CL. The other half has been dissipated by the PMOS transistor. Notice 
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that this energy dissipation is independent of the size (and hence the resistance) of the 

PMOS device! During the discharge phase, the charge is removed from the capacitor, and 

its energy is dissipated in the NMOS device. Once again, there is no dependence on the 

size of the device. Each switching cycle (consisting of an L—*H and an H—>L transition) 

takes a fixed amount of energy, equal to CLVDD. In order to compute the power 

consumption, we have to take into account how often the device is switched. If the gate is 

switched on and offfo~i times per second, the power consumption equals 

Pdy„ =CL VDD .fo-1 
	

(3.4) 

fo-*l represents the frequency of energy-consuming transitions, this is 0-~1 transitions for 

static CMOS. 

3.2.2 Internal Power 
The finite slope of the input signal causes a direct current path between VDD and GND for 
a short period of time during switching, while the NMOS and the PMOS transistors are 

conducting simultaneously. Internal power includes power dissipated by a momentary 

short circuit between the P and N transistors of a gate, called short-circuit power. 

Short circuit currents occur when the rise/fall time at the input of a gate is larger than the 

output rise/fall time. For the ideal case of a step input, the transistors change state 

immediately, one turning on and other turning off. There is not a conductive path from 

the supply to ground. For real circuits, however, the input signal will have some finite 

rise/fall time. While the condition V SV j,<_Vdd—V1., holds for the input voltage, there will 

be a conductive path open because both devices are on. The longer the input rise/fall 

time, the longer the short-circuit current will continue to flow, and the average short-

circuit current will increase. To minimize the total average short-circuit current power, it 

is desirable to have equal input and output edge times. Short-circuit current power is 

either linearly or quadratic dependent on the supply voltage, depending on the size of the 

channel length. While reducing the supply increases the duration of the current linearly 

due to increased rise/fall times, the peak magnitude of the current is reduced linearly 

(velocity saturation) such that the average current is approximately constant and the 

average power is just a linear function of supply voltage (P=IV). For larger devices that 
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are not velocity saturated, the average current is approximately linear with supply voltage 

so that the average power is a quadratic function of supply voltage 

We can'compute the average power consumption as follows. 

psc = tscVddjpeakf =CscVdd,f 
	

(3.5) 

t5  represents the time both devices are conducting. 

For most ICs, the short-circuit power dissipated is approximately 5-10% of the total 

dynamic power, if the supply is lowered to below the sum of the thresholds of the 

transistors i.e. Vdj<V„+Vtp. However, short-circuit currents will be eliminated because 

both devices cannot be on at the same time for all values of input voltage. 

3.3 Low power or energy design techniques 

Power consumption becomes an issue in complex electronic systems where cost is 

extremely important. Reducing power consumption is an important design task for IC 

engineers. Power is important for portable equipment like mobile, laptop, PDA, GPS, 

hearing aids and wrist watch etc. The requirement is a long life battery and a light system 

which is only possible if the equipment consumes bare minimum power. Lowering power 

also reduces the cost for cooling system and makes the chip package smart reducing the 

size of the device. There are a number of low power techniques available for CMOS 

circuits. Some of them are discussed in subsequent sections. 

3.3.1 Pipelining 

Pipelining is a popular design technique to reduce power consumption by increasing the 

throughput of logic blocks and processors to reduce frequency and supply voltage[2]. 

Pipelining is used to reduce power consumption, as illustrated in Figure 3.4. The idea is 

to insert registers after some appropriate distance in the circuit. The system response 

becomes faster than before. In order to maintain the previous delay, the supply voltage is 

reduced which reduces the power consumption. 
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Figure 3.5 Clock-gating principle[2]. 
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Figure 3.6 Using gated clocks to reduce power[18]. 

Assume a pipelined system for comparing the output of two numbers from a block of 

combinational logic as shown in Fig. 3.6, the first pipeline stage is a combinational block 

and the next pipeline stage is a comparator which performs the function A > B, where A 
and B are generated in the first stage (i.e., from the combinational block). If the most 
significant bits, A [N -1] and B[N-1], are different. then the computation of A > B can be 

performed strictly from the MSB's and therefore the comparator logic for bits A[N-2: 0] 
and B[N-2 : 0] is not required (and hence the logic can be powered down). If the data is 

assumed to be random (i.e., there is a 50% chance that A[N - 1] and B [N - 1] are 
different), the power savings can be quite significant. One approach to accomplish this is 

to gate the clocks as shown in Fig. 3.6. The XNOR output of the A [N -1] and B[N - 1] is 
latched by a special register to generate a gated clock. This gated clock is then used to 
clock the lower order registers. 
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Figure 3.4 Pipeline for low power[2]. 

3.3.2 Clock gating 

Clock gating is very effective in reducing the power consumption in digital circuits. The 

goal of this technique is to disable or suppress transitions from propagating to parts of the 

clock path (i.e., flip-flops, clock network, and logic) under a certain condition computed 

by clock-gating circuits. The savings are mainly due to the switching capacitance 

reduction in the clock network.and the switching activity in the logic fed by the storage 

elements because unnecessary transitions are not loaded when the clock is not active. 

Clock gating (CG) is illustrated- in Figure 3.5. A block CG, which inhibits the clock 

signal when the idle condition is true, is associated with each sequential functional unit.. 

The clock signal is computed by function Fcg. CLK is the system clock and CLKG the 

gated clock of the functional unit. Clock-gating techniques have been successfully 

implemented in many-microprocessors. 
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different), the power savings can be quite significant. One approach to accomplish this is 

to gate the clocks as shown in Fig. 3.6. The XNOR output of the A IN -1] and BIN - 1] is 
latched by a special register to generate a gated clock. This gated clock is then used to 

clock the lower order registers. 

3.3.3 Voltage scaling 
In CMOS circuits, the dominant component of power consumption is proportional 

to VDD  f, where VDD is voltage and! is frequency. Energy is product of power and time. 

The time to run a certain number of cycles is inversely proportional to frequency, so 

energy per cycle is proportional to VD  . At a given voltage, the maximum frequency at 

which the circuit can run safely decreases with decreasing voltage. Thus, the system can 

reduce energy consumption by reducing supply voltage, but this necessitates running at a 

slower speed. 

3.3.4 Delay balancing. 
Glitches in the circuit consume a considerable amount of power. They are produced by a 

delay in the arrival of input signals at a certain gate in the circuit. Delay balancing is then 

used to minimize the glitches which in return save power. Suppose we want to add four 

inputs A, B, C and D. One way to add them is to feed the inputs sequentially as shown in 

Figure 3.7 (a). Suppose the delay of one adder is Tadd.  The inputs A and B arrive at the 
same time at adder 1 but there exits a delay of 1 Tadd  and 2 Tadd  between the inputs 
arriving at adder 2 and 3 respectively. This would produce glitches at the output node. In 

order to remove glitches, we have to balance the delays at the inputs of each adder. 

Figure 3.7 (b) shows a modified architecture in which the delays are balanced at the input 

of each adder. 
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A 	B 	 A 	B 	C 	D 

Output 

(a) 

Output 

(b) 

Figure 3.7 Delay balancing example 

3.3.5 Transition activity reduction 

The power consumption is directly proportional to the transition or switching activity of 

the circuit. So reducing transition activity will also reduce the power consumption of the 

circuit. To reduce the transition activity in complex electronic systems, some special 

encodings are used for data and address busses. These encodings are very effective in 

reducing the power consumption. These are Limited Weight Codes (LWC), Zero-

transition encoding (TO), Bus-invert encoding (BI), TO BI encoding, Dual TO encoding 

etc. an example of Bus invert encoding is shown in Table 1. In bus-invert encoding, an 

extra line is used. If the extra bit is zero, the original bits are kept intact and they are 

inverted if the extra bit is 1. The overhead is one extra bit line but the number of 

transitions is reduced significantly which in turn reduces the power consumption. 

-23- 



Power Consumption 

Input sequence Number of 
Transitions 
Number of 
Transitions 

Bus_invert 
Encoded 
sequence 

New number 
of 
transitions 

0000 1 00000 1 
0001 1 00001 1 
0010 2 00010 2 
0011 1 00011 1 
0100 3 1 1011 2 
0101 1 1 1010 1 
0110 2 1 1001 2 
0111 1 1 1000 1 
1000 4 01000 1 
Total 

transitions 16 12 

Table 3.1 Bus invert encoding[19] 
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Chapter 4 

MULTIPLIER ARCHITECTURES 

This chapter describes architectures of all the three implemented multipliers in detail. 

4.1 The architecture of the 2-dimensional pipelined gated Booth multiplier 

In 2-D gating technique, clock is gated to registers in both vertical direction (data flow 

direction in pipeline) and horizontal direction (within each pipeline stage). The proposed 

power-aware scalable 2-D pipeline gated Booth multiplier consists of a shared radix-4 

Booth encoder, a shared and configurable partial product generation unit, shared and 

pipelined partial product reduction unit ,a multiplexer and a shared final ripple carry 

adder shown in Figure 4.1. Based on the gated input signals the gated clock signals are 

generated that appropriately selects required parts of the multiplier and multiplicand 

operands, the booth encoder and partial product generator unit, the partial product 

reduction units, and ripple carry adder unit for given data precision. 

Depending on the number of multiplier bits, the Booth encoder and partial product 

generator adjust the number of partial products generated while maintaining the unused 

partial product generator sections in static condition. For shorter precisions the unused 

parts of the partial product reduction and ripple carry adder units are deactivated using 

gated clock signals. The final product is generated from the active parts of the booth 

encoder, partial product generator, partial product reduction, and ripple carry adder units. 

The functional units of the proposed 16-bit multiplier are described below 

4.1.1 Pipelined Gating Technique 

Latched-based clock gating technique used in each of the five pipeline stages enables the 

multiplier circuit to deactivate the unused part of the logic and avoid excessive power-

consumption in each multiplication operation. Synopsys Power Compiler was utilized for 

generating a latch-based clock gating circuit. Each pipeline stage in the proposed 
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multiplier is optimized to minimize the amount of switching in the logic between the 

pipeline stages and also within the pipeline registers. 

In the first stage pipeline registers is partitioned into three states, the most significant 8-

bits of the input operand are gated only if gated signal 3 high, and the middle 4-bits are 

gated if both gated signal 3 and gated signal 2 are high, and finally the least 4-bits are 

gated when all the gated signals are high. 

The second pipeline stage is after the Booth encoder and the Partial product generator 

unit. Depending on the gated clock signals it allows required partial product bits to the 

next stage. Gated clockl allows only the first 5bits of the first and second partial 

products. Gated clock2 allows first 9 bits of the second and third partial products and next 

higher order 4 bits of the first and second partial product bits. And Gated clock3 allows 

17 bits of rest of the four partial products and next higher order 8 bits of first four partial 

products. 

The third pipeline stage, after first partial product reduction block, is gated by either 

Gated clock2 or Gated clock3. First 15 bits of first and second rows and first 8 bits of the 

third row at the output of first partial product reduction unit are gated by the Gated 

clock2. The rest of the 16 bits in first and second rows, 8 bits in third row, 10 bits in 

fourth row and 3 bits in the fifth row are gated by gated clock3. 

The fourth pipeline stage, after second partial product reduction block, is gated only by 

Gated clock3. 

The fifth pipeline stage, after MUX and final partial product reduction block, is gated by 

either of Gated clock1, Gated clock2 or Gated clock3. First 8 bits of first and second rows 

output of final partial product reduction unit are gated by the Gated clock1. Next higher 

order 8 bits of first and second rows output of final partial product reduction unit are 

gated by the Gated clock2. The rest of the 16 bits in first and second rows are gated by 

gated clock3. 
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Figure 4.1 2D-Power-aware reconfigurable pipelined Booth multiplier. Figure 
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The final pipeline stage, after ripple carry adder, is gated by either of Gated clock1, Gated 

clock2 or Gated clock3. First 8 bits output of ripple carry adder are gated by the Gated 

clock1. Next higher order 8. bits output of ripple carry adder are gated by the Gated 

clock2. The rest of the 16 bits are gated by gated clock3. 

4.1.2 Booth Encoder and Partial Product Generator Unit 

Booth encoder and partial product generator unit is configurable and can be shared 

between the 16-bit, 8-bit and 4-bit multiplication modes. The total numbers of partial 

products (PP) generated are N/2 (N = max. number of multiplier bits), where PP; is can be 

zero, complement, twice, twice the complement of the multiplicand or multiplicand 

depending on the multiplier bits. The 4-bit multiplication mode only requires first two of 

the partial products and 8-bit multiplication requires only first four partial products. 

There are three types of configuration modes for the partial product, which are consistent 

with the operation modes of the power-aware multiplier. In the 4-bit multiplication, 

partial products are of 5 bit length, in the 8-bit multiplication partial products are of 9-bit 

length and in the 16-bit multiplication they are of 17-bit length. Depending on the 

multiplier and multiplicand bits that are gated in the pipeline stage before this block, only 

the required partial products are generated and the rest of the bits are held in the static 

state. 

4.1.3 Partial product reduction units 

Partial product reduction units are shared between all of 16-bit, 8-bit and 4-bit 

multiplication modes. All partial product reduction units employ either [3:2] compressors 

or [2:2] compressors for reduction of partial products. 

The partial product summation is done in a Wallace-tree structure. Wallace-tree is 

divided into three blocks. After the first block, the first three rows contain bits in case of 

the 8-bit multiplication and after the second reduction the first three rows are the rows 

after reduction in case of the 16-bit multiplication. Outputs of both of the reduction units 

along with the two rows after the Booth-encoder and partial product generation unit are 

applied to the multiplexer unit, which are then passed to the final reduction unit for final 

reduction depending on the mode of multiplication along with their correction vector. 
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The final reduction unit reduces the three rows into two 32-bit rows which are then added 

to the ripple carry adder unit. 

The compressor configuration for each of the blocks is shown in the figures 4.2 through 

4.4 (in final reduction the bits shown are in case of 16-bit multiplication). 

! I1L1 
y4 

------------- ----------- 

Figure 4.2 First Reduction Unit. 

£ 
* c, ---------------- x 

Figure 4.3 Second Reduction Unit. 

H 
3:2 compressor 	2:2 compressor 

Figure 4.4 Final Reduction Unit (last row is in case of 16 bit multiplication) 

x x x x x x x x xx xx x x x xx x xxx x x xx x x xxx xx 
x x x x •x x x x x x x x x x x x x x x x x x x x x x x x x 0 0 X 

Figure 4.5 Input to the ripple carry adder 
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4.1.4 Multiplexer Unit 

This block selects the outputs from booth encoder and partial product generation unit, 

first second partial product reduction unit or second partial product reduction unit. In 

addition, it also adds the correction vectors required for sign extension prevention based 

on the type of multiplication (16- , 8- or 4- bit). The output of this stage is given to final 

partial product reduction unit. 

4.1.5 Ripple carry adder 

The ripple carry adder is also shared unit between all of the 16-bit, 8-bit and 4-bit 

multiplications. The bits that are not used for the particular mode of multiplication are 

held at static condition. 

4.2 The architecture of the 1-dimensional pipeline gated Booth multiplier 

In 1-D gating technique, clock is gated to registers in vertical direction (data flow 

direction in pipeline) or in horizontal direction (within each pipeline stage). Gating in 

vertical direction is used in the thesis. 

The reconfigurable 1-D pipeline gated Booth multiplier similar to 2-D pipeline gated 

multiplier consists of a shared radix-4 Booth encoder, a shared partial product generation 

unit, shared and pipelined partial product reduction unit, a multiplexer and a shared final 

ripple carry adder. Only difference is that the gating is applied only in vertical direction. 

The functional units of the 1D pipeline gated 16-bit multiplier are described below 

4.2.1 Pipelined Gating Technique 

In the first stage pipeline registers is partitioned into three states for multiplier, the most 

significant 8-bits of multiplier are gated only if gated signal 3 high, and the middle 4-bits 

are gated if both gated signal 3 and gated signal 2 are high, and finally the least 4-bits are 

gated when all the gated signals are high. 

Mille 
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PRODUCT 

Figure 4.2. 1D Power-aware scalable pipelined Booth multiplier. 
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All of the multiplicand bits are passed. 

The second pipeline stage is after the Booth encoder and the Partial product generator 

unit. Depending on the gated clock signals it allows required partial product bits to the 

next stage. Gated clock! allows first and second partial products. Gated clock2 allows 

second and third partial products. And Gated clock3 rest of the four partial products. 

The third pipeline stage, after first partial product reduction block, is gated by r Gated 

clock2. 

The fourth pipeline stage, after second partial product reduction block, is gated by Gated 

clock3. 

The fifth pipeline stage, after MUX and final partial product reduction block, is gated by 

either of Gated clock!. 

The final pipeline stage, after ripple carry adder, is gated by Gated clock!. 

4.2.2 Booth Encoder and Partial Product Generator Unit 

This unit is not configurable, unlike the 2-D case. All the partial products generated are 

of 17-bits. But, depending on the multiplier bits passed some or all of the partial products 

are valid and remaining partial products are held in a static condition. 

4.2.3 Partial product reduction units 
Similar to 2-D case, partial product summation is done in a Wallace-tree structure. 

Wallace-tree is divided into three blocks. After the first block, the first three rows contain 

bits in case of the 8-bit multiplication and after the second reduction the first three rows 

are the rows after reduction in case of the 16-bit multiplication. Outputs of both of the 

reduction units along with the two rows after the Booth-encoder and partial product 

generation unit are applied to the multiplexer unit, which are then passed to the final 

reduction unit for final reduction depending on the mode of multiplication along with 

their correction vector. The final reduction unit reduces the three rows into two 32-bit 

rows which are then added to the ripple carry adder unit. 
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The compressor configuration for each of the blocks is shown in the figures 4.7 through 
4.9 (in final reduction the bits shown are in case of 16-bit multiplication). 

__________1 

BE 5 e. 	If 

- F 
I 

------ ----- 

-------------------------- , 1 - 
Figure  4.7 First Reduction Unit. 

