
A FULLY AUTOMATIC QUESTION ANSWERING
SYSTEM TO IMPROVE E-LEARNING

A DISSERTATION

Submitted in partial fulfillment of the
requirements for the award of the degree

of
MASTER OF TECHNOLOGY

in
INFORMATION TECHNOLOGY

0
ASHHSH GUPI'A

4;Y

DEPARTMENT OF ELECTRONICS & COMPUTER ENGINEERING
INDIAN INSTITUTE OF TECHNOLOGY ROORKEE

ROORKEE -247 667 (INDIA)
JUNE, 2007

CANDIDATE'S DECLARATION

I hereby declare that the work, which is being presented in the dissertation entitled "A

FULLY AUTOMATIC QUESTION ANSWERING SYSTEM TO IMPROVE E-

LEARNING" towards the partial fulfillment of the requirement for the award of the

degree of Master of Technology in Information Technology submitted in the

Department of Electronics and Computer Engineering, Indian Institute of Technology

Roorkee, Roorkee (India) is an authentic record of my own work carried out during the

period from July 2006 to June 2007, under the guidance of Dr. Ankush Mittal,

Associate Professor, Department of Electronics and Computer Engineering, IIT

Roorkee.

I have not submitted the matter embodied in this dissertation for the award of any other

degree or diploma.

Date: 0S^06- o2a0-7

Place: Roorkee (ASHISH GUPTA)

CERTIFICATE

This is to certify that the above statement made by the candidate is correct to the best of

my knowledge and belief.

Date: 03-06—;?001

Place: Roorkee 	 (Jz;a ii lIittal)

Associate Professor

Department of Electronics and Computer Engineering

IIT Roorkee — 247 667

ACKNOWLEDGEMENTS

I would like to extend my heartfelt gratitude to my guide Dr. Ankush Mittal, Associate

Professor, Department of Electronics and Computer Engineering, Indian Institute of

Technology Roorkee, for his able guidance, regular source of encouragement and

assistance throughout this dissertation work. It is his vision and insight that inspired me

to carry out my dissertation in the upcoming field of Natural Language Processing. I

would state that the dissertation work would not have been in the present shape without

his umpteen guidance and I consider myself fortunate to have done my dissertation under

him.

I also extend my sincere thanks to Dr. D. K. Mehra, Professor and Head of the

Department of Electronics and Computer Engineering, Indian Institute of Technology

Roorkee for providing facilities for the work.

I also wish to thank all my friends for their valuable suggestions and timely help.

Finally, I would like to say that I am indebted to my parents for everything that they have

given to me. I thank them for the sacrifices they made so that I could grow up in a

learning environment. They have always stood by me in everything I have done,

providing constant support, encouragement and love.

ASHISH GUPTA

ABSTRACT

Automatic Question Answering is a type of information retrieval. Given a collection of

documents (such as the World Wide Web or a local collection) the system should be able

to retrieve answers to questions posed in natural language. Automatic Question

Answering is regarded as requiring more complex natural language processing (NLP)

techniques than other types of information retrieval such as document retrieval, and it is

regarded as the next step beyond search engines. Looking at increasing trend in distance

education and availability of online E-Learning material; students need a question

answering system to effectively utilize the material and to improve E-Learning.

This report presents an automatic Question Answering System (QAS) for E-Leaming

domain. The accuracy of answers has been increased by incorporating various NLP tools

and a novel Word Sense Disambiguation (WSD) algorithm. The approach used is to

utilize domain knowledge as much as possible to improve the performance of the system.

The system utilizes template based approach to extract quality answers from passages.

The WSD algorithm is designed specifically for closed domain question answering

systems by utilizing the WordNet (English dictionary) and domain corpus (domain

dataset). The WSD algorithm is applied in query expansion phase of the question

answering system to expand query terms for relevant senses only.

The question answering system and WSD algorithm have been implemented in C/C++ on

Linux platform using various tools such as Wordnet 3.1, automatic question classifier, NE

recognizer, SEFT (retrieval engine) and Beagle desktop search tool.

CONTENTS

CANDIDATE'S DECLARATION ...i

ACKNOWLEDGEMENTS ...ii

ABSTRACT ...iii

TABLEOF CONTENTS ..iv

CHAPTER 1: INTRODUCTION ..1

1.1 	Introduction ..1
1.2 Statement of the Problem ..2
1.3 Organization of the Dissertation ..2

CHAPTER 2: BACKGROUND AND LITERATURE REVIEW4
2.1 	E-Learning ..4
2.2 Need for Question Answering System ...5
2.3 Question Answering System ...6
2.4 Classification of Question Answering System7

2.4.1 Open Domain Question Answering systems7
2.4.2 Closed Domain Question Answering Systems8

2.5 Word Sense Disambiguation ...8
2.6 Previous Work ..9

2.6.1 	E-Learning ..9
2.6.2 Question Answering Systems ...10
2.6.3 Word Sense Disambiguation ...12

2.8 Research Gaps ..15

CHAPTER 3: PROPOSED SYSTEM ...16

3.1 Architecture ...16

- iv -

3.2 Working17
3.2.1 Parsing and Semantic Analysis18
3.2.2 Named Entity Recognition19
3.2.3 Question Classifier20
3.2.4 Query Expansion21
3.2.5 Word Sense Disambiguation22
3.2.6 Passage Retrieval29
3.2.7 Answer Extraction30
3.2.6 Feedback System31

CHAPTER 4: SYSTEM IMPLEMENTATION ..32

4.1 Link Grammar Based Parser32
4.2 Named Entity Recognizer35
4.3 Question Classifier36
4.4 Search Engine For Text (SEPT) ... 39
4.5 W ordNet40

4.6 	Beagle42

CHAPTER 5: IMPLEMENTATION ISSUES ...43
5.1 	Scalability43
5.2 Accuracy Issues44
5.3 Efficiency44
5.4 Steps that led to final design44

CHAPTER 6: RESULTS AND DISCUSSION ...46

6.1 Evaluation of WSD Algorithm ..46
6.2 Evaluation of Question Answering Evaluation48

CHAPTER 7: CONCLUSIONS AND FUTURE WORK52

-v-

7.1 Conclusions ...52
7.2 Suggestions for Future Work ..53

REFERENCES..54

APPENDIX: SOURCE CODE LISTING ...i

- vi -

CHAPTER 1

INTRODUCTION

1.1 Introduction

The Internet (originally known as ARPANET) was created in 1969 to provide an open

network for researchers. In the last decade, the phenomenal growth and success of the

Internet is changing its traditional role. Due to recent advances in technology and

increased number of online users, information available on World Wide Web is

increasing at exponential rate. Same trend has been seen in the field of distance

education and E-Learning. Numbers of students in distance education courses are

increasing at a rapid speed. More and more universities are providing online educational

content on their web sites like MIT open course ware, UC Berkeley etc. As users

struggle to navigate the wealth of online information now available, the need for

automatic question answering becomes more urgent. We need systems that allow users

to ask questions in every language and receive an answer quickly and succinctly, with

sufficient text to validate the answer. Current search engines can return ranked list of

documents, but do not deliver answers to users.

Automatic question answering systems address this problem. Recent successes have

been reported in a series of questions answering evaluations that started in 1999 as part of

the Text REtrieval Conference (TREC). The best systems now available are able to

answer more than two third of the factual type questions. To answer a question, a system

must analyze the question, perhaps in the context of some ongoing interaction; it must

find one or more answers by consulting its online or off-line resources; and it must

present the answer in some appropriate form, perhaps with associated justification or

supporting material.

Automated question answering has been a topic of research and development since the

earliest AI applications. Computing power has increased since the first such systems

-1-

Introduction

were developed, and the general methodology has changed from the use of hand-encoded

knowledge bases about simple domains to the use of text collections as the main

knowledge source over more complex domains. Still, many research issues remain. The

focus of this thesis is on the use of restricted or closed domains for automated question

answering. A main characteristic of question answering in restricted domains is the

integration of domain-specific information that is either developed for question

answering or that has been developed for other purposes.

1.1 Statement of the Problem

The aim of this thesis is to design and implement an automatic question answering

system for E-Learning domain, which helps students in accessing the E-Learning

resources in an effective way by allowing them to ask questions in natural language.

The above problem can be divided into following sub-problems:

To design and implement a fully automatic closed domain question answering

system for E-Learning which can be targeted to any course domain (like operating

system, computer networks etc).

2. To design and implement a word sense disambiguation (WSD) algorithm for

closed domain question answering system to remove ambiguities in questions

asked by students.

1.2 Organization of the Dissertation
The report is divided into seven chapters including this introductory chapter. The rest of

this thesis is organized as follows.

Chapter 2 gives an overview of E-Learning, automatic question answering and word

sense disambiguation. It also presents main approaches to question answering and

classification of question answering system. It discusses related work on E-Learning,

question answering and word sense disambiguation and research gaps.

-2-

Introduction

The proposed architecture for closed domain question answering system is discussed in

Chapter 3. It then explains the working of overall system along with working details of

individual modules of the system.

Chapter 4 provides implementation details and details on tools used to build the system.

Chapter 5 discusses various implementation issues of the system. Is also discusses the

steps that led to final design of the system.

Chapter 6 discusses the experimental results performed on the system.

Chapter 7 presents final conclusions and scope for future work.

-3-

CHAPTER 2

BACKGROUND AND LITERATURE REVIEW

2.1 E-Learning
Web-based teaching materials, multimedia CD-ROMs or web sites, discussion boards,

collaborative software, e-mail, wikis, computer aided assessment, educational animation,

simulations, educational games and learning management software etc. The list is

endless. All computer-based educational applications are grouped under E-Learning. E-

Learning is an all-encompassing term generally used to refer to computer-enhanced

learning often extended to include the use of mobile technologies such as PDAs and MP3

players. E-Learning is made up of several methods of learning, which are enhanced or

facilitated by technology.

E-Learning is naturally suited to distance learning and flexible learning, but can also be

used in conjunction with face-to-face teaching, in which case the term Blended learning

is commonly used. Blended learning is the combination of multiple approaches to

learning. Blended learning can be accomplished through the use of 'blended' virtual and

physical resources. A typical example of this would be a combination of technology-

based materials and face-to-face sessions used together to deliver instruction. Distance

education or distance learning on the other hand, is a field of education that focuses on

the pedagogy, technology, and instructional systems design that are effectively

incorporated in delivering education to students who are not physically "on site" to

receive their education. Instead, teachers and students may communicate asynchronously

(at times of their own choosing) by exchanging printed or electronic media, or through

technology that allows them to communicate in real time (synchronously).

Improvements in E-Learning hid the disadvantages of distance education like; lack of

face to face interaction with teacher and feeling of isolation experienced by distance

education students by use of audio/video web conferencing and collaborative learning

softwares. These improvements in E-Learning brought success in distance education

-4-

Background and Literature Review

courses, a large number of students utilize the facilities provided by distance education

web sites from remote locations.

2.2 Need for Question Answering System
The rapid success of distance education has led to extensive development of course

material and its placement on web. Course websites are continuously uploading new

course data on their websites to make courses up to date [1]. Uses and Gratifications

(U&G) is a community to examine Internet usage motivations of technology students

enrolled in an Internet based distant education course and found that digital content (E-

Learning content) is highly sought after by students in Internet-supported distant

education classes [2]. Currently a sea of information is available in the form of power

point slides, FAQ's and e-books on course websites. However a large part of such

information remains unutilized because of the lack of effective information retrieval

systems. Current search engines like Google are able to handle a large amount of

information. Such search engines can provide very fast access to information from any

domain. But the problem with such search engines is that they only return ranked list of

documents. These engines are not effective for such E-Learning documents and it is very

difficult for students to find answers to their queries using theses search tools.

A student does not understand and know where he can find the related terms and

concepts mentioned in the lecture. Searching for answers to queries in such huge amount

of data is a cumbersome task. Moreover currently available search engines does not

provide much help in finding answers to queries, because search engines again redirect

user to large number of documents and problem remains same. This requirement of

students can only be fulfilled with a proper interface to access this information.

Automatic question answering systems are a great help in such a case, which can retrieve

answer to student questions from large information in a very effective way. Moreover

students can ask questions directly in natural language rather than specifying only the

keywords for search. The automatic question answering systems will be great help for

problems of beginner students like addressed in [3], whose queries generally include

-5-

Background and Literature Review

basic questions related to a new subject. The question answering system designed and

developed as part of this work provides the solution to this problem of students. This

question answering system provides a great ease to students in their learning process.

2.3 Question Answering Systems
Question Answering is a type of information retrieval. Given a collection of documents

(such as the World Wide Web or a local collection) the system should be able to retrieve

answers to questions posed in natural language [4]. Question answering is regarded as

requiring more complex natural language processing (NLP) techniques than other types

of information retrieval such as document retrieval, and it is regarded as the next step

beyond search engines.

Question Answering research attempts to deal with a wide range of question types

including: fact, list, definition, How, Why, hypothetical, semantically-constrained, and

cross-lingual questions. Search collections vary from small local document collections, to

internal organization documents, to compiled newswire reports, to the World Wide Web.

Main approaches to automatic question answering are explained in [5]. Generally

question answering system use Natural Language Processing (NLP), Information

Retrieval (IR) or template based approach depending upon the requirements of the

system. A common feature of NLP systems is that they convert text input into formal

representation of meaning such as logic (first order predicate calculus), semantic

networks, conceptual dependency diagrams, or frame-based representations. Since the

early days of NLP, Question answering systems simulated human intelligence within the

Natural Language (NL) understanding research field. They worked as Natural Language

(NL) front-end to databases [6-7], dialogue systems or story comprehension systems.

Question answering systems were limited to specific and narrow domains such as

algebra, astronomy and natural science.

-6-

Background and Literature Review

Information Retrieval deals with the representation, storage, organization of and access to

information items. Automated question answering is related to IR as users submit queries

in order to find answers to questions they have in mind. IR systems are traditionally seen

as document retrieval systems, i.e. systems that return documents that are relevant to the

user's information need, but that do not supply direct answers. A further step towards the

question answering paradigm is the development of document retrieval systems into

passage retrieval systems [8], which focus on retrieving text passages rather than entire

documents. Passage retrieval is now a standard component of modern IR-based question

answering applications (IR QA), such as [9] and [10].

Template-based question answering extends the pattern matching approach of natural

language (NL) interfaces to databases where the intelligence of the system is embodied in

a collection of manually created question templates. Question templates embody the

major part of the "intelligence" of the system and therefore are created manually;

automatic generation of the templates would require another manually created knowledge

base. Machine learning may help, but we haven't found any evidence of extensive use of

machine learning in creating question templates. A fine-tuned system can reach as high

recall/precision levels. Lin [11] has noted that template-based QA is effective because

the distribution of user queries follows Zipf's law — a small fraction of question types

account for a large number of questions asked. It means good template designs can

answer most of the questions generally asked.

2.4 Classification of Question Answering Systems

Depending on the collection, Question Answering Systems are classified in to two

categories [4]:

2.4.1 Open Domain Question Answering Systems: Open-domain question

answering deals with questions about nearly everything, and can only rely on

general world knowledge. These systems usually have much more data available

from which to extract the answer. Such systems cannot, therefore, rely on hand

-7-

Background and Literature Review

crafted domain specific knowledge to find and extract the correct answers.

Example of famous open domain question answering system is Ask.com

(formerly AskJeevs.com) [12], START (from MIT) [13] and AnswerBus [14].

Most of the open domain question answering systems utilizes the template based

approach, the idea behind this is; question templates provide good coverage to

generally asked questions. Using thorough NLP processing for question

answering in open domain takes a lot of time due to unstructured and large

amount of data. Therefore open domain question answering systems are

empowered by keyword search and template based approaches.

2.4.2 Closed Domain Question Answering System: It deals with questions

under a specific domain (for example, medicine or E-Learning), and can be seen

as an easier task because NLP systems can exploit domain-specific knowledge. A

number of closed domain question answering systems has been built e.g.,

LUNAR [15] and BASEBALL [16]. Question answering systems for closed

domains use unstructured (Free Text), semi-structured (XML) or structured

(Databases) data. Closed domain question answering systems that use structured

or semi-structured data provide more accuracy than the systems with unstructured

data. But accuracy comes with the price of manually structuring the domain data

for question answering system. In some cases, structuring domain data for closed

domain still not possible due to large amount of heterogeneous data such as in the

case of E-Learning (this system). For such systems part of domain information

can be structured or meta information of domain can be used to improve accuracy.

