
• ' Pe' 	.'• ' r

: s 	•tI3q!

rLc

F i F 	e

Iksf !1
_.S•

CANDIDATE'S DECLARATION

I hereby declare that the work, which is being presented in the dissertation
entitled,"Development of an Efficient Task Scheduling Algorithm for
Reconfigurnble Computing Systems" being submitted in the partial fulfill-
ment of the requirements for the award of degree of Master of Technology
in Information Technology, in the Department of Electronics and Computer
Engineering, Indian Institute of Technology Roorkee, Roorkee (INDIA), is an
authentic record of my work, carried out from August 2006 to June 2007, under
the,luidance and supervision of Dr. Durga lbshniwal, Assistant Professor,
Department of Electronics and Computer Engineering, Indian Institute of Tech-
nology Roorkee, Roorkee (India).

The matter embodied in the dissertation report to the best of our knowledge
has not been submitted for the award of any other degree elsewhere.

Dated: 	 (Archon Kokkula)
Place: R.00rkee

CERTIFICATE

This is to certify that the above statement made by the candidate is correct
to the beat of my knowledge.

Date: i y ' °1 07
Place: ? ovi ee.

(Dr. Durga Tlnshniwal)
Assistant Professor,
Dept. of E &C Engg.
IITR, Roorkee - 247667,
INDIA.

Acknowledgements
First and foremost, my sincere regards to my supervisor Dr. Durga Toshaiwal,
Associate Professor, Department of Electronics and Computer Engineering, for
her encouragement, valuable suggestions, amiable, amicable and caring nature.
Her guidance was helpful throughout this dissertation work.

Special thanks to Prof. Kumkum Garg, Professor, Department of Electronics and
Computer 	i4ander whom I have carried out my Project.

I also thank Prof. D. K. Mehra, Head of the Department, Department of Electron-
ics and Computer Engineering for providing the neoemary 'facilities for carrying
out this work.

I express my sincere thanks to Prof R. C. Joshi, Prof. Kuldip Singh, Department
of Electronics and Computer Engineering, Engineering for their kind help and
moral support throughout this dissertation work.

I am thankful to Mr. Kota Solomon Raju, Scientist, Central Electronics Engineer-
ing Research Institute (CEERI), Pilani, whose contribution was crucial in making
this work come true.

My special sincere heartfelt gratitude to my family, and especially my loving
brother Sridhar (SLB) for his help, whose sine prayers, best woes, rapport
and encouragement has been a constant source of strength to me during the entire
work.

Finally I would also like to thank all my friends for their support and valuable
suggestions.

iii

Contents

Certificate i

Declaration i

Acknowledgements iii

Abstract iv

Contents V

List of Figures vii

List of Tables viii

1 	Introduction 1
1.1 	General Introduction 	1
1.2 	Motivation 	4
1.3 	Problem Statement 	5
1.4 	Organization of the Thesis 	6

2 Background and Literature Review 	 7
2.1 Reconfigurable Computing Systems (RCS) 	7

2.1.1 Classification of Reconfigurable Architectures 	7
2.1.2 Characteristics of Reconfigurable Logic 	9

2.2 Review of Scheduling Algorithms 10
2.2.1 Static DAG scheduling algorithms for Heterogeneous Envi-

ronment . 12
2.2.2 	Task scheduling in RCS 	. 15

3 Hardware and Software Details 	 17
3.1 FPGA Development kits . 	. 17
3.2 	SystemC Language . 	19

3.2.1 	Why SystemC? . 20
3.2.2 	Language Comparison . 20
3.2.3 	Features of SystemC . 21
3.2.4 SystemC Development Environment 22

v

Abstract

Reconfigurable Computing (RC) is an emerging paradigm of research that offers
cost-effective solutions for computationally intensive applications through hard-
ware reuse. To fulfill the gap between Application Specific Integrated Circuit
(ASIC) and Application Specific Instruction Processor (ASIP) reconfigurable com-
puting has been introduced. In reconfigurable computing environment one can
have performance like ASIC while having general-purpose processor flexibility.
There is a growing demand in this domain for techniques exploiting inherent par-
allelism in the target application and scheduling the parallelized application. There
arises the need for scheduling and mapping of the tasks on to hardware resources.
The Reconfigurable Logic Units (RLUs) i.e., hardware resources represent recon-
figurable hardware modules on a reconfigurable System-on-Chip (rSoC).

In this thesis, the problem of scheduling and mapping of the tasks onto the several
RLUs for a given application task graph is considered, where the RLUs vary in
terms of chip area (henceforth referred as variable area RLUs) and each task
can have multiple versions of implementations (configuration bit streams) having
corresponding execution time. An efficient scheduling algorithm dealing with the
above mentioned problem is developed using dynamic programming approach,
with the objective of minimizing the total execution time. The algorithm takes into
account the reconfiguration delay when assigning task to the RLU in addition to
the task execution time. On the similar lines, another algorithm using the Greedy
Heuristic approach is developed for performance comparison. The comparison
studies are carried out, which show that our algorithm always performs better.

The algorithm is implemented using SystemC environment to support hardware
as well as software co-simulation. The development of algorithms is done keeping
in view the Virtex II Pro XUP FPGA development kit standards.

Contents 	 vi

4 Task Scheduling in RCS Considering Variable Area RLUs 24
4.1 	Problem Description 	24

4.1.1 	Taskgraph 	24
4.1.2 	Computing Environment 	26
4.1.3 	Performance Criteria 	26

4.2 	Target System Architecture 	27

5 Scheduling Algorithms Developed for Variable Area RLUs 31
5.1 	The Greedy Technique 	31
5.2 	SGH Algorithm 	31

5.2.1 	Prioritizing the tasks 	32
5.2.2 	Selecting RLUs 	32
5.2.3 	Pseudo—code 	33
5.2.4 	Implementation Details 	33

5.3 	Dynamic Programming 	34
5.4 	SDP Algorithm 	35

5.4.1 	Procedure 	35
5.4.2 	Pseudo-code 	36
5.4.3 	Implementation Details 	36

6 	Conclusions 37
6.1 	Discussion of Results 	37
6.2 	Suggestions for future work 	40

Bibliography 41

A Code Listing 44

List of Figures

	

1.1 	Makimoto's wave 	4

2.1 Taxonomy of static task scheduling algorithms for deterministic en-

vironment 12

3.1 SystemC contrasted with other design languages [27] 21

3.2 SystemC Development Environment [30] 22

	

4.1 	RASIP Architecture [1] . 	28

4.2 Scheduler in RASIP Architecture 28

	

4.3 	RLU State Diagram 	. 29

6.1 Performance comparison of developed algorithms for FFT task graph 38

6.2 Performance comparison of developed algorithms for mean value

taskgraph 38

6.3 Performance comparison of developed algorithms for cut-tree task

graph...................................39

6.4 Performance comparison of developed algorithms for fork-join task

graph...................................39

vii

Chapter 1

Introduction

Reconfigurable Computing Systems (RCS) [2] combine a processor with reconfig-
urable hardware. This area of computing is consolidating itself as a real alternative
to ASICs and general purpose processors. The main advantages of RC derive from
its unique combination of broad applicability (like general-purpose systems), and
achievable performance (comparable to special purpose circuitry). Recently this
area of computing has reached performance figures that enable it to appear as
a serious competitor in a Digital Signal Processing (DSP) and multimedia appli-
cations market. However, the scheduling of the different tasks must be carefully
analyzed to efficiently exploit all the capabilities of a reconfigurable system. It is
especially crucial in real time applications.

1.1 General Introduction

Microprocessor is the heart of most current high performance computing platforms.
They provide a flexible computing platform and are capable of executing large class
of applications. Software for microprocessors is developed by implementing higher
level functions using the instruction set of the architecture. As a result, the same
fixed hardware can be used for many general purpose applications. Unfortunately,
this generality is achieved at the expense of performance. The software program
stored in memory has to be fetched, decoded and executed. In addition to this,
data is fetched from and stored back to memory. These conditions force explicit
sequential execution of the program. Casting all complex functions into simpler

1. Introduction

instructions to be executed sequentially on the processor results in a degraded
performance.

Application Specific Integrated Circuits (ASICs) [2] provide an alternative to ad-
dress the performance issues of general purpose microprocessors. ASICs are de-
signed for a specific application and hence, each ASIC has a fixed functionality and
superior performance for a highly restricted set of applications. However, ASICs
restrict the flexibility of the architecture and exclude any post-design optimizations
and upgrades in features and algorithms.

A new computing paradigm using Recomfigurable Computing [2] promises an inter-
mediate trade-off between flexibility and performance. Reconfigurable Computing
utilizes hardware that can be adapted at run-time to facilitate greater flexibility
without compromising performance. Reconfigurable architectures can exploit fine
grain and coarse grain parallelism available in the application because of the adapt-
ability. Exploiting this parallelism provides significant performance advantages
compared to conventional microprocessors. The reconfigurability of the hardware
permits adaptation of the hardware for specific computations in each application
to achieve higher performance compared to software. Complex functions can be
mapped onto the architecture achieving higher silicon utilization and reducing the
instruction fetch and execute bottleneck.

Reconfigurable logic permits custom digital circuits to be dynamically created
and modified via software. This ability to create and modify digital logic without
physically altering the hardware provides a more flexible and lower cost solution
to the implementation of custom hardware. This type of computer architecture is
enabled by the availability of high density programmable logic chips, or FPGAs
(Field Programmable Gate Arrays). FPGAs consist of a matrix of logic blocks and
interconnection network. The functionality of the logic blocks and the connections
in the interconnection network can be modified by downloading bits of configu-
ration

 data onto the hardware. A new hardware program can be downloaded to

these chips in a few milliseconds. Different bitstreams can be loaded during the
execution of a program or to run a different program on the fly.

Currently, hybrid architectures which integrate programmable logic and intercon-
nect together with a microprocessor on the same chip are being developed. The
availability of increasingly larger number of transistors facilitates the integration

1. Introduction

of reconfigurable logic with other components on System-on-Chip (SoC) architec-
tures. These newer FPGA-based architectures eliminate the need for a host pro-
cessor by providing mechanisms to configure the device on boot from flash, and to
directly support essential interfaces to memory and network resources via a bus
configured in the device fabric to form a complete "System on a programmable
Chip". Providing a stable and stateful computational platform within a recon-
figurable device requires, however, partial reconfigurability, i.e., the ability to re-
configure only that portion of the device that implements an application, while
leaving unchanged the rest of the portion(s) of the device that implements the
platform, the memory and network interfaces, the device drivers, and so forth.
The portion of the device which can be reconfigurable is known as Reconfigurable
Logic Unit (RLU) i.e. one or more RLUs and fixed hardware portion constitutes
the basic FPGA chip. RLU consist an array of multi-input and multi-output logic
cells to be programmed. Examples of FPGA devices which allow partial recon-
figuration are the Xilinx Virtex-II Pro and Virtex-4 devices [30], which include
one or more PowerPC processors embedded within the FPGA's logic fabric. On-
chip integration of reconfigurable logic reduces the memory access costs and the
reconfiguration costs.