S. j, 	, 
------- —---t-- --------------- --------------- 
__ — • ..z••- 

Figure 4.8 Second Reduction Unit. 

ci 
3:2 compressor 	2:2 compressor 

Figure 4.9 Final Reduction Unit. 

x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x I x I x I x I x I x I x I x I x I x I x I x I x I x I x I x I x I x I x I x I x I x I x I x I x I x I X- 1  x I x 1 0 10 	C 
Figure 4.10 Input to the ripple carry adder 
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4.2.4 Multiplexer Unit 

This block selects the outputs from booth encoder and partial product generation unit, 

first second partial product reduction unit or second partial product reduction unit. In 

addition, it also adds the correction vector required for sign extension prevention only in 

case of 16-bit multiplication, in 8-bit and 4-bit multiplication partial products are sign 

extended to 16-bit and 8-bit respectively. The output of this stage is given to final partial 

product reduction unit. 

4.2.5 Ripple carry adder 

The ripple carry adder is also shared unit between all of the 16-bit, 8-bit and 4-bit 

multiplications. 

4.3 The architecture of the non-pipeline gated booth multiplier 

The non-pipeline gated Booth multiplier consists of a radix-4 Booth encoder, a partial 

product generation unit, partial product reduction unit and a fmal ripple carry adder, is 

shown in figure 4.12. Booth encoder, the partial product generation unit and ripple carry 

adder are same as the 1D case. The partial product reduction unit is an optimized 

Wallace-tree, shown in figure 4.1 1(the last column is the 31(1  column in the reduction 

tree). 
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Figure 4.11 Wallace tree reduction 
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Multiplier 	 Multiplicand 

PRODUCT 

Figure 4.12 Booth multiplier 
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Chapter 5 
RESULTS AND ANALYSIS 

The proposed reconfigurable pipelined Booth multiplier was first modeled in VHDL and 

functionally verified using Modelsim simulator. VHDL simulations were conducted 

using uniformly distributed random input test vectors with a supply voltage of IV under 

typical conditions. After functional validation, the architecture was synthesized for 

appropriate time and area constraints using SYNOPSYS Design Compiler [20]. TSMC 

90nm CMOS technology and standard cell library were used. 

Figure 5.1 through 5.9 shows the outputs of the synthesized non-clock gated, 1-

dimensional pipeline gated and 2-dimensional pipeline gated circuits at different 

multiplication modes (16-bit, 8-bit and 4-bit). 

The power analysis of the gate level structure has been conducted using Synopsys VCS 

and Primepower tools [21]. Figures 5.10 and 5.11 shows comparison of peak and average 

power consumption for different Booth multipliers in different input precisions (16-bit, 8-
bit, 4-bit). 

From the figures 5.10 and 5.11 and tables 5.1, several observations are made: 

1. Among the three multipliers in each figure, the designs using 1-D and 2-D 

pipeline gating techniques have lower power dissipations compared to the non-

pipelined gating designs under different input precision. 

2. Among all three multipliers, the designs using 2-D pipeline gating techniques 

show significant power savings over the corresponding designs using 1-D pipeline 

gating technique. This advantage is not large in 8-bit multiplication (19.8% under 

equal input precision probability), but becomes much greater in 4-bit 

multiplication (44.22% under equal input precision probability), and 16-bit 
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multiplication have almost same power consumption. The reason for this 

difference is that as the length of multiplication goes up, the number of registers 

and the components that are active increases. 1-D pipeline gating technique only 

deals with the vertical pipeline stage increment, while 2-D pipeline gating 

technique controls the registers in both directions. 

3. The area overhead of implementing 2-D over 1-D techniques is very small (0.18% 

in 6-stage 16-bit multiplier). 

4. Peak power dissipation affects the system reliability in operating under power 

constraints. 1-D and 2-D pipeline gating techniques both have the ability to 

reduce system peak power dissipation. But the same as average power dissipation, 

2-D technique has great advantage over 1-D technique under different input. 

precisions. 

5. Area overhead for 6-stage 1-D and 2-D pipeline gating techniques over non-

pipeline technique are 17.8% and 18% respectively for 6-pipeline stages. Area is 

more because the number registers required are more. 

The pipeline latency reduction of the designs using non-pipeline gating, 1-D and 2-D 

pipeline gating techniques is the same. 
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Figure 5.10. Average power dissipation of various multipliers under different input 

precisions (for 500MHz 6-stage pipeline) 

Peak Power 
2.50E-01 

o No Gating 

2.00E-01 	 ■ 1-dimensional Gating 
o 2-dimensional gating 

1.50E-01 

0 1.00E-01 

5.00E-02 

0.00E+00 
16 bit 	8 bit 	 4 bit 

Figure 5.11. Peak power dissipation of various multipliers under different input 

precisions ( for 500MHz 6-stage pipeline) 
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Area Overhead (in percentage) 

1D vs 2D 0.18% 

ID vs non gated 17.84% 

2D vs non gated 18.06% 
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Chapter 6 
CONCLUSION AND FUTURE SCOPE 

A novel reconfigurable pipelined Booth multiplier using 2-dimensional pipeline gating 

scheme is proposed. This technique is to gate the clock to registers in both vertical 

direction (data flow direction in pipeline) and horizontal direction (within each pipeline 

stage). For signed multipliers using 2's complement representation, sign extension, which 

wastes power and causes longer delay, could be avoided by implementing this technique. 

Our multiplier based on the gated input signals implements a 16-bit, 8bit or 4-bit 

multiplication operation. The relation and difference between this 2-D technique and 

existing 1-D technique are discussed. A set of Booth multipliers is designed using both 

techniques. Simulation results show that 2-D pipeline gating technique has great 

advantage over 1-D technique in terms of average and peak power savings while 
maintaining the same latency reduction rate. 2-D and 1-D pipeline technique can be 

applied with some additional area. 

For the 8-bit and 4-bit computations, the proposed Booth multiplier leads to a 61% and 

87% power consumption reduction over a non-scalable Booth multiplier, respectively. 

The proposed scalable pipelined Booth multiplier proves to be globally 48% more power 
efficient than a non-scalable pipelined Booth multiplier, and also it has fast speed due to 
pipelining. 

6.1 Scope of future work 

Following are the suggestions for future work 

1) Further increase scalability of the multiplier for lesser number of bits. This can 

reduce the power consumption further.. 

2) Use this multiplier in any of the DSP applications and verify the power savings. 



Conclusion 

3) Increase the number pipeline stages to further reduce the power consumption and 

increase the clock frequency. However, excessive increase in number of pipeline 

stages can clock frequency to a large value that a processor cannot support. Thus, 

it is not advised to increase pipeline stages excessively. 
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APPENDIX-A 

A.1. 2-Dimensional pipeline gated Booth multiplier 

library IEEE; 
use IEEE. STD_LOGIC_ 1164.ALL; 
use IEEE. STD_LOGIC_ARITH.ALL; 
use IEEE. STD LOGIC UNSIGNED.ALL; 

entity multiplier is 
Generic (m: integer: =16; n: integer: =16); 
Port (elk: in STD_LOGIC; 

gsI, gs2, gs3: in std logic; 
mcand: in STD_ LOGIC_ VECTOR (n-I downto 0); 
mier: in STD_LOGIC_VECTOR (m-1 downto 0); 
prod: out STD_LOGIC_VECTOR (m+n-1 downto 0)); 

end multiplier; 
--------------------------ARHITECTURE OF 2D BOOTH MULTIPLIER 
architectureBehavioral of multiplier is 
type ary is array (0 to m/2-1) of STD_LOGIC_VECTOR (n+l downto 0); 
type aryl is array (0 to 5) of STD_LOGIC_VECTOR( m+n downto .1); 
type ary2 is array (0 to 2) of STD__LOGIC_VECTOR( m+n downto 1); 
type ary3 is array (0 to 1) of STD_LOGIC_VECTOR( m+n downto 1); 
subtype word is std_logic_vector (n-I downto 0); 
signal loadl, load2, load3, gclk1, gclk2, gclk3:std_logic; 
signal pps, pps0: ary; 
signal pps1, ppsl0, pps20: aryl; 
signal pps2: ary2; 
signal"pps3: ary2; 
signal pps4, pps40: ary3; 
signal pps5: std_logic_vector (m+n downto 1); 
---------------------------------BOOTH-ENCODER AND PP GENERATOR 
PROCEDUREBooth_PP _gen (a: in std_logic_vector (2 downto 0); md: in 
std_logic_vector; PP: out std_logic vector; topbit: out std logic) is 
variable bb 	: std_logic_vector (md'range); 
variable psum : std_logic_vector (md'range); 
variable b_bar : std_logic_vector (md'range); 
variable two_b : std_logic vector (md'range); 
variable two_b_bar: std logic_vector (md'range); 
variable cin 	: std_logic; 

begin 
two_b:=md (md'le$-1 downto 0) & 

P01; 

b_bar:=not md; 
two b bar:=not two b; 
case a is 
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when "001" I "010" => 
bb: = md; 
cin:='0'; 

when "011" => 
bb: = twob; 
cin: ='O'; 

when "100" => 
bb:= two_b_bar; 
cin:=' 1'; 

when "101"I"110"=> 
bb:= b_bar; 
cin:='l'; 

when others => 
bb:=(others=>'O'); 
cin:='O'; 

end case; 

case a is 
when "001 "J"010"I "011 " => topbit:=not md(md'left); 
when "100"I"101 "I" 110" => topbit:=md(md'left); 
when "000"I" 111 "=>topbit:=' 1'; 
when others =>topbit:='O'; 

end case; 
PP:=bb&cin; 

end Booth PP_gen; 

Procedure Booth PP_gen after(a; in std_logic_vector(2 downto 0);md:in 
std_logic_vector;PP:out std logic_vector;fr:out std_logic;topbit: out std_logic)is 

variable bb 	: std_logic_vector (md'left-1 downto md'right); 
variable psum : std_logic vector (md'left- i downto md'right); 
variable b_bar : std_logic_vector (md'left-1 downto md'right); 
variable two_b : std_logic_vector (md'left-1 downto md'right); 
variable two_b_bar : std_logic_vector (md'left-1 downto md'right); 

begin 
two_b:=md(md'left-1 downto md'right) ; 
b_bar:=not md(md'left downto md'right+l); 
two_b bar:=not two b; 
case a is 

when "001" 1 "010" => 
bb:= md(md'left downto md'right+l); 

when "011" => 
bb:= two b; 

when "100" => 
bb:= two_b_bar; 

when "101" j "110" => 
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bb:= b_bar; 
when others => 

bb:=(others=>'O'); 
end case; 

case a is 
when "001"I"010"I"011" _> topbit:=not md(md'le$); 
when "100"1"101"I"110" => topbit:=md(md'left); 
when "000" 1" 111 "=>topbit:=' 1'; 
when others =>topbit:='O'; 

end case; 
PP:=bb(bb'left downto bb'right+l); 
fr:=bb(bb'right); 

end Booth PP_gen_after; 
------------------------------------------------------------------------------------------------------------ 
---------------------------------------------- [2:2] compressor 
PROCEDURECSA ha( a:in std_logic ;b: in std_logic ;s: out std_logic; c: out std_logic) 
is 
begin 

s:= a xor b; 
c:=aandb; 

end PROCEDURE CSA ha; 
------------------------------------------------------------------------------------------------------------ 
---------------------------------------------- [3:2] compressor 
PROCEDURECSA_fa( a:in std_logic ;b: in std_logic ;d : in std_logic ;s: out std_logic; 
c: out std_logic) is 
begin 

s:= a xor b xor d; 
c:= (a and b) or ( a and d) or (b and d); 

end PROCEDURE CSA fa; 

---------------------------------------------------------------RCA-------------------------------------- 
PROCEDURE rca ( a : in std_logic_vector; b: in std_logic_vector;sum:out 
std logic_vector) is 

variable c: std_logic_vector(a'range); 
variable nc:std_logic; 

begin 

for i in a'right to a'left loop 
if i=a'right then 

CSA fa(a(i),b(i),'0',sum(i),c(i)); 
elsif i/=a'left and i/=a'right then 

CSA_fa(a(i),b(i),c(i- 1 ),sum(i),c(i)); 
else 

C SA_fa(a(i),b(i), c (i-1), sum(i),nc ); 
end if; 

end loop; 
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end PROCEDURE rca; 

--------------------BEGINNING ARHITECTURE OF 2D BOOTH MULTIPLIER ---- 
Begin 
----------------------------------Clock Gating Logic ------------------------------------------------- 
GATED_CLKs: process (clk,gsl, gs2, gs3) 
begin 

if clk='O' then 
loadl<=gsl; 
load2<=gs2; 
load3<=gs3; 

end if ; 
gclk 1 <= gs 1 and elk; 
gclk2<= gs2 and elk; 
gclk3<= gs3 and elk; 

end process GATED CLKs; 

----------------------------------------- PIPELINE REGISTER I ---------------------------- 
GATING_MD_MR4: process(gclkl,mcandl,mierl) 
begin 
if gclkl'event and gclkl='1' then 

mier(3 downto 0)<=mierl (3 downto 0); 
mcand(3 downto 0)<=mcand l (3 downto 0); 

end if; 
end process GATING MD MR4; 

GATING_MD_MR8: process(gclk2,mcand l ,mier 1) 
begin 
if gclk2'event and gclk2=' l' then 

mier(7 downto 4) <=mierl(7 downto 4) ; 
mcand(7 downto 4) <=mcandl (7 downto 4) ; 

end if; 
end process GATING MD MR8; 

GATING_MD_MR 16: process(gclk3,mcand l ,mier l ) 
begin 
if gclk3'event and gclk3=' 1' then 

mier(15 downto 8)<=mierl(15 downto 8); 
mcand(15 downto 8)<=mcandl(15 downto 8); 

end if; . 
end process GATING MD MR16; 
------------------------------------------------------------------------------------------------------------ 
-------------------------------------------PPS generation----------------------------------------------
PPGEN: process (mier,mcand,gs 1,gs2,gs3) 

variable tl,t2,t3,t4,t5,t6,t7,t8,t9,t10,t11,t12:std_logic; 
variable ppv : ary; 
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variable a: std logic_vector(2 downto 0); 
variable gckl,gck2,gck3 :std_logic; 
variable mux:std_logic vector(2 downto 0); 

begin 
gckl:=gs1; 
gck2:=gs2; 
gck3:=gs3; 
---------------------------- 4-bit -------------------------------- 
a:=mier(1 downto 0) &'0'; 
Booth_PP_gen(a,mcand(3 downto 0),ppv(0)(4 downto 0),tl); 
a:=mier(3 downto 1); 
Booth_PP_gen(a,mcand(3 downto 0),ppv(1)(4 downto 0),t3); 
------- ---- --------------- 8-bit -------------------------------- 
a:=mier(1 downto 0) &'O'; 
Booth_PP_gen after(a,mcand(7 downto 3),ppv(0)(8 downto 6),t2,t5); 
a:=mier(3 downto 1); 
Booth_PP_gen after(a,mcand(7 downto 3),ppv(l)(8 downto 6),t4,t6); 
a:=mier(5 downto 3) ; 
Booth_PP_gen(a,mcand(7 downto 0),ppv(2)(8 downto 0),t7); 
a:=mier(7 downto 5); 
Booth_PP_gen(a,mcand (7 downto 0),ppv(3)(8 downto 0),t8); 
------- ---- --------------- 16-bit -------------------------------- 
a:=mier(1 downto 0) &'0'; 
Booth_PP_gen_after(a,mcand(l5 downto 7),ppv(0)(16 downto 

10),t9,ppv(0)(17)); 
- 	a:=mier(3 downto 1); 

Booth_PP_gen_after(a,mcand(l 5 downto 7),ppv(l)(16 downto 
1 0),t 1.0,ppv(1)(17)); 

a:=mier(5 downto 3) ; 
Booth_PP_gen affter(a,mcand(15 downto 7),ppv(2)(16 downto 

1 0),t 11 ,ppv(2) (17)); 
a:=mier(7 downto 5); 
Booth_PP_gen_after(a,mcand (15 downto 7),ppv(3)(16 downto 

10),t 12,ppv(3) (17)); 
a:=mier(9 downto 7) ; 
Booth_PP_gen(a,mcand,ppv(4)(16 downto 0),ppv(4)(17)); 
a:=mier(1 1 downto 9); 
Booth_PP_gen(a,mcand,ppv(5)(16 downto 0),ppv(5)(17)); 
a:=mier(13 downto 11) ; 
Booth_PP_gen(a,mcand,ppv(6)(16 downto 0),ppv(6)(17)); 
a:=mier(15 downto 13); 
Booth_PP_gen(a,mcand,ppv(7)(16 downto 0),ppv(7)(17)); 
------- ---- —TOPS--------------------------------------------- 

mux:=gckl &gck2&gck3; 
tops:case mux is 
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when "100" _> 	 ppv(0)(5):=t1; 
ppv(1)(5):=t3; 
ppv(0)(9):='0'; 
ppv(1)(9):='0'; 
Ppv(2)(9):='0'; 
ppv(3)(9):='0'; 

when "110"=> 	 ppv(0)(5):=t2; 
ppv(1)(5):=t4; 
ppv(0)(9):=t5; 
ppv( 1 )(9) :=t6; 
PPv(2)(9):=t7; 
PPv(3)(9):=t8; 

when "III" _> 
PPv(0)(5):=t2; 
ppv(l)(5):=t4; 
PPv(0)(9):=t9; 
ppv(1)(9):=t10; 
ppv(2)(9):=tl 1; 
ppv(3)(9):=t12; 

when others => 	 ppv(0)(5):='O'; 
ppv(1)(5):='0; 
ppv(0)(9):='O ; 
ppv(1)(9):='0; 
ppv(2)(9):='O'; 
ppv(3)(9):='O'; 

end case tops; 
PPsO<—PPv; 

end process PP_GEN; 

PIPELINE REGISTER 2 
PPSO GCLK1: process(gclkl) 
begin 

if gclkl'event and gclkl='1' then 
pps(0)(5 downto 0)<=ppsO(0)(5 downto 0); 
pps(1)(5 downto 0)<=ppsO(1)(5 downto 0); 

end if ; 
end process PPSO_GCLK1; 