2.5 Word Sense Disambiguation
Word sense ambiguity is rarely thought of as a problem in our daily life. Most of time,

even we are presented with a text where ambiguous word appears in more than one of its

senses, we can easily identify the correct sense of the word without getting confused of

the other senses. The disambiguation process which helps people identify the correct

sense of a word is not difficult for us. We can perform it easily and accurately.

Background and Literature Review

However, this disambiguation process is not easy for computers. Given a text including

an ambiguous word like "crane", without performing some sort of disambiguation, it is

impossible for machines to know whether we are talking about the machine that lifts and

moves the heavy objects or the large long necked wading bird of marshes and planes in

many parts of the world. And, unfortunately, even when after disambiguating words,

machines may not be able to resolve ambiguities. The task of word sense disambiguation

is to make machines perform as well as people identifying the senses the words in the

context.

Question answering and Information Retrieval (IR) are major fields where word

ambiguity is a problem. The rapid increase in the number of electronic documents

available on World Wide Web and increased desire to obtain useful information from

these documents have increased need for the development of sophisticated question

answering and information retrieval systems. Especially is research oriented restricted

domains the importance of precise and efficient systems is indisputable.

2.6 Previous Work
2.6.1 E-Learning

E-Learning has underlined the importance of quick access to relevant study material

for effective education with the major advantage of enabling people to access learning

facilities regardless of their location and at the time that is most convenient to them.

Business enterprises are widely using this online learning for employee training and

education because of its cost saving advantages, especially with respect to time and travel

parameters [17].

Efforts have been made in the direction of providing ease to the student in extracting

information from E-Learning documents with respect to effective retrieval and

presentation of knowledge. A similar system COVA (Content-based Video Access)

enables remote users to access specific parts of interest from a large lecture database by

contents [18]. COVA is system architecture for implementing web based E-Leaming

-9-

Background and Literature Review

system and XML-based semi-structured model for content based lecture access.

However manual development of XML schemas or annotating the vast amount of

information can be laborious and impractical. Another approach introduces Genetic

Algorithms into traditional question answering system which uses the concept of Case-

Based Reasoning (CBR) [19]. The huge number of cases that would be generated with

large repository (with continual growth) and failure in case of complex queries put

limitation in its practical use.

A different approach taken in Knowledge-based Content Navigation in E-Learning

Applications presents a prototype implementation of the framework for semantic

browsing of a test collection of RFC documents [20]. They propose the use of fuzzy

clustering algorithms to discover knowledge domains and represent those knowledge

domains using TopicMaps. However success largely depends on how accurately the

clusters are identified and the representation still suffers from the drawback attributed to

Table-of-Content page.

E-Learning Media Navigator (ELM-N) from IBM Research is a system with which a user

can access and interact with online heterogeneous course materials [17]. Their efforts are

aimed to reduce human effort and manual annotation work in order to make the system

viable for voluminous information. Furthermore, challenges remain in the area of easy to

use content delivery, access and augmented interaction.

2.6.2 Question Answering System

A QAS provides direct answers to user questions by consulting its knowledge base. It

attempts to allow user to ask questions in natural language and receive an answer quickly

and succinctly, with sufficient context to validate answer [21]. QAS that cater to a

specific domain have been developed at very early stage. LUNAR [15] was such a

closed domain QAS that answered questions related to moon rocks and soil gathered by

Apollo 11 mission. However it relied on having the data to be available in a highly

structured form, not as completely unstructured text.

-10-

Background and Literature Review

Most of the QAS that have been developed treat the web as a collection of documents and

thus cater to huge variety of questions. The commercial search engine known as

AskJeeves responds to natural-language questions but its recall is very limited because it

uses its knowledge base (which is at least partially hand constructed) to answer questions

and updates the knowledge base when asked a question which it has not encountered

before. Another QAS, MULDER [22] is claimed to be the first general-purpose, fully-

automated question-answering system available on the web. MULDER's architecture

relies on multiple search-engine queries, natural-language parsing, and a novel voting

procedure to yield reliable answers (recall of same level as Google). However, the

difficulty of Natural Language Processing (NLP) has limited their ability to give accurate

answer to questions that are quite specific to a domain. In addition to the traditional

difficulties associated with syntactic analysis, there remains many other problems to be

solved, e.g., semantic interpretation, ambiguity resolution, discourse modeling, inference,

common sense, etc.

START [23] is one of the first question answering systems with a web interface, having

been available since 1993. Earlier START was only focused on questions about

geography and the MIT InfoLab, now a number of more domains have been included to

it. START uses a precompiled knowledge base in the form of subject-relation-object

tuples (T-expression), and retrieves these tuples at run time to answer questions. The

basic idea behind START is to represent the whole knowledge of interest in a useful

manner like subject-relation-object tuples. Whenever a question is asked it answer from

its knowledge base. The problem with START is that if more information is required to

enter into the system, then it has to be precompiled before it can be used. Creating its

knowledge base will require a lot of time, because each sentence is completely analyzed

before its T-expressions are added to knowledge base. So for proper working of START

we need and equal or larger size of knowledge base than the size of actual data set.

Background and Literature Review

Another interesting question answering system for E-Leaming is explained by Feng et al

in [24], which is a discussion bot that answers questions asked by students in a discussion

forum. But the system's knowledge is limited to the questions previously asked by

students in discussion forum, which makes the course related E-Learning data available

on course website unutilized. Answers to complex questions are generally answered by

the students first; system redirects students to proper location if same question is asked

again. The E-Learning data on course websites are a very good source of information to

answer many queries of students and it must be utilized. QUESTAL [25] is closed

domain question answering system that answers question related to Nobel Prize winners

and Language technology. QUESTAL uses various NLP techniques and is extensible to

multilingual support. QUESTAL's reliability was completely dependent on structured

data.

QAS on web try to answer questions that require a fact or one word answer. This is

difficult for specific questions because the targeted domain is unrestricted and no

assumption can be judiciously made. E-Learning questions are more complex than

TREC (Text REtrieval Conference) type questions as they require domain knowledge and

long answers need to be extracted from multiple documents. Moreover these questions

have ambiguity inherent in them. The objective here is to allow the user to submit

exploratory, analytical, non-factual questions, such as "How does Mergesort sort an

array? ". The distinguishing property of such questions is that one cannot generally

anticipate what might constitute the answer. While certain types of things may be

expected, the answer is heavily conditioned by what information is in fact available on

the topic. Users generally prefer answers embedded in context, regardless of the

perceived reliability of the source documents [26]. When users search for a topic,

increasing the amount of text returned to users significantly decreases the number of

queries that they pose to the system.

2.6.3 Word Sense Disambiguation

Words in natural language are known to be highly ambiguous. This is especially true for

the frequently occurring words of a language. For example, in the WordNet dictionary,

-12-

Background and Literature Review

the average number of senses per noun for the most frequent 121 nouns in English is 7.8,

but that of the most frequent 70 verbs is 12.0 [27]. This set of 191 words is estimated to

account for 20 percent of all word occurrences in any English free text. Therefore, word

sense ambiguity is prevalent problem in Natural Language Processing (NLP).

Research into automatic resolution of word senses has been going so for at least forty five

years, and there is a large literature describing a variety of different word sense

disambiguation techniques (WSD). Earliest WSD methods used hand coding of

knowledge to disambiguate word senses. In theses systems, each word to be

disambiguated would need to be hand tagged with correct piece of information, e.g., part

of speech, sense etc, which would be useful in disambiguation process. Therefore, it was

difficult to come up with a 'comprehensive set of necessary disambiguation, knowledge

and even more difficult to manually maintain and further expand the disambiguation

knowledge to handle real word sentences.

In order to solve this problem, some researchers decided to use pre-coded information in

the form of machine readable dictionaries and thesauri [28-29]. Other started to build

their own dictionaries and thesauri with information concluded from statistics over large

corpora. This approach is called corpus based approach [28]. In contrast to manually

hand-coding disambiguation information into a system, the corpus based approach uses

machine learning techniques to automatically acquire disambiguation information, e.g.,

verb object relations, from large corpora.

Corpus based WSD systems can broadly be classified into supervised approach and

unsupervised approach. Most research efforts in unsupervised WSD rely on the use of

knowledge contained in a machine readable dictionary. A widely used resource is

WordNet [30], which is a public domain dictionary containing more than 118,000

different words forms and more than 90,000 different word senses. The IS-A relationship

in WordNet's class hierarchy is an important knowledge exploited in unsupervised WSD

algorithms.

- 13 -

Background and Literature Review

Resnik [31] gives a good example of an unsupervised WSD algorithm. In his method,

Resnik used the verbs, adjectives or nouns which modify the word to be disambiguated.

For example, in disambiguating the sense of coffee in the test sentence drinking coffee,

Resnik's algorithm used the verb drinking to find other words which might be modified

by it in a similar fashion to coffee. Words like milk, wine, tea are usually used with the

verb drinking and the sense common to all these words is the beverage sense. Therefore,

he concludes that he is looking for the beverage sense of the word coffee.

Schutze [32], describes a corpus-based disambiguation method which builds a vector

representation of word meanings for the purpose of identifying different meanings of a

word. For this, Schutze forms four-gram co-occurrence matrices and context vectors for

each target word by normalizing the sum of the co-occurrence matrices of the four-grams

around the target word. He then plots these context vectors in his multi-dimensional

space marked by the co-occurrence matrices. In this space, the context vectors which are

distance-wise close to each other refer to the same sense of the target word. After hand-

labeling each of these clusters with the correct meaning, on a task of pair wise

disambiguating 10 well-known ambiguous words, the system achieved an average

accuracy of greater than 92%.

Resnik [31] provides an extension to Schutze's work by describing an automatic method

of labeling the different clusters of contexts. Resnik's method is based on the

observation that: "when given a list of words; a human being will assign to an ambiguous

word in the list, the meaning which will match the sense of the rest of the words in the

list." To perform this meaning assignment automatically, Resnik uses the IS-A hierarchy

of WordNet. In this hierarchy, each word is assigned an informative-ness level which is

inversely proportional to the frequency with which the word occurs in English language.

Once he calculates these informative-ness levels, for each word in the hierarchy, Resnik

picks the sense with the highest informative-ness measure by assigning to each sense the

sum of the informative-ness measures of all the ancestors that support that particular

-14-

Background and Literature Review

sense. On a task of identifying the 23 different 14 meanings of the word `sense', the

system achieved 60% accuracy.

2.7 Research Gaps

Several systems have been made to improve E-Learning; and some have been designed to

improve information access in E-Learning documents. There are two types of systems,

which have been used for information access in E-Learning till date:

• Search Engines: Search engines provide fast access to documents even if

documents are unstructured. But search engines do not fulfill the requirements of

students to answer complex queries, because they only redirect students to ranked

documents.

• Question Answering System: The question answering systems designed till date

for E-Learning; either use manually structured or semi-structured data set or semi

automatic, need some help (instructor's) to answer some complex questions.

Manually structuring large amount of E-Learning documents is cumbersome task

and instructor may not be available for distant students for all the times.

The systems used so far for E-Leaming do not fully utilize the domain knowledge to

improve information access, and removing ambiguities in the questions asked by

students.

The proposed system fills the addressed research gaps by providing a fully automatic

system; that can answer every type of student queries from the unstructured E-Leaming

documents. Also system uses a novel word sense disambiguation algorithm, which

utilizes domain knowledge to remove ambiguities in questions asked by students.

CHAPTER 3

PROPOSED SYSTEM

3.1 Architecture

Question Classier 	 Named Entity
F~~ 	 Recognizer

[[angIageModelhng j

Question
Student 	vFeedback Learning 	 FEX

:
Classification Rules J 	

mow
.

Qi,estion Parser I Answer Extraction Passage Retrieval

Locality Based
Similarity

Passage Scoring and
Selection

Lick Grammar Sentence Segmertor

Focus Finning PoS iniormationJ

Focus Findirg Scoring

Noun Phrases
J

Templates

Nntity File
Domain
pecific)

Query Expansion

Recognize Entities

Wordnet Query
Expansion

Word Sense Disambiguation

Wordnet Database

Domain
Knowledge
(E-Learning

Data)

Fig 3.1: Architecture of Question Answering System

- 16-

Proposed System

Figure 3.1 shows the architecture of proposed automatic question answering system. The

thick arrows represent the information communication with the student and thin arrows

represent the internal information flow of the system. Double headed arrows represent

two way information flows between components of the system. The working of system

starts when a student submits a question to the system.

3.2 Working
Step by step procedure to retrieve answers to question submitted by user is given below:

1. The question submitted is parsed using link grammar based parser, which

generates a linkage structure of the question.

2. Simultaneously question class is identified using automatic question classifier.

Question classifier uses Named Entity (NE) recognizer to automatically recognize

identities in the question.

3. The linkage structure retrieved as result of question parsing is analyzed to retrieve

useful information like subject, verb, object and part of speech etc.

4. The information retrieved (query terms) are expanded using query expansion

module.

5. Query expansion module uses word sense disambiguation algorithm to expand

only for relevant synonyms.

6. The expanded terms are now fed to retrieval tool (SEFT) to retrieve passages.

7. Top three passages returned by retrieval tool are further used by answer

extraction module to extract specific answers based on the class of the question.

-17-

Proposed System

8. After final answers are presented to user, if user is not satisfied with the class

identified by system. For example, if user has submitted a question "who is

president of India?" and system has recognized its class as LOCATION. But

correct class of question is PERSON, because answer is a person name. User can

specify the correct class using feedback system.

9. The correct class is learned by the question classifier to improve its accuracy.

System then retrieves answer based on new class and present answer to user.

Each module is described in detail in further sections.

3.2.1 Parsing and Semantic Analysis

The parser used in system is link grammar based parser [33]. A link grammar consists of

a set of words (the terminal symbols of the grammar), each of which has a linking

requirement. A sequence of words is a sentence of the language defined by the grammar

if there exists a way to draw links among the words. The linking requirements of each

word are contained in the dictionary used by parser. A set of links that prove that a

sequence of words is in the language of a link grammar is called a linkage. An example

of linkage structure is shown in figure 3.2.

+--------------------------------XP -------------------------------+
+-------------------MVp------------------+ 	I
I+----------JP----------+ 	I 	I
+--ost--+ I +--------D*u--------+ +--Js--+ I

+---Wd---+-Ss*b+ +-Ds-+-Mp-+ I 	+-----A----+ 	I +-DG+
I 	I 	II 	I 	I 	I 	I 	I 	II 	II

LEFT-WALL this.p is.v a test.n of the constituent.a code.n in the API

This is a test [of the constituent code] [in the API] .

Fig 3.2: Example linage structure and phrase identification

-18-

Proposed System

The link grammar based parser gives the linkage structure of the sentence which specifies

links between different words. These links can be link between subject and verb, link

between object and verb and link between adjective and noun etc. Links in a linkage

structure are labeled with characters, which specify the type of link. There can be

multiple parses of a sentence, all of which are processed during semantic analysis. Parser

also appends part of speech (PoS) information with words of sentence.

Constituent phrases are words that are reachable from certain links, tracing in certain

direction. Example in figure 3.2 shows constituent phrases found in sentence. A verb

phrase is everything reachable from an "S" link, tracing to the right that is, not tracing

through the left end of the "S" link itself. For noun phrases there are several possibilities.

Anything that can be reached from an "0" link tracing right is a noun phrase. The system

finds all possible noun phrases and focus in the sentence.

During analyzing linkage structure of question system also takes care of the domain

specific entities using entity file. The reason for storing considering domain specific

entities separately is that; parser's dictionary may not contain some important domain

specific keywords and can ignore theses words. But, domain keywords are important

part of a question. It uses any domain term found in question as a keyword for retrieval

engine.

3.2.2 Named Entity Recognition
Named Entity recognizer is a natural language processing tool that takes as input a

sentence and marks entities in that sentence like person names, location names and

organization name etc. For example:

Input: "John Doe is American, lives in Champaign and works for the CIA."