Applications are mapped onto reconfigurable architectures by analyzing the com-
putations performed. Computations that can be speeded up by using reconfig-
urable hardware are identified and mapped onto the reconfigurable hardware. In
the presence of a microprocessor, the computations which have complex control
and data structures are executed on the microprocessor. The partitioning of the
computations of an application between the microprocessor and the reconfigurable
hardware is performed manually or by using automatic /semi-automatic tools. The
partitioned computations are compiled into executable code on the microprocessor
and hardware configurations on the reconfigurable hardware. The reconfigurable
hardware needs to be configured using the configuration information before the
actual execution can be performed. This configuration can be updated at run-time
to execute a different set of computations from the application.

Development of systematic scheduling and mapping techniques for computing ar-
chitectures require high level abstractions. Computing models at high level ab-
stractions of the architectures can be utilized to develop algorithmic techniques for
mapping applications onto the architectures. Reconfigurable computing is different

1. Introduction 4

from the Von-Neumann paradigm of computing and requires computational mod-
els different from conventional models. This gives rise to a design crisis in the tools
for mapping applications onto reconfigurable architectures. Makimoto [3] predicts
this changing paradigm in the wave illustrating technology trends in semiconduc-
tors (see Fig. 1.1).

su~wam~ea

niEF", n,..

1967 1967

Cuslo`NxM fa

	

.s ,
cd~~war. rv. 	~y

L99l9) 4
r

cwron,ittd

FIGURE 1.1: Makimoto's wave

There are several application areas where reconfigurable computing has been
shown to achieve significant performance. These include long multiplication, cryp-
tography, genetic algorithms, image processing, genomic database search, signal
processing. The nature and diversity of the reconfigurable architectures results in
a wide variety of implementation issues with respect to. applications.

1.2 Motivation

To get the real advantage of the RCS, one has to provide general design method-
ology to explore different architectures which will support run-time configuration,
efficient scheduling & mapping algorithms, reducing run-time configuration /re-
configuration overheads. Among these, Task scheduling becomes a very critical
issue in achieving the high performance.

A lot of research is going on in this area of task scheduling for reconfigurable

architectures. The previous works [15], [7], [24] are the significant contributions
made in this area. The work in [15] has considered relatively better way for doing
task scheduling for reconfigurable systems which takes into account the features

1. Introduction

of reconfigurable architectures. But it is targeted a particular coarse-grain recon-
figurable device, MorphoSys [16], that imposes a set of architectural constraints,
and provides dynamic reconfiguration. In [7], they proposed a dynamic scheduling
algorithm for Sytem-on-Chip (SoC) platforms considering equal Dynamic Recon-
figuration Logic (DRL) blocks. Using equal processing elements leads to inefficient
hardware utilization as each processing element can execute all tasks. T. Wiang-
tong at al, [24] use the heuristic algorithm to map each task either to hardware or
software. But heuristic approach always not gives the better results.

In this thesis, an application is modeled by a task graph. A task graph is a directed
acyclic graph (DAG) in which nodes represent tasks and edges represent the data
dependencies among the tasks. Although there are many heuristics proposed for
scheduling DAG-type applications, most of them assume that the processors are
equally capable, i.e. each processor can execute all the tasks. In real world appli-
cation, this assumption usually does not hold. For example, software-defined radio
(SDR) has to support multiple standards with seamless interconnection between
two different standards in single device. Thus an electronic system has to support
reconfiguration so that one can reconfigure different standards implementation in
a single device to implement SDR in the system. In this work, variable size area
RLUs have been considered instead of equal area RLUs and algorithm is developed
for the RASIP for SDR architecture [1].

1.3 Problem Statement

For a given parallel application which is represented using Directed Acyclic Graph
(DAG), finding the order in which tasks, have to be instantiated on to the partially
reconfigurable hardware resources by using the scheduling and mapping algorithm
while considering resource and real-time constraints with the objective of minimiz-
ing the total execution time of the application.

In this work, an efficient static task scheduling algorithm for reconfigurable com-
puting system with variable area RLUs is proposed. For a given application, the
objective of this scheduling algorithm is to map parallel and independent tasks
onto the multiple variable area RLUs and order their execution so that a mini-
mum schedule length (execution time) is given under the limit of task precedence
requirements and resource constraints. Directed Acyclic Graph (DAG) is a most

Chapter 1. Introduction 	 6

popular way that is used for modeling the precedence constraints among tasks. In
this work, main focus is on minimizing total execution time by effective allocation
of tasks to reconfigurable logic units.

As the proposed scheduling algorithm is static, the task parameters and RLU pa-
rameters are known in advance. Each task has different version of implementations
which are varying in terms of hardware area required and time to execute that
task using specified hardware area. Each RLU is associated with hardware area
and time to reconfigure the RLU.

1.4 Organization of the Thesis

The rest of the dissertation is organized as follows.

Chapter 2 provides the relevant background information about Reconfigurable
Computing Systems and discusses the related work in task scheduling.

Chapter 3 discusses about the features of Vertex-II pro and SystemC development
environment.

Chapter . describes the task scheduling problem in RCS where RLUs having
different areas on reconfigurable System-on-Chip (rSoC) and describes target ar-
chitecture.

Chapter 5 presents proposed scheduling algorithm for reconfigurable computing•
systems along with Greedy based algorithm.

Chapter 6 discusses the results based on the comparison graphs of different schedul-
ing strategies and scope for the future work.

Chapter 2

Background and Literature

Review

2.1 Reconfigurable Computing Systems (RCS)

The general definition of Reconfigurable Computing (RC) [2] is "Computing via
a post-fabrication and spatially and temporally programmed connection of pro-
cessing elements," that is computation in space and time, using hardware that
can adapt at the logic level to solve specific problems. RC can also be defined
as a new paradigm based on dynamically adapting the computations on hardware
through reconfiguration of available hardware as well as communication structures
of the chip through programming the processing elements and their interconnec-
tions. Now, one can define that the Reconfigurable Computing Systems is a sys-
tem which will allow post- fabrication programming in spatial as well as temporal
manner to adapt and implement any logic or algorithm. Thus, RCS composed
of SRAM based FPGAs, memory, CPUs or DSPs. A reconfigurable computing
system can be mounted into a host computer or have its own embedded CPU.

2.1.1 Classification of Reconfigurable Architectures

Over the years a large number of Reconfigurable Architectures (RAs) have been
developed. Reconfigurable architectures can be classified based on several different
parameters. Some of the most distinguishing architectural parameters which can
be used to classify reconfigurable architectures listed as follow [2].

Chapter 2. Background and Literature Review 	 8

• Granularity:The granularity of the reconfigurable logic is the size of the
smallest functional unit that is addressed by the mapping tools. The gran-
ularity expresses the level of the functionality encapsulated into one design
object. Lower granularity provides more flexibility in adapting the hardware
to the computation structure. However, lower granularity has a performance
penalty due to larger delays when constructing computation modules of a
larger size using smaller functional units. Some architectures implement fea-
tures that are specifically targeted toward reducing these overheads. For
example, some FPGAs implement fast carry chains to permit construction
of larger arithmetic modules from small functional units. Typically, FPGAs
have smaller granularity such as two-input and four-input functional units.
Several reconfigurable architectures such as Chameleon implement coarse..
grain arithmetic units of larger size such as 32 bits

• Host coupling:A large fraction of reconfigurable logic is utilized as a process-
ing fabric attached to a host processor. The host processor performs the
control functions to configure the logic, schedule data input and output, and
external interfacing, among other things. The type of coupling to such a
host system dictates the overheads in utilizing reconfigurable logic to speed
up computations. The degree of coupling affects the reconfiguration and the
data access costs.

The degree of coupling can be roughly partitioned into three classes:

- Loose system-level coupling: this includes architectures which have re-
configurable logic communicating to the host through an I/O interface
similar to a disk drive and other peripherals. A large number of initial
FPGA-based boards were architected with this degree of coupling.

- Loose chip-level coupling: these systems reduce the overheads in com-
municating to the host by using direct communication between the
host and the reconfigurable logic. A large number of existing embed-
ded architectures with reconfigurable logic are architected using this
technique.

- Tight on-chip coupling: the availability of a large number of transistors
has resulted in the integration of reconfigurable logic on the same chip
as a host processor, significantly reducing the communication overheads
between different components of the architecture.

Chapter 2. Background and Literature Review

• Reconfiguration methodology: Typically, a reconfigurable device is configured
by downloading a sequence of bits known as a bitstream onto the device. The
speed and methodology of download depend on the interface supported by
the device. Two possible interfaces are bit-serial and bit-parallel interface.
The time for configuration is directly proportional to the size of the bit-
stream. Fine-grain and coarse-grain devices have differences in the configu-
ration time because coarse-grain devices typically need smaller configuration
bitstreams. The flexibility of reconfiguration is achieved at the expense of
reconfiguration cost. Reconfigurable logic has to stop computation for ini-
tiating a new configuration. This reconfiguration time can be significant,
especially for fine-grain multimillion gate FPGAs. Some architectures sup-
port partial and dynamic reconfiguration. Partial reconfiguration permits
reconfiguration of the functionality of a portion the device while the re-
maining portion retains its functionality. Dynamic reconfiguration permits
reconfiguration of a portion of the device while other portions of the device
are performing computations.

• Memory organization: The computation performed on the reconfigurable
logic needs to access data from memory. Intermediate results from compu-
tations also need to be stored before the logic can be reconfigured to perform
the next computation. The organization of the memory affects the data ac-
cess cost and is a significant fraction of the actual execution time. Currently,
most reconfigurable architectures include large memory on the reconfigurable
logic device. This memory can be implemented as large blocks of memory
or as distributed memory blocks.

2.1.2 Characteristics of Reconfigurable Logic

Reconfigurable logic' can be defined as consisting of a matrix of programmable
computational units with a programmable interconnection network superimposed
on the computational matrix. The fundamental differences between reconfigurable
logic and traditional processing architectures include the following [2]:

1 Reconfigurable logic is defined as a device that can be reprogrammed at run-time, in between
computations, in the field.

Chapter 2. Background and Literature Review 	 10

Spatial Computation: The data is processed by spatially distributing the
computations rather than temporally sequencing through a shared compu-
tational unit.

Configurable Datapath: The functionality of the computational units and the
interconnection network can be adapted at run-time by using a configuration
mechanism.

• Distributed Control: The computational units process data based on local
configuration rather than an instruction broadcast to all the functional units.

• Distributed Resources: The required resources for computation, such as com-
putational units and memory are distributed throughout the device instead
of being localized in a single location.

The spatial distribution of the computations and the distributed control and re-
sources result in higher computational power efficiency for reconfigurable com-
puting compared to microprocessors, DSPs and ASICs. Computational power
efficiency is defined as ratio of the number of gates actively working in a clock
cycle to solve a problem to the total number of gates in a device. In traditional
architectures like microprocessors and DSPs,.a large portion of the chip is utilized
to support active computation in a much smaller portion of the chip. Reconfig-
urable computing can achieve significantly higher computational power efficiency
compared with conventional microprocessors and ASICs.

2.2 Review of Scheduling Algorithms

The problem of mapping (including matching and scheduling) tasks and commu-
nications is a very important issue since an appropriate mapping method can truly
exploit the parallelism of the system thus achieving large speedup and high effi-
ciency. It deals with assigning (matching) each task to a processor and ordering
(scheduling) the execution of the tasks on each processor in order to minimize
some cost function. The most common cost function is the total schedule length.
Mapping and scheduling are used interchangeably. Unfortunately, the scheduling
problem is extremely difficult to solve and is proved to be NP-complete in general.
Even problems constructed from the original mapping problem by making simpli-
fied assumptions still fall in the class of NP-hard problems. Consequently, many

Chapter 2. Background and Literature Review 	 11

heuristics have been proposed to produce adequate yet sub-optimal solutions. In
general, the objective of task scheduling is to minimize the completion time of a
parallel application by properly mapping the tasks to the processors.