PPSO GCLK2: process(gclk2) 
begin 

if gclk2'event and gclk2=' 1 then 
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pps(0)(9 downto 6)<=pps0(0)(9 downto 6); 
pps(1)(9 downto 6)<=ppsO(1)(9 downto 6); 
pps(2)(9 downto 0)<=pps0(2)(9 downto 0); 
pps(3)(9 downto 0)<=ppsO(3)(9 downto 0); 

end if ; 
end process PPSO_GCLK2; 
PPSO_GCLK3: process(gclk3) 
begin 

if gclk3'event and gclk3=' 1' then 
pps(0)(17 downto 10)<=pps0(0)(17 downto 10); 
pps(1)(17 downto 10)<=pps0(1)(17 downto 10); 
pps(2)(17 downto 10)<=pps0(2)(17 downto 10); 
pps(3)(17 downto 10)<=pps0(3)(17 downto 10); 
pps(4)<=ppsO(4); 
pps(5)<=ppsO(5); 
pps(6)<=ppsO(6); 
pps(7)<=ppsO(7); 

end if ; 
end process PPSO_GCLK3; 

PP Reduction I ------------------------------------------- 
PPS_REDN1: process (pps) 
variable ppvl : ary; 
variable ppv2,ppv3: aryl; 
begin 

ppvl:=pps; 
--------------STAGE!  

ppv2 (1) (1) :=ppv 1(0) (0); 
ppv2(0)(1):=ppv 1(0)(1); 
ppv2(0)(2):=ppv 1 (0)(2); 
u3:csa_fa(ppvl (0)(3),ppvl (1)(1),ppv 1(1)(0),ppv2(0)(3),ppv2(1)(4)); 
u4:csa_ha(ppv 1(0)(4),ppvl (1 )(2),ppv2(0)(4),ppv2(1 )(5)); 
u5 :csa_fa(ppv 1 (0)(5),ppv 1(1)(3),ppv 1(2)(1),ppv2(0) (5),ppv2(1)(6)); 

ppv2(2)(5):=ppv 1 (2)(0); 

u6:csa fa(ppvl(0)(6),ppvl(1)(4),ppv1(2)(2),ppv2(0)(6),ppv2(1)(7)); 

u7:csa—fa(ppv 1(0)(7),ppv 1(1)(5),ppv 1 (2)(3),ppv2 (0)(7),ppv2(1)(8)); 
ul_7: csa ha(ppv1(3)(1),ppv1(3)(0),ppv2(2)(7),ppv2(3)(8)); 

u8:csa_fa(ppvl (0)(8),ppvl (I)(6),ppvl (2)(4),ppv2(0)(8),ppv2(1)(9)); 
ppv2(2)(8):=ppv 1 (3)(2); 

u9:csa_fa(ppv 1 (0)(9),ppvl (1)(7),ppv1(2)(5),ppv2(0)(9),ppv2(1)(10)); 
ppv2(2)(9):=ppv 1(3)(3); 
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ul_9:csa ha(ppv1(4)(1),ppvl(4)(0),ppv2(3)(9),ppv2(3)(10)); 

ul 0:csa_fa(ppv 1(3)(4),ppv 1(1)(8),ppv 1 (2)(6),ppv2(0)(10),ppv2(1)(11)); 
ul_l0:csa ha(ppvl(0)(10),ppvl(4)(2),ppv2(2)(10),ppv2(3)(11)); 

ul l:csa fa(ppv1(3)(5),ppv1(1)(9),ppvl (2)(7),ppv2(0)( 11 ),ppv2(1 )( 12)); 
ul_l l :csa_fa(ppv 1 (5)(0),ppvl (4)(3),ppvl (5)(1),ppv2(2)(11),ppv2(3)(12)); 
ppv2(4)(11):=ppv 1(0)(11); 

ul2: csa_ha(ppv 1(2)(8),ppv 1(3)(6),ppv2 (0)( 1 2),ppv2( 1)( 13)); 
ul_12:csa_ha(ppvl (0)(12),ppv1(1)(10),ppv2(2)(12),ppv2(3)(13)); 
u2_12:csa ha(ppvl(4)(4),ppvl(5)(2),ppv2(4)(12),ppv2(5)(13)); 

ul 3 :csa_ha(ppvl (2)(9),ppv 1 (3)(7),ppv2 (0)(13),ppv2(1)(14)); 
ul _13 :csa_fa(ppv 1(6)(0),ppv 1(6)(1),ppv l (5)(3),ppv2(2) (13),ppv2(3)(14)); 
u2_l3:csa fa(ppvl(0)(13),ppvl(1)(11),ppvl(4)(9),ppv2(4)(13),ppv2(5)(14)); 

ul 4:csa fa(ppv1(0)(14),ppv1(1)(12),ppvl (2)(10),ppv2(2)(14),ppv2(3)(15)); 
ul _14: csa_fa(ppv 1(6)(2),ppv 1 (4)(6),ppvl (5)(4),ppv2(4)(14),ppv2(5)(15)); 
ppv2(0)(14):=ppv l (3)(8); 

ul 5:csa_fa(ppv l (0)(1 5),ppv l (1)(1 3),ppv l(2)(11),ppv2(1)(15),ppv2(2)(16)); 
ul _15: csa_fa(ppv l (6)(3 ),ppvl (4)(7),ppvl (5)(5),ppv2(2)( 1 5),ppv2(3)(16)); 
u2_15:csa_ha(ppv 1 (7)(0),ppvl (7)(1),ppv2(4)(15),ppv2(5)(16)); 
ppv2(0)(15):=ppv 1(3)(9); 

ul 6:csa_fa(ppv l (0)( 1 6),ppvl (1)(14),ppv 1(2)(12),ppv2(0)(16),ppv2(1)(17)); 
ul_16:csa fa(ppv1(3)(10),ppv1(4)(8),ppv1(5)(6),ppv2(1)(16),ppv2(2)(17)); 
u2_16:csa_ha(ppv 1 (6)(4),ppv l (7)(2),ppv2(4)(16),ppv2(5)(17)); 
u 1 7:csa_fa(ppv 1(0)(17),ppv 1(1)(15),ppv 1(2)(13),ppv2(0)(17),ppv2(1)(18)); 
u1_17:csa_fa(ppv 1(3)(11),ppv 1 (4)(9),ppv 1 (5)(7),ppv2(3)( 1 7),ppv2(4)( 18)); 
u2_17:csa ha(ppv 1 (6)(5),ppv 1(7)(3),ppv2(4)(17),ppv2(5)(18)); 

ul 8 :csa_fa(ppv 1(1)(16),ppv 1(2)(14),ppv 1(3)(12),ppv2(2)(18),ppv2(3) (19)); 
ul_18:csa_fa(ppv1(4)(10),ppv1(5)(8),ppv 1 (6)(6),ppv2(3)( 1 8),ppv2(4)(1 9)); 
ppv2(0)(18):=ppv 1(7)(4); 

ul 9:csa_fa(ppvl (1)(17),ppv1(2)(15),ppv1(3)(13),ppv2(0)(19),ppv2(1)(20)); 
u 1_19: csa_fa(ppv 1 (4)(1 1 ),ppvl (5)(9),ppv 1 (6)(7),ppv2( I )(19),ppv2(2)(20)); 
ppv2(2)(19):=ppv 1 (7)(5); 

u20:csa_fa(ppv 1(2)(16),ppv 1(3)(14),ppvl (4)(12),ppv2(0)(20),ppv2(1)(21)); 
ul_20:csa fa(ppvl(5)(10),ppvl(6)(8),ppvl(7)(6),ppv2(3)(20),ppv2(3)(21)); 

u21:csa_fa(ppv 1(2)(17),ppv 1 (3)( 1 5),ppvl (4)(13),ppv2(0)(21),ppv2(1)(22)); 
ul_21:csa fa(ppvl(5)(11),ppvl(6)(9),ppvl(7)(7),ppv2(2)(21),ppv2(3)(22)); 
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u22:csa_fa(ppv 1(3)(16),ppv 1(4)(14),ppvl (5)(12),ppv2(0)(22),ppv2(1)(23)); 
ul 22:csa ha(ppv1(6)(10),ppvl (7)(8),ppv2(2)(22),ppv2(3)(23)); 

u23 :csa_fa(ppv 1(3) (17),ppv 1 (4)(1 5),ppvl (5)(1 3),ppv2(0)(23),ppv2( 1 )(24)); 
ul 23:csa ha(ppv1(6)(11),ppv1(7)(9),ppv2(2)(23),ppv2(2)(24)); 

u24:csa_fa(ppvl (4)(16),ppv 1 (5)(l 4),ppvl (6)(l2),ppv2(0)(24),ppv2(1)(25)); 
ppv2(3)(24):=ppv 1(7)(10); 

u25:csa fa(ppvl(4)(17),ppvl(5)(15),ppv1(6)(13),ppv2(0)(25),ppv2(1)(26)); 
ppv2(2)(25):=ppvl (7)(1 1); 
u26:csa fa(ppv1(5)(16),ppv1(6)(14),ppv1(7)(12),ppv2(0)(26),ppv2(1)(27)); 

u27:csa_fa(ppvl (5)(17),ppv 1 (6)( 1 5),ppvl (7)(13),ppv2(0)(27),ppv2(1)(28)); 

u28:csa_ha(ppv 1(6)(16),ppv 1 (7)( 1 4),ppv2(0)(28),ppv2( 1 )(29)); 

u29:csa ha(ppvl(6)(17),ppv1(7)(15),ppv2(0)(29),ppv2(1)(30)); 

ppv2(0)(3 0) := ppv 1(7)(16); 
ppv2(0)(3 1):= ppv 1(7)(17); 
------------------------------STAGE 2------------- 
ppv3(0)(1):=ppv2(0)(1); 
ppv3(0)(2):=ppv2(0)(2); 
ppv3(0)(3):=ppv2(0)(3); 
ppv3(1)(1):=ppv2(1)(1); 
ppv3 (0)(4) :=ppv2(0)(4); 
ppv3 (1)(4) :=ppv2(1)(4); 
ppv3(0)(5):=ppv2(0)(5); 
ppv3 (1)(5 ):=ppv2(1)(5); 
ppv3(2)(5):=ppv2(2)(5); 
ppv3(0)(6):=ppv2(0)(6); 
ppv3( 1 )(6):=ppv2( 1 )(6); 

ppv3  (0)(7):=ppv2(0)(7); 
ppv3( 1)(7):=ppv2( 1 )(7); 
ppv3 (2)(7):=ppv2 (2)(7); 

ul_0_8:csa_fa(ppv2(0)(8),ppv2(1)(8),ppv2(2)(8),ppv3(0)(8),ppv3(1)(9)); 
ppv3(1)(8):=ppv2(3)(8); 

ul_0_9:csa fa(ppv2(0)(9),ppv2( 1 )(9),ppv2(2)(9),ppv3(0)(9),ppv3(1 )(1 0)); 
ppv3(2)(9):=ppv2(3)(9); 

ul_0_10:csa ha(ppv2(0)(10),ppv2(1)(10),ppv3(0)(10),ppv3(1)(11)); 
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ul_1_l0:csa ha(ppv2(2)(10),ppv2(3)(10),ppv3(2)(10),ppv3(3)(11)); 

ul_0_I l :csa_ha(ppv2(0)(11),ppv2(1)(11),ppv3 (0)(11),ppv3 (1)(12)); 
ul_1_l l :csa fa(ppv2(2)(11),ppv2(3)(11),ppv2(4)(11),ppv3(2)(11),ppv3(3)(12)); 

ul_0_12:csa_ha(ppv2(0)(12),ppv2(1)(12),ppv3 (0)( 1 2),ppv3( 1 )( 13)); 
ul_1_12:csa fa(ppv2(2)(12),ppv2(3)(12),ppv2(4)(12),ppv3(2)(12),ppv3(3)(13)); 

ul_0_ 13:csa_fa(ppv2(2)(13),ppv2(3)(13),ppv2(4)(13),ppv3(2)(13),ppv3(3)(14)); 
ul_1_13:csa_ha(ppv2(0)(13),ppv2(1)(13),ppv3(0)(13),ppv3 (1)(14)); 
ppv3 (4)(13):=ppv2(5)(13); 

ul_0_14:csa_ha(ppv2(0)(14),ppv2(1)(14),ppv3(0)(14),ppv3(1)(15)); 
ul_1_14:csa fa(ppv2(2)(14),ppv2(3)(14),ppv2(4)(14),ppv3(2)(14),ppv3(3)(15)); 
ppv3(4)(14):=ppv2(5)(14); 

ppv3(0)(15):=ppv2(0)(15); 
ul_0_15:csa fa(ppv2(3)(15),ppv2(1)(15),ppv2(2)(15),ppv3(2)(15),ppv3(2)(16)); 
ul_1_15:csa ha(ppv2(5)(15),ppv2(4)(15),ppv3(4)(15),ppv3(3)(16)); 

ul_0_16:csa_fa(ppv2(0)(16),ppv2(1)(16),ppv2(2)(16),ppv3 (0)(16),ppv3(1)(17)); 
ul_1_16:csa_fa(ppv2(3)(16),ppv2(4)(16),ppv2(5)(16),ppv3(1)(16),ppv3(2)(17)); 

ul_0_17:csa_fa(ppv2(0)(17),ppv2(1)(17),ppv2(2)(17),ppv3(0)(17),ppv3(1)(18)); 
ul_1_l7:csa fa(ppv2(3)(17),ppv2(4)(17),ppv2(5)(17),ppv3(3)(17),ppv3(3)(18)); 

ul _0_18:csa_fa(ppv2(0)(18),ppv2(1)(18),ppv2(2)(18),ppv3 (0)( 1 8),ppv3( 1 )(1 9)); 
ul_1_18:csa fa(ppv2(3)(18),ppv2(4)(18),ppv2(5)(18),ppv3(2)(18),ppv3(3)(19)); 

ul_O_19:csa fa(ppv2(0)(19),ppv2(1)(19),ppv2(2)(19),ppv3(0)(19),ppv3(1)(20)); 
u l _ 1 _ 19: cs a_ha(ppv2 (3) (19),ppv2 (4) (19),ppv3 (2)(1 9),ppv3 (3) (20)); 

ul_0_20:csa fa(ppv2(0)(20),ppv2(1)(20),ppv2(2)(20),ppv3(0)(20),ppv3(1)(21)); 
ppv3(2)(20):=ppv2(3)(20); 

ul_0_21:csa fa(ppv2(0)(21),ppv2(1)(21),ppv2(2)(21),ppv3(0)(21),ppv3(1)(22)); 
ppv3(2)(2 1):=ppv2(3)(2 1); 

ul_0_22:csa fa(ppv2(0)(22),ppv2(1)(22),ppv2(2)(22),ppv3(0)(22),ppv3(1)(23)); 
ppv3(2)(22):=ppv2(3)(22); 

u1_0_23:csa fa(ppv2(0)(23),ppv2(1)(23),ppv2(2)(23),ppv3(0)(23),ppv3(1)(24)); 
ppv3 (2)(23):=ppv2(3)(23); 

u 1_0_24: csa_fa(ppv2(0)(24),ppv2 (1)(24),ppv2(2)(24),ppv3 (0)(24),ppv3( 1 )(25)); 
ppv3 (2)(24):=ppv2(3)(24); 

-63- 



ul_O 25:csa fa(ppv2(0)(25),ppv2(1)(25),ppv2(2)(25),ppv3(0)(25),ppv3(1)(26)); 

ul _0_26: csa_ha(ppv2(0)(26),ppv2(1)(26),ppv3(0)(26),ppv3(1)(27)); 
ul _0_27: csa_ha(ppv2(0) (27),ppv2 (1)(27),ppv3 (0) (27),ppv3 (1)(28)); 
ul _0_28: csa_ha(ppv2(0)(28),ppv2( 1 )(28),ppv3 (0)(28),ppv3 (1)(29)); 
ul _0_29: csa_ha(ppv2(0)(29),ppv2 (1)(29),ppv3 (0) (29),ppv3 (1)(3 0)); 
ul _0_30: csa_ha(ppv2(0)(30),ppv2(1)(30),ppv3(0)(3 0),ppv3(1 )(3 1)); 

ppv3 (0)(31) :=ppv2(0)(3 1); 
ppv3(1)(2):='O'; 
ppv3(1)(3):='0; 
ppv3(2)(4 downto 1):=(others=>'O'); 
ppv3(2)(6):='0'; 
ppv3(2)(8):='0'; 
pps 10<=ppv3; 

end process PPS REDN1; 

------------------------------------------ PIPELINE REGISTER 3 ---------------------------------- 
PPS 1_GCLK2:process (gclk2) 
begin 

if gclk2'event and gclk2=' 1' then 
ppsl(0)(15 downto 1)<=ppslO(0)(15 downto 1); 
ppsl(1)(15 downto 1)<=pps10(1)(15 downto 1); 
pps l (2)(8 downto 1)<=pps 10(2)(8 downto 1); 

end if ; 
end process PPS1_GCLK2; 

PPS 1_GCLK3:process (gclk3) 
begin. 

if gclk3 'event and gclk3=' 1' then 
pps 1(0)(31 downto 16)<=pps 10(0)(31 downto 16); 
pps 1(1)(31 downto 16)<=pps 10(1)(31 downto 16); 
ppsl (2)(24 downto 9)<=pps 10(2)(24 downto 9); 
pps 1(3)(20 downto 1 1)<=pps 10(3)(20 downto 11); 
ppsl(4)(15 downto 13)<=ppsl0(4)(15 downto 13); 

end if ; 
end process PPSl_GCLK3; 

PP Reduction 2 ------------------------------- 
PPS REDN2 : process (ppsl) 
variable ppv4,ppv5,ppv6: aryl; 

begin 
ppv4:=pps1; 

