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ABSTRACT 

A Mobile AdHoc Network (MANET) is a collection of mobile nodes that can 
communicate with each other using multihop wireless links without utilizing any fixed 

based-station infrastructure and centralized management. Each mobile node in the 

network acts as both a host generating flows or being destination of flows and a router 

forwarding flows directed to other nodes. 

Multipath routing allows the establishment of multiple paths between a single source and 

single destination node. It is beneficial to avoid traffic congestion and frequent link 
breaks in communication because of the mobility of nodes. It results in an increased 

delivery ratio, smaller end-to-end delays for data packets. This work proposes an On-
Demand Multipath Routing protocol with load balancing (ODMRLB) to find multiple 
node-disjoint paths and to distribute the traffic efficiently among the available routes. 

Simulation results show that the proposed protocol achieves higher packet delivery ratio 

and smaller end-to-end delay than NDMR and DSR. 
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Chapter 1 	 Introduction and Problem Statement 

1.1 Introduction 

A mobile ad hoc network (MANET) is an infrastructure less network consisting of a set 
of mobile nodes that are able to communicate with each other in a multi hop manner 
without the support of any base station or access point. A node in a MANET is not only a 
node but also a router that is responsible of relaying packets for other nodes. A MANET 
has the merit that it is quickly deployable. Applications of MANETs include 
communications in battlefields, disaster rescue operations, and outdoor activities. 

1.2 Problem Statement 

Since bandwidth may be limited in a wireless network, routing along a single path may 
not provide enough bandwidth for a connection. However, if multiple paths are used 
simultaneously to route data, the aggregate bandwidth of the paths may satisfy the 
bandwidth requirement of the application. Also, since there is more bandwidth available, 
a smaller end-to-end delay may be achieved 

On-demand routing protocols in particular, are widely studied because they consume less 
bandwidth than proactive protocols. Ad Hoc On-demand Distance Vector (AODV) [1] 
and Dynamic Source Routing (DSR) [2] are the two most widely studied on-demand ad 
hoc routing protocols. Previous work [3, 4, 5] has shown limitations of the two protocols. 
The main reason is that both of them build and rely on a unipath route for each data 
session. Whenever there is a link break on the active route, both of the two routing 
protocols have to invoke a route discovery process. On-demand multipath routing 
protocols can alleviate these problems by establishing multiple paths between a source 
and a destination in a single route discovery. A new route discovery is invoked only when 
all of its routing paths fail or when there only remains a single path available. 
Node-Disjoint Multipath Routing Protocol (NDMR) reduces routing overhead 
dramatically and achieves multiple node-disjoint routing paths. NDMR [6] also uses only 

one path at a time. 
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The aim of this dissertation work is 

• To study the various routing protocols existing for MANETs, 

• Analyze some of the proposed multipath routing techniques, and 

• To provide an efficient multipath routing mechanism for utilizing the available 
bandwidth effectively and balancing the load . 

This consists of simulating the protocol for performance analysis. 

1.3 Organization of Report 

Chapter 2 presents overview of routing in adhoc networks i.e discusses existing unipath and 
multipath routing protocols. 
Chapter 3 describes the proposed multipath routing algorithm for finding multiple node-
disjoint paths and traffic distribution among the routes. 
Chapter 4 discusses about simulation of the protocol in the Global Mobile Information 
System Simulator (GloMoSim)[7]. 

Chapter 5 discusses about the simulation results obtained under varying the maximum 
speed of the nodes and number of sources. 
Chapter 6 summarizes the contributions of dissertation followed by the scope for the 

future work. 
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Chapter 2 	 Routing in Mobile Ad hoc Networks 

This chapter provides background and describes related research efforts and existing 
problems in ad hoc routing protocols. Section 2.1 gives a general introduction about ad 
hoc networks. Section 2.2 explains several important concepts, including proactive versus 
reactive routing approaches and hierarchical routing. Section 2.3 describes some typical 

ad hoc proactive routing protocols. Section 2.4 presents several typical ad hoc reactive 
routing protocols. Section 2.5 provides a review of current on-demand multipath routing 
protocols in wireless ad hoc networks. 

2.1 Ad hoc Networks 

There are two architectures that allow two wireless stations to communicate with each 

other. The first one relies on a third fixed party i.e a base station that will hand over the 
offered traffic from a station to another, as illustrated in Figure 2.1. This same entity will 
regulate the allocation of radio resources. When a source node wishes to communicate 
with a destination node, the former notifies the base station, which eventually establishes 
the communication with the destination node. At this point, the communicating nodes do 
not need to know about the route from one to the other. All that matters is that both 
source and destination nodes are within the transmission range of the base station; if one 
of them loses this condition, the communication will abort. 

The second approach, called ad-hoc, does not rely on any stationary infrastructure. All 
nodes in ad hoc networks are mobile and can be connected dynamically in an arbitrary 

manner. Each node in such networks behaves as a router and takes part in discovery and 
maintenance of routes to other nodes. 
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Figure 2.1 Illustration of the infrastructure network model 

Figure 2.2 Illustration of the infrastructure-less networks 

Figure 2.2 illustrates a simple 3-node ad-hoc network. In this figure, a source node S 
wants to communicate with a destination node D. S and D are not within transmission 
range of each other. Therefore, they both use the relay node R to forward packets from 
one to another. R functions as a host and a router at the same time. By definition, a 
router is an entity that determines the path to be used in order to forward a packet towards 
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its final destination. The router chooses the next node to which a packet should be 
forwarded according to its current understanding of the state of the network. 

Wireless ad hoc networks can be broadly divided into two categories: quasi-static and 
mobile. In a quasi-static ad hoc network, nodes are static or portable. However, due to 

power controls and link failures, the resulting network topology may be dynamic. A 
typical sensor network [8] is an example of a quasi-static ad hoc network. In mobile ad 
hoc networks (MANETs), the entire network may be mobile, and nodes may move 

quickly relative to each other. A major technical challenge in a MANET is the design of 
efficient routing protocols to cope with the rapid topology changes. 

2.2 Routing Classification in Ad Hoc Networks 

Routing in wireless ad hoc networks is clearly different from routing found in traditional 
infrastructure networks. Routing in ad hoc networks needs to take into account many 

factors including topology, selection of routing path and routing overhead, and it must 
find a path quickly and efficiently. Ad hoc networks generally have lower available 
resources compared with infrastructure networks and hence there is a need for optimal 
routing. Also, the highly dynamic nature of these networks means that routing protocols 
have to be specifically designed for them, thus motivating the study of protocols that aim 
at achieving routing stability. 

Designing a routing protocol for ad hoc networks is challenging because of the need to 
take into account two contradictory factors: 

• a node needs to know at least the "teachability" information to its neighbours for 
determining a packet route; and 

• the network topology can change quite often. 
Furthermore, as the number of network nodes can be large, finding a route to the 

destinations also requires large and frequent exchange of routing control information 

among the nodes. Thus, the amount of update traffic can be quite high, and it is even 

higher when the network includes high mobility nodes, which can impact the route 
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overhead of routing protocols in such a way that there might be no bandwidth leftover for 

the transmission of data packets. 

In wireless ad hoc networks, the communication range of a node is often limited and not 
all nodes can directly communicate with one another. Nodes are required to relay packets 

on behalf of other nodes to allow communication across the network. Since there is no 

pre-determined topology or configuration of fixed routes, an ad hoc routing protocol is 

used to dynamically discover and maintain up-to-date routes between communicating 

nodes. 

2.2.1 Proactive versus Reactive Approaches 

Ad hoc routing protocols may generally be categorized as being either proactive or on-

demand (reactive) according to their routing strategy. Proactive protocols require that 

nodes in a wireless ad hoc network should keep track of routes to all possible destinations 

so that when a packet needs to be forwarded, the route is already known and can be used 
immediately. Any changes in topology are propagated through the network, so that all 

nodes know of those changes in topology. Examples include "destination-sequenced 
distance-vector" (DSDV) routing [9], "wireless routing protocol" (WRP) [10]. 

On-demand protocols only attempt to build routes when desired by the source node so 

that the network topology is detected as needed (on-demand). When a node wants to 

send packets to some destination but has no routes to the destination, it initiates a route 

discovery process within the network. Once a route is established, it is maintained by a 

route maintenance procedure until the destination becomes inaccessible or until the route 

is no longer needed. Examples include "ad hoc on-demand distance vector routing" 

(AODV) [1], "dynamic source routing" (DSR) [2]. Proactive protocols have the 

advantage that new communications with arbitrary destinations experience minimal 

delay, but suffer the disadvantage of the additional control overhead to update routing 

information at all nodes. To cope with this shortcoming, reactive protocols adopt the 

inverse approach by finding a route to a destination only when needed. Reactive 

protocols often consume much less bandwidth than proactive protocols, but they will 
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typically experience a long delay for discovering a route to a destination prior to the 
actual communication. However, because reactive routing protocols need to broadcast 
route requests, they may also generate excessive traffic if route discovery is required 
frequently. 