There are many criteria used to categorize the types of scheduling method used.
By considering the input characteristics, scheduling can be divided into those
with or without data/control dependency. From the system architecture point
of view, it may be categorized into scheduling for single processor, or multi-
ple homogeneous/non-homogeneous processors. Nonetheless, in a broad sense,
scheduling exists in two forms: static and dynamic scheduling. In the static
scheduling case, all the information regarding the application and computing re-
sources such as execution time, communication cost, data dependency, and syn-
chronization requirement is assumed to be available a priori [18] . Scheduling is
performed before the actual execution of the application. Static scheduling of-
fers a global view of the application thus usually generates high quality schedules.
On the other hand, in the dynamic mapping a more realistic assumption is used.
Very little a priori knowledge is available about the application and computing
resources. Scheduling is done during run-time. In order to support load balancing
and fault tolerance, tasks can be reallocated during the execution.

A popular parallel application model is the task precedence graph model [18].
In this model, an application can be represented by a Directed Acyclic Graph
(DAG). In a DAG, nodes represent the tasks and the directed edges represent
the execution dependencies as well as the amount of communication between the
nodes. A node in the DAG represents an atomic task that is a set of instructions
that must be executed sequentially without preemption on the same processor.
The weight of the node reflects the amount of work associated with the task. But
in our target architecture of RCS, execution time of a task is different for each
RLU in the system.

Here, the focus is on static DAG scheduling for variable area RLU system which
seems to be similar to the scheduling for heterogeneous multiprocessor systems.
Even though, it seems to be similar, in addition to heterogeneity of the RLU, this
algorithm considers the specific features of reconfigurable systems. Next section
discusses the existing scheduling algorithms for heterogeneous multiprocessor sys-
tem. After that past work about the scheduling in RCS has been discussed in
section 2.2.2

Chapter 2. Background and Literature Review 	 12

2.2.1 Static DAG scheduling algorithms for Heterogeneous
Environment

Kwok and Ahmad [18] give a survey of various static DAG scheduling algorithms.
The authors classify the considered algorithms into different categories based on
the assumptions used in the algorithms such as the task graph structure (arbi-
trary DAG or restricted structure such as trees), computation costs, communica-
tion cost, duplication (task duplication allowed or not), number of processors and
connection type among the processors. However, the 27 algorithms surveyed are
mainly designed for a homogeneous environment. For algorithms designed for het-
erogeneous systems, there are basically four types, namely list scheduling based
algorithms, clustering heuristics, task duplication heuristics and random search
based algorithms [19](illustrated in Fig. 2.1).

List scheduling algorithms

graph 	 Clustering based algorithms
Ming algorithms
_terministic 	 Duplication based algorithms

Random search algorithms

FIGURE 2.1: Taxonomy of static task scheduling algorithms for deterministic
environment 	 -

List Scheduling: List scheduling [18] is a class of scheduling algorithms that as-
sign tasks one by one according to their priorities. The essence of list scheduling is
to make an ordered task list by assigning tasks some priorities and then repeatedly
perform the following two steps until all the tasks in the list are scheduled:

1. Remove the first task from the list;

2. Allocate the task to a processor that will optimize some predefined cost
function

The pseudo-code of list scheduling is presented in Alg. 1

There are two important questions in a list scheduling algorithm: (1) How to
compute a task node's priority? (2) How to define the cost function? The first

Chapter 2. Background and Literature Review 	 13

Algorithm 1 List Scheduling()
Calculate the priority of each task according to some predefined formula
PriorityList = {vi , v2, ... , v,} is sorted by descending order of task priorities

while PriorityList is not empty do
Remove the first task from the PriorityList and assign it to an appropriate
processor in order to optimize a predefined cost function

end while
return (schedule)

question is related to the way the algorithm views the node's urgency of being
scheduled. In the earlier list scheduling algorithms, the target computing systems
are generally homogeneous. Some algorithms do not take into account the com-
munication costs. Level-based heuristics are proposed for this case. For example,
in the HLEFT algorithm [20], the level of a node denotes the sum of computation
costs of all the nodes along the longest path from the node to an exit node.

Two important attributes [17, 18] used in the calculation of the priority of a task
node are the t—level (top level) and b—level (bottom level). The t—level of a node is
defined as the length of a longest path from an entry node to the node (excluding
the node itself). The length of a path is the sum of all the node and edge weights
along the path. As pointed out previously, the weights are approximations based
on one of the criteria. The t-level is related to the earliest start time of the node.
The b-level of a node is the length of a longest path from the node to an exit
node. The critical path of a DAG is a longest path in the DAG. Clearly, the upper
bound of a node's b-level is the critical path of the DAG. B—level and t—level can
be computed with time complexity O(e + n), where e is the number of edges
and n is the number of nodes in the DAG. The second question deals with the
selection of "best" processor for a task. In homogeneous systems, a commonly used
cost function is called earliest start time [21]. For example, the Earliest Time First
(ETF) algorithm computes, at each step, the earliest start times for all ready nodes
and then selects the one with the smallest earliest start time. When two nodes
have the same value of their earliest start times, the ETF algorithm breaks the
tie by scheduling the one with the higher static level. Some list scheduling based
algorithms include Heterogeneous Earliest Finish Time (HEFT) [23], Dynamic
Critical Path, Fast Critical Path (FCP) [22], and Insertion Scheduling Heuristic
(ISH).

Clustering based heuristics: Another class of DAG scheduling algorithms is

Chapter 2. Background and Literature Review 	 14

based on a technique called clustering. The basic idea of clustering based algorithm
is to group heavily communicated tasks into the same cluster. Tasks grouped into
the same cluster are assigned to the same processor in an effort to avoid communi-
cation costs. There are basically two types of clusters; linear and nonlinear. Two
tasks are called independent if there are no dependence paths between them. A
cluster is called nonlinear if there are two independent tasks in the same cluster,
otherwise it is linear.

There are essentially two steps in a clustering based heuristic; grouping the nodes
into clusters and mapping the clusters to processors. Initially, each task is assumed
to be in a separate cluster. Then a series of refinements are performed by merging
some existing clusters. A final clustering will be derived after certain steps. In
order to avoid high time complexity, once the clusters have been merged they
cannot be unmerged in the subsequent steps. During the mapping phase, sequences
of optimizations are carried out: (1) Cluster merging: It is possible that the
number of clusters is greater than the number of processors. Then it is necessary
to further merge the clusters; (2) Task ordering: if the tasks in a cluster are related
by precedence constraints, the execution order of the tasks is arranged based on
such constraints.

Task duplication based heuristics:The basic idea behind task duplication
based (TDB) scheduling algorithms is to use the idle time slots on certain pro-
cessors to execute duplicated predecessor tasks that are also being run on some
other processors, such that communication delay and network overhead can be
minimized. In this way, some of the more critical tasks of a parallel program
are duplicated on more than one processor. This can potentially reduce the start
times of waiting tasks and eventually improve the overall completion time of the
entire program. Duplication based scheduling can be useful for systems having
high communication latencies and low bandwidths.

Guided random search algorithms: The task scheduling problem is a search
problem where the search space consists of an exponential number of possible
schedules with respect to the problem size. Guided random search algorithms are
a class of search algorithms based on enumerative techniques with additional in-
formation used to guide the search. They have been used extensively to solve very
complex problems. A common characteristic of these algorithms is that they are
stochastic processes with the use of random probability. Evolution computation

Chapter 2. Background and Literature Review 	 15

(ex: genetic algorithm) and stochastic relaxation (ex: simulated annealing) are
the two major categories of guided random search algorithms.

2.2.2 Task scheduling in RCS

The scheduling problem in reconfigurable computing is relatively a new one. In
comparison with multiprocessor systems, there exist a small number of works
addressing the scheduling problem for RCS that involve reconfiguration time and
hardware resources. Resource conflicts in shared bus or shared memory are usually
ignored, making these works not applicable to real time systems.

In realistic systems, communication overhead, scheduling overhead and configura-
tion overhead are all important. This makes the scheduling problem really hard
to solve. Previous research such as [4] ignores some of these overheads to simplify
the problem. It is well known that hardware/software partitioning and scheduling
is a combinatorial optimization problem that is NP-complete. In addition, if FP-
GAs, which allow partial reconfiguration at run time, is employed, methods used
to rearrange tasks are considered as an NP-hard problem.

Most of the approaches [8-11] are versions of existing high level synthesis (HLS)
techniques extended in order to consider specific features of reconfigurable systems,
such as the reconfiguration time.

A heuristic technique [10] based on static-list scheduling, enhanced to consider
dynamic area constraints is proposed, while [11] presents a level-based scheduling
algorithm. A new approach [12, 13] to the problem is presented, where an inte-
grated linear programming (ILP) model is applied to the temporal partitioning of
a task graph. Additionally, a technique [14] for loop fission that reduces the con-
figuration overhead is proposed. All the related work discussed has not considered
the features of the reconfigurable architectures.

Only the research work in [15] has considered relatively better way for doing task
scheduling for reconfigurable systems. Given a task graph showing data dependen-
cies, together with some additional information (task execution time, data sizes),
the aim was to find the task schedule having the optimal execution time. But it
is targeted a particular coarse-grain reconfigurable device, MorphoSys [16], that
imposes a set of architectural constraints, and provides dynamic reconfiguration.

Chapter 2. Background and Literature Review 	 16

Dynamic techniques [5, 6], to schedule for reconfigurable architectures are pro-
posed. Additionally, [7] introduced two different versions of dynamic reconfig-
urable architectures with or without a hardware prefetch unit and proposed dy-
namic scheduling algorithms for their architecture which tries to minimize the
reconfiguration overhead by overlapping the execution of tasks with device recon-
figurations. While such dynamic scheduling approaches ensure optimal resource
utilization, they do not ensure real-time performance. Moreover, scheduling tasks
during run-time is a costly overhead. Our approach is a static scheduling approach
which gives near optimal solution by using dynamic programming concept.

The work done here differs from other reported works in many ways: one is it ad-
dresses scheduling problems for run-time reconfigurable computing system having
variable area reconfigurable logic units and it also considers multiple implemen-
tations for each task. The architecture in this work considers Virtex-II Pro and
Virtex-4 parameters, with their actual reconfiguration timings given in Table 3.1

Chapter 3

Hardware and Software Details

3.1 FPGA Development kits

Some of the FPGAs which allow the partial reconfiguration are Vertex-4 and
Virtex-II Pro. In this thesis, the algorithm developed by considering the actual
reconfiguration delays for these kits which are given in the Table. 3.1.

Features, benefits and applications of the Vertex-II pro [30] are discussed below:

Features:

• Industry's fastest FGPA fabric

• Up to four 300+ MHz, 420 +DMIPS IBM PowerPC 405 processors

• Up to twenty-four 3.125 Gbps full duplex RocketlO transceivers

• Over 10,008 Kbits Block RAM

• Up to 556 dedicated 18 x 18 Multipliers

• Up to 1200 users input/outputs

• Up to 12 Digital Clock Managers

• XCITE Digitally Controlled Impedance Technology

17

Chapter 3. Hardware and Software Details 	 18

Benefits:

• On-Chip IBM PowerPC processors - Hard cores operating at peak efficiency,
tightly coupled with all memory and programmable logic resources to max-
imize performance.