------------------------------STAGE 1--------------- 
ppv5(0)(10 downto 1):= ppv4(0)(10 downto 1); 
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ppv5(1)(10 downto 1):= ppv4(1)(10 downto 1); 
ppv5(2)(10 downto 5):= ppv4(2)(10 downto 5); 

u2_ 11:csa_fa(ppv4(0)(11),ppv4(1)(11),ppv4(2)(11),ppv5(0)(11),ppv5(1)(12)); 
ppv5(1)(1 1):=ppv4(3)(1 1); 

u2 12:csa_fa(ppv4(0)(12),ppv4(1)(12),ppv4(2)(12),ppv5 (0)(12),ppv5(1)(13)); 
ppv5(2)(12):=ppv4(3)(12); 

u2_13:csa_fa(ppv4(0)(13),ppv4(1)(13),ppv4(2)(13),ppv5(0)(13),ppv5(1)(14)); 
u21_13:csa ha(ppv4(3)(13),ppv4(4)(13),ppv5(2)(13),ppv5(3)(14)); 

u2_14:csa fa(ppv4(0)(14),ppv4(1)(14),ppv4(2)(14),ppv5(0)(14),ppv5(1)(15)); 
u21_14:csa_ha(ppv4(3)(14),ppv4(4)(14),ppv5(2)(14),ppv5(3)(15)); 

u2_15:csa fa(ppv4(0)(15),ppv4(1)(15),ppv4(2)(15),ppv5(0)(15),ppv5(1)(16)); 
u22_15:csa_ha(ppv4(3)(15),ppv4(4)(15),ppv5(2)(15),ppv5(3)(16)); 

u2_1 6:csa_fa(ppv4(0)( 1 6),ppv4( 1 )( 1 6),ppv4(2)( 1 6),ppv5(0)( 1 6),ppv5( 1 )( 17)); 
ppv5(2)(16):=ppv4(3)(16); 

u2_17:csa_fa(ppv4(0)(17),ppv4(1)(17),ppv4(2)(17),ppv5(0)(17),ppv5(1)(18)); 
ppv5 (2)(17) :=ppv4(3)(17); 

u2_18:csa fa(ppv4(0)(18),ppv4(1)(18),ppv4(2)(18),ppv5(0)(18),ppv5(1)(19)); 
ppv5(2)(18):=ppv4(3)(18); 

u2_19:csa fa(ppv4(0)(19),ppv4(1)(19),ppv4(2)(19),ppv5(0)(19),ppv5(I)(20)); 
ppv5 (2)(19):=ppv4(3)(19); 

u2_20:csa fa(ppv4(0)(20),ppv4(1)(20),ppv4(2)(20),ppv5(0)(20),ppv5(1)(21)); 
ppv5 (2) (20 ):=ppv4(3) (20); 

u2_2 1: csa_fa(ppv4 (0)(21),ppv4(1)(21),ppv4(2)(21),ppv5 (0) (21),ppv5 (1)(22)); 
u2_22:csa fa(ppv4(0)(22),ppv4(1)(22),ppv4(2)(22),ppv5(0)(22),ppv5(1)(23)); 
u2_23: csa_fa(ppv4(0)(23),ppv4(1)(23),ppv4(2)(23),ppv5 (0)(23),ppv5(1)(24)); 
u2_24:csa fa(ppv4(0)(24),ppv4(1)(24),ppv4(2)(24),ppv5(0)(24),ppv5(1)(25)); 
u2_25:csa_ha(ppv4(0)(25),ppv4(1)(25),ppv5(0)(25),ppv5(1)(26)); 
u2_26:csa ha(ppv4(0)(26),ppv4(1)(26),ppv5(0)(26),ppv5(1)(27)); 
u2_27: csa_ha(ppv4(0)(27),ppv4(1)(27),ppv5(0)(27),ppv5(1)(28)); 
u2_28: csa_ha(ppv4(0)(28),ppv4(1)(28),ppv5(0)(28),ppv5(1)(29)); 
u2_29:csa ha(ppv4(0)(29),ppv4(1)(29),ppv5(0)(29),ppv5(1)(30)); 
u2_3 O:csa_ha(ppv4(0)(30),ppv4(1)(30),ppv5(0)(30),ppv5(l)(31)); 
u2 31:csa ha(ppv4(0)(31),ppv4(1)(31),ppv5(0)(31),ppv5(0)(32)); 
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ppv5(2)(1 1):='O ; 
-----------------------------------STAGE 2-------------------------- 

ppv6(0)(13 downto 1):= ppv5(0)(13 downto 1); 
ppv6(1)(13 downto 1):= ppv5(1)(13 downto 1); 
ppv6(2)(13 downto 5):= ppv5(2)(13 downto 5); 

u2_1_14:csa_fa(ppv5(0)(14),ppv5 (1)(14),ppv5(2)(14),ppv6(0)(14),ppv6(1)(15)); 
ppv6( 1 )( 14) :=ppv5(3)(1 4); 
u2_1_15:csa_fa(ppv5(0)(15),ppv5(l)(15),ppv5(2)(15),ppv6(0)(15),ppv6(1)(16)); 
ppv6(2)(15):=ppv5 (3)(15); 

u2_1_16:csa fa(ppv5(0)(16),ppv5(1)(16),ppv5(2)(16),ppv6(0)(16),ppv6(1)(17)); 
ppv6(2)(16):=ppv5(3)(16); 

u2_1_17:csa_fa(ppv5(0)(17),ppv5(1)(17),ppv5(2)(17),ppv6(0)(17),ppv6(1)(18)); 
u2_1_18:csa_fa(ppv5(0)(18),ppv5(1)(18),ppv5 (2)(18),ppv6(0)(18),ppv6(1)(19)); 
u2_1_19:csa fa(ppv5(0)(19),ppv5(1)(19),ppv5(2)(19),ppv6(0)(19),ppv6(l)(20)); 
u2_1_20:csa_fa(ppv5(0)(20),ppv5 (1)(20),ppv5 (2)(20),ppv6(0)(20),ppv6(1)(21)); 
u2_1_2 1 :csa_ha(ppv5 (0)(21),ppv5(1)(21),ppv6(0)(21),ppv6(1)(22)); 
u2_1_22:csa_ha(ppv5 (0)(22),ppv5(1)(22),ppv6(0)(22),ppv6(1)(23)); 
u2_1_23:csa_ha(ppv5 (0)(23),ppv5(1)(23),ppv6(0)(23),ppv6(1)(24)); 
u2_1_24:csa ha(ppv5(0)(24),ppv5(1)(24),ppv6(0)(24),ppv6(1)(25)); 
u2_1_25:csa_ha(ppv5 (0)(25),ppv5(1)(25),ppv6(0)(25),ppv6(1)(26)); 
u2_1_26:csa_ha(ppv5 (0)(26),ppv5(1)(26),ppv6(0)(26),ppv6(1)(27)); 
u2_1_27:csa ha.(ppv5(0)(27),ppv5(1)(27),ppv6(0)(27),ppv6(1)(28)); 
u2_1_28:csa_ha(ppv5 (0)(28),ppv5(1)(28),ppv6(0)(28),ppv6(1)(29)); 
u2_1_29:csa_ha(ppv5 (0)(29),ppv5 (1)(29),ppv6(0)(29),ppv6(1)(30)); 
u2_1_30:csa_ha(ppv5(0)(30),ppv5(1)(30),ppv6(0)(30),ppv6(l)(31)); 
u2_1_31:csa_ha(ppv5(0)(31),ppv5(1)(31),ppv6(0)(31),ppv6(1)(32)); 

ppv6(0)(32):=ppv5(0)(32); 
ppv6(2)(14):='O'; 
pps20<=ppv6; 

end process PPS REDN2; 

------------------------------------------ PIPELINE REGISTER 4 --------------------------------- 
PPS2_GCLK3: process(gclk3) 
begin 

if gclk3'event and gclk3='1' then 
pps2(0)(32 downto 1)<=pps20(0)(32 downto 1); 
pps2(1)(32 downto 1)<=pps20(1)(32 downto 1); 
pps2(2)(16 downto 5)<= pps20(2)(16 downto 5); 

end if ; 
end process PPS2_GCLK3; 



MUX Process 
MUX_process: process(ppsl,pps2,pps,gs 1,gs2,gs3) 

variable m: std_logic_vector(2 downto 0); 
variable cv 1: std_logic_vector (3 downto 0); 
variable cv2: std_logic_vector (7 downto 0); 
variable cv3: std_logic_vector (15 downto 0); 

variable cif: integer range -2**(3) to (2**_(3))-1; 
variable ci2: integer range -2**(7) to (2**(7))-1; 
variable ci3: integer range -2**(15) to (2**(15))-1; 

begin 
m:=gs 1 &gs2&gs3; 
cil:= -(((2**4)-1)/3); 
cv I std_ logic_vector(conv_unsigned(ci l ,4)); 
ci2:= -(((2**8)-1)/3); 
cv2 := std_logic_vector(conv_unsigned(ci2,8)); 
ci3 := -(((2 * * 16)-1)/3 ); 
cv3 := std logic_vector(conv unsigned(ci3,16)); 

gating:case m is 
when "111'=> 

pps3(0)(32 downto 1)<=pps2(0)(32 downto 1); 
pps3(1)(32 downto 1)<=pps2(1)(32 downto 1); 
pps3(2)(4 downto 1)<=(others=>'O'); 
pps3(2)(16 downto 5)<= pps2(2)(16 downto 5); 
pps3(2)(32 downto 17)<= cv3; 

when "110"=> 
pps3(0)(15 downto 1)<=ppsl(0)(15 downto 1); 
pps3(0)(32 downto 16)<=(others=>'O'); 
pps3(1)(15 downto 1)<=ppsl(1)(15 downto 1); 
pps3(1)(32 downto 16)<=(others=>'O'); 
pps3(2)(4 downto 1)<=(others=>'O'); 
pps3(2)(8 downto 5)<=pps 1 (2)(8 downto 5); 
pps3(2)(16 downto 9)<=cv2; 
pps3(2)( 32 downto 17)<=(others=>'O'); 

when "100" => 
pps3(0)(5 downto 1)<=pps(0)(5 downto 1); 
pps3(0)(32 downto 6)<=(others=>'O'); 
pps3( 1)( 1 )<=pps(0)(0); 
PPs3(l)(2)<='0 ; 
pps3(1)(7 downto 3)<=pps(1)(5 downto 1); 
pps3(1)(32 downto 8)<=(others=>'O'); 
pps3(2)( 2 downto 1)<=(others=>'0'); 
pps3 (2)(3)<=pps(1)(0); 
PPs3.(2)(4)<='O'; 
pps3(2)(8 downto 5)<=cvl; 
pps3(2)(32 downto 9)<=(others=>'O'); 
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when others => 
for i in 0 to 2 loop 

pps3 (i)<=(others=>'0'); 
end loop; 

end case gating; 

end process MUX_process; 

--------------------------------- PP Reduction 3 
PPS REDN final : process(pps3) 

variable ppv7:ary2; 
variable ppv8:ary3; 
variable ncl:std_logic; 

begin 

ppv7:=pps3; 
ppv8(0)(2 downto 1):= ppv7(0)(2 downto 1); 
ppv8(l)(2 downto 1):= ppv7(1)(2 downto 1); 
ppv8(1)(3):= '0'; 
u F_3:csa fa(ppv7(0)(3),ppv7(1)(3),ppv7(2)(3),ppv8(0)(3),ppv8(1)(4)); 
u F_4:csa_ha(ppv7(0)(4),ppv7(1)(4),ppv8(0)(4),ppv8(1)(5)); 
u_F_5:csa_fa(ppv7(0)(5),ppv7(1)(5),ppv7(2)(5),ppv8(0)(5),ppv8 (1)(6)); 
u F_6:csa_fa(ppv7(0)(6),ppv7(1)(6),ppv7(2)(6),ppv8(0)(6),ppv8(1)(7)); 
u F_7:csa_fa(ppv7(0)(7),ppv7(1)(7),ppv7(2)(7),ppv8(0)(7),ppv8(1)(8)); 
u F_8:csa fa(ppv7(0)(8),ppv7(1)(8),ppv7(2)(8),ppv8(0)(8),ppv8(1)(9)); 
u F_9:csa fa(ppv7(0)(9),ppv7(1)(9),ppv7(2)(9),ppv8(0)(9),ppv8(1)(10)); 
u F_10:csa fa(ppv7(0)(10),ppv7(1)(10),ppv7(2)(10),ppv8(0)(10),ppv8(1)(11)); 
u F_11:csa_fa(ppv7(0)(11),ppv7(1)(11),ppv7(2)(11),ppv8(0)(11),ppv8(1)(12)); 

u F_12:csa_fa(ppv7(0)(12),ppv7(1)(12),ppv7(2)(12),ppv8(0)(12),ppv8(1)(13)); 
u F_13:csa fa(ppv7(0)(13),ppv7(1)(13),ppv7(2)(13),ppv8(0)(13),ppv8(1)(14)); 
u F_14:csa fa(ppv7(0)(14),ppv7(1)(14),ppv7(2)(14),ppv8(0)(14),ppv8(1)(15)); 
u F_15:csa_fa(ppv7(0)(15),ppv7(1)(15),ppv7(2)(15),ppv8(0)(15),ppv8(1)(16)); 
u_F_l6:csa fa(ppv7(0)(16),ppv7(1)(16),ppv7(2)(16),ppv8(0)(16),ppv8(1)(17)); 
u_F_17:csa fa(ppv7(0)(17),ppv7(1)(17),ppv7(2)(17),ppv8(0)(17),ppv8(1)(18)); 
u_F_18:csa fa(ppv7(0)(18),ppv7(1)(18),ppv7(2)(18),ppv8(0)(18),ppv8(l)(19)); 
u_F_19:csa_fa(ppv7(0)(19),ppv7(1)(19),ppv7(2)(19),ppv8(0)(19),ppv8 (1)(20)); 
u F_20:csa_fa(ppv7(0)(20),ppv7(1)(20),ppv7(2)(20),ppv8(0)(20),ppv8 (1)(21)); 
u F_21:csa_fa(ppv7(0)(21),ppv7(1)(21),ppv7(2)(21),ppv8(0)(21),ppv8(1)(22)); 
u F_22:csa_fa(ppv7(0)(22),ppv7(1)(22),ppv7(2)(22),ppv8(Q)(22),ppv8(1)(23)); 
u_F 23:csa fa(ppv7(0)(23),ppv7(1)(23),ppv7(2)(23),ppv8(0)(23),ppv8(1)(24)); 
u F_24:csa_fa(ppv7(0)(24),ppv7(1)(24),ppv7(2)(24),ppv8(0)(24),ppv8(1)(25)); 
u_F_25 :csa_fa(ppv7(0)(25),ppv7( 1 )(25),ppv7(2)(25),ppv8(0)(25),ppv8( 1 )(26)); 
u_F_26:csa fa(ppv7(0)(26),ppv7(1)(26),ppv7(2)(26),ppv8(0)(26),ppv8(1)(27)); 
u F_27:csa_fa(ppv7(0)(27),ppv7(1)(27),ppv7(2)(27),ppv8(0)(27),ppv8(1)(28)); 
u F 28:csa fa(ppv7(0)(28),ppv7(1)(28),ppv7(2)(28),ppv8(0)(28),ppv8(1)(29)); 
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u F_29:csa_fa(ppv7(0)(29),ppv7(1)(29),ppv7(2)(29),ppv8(0)(29),ppv8(1)(30)); 
u F_30:csa fa(ppv7(0)(30),ppv7(1)(30),ppv7(2)(30),ppv8(0)(30),ppv8(1)(31)); 
u F_31:csa fa(ppv7(0)(31),ppv7(1)(31),ppv7(2)(31),ppv8(0)(31),ppv8(1)(32)); 
u F_32:csa_fa(ppv7(0)(32),ppv7(1)(32),ppv7(2)(32),ppv8(0)(32),nc1); 

pps40<=ppv8; 
end process PPS REDN final; 
------------------------------------------------------------------------------------------------------------ 
----------------------------------------- PIPELINE REGISTER 5 -----------------------------------
PPSf GCLK1: process(gclkl) 
begin 

if gclkl'event and gclkl='1' then 
pps4(0)(8 downto 1)<=pps40(0)(8 downto 1); 
pps4(1)(8 downto 1)<=pps40(1)(8 downto 1); 

end if ; 
end process PPSf GCLK 1; 

PPSf GCLK2: process(gclk2) 
begin 

if gclk2'event and gclk2=' 1' then 
pps4(0)(16 downto 9)<=pps4O(0)(16 downto 9); 
pps4(1)(16 downto 9)<=pps4O(1)(16 downto 9); 

end if ; 
end process PPSf GCLK2; 

PPSfGCLK3: process(gclk3) 
begin 

if gelk3'event and gclk3=' 1' then 
pps4(0)(32 downto 17)<=pps40(0)(32 downto 17); 
pps4(1)(32 downto 17)<=pps4O(l)(32 downto 17); 

end if ; 
end process PPSf GCLK3; 
------------------------------------------------------------------------------------------------------------ 
--------------------------------------------------RCA--------------------------------------------------- 
RIPPLE:process (pps4) 
variable ppv9:ary3; 
variable ppvl0: std_logic_vector(m+n downto 1); 
begin 

ppv9:=pps4; 
rca(ppv9(0),ppv9(I ),ppv 10); 
pps5<=ppv 10; 

end process RIPPLE; 

---------------------------------- ------- PIPELINE REGISTER 6 ------------------------ 
PROD_GCLK 1:process(gclk 1) 
begin 

if gclkl'event and gclkl='1' then 

'S 



prod(? downto 0)<=pps5(8 downto 1); 
end if ; 

end process PROD GCLK1; 

PROD_GCLK2:process(gclk2) 
begin 

if gclk2'event and gclk2='1' then 
prod(16 downto 8)<=pps5(17 downto 9); 

end if; 

end process PROD_GCLK2; 

PROD_GCLK3:process(gclk3) 
begin 

if gclk3'event and gclk3=' l' then 
prod(31 downto 17)<=pps5(32 downto 18); 

end if ; 
end process PROD GCLK3; 
------------------------------------------------------------------------------------------------------------ 
end Behavioral; 
---------------------------- END OF 2D-MULTIPLIER ARCHITECTURE--------------------- 
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APPENDIX-B 