2.2.2 Clustering and Hierarchical Routing 

Scalability is one of the important problems in ad hoc networking. Scalability in ad hoc 
networks can be broadly defined as the network's ability to provide an acceptable level of 
service to packets even in the presence of a large number of nodes in the network. In 
proactive routing protocols, when the number of nodes in the network increase, the 

number of topology control messages increases nonlinearly and they may consume a 
large portion of the available bandwidth. In reactive routing protocols, large numbers of 
route requests to the entire network may eventually become packet broadcast storms. 

Typically, when the network size increases beyond certain thresholds, the computation 
and storage requirements become infeasible. When mobility is considered, the frequency 
of routing information updates may be significantly increased, thus worsening the 
Scalability issues. 

One way to address these problems and to produce scalable and efficient solutions is 
hierarchical routing. Wireless hierarchical routing is based on the idea of organizing 
nodes in groups and then assigning nodes different functionalities inside and outside a 
group. Both the routing table size and update packet size are reduced by including in 
them only part of the network. For reactive protocols, limiting the scope of route request 
broadcasts also helps to enhance efficiency. The most popular way of building hierarchy 

is to group nodes geographically close to each other into clusters. Each cluster has a 
leading node (cluster head) to communicate with other nodes on behalf of these clusters. 

Example of hierarchical ad hoc routing protocol is "zone routing protocol" (ZRP). 
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2.3 Review of Ad hoc Proactive Routing Protocols 

This section presents brief description for the proactive routing protocol Destination-

Sequenced Distance-Vector (DSDV) Routing Algorithm. 

2.3.1 Destination-Sequenced Distance-Vector Routing 
The Destination-Sequenced Distance-Vector (DSDV) Routing Algorithm [9] is a 

proactive hop-by-hop distance vector routing protocol, which is based on the idea of the 

classical Bellman-Ford Routing Algorithm with certain improvements. Every mobile 

station maintains a routing table that lists all available destinations, the number of hops to 
reach the destination and the sequence number assigned by the destination node. The 

sequence number is used to distinguish stale routes from new ones to avoid the formation 
of loops. The stations periodically transmit their routing tables to their immediate 

neighbours. A station also transmits its routing table if a significant change has occurred 
in its table from the last update sent. The update is both time-driven and event-driven. 

The routing table updates can be sent in two ways: 
• a "full dump" where the full routing table is sent to the neighbours (which could 

span many packets); or 
• an incremental update where only those entries from the routing table that have 
had a metric change since the last update are sent (and these must fit in a single 
packet). If there is space in the incremental update packet, then those entries 
whose sequence number has changed may be included. When the network is 

relatively stable, incremental updates are sent to avoid extra traffic and full dumps 

are relatively infrequent. In a fast-changing network, incremental packets can 
grow large so full dumps will be more frequent. 

Each route update packet, in addition to the routing table information, also contains a 
unique sequence number assigned by the transmitter. The route labelled with the highest 

(i.e. most recent) sequence number is used. If two routes have the same sequence number 
then the route with the best metric (i.e. shortest route) is used. Based on past history, the 

stations estimate the settling time of routes. The stations delay the transmission of a 
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routing update by settling time so as to eliminate those updates that would occur if a 

better route were found very soon. 

2.4 Review of Ad hoc Reactive Routing Protocols 

Reactive protocols take a lazy approach to routing. In contrast to proactive routing 

protocols, all up-to-date routes are not maintained at every node, but instead the routes 

are created as and when required. When a source wants to send to a destination, it 

invokes the route discovery mechanisms to find the path to the destination. In this section 

several typical reactive (on-demand) routing protocols are introduced. 

2.4.1 Ad Hoc On-demand Distance Vector Routing (AODV) 
Ad hoc on-demand distance vector (AODV) routing [1] adopts both a modified on-

demand broadcast route discovery approach used in DSR [2] and the concept of 

destination sequence number adopted from destination-sequenced distance-vector routing 

(DSDV)[9]. When a source node wants to send a packet to some destination and does not 

have a valid route to that destination, it initiates a path discovery process and broadcasts a 

route request (RREQ) message to its neighbours. The neighbours in turn forward the 

request to their neighbours until the RREQ message reaches the destination or an 
intermediate node that has an up-to-date route to the destination. Figure 2.3(a) illustrates 

the propagation of the broadcast RREQs in an ad hoc network. 

In AODV, each node maintains its own sequence number and a broadcast ID. Each 
RREQ message contains the sequence numbers of the source and destination nodes and is 

uniquely identified by the source node's address and a broadcast ID. AODV utilizes 

destination sequence numbers to ensure loop-free routing and use of up-to-date route 

information. Intermediate nodes can reply to the RREQ message only if they have a route 

to the destination whose destination sequence number is greater or equal to that contained 

in the RREQ message. So that a reverse path can be set up, each intermediate node 

records the address of the neighbour from which it received the first copy of the RREQ 

message and additional copies of the same RREQ message are discarded. 
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Once the RREQ message reaches the destination (or an intermediate node with a fresh 

route) the destination (or the intermediate node) responds by sending a route reply packet 

(a) RREQ tion 

e 

Figure 2.3 Route discovery in AODV 

back to the neighbour from which it first received the RREQ message. As the RREP 

message is routed back along the reverse path, nodes along this path set up forward path 

entries in their routing tables (Figure 2.3(b)). 

When a node detects a link failure or a change in neighbourhood, a route maintenance 

procedure is invoked: If a source node moves, it can restart the route discovery procedure 

to find a new route to the destination. If a node along the route moves so that it is no 

longer contactable, its upstream neighbour sends a link failure notification message to 

each of its active upstream neighbours. These nodes in turn forward the link failure 
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notification to their upstream neighbours until the link failure notification reaches the 
source node. 

2.4.2 Dynamic Source Routing (DSR) 
Dynamic source routing (DSR) [2] is an on-demand routing protocol for wireless ad hoc 
networks. DSR is based on the concept of source routing, in which a source node 
indicates the sequence of intermediate routes in the header of a data packet. Like other 
on-demand routing protocols, the operation of DSR can be divided into two procedures: 
route discovery and route maintenance. 

tia 

EP 

Figure 2.4 Route discovery in DSR 

11 



Each node in the network keeps a cache of the source routes that it has learned. When a 

node needs to send a packet to some destination, it first checks its route cache to 

determine whether it already has an up-to-date route to the destination. If no route is 

found, the node initiates the route discovery procedure by broadcasting a route request 

message to neighbouring nodes. This route request message contains the address of the 

source and destination nodes, a unique identification number generated by the source 

node, and a route record to keep track of the sequence of hops taken by the route request 

message as it is propagated through the network. When an intermediate node receives a 

route discovery request, it checks whether its own address is already listed in the mute 

record of the route request message. If not, it appends its address to the route record and 

forwards the route request to its neighbours. Figure 2.4(a) illustrates the formation of the 

route record as the route request propagates through the network. 

When the destination node receives the route request, it appends its address to the route 

record and returns it to the source node within a new route reply message. If the 

destination already has a route to the source, it can use that route to send the reply; 

otherwise, it can use the route in the route request message to send the reply. The first 

case is for situations where a network might be using unidirectional links and so it might 

not be possible to send the reply using the same route taken by the route request message. 

If symmetric links are not supported, the destination node may initiate its own route 

discovery message to the source node and piggyback the route reply on the new route 

request message. Figure 2.4(b) shows the transmission of route record back to the source 

node. 

Route maintenance uses route error messages and acknowledgement messages. If a node 

detects a link failure when forwarding data packets, it creates a route error message and 

sends it to the source of the data packets. The route error message contains the address of 

the node that generates the error and the next hop that is unreachable. When the source 

node receives the route error message, it removes all routes from its route cache that have 

the address of the node in error. It may initiate a route discovery for a new route if 

needed. In addition to route error message, acknowledgements are used to verify the 
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correct operation of links. To reduce the route search overhead, an important optimization 

is allowing an intermediate node to send a route reply to the source node if it already has 

an upto- date route to the destination. 

2.5 Ad Hoc On-demand Multipath Routing Protocols 

Standard on-demand routing protocols in ad hoc wireless networks, such as AODV and 

DSR, are mainly intended to discover a single route between a source and destination 

node. When the route disconnects, nodes of the broken route simply drop data packets 

because no alternate path to the destination is available until a new route is established. 

Multipath routing is useful for finding multiple paths between a source and destination in 

a single discovery. These multiple paths between source and destination can be used to 

compensate for the dynamic and unpredictable topology change in ad hoc networks. 

Recently, several different multipath routing mechanisms have been proposed. This 

section introduces some main characteristics of these multipath protocols. AOMDV [12] 

and AODVM [11] routing protocols are based on the AODV [1] routing protocol, 

whereas SMR [13] and MSR [14] are based on DSR [2]. 

2.5.1 Ad hoc On-demand Multipath Distance Vector (AOMDV) 
Ad hoc On-demand Multipath Distance Vector (AOMDV) [12] is an extension to the 

AODV protocol for computing multiple loop-free and link-disjoint paths. The protocol 

computes multiple loop-free and link-disjoint paths. Loop-freedom is guaranteed by 

using a notion of "advertised hop count". Link-disjointness of multiple paths is achieved 

by using a particular property of flooding. 