Output: "[PER John Doe] is [MISC.American], lives in [LOG Champaign] and

works for the [ORG CIA]."

-19-

Proposed System

Named Entity (NE) [34] recognizer is taken from Cognitive laboratory of UIUC

(University of Illinois at Urbana-Champaign). NE recognizer is used in task of question

classification by automatic question classifier used. It is also used in the task of answer

extraction to recognize entities in the passages returned by retrieval engine; for example

in cases where question is classified as PERSON, LOCATION or ORGANIZATION etc.

NE recognizer uses various natural language processing tools like: sentence splitter, word

splitter, feature extraction tool and learning architecture to perform the task of entity

recognition. The details on its working are given in next chapter.

3.2.3 Question Classifier

The question classifier module takes as input a question and gives category of answer or

what is the class of question as output. For example:

Input: "Who made linux operating system?".

Output: PERSON

The answer of the question will be a person name. One approach to question

classification is to determine the question type based on the sentence structure and key

words, which represent syntactic and semantic information respectively. A set of patterns

are defined and hard-coded, often with regular expressions. When a new question comes,

it is matched against those patterns to find the class it belongs to. As the pattern set gets

more complete and accurate, the performance of this approach will become better. So we

always have the problem of defining more and more question patterns to improve the

model.

To make the process of question classification more dynamic and automatic, system uses

Li. Wei's [35] question classifier, this classifier exploits language modeling and regular

expression model. In this approach, the models can be automatically constructed from

-20-

Proposed System

the training set, and its performance is better than other approaches. As for the question

answering task, [35] has built one language model for every class of questions based on

the training data set. To classify a question, the probability of generating it is calculated

for each class based on its language model, and the highest probability determines the

classification. The classifier used provides two language modeling techniques. This

system uses combination of language modeling and regular expression model to achieve

maximum accuracy. Question classifier first marks entities in the question using NE

recognizer, and then it proceeds with the task of classification.

3.2.4 Query Expansion

Words Removed

By Is So As Then

To Otherwise The Will That

An In For Of This

Does At Are Did On

Be Over We Our Upon

Table 3.1: Example words that are removed

The result of semantic analysis of linkage structure is set of terms and noun phrases in

question, which are expanded and then used to retrieve passages from domain dataset

using retrieval engine. Elementary words like given in the table 3.1 are ignored. The

system is based on the following idea: A document relevant to our query might contain

either the words in the query or their synonyms. This implies that we should be able to

improve recall by considering the synonyms as a part of the IR query. If we do not

include synonyms in IR query; retrieval engine may skip important parts of the document

affecting the recall of the system. However, if we include all possible synonyms of the

-21-

Proposed System

query in our retrieval, precision will suffer. In order to increase both precision and recall,

we need to use only the relevant synonyms in a context.

The expansion of terms is performed using WordNet [36], details on WordNet are given

in next chapter. There may be multiple senses present of a single term found in question,

but only one sense of term is valid in any given sentence. Naïve approach of query

expansion is to include synonyms from all senses or randomly from all senses. But this

may bias the retrieval engine to search for wrong terms, ultimately to the retrieval of

wrong and unwanted passages. 	To overcome this problem query terms are

disambiguated using word sense disambiguation algorithm. We can identify these

relevant synonyms with the help of a disambiguation algorithm and only relevant terms

are then searched using retrieval engine.

3.2.5 Word Sense Disambiguation

Traditionally, the input to a Word Sense Disambiguation (WSD) program consists of

unrestricted, real-world English sentences. In the output, each word occurrence w is

tagged with its correct sense number (which appears in a previously agreed dictionary)

according to the context. For this work, the system uses the sense definitions as given in

WordNet, which is comparable to a good desktop printed dictionary in its coverage and

sense distinction [27]. Since WordNet only provides sense definitions for content words

(i.e., nouns, verbs, adjectives and adverbs), the system is only concerned with

disambiguating the senses of content words. Almost all previous work, as well, in WSD

deals only with disambiguating content words [27].

Most WSD algorithms focus simply on better disambiguation, rather than making use of

a disambiguating algorithm. For this reason, previous work has focused on different

learning methods and different ways of inferring the meaning of the words in a context.

The applications of WSD to other unsolved problems like IR have not been investigated

in as much depth and have so far revealed contradicting answers. Word sense ambiguity

is one of the causes of poor performance in IR systems. Polysemy (a single word form

22 -

Proposed System

having more than one meaning) and Synonymy (multiple words having the same

meaning) both reduce the performance of IR systems. Polysemy reduces precision by

causing false matches whereas synonymy reduces recall by causing true conceptual

matches to be missed [37]. Therefore, especially in the systems which expand the query

on the synonyms of the word before processing the query, the IR performance can be

improved if the query can be perfectly disambiguated.

Many of the old systems try to improve the performance of IR by retrieving documents

from a disambiguated corpus, rather than retrieving disambiguated queries from a regular

corpus. This work focus not on retrieving information from a disambiguated corpus but

on retrieving disambiguated information from a regular corpus. More specifically, if

system can identify the correct synonyms of the content words in a natural language

query, it will increase both precision and recall by expanding the query with the correct

synonyms of these words.

Most previous corpus-based WSD algorithms determine the meanings of polysemous

words by exploiting their local contexts. The basic intuition that underlies these

algorithms is that two occurrences of the same word should have identical meanings if

they have similar local contexts. In other words, in order to disambiguate a certain word,

most previous corpus based WSD algorithms observe the previous usages of that

word and learn classifiers for it. Each of these classifiers holds the information

necessary for identifying one sense of the ambiguous word. There are several

disadvantages to this approach. First of all, it is very difficult to learn good classifiers for

each word since a word must be encountered thousands of times before a good classifier

can be learned for it. There are thousands of polysemous words. For example, there are

11,562 polysemous words in WordNet. In order for each polysemous word to appear

thousands of times each in a corpus, the corpus must contain billions of words. The

second major drawback is that since these algorithms learn to disambiguate a word from

its previous usages, these algorithms cannot deal with the words for which classifiers

have not been learned yet.

-23-

Proposed System

In order to avoid these drawbacks, this system uses an algorithm which does not require

learning classifiers for each polysemous word. Instead it tries to learn the meaning of

each polysemous word by looking at the context it is used in and by comparing it

with other words that appear in the same exact context. This method still allows using

the information implied about the meaning of the word by its context; however, it saves

the trouble of having to learn classifiers for each word.

The main idea is that the context of a word w indicates the meaning of w. Therefore,

words used in the same context as w should have similar meanings to w, or at least give a

good idea about which sense w is used in. In other words, two occurrences of a word and

its synonym belong to the same sense if they have similar local contexts. This means

that use of local contexts, and the synonyms of a word used in those contexts can

be used to identify which of its senses an ambiguous word is used in.

This approach used does not require an ambiguous word to exist in the corpus since it

does not need to learn the meaning of the word from its previous occurrences. Other

advantages of this approach include the following:

• No specific classifier needs to be learned for each word. Instead it uses the same

knowledge sources for all words. In this case the main knowledge source is the

question asked by student where system finds words appearing in a context.

• In order to accomplish thorough training, most algorithms which learn classifiers

use very large sense-tagged corpora. This algorithm can identify the senses of the

ambiguous words that best fit into a context without needing sense-tagged

corpora.

• The frequency with which a certain ambiguous word appears does not affect the

performance of the system. But the frequency with which the context appears in

-24-

Proposed System

the corpus affects chance of finding the best sense of the word in that context. So,

in theory, this algorithm should be able to deal with words that are infrequent or

do not even appear in the corpus.

The WSD algorithm is based on two assumptions:

Assumption I: In a given sentence, each word is represented by its single sense.

Assumption 2: WordNet contains all the words needed to disambiguate, along

with all senses of the word.

Assumption 1 is very strong, except in some cases where not much contextual

information is present in sentence. In such cases even humans find it difficult to

disambiguate terms. Assumption 2 is also quite strong because WordNet contains more

than 118,000 words, exception are some domain specific words that might be present in a

sentence. Using the data, index files and utility functions of WordNet, system can extract

information about the synonym sets of words. Using WordNet simplifies WSD problem

to a certain degree, and disambiguation of a certain word reduces to identification of the

correct synonym set of the word in a certain context.

System can identify the "correct", i.e., the most relevant, synonym set of a word in a

context by matching the synonym sets of this word from WordNet against a set of words

which have been used in the same context as query word Wm. Humans can resolve sense

ambiguities by looking at a narrow window of words surrounding the ambiguous word.

This fact leads to identify the correct meaning, i.e., the best synonym set of a word wm,

by looking at its context. What is more, the content words, i.e.; nouns, verb, adjectives,

and adverbs, which appear in the same context, are usually related to specific senses. of

each other. Therefore, identifying the correct sense of one of the words in a context can

help in identifying the sense of other words in the same context. Alternatively, the use of

certain content words in a context can help in identifying the general sense of the context.

- 25 -

Proposed System

The approach used here to remove ambiguity is similar to approach used by humans to

remove ambiguities of words. First approach is to use the words surrounding the

ambiguous words to remove ambiguity of word. For example in sentence "In a three-

dimensional space, another important way of defining a plane is by specifying a point

and a normal vector to the plane.", humans can easily identify that plane in sentence is a

geometric plane. The information of surrounding words or context is used to remove

ambiguity of word plane.

Second approach used in system is to utilize the domain knowledge of the system. To

explain it properly lets take an example of mathematics teacher and his/her student,

suppose student asks teacher a question "what are the properties of a plane?". Now

teacher will understand that student is asking about geometric plane rather than an

airplane. The reason for disambiguation is that; teacher and students most of the times

talk about their subject which is mathematics in above example. Same rule will apply

when a student will ask question from a question answering system.

Implementation of this algorithm takes as input terms t, t2 t3... t, along with their part of

speech information that are extracted from question semantic analysis. For each term, we

extract its synonym sets. In WordNet, the synonym sets are arranged into different

groups according to the parts of speech of the word they match. For example, the word

"leave" has two groups of synonym sets: one group for its noun sense, e.g., leave of

absence, and the second for its verb sense. In each of these groups, the synonym sets are

ordered from the most frequently used to the least frequently used. WSD algorithm

extracts all synonym sets for all possible parts of speech of all words in a query. Once

the synonym sets are extracted, it starts the process of disambiguation by

calculating the scores of the individual synonym sets. Complete word sense

disambiguation algorithm is given below:

WSD Algorithm

-26-

Proposed System

1. Given T = {ti , t2, t3,...t„} is a set of terms and noun phrases from student question

for disambiguation.

2. Take an empty set X = {x I, x2, X3,.... X„} which will contain disambiguated

synonyms of terms present in T. Each element x; = {x;wi, x;w2, xw3i x;wm} is

a set of words which will contain disambiguated synonyms for term t; where t;

will have m synonyms.

3. Copy terms from T to X, such that term t; will be placed in x;.

4. For each term tj in T, where 1«n;

5. Look up in WordNet for every synset defined for ti and store them in set S

_ {Si, 82, S3...... s} where t; has p senses/synsets

6. For each sense/synset in s; in S, where 1«p;

7. Find all synonyms for sense s; from Wordnet and store in set W =

{wi, W2, w3...... wq} where sense s; has q synonyms.

8. Search the domain knowledge (E-Learning data) by query Q = (w,

OR w2 OR w3 OR OR wq) AND (x i w, OR x1 W2 OR x1 w3 OR

OR x wm) AND (x2w1 OR x2w2 OR x2w3 OR OR xzw,n)

AND AND (x„wi OR x„w2 OR x,w3 OR OR xnwm).

9. Number of results returned by search is score of sense for its

selection as disambiguated sense.

10. 	End for

_27-

Proposed System

11. Select the sense/synset with maximum score as disambiguated sense and

store all synonyms for sense in xj where t~ is term disambiguated.

12. End for

13. Set X will now contain synonyms for all disambiguated terms.

Term (Response) :
WN Sense: reaction
Beagle Search Command :beagle-query "Throughput" OR "Throughput" "clock time"

OR "time" "reversal" OR "change of mind" OR "flip-flop" OR "turnabout" OR
"Turnaround" "wait" OR "waiting" "reaction"

Total Results Found :0
Score: 0 Max Score: 0

WN Sense: answer--reply
Beagle Search Command :beagle-query "Throughput" OR "Throughput" "clock time"

OR "time" "reversal" OR "change of mind" OR "flip-flop" OR "turnabout" OR
"Turnaround" "wait" OR "waiting" "answer" OR "reply"

Total Results Found :16
Score:16 Max Score :0

WN Sense: reception
Beagle Search Command :beagle-query "Throughput" OR "Throughput" "clock time"

OR "time" "reversal" OR "change of mind" OR "flip-flop" OR "turnabout" OR
"Turnaround" "wait" OR "waiting" "reception"

Total Results Found: 5
Score: 5 Max Score: 16

WN Sense: reply

Beagle Search Command :beagle-query "Throughput" OR "Throughput" "clock time"
OR "time" "reversal" OR "change of mind" OR "flip-flop" OR "turnabout" OR
"Turnaround" "wait" OR "waiting" "reply"

Total Results Found :2
Score: 2 Max Score: 16

Fig 3.3: Example Beagle usage for WSD

-28-

Proposed System

For performing local search in E-Learning documents system uses Beagle [38] a desktop

search tool. Beagle indexes the documents, so it performs very fast for local search and

returns the documents names that satisfies query. Beagle allows user to build complex

queries for search, for our purpose it supports AND-OR queries. Example usage of

Beagle for WSD algorithm is shown in figure 3.3. Figure 3.3 shows disambiguation

process of term Response in the question "What is Throughput, Turnaround time, waiting

time and Response time?". WSD disambiguated Response with synonyms Answer and

Reply with maximum score of sixteen.

3.2.6 Passage Retrieval

To extract passages from the collection of documents an Information Retrieval engine is

needed which can analyze the keywords and passages in detail. The answers to a query

are locations in the text where there is local similarity to the query, and similarity is

assessed by a mechanism that employs as one of its parameters the distance between

words [39]. For this purpose it was found that the locality-based similarity heuristic (in

which every word location in each document is scored) provides retrieval effectiveness as

good as the document-based technique, and has the additional advantage of presenting

focused answer passages (instead of whole document) with sufficient context to validate

the answer. Therefore, the engine used SEFT (Search Engine For Text) [39] is based on

this concept and has been customized for this application.

The important features of Locality-Based Retrieval (with Similarity) in this context are:

■ The focus is on local context by considering top n ranked passages, instead of the

top n documents.

■ Each term has a certain scope, where its importance decreases with respect to the

distance from that term.

-29-

Proposed System

■ Similarity is computed as the sum of weighted overlaps between terms. It is

based on intuitive notion that the distance between terms is indicative of some

semantics of the sentence.

Rather than considering the text collection to be a sequence of documents, it is

considered to be a sequence of words, and query term occurrences within the collection

are presumed to exert an influence over a neighborhood of nearby words. Then,

supposing that the influence from separate query terms is additive, the contribution of

each occurrence of each query term is summed to arrive at a similarity score for any

particular location in any document in the collection.

The top N (value set by the user) ranked passages (window surrounding the location) is

returned after scoring all the locations of the query term according to the weightage

assigned to them. The implementation also handles case folding and Stemming (to match

up a keyword with any of its other grammatical forms) of word while searching the word.

3.2.7 Answer Extraction

Answer Extraction is module of the system where actual answers to question are

extracted. This module is provided with question class, question parse information (e.g.

focus, noun phrases), top N ranked passages. Now based on the class of the question,

answer extraction module uses an answer template to find answer to that specific

question. Answer template is a rule to obtain answer from passage given the class of that

question.

Answer extraction module tries to answer factual questions in one word to one sentence

of length and for lengthy questions it gives user sufficient text to validate answer. This

module divides passages into sentences using sentence splitter. Then compares focus of

question with focus of sentence, if found similar, then it uses NE recognizer to find

identities in sentence. If there is any entity of interest (like PERSON etc) in sentence

-30-

Proposed System

then it is extracted as answer, and continues to apply same procedure on all sentences;

example given in table 3.2. Finally it displays extracted answers.

Question Class Template

Who made Linux operating
PERSON The <focus> is made by <person>

system?