B. 1-Dimensional pipeline gated Booth multiplier 

library IEEE; 
use IEEE.STD_LOGIC_1164.ALL; 
use IEEE. STD—LOG IC—ARITH. ALL; 
use IEEE.STD LOGIC UNSIGNED. ALL; 

entity multiplier _id is 
generic (m:integer :=16; n: integer:=16); 
Port (mierl : in STD LOGIC_ VECTOR (m-1 downto 0); 

mcandl : in STD _LOGIC _VECTOR (n-1 downto 0); 
clk: in STD LOGIC; 
gsl : in STD_LOGIC; 
gs2 : in STD_LOGIC; 
gs3 : in STD_LOGIC; 
prod : out STD_LOGIC_VECTOR (m+n-1 downto 0)); 

end multiplier 1 d; 
--------------------------ARHITECTURE OF I D BOOTH MULTIPLIER 
architectureBehavioral of multiplier 1 d is 

type ary is array(O to m/2-1) of STD_ LOGIC_ VECTOR( n+1 downto 0); 
type aryl is array(0 to 6) of STD_LOGIC_VECTOR( m+n downto 1); 
type ary2 is array(O to 2) of STD_ LOGIC_ VECTOR( m+n downto 1); 
type ary3 is array(0 to 1) of STD_ LOGIC_ VECTOR( m+n downto 1); 
subtype word is std_logic_vector(n- I downto 0); 

signal load l ,load2,load3,gclk l ,gclk2,gclk3:std_logic; 
signal mier:STD_LOGIC_VECTOR (m-I downto 0); 
signal mcand:STD_LOGIC_VECTOR (n-I downto 0); 
signal pps,pps0 : ary; 
signal pps l ,pps 10,pps20: aryl; 
signal pps2: ary2; 
signal pps3: ary2; 
signal pps4,pps4O:ary3; 
signal pps5: std_ logic_vector(m+n downto 1); 
--------------------------------BOOTH ENCODER AND PP GENERATOR 
PROCEDUREBooth_PP_gen(a:in std_logic_vector(2 downto 0);md: in 
std_logic_vector;PP:out std_logic_vector) is 

variable bb 	: std_logic_vector (md'range); 
variable psum 	: std_logic_vector (md'range); 
variable b_bar : std_logic_vector (md'range); 
variable two_b : std_logic_vector (md'range); 
variable two_b_bar : std_logic_vector (md'range); 
variable cin 	: std_logic; 
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variable topbit : std_logic; 
begin 

two b:=md(md'left-1 downto 0) & '0'; 
b bar:=not md; 
two bbar:=not two b; 

case a is 
when "001" ( "010" => bb:= md; 

cin:='O'; 
when "011" => bb:= twob; 

cin:='O'; 
when "100" => bb:= two_b_bar; 

cin:='1; 
when 	"101" I  "110" _> bb:= b_bar; 

cin:='1; 
when others => bb:=(others=>'O'); 

cin:='O'; 
end case; 

top: case a is 
when "001"I"010"I"011" => topbit:=not md(md'left); 
when "100"I" 101 "i" 110" => topbit:=md(md'left); 
when "000" I" 111 "=>topbit:=' 1'; 
when others =>topbit:='O'; 

end case top; 

PP:=topbit&bb&cin; 
end Booth_PP_gen; 

-------------------------- -------------------- [2:2] compressor----------------------------------------
PROCEDURE CSA_ha( a:in std_logic ;b: in std_logic;s: out std_logic;c: out std_logic) is 
begin 
s:=axorb; 
c:= a and b; 
end PROCEDURE CSA ha; 

---------------------------------------------- [3:2] compressor------------------------ ---------------- 
PROCEDURE CSA_fa( a:in std_logic ;b: in std_logic ;d : in std_logic ;s: out std_logic; 
c: out std_logic) is 
begin 

s:= a xor b xor d; 
c:= (a and b) or ( a and d) or (b and d); 

end PROCEDURE CSA fa; 
------------------------------------------------------------------------------------------------------------ 
---------------------------------------------------RCA-------------------------------------------------- 
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PROCEDURE rca ( a : in std_logic_vector; b: in std_logic vector;sum:out 
std logic vector) is 
variable c: std_logic_vector(a'range); 
variable nc:std_logic; 
begin 
for i in a'right to a'left loop 
if i=a'right then 

CSA_fa(a(i),b(i),'O',sum(i),c(i)); 
elsif i/=a'lefft then 

CSA_fa(a(i),b(i),c(i- 1 ),sum(i),c(i)); 
else 
CSA_fa(a(i),b(i),c(i-1),sum(i),nc); 
end if; 

end loop; 
end PROCEDURE rca; 
--------------------BEGINNING ARHITECTURE OF 1D BOOTH MULTIPLIER 
Begin 
----------------------------------Clock Gating Logic ------------------------------------------------- 
GATED_CLKs: process (clk,gsl, gs2, gs3,loadl,load2,load3) 
begin 

if clk='O then 
loadl <=gs 1; 
load2<=gs2; 
load3<=gs3; 

end if ; 
gclkl<= loadl and clk; 
gclk2<= load2 and clk; 
gclk3<= load3 and clk; 

end process GATED CLKs; 

----------------------------------------- PIPELINE REGISTER 1 
PIPELINING_MD: process(clk,mcandl) 
begin 
if clk'event and clk='1' then 

mcand<=mcand1; 
end if 
end process PIPELINING MD; 

PIPELINING_MR1: process(gclkl,mierl) 
begin 
if gclkl'event and gclkl='1' then 

. mier(3 downto 0)<=mierl(3 downto 0); 
end if; 
end process PIPELINING MR1; 

PIPELINING MR2: process(gclk2,mierl) 
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begin 
if gclk2'event and gclk2=' l' then 

mier(7 downto 4)<=mierl(7 downto 4); 
end if; 
end process PIPELINING MR2; 

PIPELINING_MR3: process(gclk3,mierl) 
begin 
if gc1k3'event and gclk3='1' then 

mier(15 downto 8)<=mierl(15 downto 8); 
end if; 
end process PIPELINING MR3; 

PP Generation 
PP_GEN:process (mier,mcand) 

variable ppv : ary; 
variable a: std_logic_vector(2 downto 0); 
variable mux:std_logic_vector(2 downto 0); 
begin 

---------------- 	4- bits - 
a:=mier(1 downto 0) &'0'; 
Booth_PP_gen(a,mcand,ppv(0)); 
a:=mier(3 downto 1); 
Booth_PP_gen(a,mcand,ppv(1)); 
------- ---- -- 	8- bits -------------------------------- 
a:=mier(5 downto 3); 
Booth_PP_gen(a,mcand,ppv(2)); 
a:=mier(7 dowinto 5); 
Booth_PP_gen(a,mcand ,ppv(3)); 
------- ---- ----- 	16-bits -------------------------------- 
a:=mier(9 downto 7) ; 
B o oth_PP_gen(a,mcand,ppv(4)); 
a:=mier(11 downto 9); 
B ooth_PP_gen(a,mcand,ppv(5)); 
a:=mier(13 downto 11) ; 
Booth_PP gen(a,mcand,ppv(6)); 
a:=mier(15 downto 13); 
B ooth_PP_gen(a,mcand,ppv(7)); 
------- ---- —TOPS--------------------------------------------- 

pps0<=ppv; 
end process PP GEN; 

----------------------------------------- PIPELINE REGISTER 2 
PPSO_GCLK1: process(gclkl,pps0) 
begin 

if gclkl'event and gclkl='1' then 
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pps(0)<=ppsO(0); 
pps(1)<=pps0(1); 

end if ; 
end process PPSO_GCLKI; 

PPSO GCLK2: process(gclk2,pps0) 
begin 

if gclk2'event and gclk2=' 1' then 
Pps(2)<=PPsO(2); 
pps(3)<=ppsO(3); 

end if ; 
end process PPSO_GCLK2; 

PPSO GCLK3: process(gclk3,pps0) 
begin 

if gclk3'event and gclk3=' 1' then 
pps(4)<=ppsO(4); 
pps(5)<=ppsO(5); 
pps(6)<=ppsO(6); 
pps(7)<=pps0(7); 

end if ; 
end process PPSO_GCLK3; 

PP Reduction 1 ------------------------------------------- 
PPS_REDN1: process (pps) 
variable ppv 1 : ary; 
variable ppv2,ppv3: aryl; 
begin 

PPvl :=pps; 
-------------------------------STAGE 1-------------------------- 
ppv2(1)(1):=ppv 1 (0)(0); 
ppv2(0)(4 downto 1):=ppvl(0)(4 downto 1); 
ppv2(1)(4 downto 3) := ppv1(1)(2 downto 1); 
ppv2(2)(3):=ppv 1(1)(0); 

u5:csa. fa(ppv1(0)(5),ppv1(1)(3),ppvl(2)(1),ppv2(0)(5),ppv2(1)(6)); 
ppv2(1)(5):=ppv 1(2)(0); 

u6:csa fa(ppv1(0)(6),ppvl(1)(4),ppvl(2)(2),ppv2(0)(6),ppv2(1)(7)); 
u7:csa_fa(ppv 1 (0)(7),ppvl (1)(5),ppvl (2)(3),ppv2(0)(7),ppv2(1)(8)); 
ul_7: csa ha(ppvl(3)(1),ppvl(3)(0),ppv2(2)(7),ppv2(3)(8)); 

u8:csa_fa(ppv 1 (0)(8),ppv 1(1 )(6),ppvl (2)(4),ppv2(0)(8),ppv2( 1 )(9)); 
ppv2(2)(8):=ppv 1 (3)(2); 

u9:csa_fa(ppv 1 (0)(9),ppv l (1)(7),ppv l (2)(5),ppv2(0)(9),ppv2(1)(10)); 
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ppv2(2)(9):=ppv 1 (3)(3); 
ul_9:csa_ha(ppv 1(4)(1),ppvl (4)(0),ppv2(3)(9),ppv2(4)(10)); 

ul0:csa_fa(ppv 1(0)(10),ppv 1(1)(8),ppv 1 (2)(6),ppv2(0)(1 0),ppv2( 1)(1 1)); 
ppv2(2)( 10) :=ppv 1 (3)(4); 	 V 
ppv2(3)( 1 0):=ppv 1(4)(2); 

ul 1:csa fa(ppvl(0)(11),ppvl(1)(9),ppv1(2)(7),ppv2(0)(11),ppv2(1)(12)); 
ul_l1:csa fa(ppv1(5)(0),ppvl(4)(3),ppvl(5)(1),ppv2(3)(11),ppv2(4)(12)); 
ppv2(2)(1 1):=ppv 1(3)(5); 

u12:csa ha(ppvl(5)(2),ppvl(4)(4),ppv2(3)(12),ppv2(4)(13)); 
ul_12:csa_fa(ppv1(0)(12),ppv1(1)(10),ppv1(2)(8),ppv2(0)(12),ppv2(1)(13)); 
ppv2(2)( 1 2):=ppv 1(3)(6); 

ul3:csa fa(ppvl (2)(9),ppvl(1)(11),ppv1(0)(13),ppv2(0)(13),ppv2(1)(14)); 
ul_13:csa fa(ppv1(4)(5),ppvl (6)(1),ppvl(5)(3),ppv2(3)(13),ppv2(4)(14)); 
ppv2(2)(13):=ppv 1(3)(7); 
ppv2(5)(13):=ppv 1(6)(0); 
u14:csa_fa(ppvl (0)(14),ppv 1(1)(12),ppvl (2)(1 0),ppv2(0)(1 4),ppv2(1)(1 5)); 
ul_14:csa_fa(ppv I (6)(2),ppvl (4)(6),ppvl (5)(4),ppv2(3)(14),ppv2(4)(15)); 
ppv2(2)(14):=ppv 1(3)(8); 

ul5:csa fa(ppv1(0)(15),ppvl(1)(13),ppvl(2)(11),ppv2(0)(15),ppv2(1)(16)); 
ul_15:csa fa(ppv1(6)(3),ppvl (4)(7),ppvl (5)(5),ppv2(3)( 1 5),ppv2(4)(1 6)); 
u2_15:csa ha(ppvl(7)(0),ppvl(7)(1),ppv2(5)(15),ppv2(6)(16)); 
ppv2(2)(15):=ppv 1(3)(9); 

ul 6 :csa_fa(ppvl (0)(16),ppv 1(1)(14),ppvl (2)(12),ppv2(0)(16),ppv2(1)(17)); 
ul_16:csa_fa(ppv 1(6)(4),ppvl (4)(8),ppvl (5)(6),ppv2(3)(16),ppv2(4)(17)); 
ppv2(2)(1 6):=ppvl(3)(10); 
ppv2(5)( 16) :=ppv 1(7)(2); 

ul 7:csa_fa(ppvl (0)(17),ppv 1(1 )( 1 5),ppvl (2)(1 3),ppv2(0)(1 7),ppv2( 1 )( 18)); 
ul_17: csa_fa(ppv 1(6)(5),ppvl (4)(9),ppvl (5)(7),ppv2(3)(17),ppv2(3)(18)); 
ppv2(2)(17):=ppv 1(3)(11); 
ppv2(5)(17):=ppv 1(7)(3); 

u18:csa_fa(ppv l (1)(16),ppv l (2)(14),ppvl (3)(12),ppv2(0)(18),ppv2(1)(19)); 
u l _18: csa_fa(ppv 1(4)(10),ppv 1(5)(8),ppv 1(6)(6),ppv2(2)(18),ppv2(3)(19)); 
ppv2(4)(18):=ppv 1(7)(4); 

ul 9 :csa_fa(ppv 1(1)(17),ppv 1(2)(15),ppvl (3)( 1 3),ppv2(0)( 1 9),ppv2(1 )(20)); 
ul_19:csa fa(ppv1(4)(11),ppv1(5)(9),ppvl(6)(7),ppv2(2)(19),ppv2(3)(20)); 
ppv2(4)( 1 9):=ppv 1(7)(5); 
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u20:csa_ha(ppv 1 (2)( 1 6),ppvl (3)(14),ppv2(0)(20),ppv2(1)(21)); 
ul 20:csa_fa(ppv 1 (5)(1 0),ppv 1 (6)(8),ppv 1 (4)(1 2),ppv2(2)(20),ppv2(3)(2 1)); 
ppv2(4)(20) :=ppv 1(7)(6); 

u21:csa ha(ppvl(2)(17),ppvl(3)(15),ppv2(0)(21),ppv2(1)(22)); 
ul_21:csa fa(ppvl(5)(11),ppvl(6)(9),ppvl(4)(13),ppv2(2)(21),ppv2(3)(22)); 
ppv2(4)(2 1 ):=ppvl (7)(7); 

ppv2(0)(22):=ppvl (3)(16); 
u22:csa fa(ppvl(6)(10),ppv1(4)(14),ppvl(5)(12),ppv2(2)(22),ppv2(3)(23)); 
ppv2(4)(22):=ppvl (7)(8); 

ppv2(0)(23):=ppvl (3)(17); 
u23:csa fa(ppv1(6)(11),ppv1(4)(15),ppvl(5)(13),ppv2(1)(23),ppv2(2)(24)); 
ppv2(2)(23) ppvl(7)(9); 

u24:csa_fa(ppvl (4)(16),ppv 1 (5)(1 4),ppvl (6)(12),ppv2(0)(24),ppv2(1)(25)); 
ppv2(1)(24):=ppv1(7)(10); 

u25:csa fa(ppv1(4)(17),ppv1(5)(15),ppv1(6)(13),ppv2(0)(25),ppv2(1)(26)); 
ppv2(2)(25):=ppv 1(7)(11); 

u26:csa fa(ppv1(5)(16),ppvl(6)(14),ppv1(7)(12),ppv2(0)(26),ppv2(1)(27)); 

u27:csa fa(ppvl(5)(17),ppvl(6)(15),ppv1(7)(13),ppv2(0)(27),ppv2(1)(28)); 

u28:csa_ha(ppv 1 (6)( 1 6),ppvl (7)( 1 4),ppv2(0)(28),ppv2( 1 )(29)); 

u29:csa ha(ppv1(6)(17),ppvl(7)(15),ppv2(0)(29),ppv2(1)(30)); 

ppv2(0)(30):= ppvl(7)(16); 
ppv2(0)(3 1):= ppv 1(7)(17); 
ppv2(1)(2):='O'; 
------------------------------STAGE 2-------------------------- 
ppv3(0)(7 downto 1):=ppv2(0)(7 downto 1); 
ppv3(1)(7 downto 1):=ppv2(1)(7 downto 1); 
ppv3(2)(3):=ppv2(2)(3); 
ppv3(2)(7):=ppv2(2)(7); 

ul_0_8:csa_fa(ppv2(0)(8),ppv2(1)(8),ppv2(2)(8),ppv3(0)(8),ppv3 (1)(9)); 
ppv3(1)(8):=ppv2(3)(8); 

ul_0_9:csa_fa(ppv2(0)(9),ppv2(1)(9),ppv2(2)(9),ppv3(0)(9),ppv3 (1)(10)); 
ppv3(2)(9):=ppv2(3)(9); 

ul_0_10:csa_fa(ppv2(0)(10),ppv2(1)(10),ppv2(2)(10),ppv3(0)(10),ppv3(1)(11)); 
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ul_1_l 0:csa_ha(ppv2(3)(10),ppv2(4)(10),ppv3(2)(10),ppv3 (3)(11)); 

ul_0_l l :csa_fa(ppv2(0)(11),ppv2(1)(11),ppv2(2)(11),ppv3 (0)(11),ppv3(1)(12)); 
ppv3(2)(11):=ppv2(3)(11); 

ul_0_12: csa_fa(ppv2(0)(12),ppv2(1)(12),ppv2(2)(12),ppv3(0)(12),ppv3(1)(13)); 
ul_l_12:csa ha(ppv2(3)(12),ppv2(4)(12),ppv3(2)(12),ppv3(3)(13)); 