• High-Performance Connectivity Solution - Supports any of the existing single-
ended and differential connectivity standards, such as PCI, HyperT ansport,
PUS PHY, Flexbus, XSBI, and RapidlO, as well as all of the emerging se-
rial connectivity standards such as XAUI, Fibre Channel, Serial ATA, In-
finiBand, Serial RapidlO, and PCI Express (3GIO)

• Excellent Price/Performance Solution - Reduce your total bill of material
cost and achieve higher performance, while reducing your overall develop-
ment time. Plus, your product can easily adapt to new requirements, ex-
tending its profitability.

• On-Demand Architectural Synthesis - Specify high-level system requirements
and generate architecture implementations. The flexibility of the Virtex-II
Pro architecture allows you to partition the functionality of the hardware
and software at any time during the design and development phase - or even
after your product has shipped.

• Realtime Hardware and Software Debugging - Debug your processor software
at full hardware speeds while you continue to optimize your hardware design.

Applications:

• Networking and Communications - Switch, router, network processor, MPLS

• Wireless Infrastructure - Packet switch (voice/data), base transceiver sta-
tion, base controller, mobile switching center

• Storage Systems -Storage Area Networks and Storage subsystems/servers

• Professional Video: Camera to TV - Editing, storage, mixing, text/graphics
effects, server, transmit to TV/STB

• Complex Embedded System - Industrial control, disk controller, medical
instrumentation

3. Hardware and Software Details 	 19

TABLE 3.1: Reconfiguration Delay for Xilinx FPGA Devices in msec.

% of Device
reconfiguration

Virtex 4
(XC4VLX25)

Virtex II Pro
(XC2VP30) (XC2VP30)

10 0.50 4.50 5.80
12 0.52 5.00 7.20
14 0.57 5.40 8.70
16 0.59 5.80 10.20
25 0.65 7.50 15.00
26 0.68 8.50 16.30
30 0.72 12.10 21.80
40 1.20 22.00 34.00
50 2.00 26.00 45.00
75 4.50 40.00 55.00
100 5.00 50.00 60.00

3.2 SystemC Language

SystemC [27] is a system design language that has evolved in response to a perva-
sive need for a language that improves overall productivity for designers of elec-
tronic systems. Typically, today's systems contain application-specific hardware
and software. Furthermore, the hardware and software are usually co-developed
on a tight schedule, the systems have tight real-time performance constraints,
and thorough functional verification is required to avoid expensive and sometimes
catastrophic failures. SystemC offers real productivity gains by letting engineers
design both the hardware and software components together as these components
would exist on the final system, but at a high level of abstraction. This higher
level of abstraction gives the design team a fundamental understanding early in the
design process of the intricacies and interactions of the entire system and enables
better system trade offs, better and earlier verification, and over all productiv-
ity gains through reuse of early system models as executable specifications. It
supports design abstraction at the RTL, behavioral, and system levels. SystemC
consists of a class library and a simulation kernel. The language is an attempt at
standardization of a C/C++ design methodology, and is supported by the Open
SystemC Initiative (OSCI), a consortium of a wide range of system houses, semi-
conductor companies, IP providers, embedded software developers, and design
automation tool vendors.

Chapter 3. Hardware and Software Details 	 20

3.2.1 Why SystemC?

The systemC born because of the necessities of the current electronic industry:
Electronic gadgets are incorporating greater and greater functionality today, but
not compromising with the time to produce and market the gadgets. For example,
you want your mobile handset to have internet facility but you are not ready to
wait for one year for that facility to come. It is easy for you to demand, but it
is not so easy for electronic design engineers who design the system. The greater
complexity of the future systems is making the situation still worst. Previously, the
C (or C++) was used to write the software part of the design. For hardware part
any of the existing HDL's was used to design the hardware. It was very difficult
to setup a test bench which is common for both, since they are entirely different
languages. The introduction of SystemC solved many of these problems [28].

3.2.2 Language Comparison

Strictly speaking, SystemC is not a language, but rather a class library within a
well established language, C++. SystemC is not a panacea that will solve every
design productivity issue. However, when SystemC is coupled with the SystemC
Verification Library, it does provide in one language many of the characteristics
relevant to system design and modeling tasks that are missing or scattered among
other languages. Additionally, SystemC provides a common language for software
and hardware, C++.

Several languages have emerged to address the various aspects of system design.
Although Ada and Java have proven their value, C/C++ is predominately used to-
day for embedded system software. The hardware description languages (HDLs),
VHDL and Verilog, are used for simulating and synthesizing digital circuits. Sys-
temVerilog is a new language that evolves the Verilog language to address many
hardware-oriented system design issues. Matlab and several other tools and lan-
guages such as System Studio are widely used for capturing system requirements
and developing signal processing algorithms.

Fig. 3.1 highlights the application of these and other system design languages.
Each language occasionally finds use outside its primary domain, as the overlaps
in fig. 3.1 illustrate.

Chapter 3. Hardware and Software Details 	 21

Requirements

Architecture

H W/S W

Behaviour

Functional
Verification

Test Bench

RTL

Gates

L _

Transistors

FIGURE 3.1: SystemC contrasted with other design languages [27]

3.2.3 Features of SystemC

1. It inherits all the features of C++, which is a stable programming language
accepted all over the world. It has got large language constructs, which
makes easier to write the program with less efforts.

2. Rich in data types: Along, with the types supported by C++, SystemC
supports the use of special data types which are often used by the hardware
engineers.

3. It comes with a strong simulation kernel to enable the designers to write
good test benches easily, and to simulate it. This is so important because
the functional verification at the system level saves a lot of money and time.

4. It introduces the notion of time to C++, to simulate synchronous hardware
designs. This is common in most of the HDL's.

Chapter 3. Hardware and Software Details 	 22

5. While most of the HDL's support the RTL level of design, systemC supports
the design at an higher abstraction level. This enables large systems to be
modeled easily without worrying the implementation of it. It also supports
RTL design, and this subset is usually called as systemC RTL.

6. Concurrency: To simulate the concurrent behavior of the digital hardware,
the simulation kernel is so designed that all the "processes" are executed
concurrently, irrespective of the order in which they are called.

3.2.4 SystemC Development Environment

Since SystemC is extension of C++, the development environment is the standard
C/C++ development environment as shown in Fig. 3.2.

standard
C/C++ development

environment
nsa

noaaorrwa 	compiler

3Y 57 rt c 	i,b,,n 	linker msrc

debugger class library
and source flies for system

simulation kernel and test benches
.make"

Qyecut a to ..
°

sPe~~fi 	a.out

executable = simulator

FIGURE 3.2: SystemC Development Environment [30]

The designer writes the SystemC models at the system level, behavioral level, or

RTL level using C/C++ augmented by the SystemC class library. The class library
serves two important purposes. First, it provides the implementation of many
types of objects that are hardware-specific, such as concurrent and hierarchical

modules, ports, and clocks. Second, it contains a lightweight kernel for scheduling
the processes. The user's SystemC code can now be compiled and linked together
with the class library with any standard C++ compiler (such as GNU's gee), and
the resulting executable serves as the simulator of the user's design. The test

Chapter 3. Hardware and Software Details 	 23

bench for verifying the correctness of the design is also written in SystemC and
compiled along with the design. The executable can be debugged in any familiar
C++ debugging environment (such as GNU's gdb). Additionally, trace files can
also be generated to view the history of selected signals using a standard waveform
display tool.

Conceptually, the most powerful feature is that the hardware, software, and test
bench parts of the design can be simulated in one simple and unified simulation
environment without the need for clumsy co-simulations of disparate modeling
paradigms.

Chapter 4

Task Scheduling in RCS
Considering Variable Area RLUs

As described in chapter 2, the scheduling of task graphs is highly critical to the
performance of reconfigurable computing systems. It deals with the allocation
of individual tasks to suitable processing elements and proper order of task ex-
ecution on each resource where the common objective is to minimize the overall
completion time. In this chapter, we give the formal definition of task schedul-
ing problem for reconfigurable system having variable area RLUs and discuss the
target architecture for which algorithm is developed.

4.1 Problem Description

A scheduling system usually consists of three parts: application, computing en-
vironment, and scheduling goal. The application can be represented by a task
graph.

4.1.1 Taskgraph

The DAG is a generic model of a workflow application consisting of a set of
tasks (nodes) among which precedence constraints exist. It is represented by
G = (V, E), where V = {v1i V2,... , v, } represents the set of n tasks that can
be executed on a subset of the available RLUs. E is the set of e directed arcs or

24

Chapter 4. Task Scheduling in RCS Considering Variable Area RL Us 	25

edges between the tasks that maintain a partial order among them. The partial
order introduces precedence constraints, i.e. if edge e;,~ E E,then task v~ cannot
start its execution before v completes. A node in the DAG represents an atomic
task that is a set of instructions that must be executed sequentially without pre-
emption on the same processor. A node without a parent is called an entry node,
and a node without a child is called an exit node.

Each node (vi) in the task graph is associated with multiple versions of implemen-
tations for that task. Each version (j) of implementation has their corresponding
hardware requirement in terms of area or functional units (a;,~) and time to exe-
cute that task (w~,~). Normally, each task is associated with 3 different versions of
implementations which will give the best, worst and moderate results in terms of
hardware resources and execution time.

Furthermore, it is assumed in the following:

1. Tasks are non-preemptive: in a preemptive resource environment, a running
task can be preempted from execution. Preemption is commonly used in
priority-based or real-time systems. For example, when a pending task A's
deadline is approaching, it is necessary to preempt one running job B, whose
deadline is not as imminent as A's and assign the resource to task A. As a re-
sult of preemption, the scheduling is very complicated. In a non-preemptive
computational resource, preemption is not allowed, i.e., once a task is started
on such a resource, it cannot be stopped until its completion.

2. Only process level parallelism is considered. The application consists of a
set of tasks (processes). Each task can only be assigned to one hardware
module..

3. We assume that the task graph is a single-entry and single-exit one. If there
is more than one exit or entry task, we can always connect them to a zero-
cost pseudo exit or entry task with zero-cost edges. This will not affect the
schedule.

4. The application in the form DAG is known in advance along with task pa-
rameters i.e. for each version corresponding area requirement and time to
execute that task.

5. Each node in the DAG is functional unit at high level functionality imple-
mentation, rather than considering each instruction as node.

Chapter 4. Task Scheduling in RCS Considering Variable Area RL Us 	26

4.1.2 Computing Environment

Computing environment consists of m reconfigurable logic units (RLU) which are
connected to a shared system bus as shown in Fig. 4.1. Each RLU r;, where
i E 1, . .. , m has the parameters such as hardware area ra; and the delay required
to reconfigure the hardware area rdi. For each RLU, the parameters such as area
and reconfiguration delay are known in advance.

4.1.3 Performance Criteria

Before presenting the performance criteria, it is necessary to define a few attributes
used in the algorithm.