To keep track of multiple routes, the routing entries for each destination contain a list of 

the next-hops together with the corresponding hop counts. All the next hops have the 

same sequence number. For each destination, a node maintains the advertised hop count, 

which is defined as the maximum hop count for all the paths. This is the hop count used 

for sending route advertisements of the destination. Each duplicate route advertisement 

received by a node defines an alternative path to the destination. To ensure loop freedom, 

a node only accepts an alternative path to the destination if it has a lower hop count than 
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the advertised hop count for that destination. Because the maximum hop count is used, 

the advertised hop count therefore does not change for the same sequence number. When 
a route advertisement is received for a destination with a greater sequence number, the 

next-hop list and advertised hop count are reinitialized. 

AOMDV can be used to find link-disjoint routes. To find disjoint routes, each node does 

not immediately reject duplicate. RREQs. Each RREQ carries an additional field called 
firsthop to indicate the first hop (neighbour of the source) taken by it. Also, each node 

maintains a first hop list for each RREQ to keep track of the list of neighbours of the 

source through which a copy of the RREQ has been received. In an attempt to get 

multiple link-disjoint routes, the destination replies to duplicate RREQs regardless of 
their first hop. To ensure link-disjointness in the first hop of the RREP, the destination 

only replies to RREQs arriving via unique neighbours. The trajectories of each RREP 

may intersect at an intermediate node, but each takes a different reverse path to the source 

to ensure link-disjointness. 

2.5.2 Split Multipath Routing (SMR) 
Split Multipath Routing (SMR) proposed in [13] is an on-demand multipath source 

routing protocol that builds multiple routes using a request/reply cycle. SMR can find an 
alternative route that is maximally disjoint from the source to the destination. When the 

source needs a route to the destination but no route information is known, it floods the 
Route Request (RREQs) message to the entire network in order to find maximally 

disjoint paths, so the approach has a disadvantage of transmitting more RREQ packets. 

Because this packet is flooded, several duplicates that traversed through different routes 
reach the destination. The destination node selects multiple maximally disjoint routes and 

sends Route Reply (RREP) packets back to the source via the chosen routes. In order to 

choose proper maximally disjoint route paths, the destination must know the entire path 

of all available routes. Therefore, SMR uses the source routing approach where the 

information of the nodes that comprise the route is included in the RREQ packet. 
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SMR is similar to DSR, and is used to construct maximally disjoint paths. Unlike DSR, 

intermediate nodes do not keep a route cache, and therefore, do not reply to RREQs. This 

is to allow the destination to receive all the routes so that it can select the maximally 

disjoint paths. Maximally disjoint paths have as few links or nodes in common as 

possible. Duplicate RREQs are not necessarily discarded. The algorithm only selects two 

routes. In the algorithm, the destination sends a RREP for the first RREQ it receives, 

which represents the shortest delay path. The destination then waits to receive more 

RREQs. From the received RREQs, the path that is maximally disjoint from the shortest 

delay path is selected. If more than one maximally disjoint path exists, the shortest hop 
path is selected. If more than one shortest hop path exists, the path whose RREQ was 

received first is selected. The destination then sends an RREP for the selected RREQ. 

2.5.3 Multipath Source Routing (MSR) 
Multipath Source Routing (MSR) [14, 15] is an extension of the on-demand DSR [2] 
protocol. It consists of a scheme to distribute traffic among multiple routes in a network. 

MSR uses the same route discovery process as DSR with the exception that multiple 
paths can be returned, instead of only one. 

When a source requires a route to a destination but no route is known (in the cache), it 
will initiate a route discovery process by flooding a RREQ packet throughout the 

network. A route record in the header of each RREQ records the sequence of hops that 

the packet passes. An intermediate node contributes to the route discovery by appending 

its own address to the route record. Once the RREQ reaches the destination, a RREP will 

reverse the route in the route record of the RREQ and traverse back through this route. 

Each route is given a unique index and stored in the cache, so it is easy to pick multiple 

paths from there. Independence between paths is very important in multipath routing, 

therefore disjoint paths are preferred in MSR. As MSR uses the same route discovery 

process as DSR, where the complete routes are in the packet headers, looping will not 
occur. When a loop is detected, it will be immediately eliminated. 
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Since source routing is used in MSR, intermediate nodes do nothing but forward the 

packet according to the route in the packet-header. The routes are all calculated at the 

source. A multiple-path table is used for the information of each different route to a 

destination. This table contains for each route to the destination: the index of the path in 

the route cache, the destination ID, the delay and the calculated load distribution weight 

of a route. The traffic to a destination is distributed among multiple routes. The weight of 

a route simply represents the number of packets sent consecutively on that path. 

2.5.4 Ad hoc On-demand Distance Vector Multipath Routing 
Ad hoc On-demand Distance Vector Multipath Routing (AODVM) [11] is an extension 

to AODV for finding multiple node disjoint paths. Instead of discarding the duplicate 

RREQ packets, intermediate nodes are required to record the information contained in 

these packets in the RREQ table. For each received copy of an RREQ message, the 

receiving intermediate node records the source that generated the RREQ, the destination 

for which the RREQ is intended, the neighbour that transmitted the RREQ, and some 

additional information in the RREQ table. Furthermore, intermediate relay nodes are 
precluded from sending an RREP message directly to the source. 

When the destination receives the first RREQ packet from one of its neighbours, it 

updates its sequence number and generates an RREP packet. The RREP packet contains 

an additional field called "last hop ID" to indicate the neighbour from which the 

particular copy of RREQ packet was received. This RREP packet is sent back to the 

source via the path traversed by the RREQ. When the destination receives duplicate 

copies of the RREQ packet from other neighbours, it updates its sequence number and 

generates RREP packets for each of them. Like the first RREP packet, these RREP 

packets also contain their respective last hop nodes' IDs. 

When an intermediate nod e receives an RREP packet from one of its neighbours, it 

deletes the entry corresponding to this neighbour from its RREQ table and adds a routing 

entry to its routing table to indicate the discovered route to the originator of the RREP 

packet (the destination). The node, then, identifies the neighbour in the RREQ table via 
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which, the path to the source is the shortest, and forwards the RREP message to that 

neighbour. The entry corresponding to this neighbour is then deleted from the RREQ 

table. In order to ensure that a node does not participate in multiple paths, when nodes 

overhear any node broadcasting an RREP message, they delete the entry corresponding to 

the transmitting node from their RREQ tables. 

Intermediate nodes make decisions on where to forward the RREP messages (unlike in 

source routing) and the destination, which is in fact the originator of these messages, is 

unaware as to how many of these RREP messages that it generated actually made it back 

to the source. Thus, it is necessary for the source to confirm each received RREP 

message by means of a Route Confirmation message (RRCM). The RRCM message can, 

in fact, be added to the first data packet sent on the corresponding route and will also 

contain information with regards to the hop count of the route, and the first and last hop 

relays on that route. 
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Chapter 3 OnDemand Multipath Routing with Load Balancing 

ODMRLB is proposed to find multiple nose-disjoint paths and to distribute the traffic 
efficiently among the available paths. It follows NDMR [6] approach to find multiple 

node-disjoint paths with minimum broadcast overhead. 

When a source node wants to communicate with a destination node, it checks its route 
table to confirm whether it has a valid route to the destination. If so, it sends the packet to 

the appropriate next hop towards the destination. However, if the node does not have a 

valid route to the destination, it must initiate a route discovery process. To begin such a 

process, the source creates a RREQ (Route Request) packet. This packet contains 

message type, source address, current sequence number of source, destination address, 

the broadcast ID and route path. The broadcast ID is incremented every time when the 

source node initiates a RREQ. In this way, the broadcast ID and the address of the source 
node form a unique identifier for the RREQ. 

Finding node-disjoint multiple paths with low broadcast overhead is not an easy task 

when the network topology is unknown and changing dynamically. This section briefly 
describes the mechanism of ODMRLB that enables path accumulation during a multipath 

route discovery cycle and records the shortest routing hops to minimize its routing 

overhead and achieve multiple node-disjoint routing paths. ODMRLB routing 

computation has three key components to avoid introducing a broadcast flood in 

MANETs: 

• Path accumulation; 

• Decreasing multipath broadcast routing packets; 

• Selecting node-disjoint paths. 
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3.1 Path Accumulation 
The main goal of ODMRLB is to build multiple node-disjoint paths and distributing the 

load efficiently among the routes. To achieve this goal, the destination must know the 
entire routing path list of all available routes so that it can select the right node-disjoint 

route paths from the candidate paths. When the RREQ packets are generated or 

forwarded by the nodes in the network, each node appends its own address to the routing 

request packets. When a RREQ packet arrives at its destination, the destination is 

responsible for judging whether or not the routing path is a node-disjoint path. After 

confirming a node-disjoint path, the destination generates a Route Reply (RREP) packet 

that contains the node list of the whole route path and unicasts it back towards the source 

that originated the RREQ message along the reverse route path. When an intermediate 
node receives a RREP, it updates its routing table entry and its reverse routing table entry 

by using the nodes list of the whole route path contained in the RREP. 