ul_0_13:csa_fa(ppv2(0)(13),ppv2(1)(13),ppv2(2)(13),ppv3(0)(13),ppv3 (1)(14)); 
ul_1_13:csa_fa(ppv2(3)(13),ppv2(4)(13),ppv2(5)(13),ppv3 (2)(13),ppv3 (3)(14)); 

ul_0_14:csa_fa(ppv2(0)(14),ppv2(1)(14),ppv2(2)(14),ppv3(0)(14),ppv3 (1)(15)); 
ul_1_14: csa_ha(ppv2(3)(14),ppv2(4)(14),ppv3 (2)(14),ppv3 (3)(15)); 

ul_0_15: csa_fa(ppv2(0)(15),ppv2(1)(15),ppv2(2)(15),ppv3(0)(15),ppv3(1)(16)); 
ul_I_15:csa fa(ppv2(3)(15),ppv2(4)(15),ppv2(5)(15),ppv3(2)(15),ppv3(3)(16)); 

ul_0_16: csa_fa(ppv2(0)(16),ppv2(1)(16),ppv2(2)(16),ppv3(0)(16),ppv3 (1)(17)); 
ul_1_16: csa_fa(ppv2(3)(16),ppv2(4)(16),ppv2(5)(16),ppv3(2)(16),ppv3(3)(17)); 
ppv3(4)(16):=ppv2(6)(16); 

ul_0_17: csa_fa(ppv2(0)(17),ppv2(1)(17),ppv2(2)(17),ppv3(0)(17),ppv3(1)(18)); 
ul_1_17:csa fa(ppv2(3)(17),ppv2(4)(17),ppv2(5)(17),ppv3(2)(17),ppv3(3)(18)); 

ul_0_18: csa_fa(ppv2(0)(18),ppv2(1)(18),ppv2(2)(18),ppv3 (0)(18),ppv3(1)(19)); 
ul_1_18:csa ha(ppv2(3)(18),ppv2(4)(18),ppv3(2)(18),ppv3(3)(19)); 

ul _0_19: csa_ha(ppv2(0)(19),ppv2.(1)(19),ppv3 (0)(19),ppv3 (1)(20)); 
ul _1_19:csa_fa(ppv2(2)(19),ppv2(3)(19),ppv2(4)(19),ppv3 (2)(19),ppv3(3)(20)); 

ul_0 20:csa_ha(ppv2(0)(20),ppv2(1)(20),ppv3(0)(20),ppv3(1)(21)); 
ul_1_20:csa fa(ppv2(2)(20),ppv2(3)(20),ppv2(4)(20),ppv3(2)(20),ppv3(3)(21)); 

ul _0_21: csa_ha(ppv2(0)(21),ppv2(1)(21),ppv3 (0)(21),ppv3 (1)(22)); 
ul_1 21:csa fa(ppv2(2)(21),ppv2(3)(21),ppv2(4)(21),ppv3(2)(21),ppv3(3)(22)); 

u1. 0_22: csa_ha(ppv2 (0)(22),ppv2 (1)(22),ppv3 (0)(22),ppv3 (1)(23 )); 
ul _l 22: csa_fa(ppv2(2)(22),ppv2(3)(22),ppv2(4)(22),ppv3 (2)(22),ppv3 (3)(23)); 

ul_0 23:csa_fa(ppv2(3)(23),ppv2(1)(23),ppv2(2)(23),ppv3(2)(23),ppv3(1)(24)); 
ppv3 (0) (23) :=ppv2(0) (2 3 ); 

ul_0 24:csa fa(ppv2(0)(24),ppv2(1)(24),ppv2(2)(24),ppv3(0)(24),ppv3(1)(25)); 

ul _0_25: csa_fa(ppv2(0)(25),ppv2(1)(25),ppv2(2)(25),ppv3 (0)(25),ppv3(1)(26)); 

-78- 



ul_0_26:csa ha(ppv2(0)(26),ppv2(1)(26),ppv3(0)(26),ppv3(1)(27)); 
ul_0_27:csa_ha(ppv2(0)(27),ppv2(l )(27),ppv3(0)(27),ppv3(1)(28)); 
u l _0_28: csa_ha(ppv2(0)(28),ppv2 (1)(28),ppv3 (0)(2 8),ppv3 (1) (29)); 
ul_0_29:csa ha(ppv2(0)(29),ppv2(1)(29),ppv3(0)(29),ppv3(1)(30)); 
ul_0_30:csa ha(ppv2(0)(30),ppv2(1)(30),ppv3(0)(30),ppv3(1)(31)); 

ppv3 (0')(31):=ppv2(0) (3 1); 
ppv3(2)(6 downto 4):=(others=>'O'); 
ppv3(2)(2 downto 1):=(others=>'O'); 
Ppv3(2)(8):='0'; 
ppv3(3)(12):='O'; 
pps 10<=ppv3; 

end process PPS REDN1; 

PIPELINE REGISTER 3 ---------------------------------- 
PPS 1_GCLK2:process (gclk2) 
begin 

if gclk2'event and gclk2='1' then 
ppsl(0)(31 downto 1)<=ppslO(0)(23 downto 1); 
ppsl(1)(31 downto 1)<=pps1O(1)(23 downto 1); 
ppsl(2)(24 downto 1)<=ppslO(2)(7 downto 1); 
pps l (3)(23 downto 1 1)<=pps 10(3)(23 downto 11); 
pps 1 (4)(1 6)<=pps 10(4)(16); 

end if ; 
end process PPS1_GCLK2; 
------------------------------------------------------------------------ 

PP Reduction 2 ------------------------------------------- 
PPS REDN2 : process (ppsl) 

variable ppv4,ppv5,ppv6: aryl; 
begin 
ppv4:=ppsl; 

------------------------------STAGE 1---------------- 
ppv5(0)(10 downto 1):= ppv4(0)(10 downto 1); 
ppv5(l)(10 downto 1):= ppv4(1)(10 downto 1); 
ppv5(2)(10 downto 3):= ppv4(2)(10 downto 3); 

u2_11:csa_fa(ppv4(0)(11),ppv4(1)(11),ppv4(2)(11),ppv5(0)(I 1),ppv5(1)(12)); 
ppv5(1)(I 1):=ppv4(3)(1 1); 

u2_12:csa fa(ppv4(0)(12),ppv4(1)(12),ppv4(2)(12),ppv5(0)(12),ppv5(1)(13)); 

u2_13:csa_fa(ppv4(0)(13),ppv4(1)(13),ppv4(2)(13 ),ppv5 (0)(13),ppv5(1)(14)); 
ppv5(2)(13):=ppv4(3)(13); 

u2_14: csa_fa(ppv4(0)(14),ppv4(1)(14),ppv4(2)(14),ppv5 (0)(14),ppv5(1)(15)); 
ppv5(2)( 14) :=ppv4(3)( 14); 
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u2_15:csa_fa(ppv4(0)(15),ppv4(1)(15),ppv4(2)(15),ppv5(0)(15),ppv5(1)(16)); 
ppv5(2)(15):=ppv4(3)(15); 

u2_16:csa_fa(ppv4(0)(16),ppv4(1)(16),ppv4(2)(16),ppv5(0)(16),ppv5(1)(17)); 
u2_1_1 6 : c sa_ha(ppv4 (3) (16),ppv4 (4) (16),ppv5 (2) (16),ppv5 (3)( 17)); 

u2_17:csa_fa(ppv4(0)(17),ppv4(1)(17),ppv4(2)(17),ppv5(0)(17),ppv5(1)(18)); 
ppv5(2) (17):=ppv4(3)(17); 

u2_18:csa_fa(ppv4(0)(18),ppv4(1)(18),ppv4(2)(18),ppv5(0)(18),ppv5(1)(19)); 
ppv5(2)(18):=ppv4(3)(18); 

u2_19:csa_fa(ppv4(0)(19),ppv4(1)(19),ppv4(2)(19),ppv5 (0)(19),ppv5(1)(20)); 
ppv5 (2) (19) :=ppv4(3)(19); 

u2_20:csa_fa(ppv4(0)(20),ppv4(l )(20),ppv4(2)(20),ppv5 (0)(20),ppv5(1)(21)); 
ppv5(2)(20):=ppv4(3)(20); 

u2_2'l :csa_fa(ppv4(0)(21),ppv4(1)(21),ppv4(2)(21),ppv5 (0)(21),ppv5(1)(22)); 
ppv5 (2)(21):=ppv4(3)(21); 
u2_22:csa_fa(ppv4(0)(22),ppv4(1)(22),ppv4(2)(22),ppv5(0)(22),ppv5(1)(23)); 
ppv5 (2)(22):=ppv4(3)(22); 
u2_23:csa_fa(ppv4(0)(23),ppv4(1)(23),ppv4(2)(23),ppv5(0)(23),ppv5(1)(24)); 
ppv5 (2)(23):=ppv4(3)(23); 

u2_24:csa ha(ppv4(0)(24),ppv4(1)(24),ppv5(0)(24),ppv5(1)(25)); 
u2_25: csa_ha(ppv4(0)(25),ppv4(1)(25),ppv5 (0)(25),ppv5 (1)(26)); 
u2_26:csa ha(ppv4(0)(26),ppv4(1)(26),ppv5(0)(26),ppv5(1)(27)); 
u2_27:csa_ha(ppv4(0)(27),ppv4(1)(27),ppv5 (0)(27),ppv5 (1)(28)); 
u2_2 8:csa_ha(ppv4(0)(28),ppv4(1)(28),ppv5 (0)(28),ppv5 (1)(29)); 
u2_29:csa_ha(ppv4(0)(29),ppv4(1)(29),ppv5 (0)(29),ppv5 (1)(30)); 
u2_30:csa ha(ppv4(0)(30),ppv4(1)(30),ppv5(0)(30),ppv5(1)(31)); 
u2_31: csa_ha(ppv4(0)(31),ppv4 (1) (31),ppv5 (0)(3 1),ppv5 (0)(32)); 
ppv5(2)(12 downto 11):=(others=>'O'); 
-----------------------------------STAGE 2-------------------------- 
ppv6(0)(16 downto 1):= ppv5(0)(16 downto 1); 
ppv6(1)(16 downto 1):= ppv5(1)(16 downto 1); 
ppv6(2)(16 downto 3):= ppv5(2)(16 downto 3); 

u2_1_17:csa fa(ppv5(0)(17),ppv5(1)(17),ppv5(2)(17),ppv6(0)(17),ppv6(1)(18)) 
ppv6(1)(17):=ppv5(3)(17); 

u2_1_18:csa_fa(ppv5(0)(18),ppv5(1)(18),ppv5(2)(18),ppv6(0)(18),ppv6(1)(19)); 
u2_1_19:csa_fa(ppv5(0)(19),ppv5(1)(19),ppv5(2)(19),ppv6(0)(19),ppv6(1)(20)); 
u2_1 20:csa_fa(ppv5(0)(20),ppv5(1)(20),ppv5(2)(20),ppv6(0)(20),ppv6(l)(21)); 
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u2_1_21:csa_fa(ppv5(0)(21),ppv5(1)(21),ppv5(2)(21),ppv6(0)(21),ppv6(1)(22)); 
u2_1_22:csa_fa(ppv5(0)(22),ppv5(1)(22),ppv5(2)(22),ppv6(0)(22),ppv6(1)(23)); 
u2_1_23 :csa_faQpv5(0)(23),ppv5 (1 )(23 ),ppv5(2)(23),ppv6(0)(23),ppv6(1 )(24)); 
u2-1_24:csa ha(ppv5(0)(24),ppv5(1)(24),ppv6(0)(24),ppv6(1)(25)); 
u2_1_25:csa_ha(ppv5(0)(25),ppv5(1)(25),ppv6(0)(25),ppv6(1)(26)); 
u2_1_26:csa ha(ppv5(0)(26),ppv5(1)(26),ppv6(0)(26),ppv6(1)(27)); 
u2_1 27: csa_ha(ppv5 (0)(27),ppv5 (1)(27),ppv6(0)(27),ppv6(1)(28)); 
u2_1_28:csa ha(ppv5(0)(28),ppv5(1)(28),ppv6(0)(28),ppv6(1)(29)); 
u2_1_29 :csa ha(ppv5(0)(29),ppv5(1)(29),ppv6(0)(29),ppv6(1)(30)); 
u2_1_3 0 : csa_ha(ppv5 (0) (3 0),pp v5 (1) (3 0),ppv6 (0) (3 0),ppv6 (1) (3 1)); 
u2_1_31:csa_ha(ppv5(0)(31),ppv5(1)(31),ppv6(0)(31),ppv6(1)(32)); 

ppv6(0)(32):=ppv5(0)(32); 
pps20<=ppv6; 

end process PPS REDN2; 

PIPELINE REGISTER 3 
PPS2 GCLK3: process(gclk3) 
begin 

if gclk3'event and gclk3=' 1' then 
pps2(0)(32 downto 1)<=pps20(0)(32 downto 1); 
pps2(1)(32 downto 1)<=pps20(1)(32 downto 1); 
pps2(2)(16 downto 3)<= pps20(2)(16 downto 3); 

end if ; 
end process PPS2_GCLK3; 
------------------------------------------------------------------------------------------------------------ 
----------------------------------------------- MUX Process ----------------------------------------- 
MUX_process: process(pps 1,pps2,pps,gs 1,gs2,gs3) 
variable m:std_logic_vector(2 downto 0); 
variable cv3: std_logic_vector (15 downto 0); 
variable ci3: integer range -2**(15) to ( 2**(15))-1; 
begin 
m:=gs 1 &gs2&gs3; 
ci3:= -(((2* * 16)-1)/3); 
cv3 := std _logic _ vector(conv_unsigned(ci3,16)); 
gating: case m is 

when "111"=> 
pps3(0)(32 downto 1)<=pps2(0)(32 downto 1); 
pps3(1)(32 downto 1)<=pps2(1)(32 downto 1); 
pps3(2)(2 downto 1)<=(others=>'O'); 
pps3(2)(16 downto 3)<= pps2(2)(16 downto 3); 
pps3(2)(32 downto 17)<= cv3; 

when "110"=> 
pps3(0)(16 downto 1)<=pps 1(0)(16 downto 1); 
pps3(0)(32 downto 17)<=(others=>'O'); 
pps3(1)(15 downto 1)<=ppsl(1)(15 downto 1); 
pps3(1)(32 downto 16)<=(others=>'O'); 
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pps3(2)(8 downto 1)<=ppsl(2)(8 downto 1); 
pps3(2)( 32 downto 9)<=(others=>'O'); 

when "l00"=> 
pps3(0)(8 downto 1)<=pps(0)(8 downto 1); 
pps3(0)(32 downto 9)<=(others=>'O'); 
pps3(1)(l)<=pps(0)(0); 
Pps3(1)(2)<='0'; 
pps3(1)(8 downto 3)<=pps(l)(6 downto 1); 
pps3(1)(32 downto 9)<=(others=>'O'); 
pps3(2)( 2 downto 1)<=(others=>'O'); 
Pps3  (2)(3)<=Pps(1)(0); 
pps3(2)(4)<='O'; 
pps3(2)(32 downto 5)<=(others=>'O'); 

when others=> 
for i in 0 to 2 loop 

pps3(i)<=(others=>'O'); 
end loop; 

end case gating; 
end process MUX_process; 

PP Reduction 3 
PPS_REDN_final : process(pps3) 
variable ppv7:ary2; 
variable ppv8:ary3; 
variable ncl:std_logic; 
begin 
ppv7:=pps3; 

ppv8(0)(2 downto 1):= ppv7(0)(2 downto 1); 
ppv8(1)(2 downto 1):= ppv7(1)(2 downto 1); 
ppv8(1)(3):='0'; 

u F_3:csa fa(ppv7(0)(3),ppv7(1)(3),ppv7(2)(3),ppv8(0)(3),ppv8(1)(4)); 
u_F_4: csa_ha(ppv7(0)(4),ppv7(1)(4),ppv8(0)(4),ppv8 (1)(5)); 
u F_5:csa_ha(ppv7(0)(5),ppv7(1)(5),ppv8(0)(5),ppv8(1)(6)); 
u_F_6:csa_ha(ppv7(0)(6),ppv7(1)(6),ppv8(0)(6),ppv8(1)(7)); 
u_F_7:csa_fa(ppv7(0)(7),ppv7(1)(7),ppv7(2)(7),ppv8(0)(7),ppv8(1)(8)); 
u F_8:csa_ha(ppv7(0)(8),ppv7(1)(8),ppv8(0)(8),ppv8(1)(9)); 
u_F_9 :csa_fa(ppv7(0)(9),ppv7( 1 )(9),ppv7(2)(9),ppv8(0)(9),ppv8(1)(10)); 
u_F_l0:csa fa(ppv7(0)(10),ppv7(l)(10),ppv7(2)(10),ppv8(0)(10),ppv8(l)(11)); 
u F_l1:csa ha(ppv7(0)(11),ppv7(1)(11),ppv8(0)(11),ppv8(1)(12)); 
u_F_12:csa ha(ppv7(0)(12),ppv7(1)(12),ppv8(0)(12),ppv8(1)(13)); 
u_F_13:csa fa(ppv7(0)(13),ppv7(1)(13),ppv7(2)(13),ppv8(0)(13),ppv8(1)(14)); 
u_F_14:csa fa(ppv7(0)(14),ppv7(1)(14),ppv7(2)(14),ppv8(0)(l4),ppv8(l)(15)); 
u_F_15:csa fa(ppv7(0)(15),ppv7(1)(15),ppv7(2)(15),ppv8(0)'(15),ppv8(1)(16)); 
u_F_l6:csa fa(ppv7(0)(16),ppv7(1)(16),ppv7(2)(16),ppv8(0)(16),ppv8(1)(17)); 
u F_17:csa fa(ppv7(0)(17),ppv7(1)(17),ppv7(2)(17),ppv8(0)(17),ppv8(1)(18)); 



u_F_18:csa_fa(ppv7(0)(18),ppv7(1)(18),ppv7(2)(18),ppv8(0)(18),ppv8(1)(19)); 
u F_19:csa fa(ppv7(0)(19),ppv7(1)(19),ppv7(2)(19),ppv8(0)(19),ppv8(1)(20)); 
u_F_20:csa_fa(ppv7(0)(20),ppv7(1)(20),ppv7(2)(20),ppv8(0)(20),ppv8(1)(21)); 
u F_21:csa_fa(ppv7(0)(21),ppv7(1)(21),ppv7(2)(21),ppv8(0)(21),ppv8(I)(22)); 
u F 22:csa fa(ppv7(0)(22),ppv7(1)(22),ppv7(2)(22),ppv8(0)(22),ppv8(1)(23)); 
u F_23:csa_fa(ppv7(0)(23),ppv7(1)(23),ppv7(2)(23),ppv8(0)(23),ppv8(1)(24)); 
u F_24:csa_fa(ppv7(0)(24),ppv7(1)(24),ppv7(2)(24),ppv8(0)(24),ppv8(1)(25)); 
u F_25:csa_fa(ppv7(0)(25),ppv7(1)(25),ppv7(2)(25),ppv8(0)(25),ppv8(1)(26)); 
u F_26:csa_fa(ppv7(0)(26),ppv7(I)(26),ppv7(2)(26),ppv8(0)(26),ppv8(1)(27)); 
u F_27:csa_fa(ppv7(0)(27),ppv7(1)(27),ppv7(2)(27),ppv8(0)(27),ppv8(1)(28)); 
u F_28:csa fa(ppv7(0)(28),ppv7(1)(28),ppv7(2)(28),ppv8(0)(28),ppv8(1)(29)); 
u F_29:csa_fa(ppv7(0)(29),ppv7(1)(29),ppv7(2)(29),ppv8(0)(29),ppv8(1)(30)); 
u F_30:csa_fa(ppv7(0)(30),ppv7(1)(30),ppv7(2)(30),ppv8(0)(30),ppv8(1)(31)); 
u F_31:csa fa(ppv7(0)(31),ppv7(1)(31),ppv7(2)(31),ppv8(0)(31),ppv8(1)(32)); 
u F_32:csa fa(ppv7(0)(32),ppv7(l)(32),ppv7(2)(32),ppv8(0)(32),nc1); 

pps40<=ppv8; 
end process PPS REDN final; 