What is maximum size of
<focus> can address <number> of

memory a 32-bit processor can NUMBER
<focus>.

address?

Where does Indian president
LOCATION <focus> lives in <location>.

live?

Table 3.1: Example templates in Answer Extraction

Similarly answer templates have been designed for LOCATION, ORGANIZATION,

URL, EMAIL and NUMBERS which includes sub classes like MONEY,

TEMPARATURE, SPEED, MASS, DENSITY, LENGTH etc.

3.2.8 Feedback

Once answer along with its recognized class is given to user and user is not satisfied with

the answer or classifier might have wrongly classified. In that case user can select correct

class for it (where class specifies what user wants), then system will find answer to

question according to that class, moreover the system will learn that class. This closed

loop system also provides system a feedback learning, which improves accuracy of

system.

-31-

CHAPTER 4

SYSTEM IMPLEMENTATION

The question answering system is implemented in C/C++ using Eclipse on Linux

platform. Eclipse an open source integrated development environment (IDE) which

provides support for C/C++ using an extension CDT (C/C++ Development tools). Not

all parts of the complete question answering system are programmed in C/C++. NE

recognizer used is developed in Perl. Question classifier used is developed in Java.

Except these two all other component are developed in C/C++.

The details of the tools used in implementation of system are given in further subsections.

4.1 Link Grammar Based Parser
The parser used in system is link grammar based parser [33]. Most sentences of most

natural languages have the property that if arcs are drawn connecting each pair of words

that relate to each other, then the arcs will not cross. This well-known phenomenon,

which is call planarity, is the basis of link grammars a formal language system described

in [33].

A link grammar consists of a set of words (the terminal symbols of the grammar), each of

which has a linking requirement. A sequence of words is a sentence of the language

defined by the grammar if there exists a way to draw arcs (also called links) among the

words so as to satisfy the following conditions:

Planarity: The links do not cross (when drawn above the words).

Connectivity. The links suffice to connect all the words of the sequence together.

Satisfaction: The links satisfy the linking requirements of each word in the

sequence.

-32-

System Implementation

The linking requirements of each word are contained in a dictionary. To illustrate the

linking requirements, figure 4.1 shows a simple dictionary for the words a, the, cat,

snake, Mary, ran, and chased. The linking requirement of each word is represented by the

diagram above the word.

CJ `~

a 	 cat 	 ?'Iaiv 	 fall 	 chased
the 	 snake

Fig 4.1: Example of linking requirements of words

Each of the intricately shaped labeled boxes is a connector. A connector is satisfied by

"plugging it into" a compatible connector (as indicated by its shape). If the mating end of

a connector is drawn facing to the right, then its mate must be to its right facing to the

left. Exactly one of the connectors attached to a given black dot must be satisfied (the

others, if any, must not be used). Thus, cat requires a D connector to its left, and either

an 0 connector to its left or a S connector to its right. Plugging a pair of connectors

together corresponds to drawing a link between that pair of words.

~_. p p ..,t.. 	S 	^, 	f 	 D D 	3

the 	C='it 	Chased 	a 	Snake

Fig 4.2: Example of satisfied linking requirements in a sentence

-33-

System Implementation

Figure 4.2 shows how the linking requirements are satisfied in the sentence "The cat

chased a snake". (The unused connectors have been suppressed here.) It is easy to see

that Mary chased the cat, and the cat ran are also sentences of this grammar. The

sequence of words: the Mary chased cat is not in this language. Any attempt to satisfy

the linking requirements leads to a violation of one of the three rules. I-[ere is one attempt

in figure 4.3.

7.

• 	 o

the 	\vlai ;• 	chased 	cat

Fig 4.3: Example of unsatisfied linking requirements in a sentence

Similarly ran Mary, and cat ran chased are not part of this language.

A set of links that prove that a sequence of words is in the language of a link grammar is

called a linkage. There is a succinct computer readable notation for expressing the

dictionary of linking requirements. The linking requirement for each word is expressed

as a formula involving the operators (like &, or), parentheses and connector names.

The parser has a grammar of roughly 700 definitions that captures many phenomena of

English grammar. It handles: noun-verb agreement, questions, imperatives, complex and

irregular verbs (wanted, go, denied, etc.), different types of nouns (mass nouns, those that

take to-phrases, etc.), past- or present-participles in noun phrases, commas, a variety of

adjective types, prepositions, adverbs, relative clauses, possessives, and many other

things.

-34-

System Implementation

The parser reads in a dictionary and parses sentences according to the link grammar. It

does an exhaustive search — it finds every way of parsing the given sequence with the

given link grammar. It can parse a sentence with complexity O(n3), where n is the

number of words in a sentence. It also makes use of several very effective data structures

and heuristics to speed up parsing. The parser is comfortably fast can parse typical

newspaper sentences in a few seconds.

4.2 Named Entity Recognizer

Sentence

Sentence
Splitter

FVorr1 Splitter

PoS Tagger

FEX

L SNOW
J

NE Output

Fig 4.4: Named Entity Recognition Process

Named Entity (NE) [34] recognizer used in system is taken from Cognitive laboratory of

UIUC (University of Illinois at Urbana-Champaign). NE recognizer used in this system

is very sophisticated and uses various linguistic tools like sentence splitter, feature

- 35 -

System Implementation

extraction tool (FEX), learning tool (SNoW) to perform the task of NE recognition. NE

Recognizer divides input to sentences and then to words. It then applies part of speech

(POS) tagging. POS tagging marks verb, noun and adjectives in sentence. Now Feature

Extraction (FEX) tool is used to extract features from the tagged sentence, followed by

Sparse Network of Winnows (SNoW) learning architecture which marks entities in text.

The NE recognizer used can be trained on domain specific data to improve its accuracy,

which in turn leads to overall system accuracy. The complete process of NE recognition

is shown in figure 4.4.

The Feature EXtractor (FEX) generates consistent feature indices or feature vectors.

FEX takes POS tagged text as input and generates SNoW format representation of text

input. It processes input to output (SNoW format) based on user's script describing

feature types. FEX also creates and maintains lexicon. It remembers every specific

feature encountered and maps feature to index.

SNoW (Sparse Network of Winnows) is a learning architecture framework that is

specifically tailored for learning in presence of very large number of features and can be

used as a general purpose multi class classifier. It is sparse network of linear units over a

Boolean and real valued feature space. Two layer networks are maintained in SNoW's

basic architectural instantiation. The input layer is features layer provided by FEX.

Nodes in this layer are allocated to features observed in training example. Second layer

consists of target nodes. Each target nodes corresponds to a concept (a class label) one

wants to represent as a function of input features.

4.3 Question Classifier
The question classifier used in the system is Wei Li's [35] classifier, which exploits a

combination of language modeling (LM) and regular expression based model. The

question classifier first recognizes the entities in question using question classifier then it

identifies the class of the question. The two models used in classification are explained

below:

-36-

System Implementation

• Regular Expression model: The basic idea of this model is to determine a

question type based on the sentence pattern, which includes the interrogative

word, certain sequences of words and some representative terms of particular

question classes. Those patterns are defined with regular expressions. For

example, a question starting with "how many" is very likely to be looking for a

number, and a question starting with "where" is probably a location question. For

a "what" question, we can look for some key words to make our decision. For

example, "agency", "company" and "university" are related to the organization

class. Here are some regular expressions used for certain classes of questions:

Questions that start with "what" and ask for a person entity:

(actor I actresse? I attorne(y I ie) I leached ... I senator)s?

Questions that start with "how" and ask for a length entity:

long I short I wide liar I close I big. *(diameter I radius)

• This approach is very efficient and effective on some question patterns, such as

"how many" questions. It seldom makes mistakes for this type of question. But

there are difficult cases that it can hardly handle. For instance, the answer to a

"who" question might be a person, an organization, and even a location. Let's

take the question "Who is the largest producer of laptop computers in the world?"

as an example. People can easily tell this is asking for an organization, but

regular expression model cannot decide its type just based on the question pattern.

Classifier needs additional semantic information, which is not available in the

regular expression model. The same problem occurs with the "where" questions.

Many "where" questions are classified as "location" while they are actually

"organization" questions. The only way to solve this kind of problem is to build a

more complete and accurate pattern set, which involves a great deal of human

-37-

System Implementation

work. Instead of building a larger and larger question pattern model, classifier

uses an automatic and flexible approach: language modeling.

• Language Modeling: Classifier uses one language model for each category C of

sample questions. When a new question Q comes, classifier calculate the

probability P(QIC) for each C and pick the one with the highest probability. The

major advantage of language model over the regular expression model is its

flexibility. The regular expression model is composed of hard-coded rules, which

need to be modified to handle new cases. The language model, however, can be

automatically maintained. And with larger sets of training data, the performance

of the language model can be improved. Two language models are used in

classifier: unigram and bigram models. The difference between them is the

smoothing technique and the combination method. The probability calculation

with these models are done with relations given below:

Unigram:

Bigram:

P(Q I C) = P(w, I C) * P(w2 I C, w/) *... * P(w„ I C w,,-/)

The accuracy of question classifier is shown in table 4.1. It can be seen that combination

of regular grammar and language modeling (LM) techniques for question classification is

much better than regular grammar based approach.

-38-

System Implementation

Model
Accuracy

(%)

Regular Expression Model 57.57

Experiment 1 	LM only 81.54

LM combined with RE 85.43
model

Experiment 2 	LM only 80.96

LM combined with RE 83.56
model

Table 4.1: Accuracy of question classifier

4.4 Search Engine For Text (SEFT)
The retrieval engine used in system is Search Engine For Text (SEFT) [39], which works

on locality based similarity heuristics. The locality-based retrieval engine determines the

precise location (or, if there is more than one, the precise locations) in the body of each

answer document at which the similarity heuristic has triggered. This allows result

presentation to be greatly improved, since answer documents can be opened for user

inspection at the exact point of maximum similarity, considerably accelerating the speed.

SEFT does not make use of any pre-computed index information and gathers the required

query term locations and collection statistics on the fly. To process a query, SEFT

proceeds as follows. First, an initialization phase applies case-folding and stemming to

the query terms, if needed, and stores them in a lookup data structure. It uses a ternary

search tree for this purpose as it provides an efficient implementation of string symbol

tables and provides slightly better running times than a more traditional hash table

lookup.

Next, a parsing phase reads the text of the source files being searched, breaking the input

stream into a sequence of words (including numbers) which are retained, and white-space

-39-

System Implementation

and punctuation, which are discarded. As each word is extracted from the text, and case-

folded and stemmed as applicable, it is checked for membership within the search

structure that holds the query terms. If the word appears in the search tree and is a query

term occurrence within the collection, its number, ordinal location and an initialized

accumulator are appended to an array. Other information corresponding to the word,

such as a filename identifier, line number and file byte offset, are also recorded at this

time. On the other hand, if the word does not exist in the query term ternary search tree,

it is simply ignored. Once all of the text has been parsed and all occurrences of query

terms located, the similarity calculation phase commences.

To reduce computation costs of similarity calculation in SEFT to a tractable level,

calculation of the relevance function is restricted to locations at which query terms

appear, rather than every location in the collection. This approximation means that all

locations returned are query term locations. Both height and spread values are calculated

for each query term and placed in a lookup table. Each accumulator is processed in turn,

with pointers moving both forward and backward through the array of accumulators,

adding influence components to the accumulators of locations that are within the spread

of the term (and within the boundaries of the current file, if the input text is spread over

multiple files).

Once all query term locations have been processed, a partial sort is used to extract the

required number of ranked answers. Finally, for each answer that is to be presented to the

user the corresponding file is opened at the relevant byte location and a small window of

text extracted and formatted for display.

4.5 WordNet
WordNet is a semantic lexicon for the English language. It groups English words into

sets of synonyms called synsets, provides short, general definitions, and records the

various semantic relations between these synonym sets. The purpose is twofold: to

produce a combination of dictionary and thesaurus that is more intuitively usable, and to

-40-

System Implementation

support automatic text analysis and artificial intelligence applications. WordNet contains

more than 118,000 different word forms and more than 90,000 different word senses.

Approximately 17% of the words in WordNet are polysemous; approximately 40% have

one or more synonyms. WordNet includes the following semantic relations:

• Synonymy is WordNet's basic relation, because WordNet uses sets of synonyms

(synsets) to represent word senses. Synonymy (syn same, onyma name) is a

symmetric relation between word forms.

• Antonymy (opposing-name) is also a symmetric semantic relation between word

forms, especially important in organizing the meanings of adjectives and adverbs.

• Hyponymy (sub-name) and its inverse, hypernymy (super-name), are transitive

relations between synsets. Because there is usually only one hypernym, this

semantic relation organizes the meanings of nouns into a hierarchical structure.

• Meronymy (part-name) and its inverse, holonymy (whole-name), are complex

semantic relations. WordNet distinguishes component parts, substantive parts,

and member parts.

• Troponymy (manner-name) is for verbs what hyponymy is for nouns, although the

resulting hierarchies are much shallower.

• Entailment relations between verbs are also coded in WordNet.

Each of these semantic relations is represented by pointers between word forms or

between synsets. More than 116,000 pointers represent semantic relations between

WordNet words and word senses.

-41-

System Implementation

4.6 Beagle
Beagle [38] is a Linux desktop-independent search service which transparently and

unobtrusively indexes your data in real-time and let user search for whatever he/she

wants to search. For example:

• Files are immediately indexed when they are created, are re-indexed when they

are modified, and are dropped from the index upon deletion.

• E-mails are indexed upon arrival.

• IM conversations are indexed as you chat, a line at a time.

• Web pages are indexed as you view them (with a browser extension).

Beagle supports many different data sources and file formats. It supports search syntax

similar to major search engines like Google. Along with required words user can also

search for phrases, partial words, excluding words, optional words, file date queries, file

extension, file property queries etc. It also performs stemming on every keyword given

in search query.

-42-

CHAPTER 5

IMPLEMENTATION ISSUES

5.1 Scalability

Two factors that affect the scalability of the system are:

1. Data Size: Data size is a very important scalability factor for the system. The

running time of retrieval engine (SEPT) is proportional to the amount of E-

Learning documents. As SEFT does not maintain any index of the data, it may

take a lot of time to extract passages from the E-Learning dataset. SEFT usually

wastes its time on analyzing documents that does not contain query terms. One

optimization to improve the performance of the system is to use Beagle first to

retrieve names of the files that contain query terms. Then run SEFT only on

document names returned by Beagle. Beagle always maintains index of data and

gives results (document names) in very less time. This little optimization can

provide great improvement when there are large amount of E-Learning

documents. Also this optimization will be more effective, when students asks a

complex question than, when student asks a general question. Because a general

question may contain terms that are present in all the documents.

2. Number of users: When using question answering system on a web large number

of user request can become bottleneck for system. Because the whole process of

answer extraction is very computation intensive. To provide good availability to

students, multiple high performance servers will be required. To further shed the

load of servers, caching of recently asked question and generally asked can be

maintained. Answers to these questions can be given without computation saving

a little time of server. Further web optimization techniques may help to improve

availability of the system.

-43-

Implementation Issues

5.2 Accuracy Issues
The factors that affect the accuracy of the system are:

1. Accuracy of NLP tools used like NE recognizer, Question Classifier is the

limiting criterion for overall system accuracy.

2. System requires more templates to extract specific answers to complex questions.

3. Another limiting criterion is unstructured data. Question answering systems can

perform much better on structured data. But structuring large amount of data is

very difficult task and will take a lot of time.

5.3 Efficiency
The retrieval engine used in system is very efficient; it considers every probable location

in dataset while extracting passages. It means retrieval engine utilizes the dataset very

efficiently. The only issues regarding efficiency in system is while extracting answers

from passages. While extracting answers from passages system only uses top three

passages for further processing. Even if the probability of getting an answer in top three

passages is very high, but there can be a case in which ignored passages may contain

answer to question. In this case system will only try to find answer in top three passages.

Processing all passages returned by retrieval tool will be very time consuming and

improvement will not be significant.

5.4 Steps that led to final design and implementation
The earlier implementation of the question answering system was implemented on

windows platform using Visual Studio Net 2003; which lacks the support of automatic

question classifier and NE recognizer. The automatic question classifier used in system

is Li Wei's classifier which requires a NE recognizer for its working. In its default

implementation it used a commercial online NE recognizer, which is not available now.