RR Ps 

Figure 3.1 Path Accumulation in ODMRLB 

As an example, consider five nodes A, B, C, D and E as shown in Figure 3.1 Node A 

wants to send data to node E. Since A does not have a route for E in its routing table, it 

broadcasts a route request. Node B receives the route request, appends its own address to 

the request, and forwards the request since it also has no route to E. Similarly, when node 

C and node D receive the RREQ, they append their address to the request and forward it. 

When the request reaches destination E, node E checks the path accumulation list (A-B-

C-D) from the RREQ and judges whether or not the routing path is a node-disjoint path. 

If it is, node E generates a RREP packet that contains the path accumulation list of the 
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whole route path and unicasts it back to the source that originated the RREQ message 
along the reverse route path. If not, node E discards the received RREQ. 

3.2 Decreasing Broadcast Routing Overhead 
In DSR and AODV, if a source node does not know a route to a destination, it will 

initiate a route discovery by flooding a Route Request (RREQ) message. The RREQ 

message carries the source ID and the RREQ sequence number. When an intermediate 

node receives a RREQ, if it is the first time that the node receives this RREQ message, 

then the node will broadcast the RREQ message again. Otherwise, the node will drop the 
RREQ packet. 

In ODMRLB, using this method of broadcasting RREQ, the possibility of finding node-

disjoint multiple paths is almost zero so a novel method is used_. The reason is that later 

duplicate RREQ packets, which may come from a different path, are dropped. However, 

if all of the duplicate RREQ packets are re-broadcast, this will lead to a routing packet 

broadcast storm and decrease dramatically the performance of the ad hoc networks. In 

order to avoid this problem, a novel approach recording the Shortest Routing Hops of 
Loop-free Paths is implemented to decrease routing broadcast overhead. 

When a node receives a RREQ packet for the first time, it checks the path accumulation 
list from the packet and calculates the number of hops from the source to itself and 

records the number as the shortest number of hops in its reverse route table entry. If the 

node receives the RREQ duplicate again, it computes the number of hops from the source 

to itself and compares it to the number of the shortest hops recorded in its reverse route 

table entry. If the number of hops is larger than the shortest number of hops in its reverse 

route table entry, the node drops the RREQ packet. Otherwise (less than or equal to), 

the node appends its own address to the route path list of the RREQ packet and 

broadcasts the RREQ packet to its neighbouring nodes. 
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Figure 3.2 Shortest Routing Hops of Loop-free Paths 

For example, in Figure 3.2, from source node S to node c there are five route paths: S-c, 

S-b-c, S-a-c, S-b-g-c, S-a-e-c. The numbers of hops are 1, 2, 2, 3 and 3 respectively. 
When node c receives the RREQ packet at the first time from path S-c, it records 1 as the 
shortest number of hops in its reverse route table entry. When the node c receives the 
RREQ duplicates from the other four route paths, it calculates the number of hops and 

compares it to the shortest number of hops in its reverse route table entry. Because the 

numbers of hops of route list of the four route paths are all greater than 1, the four RREQ 
duplicate packets are dropped. 

From the example it can be seen that "recording the shortest routing hops" approach 

results in most of the RREQ packets being discarded in the process of discovering 

multiple node-disjoint paths. Furthermore, the approach can also avoid forming loop 

paths. This is a novel and practical approach to guarantee loop-free paths as well as to 
dramatically decrease the routing overhead. 

Figure 3.3 illustrates the mute request process with low overhead in the entire network. 

Source S broadcasts a route request packet. Each intermediate node uses the approach 

with low routing overhead to propagate and discard packets. Therefore, only seven 

packets (S-c-f-D, S-a-i-g-D, S-b-e-h-D, S-c-i-g-D, S-c-e-h- D, S-c-f-g-D, S-c-f-h-D) can 

reach the destination D. Most of packets are discarded. However, not all of paths packets 

that arrive in destination are node-disjoint. In next section how to choose node-disjoint 

paths will be discussed. 
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Figure 33 Route Request Process with Low Overhead 

3.3 Selecting Node-Disjoint Paths 

In the algorithm of selecting node-disjoint paths, the destination is responsible for 
selecting and recording multiple node-disjoint route paths. In order to decrease the 
overhead of the route table in each node, the number of node-disjoint routing paths has 
been limited to three although more than three node-disjoint routes can be searched. In 
Figure 3.4, its three node-disjoint route paths are: S-a-i-g-D, S-c-f-D, S-b-e-h-D. When 
receiving the first RREQ packet (the shortest route path: S-c-f-D), the destination records 
the list of node IDs for the entire route path in its reverse route table and sends a RREP 
that includes the route path towards the source along the reverse route. When the 
destination receives a duplicate RREQ, it will compare the whole route path in the RREQ 
to all of the existing node-disjoint route paths in its route table entry. If there is not a 
common node (except source and destination) between the route path from the current 
received RREQ and any node-disjoint route path recorded in the destination's reverse 
route table entry, the route path of the current RREQ (such as S-a-i-g-D or S-b-e-h-D) 
satisfies the requirement of node-disjointness and is recorded in the reverse route table of 
the destination. Otherwise, the route path (such as paths: S-c-i-g-D, 	S-c-f-g-D, 
S-c-f-h-D) and the current received RREQ are discarded. 
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Figure 3.4 Node-Disjoint Paths 

Because the node IDs of the entire path are included in the RREP, each intermediate node 

receiving a RREP can record some necessary information from the path to its route table 
before forwarding the RREP. At first, the intermediate node sets up a forward path entry 

to the destination in its route table and a reverse path entry to the source in its reverse 

route table. According to the information in path IDs list, the forward path entry records 

the IP address of the destination and the IP address of the neighbour from which the 
RREP arrived. The reverse path entry records the IP address of the source and the IP 
address of the next hop to the source. Finally the intermediate node forwards the RREP 

towards the source node along the reverse route path. When the RREP arrives at the 

source node, it does not need to be forwarded. The source node records the next hop to 

destination into its multiple route forward path entry. After the first RREP arrives at the 

source, the newly established route can now be used to send the data packets. 
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3.4 Load Balancing 
Upon receiving the RREPs, source node routes data packets to destination node through 

the available paths. The source node can get a maximum of RMAX reply packets. Data 

packets are routed over the routes in such a way that the total number of congested 

packets in each route is maintained equally. The source node records the total number of 

packets sent to each route. When the host wants to choose a route for packet 

transmission, it checks these numbers. In addition, it has information about the size route 

of each route. Therefore, it chooses a route based on the product of number of packets 

transmitted and the size of the route. The route for which the calculated product is less is 

chosen for that packet transmission. By using this algorithm, traffic is guaranteed to be 

shared equally over multiple paths. 
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Chapter 4 	 Simulation 

This section describes the data structures and main functions used to implement 

ODMRLB. 

4.1 Data Structures 
The following are the data structures used in implementing ODMRLB protocol. 

An enumerated data structure called 'Packet Type' is used to identify type of a packet 

i.e., ROUTE_REQUEST packet, ROUTE_REPLY packet or ROUTE_ERROR packet. 

typedef enum 

ROUTE_REQUEST, 

ROUTE_REPLY, 

ROUTE_ERROR 

} PacketType; 

The following structure `RouteRequest' represents the contents of a route request packet. 

pktType is to be set to ROUTE_REQUEST to identify the packet as Route Request 
packet . <srcAddr > represents the originator of the route request . <targetAddr> is the 
destination for which the root has to be discovered. < seqNumber> and <srcAddr> 
combinely used to uniquely identify a packet. Each intermediate node adds its ID to the 

<path> variable. So the <path> variable will be having a sequence of nodes through 
which the packet is propagated to reach the destination. 

typedef struct{ 

PacketType pktType; 

NODE_ADDR srcAddr; 

NODE_ADDR targetAddr; 

int seqNumber; 

int hopCount; 

NODE_ADDR path [MAX_SR LEN]; 

int broadcastid; 

} RouteRequest; 
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The structure 'RouteReply', given next represents the contents of a route reply packet. 
pktType is to be set to ROUTE REPLY to identify the packet as RouteReply packet. 
<srcAddr > represents the originator of the route reply packet. <targetAddr> is the 
source for which the root has discovered . The <path> variable will have a sequence of 
nodes through which the data packets can be routed from <targetAddr> to <srcAddr>. 
<segLeft> represents the number of nodes remaining through which the reply has to be 

propagated to reach the destination. 

typedef struct{ 
PacketType pktType; 

NODE_ADDR targetAddr; 	/* Source of the route */ 

NODE_ADDR srcAddr; 	/* Destination of the route */ 
int hopCount; 

int segLeft; 

NODE_ADDR path [MAX_SR LEN]; 

} RouteReply; 

The structure `RouteError', given next represents the contents of a route error packet. 
pktType is to be set to ROUTE ERROR to identify the packet as RouteError packet. 
<srcAddr > represents the originator of the route error packet . <destAddr > is the source 
of the broken root. <unreachableAddr> is the immediate downstream of the broken link 
The <path> variable will have a sequence of nodes through which the error packets has 
to be routed to reach the source of the broken route. When an intermediate node 

forwarding a packet detects through Route Maintenance that the next hop along the route 

for that packet is broken, if the node has another route to the packet's destination in its 