------------------------------------------------------------------
PIPELINE REGISTER 5 ----------------------------------- 

PPSf GCLK1: process(gclkl) 
begin 

if gclkl'event and gclkl='l' then 
pps4(0)(32 downto 1)<=pps40(0)(8 downto 1); 
pps4(1)(32 downto 1)<=pps40(1)(8 downto 1); 
end if: 

end process PPSf GCLK1; 
------------------------------------------------------------------------------------------------------------ 
--------------------------------------------------RCA--------------------------------------------------- 
RIPPLE:process (pps4) 
variable ppv9:ary3; 
variable ppv10: std_logic_vector(m+n downto 1); 
begin 
ppv9:=pps4; 
rca(ppv9 (0),ppv9(1),ppv 10); 
pps5<=ppv 10; 
end process RIPPLE; 

----------------------------------------- PIPELINE REGISTER 6 ----------------------------------- 
PROD_GCLK l :process(gclkl) 
begin 

if gclkl'event and gclkl='1' then 
prod( 31 downto 0)<=pps5(32 downto 1); 
end if; 

end process PROD_GCLK1; 
end Behavioral; 

END OF 1D-MULTIPLIER ARCHITECTURE--------------------- 
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APPENDIX-C 

C. Non-pipeline gated Booth multiplier 

library IEEE; 
use IEEE. STD_LOGIC_1164.ALL; 
use IEEE. STD_LOGIC_ARITH.ALL; 
use IEEE. STD LOGIC_UNSIGNED.ALL; 

entity multiplier_p is 
Generic (m:integer :=16;n: integer :=16); 

Port (mier: in STD_LOGIC_VECTOR (m-1 downto 0); 
mcand : in STD_LOGIC_VECTOR (n-1 downto 0); 
clk: in STD_LOGIC; 
prod : out STD_LOGIC_VECTOR (m+n-1 downto 0)); 

end multiplier_p; 
---------------------------ARHITECTURE OF 1D BOOTH MULTIPLIER 
architectureBehavioral of multiplier_p is 
type ary is array(O to m/2-1) of STD_LOGIC_VECTOR( n+1 downto 0); 
type aryl is array(0 to 5) of STD_LOGIC_VECTOR( m+n downto 1); 
type ary2 is array(O to 2) of STD_LOGIC_VECTOR( m+n downto 1); 
type ary3 is array(0 to 1) of STD_LOGIC_VECTOR( m+n downto 1); 

signal p_prodO,p_prod l ,p_prod2,p_prod3,p_prod4,p_prod5 : STD_LOGIC_VECTOR( 
m+n-1 downto 0); 
signal pps: ary; 
--------------------------------BOOTH ENCODER AND PP GENERATOR 
PROCEDUREBooth_PP_gen(a:in std_logic_vector(2 downto 0);md: in 
std logic_vector;PP:out std_logic_vector) 
is 

variable bb : std_logic_vector (md'range); 
variable psum : std_logic_vector (md'range); 
variable b bar : std_logic_vector (md'range); 
variable two_b : std_logic_vector (md'range); 
variable two_b_bar : std_logic_vector (md'range); 
variable cin : std logic; 
variable topbit : std_logic; 
variable topout : std logic; 

begin 
two b:=md(md'left-1 downto 0) &'0'; 
b bar:=not md; 
two b bar:=not two b; 

case a is 
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when "001" 1 "010" => 
bb:= md; 
cin:='O'; 

when "011 " _> 
bb:= two_b; 
cin:='0 ; 

when "100" => 
bb:= two_b bar; 
cin:='1; 

when "101"I "110" => 
bb:= b_bar; 
cin:='1; 

when others => 
bb:=(others=>'0'); 
cin:='0 ; 

end case; 

top: case a is 
when "001"1"010"1"011" => topbit:=not md(md'left); 
when "100"1" 101 "J"110" => topbit:=md(md'left); 
when "000"I" 111 "=>topbit:=' 1'; 
when others =>topbit:='O'; 

end case top; 

PP:=topbit&bb&cin; 

end Booth PP_gen; 

---------------------------------------------- [2:2] compressor 
PROCEDURECSA ha( a:in std logic ;b: in std logic;s: out std logic;c: out std_logic) is 
begin 
s:= a xor b; 
c:= a and b; 
end PROCEDURE CSA ha; 

--------------------------------[3:2] [3:2] compressor------------------------------=--------- 
PROCEDURE CSA fa( a:in std_logic ;b: in std_logic ;d : in std_logic ;s: out std_logic; 
c: out std_logic) is 
begin 

s:= a xor b xor d; 
c:= (a and b) or ( a and d) or (b and d); 

end PROCEDURE CSA fa; 

---------------------------------------------------RCA-------------------------------------------------- 
PROCEDURE rca ( a : in std_logic vector; b: in std_logic vector;sum:out 
std logic_vector) is 
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variable c: std_logic_vector(a'range); 
variable nc:std_logic; 
begin 
for i in a'right to a'Ieft loop 
if i=a'right then 

CSA fa(a(i),b(i),'O',sum(i),c(i)); 
elsif i/=a'left then 

CSA_fa(a(i),b(i),c(i- 1 ),sum(i),c(i)); 
else 
CSA_fa(a(i),b(i),c(i- 1 ),sum(i),nc); 
end if 

end loop; 
end PROCEDURE rca; 
-BEGINNING ARHITECTURE OF NON PIPELINE GATED BOOTH MULTIPLIER - 
Begin 
------------------------------------------------------------------------------------------------------------ 
-------------------------------------------- PP Generation ------------------------------------------- 
PP_GEN:process (mier,mcand) 

variable ppv : ary; 
variable a: std logic_vector(2 downto 0); 

begin 
a:=mier(1 downto 0) &'0'; 
Booth_PP_gen(a,mcand,ppv(0)); 
a:=mier(3 downto 1); 
Booth_PP_gen(a,mcand,ppv(1)); 
a:=mier(5 downto 3); 
B ooth_PP_gen(a,mcand,ppv(2)); 
a:=mier(7 downto 5); 
Booth_PP_gen(a,mcand ,ppv(3)); 
a:=mier(9 downto 7) ; 
B ooth_PP_gen(a,mcand,ppv(4)); 
a:=mier(11 downto 9); 
Booth_PP_gen(a,mcand,ppv(5)) ; 
a:=mier(13 downto 11) ; 
B ooth_PP_gen(a,mcand,ppv(6)); 
a:=mier(15 downto 13); 
B ooth_PP_gen(a,mcand,ppv(7)); 

pps<=PPv; 
end process PP GEN; 
------------------------------------------------------------------------------------------------------------ 
----------------------- --------------------PP Reduction------- ------------------------------------ 
PPS_REDN: process (pps) 

variable ppvl : ary; 
variable ppv2,ppv3: aryl; 
variable ppv4,ppv5,ppv6: aryl; 
variable ppv7:ary2; 



variable ppv8:ary3; 
variable nc 1: std_logic; 
variable cv3: std_ logic_ vector (15 downto 0); 
variable ci3: integer range -2**(15) to (2**(15))-1; 
variable ppv10: std logic_vector(m+n downto 1); 

begin 
ppvl pps; 
-------------------------------STAGE 
ppv2( 1)( 1) :=ppv 1(0)(0); 
ppv2(0)(1):=ppv 1(0)(1); 
ppv2(0)(2):=ppv 1(0)(2); 

u3:csa_fa(ppv 1(0)(3 ),ppv 1(1)(1),ppv 1(1 )(0),ppv2(0)(3),ppv2( 1)(4)); 
u4 : csa_ha(ppv 1(0) (4),ppv l (1) (2),ppv2(0)(4),ppv2(1) (5 )); 
u5:csa_fa(ppv 1(0)(5),ppv 1(1)(3),ppvl (2)(1 ),ppv2(0)(5),ppv2( 1)(6)); 
ppv2(2)(5):=ppv 1(2)(0); 

u6:csa_fa(ppv 1 (0)(6),ppv 1(1)(4),ppvl (2)(2),ppv2(0)(6),ppv2(1)(7)); 

u7:csa fa(ppv1(0)(7),ppvl(1)(5),ppvl(2)(3),ppv2(0)(7),ppv2(1)(8)); 
ul_7: csa ha(ppvl(3)(1),ppvl(3)(0),ppv2(2)(7),ppv2(3)(8)); 

u8:csa fa(ppv1(0)(8),ppvl (1 )(6),ppv 1 (2)(4),ppv2(0)(8),ppv2( 1)(9)); 
ppv2(2)(8):=ppv 1(3)(2); 

u9:csa_fa(ppv 1(0)(9),ppvl (1)(7),ppv 1 (2)(5),ppv2(0)(9),ppv2( 1)( 10)); 
u 1 _9:csa_fa(ppv 1(3)(3),ppv 1(4)(1),ppv 1 (4)(0),ppv2(2)(9),ppv2(2)( 10)); 

u 10:csa_fa(ppv 1(3)(4),ppv 1(1)(8),ppv 1(2)(6),ppv2(0)(10),ppv2(1)(11)); 
ul _10:csa_ha(ppv 1(0)(10),ppv 1 (4)(2),ppv2(3)( 1 0),ppv2(3)( 11)); 

ul l:csa fa(ppvl(3)(5),ppvl(1)(9),ppvl(2)(7),ppv2(0)(11),ppv2(1)(12)); 
u 1 _l l :csa_fa(ppv 1(5)(0),ppvl (4)(3),ppvl (5)(1),ppv2(2)(11),ppv2(3)(12)); 
ppv2(4)(1 1):=ppv 1(0)(11); 

u l 2:csa_fa(ppv 1(2)(8),ppv 1(3)(6),ppv 1(4)(4),ppv2(0)(12),ppv2(1)(13)); 
ul_l2:csa fa(ppv1(0)(12),ppv1(1)(10),ppvl(5)(2),ppv2(2)(12),ppv2(3)(13)); 

u l 3 :csa_fa(ppv 1(2)(9),ppv 1(3)(7),ppv 1 (4)(5),ppv2(0)( 1 3),ppv2( 1 )( 14)); 
u1_13:csa_fa(ppv 1(6)(0),ppvl (6)(1),ppvl (5)(3),ppv2(2)(13),ppv2(3)(14)); 
u2_13:csa_ha(ppv1(0)(13),ppv1(1)(11),ppv2(4)(13),ppv2(5)(14)); 
u14:csa_fa(ppv 1(0)(14),ppv 1(1)(12),ppv 1 (2)( 1 0),ppv2(2)(1 4),ppv2(3)( 15)); 

u l_14:csa_fa(ppv 1(3)(8),ppv1(4)(6),ppv1(5)(4),ppv2(0)(14),ppv2(1)(15)); 
ppv2(4)(14):=ppv1(6)(2); 
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ul 5 : csa_fa(ppv 1(0)(15),ppv 1(1)(13 ),ppv l (2)(1 1 ),ppv2(2)(1 5),ppv2(3)(16)); 
ul_ 15:csa_fa(ppv 1(3)(9),ppvl (4)(7),ppvl (5)(5),ppv2(0)(15),ppv2(1)(16)); 
u2_ 15:csa_fa(ppv 1(6)(3),ppvl (7)(0),ppv l (7)(1),ppv2(4)(15),ppv2(5)(16)); 

ul 6:csa_fa(ppvl (0)(16),ppv 1(1)(14),ppvl (2)(12),ppv2(0)(16),ppv2(1)(17)); 
ul_ 16:csa_fa(ppv 1(3)(10),ppv 1(4)(8),ppvl (5)(6),ppv2(2)(16),ppv2(3)(17)); 
u2_16:csa_ha(ppv 1(6)(4),ppv 1 (7)(2),ppv2(4)( 1 6),ppv2(5)( 17)); 

ul 7:csa_fa(ppv 1(0)(17),ppv 1(1)(15),ppvl (2)(13),ppv2(0)(17),ppv2(1)(18)); 
ul _ 17:csa_fa(ppv 1(3)(11),ppv 1 (4)(9),ppv 1 (5)(7),ppv2(2)(1 7),ppv2(3)(1 8)); 
u2_17:csa ha(ppv 1 (6)(5),ppv 1 (7)(3),ppv2(4)(1 7),ppv2(5)( 18)); 

ul 8:csa_fa(ppv 1(1 )(1 6),ppvl (2)(14),ppv1(3)(12),ppv2(0)(18),ppv2(1)(19)); 
ul_18:csa_fa(ppv 1(4)(10),ppv 1 (5)(8),ppv 1 (6)(6),ppv2(2)(1 8),ppv2(3)(1 9)); 
ppv2(4)(18):=ppv 1 (7)(4); 

ul9:csa fa(ppv1(1)(17),ppv1(2)(15),ppvl (3)(13),ppv2(0)(19),ppv2(1)(20)); 
ul_19:csa_fa(ppv 1(4)(11),ppv 1 (5)(9),ppv 1 (6)(7),ppv2(2)( 1 9),ppv2(3)(20)); 
ppv2(4)(19):=ppv 1(7)(5); 

u20:csa fa(ppvl (2)(16),ppv 1 (3)( 1 4),ppvl (4)(12),ppv2(0)(20),ppv2(1)(21)); 
ul 20:csa fa(ppv1(5)(10),ppv1(6)(8),ppv1(7)(6),ppv2(2)(20),ppv2(3)(21)); 

u21:csa_fa(ppvl (2)(17),ppv 1(3)(15),ppv 1(4)(13),ppv2(0)(21),ppv2(1)(22)); 
ul_21:csa fa(ppvl(5)(11),ppvl(6)(9),ppvl(7)(7),ppv2(2)(21),ppv2(3)(22)); 

u22:csa_fa(ppvl (3)(16),ppv 1(4)(14),ppvl (5)(12),ppv2(0)(22),ppv2(1)(23)); 
ul 22:csa_ha(ppvl(6)(10),ppv 1(7)(8),ppv2(2)(22),ppv2(3)(23)); 

u23:csa_fa(ppv 1(3)(17),ppv 1(4)(15),ppv 1(5)(13),ppv2(0)(23),ppv2(1)(24)); 
ul_23:csa ha(ppv1(6)(11),ppvl(7)(9),ppv2(2)(23),ppv2(2)(24)); 

u24:csa_fa(ppvl (4)(16),ppv 1(5)(14),ppv 1(6)(12),ppv2(0)(24),ppv2(1)(25)); 
ppv2(3)(24):=ppv 1(7)(10); 

u25: csa_fa(ppv 1(4)(17),ppv 1(5)(15),ppv 1 (6)(1 3),ppv2(0)(25),ppv2( 1 )(26)); 
ppv2(2)(25):=ppv 1(7)(11); 

u26:csa_fa(ppv 1(5)(16),ppv 1(6)(14),ppvl (7)(1 2),ppv2(0)(26),ppv2( 1 )(27)); 

u27:csa fa(ppvl(5)(17),ppvl(6)(15),ppvl(7)(13),ppv2(0)(27),ppv2(1)(28)); 

u28:csa ha(ppvl(6)(16),ppvl(7)(14),ppv2(0)(28),ppv2(1)(29)); 

u29:csa ha(ppv1(6)(17),ppvl (7)(15),ppv2(0)(29),ppv2(1)(30)); 
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ppv2(0)(3 0) := ppv 1(7)(16); 
ppv2(0)(3 1):= ppv 1(7)(17); 
------------------------------STAGE 2-------------------------- 
ppv3 (0)(1):= ppv2(0)(1); 
ppv3 (0)(2) :=ppv2(0)(2); 
ppv3 (0)(3 ):=ppv2 (0)(3 ); 
ppv3 (1)(1):= ppv2(1)(1); 
ppv3(0)(4):= ppv2(0)(4); 
ppv3 (1)(4): =ppv2 (1)(4); 

ul _0_5:csa_fa(ppv2(0)(5),ppv2(1)(5),ppv2(2)(5),ppv3 (0)(5),ppv3 (1)(6)); 