So, NE recognizer from UIUC's which is a non commercial tool available is used in

-44-

Implementation Issues

system. The NE recognizer used in system only works on Linux platform; so whole

system is ported to Linux. To make question classifier work, it is modified to use the

offline UIUC's NE recognizer. Once system was able to identify the classes of the

questions; system structure is modified and Answer Extraction module it added to system

and templates for factual questions were designed and implemented. Question classifier

is modified to add support for missing classes like REASON and DEFINITION etc.

System structure is modified when WSD algorithm is implemented in system. Earlier

WSD algorithm uses Google search rather than local dataset search for sense scoring.

Using Google for sense scoring is better for open domain question answering, but for

closed domain question answering local dataset search performs better.

- 45 -

CHAPTER 6

RESULTS AND DISCUSSION

6.1 Evaluation of WSD Algorithm
Word Sense Disambiguation (WSD) algorithm is evaluated on Semcor 2.0 [40] files.

Semcor is a collection of manually disambiguated files from Brown's corpus using

WordNet senses and part of speech information. Domain data is built form the Semcor

files, by removing the extra information and storing the files in plain text format.

Files Nouns Disambiguated Accuracy
(C%)

br-aO1 573 387 67.54

br-a02 611 389 63.67

br-all 582 401 68.90

br-a12 570 347 60.88

br-a13 575 373 64.87

br-a14 542 311 57.38

br-a15 535 356 66.54

br-b13 505 283 56.04

br-b20 458 274 59.83

br-cO1 512 334 65.23

Total 5463 3455 63.09

Table 6.1: Accuracy of word sense disambiguation

The evaluation was performed on nouns of first 10 files of Semcor. Steps for evaluation

are:

• Read sentences from Semcor file one by one.

• Perform our disambiguation on a sentence.

• Compare the disambiguated senses with senses given in Semcor file.

-46-

Results and Discussion

• Perform above operation on next file.

Accuracy of Word Sense Disambiguation

br-a13 br a14 br-a15 br-b13 br-b20 br-cOl

Semcor 2.0 Files

m Total Nouns ■ Disambiguated ❑ Accuracy (%)

Fig. 6.1 Accuracy of Word Sense Disambiguation

Table 6.1 and figure 6.1 show the results of the experiments performed on WSD

algorithm. Total nouns found in first 10 files of Semcor are 5463. The WSD algorithm

managed to disambiguate terms with an accuracy of 63.09%. Results have shown that.

WSD algorithm has comparable performance to other unsupervised algorithms.

One of the weaknesses of WSD algorithm is the case when for a term in the question;

synonyms of correct sense are not present in the local dataset. But local dataset contains

term itself and term's another synonym for different sense. For example, if question
contains "...creation of universe... ". The senses of "universe" as extracted from WordNet
are given below:

1. Universe, existence, nature, creation, world, cosmos, macrocosm

?. Universe, cosmos

3. Population. universe

4. Universe, universe of discourse

-47-

Results and Discussion

Now if our corpus is natural science oriented and every instance of universe with first

sense contains "universe" word and some instances of universe with third sense contains

word "population". Then even if correct sense is first sense in the question asked and its

synonyms are not present in corpus; this algorithm will find third sense more appropriate

due to more number of results found for third sense. In this case algorithm must prevent

expansion of this term. This problem can be removed with the use of a combined

approach of distance based (distance between terms in WordNet) WSD and approach

used in algorithm.

6.2 Evaluation of Question Answering System
For evaluation of our Question Answering System (QAS), we have taken various books

related to operating systems and some text taken from slides. The sample questions were

taken from internet, FAQ's. Also collections of questions were gathered from students.

We ourselves designed questions to provide more coverage to data.

FAQ's Expert Naive

Questions 125 35 35

Passage 1 73 13 17

Passage 2 14 7 5

Passage 3 4 2 2

Relevant 14 6 4

Feedback 12 2 4

Failed 8 5 3

Table 6.2: Accuracy of QAS without WSD

-48-

FAQ 	 Expert

Results and Discussion

Accuracy of QAS without WSD

140.00

120.00

0 100.00

80.00

60.00

40.00

20.00-

0.00

Questions Types

p Total Questions .Answered o Accuracy

Fig. 6.2 Accuracy of QAS without WSD

In our system, we have retrieved top three passages and found results for them. The

percentage of confidence (on average) the system had that the answer was present in first,

second and third passage were on average 100%, 850/o 	First column shows results

for FAQ's and second and third column for questions gathered from students.

Table 6.2 and figure 6.2 show results of experiments on QAS without the usage of WSD

algorithm. The accuracy of question answering system without WSD algorithm for

FAQ's is 72%. for expert questions is 62% and for nave questions is 68%. Table 6.3 and

figure 6.3 show results of experiments performed on QAS with WSD algorithm. The

accuracy of question answering system with WSD algorithm for FAQ's is 74%, for

expert questions is 65% and for naive questions is 71%. The dataset used for

experiments is not very large, with large dataset containing a large number of files QAS

may perform much better with WSD algorithm. Figure 6.4 shows a snapshot of the

system.

mum

FAQ's Expert Naive

Questions 125 35 35

Passage 1 74 14 18

Passage 2 14 7 5

Passage 3 5 2 2

Relevant 14 5 5

Feedback 10 2 2

Failed 8 5 3

Results and Discussion

Table 6.3: Accuracy of QAS with WSD

Accuracy of QAS with WSD

140.00
120.00

0 100.00
80.00

60.00
0
o 40'o0

Z 20.00
0.00

FAQ
Ji

Expert 	 Naive

Question Types

■ Total Questions .Answered []Accuracy

Fig. 6.3: Accuracy of QAS with WSD

-50-

Results and Discussion

Automatic Question Answering System

What !s Th,o.,g7Rut , Turnarcun I !me , wan!ng time an•. Pesponse tim?

Question: 	ANSWER

Question Class: DEFlNm0N 	 Correa 	 ✓i Word Sense Disambiguation

'If question class is not correct, Select proper class and dick Correct

Result
_= 1.100%~ __ %home'ashish'Workspac? ,' corpus 'OS? txt C1 =_______:_____________

Turnaround Time mean time from submission to completion of process.

Waiting Time Amount of time spent readyto run but not running.

Response Time: Time between submission of requests and first response to the request.

!_- 2 (93%) _= /home/ashish/workspace/corpus/OS2.txt'58 ----------------------
~cheduler Efficiency The scheduler doesn't perform any useful work, so anytime it takes is pure overhead. So, need to

ake the scheduler very efficient

iq difference: Batch and Interactive systems. In batch systems, typically want good throughput or turnaround time. In
interactive systems, both of these are still usually important (after all, want some computation to happen), but response time
s usually a primary consideration. and, for some systems, throughput or turnaround time is not really relevant - some
rocesses conceptually run forever.

Fig. 6.4: Snapshot of Question Answering System

-51-

CHAPTER 7

CONCLUSIONS AND FUTURE WORK

6.1 Conclusions
In this thesis a new architecture for closed domain question answering system for E-

Learning has been presented. This system will help students use E-Learning documents

(e-books, slides, journals etc.) effectively. Students can ask question in natural language.

Question answering system is enhanced by automatic question classifier, NE recognizer

and a novel word sense disambiguation algorithm for closed domain. The system takes

advantage of domain knowledge to improve the accuracy of the question answering.

Moreover by designing templates for different classes of factual questions quality of

answers has been improved. But the unstructured domain data and capabilities of NLP

tools limits the performance of system.

Results have shown that, the WSD algorithm which utilizes context and domain data for

sense disambiguation has comparable performance to other unsupervised WSD

techniques. Benefit of new unsupervised WSD algorithm is no need of classifiers and no

need of large sense tagged corpuses. Further WSD can disambiguate domain specific

terms easily by sticking to domain and automatically ignoring senses unrelated to

domain. But WSD algorithm has some weaknesses where it fails to perform (see Chapter

6). Future work to improve WSD algorithm to combine distance based technique and

more utilization of WordNet can resolve these issues.

52 -

Conclusions and Future Work

6.2 Suggestions for Future Work
The proposed system gives adequate amount of scope for extension. Some suggestions

for the further work are as follows:

1. Till now, templates for factual questions have been designed; more templates for

non-factual questions will greatly improve the answer quality.

2. The passage retrieval used only supports plain keyword search, a more

sophisticated passage retrieval system which can allow more complex queries

(AND-OR queries) will improve efficiency. This will also help in designing of

complex templates.

3. WSD algorithm can be modified to use combination of distance based techniques

and current technique to improve its accuracy as discussed in results and

discussions chapter.

4. New state-of-the-art and fast NE recognizer can reduce runtime of overall system

as the NE recognizer used in system is one of the major time consuming

component.

- 53 -

REFERENCES

[1] A. A. Hopgood and A. J. I-Iirst. "Keeping a distant-education course current through

e-learning and contextual assessment", IEEE Trans. on Education, vol. 50 no. 1, pp.

85-96, 2007.

[2] T. F. Stafford, "Understanding motivations for Internet use in distant education",

IEEE Trans. on Education, vol. 48 no. 2, pp. 301-306, 2005.

[3] B. C. Grau, "How to tech basic quantum mechanics to computer scientists and

electrical engineers", IEEE Trans. on Education, vol. 47 no. 2, pp. 220-226, 2004.

[4] Introduction to Automatic Question Answering Systems, available at:

http://en.wikipedia.org/wiki/Ouestion answering, Last accessed on 19-05-2007.

[5] E. Sneiders and A. Andrenucci, "Automated question answering: review of the main

approaches", Proceedings of the 3rd International Conference on Information

Technology and Applications (ICITA'05), July 4-7, Sydney, Australia, IEEE, Vol. 1,

pp.514-519, 2005.

[6] N. Ott, "Aspects of Automatic Generation of SQL statements in Natural Language

Query Interace", Information Systems, vol. 17 no. 2, 1991, pp. 21-48, 1992.

[7] E. Sneiders, "Automated Question Answering Using Question Templates that Cover

the Conceptual Model of Database", Proceedings of the 6th International Conference

on Applications of Natural Language to Information Systems, vol. 2553, pp. 235-239,

2002.

[8] G. Salton, J. Allan and C. Buckley, "Approaches to passage retrieval in full text

information systems", Proceedings of SIGIR'93 ACM Press, NY, USA, pp. 49-58,

1993.

References

[9] D. Ravichandran and EH. Hovy, "Learning Surface Text Patterns for Question

Answering", Proceedings of 40'" annual meeting on ACL, pp. 41-47, 2001.

[10] C. Clarke et. al., "Web Reinforced Question Answering", Proceedings of TREC

2001, Gaithersburg, USA, 2001.

[11] J. Lin, "The Web as a Resource for Question Answering: Perspective and

Challenges", Proceeding of LREC, 2002.

[12] ASK open domain question answering system available at: http://www.ask.com/,

Last accessed on 19-05-2007.

[13] START open domain question answering system available at:

httn://start.csail.mit.edu/, Last accessed on 19-05-2007.

[14] ANSWERBUS open domain question answering system available at:

http://answerbus.coli.mii-saarland.de/index.shttnl, Last accessed on 19-05-2007.

[15] W. A. Woods, "Progress in Natural Language Understanding: An Application to

Lunar geology", AFIPS Conference proceedings, vol. 42, pp. 441-450, 1973.

[16] W. Green, C. Chomsky and K. Laugherty, "BASEBALL; An automatic question

answerer", Proceedings of western joint computer conference, pp. 219-224, 1986.

[17] C. Dorai, P. Kermani and A. Stewart, "ELM-N: E Learning Media Navigator",

International Multimedia Conference Proceedings of the ninth ACM international

conference on multimedia, vol. 9, pp. 634-635, 2001.

[18] G. Cha, "COVA: A system for content based distant learning", Proceedings of

international WWW conference (11), Honolulu, Hawaii, USA. 2002.

-55-

References

[19] Y. Fu and R. Shen, "GA based CBR approach in Q&A system", Expert systems

with applications, vol. 26 no. 4, pp. 167-170, 2004.

[20] M. E. S. Mendes, E. Martinez and L. Sacks, "Knowledge based content navigator

in e-learning applications", The London communications symposium, 2002.

[21] L. Hirschman and R. Gaizauskas, "Natural Language Question Answering: A

view from here", Natural Language Engineering, vol. 7 issue. 4, pp. 275-300, 2001.

[22] C. T. K. Cody, E. Oren and S. W. Daniel, "Scaling question answering to web",

Proceedings of 10`h international conference on WWYT , pp. 150-161, 2001.

[23] B. Katz, "From sentence processing to information access on the World Wide

Web", Natural Language Processing for World Wide Web AAAI spring symposium,

pp. 77-94, 1997.

[24] D. Feng, E. Shaw, J. Kim and E. Hovy, "An intelligent discussion bot for

answering student queries threaded discussions", Proceeding of 11th conference on

intelligent user interfaces table of contents, Australia, pp. 171-177, 2006.

[25] A. Frank, H. U. Krieger, F. Xu, H. Uszkoreit, B. Crysmann, B. Jorg and U.

Schafer, "Question answering from structured knowledge sources", Journal of

applied logic, Special issue on questions and answers: theoretical and applied

perspective, 1, pp. 29, 2006.

[26] J. Lin, D. Quan, V. Sinha, K. Bakshi, D. Huynh, B. Katz and D. R. Karger, "The

role of context in question answering system", Proceedings of conference on Human

factors in computing systems, pp. 1006-1007, 2003.

-56-

References

[27] H. T. Ng and H. B. Lee, "Integrating multiple knowledge sources to disambiguate

word sense: An exemplar-based approach", Proceedings of 34`h annual meeting of

ACL, pp. 40-47, 1996.

[28] Gina-Anne Levow, "Corpus based techniques for word sense disambiguation",

Technical report AIM, MIT, 1997.

[29] G. A. Miller, M. Chodorow, S. Landes, C. Leacock and R. G. Thomas, "Using a

semantic concordance for sense identification", Proceedings of the workshop on

Human Language Technology, pp. 240-243, 1994.

[30] G. A. Miller, "WordNet: A lexical database for English", Communications of the

ACM, vol. 38 issue 11, pp. 39-41, 1995.

[31] P. Resnik, "Disambiguating noun groupings with respect to WORDNET senses",

Proceedings of Third Workshop on Very Large Corpora ACL, pp. 54-68, 1995.

[32] H. Schutze, "Word Space", Advances in Neural Information Processing 5, pp.

895-902, 1992.

[33] - D. Temperley, D. Sleator and J. Lafferty, "Parsing English with a link grammar",

Third International workshop on Parsing Technologies, 1993.

[34] NE Recognizer of [IIUC' Cognitive Laboratory, available at:

litti://12r.cs.uiuc.edu/---cogcomp/asoftware.php?ske,y°Nl , Last accessed on 19-05-

2007.

[35] L. Wei, "Question Classification using Language Modeling", CIIR Technical

Report, University of Massachusetts, 2002.

-57-

References

[36] J. Gonzalo, F. Verdejo, I. Chugur and J. Ciggaran, "Indexing with WordNet

synsets can improve text retrieval", Proceedings of COOLING/A CL '98 workshop on

usage of WordNet for NLP, Montreal, Canada, pp. 38-44, 1998.

[37] E. M. Voorhees, "Using WordNet to disambiguate word senses for text retrieval",

Proceedings of sixth annual international ACM SIGIR conference on Research and

Development in Information Retrieval, pp. 171-180, 1993.

[38] Beagle Desktop Search tool for Linux available at: http://beagle-

proiect.or /g Main Page, Last accessed on 19-05-2007.

[39] O. D. Kretser and A. Moffat, "Effective document presentation with locality

based similarity heuristics", Proceedings of 22"d annual international ACM SIGIR

conference on Research and Development in Information Retrieval, Sam Francisco,

USA, pp. 113-120, 1999.

[40] Semcor manually sense tagged Brown corpus available at:

http://www.cs.unt.edu/—rada/downloads.htinl, Last accessed on 19-05-2007.