• The execution time of task vi on RLU rj is denoted by t;a.
Where,

t j = min{ets}

k E {1,...,q}

etk = oo, if rah < ai,k;

etk = Wi,k, if rai ~ a:,k; 	 (4.1)

Here, q is the no.of versions for task v~;
If v; cannot be processed on rj then ti,, = oo. If two versions have the same
execution time then the version with less hardware requirement is selected.

• We assume that the communication cost c~~~ from task v,, to v3 as a constant
K.

• EST(v~, r~) and EFT(vi , r~) are the earliest execution start time and the
earliest execution finish time of task v on RLU r respectively. The entry
task can start execution at time 0. Other task's EST can be computed by

EST(v~,r~) =max{avail(vi ,r7), 	max{FT(vk,rd,)+ek}}+rdj

vk E pred(v~) (4.2)

where,
avail(v~, r1) is earliest time at which the RLU r3- is. ready for task vg's

Chapter 4. Task Scheduling in RCS Considering Variable Area RLUs 	27

execution;
pred(vz) is the set of immediate predecessor tasks of task v~;
rd j is the time required to reconfigure the RLU j (reconfiguration delay

for r,);

The inner max block in the above Eq. 4.2. is the time that all the data
needed to execute task v on RLU r3 is available, i.e. ready time. This is
obtained by considering all immediate predecessors of task vi, the time they
finish (FT) and the time needed to transfer the data from them.

The EFT is defined by

EFT (vi , rj) = ti,. + EST (v, rj) 	 (4.3)

The schedule length L of the DAG is the actual finish time of the exit task

L = FT(v t) 	 (4.4)

The goal of the proposed scheduling algorithm is to minimize the scheduling length
L.

4.2 Target System Architecture

The proposed scheduling algorithm is developed by considering reconfigurable ap-
plication specific instruction-set processor for software-defined radio architecture

model [1]. The architecture model consists of various reconfigurable logic units and
fixed hardware units, system bus, local bus and shared memory with tightly cou-
pled manner that is shown in Fig. 4.1. Fixed hardware has been divided into two
parts say fixed hardware 1 (FHW1) and fixed hardware 2 (FHW2). Reconfigurable
hardware has been divided into four reconfigurable logic units (RLUs), whenever
tasks are available in the ready queue, the suitable RLU or fixed hardware unit
has been selected.

The scheduler that is shown in the Fig. 4.2 takes the task graph, parameters for
each task and RLU's information as input and produces the list specifying which
task is mapped to which RLU considering RASIP architecture. The scheduler will
select the task to be executed and on which RLU it has to execute. Then, resource
manager accordingly allocates the specified RLU to the specified task. At the same

Chapter 4. Task Scheduling in RCS Considering Variable Area RL Us 	28

External HW 	 I 	I /0 device

General 	Design mapping and I 	State 	I I Resource
controller controller configuration manager IHI 	H 	manager

and monitor 	and scheduler

RAM for 	Fixed H 	Fixed H 	& Zt R& 3 	CPU
storage 	 ~ L °

External HW 	 I 	1 10 device

FIGURE 4.1: RASIP Architecture [1)

time, configuration manager will load the particular version of configuration for
the task from the design library on to the RLU. Also the resource manager keeps
track of information regarding free RLUs. The total time required to execute a
task will also considers the time to reconfigure the hardware.

1-Architecture'., 	RASIP for

	

model 	SDR

	

Input model) Scheduler 	
Algorithm

parameters

Mapping and 	 hardware
Scheduled list 	Reconfgi

allocation of 	of tasks 	
#. ofitLu

Resources

RW I
RLU 2
RLU 7

FIGURE 4.2: Scheduler in RASIP Architecture

Chapter 4. Task Scheduling in. RCS Considering Variable Area RL Us 	29

During the Scheduling process, RLU may be in one of the four possible states:
idle, reconfiguration, task switch (context switch) or execution.

• IDLE state: the RLU is not performing any useful computation

• RECONFIGURATION state: represents the state when the configuration
manager is loading configuration bit stream of the task from the memory to
the RLU i.e., reconfiguring the RLU.

• TASK (CONTEXT) SWITCH state: represents the state when the RLU
must process a new task that uses the same reconfiguration context (task
type) like the one currently loaded in the RLU. Before the new task execu-
tion can start, some registers need to be written which are. required for the
execution of task.

• EXECUTION state: represents the state when DRL device is doing some
useful computation.

The state diagram for the RLU is shown in Fig 4.3. Initially the RLU will be in
idle state. Whenever the scheduler selects a task to be executed on that RLU then,
it may be either in the reconfiguration state or in the task switch state depending
on the task to be executed. If the task to be executed has the same functionality
as the previous task which has been executed on that RLU, then there is no need
of configuring the RLU and directly it can go to the task switch state otherwise
RLU requires the reconfiguration.

oonrigu,anon iwama

conmex¢ loading
Without rewongU,aown

IDLE 	 %(Task Switch

comyiaiaa 	Execution e__— Ready

FIGURE 4.3: RLU State Diagram

During the reconfiguration state, configuration manager loads configuration bit
stream of the task from the memory to the RLU. In the task switch state, all

Chapter 4. Task Scheduling in RCS Considering Variable Area RL Us 	30

the parameters which are required for the execution of task are given. After all
the parameters are passed, RLU enters into the execution state and starts the
execution of the task.

Chapter 5

Scheduling Algorithms Developed
for Variable Area RLUs

In this chapter, scheduling algorithms using greedy heuristic and dynamic pro-
gramming are proposed for the system consisting of variable area RLUs.

5.1 The Greedy Technique

The greedy technique suggests constructing a solution to an optimization prob-
lem through a sequence of steps, each expanding a partially constructed solution
obtained so far, until a complete solution to the problem is reached. On each
step, the choice made must be feasible, locally optimal. Once a local optimum
is picked, it is never changed nor is it re-examined. Greedy techniques require a
correctness proof because there are times when a sequence of local optimums does
not converge to a global optimum. In the next section, a scheduling algorithm
using the greedy heuristic (SGH) is presented.

5.2 SGH Algorithm

SGH algorithm is developed based on static list scheduling algorithm. As with
other list scheduling algorithms, the SGH algorithm has two major stages: a
task prioritizing stage and a RLU selection stage. The first stage computes the

31

Chapter 5. Scheduling Algorithms Developed for Variable Area RLUs 	32

priorities of all the tasks while the second one selects the tasks in the order of
their priorities and assigns each selected task on its most desirable RLU, which
minimizes the task's finish time.

5.2.1 Prioritizing the tasks

This step is essential for list scheduling algorithms. A task processing list is gen-
erated by sorting the task by decreasing order of some predefined rank function.
In this work, level of a node is used as the rank function i.e., using the Highest
Level First (HLF) heuristic of list scheduling to build the priority list of the tasks
because the results of empirical performance studies [25] on list scheduling indicate
that level-based heuristics are best at approximating the optimal schedule. The
level of node vi is the length of the longest path from v; to the exit node. It can
be obtained by recursively traversing the task graph from the exit node with time
complexity O(e+v).

LEV(v;) = max{LEV(v j)}
vj E succ(v~) (5.1)

LEV(v-;t) = 1 	 (5.2)

where, succ(v;) is the set of immediate successors of vt. The sorted list preserves
the precedence constraints among tasks.

5.2.2 Selecting RLUs

In this step, tasks having highest level priority among all the ready tasks are
selected for scheduling. Various criteria have been proposed to select suitable
processor for a task. When scheduling in a homogeneous environment, EST is a
popular choice. While in heterogeneous settings, using EFT as selection criteria
gives better schedules [19]. SGH algorithm searches all the possible mappings to
map the ready task set (T) efficiently on to free RLU set (R) with the objective
of minimizing the schedule length at that stage. Here the selection function is to
minimize the maximum function. For each mapping, maximum function returns
the execution time of the task v;(v; E T), which takes more time than remaining

Chapter 5. Scheduling Algorithms Developed for Variable Area RL Us 	33

tasks in that mapping. Task set T is allocated to R according to the mapping
that minimizes the maximum function.

5.2.3 Pseudo—code

The pseudo-code for SGH algorithm is presented in Alg. 2.

Algorithm 2 SGH()
Build the priority list by computing levels for all tasks by traversing the graph
upward from the exit node
Sort the tasks in decreasing order of their priorities (level)
Initialize the ready queue with the tasks that has no immediate predecessors
repeat

while hardware resources are available && ready queue is not empty do
Sort the ready queue based on their priorities
Get the information about the free RLUs from the Resource manager
Add the ready tasks which are on same level to the task set T
Add the free RLUs to resource set R
for each task v; in T do

for each RLU capable r j in R do
Compute EFT(vz ,r3)

end for
end for
Find an efficient mapping from the available resources R to ready tasks T
that satisfies our objective. This can be achieved by searching all possible
mappings
Scheduler sends the resulted mapping details such as which ready task have
to be allocated to which RLU to the Resource Manger
Then Resource Manager will map the tasks on to the RLUs according to
the mapping details given by Scheduler
Remove the allocated tasks from the ready queue

end while
wait for a RLU free event from Resource manager
Add ready tasks to the ready queue

until all tasks are scheduled
Display the scheduled list

5.2.4 Implementation Details

Functions that are used to implement the SGH algorithm are:

Chapter 5. Scheduling Algorithms Developed for Variable Area RL Us 	34

makePriorityListo: This function builds the priority list of tasks or nodes using
HLF heuristic of List Scheduling algorithm.

sortPriorityListO: Function that sorts the task priority list in decreasing order of
their priorities.

addReadyTasksToQu.eue0: This function adds the ready tasks to ready queue by
checking the precedence constraints among the tasks.

allocateReadyTaskso: This function allocates all ready tasks to available hardware
resources as well as maps the tasks onto the RLUs for execution using greedy
heuristic i,e., local optimization. This function searches the all possible mappings
from available resources to ready tasks and determines the best mapping which
leads to the minimum execution time at that stage or meets our objective. This
function also gets the free RLUs information from the resource manager and sends
the information such as which task has been allocated to which RLU so that
resource manager can keep track of the free RLUs.

5.3 Dynamic Programming

Dynamic Programming (DP) is an important optimization technique. It is effi-
cient in finding optimal solutions for cases with many overlapping subproblems.
It solves problems by successively recombining solutions to subproblems and sub-
subproblems. In order to avoid solving these sub-subproblems several times, their
results are gradually computed and memorized, starting from the simpler prob-
lems, until the overall problem itself is solved. Thus, dynamic programming is
simply memorization of results of a recurrence, so that time is not spent trying to
solve the same subproblem (or problem) repeatedly. Dynamic programming can
only be applied when the problem under concern has •optimal substructure. Opti-
mal substructure means that the optimal solutions of local problems can lead to
the optimal solution of the global problem. In simple terms, that means that the
problem can be solved by breaking it down and solving the simpler problems. Thus
one can say that, dynamic programming makes use of overlapping subproblems,
optimal substructure and memorization.

Dynamic Programming differs from Greedy method in the fact that greedy method
looks at the best possible choice at a particular point and uses it as a kind of local

Chapter 5. Scheduling Algorithms Developed for Variable Area RLUs 	35

optimization. So, it may not generate optimal solution in some cases. Dynamic
programming makes a sequence of decisions rather than step-wise decisions as a
greedy method. In the next section, a scheduling algorithm using the dynamic
programming (SDP) is presented.