Route Cache, the node salvages (redirects) the packet rather than discarding it. To 

salvage a packet, the node replaces the original source route on the packet with the route 

from its Route Cache. The node then forwards the packet to the next node indicated 
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along this source route. If this packet is salvaged in this way, the salvaged bit has to be 
set to TRUE otherwise, it will be set to FALSE. 

typedef struct 
{ 

PacketType pktType; 

NODE_ADDR srcAddr; 	 /* Originator of the Route Error */ 
NODE_ADDR destAddr; 	 /* Source of the broken route */ 

NODE_ADDR unreachableAddr; 	/* Immediate downstream of broken link */ 
int hopCount; 

BOOL salvaged; 

NODE_ADDR path [MAX_SR LEN]; 

}RouteError; 

Finally, the structure ODMRLB_Stats defines the total statistics at each node in the 

network. 

typedef struct 
{ 

int numRequestSent; 

hit numReplySent; 

hit numErrorSent; 

int numDataSent; 

int numDataTxed; 

int numDataReceived; 

hit numRoutes; 

int numHops; 

int numLinkBreaks; 

hit numSalvagedPackets; 

int numDroppedPackets; 

} ODMRLB_Stats; 

/* Total no of route request pkts transmitted*/ 

/* Total number of route reply packets transmitted */ 

/ * Total number of route error packets transmitted */ 

/* Total no of data pkts sent at the source */ 

/* Total number of data packets transmitted */ 

/* Total no. of data pkts received at destination*/ 

/* Total number of routes discovered*/ 

/* number of hops*/ 

/* Total number of link breaks discovered*/ 

/*Total number of packets salvaged*/ 

/*Total number of packets dropped*/ 
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4.2 Functions 
• RoutingOdmrlbHandleProtocolPacket: This function is called when a packet is 

received from MAC layer. It checks whether the packet corresponds to 

ROUTE REQUEST packet, ROUTE REPLY packet, or ROUTE ERROR 

packet and calls the appropriate function. 

• RoutingOdmrlbHandleRequest: This function is called when the 

RoutingOdmrlbHandleProtocolPacket function receives a packet of type 

ROUTE REQUEST. It checks whether the node receiving the packet is the 
destination for the packet. If it is not for that node it just broadcasts the packet by 

using the function RoutingOdmrlbRelayRREQ. If it is for that node, it stores the 
route in its reply cache table and initiates route reply by using the function 

RoutingOdmr1bInitiateRREP if it is the first route request packet received or if the 

path is non-disjoint with the other paths available for the source. 

• RoutingOdmrlbHandleReply: This function is called when the 

RoutingOdmrlbHandleProtocolPacket function receives a packet of type 

ROUTE REPLY. It checks whether this node is the destination of the packet .If 
this is the destination of the packet, this route is inserted into the route cache .If 

this node is not the destination of the packet it forwards the packet by using the 

function RoutingOdmribRelayRREP 

• RoutingOdmrlbHandleError :This function is called when the 

RoutingOdmrlbHandleProtocolPacket function receives a packet of type 

ROUTE ERROR. It deletes routes in cache that use the broken link. If this node 

is the intermediate node of the broken route, then forwards the packet by using the 

function RoutingOdmrlbRelayRERR If this node is the source of the broken 

route, it discards the packet. 
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• RoutingOdmr1bHandleProtocolEvent : Whenever a timer expires for an event 

RoutingOdmrlbHandleProtocolEvent function is called . It checks for the type of 

events such as NETWORK_FlushTables, NETWORK CheckReplied 
If the type of the event is NETWORK_CheckRequest, then the source node 

distributes the packets in to multiple paths in the inverse ratio of their hopcount 

using the function RoutingOdmrlbStartTransmission. 

• RoutingOdmr1bInitiateRREQ: Initiate a Route Request packet when no route to 

destination is known. 

• RoutingOdmrlbRetryRREQ: Send RREQ again after not receiving any RREP. 

• RoutingOdmrlbRelayRREQ: Forward (re-broadcast) the Route Request. 

• RoutingOdmr1bInitiateRREP: Destination of the route sends Route Reply in 

reaction to Route Request. 

• RoutingOdmrlbRelayRREP : Forward the Route Reply. 

• RoutingOdmr1bInitiateRERR : The node that detects the link break sends a Route 

Error back to the source. 

• RoutingOdmrlbRelayRERR : Forward the Route Error packet. 

The flow chart of reducing routing overhead is illustrated in Figure 4.1.The flow chart of 
selecting node-disjoint paths is shown in Figure 4.2. A flowchart of processing an 

incoming RREP packet is illustrated in Figure 4.3. 

4.3 Input parameters 
The input parameters that need to be specified in configin file before starting the 

simulation are given in Table 1. After specifying the input configuration parameters, data 

sessions are specified in the application configuration (app. conf) file using the Constant 
Bit Rate (CBR) traffic generator. Table 2 shows the parameters in the app. conf file. 
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SIMULATION-TIME 300S 

TERRAIN-DIMENSIONS (1000, 1000) 

NUMBER-OF-NODES 50 

MOBILITY RANDOM-WAYPOINT 

MOBILITY-WP-PAUSE 50S 

MOBILITY-WP-MIN-SPEED 0 

MOBILITY-WP-MAX-SPEED 10 

NETWORK-PROTOCOL IP 

ROUTING-PROTOCOL ODMRLB 

APP-CONFIG-FILE ./app.conf 

APPLICATION-STATISTICS YES 

ROUTING-STATISTICS YES 

GUI-OPTION YES 

NODE-PLACEMENT RANDOM 

Table 4.1 input parameters for the simulation procedure 

Traffic 

Generator 

Source 

node 

Destination 

node 

items to 

send 

Item 

size 
Interval Start 

time 

End 

time 

CBR 1 5 100 512 1.0S OS 300S 
CBR 2 6 100 512 1.5S 20S 200S 

CBR 4 9 100 512 0.1S 200S 300S 

CBR 3 8 100 512 0.1S 100 S 200S 

Table 4.2 application specification parameters 
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Chapter 5 	 Results and Discussion 

In order to compare and evaluate performances of the three protocols (ODMRLB,NDMR 
and DSR) , two parameters are varied in the simulations: 

• Maximum velocity of the nodes 

• Number of sources 

At first, simulations are carried out by keeping the number of sources constant and 

varying the velocity. The number of nodes and sources are 50 and 20 respectively. 

Then, the number of sources is varied from 5 to 25 in intervals of 5 for 50 nodes . When 

varying the number of sources, velocity is kept at a uniform rate of 0-20m/s. 

The following metrics are used in varying scenarios to evaluate the three different 
protocols: 

• Packet delivery ratio: The ratio of the data packets delivered to the destinations to 
those generated by the CBR sources. 

• Average delay of data packets: This includes all possible delays from the moment the 
packet is generated to the moment it is received by the destination node. 

5.1 Varying Velocity 
The first set of experiments varies the velocity for 20 sources of 50 nodes network. The 

mobility was varied to see how it affects the different metrics that are measured. The 

packet sending rate is fixed at 10 packets / sec. The results are collected at constant 

speeds of 2, 4, 6, 8, 10, 12, 14, 16, 18, 20 m/s. 

5.1.1 Packet Delivery Ratio 
Packet delivery ratio is defined as ratio of the data packets delivered to the destination to 

those generated by the CBR sources. Packet delivery ratio is a very important metric 

since it shows the loss rate, which in turn affects the maximum throughput of the 

network. The packet delivery ratio of the three protocols is shown in Figure 5.1. The 

Figure depicts the variation of the packet delivery ratio as a function of velocity of nodes. 
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As the velocity of the nodes increases, the probability of link failure increases and hence 

the number of packet drops also increases. ODMRLB has much higher packet delivery 

ratio than both NDMR and DSR. More than 95% data packets of NDMR can be 

delivered to specified destinations in all of mobility conditions in the 50-node network. 

DSR have a similar low delivery ratio situation in that only 65% sent packets are received 

at higher speeds. The reason is that ODMRLB has multiple paths with node-disjoint ness. 

As the load is distributed through multiple node-disjoint paths in the inverse ratio of their 

path length, more bandwidth is available. Hence the packet delivery ratio is high. 

Figure 5.1 Maximum Velocity VS Packet Delivery Ratio 

5.1.2 Average end-to-end delay of data packets 
The average end-to-end delay includes all possible delays from the moment the packet is 
generated to the moment it is received by the destination node. 