-58-

---------------------------Main.cpp------------------------
/* STARTING POINT OF THE PROGRAM */

#include <iostream>
#include <string>
#include <fstream>

#include <unistd.h>
#include <sys/wait.h>
#include <sys/types.h>

#include "Common.h"
#include "AnswerExtraction.h"
#include "QClassification.h"
#include "QParser.h"

const char * const QC_ SERVER_ START = './LoadNEServer.sh";
const char * const QC SERVER STOP = './Kil1NEServer.sh";

using namespace std;

int main(int argc, char *argv[])
{

if(argc != 5 && argc != 6)
{

cerr << "Usage: QASystem Q_Filename Ans_filename
Data Folder_ Path disamb=011 class" << endi;
return -1;

system(QC_ SERVER START) ;
QParser::loadDictO;

string 	Qfname, Ansfname;
string 	ques, data_path;
string 	cis;
char 	buf[300];
int 	flg=l;

Qfname = argv[1];
Ans £name = argv[2];
data_path = argv[3];

ifstream Qif(argv[1]);
if(!Q if)

cout << "Error Opening File!" << endl;
Q if.getline(buf, 200);
ques = buf;
Q if.close));

Common::printDelim();
cout << "Question: " << ques << endl << "Path: " << data_path <<
endl;

-I-

Common 	*obj = Common::getObject();
obj->loadEntitiesO;
obj->loadCommon ()

QASystem QA(ques, data path, Q_fname, Ans_fname);
QClassification QClassify;

pid t pid child;
string q = ques;
if(argc == 5)
{

// Classificatoin code

if((pid child = fork))) < 0
{

flg = 0;
cerr << "Can't create child!" << endl;
QClassify.classify(q);
if(QClassify.cls !_ "")

cout << "Question class :" << QClassify.cls <<
endl;

else
cerr << "Failed to retrieve question class!" <<
endl;

}
else
i

if(pid child == 0

QClassify.classify(q);
exit 0)

}
else
{

cls = argv[5];
QClassify.setClass(cls);
cout << "Specified Question class :" <<
QClassify.getClass() <C endl;

}
Common: :Disambiguation = (argv[4][(strlen(argv[4])-l)] == '1');
cout << "Disambiguation :" <C
((Common::Disambiguation)?"on":"off") << endl;

QA.runQASystem();

if(argc == 4 && flg)

int status;
waitpid(pidchild, &status, 0);
if(QClassify.readClassO != ""

cout <C "Question class :" << QClassify.cls <C endl;
else

cerr <C "Failed to retrieve question class!" <C endl;

vector<struct Answer> Answers;

Common::printDelim();

AnswerExtraction AnsExt;
AnsExt.extractAnswer(QClassify.cls, QA, Answers);

Common::printHeader("FINAL ANSWER");
if(Answers.size() > 0)
{

Common::writeToFile(Ans_fname, Answers);
for(unsigned int i=0; i<Answers.sizeO; i++)

cout << Answers[i].answer << endl << endl;
}
else
{

Common::writeToFile(Ans_fname, QA.TopPasg);
for(unsigned int i=0; i<QA.TopPasg.size(); i++)

tout << QA.TopPasg[i] << endl;

Common::printDelim{);
delete obj;

QParser::unloadDict();
system (QC SERVER START);

return 0;
}

--------------------------QASystem.h-----------------------
/* HEADER FILE FOR QASYSTEM CLASS */

#ifndef QASYSTEM_H_
#define QASYSTEM H

#include <string>
)include <vector>

using namespace std;

class QASystem
{

public:
QASystem(string Ques, string Data _path, string Qfname,
string Afname);

void runQASystemO;

public:

vector<string> TopPasg;

vector<string> 	Keywords,
Other,
Focus,
Phrases,
Synonyms;

private:
string 	ques,

qfname,
afname,
data dir;

2

- ----QASystem.cpp-------------------------

/* MAIN CLASS THAT CALLS DIFFERENT PARTS OF QASYSTEM */

#include <vector>
#include <string>

#include "QASystem.h'
#include "Common.h"
#include "SeftSearch.h"
#include "QParser.h"
#include "QueryExpansion.h"

using namespace std;

QASystem::QASystem(string Ques, string Data_path, string Qfname, string
Afname)
{

putenv("WNHOME=/usr/local/WordNet-3.0");
putenv("WNSEARCHDIR =/usr/local/WordNet-3.0/dict");

ques = Ques;
data dir = Data_path;
qfname = Qfname;
afname = Afname;

void QASystem::runQASystem()
{

vector<string> 	ailkeywords;
string 	line = ques;
string 	temp = "QUESTION 	,
temp.append(line);

Common::printHeader(temp);
//cout << "\Question 	<< line << endl;

QParser qparse;
gparse.Parse(line, Focus, Keywords, Other, Phrases);

tout << "\nFocus .
Common::printVector(Focus);

 -iv -

cout << "\nDomain Keywords 	,
Common::printVector(Keywords);
cout << "\nPhrases
for(unsigned int f=0; f<Phrases.size)); ++f)

cout << " "' << Phrases[f] <<
cout <C endl;
//Common::printVector(Phrases);
cout << "\nOther Keywords 	;
Common::printVector(Other);
cout << endl;

for(unsigned int f=O; f<Focus.size(); ++f)
allkeywords.push back (Focus [f]);

for(unsigned int f=O; f<Keywords.size(); ++f)
if(!Common::isPresent(allkeywords, Keywords[f]))

allkeywords.push back(Keywords[f]);

for(unsigned int f=0; f<Other.size(); ++f)
if(!Common::isPresent(allkeywords, Other[f]))

allkeywords.push back(Other[f]);

cout << "Running Query Expansion...... << endl;
vector<string> 	Expansion;
QueryExpansion 	QE;
QE.ExpandTerms(allkeywords, Expansion);

for(unsigned int f=0; f<Phrases.sizeO; ++f)
if(!Common::isPresent(allkeywords, Phrases[f]))

allkeywords.push back(Phrases[f]);

cout << "Removing pus's... << endl;
for(unsigned int f=O; f<allkeywords.size(); ++f)

gparse.removePos(allkeywords[f]);

for(unsigned int f=O; f<Expansion.size)); ++f)
allkeywords.push back(Expansion[f]);

cout << "Running Search..." << endi;
SeftSearch srchObj;
srchObj.search(allkeywords, data dir, TopPasg);

cout << "Passages Retrieved: " <a endl;
for(unsigned int i=0; i<TopPasg.size(); i++)

cout <C TopPasg[i] << endl << endi;

-----------------Qparser.h-----------------------

/* 	HEADER FILE FOR PARSER */

#endif /*QASYSTEM H */

#ifndef QPARSER H

- V -

#define QPARSER H

#include <string>
#include <vector>

#include "link-includes.h"

using namespace std;

class QParser

public:
int Parse(const string input, vector<string> &Focus,
vector<string> &Keywords, vector<string> &Other,
vector<string> &Phrases);

static void loadDict();
static void unloadDict();

static int removePos(string &str);

private:
void print words_ with prepphrases _marked (CNode *n,
vector<string> &Phrase, int-flag=0, int stack=0, bool
first=true);

bool addPos(Sentence sent, Linkage linkage, int index,
string &ret);

public:
Sentence 	 sent;

private:
static Dictionary 	dint;
static Parse Options 	opts;

Dictionary 	QParser::dict;
Parse Options 	QParser: opts;

#endif /*QPARSER H */

-------------------------- Parses

/* 	PARSER FILE INCLUDES ROUTINES FOR PARSING
PART OF SPEECH ADDTION AND REMOVAL, PHRASE DETECTION

#include <vector>
#include <string>

#include "QParser h'
include "Common.h"
#include "wn.h"

#include 'link-includes. h"

using namespace std;

bool QParser::addPos(Sentence sent, Linkage linkage, int index, string
&ret)
{

bool retval = false;
char *word = sentence_ get_word(sent, index);
char *temp = new char[strlen(word) + 2];
strcpy(temp, word);
if) Common::isCommon)word))
{

char *wordl = linkage_ get_word(linkage, index);
int 	len = strlen(wordl);
if (wordl [len-2] __
{

switch(wordl[len-1])
{

case 'a': 	strcat(temp, "3"); 	break;
case 'v': 	strcat(temp, "2"); 	break;
case 'n': 	strcat(temp, "1"); 	break;
default: 	strcat(temp, "1"); 	break;

}
}
else
{

strcat(temp, "1");
}

ret = temp;
//cout << "word 	<< ret << endl;
retval = true;

}

delete []temp;
return retval;

}

int QParser: :removePos)string &str)
{

int pos = str[str.length()-l] - '0';
str.erase(str.length()-l);
return pos;

}

int QParser::Parse(const string input, vector<string> &Focus,
vector<string> &Keywords,

vector<string>
&Other, vector<string> &Phrases)
{

char *line = new char[input.length() + 2];

strcpy(line , input.c str());

sent = sentence create(line, QParser::dict);

if (sent == NULL)
{

cout << "Error creating sentence for parse!" << endl;
return -1;

int nLinkages = sentence_parse(sent, QParser::opts);
cout << "No. of linkages :" << nLinkages << endl;

for(int linkageno=0; linkageno < nLinkages; ++linkageno)
{

Linkage linkage = linkage_ create(linkageno, sent,
QParser::opts);

linkage_ compute_ union (linkage);
linkage set current_ sublinkage(linkage,
linkage _get ̂_nun sublinkages (linkage) -1);
// Printing linkage structure
char *diagram = linkage print_ diagram(linkage)
cout << diagram << endl;
string delete (diagram);

int nLinks = linkage_get_numlinks(linkage);
for(int linkno=0; linkno<nLinks; ++linkno)
{

'char *llabel = linkage_ get_ link _label(linkage,
linkno);

//cout << "Link Label :" << llabel << endl;
if(llabel[O] == 'A' II llabel[C] == 'B' II
llabel[0] == 'D' II ilabel[C] == 'G' II

llabel[0] __ 'J' II llabel[0] == 'M II
llabel[0] == 'R' II llabel[0] == 'S')
{

string ret;
if(addPos(sent, linkage,
linkage get link_lword(linkage, linkno), ret)
&& !Common:_ isPresent(Focus, ret))

Focus push_back(ret);
if(addPos(sent, linkage,
linkage get link_rword(linkage, linkno), ret)
&& !Common: _ isPresent(Focus, ret))

Focus. pushback(ret);
}

}

CNode *cn = linkage_ constituent_tree(linkage);
print _words _ with prep_ phrases_marked(cn, Phrases);
linkage free constituent tree(cn); .

linkage delete(linkage);

int 1 = sentence length(sent);
for(int z=1; z<1-l; z++)
{

char *buf = sentence get word(sent, z);

string 	temp = buf;
if(!Common::isCommon(buf) && (Common::isPresent(Keywords,
temp))
{

if(Common::isEntity(buf))
{

Keywords.push back(temp + "1");
}

}

sentence delete (cent);

return 0;
}

If METHOD TO EXTRACT PHRASES
// flag and stack defaults to 0
void QParser:: print _words with prep_ phrasesmarked(CNode *n,
vector<string> &Phrases, int flag, int stack, bool first)
{

CNode *m;
string temp, buf;

if (first)
Phrases.push back("");

if (n == NULL)
{

Phrases. pop back();
return;

}

if (strcmp(n->label, "NP") _= 0)
{

flag=l;
stack++;

}

for (m = n->child; m != NULL; m = m->next)
{

if (m->child == NULL)

if(flag)
{

temp = Phrases[Phrases.size()-l];
but = m->label;
temp = temp + buf + "
Phrases.pop_back();
Phrases. push_back(tamp);

}

}
else
{

-1R-

print _words _with _prep phrases marked (m, Phrases, flag,
stack, false);

}
}
if (strcmp(n->label, "NP')==0)

stack--;
if) stack)
{

flag=0;
temp = Phrases[Phrases.size()-l];
temp[temp.length()-l] _ '1';
Phrases pop back() _;
if(!Common: isPresent(Phrases, temp))

Phrases. push back (temp);
Phrases.push_back)");

}
}
if(first)

Phrases, pop back();

void QParser::loadDict()
I

QParser::opts = parse_ options_ create();
QParser::dict = dictionary create("4..0.dict", "4.0.knowledge",

"4.0.constituent-knowledge", "4.O.affix");

void QParser::unloadDict()
{

dictionary_ delete (QParser::dict);
parse_ options_delete (QParser::opts);

------------QClassification.h-------------------

/* HEADER FILE FOR QUESTION CLASSIFIER CLASS */

#include <string>
#include <vector>

const char * const QCCMD = "./QClassify.sh";
const char * const QC FILE = ../QC/tques.txt";
const char * const QC CLS = ../QC/tclass.txt";

using namespace std;

class QClassification
{

public:
QClassification();

string classify(string ques);
string readClassO;

-X-

void setClass(string clss);
string getClass() {return cls;}

public:
string cls;

----------------------QClassification.cpp------------------

/* CALLS QUESTION CLASSIFIER */

#include <iostream>
#include <fstream>
#include <sstream>

#include "QClassification.h"
#include "Common. h'

using namespace std;

QClassificat ion: :QClassificationO
{

cis =
}

string QClassification::readClass()
{

Common: :readFromFile(QC CLS, cls);

return cls;

string QClassification::classify(string ques)
{

cis =

if(Common::writeToFile(QC_FILE, ques) __ -1)
{

return cls;
}

system(QC CMD);

Common: :readFromFile(QC CLS, cis);

return cls;

void QClassification::setClass(string clss)
(

cls = clss;
}

- ------------------------NERecognizer.h-

/* HEADER FILE FOR NE RECOGNIZER CLASS */

#ifndef NERECOGNIZERH_
#define NERECOGNIZER H

#include <string>

using namespace std;

const char * const QCNE = './NE.sh";
const char * const QCLINE = "line.txt";
const char * const QC NELINE = "NEline.txt";

class NERecognizer
{

public:
string runNERecognizer(string line);

#endif /*NERECOGNIZER H */

--------------------------NERcognizer. cpp----------
/* NE RECOGNIZER CLASS CALL MAIN NE RECOGNIZER */

#include <string>

#include "NERecognizer.h"
#include "Common.h'

using namespace std;

string NERecognizer::runNERecognizer(string line)
{

string NEline =

if (Common::writeToFile(QC LINE, line) __ -1)

cout << "Error using NE!" << endl;
return NULL;

}

system(QC NE);

if(Common::readFromFile(QC_NELINE, NEline) __ -1)
{

cout << "Error using NE!" << endl;
return NULL;

}

return NEline;

- ---------------------------QueryExpansion.h---------------

/* HEADER FILE FOR QUERY EXPANSION */

#ifndef QUERYEXPANSION_H_
#define QUERYEXPANSION H

#include <vector>
#include <string>

using namespace std;

class QueryExpansion
{

public:
int ExpandTerms(vector<string> &Terms, vector<string>
&Expansion);

private:
long long int getHits(const string &SearchString,
vector<string> &args);
int FindSimilar(char *wd, int pos, vector<string> &Words);
void exploreWord(char *word, int pos);
int withoutWSD(vector<string> &Terms, vector<string>
&Expansion);
int withWSD(vector<string> &Terms, vector<string>
&Expansion);

#endif /*QUERYEXPANSION H */

-------------------------QueryExpansion.cpp----------------
/* 	QUERY EXPANSION CLASS INCLUDES MOTHODS FOR

WORD SENSE DISABIGUATION, BEAGLE SEARCH, WITHOUT WSD EXPANSION
TO EXPLORE A WORD IN WORDNET

#include <iostream>
#include <vector>
#include <string>

#include "pstream.h'
#include "QueryExpansion h"
#include "wn.h"
#include "QParser.h"
#include "Common h'

using namespace std;

int QueryExpansion::withoutWSD(vector<string> &Terms, vector<string>
&Expansion)

for(unsigned int i=0; i<Terms.size(); ++i)
(

string 	terml(Terms[i], 0, Terms[i].length()-1);
int 	posl = Terms[i][Terms[i].length()-l] - '0';

char *str = new char[Terms[i].length()];
strcpy(str, terml.c_str());
FindSimilar(str, posl, Expansion);
delete []str;

}
for(unsigned int i=0; i<Expansion.size(); ++i)

Common::replaceChar(Expansion[i],
return 1;