ul_0_6:csa_ha(ppv2(0)(6),ppv2(1)(6),ppv3(0)(6),ppv3 (1)(7)); 
ul__0_7:csa_fa(ppv2(0)(7),ppv2(1)(7),ppv2(2)(7),ppv3(0)(7),ppv3 (1)(8)); 
ul_0_8:csa_fa(ppv2(0)(8),ppv2(1)(8),ppv2(2)(8),ppv3(0)(8),ppv3 (1)(9)); 
ppv3(2)(8) =ppv2(3)(8); 
ul_0_9:csa_fa(ppv2(0)(9),ppv2(1)(9),ppv2(2)(9),ppv3(0)(9),ppv3 (1)(10)); 
u1_0_10:csa_fa(ppv2(0)(10),ppv2(1)(10),ppv2(2)(10),ppv3 (0)(10),ppv3 (1)(11)); 
ppv3 (2) (10):=ppv2(3)(10); 

ul_0_l l :csa_fa(ppv2(0)(11),ppv2(1)(11),ppv2(2)(11),ppv3(0)(11),ppv3 (1)(12)); 
ul_1_l 1 :csa_ha(ppv2(3)(1 1),ppv2(4)( 11 ),ppv3(2)(1 1),ppv3 (3)(12)); 

u 1 _0_ 12: csa_fa(ppv2 (0)(12),ppv2(1)(12),ppv2(2)(12),ppv3 (0)(1 2),ppv3(1)(13)); 
ppv3 (2)(12):=ppv2(3)(12); 

ul_0_13:csa fa(ppv2(0)(13),ppv2(1)(13),ppv2(2)(13),ppv3(0)(13),ppv3(1)(14)); 
ul_1_13:csa ha(ppv2(3)(13),ppv2(4)(13),ppv3(2)(13),ppv3(3)(14)); 

u 1_0_1 4:csa_fa(ppv2(0)( i4),ppv2 (1)(14),ppv2(2)(14),ppv3 (0)(14),ppv3(1)(15)); 
ul_1_14:csa_fa(ppv2(3)(14),ppv2(4)(14),ppv2(5)(14),ppv3 (2)(14),ppv3(3)(15)); 

ul_0_15: csa_fa(ppv2(0)(15),ppv2(1)(15),ppv2(2)(15),ppv3(0)(15),ppv3(1)(16)); 
u 1_1_15:csa_ha(ppv2(3)(15),ppv2(4)(15),ppv3(2)(15),ppv3(3)(16)); 

ul_0_16: csa_fa(ppv2(0)(16),ppv2(1)(16),ppv2(2)(16),ppv3(0)(16),ppv3(1)(17)); 
ul_l_l6:csa fa(ppv2(3)(16),ppv2(4)(16),ppv2(5)(16),ppv3(2)(16),ppv3(3)(17)); 

ul_0_17:csa fa(ppv2(0)(17),ppv2(1)(17),ppv2(2)(17),ppv3(0)(17),ppv3(1)(18)); 
u l _ 1 _ 17: csa_fa(ppv2(3)( 1 7),ppv2(4)(17),ppv2(5)(17),ppv3 (2)(17),ppv3 (3)(18 )); 

u1_0_18: csa_fa(ppv2(0)(18),ppv2(1)(18),ppv2(2)(18),ppv3(0)(18),ppv3(1)(19)); 
ul_1_18:csa_fa(ppv2(3)(18),ppv2(4)(18),ppv2(5)(18),ppv3(2)(18),ppv3(3)(19)); 

ul_0_19: csa_fa(ppv2(0)(19),ppv2(1)(19),ppv2(2)(19),ppv3(0)(19),ppv3(1)(20)); 
u1_1_l9:csa ha(ppv2(3)(19),ppv2(4)(19),ppv3(2)(19),ppv3(3)(20)); 

-89- 



ul_0_20:csafa(ppv2(0)(20),ppv2(1)(20),ppv2(2)(20),ppv3(0)(20),ppv3(1)(21)); 
ppv3(2)(20)_ ppv2(3)(20); 

ul_0_21:csa fa(ppv2(0)(21),ppv2(1)(21),ppv2(2)(21),ppv3(0)(21),ppv3(1)(22)); 
PPv3(2)(21):=ppv2(3)(21); 

u l _0_22: csa_fa(ppv2(0)(22),ppv2(1)(22),ppv2(2) (22),ppv3 (0) (22),ppv3 (1)(23)); 
ppv3(2)(22):=ppv2(3)(22); 

u1_0_23 :csa_fa(ppv2(0)(23),ppv2(1)(23),ppv2(2)(23),ppv3 (0)(23),ppv3(1)(24)); 
ppv3 (2)(23):=ppv2(3)(23); 

ul_0_24:csa_fa(ppv2(0)(24),ppv2(1)(24),ppv2(2)(24),ppv3(0)(24),ppv3(1)(25)); 
ppv3 (2)(24):=ppv2(3)(24); 

ul_0_25 :csa_fa(ppv2(0)(25),ppv2(1)(25),ppv2(2)(25),ppv3 (0)(25),ppv3 (1)(26)); 

u1_0_26:csa ha(ppv2(0)(26),ppv2(1)(26),ppv3(0)(26),ppv3(1)(27)); 
ul_0_27:csa_ha(ppv2(0)(27),ppv2(1)(27),ppv3(0)(27),ppv3(1)(28)); 
ul_0_28:csa ha(ppv2(0)(28),ppv2(1)(28),ppv3(0)(28),ppv3(1)(29)); 
ul_0_29:csa ha(ppv2(0)(29),ppv2(1)(29),ppv3(0)(29),ppv3(1)(30)); 
ul_0_30:csa_ha(ppv2(0)(3 0),ppv2(1)(30),ppv3(0)(3 0),ppv3( 1)(3 1)); 

ppv3(0)(3 1) :=ppv2(0)(3 1); 
ppv3( 1 )(2):='O'; 
ppv3(1)(3):='0'; 
ppv3(1)(5):='0'; 
ppv3(2)(7 downto 1):=(others=>'O'); 
ppv3(3)(32 downto 21):=(others=>'O'); 

ppv4:=ppv3; 
------------------------------STAGE 3------------ 
ppv5(0)(7 downto 1):= ppv4(0)(7 downto 1); 
ppv5(1)(1):=ppv4(1)(1); 
ppv5 (1)(4):=ppv4(1)(4); 
ppv5 (1)(6):=ppv4(1)(6); 
ppv5 (1)(7):=ppv4(1)(7); 

u3_8 :csa_fa(ppv4(0)(8),ppv4(1 )(8),ppv4(2)(8),ppv5(0)(8),ppv5(1 )(9)); 
u3_9:csa ha(ppv4(0)(9),ppv4(1)(9),ppv5(0)(9),ppv5(1)(10)); 
u3_10:csa_fa(ppv4(0)(10),ppv4(1)(10),ppv4(2)(10),ppv5 (0)(10),ppv5(1)(11)); 
u3_11:csa_fa(ppv4(0)(11),ppv4(1)(11),ppv4(2)(11),ppv5 (0)(11),ppv5(1)(12)); 
u3_12:csa_fa(ppv4(0)(12),ppv4(1)(12),ppv4(2)(12),ppv5(0)(12),ppv5(1)(13)); 
ppv5(2)(12):=ppv4(3)(12); 



u3_13:csa_fa(ppv4(0)(13),ppv4(1)(13),ppv4(2)(13),ppv5 (0)(13),ppv5(1)(14)); 
u3_14:csa fa(ppv4(0)(14),ppv4(1)(14),ppv4(2)(14),ppv5(0)(14),ppv5(1)(15)); 
ppv5 (2)(.14):=ppv4(3)(14); 

u3_15:csa_fa(ppv4(0)(15),ppv4(l)(15),ppv4(2)(15),ppv5(0)(15),ppv5(1)(16)); 
ppv5(2)(15):=ppv4(3)(15); 

u3_16:csa_fa(ppv4(0)(16),ppv4(1)(16),ppv4(2)(16),ppv5(0)(16),ppv5(1)(17)); 
ppv5(2)(16):=ppv4(3)(16); 

u3_17:csa fa(ppv4(0)(17),ppv4(1)(17),ppv4(2)(17),ppv5(0)(17),ppv5(1)(18)); 
ppv5(2)(17):=ppv4(3)(17); 

u3_18:csa fa(ppv4(0)(18),ppv4(l)(18),ppv4(2)(18),ppv5(0)(18),ppv5(1)(19)); 
ppv5 (2)(18):=ppv4(3)(18); 

u3_19:csa fa(ppv4(0)(19),ppv4(1)(19),ppv4(2)(19),ppv5(0)(19),ppv5(1)(20)); 
ppv5 (2)(19):=ppv4(3)(19); 

u3_20: csa_fa(ppv4(0)(20),ppv4(1)(20),ppv4(2) (20),ppv5 (0) (20),ppv5 (1)(21)); 
ppv5 (2)(20):=ppv4(3)(20); 

u3_21:csa fa(ppv4(0)(21),ppv4(1)(21),ppv4(2)(21),ppv5(0)(21),ppv5(1)(22)); 
u3_22:csa_fa(ppv4(0)(22),ppv4(1)(22),ppv4(2)(22),ppv5(0)(22),ppv5(1)(23)); 
u3_23 :csa fa(ppv4(0)(23),ppv4(1)(23),ppv4(2)(23),ppv5(0)(23),ppv5(1)(24)); 
u3_24:csa_fa(ppv4(0)(24),ppv4(1)(24),ppv4(2)(24),ppv5(0)(24),ppv5(1)(25)); 
u3_25 : csa_ha(ppv4(0) (25),ppv4(1) (25),ppv5 (0)(25),ppv5 (1)(26)); 
u3_26:csa ha(ppv4(0)(26),ppv4(1)(26),ppv5(0)(26),ppv5(1)(27)); 
u3_27:csa_ha(ppv4(0)(27),ppv4(1)(27),ppv5 (0)(27),ppv5(1)(28)); 
u3_28:csa_ha(ppv4(0)(28),ppv4(1)(28),ppv5(0)(28),ppv5(1)(29)); 
u3_29:csa ha(ppv4(0)(29),ppv4(1)(29),ppv5(0)(29),ppv5(1)(30)); 
u3_30:csa_ha(ppv4(0)(30),ppv4(1)(30),ppv5 (0)(30),ppv5(1)(31)); 
u3_31:csa ha(ppv4(0)(31),ppv4(1)(31),ppv5(0)(31),ppv5(0)(32)); 
ppv5(0)(31):=ppv4(0)(31); 
ppv5 (2) (12):=ppv4(3)(12); 
ppv5(2)(20 downto 14):=ppv4(3)(20 downto 14); 

------------------------------STAGE 4-------------------------- 

ppv6(0)(11 downto 1):= ppv5(0)(11 downto 1); 
ppv6(1)(1):=ppv5 (1)(1); 
ppv6(1)(4):=ppv5 (1)(4); 
ppv6(1)(6):=ppv5(1)(6); 
ppv6( 1 )(7):=ppv5(1)(7); 
ppv6(l)(11 downto 9):= ppv5(1)(11 downto 9); 
ppv6(l)(12):='0; 
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u4_1_12: csa_fa(ppv5(0)(12),ppv5 (1)(12),ppv5(2)(12),ppv6(0)(12),ppv6(1)(13)); 
u4_1_13:csa ha(ppv5(0)(13),ppv5(1)(13),ppv6(0)(13),ppv6(l)(14)); 
u4_1_ 14: csa_fa(ppv5(0)(14),ppv5 (1)(14),ppv5(2)(14),ppv6(0)(14),ppv6(1)(15)); 
u4_1_15:csa fa(ppv5(0)(15),ppv5(1)(15),ppv5(2)(15),ppv6(0)(15),ppv6(1)(16)); 
u4_1_ 16: csa_fa(ppv5(0)(16),ppv5 (1)(16),ppv5(2)(16),ppv6(0)(16),ppv6(1)(17)); 
u4_1_17:csa_fa(ppv5(0)(17),ppv5(1)(17),ppv5 (2)(17),ppv6(0)(17),ppv6(1)(18)); 
u4 1_18:csa fa(ppv5(0)(18),ppv5(1)(18),ppv5(2)(18),ppv6(0)(18),ppv6(I)(19)); 
u4__1_19:csa_fa(ppv5(0)(19),ppv5 (1)(19),ppv5 (2)(19),ppv6(0)(19),ppv6(1)(20)); 
u4_1_20: csa_fa(ppv5(0)(20),ppv5(1)(20),ppv5(2)(20),ppv6(0)(20),ppv6(1)(21)); 
u4_1_21:csa ha(ppv5(0)(21),ppv5(1)(21),ppv6(0)(21),ppv6(1)(22)); 
u4_1_22: csa_ha(ppv5 (0)(22),ppv5(1)(22),ppv6(0)(22),ppv6(1)(23)); 
u4_1_23: csa_ha(ppv5(0)(23),ppv5(1)(23),ppv6(0)(23),ppv6(1)(24)); 
u4_1_24:csa ha(ppv5(0)(24),ppv5(1)(24),ppv6(0)(24),ppv6(1)(25)); 
u4_1_25:csa ha(ppv5(0)(25),ppv5(1)(25),ppv6(0)(25),ppv6(1)(26)); 
u4_1_26: csa_ha(ppv5 (0)(26),ppv5 (1)(26),ppv6(0)(26),ppv6(1)(27)); 
u4_1_27: csa_ha(ppv5 (0)(27),ppv5(1)(27),ppv6(0)(27),ppv6(1)(28)); 
u4_1_28: csa_ha(ppv5 (0)(28),ppv5 (1)(28),ppv6(0)(28),ppv6(1)(29)); 
u4_1_29: csa_ha(ppv5 (0)(29),ppv5(1)(29),ppv6(0)(29),ppv6(1)(30)); 
u4_1_30: csa_ha(ppv5 (0)(3 0),ppv5(1 )(30),ppv6(0)(30),ppv6( 1)(3 1)); 
u4_1_3 1 :csa_haQpv5 (0)(31),ppv5(1)(31),ppv6(0)(31),ppv6(1)(32)); 

ppv6(0)(32):=ppv5 (0)(32); 
ppv6(1)(2):='0'; 

ppv6(1)(3):='0; 
ppv6(1)(5):='0'; 
ppv6(1)(8):='0; 
------------------------------STAGE 
ppv7(0):=ppv6(0); 
ppv7(1):=ppv6(1); 
ci3 := -(((2* * 16)-1)/3); 
cv3 std logic_vector(conv unsigned(ci3,16)); 

ppv7(2)(32 downto 17):=cv3; 
ppv8(0)(16 downto 1):= ppv7(0)(16 downto 1); 
ppv8(1)(16 downto 1):= ppv7(1)(16 downto 1); 
ppv8(1)(17):='0 ; 

u_F_17:csa fa(ppv7(0)(17),ppv7(1)(17),ppv7(2)(17),ppv8(0)(17),ppv8(1)(18)); 
u_F_l8:csa fa(ppv7(0)(18),ppv7(1)(18),ppv7(2)(18),ppv8(0)(18),ppv8(1)(19)); 

u_F_19:csa fa(ppv7(0)(19),ppv7(1)(19),ppv7(2)(19),ppv8(0)(19),ppv8(I)(20)); 
u_F 20:csa_fa(ppv7(0)(20),ppv7(1)(20),ppv7(2)(20),ppv8(0)(20),ppv8(1)(21)); 
u F_21:csa fa(ppv7(0)(21),ppv7(1)(21),ppv7(2)(21),ppv8(0)(21),ppv8(1)(22)); 
u_F 22:csa fa(ppv7(0)(22),ppv7(1)(22),ppv7(2)(22),ppv8(0)(22),ppv8(1)(23)); 
u_F_23:csa_fa(ppv7(0)(23),ppv7(1)(23),ppv7(2)(23),ppv8(0)(23),ppv8(1)(24)); 
u_F_24: c sa_fa(ppv7(0) (24),ppv7(1)(24),ppv7(2)(24),ppv8(0) (24),ppv8 (1)(2 5)); 
u F 25:csa_fa(ppv7(0)(25),ppv7(1)(25),ppv7(2)(25),ppv8(0)(25),ppv8(I)(26)); 
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u_F_26 :csa_fa(ppv7(0)(26),ppv7( 1 )(26),ppv7(2)(26),ppv8(0)(26),ppv8( 1 )(27)); 
u_F_27:csa_fa(ppv7(0)(27),ppv7(1)(27),ppv7(2)(27),ppv8(0)(27),ppv8(I)(28)); 
u_F_28 :csa_fa(ppv7(0)(2 8),ppv7( 1 )(28),ppv7(2)(28),ppv8(0)(28),ppv8( 1 )(29)); 
uF_29:csa_fa(ppv7(0)(29),ppv7(1)(29),ppv7(2)(29),ppv8(0)(29),ppv8(I)(30)); 
u_F_30:csa_fa(ppv7(0)(3 0),ppv7( 1 )(30),ppv7(2)(3 0),ppv8(0)(30),ppv8( 1 )(3 1)); 
u_F_3 I :csa_fa(ppv7(0)(3 1 ),ppv7( 1 )(3 1 ),ppv7(2)(3 1 ),ppv8(0)(3 1 ),ppv8( 1 )(32)); 
u_F_32:csa_fa(ppv7(0)(32),ppv7(1)(32),ppv7(2)(32),ppv8(0)(32),nc 1); 

rca(ppv8(0),ppv8(I ),ppv 10); 
p prodO(3 I downto 0)<=ppv 10(32 downto 1); 

end process PPS_REDN; 
--------------- 	PIPELINING LOGIC (six stages) 	------------------------------ 
PIPELINING : process(clk) 
begin 

if clk'event and clk=' l'then 
p prod 1 <=p prodO; 
p_prod2<=p prod 1; 
p_prod3<=p_prod2; 
p prod4<=p prod3; 
p prod5<=p prod4; 
prod<=p prod5; 

end if; 
end process PIPELINING; 

end Behavioral; 
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