Generally, there are three factors affecting end-to-end delay of a packet: 

(1) Route discovery time, which causes packets to wait in the queue before a route path is 

found; 
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(2) Buffering waiting time, which causes packets to wait in the queue before they can be 

transmitted; 

(3) The length of routing path. The more number of hops a data packet has to go through, 

the more time it takes to reach its destination node. 
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Figure 5.2 Maximum Velocity VS End to end delay 

Figure 52 depicts the variation of the average end-to-end delay as a function of velocity 

of nodes. It can be seen that the general trend of all curves is an increase in delay with the 
increase of velocity of nodes. The reason is mainly that high mobility of nodes results in 

an increased probability of link failure that causes an increase in the number of routing 
rediscovery processes. This makes data packets have to wait for more time in its queue 

until a new routing path is found. The delay of ODMRLB remains approximately equal at 

all mobile velocities. Delay in DSR increases quickly as velocity increases. This is 

because availability of alternate node-disjoint routing paths in ODMRLB eliminates route 

discovery latency that contributes to the delay when active route fails. In addition, the 

source node distributes data packets in the available node-disjoint routing paths to avoid 

congestion. This reduces the waiting time of data packets in queue. 
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5.2 Varying Number of Sources 

The second set of experiments varies the number of sources with a random velocity of 0-
20 m/s for 50 nodes. The network load is varied by changing the number of sources. The 
packet sending rate is still fixed at 10 packets / second. The number of sources is varied 
from 5 to 25 in intervals of 5 for 50 nodes. 

5.2.1 Packet Delivery Ratio 
The packet delivery ratio of the three protocols is shown in Figure 5.3. The Figure 
describes the variation of the packet delivery ratio as a function of the number of sources. 
It can be seen that the packet delivery ratio for ODMRLB has better performance than 
those of both NDMR and DSR with the increase in the number of sources. When the 
number of sources increases, DSR drops a larger fraction of the packets. 

Figure 5.3 Number of sources VS Packet Delivery Ratio 
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5.2.2 Average end-to-end delay of data packets 
Figure 5.4 depicts the variation of the average end-to-end delay as a function of the 

number of sources. It can be seen that ODMRLB has a lower average delay than both 

NDMR and DSR. The primary reason is that the number of route discoveries is reduced 

in ODMRLB. Although ODMRLB has a low number of route discoveries, its delay also 

increases gradually with the increase of number of source. The reason is that increase of 

the numbers of sources leads to higher network load traffic in the ad hoc networks. 

Because of the limitation of a constrained wireless bandwidth, packets that will be sent or 

forwarded have to stay in buffers and wait for a longer time to get a radio channel 

available in order to avoid collisions in the air. 

Figure 5.4 Number of sources VS Fad to end delay 
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Chapter 6 	 Conclusions and Future Scope 

6.1 Conclusions 
An ad hoc wireless network is a collection of mobile nodes that communicate with each 

other by forming a multi-hop radio network and maintaining connectivity management 

without an existing network infrastructure. Such networks are expected to play 

increasingly important roles in future civilian and military applications. Design of 

efficient and reliable routing protocols in such network are challenging issues. The goal 

of this research is to explore efficient multipath routing in mobile ad hoc networks. 

ODMRLB protocol is designed and implemented to overcome the shortcomings of on-

demand existing unipath and multipath routing protocols. It is evident from simulation 

results that ODMRLB outperforms NDMR, DSR. ODMRLB has a higher packet delivery 

ratio, lower end-to-end delay than NDMR, DSR. These characteristics make the protocol 

suitable for reliable real time data and multimedia communication applications in ad hoc 

networks. 

6.2 Future Scope 
The research work focuses on node-disjoint multipath routing in mobile ad hoc networks. 

Other important aspects, which need to be further investigated, are: 

• Multicast Routing 

Multicast is the process of sending packets from a transmitter to multiple destinations 
identified by a single address. The packets of each multicast group are forwarded 

according to a multicast tree. Multicast routing in MANET is also hard since the network 

topology changes quite frequently. Therefore, frequent maintenance of the multicast tree 

will result in a substantial amount of control overhead. How to reduce routing overhead 

has to be considered when designing multicast routing. 
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• Distributed Security 

Due to the broadcast nature of radio communication, wireless networks are susceptible to 
eavesdropping, malicious jamming and interference, which a well-designed physical 
layer should be able to avoid. Because usually there are no central control and no trusted 

authorities in an ad hoc network, how to secure key distribution and manage data 
encryption and authentication has to be considered when designing a secure mechanism 
of ad hoc networks. 

• Effect of quality of wireless links 

Because nodes move in and out of each other's range, the network topology changes 
frequently. The network's dynamic nature, combined with adverse wireless link's effects, 
raises issues that are difficult to address. In the physical layer, some techniques are 
needed to adapt to rapidly changing channel characteristics to make wireless link quality 
less sensitive to node performance. 
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APPENDIX: SOURCE CODE LISTING 

Odmrlb h 

#ifndef _ODMRLB H_ 
#define ODMRLB H 

#include - "ip.h" 
*include "nwcommon.h" 
*include "main.h" 

#define ODMRLB MAX SR LEN 
	

9 

/* Broadcast jittering time to avoid collisions */ 
*define ODMRLB BROADCAST JITTER 	10 * MILLI SECOND 

/* Max time between route requests */ 
#define ODMRLB MAX REQUEST PERIOD 	10 * SECOND 

/* Length of one backoff period */ 
*define ODMRLB REQUEST PERIOD 	500 * MILLI SECOND 

/* TO for non propagating request */ 
%define ODMRLB RINGO REQUEST TO 	30 * MILLI SECOND 

/* Saved in Request table for this amount of time */ 
#define ODMRLB FLUSH INTERVAL 	30 * SECOND 

// Maximum time a packet will be buffered waiting for a route. 
#define ODMRLB MAX PACKET BUFFER TIME 	11110 * SECOND 

#define ODMRLB MAX TTL 
	

255 

*define ROUTE MAX 5 

#define IPOPT ODMRLB 217 

/* ODMRLB option fields for IP header * 
typedef struct { 

unsigned char salvagedBit; 
unsigned char segmentLeft; 

} ODMRLBIpOptionType; 

/* Type of packet */ 
typedef enum { 

ODMRLB ROUTE REQUEST, 
ODMRLB ROUTE REPLY, 
ODMRLB ROUTE ERROR 

ODMRLB PacketType; 

typedef struct 
{ 

ODMRLB_PacketType pktType; 
NODE ADDR srcAddr; 
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NODE_ADDR targetAddr; 
int seqNumber; 
int hopCount; 
NODE_ADDR path[ODMRLB_MAXSR_LEN]; 

} ODMRLB RouteRequest; 

typedef struct 

ODMRLB_PacketType pktType; 
NODE_ADDR targetAddr; 
NODE ADDR srcAddr; 

int hopCount; 
int segLeft; 
NODE_ADDR path[ODMRLB_MAX_SR_LEN]; 

1 ODMRLB RouteReply; 

typedef struct 
{ 

ODMRLB_PacketType pktType; 
NODE ADDR srcAddr; 

NODE ADDR destAddr; 
NODE_ ADDR unreachableAddr; 

broken link */ 
int hopCount; 
BOOL salvaged; 
NODE_ADDR path[ODMRLB_MAX_SRLEN]; 

} ODMRLBRouteError; 

typedef struct RCE 
{ 

/* Source of the route */ 
/* Destination of the route 

/* Originator of the Route Error 

/* Source of the broken route */ 
/* Immediate downstream of 

NODE_ADDR destAddr; 
int hopCount; 	 /* Hop length to the destAddr 

NODE ADDR path[ODMRLB _MAX SR LEN]; 
struct RCE *prev; 
struct RCE *next; 

} ODMRLBRonteCaCheEntry; 

typedef struct 
{ 

ODMRLB_RouteCacheEntry *head; 
int count; 

} ODMRLB RouteCache; 

typedef struct RRCE 
{ 

NODE_ADDR destAddr; 
int hopCount; 

NODE ADDR path[ODMRLBMAXSR_LEN]; 
clocktype destReached; 
struct RRCE *prev; 
struct RRCE *next; 

} ODMRLB RouteReplyCacheEntry; 

/* Count of current entries */ 

/* Hop length to the destAddr 
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typedef struct 
{ 

ODMRLB_RouteReplyCacheEntry *head; 
int count; /* Count of current entries 

1 ODMRLB RouteReplyCache; 

typedef struct RQE 
f 

NODE_ADDR destAddr; 
clocktype lastRequest; /* Time when last sent a request 

*/ 
clocktype backoffInterval; /* No additional Req for this 

time */ 
int ttl; 
struct RQE *next; 

1 ODMRLBRequestTableEntry; 

typedef struct 

ODMRLB_RequestTableEntry *head; 
int count; 

1 ODMRLBRequestTable; 

typedef struct STE 

NODE_ADDR srcAddr; 
int eqNumber; 
NODE ADDR prevNode; 
int hopCount; 
struct STE *next; 

1 ODMRLBRequestSeenEntry; 

typedef struct 

ODMRLBRequestSeenEntry *front; 
ODMRLB_RequestSeenEntry *rear; 
int count; 

1 ODMRLBRequestSeen; 

typedef struct fifo 
{ 

NODE_ADDR destAddr; 
clocktype timestamp; 
Message *msg; 
struct fifo *next; 

ODMRLB BUFFER Node; 

typedef struct 
{ 

ODMRLB BUFFER Node *head; 
int size; 

1 ODMRLB_BUFFER; 
typedef struct 

NODE_ADDR destAddr; 
int ttl; 