5.4 SDP Algorithm

SDP algorithm uses the recursive function to produce the efficient solution to task
scheduling problem for variable area RLUs.

5.4.1 Procedure

The recursive function f takes 2 parameters. First parameter represents the cur-
rent state of all RLUs and the second parameter represents the queue of tasks
waiting to be scheduled for execution. The second parameter is necessary since it
is not possible to schedule all the functions which become candidates for execution
on hardware resources after their precedence constraints are satisfied.

Current state of RLUs consists of which RLU is allocated to which task and at
what time the RLU will complete the execution of that task and is represented by
S.

S = ((vkl, EFT(vkl,rl)),(vk2, EFT(vk2,r2)),...,(vk,, EFT(vkm,r„d))) 	(5.3)

where vjj, i E 11,... , n}, j E {1.....m} is the task that is being executed on jth

RLU.

Current queue consists of list of tasks that are waiting for execution and is repre-
sented by Q.

Q= (v51, v52,...) 	 (5.4)

where vq;, i E {1.n} is the task waiting for execution.

In each call to this function, it tries all the possible mappings of tasks in waiting
queue to available resources and for each mapping it recursively calls this function
with the state of RLUs modified to the selected mapping and queue is modified to

Chapter 5. Scheduling Algorithms Developed for Variable Area RL Us 	36

ready tasks, until all the tasks are scheduled. While backtracking, it chooses the
mapping that takes minimum time to execute.

5.4.2 Pseudo—code

The pseudo-code for recursive function f(S, Q) is presented in Alg. 3

Algorithm 3 SDP()
if Q is empty then

return
end if
for each possible mapping from Q to free RLUs do

Find the task that is going to finish first in selected mapping
Remove that task and make that RLU free
Find the tasks which are ready to execute after the completion of selected
task
Add the ready tasks to the queue Q
Change S of the system to where S represents the selected mapping
Call the function f(S,Q)

end for

5.4.3 Implementation Details

Important functions that are used to implement the SDP algorithm are

Schedule 0: This is base recursive function which takes current state of RLUs and
queue of ready tasks and tries out the all possible mappings to produce the efficient
schedule.

Map(): This function returns the all possible mappings from available resources
set to ready task set.

Best(): This function returns the efficient mapping for a given state of RLUs and
queue, from the stored efficient mappings.

Chapter 6

Conclusions

The Results of the various algorithms developed are compared in this chapter.
The various conclusions and outlook is discussed.

6.1 Discussion of Results

To compare the proposed SDP algorithm, three more algorithms are developed
in SystemC language. These algorithms are based on static list scheduling and
prioritize the tasks using HLF method. The tasks on the same level are selected
randomly for scheduling. The differences among three algorithms are in allocating
the RLU for the selected task. The selected task is allocated to the large RLU
(larger area fit) or to the small RLU (smaller area fit) or to the best RLU (best
area fit) from the available RLUs. Here best RLU is in terms of execution time.

Performance comparison of Algortihms

Here we present a performance comparison of all algorithms, using execution time
as parameter. For this purpose, a set of task graphs [26] as the workload for
testing the algorithms is considered. The set contains regular task graphs rep-
resenting various parallel algorithms and also synthetic task graphs representing
commonly encountered algorithmic structures. The parallel algorithm considered
is fast fourier transform (FFT) and synthetic task graphs include mean value anal-
ysis, cut-tree and fork-join.

37

Chapter 6. Conclusions 	 38

1le- 	.sc: 	1:lPrrV 	.nir1rnn 	*S7flFfl.uIl

gN

I

FIGURE 6.1: Performance comparison of developed algorithms for FFT task
graph

— is.J Isn'1 	 u-rorrar1.

FIGURE 6.2: Performance comparison of developed algorithms for mean value
task graph

Chapter 6. Conclusions 	 39

.ise- 	Is1: 	 1!ir1reIr

lUi

FIGURE 6.3: Performance comparison of developed algorithms for cut-tree task
graph

ii

iIIi1U]ii !IFL1
FIGURE 6.4: Performance comparison of developed algorithms for fork-join task

graph

The execution times of the developed algorithms for all the above task graphs are
shown in Fig. 6.1 to Fig. 6.4. Execution times for the task graphs are obtained by

6. Conclusions 	 40

varying number of RLUs in the system.

In this thesis, a scheduling algorithm for reconfigurable System-on-Chip with vari-
able area RLUs was developed using dynamic programming by considering the
RASIP architecture [1]. This approach was an integrated approach which consid-
ers both scheduling and mapping of tasks together. The comparison shows that
SDP algorithm always gives the best schedule minimizing the execution time when
compared with the other developed algorithms. The Greedy heuristic (SGH and
Best area fit) algorithms also produces a better schedule in almost all cases but
lesser in number than the former. This is because the SDP algorithm searches
the global optimal solution rather than local optimal solution as done by Greedy
heuristic.

6.2 Suggestions for future work

There is a lot of scope for future work based on the work done in this thesis. These
can be enumerated as follows:

1. The algorithms developed to perform scheduling can be integrated with the
Design Library of the RASIP Architecture [1] which forms an integral part
of this architecture.

2. In the algorithm developed, the tasks considered require lesser area than the
maximum of the individual RLUs available. This algorithm can be extended
to the tasks which requires more area than the maximum of individual RLUs.

3. Only Directed Acyclic Graphs are considered as input, this algorithm can
also be modified to make it applicable for Directed Cyclic Graphs too.

Bibliography

[1] K. Solomon Raju, Chandra Shekhar and R. C. Joshi, "Design of Architec-
ture and Instruction-set of RASIP for SDR," International Conference on
Advanced Computing and Communications (ADCOM 2006), NIT Surathkal,
December 2006, India.

[2] K. Bondalapati, V. Prasanna, "Reconfigurable Computing systems," Pro-
ceedings of IEEE, vol. 90, no. 7, pp.1201-1217, July 2002.

[3] R. Hartenstein, "The Microprocessor is no more General Purpose: why Fu-
ture Reconfigurable Platforms will win; invited paper," Proceedings of Inter-
national Conference on Innovative Systems in Silicon, ISIS'97, Austin, Texas,
USA, October 8-10, 1997.

[4] A. Shrivastava and M. Kumar, "Optimal Hardware/Software Partitioning for
Concurrent Specification using Dynamic Programming," International con-
ference on VLSI design, pp. 110-113, 2000.

[5] J. Noguera and R. M. Badia, "Dynamic run-time 11W/SW scheduling tech-
niques for reconfigurable architectures," in Proceedings of the Tenth Interna-
tional Symposium on Hardware/Software Co-design, 2002.

[6] O. Diessel, H. ElGindy, M. Middendorf, H. Schmeck, and B. Schmidt, "Dy-
namic scheduling of tasks on partially reconfigurable FPGAs," in IEE Pro-
ceedings - Computers and Digital Techniques, 2000.

[7] J. Noguera and R. M. Badia, "Multitasking on Reconfigurable Architectures:
Microarchitecture Support and Dynamic Scheduling," ACM Transactions on
Embedded Computing Systems, vol. 3, pp. 385-406, May 2004.

[8] I. Ouaiss, S. Govindarajan, V.Srinivasan, M. Kaul and R.Vemuri, "An In-
tegrated Partitioning and Synthesis system for Dynamically Reconfigurable
Multi-FPGA Architectures," 5th Reconfigurable Architectures Workshop,
1998.

[9] M. Vasillco and D. Ait-Boudaoud, "Architectural synthesis techniques for
dynamically reconfigurable logic," in Proc. 6th Int. Workshop Field- Pro-
grammable Logic and Applications FPL'96, Darmstadt, Germany, pp. 290-
296, Sept. 1996.

41

Bibliography 	 42

[10] M. Vasilko D, Ait-Boudaoud, "Scheduling for dynamically reconfigurable FP-
GAs," in Proc.Int. Workshop on Logic and Architecture Synthesis, Grenoble,
France, pp. 328-336, Dec. 1995.

[11] K. M. GajjalaPurna and D. Bhatia, "Temporal partitioning and scheduling
for reconfigurable computing," Proceedings of IEEE Symposium on FPGAs
for Custom Computing Machines, pp. 329-330, 1998.

[12] M. Kaul and R. Vemuri, "Optimal temporal partitioning and synthesis for
reconfigurable architectures," in Proc. Design, Automation, and Test in Eur.
(DATE), Paris, France, pp. 389-396, Feb. 1998.

[13] Meenakshi Kaul, Ranga Vemuri, "Temporal partitioning combined with de-
sign space exploration for latency minimization of run-time reconfigured de-
signs," in Proc. Design, Automation, and Test in Eur. (DATE), Munich,
Germany,. pp. 202-209, Mar. 1999.

[14] M. Kaul, R.Vemuri, S. Govindarajan, and I. Ouaiss, "An automated temporal
partitioning and loop fission approach for FPGA based reconfigurable synthe-
sis of DSP application," in Proc. Design Automation Conf. (DAC), Atlanta,
GA, pp. 616-622, Oct. 1999.

[15] Rafael Maestre, Fadi J. Kurdahi, Milagros Fernndez, Roman Hermida, Nader
Bagherzadeh, and Hartej Singh, "A Framework for Rcconfigurable Comput-
ing: Task Scheduling and Context Management," IEEE Transactions on VLSI
Systems, vol. 9, no. 6, pp 858-873, December 2001.

[16] Hartej Singh, M.Lee, Fadi J. Kurdahi, and'Nader Bagherzadeh, "MorphoSys:
An Integrated Reconfigurable Architecture," Proc. of the NATO Symposium
on System Concepts and Integration, Monterey, CA, April 1998.

[17] Y.-K. Kwok and I. Ahmad, "Benchmarking and comparison of the task graph
scheduling algorithms," Parallel Distrib. Comput., 59(3):381-422, 1999.

[18] Y.-K. Kwok and I. Ahmad, "Static scheduling algorithms for allocating di-
rected task graphs to multiprocessors," ACM Computing Surveys (CSUR),
vol. 31, pp. 406-471, 1999.

[19] H. Topcuoglu, S. Hariri, and M.-Y. Wu, "Performance-effective and low-
complexity task scheduling for heterogeneous computing," IEEE Trans. Par-
allel Distrib. Syst., 13(3):260-274, 2002.

[20] T. L. Adam, K. M. Chandy, and J. R. Dickson, "A comparison of list schedules
for parallel processing systems," Commun. ACM, 17(12):685-690, 1974.

[21] J.-J. Hwang, Y.-C. Chow, F. D. Anger, and C.-Y. Lee, "Scheduling prece-
dence graphs in systems with interprocessor communication times," SIAM J.
Comput., 18(2):244-257, 1989.

Bibliography 	 43

[22] A. Radulescu and A. J. C. Van Gemund, "Fast and effective task scheduling
in heterogeneous systems," In HCW '00: Proceedings of the 9th Heteroge-
neous Computing Workshop, page 229, Washington, DC, USA, 2000. IEEE
Computer Society.

[23] H. Topcuoglu, S. Hariri, and M.-Y. Wu, "Performance-effective and low-
complexity task scheduling for heterogeneous computing," IEEE Transactions
on Parallel Distributed Systems, vol. 13(3), pp 260-274, 2002.