}

int QueryExpansion::withWSD(vector(string> &Terms, vector<string>
&Expansion)

if(wninit() __ -1)
{

cout << "Wordnet initialization failed!" << endl;
return -1;

}
exploreWord("time" 1);
cout cc "Running WSD algorithm..." cc endl;
vector<string> 	*maxSynonyms = new

vector<string>[Terms.size))];
for(unsigned int i=O; i<Terms.size(); ++i)
{

string s = Terms[i];
QParser::removePos)s);
maxSynonyms[i]. push back(s);

}
for(unsigned int i=O; i<Terms.size(); ++i)
{

char *terml = new char[Terms[i].length()+l];
int 	poll = Terms[i][Terms[i].lengthO-1] - '0';
string 	curTerm = Terms[i];
Common:: replaceChar(curTerm, 	',
strcpy(terml, curTerm.c str());
terml[strlen(terml)-1]
curTerm = Terms[i];
curTerm[curTerm.length()-l]

cout cc "Term (" << curTerm << ") .
SynsetPtr syn = findtheinfods(terml, posl, SYNS,
ALLSENSES);
vector<string> 	args;
string 	QueryString = 	,
string 	quote = "\"
for(unsigned int j=0; j<Terms.size(); ++j)
{

if(j == i) continue;
for(unsigned int k=0; k<maxSynonyms[j].size))-l; ++k)
{

args.pushback(quote + maxSynonyms[j][k] +
quote);
args .push back ("OR");
QueryString += quote + maxSynonyms[j][k] +
quote + " OR

- Xlv -

}
args.push back(quote +
maxSynonyms[j][maxSynonyms[j].sizeO-l] + quote);
QueryString += quote +
maxSynonyms[j][maxSynonyms[j].sizeO-l] + quote +

cout << "SearchString--:" << QueryString << endl;
long long int 	maxScore = 0;
for(SynsetPtr synptr=syn; synPtr;)//synPtr=synPtr->nextss)
{

int 	argCount = 0;
vector<string> 	Synonyms;
long long int 	totalHits = 0;
long long int 	score = 0;
string 	SearchString = QueryString;
string 	tempStr;

cout << "WN Sense (" << *synptr->wnsns << ") 	,
for(int wi=0; wi<synPtr->wcount-l; ++wi)
{

tempStr = synPtr->words[wi];
Common::replaceChar(tempStr,
if(!Common:: compare (tempStr.cstr)),
curTerm.c_str()))

continue;
args.pushback(quote + tempStr + quote);
args .push back) "OR'
argCount += 2;
SearchString += quote + tempStr + quote + " OR

Synonyms push back(tempStr)
cout << tempStr << "- "; 	_

}
tempStr = synPtr->words[synPtr->wcount-1];
Common::replaceChar(tempStr, '_ ' ');
if(Common::compare(tempStr.c strO, curTerm.c strO))
{

args.push back(quote + tempStr + quote);
argCount++;
SearchString += quote + tempStr + quote;
Synonyms push back (tempStr);
cout << tempStr << endl;

}else if(argCount > 0)
{

argCount--;
args .pop back();

}
if(argCount > 0)
{

totalHits = getHits(SearchString, args);
score = totalHits;
if(score > maxScore)
{

- xv -

cout << "Score 	<< score << "Max Score
<< maxScore << endl;

maxSynonyms[i].clear));
for(unsigned int j=0; j<Synonyms.size();
++j)

maxSynonyms[i]. push _back(Synonyms[j]);
maxScore = score;

}

while(argCount--)
args .pop back));

}

SynsetPtr t = synPtr;
synPtr = synPtr->nextss;
free _synset)t);

}
maxSynonyms El] .push _back (curTerm);
cout << endl;
delete []terml;

}

for(unsigned int j=0; j<Terms.size(); ++j)
for(unsigned int i=0; i<maxSynonyms[j].size)); ++i)

Expansion.push back (maxSynonyms[j][i]);
delete []maxSynonyms;
return 1;

int QueryExpansion::ExpandTerms(vector<string> &Terms, vector<string>
&Expansion)
{

return (Common::Disambiguation) ? withWSD(Terms, Expansion)
withoutWSD(Terms, Expansion);

long long int QueryExpansion::getdits(const string &SearchString,
vector<string> &args)
{

const string. 	beaglesearch = "beagle-query";
long long int 	totalHits = -1;
string

	

	temp = beaglesearch;
for(unsigned int i=0; i<args.size();++i)

temp += " " + args[i];
cout << "Beagle Search Command :" << temp << endl;
redi::ipstream 	f(beaglesearch.cstr(), args);
const int 	LINESIZE = 4096;
char 	line[LINESIZE];
while (!f.eof())
{

f.getline(line, LINESIZE);
totalHits++;

}

f.closeO;
cout << "Total Results Found :" << totalHits << endl;
return totalHits;

inline void printWords(SynsetPtr synPtr)
{

for(int wi=O; wi<synPtr->wcount; ++wi)
Gout << "I" << synPtr->words[wi] <<

void QueryExpansion::exploreWord(char *word, int pos)
{

wninit();
SynsetPtr 	syn = findtheinfods(word, pos, SYNS, ALLSENSES);
cout << "EXPLORING WORD :" << word << endl;
int i=1;
for(SynsetPtr synPtr=syn; synPtr; ++i)
{

cout << "Sense " << i << 	<< endl;
cout << "Syns .
printWords(synPtr);
cout << endl;

int j=1;
for(SynsetPtr ptr = synPtr->ptrlist; ptr; ++j)
{

cout << "PtrList " << j <K 	<< endl;
cout << "Syns :";
print Words (ptr);
Gout << endl;

SynsetPtr t = ptr;
ptr = ptr->ptrlist;
free synset(t);

}

j=1;
for(SynsetPtr ptr = synPtr->nextform; ptr; ++ j)
{

cout << "NextForm " << j << 	<< endl;
tout << "Syns 	,
printWords(ptr);
cout << endl;

SynsetPtr t = ptr;
ptr = ptr->nextform;
free synset(t);

SynsetPtr t = synPtr;
synPtr = synPtr->nextss;
free synset(t);

int QueryExpansion::FindSimilar(char *wd, int pos, vector<string>
&Words)
{

int 	count=O;

Synset *next;
Synset *ptr;
string temp;

wninit ()

SynsetPtr t = findtheinfo_ds(wd, 	pos, 	SYNS, 	ALLSENSES);
if (t)
{

for(int
{

k=0;k<t->wcount;k++)

if(Common::compare(wd,t->words[k]))
{

temp = t->words[k];
Words, push back (temp);
count++;
if(count > 4

return count;

}
next=t->nextss;

while(next)
{

for(int k=0;k<next->wcount;k++)
{

if(Common:: compare(wd,next->words[k]))
{

temp = next->words[k];
Words .push back(temp);
count++;
if(count>4)

return count;
}

}
ptr=next->ptrlist;
while(ptr)
{

for(int k=0;k<ptr->wcount;k++)
{

.if(Common:: compare (wd,ptr->words[k>))
{

temp = ptr->words[k];
Words .push back(temp);
count++;
if(count>4)

return count;

}
ptr=ptr->ptrlist;

next=next->nextss;
}

}
return count;

- XVlil -

}

---------------------Se£tSearch.h--------------------------

/* HEADER FILE FOR PASSAGE RETRIEVAL */

#pragma once

#include <vector>
#include <string>

using namespace std;

class SeftSearch
{

private:
int 	window size;
int 	window num;

public:
SeftSearch()
{

window size = 7;
window nun = 3;

}

void setWindowSize(int size);
void setWindowNum(int num);
void search(vector<string> &allkeywords, string dir,
vector<string> &passages);
void getPassages(string command, string dir, vector<string>
&passages, vector<string> &args);
string buildCommand(vector<string> &aiikeywords, string
dir, vector<string> &args);

---------------------SeftSearch.cpp------------------------

/* 	SEFTSEARCH CLASS CALLS MAIN PASSAGE RETIEVAL (SEFT), SETS VARIOUS
PARAMETERS FOR SEARCH */

#include <iostream>
#include <sstream>
#include efstream>

#include "pstream.h"
#include "SeftSearch.h"
#include "Common h'

using namespace std;

void SeftSearch::setWindowSize(int size)
{

window size = size;

void SeftSearch::setWindowNum(int num)
{

window num = num;

void SeftSearch::search(vector<string> &allkeywords, string dir,
vector<string> &passages)
{

if(allkeywords.sizeO _= 0)
{

cout << "No Keywords to Beach!" << endi;
return;

vector<string> 	args;
string command = buildCommand(allkeywords, dir, args);
string temp = command;
for(unsigned int i=0; i<args.size(); ++i)

temp += " " + args[i];
cout << "Running SEFT command :" << temp ac ends;
getPassages(command, dir, passages, args);

string SeftSearch::buildCommand(vector<string> &allkeywords, string
dir, vector<string> &args)
{

string command = ../seft/seft"; //seft path
std::stringstream numstr;
string 	 arg;

//Turn off highlights
arg =
args.push back(arg);

//Turn on case folding and stemming
arg = -s"
args push back(arg);
arg = "2";
args push back (erg);

arg =
args .push back (arg);
numstr <a this->window_size;
arg =
arg += numstr.str();
args.push back(arg);

numstr..str("");

arg = _m,.

args .push back (erg);
onumstr << this->windownum;
arg =

arg += numstr.str();
args.push back(arg);

string keywords = allkeywords[0];
for(unsigned int i=l; i<allkeywords.size(); i++)

keywords +_ " " + allkeywords[i];

arg += keywords;
arg +_ "\"
args.push back(arg);

Common::getDataFileNames(dir, args);

return command;

void SeftSearch::getPassages(string command, string dir, vector<string>
&passages, vector<string> &args)
{

redi::ipstream 	f(command, args);
const int 	LINESIZE = 4096;
char 	line[LINESIZE];
string 	passage =
string 	phdr = __ " + dir;

f.getline(line, LINESIZE);
while (!f.eofO)
{

if(strstr(line, phdr.c_str()))
{

if(passage.size() > 0)
{

pass age s. pus h back(passage);
passage =

}
}

passage += line;
passage +_ "\n";
f.getline(line, LINESIZE);

}

if(passage.size() > 0)
{

passages .push_back(pa§sage);
passage =

}
f. close))

---------------------AnswerExtraction.h-----------------

/* HEADER FILE FOR ANSWER EXTRACTION CLASS */

#ifndef ANSWEREXTRACTION_H_
#define ANSWEREXTRACTION H

#include <vector>
#include <string>

#include "QASystem.h'

using naslespace std;

class AnswerExtraction
{

public:
int extractAnswer(string clss, QASystem &QA, vector<struct
Answer> &Answers);

private:
bool isNumber(string clss);
int checkKeywords(const vector<string> &qFocus, const
vector<string> &gKeywords, coast vector<string> &qOther,
const vector<string> &qPhrases, const vector<string>
&aFocus, const vector<string> &aKeywords, const
vector<string> &aOther, const vector<string> &aPhrases);

int checkKeyword(const string Keyword, const vector<string>
&Focus, const vector<string> &Other, const vector<string>
&Phrases);

#endif /*ANSWEREXTRACTION H */

---AnswerExtraction.cpp------------------

/* ANSWER EXTRACTION CLASS INCLUDES TEMPLATES TO EXTRACT ANSWER */

#include <vector>
#include <string>

#include "AnswerExtraction.h'
#include "Common.h"
#include "QASystem.h"
#include "NERecognizer.h"
#include "QParser.h"

using namespace std;

int AnswerExtraction::extractAnswer(string clss, QASystem &QA,
vector<struct Answer> &Answers)
(

QParser 	qparse;
vector<string> 	Keywords,

Other,
Focus,
Phrases;

Matches 	matches;

string 	pattern;
struct Answer 	ans;

Common:: printDelim ()
cout << "Extracting Answers........ << endl;

if(isNumber(clss)
{

pattern =

for(unsigned int k=0; k<QA.TopPasg.sizeO; k++)
{

string text = QA.TopPasg[k];
text = text. substr (text. find first of)"\n"

string lines[10];
int mines = Common::getLines(text, lines, 10);
if(nlines < 0)
{

return -1;

for(int x=0; x<nlines; x++
{

if(Common::trim(lines[x]).size)) < 2)
continue;

string stri = "Analyzing line
strl.append(lines[x]);
Common::printDelim();
Common:.:printHeader(strl);
//cout << "Line 	<< lines[x] << endl;

int ret = Common;:searchPattern(pattern,
lines[x], matches);

/* 	 for(int xx = 0; lines[x] length)); xx++)
{

if (lines [x][xx] >= '0' && lines [x][xx] <_
'9')
{

ret = 1;
break;

]
}

if (ret =_ -1 II ret == -2)
{

cout << "No Match found!" << endl;
continue;

gparse. Parse (lines[x], Focus, Keywords, Other,
Phrases);

cout << "Checking Focus similarity...." <<
endl;

ans.score = checkKeywords(Focus, Keywords,
Other, Phrases, QA.Focus, QA.Keywords,
QA.Other, QA.Phrases);
int tot = Focus.size() + Keywords.size() +
Other.size() + Phrases.size();
if (tot > 0)

ans.score = ans.score / tot;

if(ans.score != 0.0)
{

ans.answer = lines[x];
//Answers.pushback(ans);
Common::insertAnswer(Answers, ans);

cout << "Added Answer :" << ans.answer <<
endl;
cout << "Score 	0< ans.score << endl;
cout << "Total Answers :" <<
Answers.size() << endl;

// 	 cout <0 "\nParse Focus:";
// 	 Common::printVector(Focus);

Focus.clearO;

// 	 cout 0< "\nParse Keywords:
// 	 Common::printVector(Keywords);

Keywords.clear();

// 	 cout << "\nParse Other Keywords:---";
// 	 Common::printVector(Other);

Other.clearO;

// 	 cout << "\nParse Phrases:---";
// 	 Common: :printVector(Phrases);

Phrases, clear();

cout <C endl ;

}
}
return 0;

if(clss =_ "PERSON" II clss == "LOCATION" II clss =_
"ORGANIZATION"
{

for(unsigned int k=0; k<QA.TopPasg.size(); k++)
{

string text = QA.TopPasg[k];
text = text.substr(text.find first of("\n"));

string lines[10];
int nlines = Common::getLines(text, lines, 10);

- XXiv -

if(nlines < 0)
return -1;

for(int x=0; x<nlines; x++
{

if(Common::trim(lines[x]).sizeO < 2)
continue;

string strl = "Analyzing line 	,
strl.append(lines[x]);
Common::printDelim();
Common::printHeader(strl);

// 	 cout << "Line :" << lines[x] <C endl;

gparse. Parse (lines [x], Focus, Keywords, Other,
Phrases);

cout << "Checking Focus similarity...... <<
endl;

ans.score = checkKeywords(Focus, Keywords,
Other, Phrases, QA.Focus, QA.Keywords,
QA.Other, QA.Phrases);
int tot = Focus.size() + Keywords.size() +
Other.size() + Phrases.size();
if (tot > 0)

ans.score = ans.score / tot;

if(ans.score != 0.0)
{

NERecognizer NER;
string NEline =
NER.runNERecognizer(lines[x]);
if(NEline == "") return -1;

cout <C "NE output:" <C NEline << endl;

if(clss == "PERSON")
pattern = "[PER";

if(clss =_ "LOCATION"
pattern = "[LOC";

if(clss =_ "ORGANIZATION"
pattern = "[ORG";

unsigned int ret = NEline.find(pattern,
0);

while(ret != string::npos)
{

unsigned int st = ret;
ret = NEline.find("]" ret);
if (ret == string::npos)
{

ret = st + 4;
}

else
{

ans.answer =
NEline.substr(st+4, ret-
(st+9));
//Answers.push_back(ans);
Common:: insertAnswer(Answers,
ans);
cout << "Added answer " <<
Answers.sizeO- << " : <<
ans.answer << endl;
cout-<< "Score :"
ans.score << endl;

ret = NEline.find(pattern, ret);

// cout << "\nParse Focus:";
// Common::printVector(Focus);

Focus, clear ();

// cout << "\nParse Keywords:
// Common: :printVector(Keywords);

Keywords, deer ();