} ODMRLB CR; 
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typedef struct 
1 

/* Total number of route request packets transmitted */ 
int numRequestSent; 

/* Total number of route reply packets transmitted */ 
int numReplySent; 

/* Total number of route error packets transmitted */ 
int numErrorSent; 

/* Total number of data packets originated as the source */ 
int numDataSent; 

/* Total number of data packets tranmitted */ 
int numDataTxed; 

/* Total number of data packets received as the destination */ 
int numDataReceived; 

int numRoutes; 

int numHops; 

int numLinkBreaks; 

int numSalvagedPackets; 
int numDroppedPackets; 

} ODMRLB Stats; 

typedef struct glomo_network_ODMRLB str { 
ODMRLB_RouteCache routeCacheTabIe; 
ODMRLB RouteReplyCache routeReplyCacheTable; 
ODMRLB:RequestTable requestTable; 
ODMRLB_RequestSeen requestSeenTable; 
ODMRLB BUFFER buffer; 
int seliNumber; 
ODMRLB Stats stats; 

} GlomoRoutingODMRLB; 

void RoutingODMRLBInit( 
GlomoNode *node, 
GlomoRoutingODMRLB **ODMRLBPtr, 
const GlomoNodeInput *nodeInput); 

void RoutingODMRLBFinalize(GlomoNode *node); 

void RoutingODMRLBHandleRequest(GlomoNode *node, Message *msg, 
int ttl); 

void RoutingODMRLBHandleReply( 
GlomoNode *node, Message *msg, NODE ADDR destAddr); 

void RoutingODMRLBHandleError( GlomoNode *node, Message *msg, NODE_ADDR 
srcAddr, NODE ADDR destAddr); 
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void RoutingODMRLBInitRouteCache(ODMRLBRouteCache *routeCache); 

void RoutingODMRLBInitRequestSeen(ODMRLB RequestSeen *requestSeen); 

void RoutingODMRLBInitRequestTable(ODMRLB_RequestTable *requestTable); 

void RoutingODMRLBInitSeq(GlomoNode *node); 

void RoutingODMRLBInitBuffer(ODMRLBBUFFER *buffer); 

void RoutingODMRLBInitStats(GlomoNode *node); 

void RoutingODMRLBDeleteSeenTable(ODMRLB_RequestSeen *requestSeen); 

BOOL RoutingODMRLBCheckRouteExist(NODE_ADDR destAddr, 
ODMRLBRouteCaohe *routeCache); 

BOOL RoutingODMRLBLookupRequestSeen(NODEADDR srcAddr, int seq, 
ODMRLB_RequestSeen *requestSeen); 

BOOL RoutingODMRLBLookupRequestTable(NODE_ADDR destAddr, 
ODMRLB_RequestTable *requestTable); 

void RoutingODMRLBInsertRequestSeen(GlomoNode *node, NODE_ADDR srcAddr, 
int seq, NODE_ADDR prevNode, 

int hopCount, ODMRLB_RequestSeen *requestSeen); 

void RoutingODMRLBInsertRouteCache(NODE ADDR destAddr, 
int hopCount,NODEADDR *path, ODMRLB:RouteCache *routeCache); 

ODMRLB RouteCacheEntry *RoutingODMRLBInsertRCInOrder( 
NODE ADDR destAddr, int hopCount, NODE_ADDR *path, 

ODMRLB RouteCacheEntry *old, ODMRLB RouteCacheEntry *last); 

void RoutingODMRLBInsertRequestTable(NODE_ADDR destAddr, 
ODMRLB RequestTable *requestTable); 

ODMRLB RequestTableEntry *RoutingODMRLBInsertRTInOrder( 
NODE_  ADDR destAddr,ODMRLB_RequestTableEntry *old); 

void Routing0DRLBInsertBuffer(Message *msg, NODE_ADDR destAddr, 
ODMRLB BUFFER *buffer); 

ODMRLB BUFFER Node *RoutingODMRLBInsertBufInOrder(Message *msg, 
NODE_ADDR destAddr, ODMRLB_BUFFERNode *old); 

BOOL RoutingODMRLBCompareRoute(NODE_ADDR destAddr, 
int hopCount, NODE_ADDR *path, ODMRLB_RouteCache *routeCache); 

void RoutingODMRLBDeleteRouteCache(GlomoNode *node, 
NODE_ADDR fromHop, NODE ADDR nextHop, ODMRLB_RouteCache *routeCache); 

void RoutingODMRLBRemoveOldPacketsFromBuffer(ODMRLBBUFFER *buffer); 

BOOL RoutingODMRLBDeleteBuffer(NODE_ADDR destAddr, 
ODMRLB BUFFER *buffer); 

void RoutingODMRLBDeleteRequestTable(NODE_ADDR destAddr, 
ODMRLBRequestTable *requestTable); 
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BOOL RoutingODMRLBCheckDataSeen( 
GlomoNode *node, NODE_ADDR *header, int currentHop); 

BOOL RoutingODMRLBCheckRequestPath( 
GlomoNode *node, NODE ADDR *path, int currentHop); 

NODE_ADDR *RoutingODMRLBGetRoute(NODE ADDR destAddr, 
ODMRLBJOuteCache *routeCache); 

int RoutingODMRLBGetHop(NODE ADDR destAddr, 
ODMRLBRou- eCache *routeCache); 

int RoutingODMRLBGetSeq(GlomoNode *node); 

BOOL RoutingODMRLBCheckUnprocessedPath(GlomoNode *node, 
int currentHop,int segmentLeft, NODE ADDR *header); 

Message * 
RoutingODMRLBGetBufferedPacket(NODEADDR destAddr, 

ODMRLB BUFFER *buffer); 
BOOL RoutingODMRLBLookupBuffer(NODE ADDR destAddr, 

ODMRLB BUFFER *buffer); 
void RoutingODMRLBUpdateRequestTable(NODE ADDR destAddr, 

ODMRLBJequestTable *requestTable); 
void RoutingODMRLBUpdateTtl(NODE ADDR destAddr, 

ODMRLB kequestTable *requestTable); 
BOOL RoutingODMRLBCheckRequest'lgole(NODE ADDR destAddr, 

ODMRLB_kequestTable *requestTable); 

clocktype RoutingODMRLBGetBackoff(NODE ADDR destAddr, 
ODMRLB kequestTable *requestTable); 

void RoutingODMRLBHandleProtocolPacket( 
GlomoNode *node, Message *msg, NODE_ADDR srcAddr, 
NODE ADDR destAddr, int ttl); 

void RoutingODMRLBHandleProtocolEvent(GlomoNode *node, Message *msg); 

void RoutingODMRLBRouterFunction( 
GlomoNode *node, 	Message *msg, 
NODE ADDR destAddr,BOOL *packetWasRouted); 

void RoutingODMRLBPeekFunction(GiomoNode *node, const Message *msg); 
void RoutingODMRLBPacketDropNotificationHandler( 
GlomoNode *node, const Message* msg, const NODE ADDR nextHopAddress) 

void RoutingODMRLBSendReply(GlomoNode *node, Message *msg); 
int RoutingODMRLBCheckDisjointRouteExist(GlomoNode *node, 

Message *msg); 
int RoutingODMRLBComparePath(int hopCountl,NODE ADDR *pathl, 

int hopCoun-T2,NODEADDR -*path2); 
int selectRouteNumber(NODE_ADDR destAddr, 

ODMRLB RouteCache *routeCache,int numSent[]); 
int RoutingODMRLBGetHop2TNODE_ADDR destAddr, 

ODMRLB RouteCache *routeCache,int routeNum); 
NODE ADDR *RoutingODMRLBetRoute2(NODE ADDR destAddr, 
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ODMRLBRouteCache *routeCache,int routeNum); 
void RoutingODMRLBTransmitData2(GlomoNode *node, Message *msg, 

NODE ADDR destAddr, int routeNum); 
void RoutingODMRLBStartTransmission(GlomoNode *node, Message *msg, 

NODE ADDR destAddr); 
void RoutingODMRLBSetTimer( 

GlomoNode *node, long eventType, ODMRLB_CR cr, clocktype delay); 
void RoutingODMRLBInitiateRREQ(GlomoNode *node, NODE_ADDR destAddr); 
void RoutingODMRLBRetryRREQ(GlomoNode *node, NODE_ADDR destAddr, 

int ttl); 
void RoutingODMRLBTransmitData(GlomoNode *node, Message *msg, 

NODE_ADDR destAddr); 
void RoutingODMRLBRelayRREQ(GlomoNode *node, Message *msg, int ttl); 
void RoutingODMRLBInitiateRREP(GlomoNode *node, Message *msg); 
void RoutingODMRLBInitiateRREPbyIN(GlomoNode *node, Message *msg); 
void RoutingODMRLBRelayRREP(GlomoNode *node, Message *msg); 
void RoutingODMRLBInitiateRERR(GlomoNode *node, NODE ADDR destAddr, 