[24] T. Wiangtong, P.Y.K. Cheung, W. Luk, "Cluster-Driven Hardware/Software
Partitioning and Scheduling Approach for a Reconfigurable Computer Sys-
tem," Field-Programmable Logic and Applications (FPL), pp. 1071-1074,
2003.

[25] L. Adam, K. M. Chandy, and J. R. Dickson, "A comparison of list schedules
for parallel processing systems," ACM Transactions, - VOL 17, pp.685-690,
1974.

[26] I. Ahmed and Kwok, "Dynamic Critical-Path Scheduling: An Effective Tech-
nique for Allocating Task Graphs to Multiprocessors," IEEE Transaction on
Parallel and Distributed Systems, vol. 7, 1996.

[27] David C.Black and Jack Donovan, "SystemC from the ground," Kluwer Aca-
demic Publishers, Boston, 2004.

[28] J.Bhasker, "A SystemC Primer," Star Galaxy Publishers, USA, 2004.

[29] www.systemc.org

[30] www.xilinx.com

Appendix A

Code Listing

Main.cpp:

#include<systemc.h>
#include" driver .h"
#include"rmgr.h"
#include"functions.h"
#include"schedular.h"
#include<iostream>
#include<string>

sc_event allocate_RLU;
sc_event RLU_allocated;
sc_event RLU_free;
sc_event free_RLU1;
sc_event free_RLU2;
sc_event free_RLU3;

int sc_main (int argc,char* argv[]) {
sc_clock t_clk("clk",10,SC_NS);
sc_signal<int> t_noSarea,t_noTask,t_noNext[48],
t_nextlD[48][48],t_noVersions;
sc_signal<float>t_task[48][10][2];
sc_signal<float>t_sArea[10][3];
sc_signal<int>t_noCtask;
sc_signal<float>t_cTask[48][6];
sc_signal<bool>t_t[48];
sc_signal<int>t_tl[48][2];
int i,j;

rmgr r("Read informationg Regarding RLU's");
r.r_clk(t_clk);

44

Code 	 45

r. r_noSarea(t_noSarea);
for(i=0;i<10;i++)
{

r . r_sArea [1] [0] (t_sArea [i] [0]) ;
r. r_sArea[i][1](t_sArea[i][1]);
r.r_sArea[i] [2] (t_sArea[i] [2]);

}
for(i=0;i<48;i++)
{

r . r_t Li] (t_t [i])
r.r_ti [i] [0] (t_t1 [i] [0])
r. r tl [i] [1] (t_tl [i] [1]) ;

}
r.r_noCtask(t_noCtask);
for(i=0;i<48;i++)
{

for(j=0;j<6;j++)
r.r_cTask[i] [j] (t_cTask[i] [j]);

}
driver d("Read TaskGraph");
d.d_clk(t_clk);
d.d_noTask(t_noTask);
d. d_noVersions(t_noVersions);
for(i=0;i<48;i++)
{

for(j=0;j<10;j++)
{

d.d_task[i] [j] [0] (t_task[i] [j] 10]);
d.d_task[i] [j] [1] (t task[i] [j] [1]);

} 	.
for(i=0;1<48;i++)

d. d_noNext[i](t noNextLi]);
for(i=0;i<48;i++)
{

for(j=0;j<48;j++)
d.d_nextlD[i] [j] (t_nextlD[i] [j]);

}
schedular sh("Allocate");
sh.clk(t_clk);
sh.noSarea(t_noSarea);
for(i=0; i<10; i++)
{

sh. sArea [i] [0] (t_sArea[i] [0]) ;
sh.sArea[i][1](t_sArea[i][1]);
sh.sArea[i] [2] (t_sArea[i] [2]);

}

Code 	 46

sh.noTask(t_noTask);
sh.noVersions(t_noVersions);
for(i=0;i<48;i++)
{

for(j=0;j<10;j++)
{

sh.task[i] [j] [0] (t_task[i] [j] [0]);
sh.task[i] [j] [1] (t_task[i] [j] [l]);

}
}

for(i=0;i<48;i++)
sh.noNext [i] (t_noNext Li]);

for(i=0;1<48;i++)
{

for(j=0;j<48;j++)
sh.nextlD[i] [j] (t_nextlD[i] [j]);

}

sh.noCtask(t_noCtask);
for(i=0;i<48;i++)
{

for(j=0;j<6;j++)
sh.cTaskLi] [j] (t_cTask[i] [j]);

}

functions f("functionss");
for(i=0;i<48;i++){

f . f_ti [i] [0] (t_tl [i] LO]);
f . f_ti [i] [1] (t_tl [i] [1]) ;
f.f_tLi] (t_t[i]);
//f.f_timeLi] (t_task[i] [i]);

}

f. f_noCtask(t_noCtask);
for(i=0;i<48;i++)
{

for(j=0;j<6;j++)
f.f_cTask[i] [j] (t_cTask[i] [j]);

}

sc_start(100,SC_NS);
sc_close vcd_trace_file(tfile);
return 0;

}

Driver.cpp:

#include"driver.h"
#include <iostream>
#include <fstream>
#include <string>

Code
	

47

void driver::prc_driver() {

wait(5,SC_NS);
int t_noTask,t_noNext [48] ,t_nextlD [481 [48] ,next ,t_noVersions;
float t_task[48] [10] [2]
int i,j;

fstream infile;
infile.open("taskGraph.txt",ios::in);
if (infile. fail 0)
{

cout << "*****Error in Opening the File Task graph****";
sc_stop 0;

}

infile >>t_noTask;
infile >>t_noVersions;
for(i=0; i<t_noTask; i++)
{

for(j=0;j<t noTask;j++)
d_nextlD[i] [j]=0;

}
d_noTask=t_noTask;
d_noVersions=t_noVersions;
for(i=0; i<t_noTask; i++)

-C
for(j=0; j <t_noVersions ; j ++)
{

infile>>t_task[i] [j] [0]
infile>>t_task[i] [j] [1];
d_task[i] [j] [0]=t_task[i] [j] [0]
d_task[i] [j] [i]=t_task[i] [j] [1]

} -
infile>>t_noNext [i]
d_noNext [ii =t_noNext[i];

for(j=0;j<t_noNext[i];j++)
-C

inf i l e>>next ;
d_nextlD[i] [next-1] =1;

}

Code
	

48

Rmgr.cpp:

#include"rmgr.h"
#include <iostream>
#include <fstream>
#include <string>
#include<conio.h>
int maxarea;

void rmgr::prc_readRLU()
{

int i,t_noSarea;
float t_sArea[10][3];
maxarea=0;

fstream filel;
filei.open("rlu.txt",ios::in);
if (filei.failO)
{

tout << "******Error in Opening the File RLU******";
sc_stop();

}

filel»t noSarea;
r noSarea=t_noSarea;
for(i=0; i<t_noSarea;i++)
{

filel>>t_sArea[i] [0]
filel>>t_sArea[i] [2]
r_sArea[i][0]=t_sArea Li] [0];
r_sArea[i][l]=0;
//r_sArea [1] [2] =0;
r_sArea[i] [2]=t_sArea[i] [2]
if(t_sArea[i][0]>maxarea)
maxarea=t_sArea[i][0];

}

wait(S,SC NS);
}

void rmgr::prc_allocateRLU()
{

while(1)
{

wait(allocate_RLU);
int i;
//cout«°\n*******PROCEDURE allocateRLU started";
for(i=0; i<r_noCtask;i++)
{

if (r_cTask [i] [2] ==0)

Code 	 49

{
r_sArea[(int)r_cTask[i][1]][1]=r_cTask[1][0]+1;
r_t[(int)r_cTask[i] [0]]=1;
r_tl[(int)r_cTask ti] [0]][0]=r_cTask[i][1]+1;
r_tl[(int)r_cTask[i] [0]] [1]=i;
r_cTask[i][4]=sc_time_stamp()
.to_default_time_units()-sim_time;
r_cTask[i][2]=2;//0-scheduled

//1-completed
//2-resource allocated

}
}'

RLU_allocated.notify(SC_ZERO_TIME);
//cout<< \n*******PROCEDURE allocateRLU ended";

}
}
void rmgr::prc_freeRLU1()
{

while(1)
{

wait (free_RLUi);
//cout<< \n*******PROCEDURE freeRLUl started";
int i;
r_sArea [0] [1] =0;
//cout<< \n*******PROCEIIURE freeRLUl ended";
RLU_free.notify(SC_ZERO_TIME);

}
}
void rmgr::prc_freeRLU2()
{

while(1)
{

wait (free RLU2);
//cout<< \n*******PROCEDURE freeRLU2 started";
int i;
r_sArea[1][1]=0;
//cout<<"\n*******PROCEDURE freeRLU2 ended";
RLU_free.notify(SC_ZERO TIME);

}
}
void rmgr::prc_freeRLU3()
{

while(l)
{

wait(free_RLU3);
//cout«°\n*******PROCEDURE freeRLU3 started";
int i;

Code Listing 	 50

r_sArea(2](11'O;
1/tout«"\n****s**Pk0CEDURE fr•.RL1T3 ended";
RLO_free.uotiiy(SC_ZEM TT=);

}
}

Schedular.cpp: 	 ~h

#include"scheduler. h" ~ ~
#include <iatres
#lcludKCOnio.h>
**dude <fstrear>
#include <strixe
double sia ti ioi 	#lops-

Rat Beet::operator-(int pox)
{

int i;
Beet ri;
r1.noR-noR-1;
for(i-0;i<pos;i++)

ri.R(i]-R(i] ;
Ior(i-pos;i<noR-1;1++)
{

ri.R(i].A(i+i];
3.
return rl;

}
Test Tset::operator-(int pos)
{

int i;
Test ti;
t1.noT-noT-1;
for (i0;i<pos;itt)

ti.T(WW l'(i);
for(iepos;i<.tOT-1;i++)
{

t1. T (i] =T (i+i] ;
}
return ti;

}
void scheduler: :prc_initialise O
{

vait(sim_tiae9C);
/lcout<c•\ns*sssssfROCEDURE initialise started"'
int i,j;

Code 	 51

tout«"\n\n*************************************,
cout<<"\n\n\t\t\t\tSILICON AREAS";

tout<< \n\n\t\tArea\tReconfiguration Delay";
for(i=0;i<noSarea;i++)

cout<<\n\nRLU "«i+1«": \n\t\t"<<sArea[1] [0]
«"\t"<<sArea[i] [2]

cout<< \n\n\t\t\t\tTASK GRAPH";

for(i=0;i<noTask;i++)
{

cout<<"\n\n\t\t\t\tDetails of TaskID: "<<i+i;

for(j=0;j<noVersions ; j++)
{

cout<<\n\nVersion (<j+1<(":
cout<<\n\n\t\tArea 	: ,<<task[i1 [j] [01;
cout<<"\n\n\t\tExecution time : "<<task[i] [j] [1] ;

}
}
getch();
cout<<"\n\n\t\tTASK ADJACENCY MATRIX\n\n";
for(i=0;i<noTask;i++)

c out «" \t " <<i+1;
for(i=0;i<noTask;i++)
{

for(j=0;j<noTask;j++)
cout<<nextlD [i] [j] <<"\t" ;

cout<<\n" ;
}

getch();
//Initialisation
noCtask=0;
noQ=O;
makePriorityList0 ;
sortPriorityList 0;
prc_allocationO;