// cout << "\nParse Other Keywords:---";
// Common::printVector(Other);

Other.clear();

// cout << "\nParse Phrases:---';
// Common::printVector(Phrases);

Phrases.clearO;

cout << endl ;

}
return 0;

if(clss == "EMAIL" II clss == "URL"
(

if(clss == "EMAIL")
pattern = -

]'+(.[a-z0-9 -]+)+"; 	 -
//"[a-z0-9,!#\$%&*\+/\?\^ \{\I}--]+(\.[a-z0-

z){2,})$";
else

pattern =
zA-Z0-9]+";

for(unsigned int k=0; k<QA.TopPasg.size(); k++)
{

string text = QA.TopPasg[k];

- Xxvi -

text = text.substr(text.find first of("\n"));

string lines[10];
int nlines = Common::getLines(text, lines, 10);
if(nlines < 0)

return -1;
for(int x=0; x<nlines; x++
{

if(Common::trim(lines[x]).size)) < 2)
continue;

string strl = "Analyzing line 	,
strl.append(lines[x]);
Common::printDelim();
Common::printHeader(strl);

// 	 cout << "Line 	<< lines[x] << endl;

int ret = Common::searchPattern(pattern,
lines)x], matches);
if(ret =_ -1 II ret == -2)
(

cout << "No Match found!" << endl;
continue;

gparse.Parse(lines[x], Focus, Keywords, Other,
Phrases);

cout << "Checking Focus similarity...." <<
endl;

ans.score = checkKeywords)Focus, Keywords,
Other, Phrases, QA.Focus, QA.Keywords,
QA.Other, QA.Phrases);
int tot = Focus.size() + Keywords.size() +
Other.size() + Phrases.size();
if(tot > 0)

ans.score = ans.score / tot;

if(ans.score != 0.0)
(

for(unsigned int i=0; i<matches.num; i++)
{

ans.answer =
lines[x].substr(matches.start[i],
(matches.end[i]-matches.start[i])

//Answers.push_back) ens);
Common:: insertAnswer(Answers, ans);
cout << "Added Answer
ans.answer << endl;
cout 0< "Score 	0< ans.score <<
endl;
cout << "Total Answers :" <<
Answers.size() << endl;

}
}

II 	 cout << "\nParse Focus:"
// 	 Common: :printVector (Focus);

Focus. clear));

// 	 cout << "\nParse Keywords:
// 	 Common::printVector(Keywords);

Keywords. clear));

// 	 cout << "\nParse Other Keywords:---";
// 	 Common::printVector(Other);

Other. clear ()

// 	 cout << "\nParse Phrases:---";
// 	 Common::printVector(Phrases);

Phrases .clear));

cout << endi

}
}
return 0;

}

return 0;
}

bool AnswerExtraction::isNumber(string clss)
{

string clses[] _ { "NUMBER", "DATE", "PERCENT", "MONEY",
"TEMPERATURE", "LENGTH", "HEIGHT", "MASS", "PERIOD", "AREA",
"SPACE", "SPEED", "DENSITY", "ENERGY", "POWER", "TIME",
"ORDEREDNUMBER" };

for(int i=0; i<17; i++)
{

if(clss == class [I])
return true;

}

return false;
]

int AnswerExtraction::checkKeywords(const vector<string> &qFocus, const
vector<string> &qKeywords, const vector<string> &qOther, const
vector<string> &gPhrases, const vector<string> &aFocus, const
vector<string> &aKeywords, const vector<string> &aOther, const
vector<string> &aPhrases)
{

int ret = 0;
for(unsigned int i=0; i<aKeywords.sizeO; i++)

for(unsigned int j=0; j<gKeywords.size(); j++)

- xxvlll -

{
if(Common::compare(aKeywords[i].c_str(),
gKeywords[j].c_strO) _= 0

++ret;
}

}

for(unsigned int i=0; i<aFocus.sizeO; i++)
{

if(checkKeyword(aFocus[i], qFocus, qOther, qPhrases)
++ret;

for(unsigned int i=0; i<aOther.size(); i++)
{

if(checkKeyword(aOther[i], qFocus, qOther, qPhrases)
++ret;

)

for(unsigned int i=0; i<aPhrases.size(); i++)
{

if(checkKeyword(aPhrases[i], qFocus, qOther, qPhrases)
++ret;

}

return ret;
}

int AnswerExtraction::checkKeyword(const string Ke.yword, const
vector<string> &Focus, const vector<string> &Other, const
vector<string> &Phrases)
{

int ret=0;
for(unsigned int i=0; i<Focus.size(); i++)
{

if(Common::compare(Keyword.c_strO, Focus[i].c_strO)== 0)
++ret;

}

for(unsigned int i=0; i<Other.sizeO; i++)
{

if(Common::compare(Keyword.c_strO, Other[i].c_strO)==0
++ret;

}

for(unsigned int i=0; i<Phrases.size(); i++)
{

if(Common::compare(Keyword.c_str(),Phrases[i].c str())==)0)
++ret;

}

return ret;

-----------------Common.h------------------------

/* HEADER FILE FOR COMMON FUNCTIONS USED IN SYSTEM */

#pragma once

#include <iostream>
#include <vector>

const char * const TEXT = "text.txt";
const char * const LINES = "lines.txt";
const char * const SENTSEG =
./sentenceboundary/sentence-boundary.pl -d

../sentenceboundary/HONORIFICS -i text.txt -o lines.txt";

#include "QAConstants.h"

using namespace std;

class Matches
{

public:
unsigned int num;
unsigned int *start, *end;

Matches()
{

num = 0;
start = NULL;
end = NULL;

}

=Matches()
{

if(start) delete []start;
if(end) 	delete []end;

struct Answer

string 	answer;
double 	score;

class Common
{

public:
static bool Disambiguation;

private:
Common)) { } ;
Common (const Common &obj) {) ;

vector<string> 	Entities;
vector<string> 	CommonWords;

public:
void loadEntities();
void loadCommon O
static Common* getObject();
static int getLines(string text, string lines[], int
nlines);
static string trim(string text);
static int compare(const char *A, const char *B);
static void freeArray(char *Data[MAX_KEYWORDS], int &size);
static void printArray(const char * const
Data[MAX KEYWORDS], const int &size, ostream &out=cerr);
static int getDataFileNames(const string &data dir,
vector<string> &Fnames);
static int searchPattern(const string pattern, const string
text, Matches &matches);
static int writeToFile(const string &fname, const
vector<string> &data);
static int writeToFile(const string &fname, const
vector<struct Answer> &data);
static int writeToFile(const string &fname, const string
data[], const int size);
static int writeToFile(const string &fname, const string
data);
static int readFromFile(const string &fname, vector<string>
&data);
static int readFromFile(const string &fname, string data[],
int &size);
static int readFromFile(const string &fname, string &data);
static bool isCommon(const char 	*string);
static bool isEntity(const char *string);
static bool isPresent(const vector<string> &array, const
string &item);
static void printVector(const vector<string> &Data, ostream
&out=tout);
static void printDelim();
static void printHeader(const string text);
static void insertAnswer(vector<struct Answer> &Answers,
const struct Answer &ans);
static void replaceChar(string &source, const char oldCh,
const char newCh);

bool Common::Disambiguation;

- -------------Common.opp------ 	---

/* COMMON FUNCTION USED IN THE SYSTEM DEFINED HERE */

#include <fstream>

#include <regex.h>

#include "Common.h"
#include "pstream.h'

int Common::getLines(string text, 	string lines[], 	int nlines)
{

ofstream out(TEXT);
if) 	out
{

cerr 0< "Error writing file:" << TEXT << endl;
return -1;

}
out << text;
out, close();

system(SENTSEG);

ifstream in(LINES);
if(in
{

cerr << "Error reading file :" << LINES << endl;
return -1;

}
char buf[512];
int i;
for 	(i=0; 	i<nlines 	&& 	!in.eof(); 	i++)
{

in.getline(buf, 	512);
lines[i] 	= buf;
lines[i] 	= Common::trim(lines[i]);
if(lines[i].size() 	_= 0

i--;
}

in.close();
return i;

}

string Common::trim(const string text)
{

int len = text.size();
int beg = 0, 	end = len-1;
while((text[beg] 	__ 	' 	' 	II 	text[beg] 	__ 	'\t') && beg < end)

beg++;
while((text[end] 	__ 	' 	' 	II 	text[end] 	__ 	'\t') && end > beg)

end--;
return text.substr(beg, 	(end-beg));

}

int Common::compare(const char *A, 	const char *B)
{

int lenA = strlen(A);
int lenB = strlen(B);
if 	(lenA 	!= lenB)

return 1;
for(int i=0; 	i<lenA; 	i++)
{

if 	(A[i] 	== 	B[i]).
continue;

else if((A[i] >= 'a' && A[i] <= 'z')&&(B[i]==(A[i]-32))
continue;

else if((A[i] >= 'A' && A[i] <= 'Z')&&(B[i] __ (A[i]+32))
continue;

else
return 1;

)
return 0;

}

void Common::freeArray(char *Data [MAX _KEYWORDS], int &size)
(

for(int z=0; z<size; z++)
delete []Data[z];

size = 0;

void Common::printArray(const char *const Data [MAX _KEYWORDS], const int
&size, ostream &out)
{

for(int z=0; z<size; z++)
out << Data[z] <<

int Common::getDataFileNames(const string &data dir, vector<string>
&Fnames)
(

unsigned int stnFname = Fnames.size();

string path = data_dir;
if(path[path.length()-l] !=

path += "/";

string command = "ls " + data_dir;
redi::ipstream 	f(command.c_str());
const int 	LINESIZE = 4096;
char 	line[LINESIZE];
f.getline(line, LINESIZE);
while (!f.eof)))
{

command = line;
Fnames.push back(path + command);
f.getline(line, LINESIZE);

}

f.close();

coot << "Found " << Fnames.size() - stnFname << 	files in
directory" << endl;

return (Fnames.size() - stnFname);

int Common::searchPattern(const string pattern, const string text,
Matches &matches)
{

- XXXlli -

re — pattern—buffer 	buffer;
char 	map[256];

buffer.translate = 0;
buffer.fastmap = map;
buffer.buffer = 0;
buffer.allocated = 0;

reregisters 	regs;

re_ set _syntax (RE _SYNTAX _POSIX_ EXTENDED);

const char *status =
re_compile_pattern(pattern.c_str(),pattern.size(),&buffer);
if (status) 	-

cout << "Regex Error: " 0< status << endl;
}
recompile fastmap)&buffer);

int ret = re search(&buffer, text.c str(), text.size(), 0,
text.size(), ®s);
if (ret == -2)
{

cout << "Regex Search error!" << endl;
return ret;

}
else if (ret =_ -1)

return ret;

matches.num = regs.num regs;
matches.start = new unsigned int [matches.num];
matches.end = new unsigned int [matches.num];

for(unsigned int i=0; i<matches.num; i++)
{

matches.start[i] = regs.start[i];
matches.end[i] = regs.end[i];

}

//regfree)&buffer);

cout << matches.num <0 " Matches Found!" << endl;

return ret;
}

int Common::writeToFile(const string &fname, const vector<string>
&data)
{

ofstream out(fname.c str(), ios::trunc);
if(out
{

cout << "Can't open file for writing:" << fname << "I" <<
endl;
return -1;

}

for(unsigned int k=O; k<data.size(); k++)
out << data[k] << endl;

out. close));
return 0;

int Common::writeToFile(const string &fname, const vector<struct
Answer> &data)
(

ofstream out(fname.c_str(}, ios::trunc);
if) ! out
{

cout << "Can't open file for writing:" <C fname << "!" <<
endl;
return -1;

}

for(unsigned int k=O; k<data.size(); k++)
out << data[k].answer << endl <C endl;

out. close))
return 0;

int Common::writeToFile(const string &fname, const string data[], const
int size)
{

ofstream out(fname.c str(), ios::trunc);
if) ! out
{

cout << "Can't open file for writing:" << fname << "!" <C
endl;
return -1;

}

for(int k=0; k<size; k+-f)
out << data[k] << endl;

out, close))
return 0;

int Common: :writeToFile(const string &fname, const string data)
{

ofstream out(fname.c strO, ios::trunc);
.if(out

{
cout << "Can't open file for writing:" <C fname <C "!" <<
endl;
return -1;

}

out <C data << endl;

out. close))
return 0;

int Common::readFromFile(const string &fname, vector<string> &data)
{

ifstream in(fname.c_str());
if(in
{

cout << "Can't open file for reading:" << fname << "!" <<
endl;
return -1;

}

char buf[4069];
string line;
while (!in.eof)))

in.getline(buf, 4096);
line = buf;
data.push back (line);

}

in. close))
return 0;

int Common::readFromFile(const string &fname, string data[], int &size).
{

ifstream in(fname.c_str());
if(!in
{

cout << "Can't open file reading:" << fname << "!" << endl;
size = 0;
return -1;

}

char buf[4096];
int i;
for (i=0; !in.eof)) && i<size; i++)
{

in.getline(buf, 4096);
data[i] = buf;

}

size = i;

in. close))
return 0;

int Common::readFromFile(const string &fname, string &data)
{

ifstream in)fname .c str());
if(!in
{

cout << "Can't open file reading:" << fname << "!" << endl;

return -1;
}
char buf[2048];
if (!in.eof()

in.getline(buf, 2048);
data = but;

}

in. close))
return 0;

}

Common* Common:: getObj ect ()
{

static Common *obj = (Common *)0; //null
if obj
{

obj = new Common;
}
return obj;

}

bool Common::isEntity(const char *str)
{

Common 	*obj = getObjectO;
for(unsigned int i=0; i<obj->Entities.sizeO; ++i)

if(Common::compare(str,obj->Entities[i].c_str()) _= 0)
return 1;

return 0;
}

bool Common::isCommon(const char *str)
{

Common 	*obj = getObjectO;
for(unsigned int i=0; i<obj->CommonWords.size(); ++i)

if(Common::compare(str,obj->CommonWords[i].c_strO) _= 0)
return 1;

return 0;
}

bool Common: :isPresent(const vector<string> &array, const string &item)
{

for(unsigned int i=0; i<array.size(); ++i)
if(Common::compare(item.c_str(),array[i].c_str()) _= 0)

return true;
return false;

}

void Common: :loadEntities()
{

Common 	*obj = getObjectO;
obj->Entities.clear();
ifstream in) "Entities. txt");
if) ! in)

- xxxvii -

return ;
char buf[100];
string 	str;
while (!in.eof()
{

in.getline(buf,100);
str = buf;
obj->Entities. push back (str);

}

cout << obj->Entities.sizeO << " entities loaded!" << endl;
in.closeO;

void Common:: loadCommon ()
{

Common 	*obj = getObjectO;
obj->CommonWords.clear));
ifstream in("Common:txt");
if(in)

return
char buf[100];
string 	str;
while (!in.eof()
{

in.getline(buf, 100);
str = buf;
obj->CommonWords.push_back(str);

}

cout << obj->CommonWords.sizeO << " common words loaded!" <<
endl;
in. close))

}

void Common::printVector(const vector<string> &Data, ostream &out)
{

for(unsigned int i=0; i<Data.size(); i++)
out << Data[i] << 	,

}

void Common::printDelimO

cout << endl
cout 0<

*******************************#**************************************

<< endl;
cout << endl

}

void Common::printHeader(const string text)

cout << endl
cout <<

**************#*###***************************************r.********" <<
endl;

cout <C text <C endl;

- XXXVIII -

coot
'1+ aia.+aatwfk+ 	 t

0

endi;
cout << endi

void Common::insertAnswer(vector<struct Answer> &Answers, const struct
Answer &ans)

unsigned int
Answers push back(ans);
Lor(i=Answers.size{)-1; i>0;

if(Answers[i-1l.score >= ans.score)
break;

Answers[ij = Answers[i-1j;
--i;

}

Answers(i} = ans;
}

void Common::replaceChar(string &source, const char o_dCh, roost char
newCh)
i

for unsigned int i=C; I<source. length ,); i+-
if(source;i] _-

source[i) = newCh;

II

	Title

	Abstract

	Chapter 1

	Chapter 2
	Chapter 3

	Chapter 4

	Chapter 5

	Chapter 6

	Chapter 7

	References