}
void schedular::prc_allocation()
{

cout<<"\n\n****SCHEDULING & ALLOCATION OF TASKS*****\n\n";
addReadyTaskstoQueue 0;
int i,j;

Code
	

52

do
{

for(;;)
{

if(resourcesAvailable() && noQ>O)
{

if(allocateReadyTaskO);
else break;

}

else
break;

}

wait(RLU_free);
addReadyTaskstoQueue();

}while (noCtask!=noTask);
wait () ;

cout<<"\n\n\t\tSCHEDULED LIST CF TASKS";
tout<<"\n\n********************************";
cout<<"\n\n\tTasklD\tRLU ID\tTime\tSTime\tETime";
for(i=0;i(noCtask;i++)
{

cout<<"\n\n\t"<<cTask[i] [0]+1<<"\t"<<cTaskIi] [1]+1«"\t"
<<cTask [i] [3] <<"\t <<cTask [i] [4] <<"\t <<cTask [i] [5]

}

getch();
area_used();

}

void schedular::addReadyTaskstoQueue()
{

int level=0;
for(int i=0;i<noTask;i++)
{

if (isReady (List [i] [0]) && List [i] [2] ==0)
{

if (level= =0) level=List [i] [1]
readyQueue[non][0] =List Li] [0];
readyqueue[noq][1]=0;
readyQueue [noQ++] [2] =List [i] [1:1;
List[i] [2]=1;

}
}

void schedular::deleteTaskfromqueue(int TID)
{

int pos;

Code
	

53

for(int i=0;i<noQ;i++)
{

if(TID==readyQueue [ii [0])
pos=i;

}
for(int i=pos;i<noQ-1;i++)
{

readyQueue [i] [0] =readyQueue [i+1] [0] ;
readyQueue[i][1]=readyqueue[i+i][1];
readyqueue[i][2]=readyQueue[i+1][2];

}

}
void schedular: :makePriorityListO
{

int i,j,level;
level=l;
for(i=0;i<noTask;i++)
{

for(j=0;j<3;j++)
List [1] [j]=0;

}
for (i=0;i<noTask;i++)
{

if (noNext [i] ==0)
{

List Li] [0]=i;
List [i] [i] =level;

:J-
}
int cond=0;
do
{

cond=0;
for(i=0;i<noTask;i++)
{

if (List [i] [1] ==level)
{

for(j=0;j<noTask;j++)
{

if(nextlD[j] [List [1] [0]]==1)
{

List[j] [0]=j;
if (List [j] [i] <(level+l))

List [j] [1]=level+l;
cond=l;

}

[I] [t] anenbFpeas-dmaq

dmeq=[0] [1]en9nbfpez
[0] [C]anenbAPe9a=[0] [T]ananbRpeai

[0] [z] enanpfpaez=dmaq
dmag qut

}
([Z] [C] enenpfpea.x> [Z] [T] enanpApea.I);r

}
(++C'pou>C:I+T=[Vut)zo;

}
(++t`bon>z:0=t 2ut),IO;

}
()fqzzoz.zduopesaganenp~tpsa,dgaos::am npapos pton

{

{
[I] [TI St I>> \>>T+ [0] [TI c7» q\n\ >>gnoo

}
(++t s2you>z:0=T qui)10;

t OtXdD.\QI)SEyq\u\u\„»3noo
• -----------------------------------4\n\,~»gnoo
'„gdezOxsey aqq do; I-Si'Z A!lTaOTSd!\II\u\„»gnoo

{
{

dm=[T] [[]9,971

CI] C[] IST'I=[T] [T] gst7
[I] [T] 	=dmq
dm[O] [C] - T1

` [0] [C] 9,STZ=[O] [T] ~sT1

[0] UT] i=dma~

! dmaq WT
}

(CI]. C[] qsT 1> [I] [z] -sTq) ?
}

(++C'xseyou>C:I+T=C TUT)=o;

}
(++L`.)tSE,LOT>Z:Q=T q-'T)3°

}
()9,stZ~!IT-IOTadq.zos::xe npaips peon

{
(1==puoD)ejiW{

!++Zanat
{

{
{

f,g 	 Lux~s27 apo9

Code Listina 	 55

readyQueue[i] [1]=readyQueue[j] [1];
readyQueue[j][1]=temp;

temp=readyQueue [i] [21;
readyqueue[i][2]=readyQueue[j][21;
readyqueue[j] [2]=temp;

}
}

}
}
float schedular::getRLU(int TID,int RLUid)
{

int cond=O;
int ID;
for(int i=0;i<noQ;i++)
{

if(readyQueue[i][0]==TID)
ID=i;

}
for(int i=0; i<noVersions; i++)
{

if (task [readyqueue [ID] [0]] [i] [0] <=sArea [RLUid] [0])
{

if(cond==0)
{

cond++;
readyQueue [ID] [1] =i ;

}
else if(task[readyqueae[ID][0]]
[readyQueue [ID] [1]] [1] >task [readyQueue [ID] [0]] [i] [1])

readyQueue [ID] [1] =i ;
else if(task[readyQueue[ID][0]]
[readyQueue [ID] [1]] [1] ==task [readyQueue [ID] [0]] [i] [1]
&& task [readyQueue[ID][0]]
[readyqueue [ID] [1]] [0] >task [readyQueue [ID] [0]] [i] [0])

readyqueue[ID] [1]=i;
}

}
if(cond>0)

return task [readyqueue [ID] [0]] [readyQueue [ID] [1]] [1] +sArea [RLUid] [2]
else

return -1;
}
float schedular::gen(Rset rs,Tset ts,int pos)
{

int i,j;
float maxv=-1;

Code 	 56

//cout<< \nfun called with noR="<<rs.noR<< and noT="<<ts.noT;
if(rs.noR==O II ts.noT==O)
{

maxv=-l;
for(i=0;i<notS;i++)
{

//cout«°\n\t\t"<<turps [i] [0] <<\t"<<tmps [i] [1];
maxv=max (maxv, c [turps [i] [0]] [tmps [i] [1]]);

}
if((minv==200.0 II minv>maxv) && maxv>0)
{

for(i=0;i<notS;i++)
{

s Ci] [0] =turps [i] [0] ;
s [i] [1] =turps [i] [1]

}
noS=notS;
minv=maxv;

}
return -1;

}
else if(rs.noR<ts.noT)
{

for (j=0;j<ts.noT;j++)
{
tmps [pos] [0] =rs . R [0] ;
turps [pos] C17=ts.TCj]
notS=pos+1;
float cost=c[rs.R[0]][ts.T[j]];
gen(rs-0,ts-j,pos+1);

}
}
else
{

for (i=0;i<rs.noR;i++)
{
tmps[pos] [0]=rs.R[i];
tmps[pos] [1]=ts.T[O];
notS=pos+1;
float cost=c[rs.R[i]][ts.T[0]];
gen(rs-its-0,pos+1);
}

}
return maxv;

}
int scheduler:: allocateReadyTask()
{

Code 	 57

int i,j;
notS=noS=O;
minv=200.0;
Rset rs;Tset ts;
int R [48] , T [48] ;
rs.noR=O;
for(i=0;i<noSarea;i++)
{

if(sAreaIi] [1]==0)
{

rs.R[rs.noR]=rs.noR;
R[rs.noR++]=i;

}
cout<<"\n\n --------------1.
cout<< \nI 	\\";
cout<<"\nl 	INPUT 	\\";
cout<<'\nl 	/";
cout<<\n I 	 /" ;
cout<< \n ---------------"•
cout<<"\n\n\tFREE RLUs: \n";
for(i=0;i<rs.noR;i++)

cout<<"\n\t\t"<<R [i] +1;
sortReadyQueuebasedonPriority();
int level=readyQueue [0] [2];
ts.noT=O;
for(i=0;i<noQ;i++)
{

if (readyQueue [i] [2] >=level)
{

ts.T[ts.noT]=ts.noT;
T[ts.noT++]=readyQueue[i][0];

}
cout<<\n\n\tTASKS:
for(i=0;i(ts.noT;i++)

cout<<\n\t\tTasklD: "<<T[i]+1;
//calculating cost matrix rows-resourses and cols-Tasks
for (i=0;i<rs.noR;i++)
{

for(j=0;j<ts.noT;j++)
c[i] [j]=getRLU(T[j],R[i]);

}
cout<< \n\n\tCOST matrix: \n";
cout<< \n\t\tTasklD \t";
for(i=0;i<ts.noT;i++)

cout<<"\t"<<T[i]+1;

Code Listing 	 58

for(i=0;i<rs.noR;i++)
{

cout<<"\n\n\t\tRLU "<<R[i]+1«"\t\t";
for(j=O;j<ts.noT;j++)

cout<<c[i] [j]«"\t";
cout<c"\n" ;

get ch O ;
gen(rs,ts,O);

cout << \n\n\t\t\t\t\t\t -------------"
cout<<"\n\t\t\t\t\t\tl 	 \\";
coot<<"\n\t\t\t\t\t\tl 	OUTPUT 	\\";
cout<<"\n\t\t\t\t\t\tl
cout<<"\n\t\t\t\t\t\tI 	/";
coot« "\n\t\t\t\t\t\t --------------
cout<<"\n\n\tBEST WAY OF ALLOCATING THE
READY TASKS ONTO THE FREE RLUs is: \n";
if (noS==1 && c [s [0] [0]] [s [0] [ii] -1)

return 0;
for(i=O;i<noS;i++)
{

//cout<<"\n\t\t"<<s [i] [0] <<"\t"<<s [i] [1]
cTask [noCtask] [0] =T [sill] [S]] ;
cTask [noCtask] [1] =R [s [i] [0]]
cTask [noCt ask] [2]=0;
cTask [noCtask] [3] =c [s [i] [0]] Es [i] [1]]

noCtask=noCtask+l;

allocate_RLU.notify(SC-ZERO_TIME);
wait(RLU_allocated);

getchO ;
for(i=0;i<noS;i++)

deleteTaskfromQueue (Tile [i][1]]);
return 1;

}

int schedular: : resourcesAvailable 0
{

for(int i=0; i<noSarea; i++)
{

if(sArea[i] [1]==0)
return 1;

}

return 0;

Code 	 59

int schedular::isTaskScheduled(int ID)
{

for(int i=0;i<noCtask;i++)
{

if(cTask[i] [0] 1D)
return 1;

}
return 0;

}
int schedular::isReady(int ID)
{

for(int i=0; i<noTask; i++)
{

if (nextlD [i] [ID] ==1)
{

if (isTaskScheduled (i) ==0)
return 0;

else if(isTaskScheduled(i)==1)
{

if(isTaskCompleted(i)==0)
return 0;

}
}
return 1;

}
int scheduler::isTaskCompleted(int ID)
{

for(int i=0;i<noCtask;i++)
{

if (cTask [i] [0] ==ID && cTask [i] [2]==l)
return 1;

}
return 0;

}
void schedular::area_used()
{

int *count=new int[noSarea];
int i;
for (i=0;i<noSarea;i++)

count [i]0;
for (i=0; i<noCtask; i++)
{

count[(int)cTask[i] [1]]++;
}
cout<<'\n\n\tArea\tNo.of Times Used";
for (i=0;i<noSarea;i++)

Code Listing 	 60

cout<<"\n\n\tRLU "<<i+i«"\t"«count [i] ;

	Title
	Abstract
	Chapter1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Bibliograpy
	Untitled