NODE_ADDR unreachableAddr, NODE_ADDR *errorPath); 
void RoutingODMRLBRelayRERR(GlomoNode *node, Message *msg); 
void RoutingODMRLBSalvageData(GlomoNode *node, Message *msg); 
void Routing°DMRLDSalvageRERR(GlomoNode *node, NODE_ADDR targetAddr, 

NODE ADDR srcAddr, NODE_ADDR unreachableAddr); 
void RoutingODMRLBGratui-EousRREP(GlomoNode *node, NODE_ADDR srcAddr, 

NODE_ADDR destAddr, NODE_ADDR *old, int count, int length); 
void AddCustom0Did-RLBIpOptionFields(GiomoNode* node, Message* msg); 
ODMRLBIpOptionType* GetPtrToODMRLBIpOptionField(Message* msg); 
extern double ceil(double x); 
BOOL RoutingODMRLBNeednotForwardRequest(NODE_ADDR srcAddr, 

int seq,NODE ADDR prevNode,int hopCount, 
5DMRLB_RequestSeen *requestSeen); 

void RoutingODMRLBInitRouteReplyCache( 
ODMRLB_RouteReplyCache *routeReplyCache); 

void RoutingODMRLBInsertRouteReplyCache(NODE ADDR destAddr, 
int hopCount,NODEADDR *path,ODMRLB_RoueReplyCache *routeCache); 

ODMRLB_RouteRepiyCacheEntry *RoutingODMRLBInsertRCReplyInOrder( 
NODE ADDR destAddr,int hopCount,NODE ADDR *path, 

ODMRLB RouteReplyCacheEntry *old, 
ODMRLB RouteReplyCacheEntry *last); 

void RoutingODMRLBDeleteRouteReplyCache( 
ODMRLB RouteReplyCache *routeCache, NODE ADDR destAddr); 

#endif /* ODMRLB H */ 
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Odmrlb.pc 

#include <stdlib.h> 
#include <stdio.h> 
#include <string.h> 
#include <assert.h> 
#include <math.h> 

#include "api.h" 
#include "structmsg.h" 
#include "fileio.h" 
#include "message.h" 
*include "network.h" 
#include "odmrlb.h" 
#include "ip.h" 
*include "nwip.h" 
*include "nwcommon.h" 
*include "application. h" 
#include "transport.h" 
#include "javagui.h" 

void RoutingODMRLBHandleRequest(GlomoNode *node, Message *msg, int ttl) 
{ 

GlomoNetworkIp* ipLayer = (GlomoNetworklp *) node-> 
networkData.networkVar; 

GlomoRoutingODMRLB* ODMRLB = (GlomoRoutingODMRLB *) ipLayer-> 
routingProtocol; 

ODMRLB RouteRequest *rreq = (ODMRLB RouteRequest*) 
GLOMO iisgReturnPacket(msg); 

IpHeaderType *ipHdr = (IpHeaderType *)GLOMO MsgReturnPacket(msg); 

/* If destination of the route (dest sends Reply to every 
requests) */ 	 • 
if (rreq->targetAddr == node->nodeAddr) 
{ 

RoutingODMRLBSendReply(node,msg); 

/* Not a destination; if the request can be forwarded */ 
else if (rreq->hopCount==l) 

/* Insert request info into request seen table */ 
RoutingODMRLBInsertRequestSeen(node, 

rreq->srcAddr, rreq->seqNumber, rreq->srcAddr, 
rreq->hopCount, &ODMRLB->requestSeenTable); 

/* Check if its address is in the path of the packet */ 
if (!RoutingODMRLBCheckRequestPath(node,rreq->path,rreq->hopCount-1)) 
{ 

/* Relay the packet if ttl > 0 */ 
if (ttl > 0 && rreq->hopCount < ODMRLB MAX SR LEN) 
{ 

RoutingODMRLBRelayRREQ(node, msg, ttl); 
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else 

} /* if ttl > 0 */ 

else 
{ 

} 
GLOMO MsgFree(node, msg); 

} /* if check request path */ 
else 
{ 

GLOMOMsgFree(node, msg); 
} 
} /* else if lookup request seen 

else if ( (rreq->hopCount>1)&& 
(!RoutingODMRLBNeednotForwardRequest(rreq->srcAddr, 

rreq->segNumber, rreq->path[rreq->hopCount -2], 
rreq->hopCount, &ODMRLB->requestSeenTable) ) ) 

/* Insert request info into request seen table */ 
RoutingODMRLBInsertRequestSeen(node, 

rreg->srcAddr,rreq->seqNumber, 
rreq->path[rreq->hopCount -2],rreq->hopCountr  
&ODMRLB->requestSeenTable); 

/* Check if its address is in the path of the packet */ 
if (!RoutingODMRLBCheckRequestPath(node, 

rreq->path,rreq->hopCount - 1)) 

/* Relay the packet if ttl > 0 */ 
if (ttl > 0 && rreq->hopCount < ODMRLB MAX SR LEN) 
{ 

RoutingODMRLBRelayRREQ(node, msg, ttl); 
/* if ttl > 0 */ 

else 

GLOMO MsgFree(node, msg); 
} 

} /* if check request path */ 

else 

GLOMOMsgFree(node, msg); 

} /* else if lookup request seen */ 

GLOMOMsgFree(node, msg); 
J.  
} /* Handle Request */ 
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/* 
* RoutingODMRLBHandleReply 

* Processing procedure when Route Reply is received 
*/ 

void RoutingODMRLBHandleReply( 
GlomoNode *node, Message *msg, NODE ADDR destAddr) 
{ 

GlomoNetworklp* ipLayer = (GlomoNetworkIp *) node-> 
networkData.networkVar; 

GlomoRoutingODMRLB* ODMRLB = (GlomoRoutingODMRLB *) ipLayer-> 
routingProtocol; 

Message *newMsg; 
ODMRLB CR cr; 
ODMRLB RouteReply *rrep = (ODMRLB_RouteReply *) 

GLOMO_MsgReturnPacket(msg); 
NODE — ADDR newPath[ODMRLB MAX SR LEN]; _ _ _ . 
int segLeft; 
int i, j, k; 

segLeft = rrep->segLeft - 1; 

/* I'm the destination of the packet (source of the route) */ 
if (rrep->targetAddr == node->nodeAddr && destAddr == node->nodeAddr) 
{ 

/* A new (and first) route to the destination */ 
if (!RoutingODMRLBCheckRouteExist(rrep->srcAddr, &ODMRLB-> 

routeCacheTable) && 
!RoutingODMRLBCheckDataSeen(node,rrep->path,rrep->hopCount) 

&& rrep->srcAddr 1= ANY DEST) 
{ 
RoutingODMRLBInsertRouteCache(rrep->path[rrep->hopCount - 1], 

rrep->hopCount, rrep->path, &ODMRLB->routeCacheTable); 

cr.destAddr = destAddr; 
cr.ttl = 0; 
RoutingODMRLBSetTimer(node, MSG_  NETWORK_CheckRequest, Cr, 

(clocktype)5); 

ODMRLB->stats.numRoutes++; 
ODMRLB->stats.numHops += rrep->hopCount; 

RoutingODMRLBDeleteRequestTable(rrep->srcAddr,&ODMRLB-> 
requestTable); 

// Remove packets expired waiting for route. 

RoutingODMRLBRemoveOldPacketsFromBuffer(&ODMRLB->buffer); 

/* Send buffered data packets that waited for a route */ 
while (RoutingODMRLBLookupBuffer(rrep->srcAddr, &ODMRLB->buffer)) 

newMsg = RoutingODMRLBGetBufferedPacket(rrep->srcAddr, 
&ODMRLB->buffer); 
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RoutingODMRLBTransmitData(node, newMsg, rrep->srcAddr); 

RoutingODMRLBDeleteBuffer(rrep->srcAddr, &ODMRLB->buffer) 

} /* while */ 

/* Optimization: Adding routes to intermediate nodes */ 

for (i = 0; i < rrep->hopCount - 1; i++) 

for (j = 0; j <= i; j++) 

newPath[j] = rrep->path[j]; 
} 
for (j = i + 1; j < ODMRLB_MAX_SR_LEN; j++) 
{ 

newPath[j] = ANY_DEST; 
} 

/* Check if the route is new */ 
if (!RoutingODMRLBCompareRoute(rrep->path[i],i + 1, newPath, 

&ODMRLB->routeCacheTable) && 
!RoutingODMRLBCheckDataSeen(node, newPath, i + 1)) 

RoutingODMRLBInsertRouteCache(rrep->path[i],i + 1, 
newPath, &ODMRLB->routeCacheTable); 

} /* if a new route */ 
} /* for */ 

} /* if check route exist */ 

/* routes to the destination already exist */ 
else 
{ 

/* if the route is not the same as one in the cache */ 
if (!RoutingODMRLBCompareRoute(rrep->path[rrep->hopCount - 1], 

rrep->hopCount,rrep->path,&ODMRLB->routeCacheTable) && 
!RoutingODMRLBCheckDataSeen(node, rrep->path, rrep->hopCount)) 
{ 
RoutingODMRLBInsertRouteCache(rrep->path[rrep->hopCount - 1], 

rrep->hopCount, rrep->path,&ODMRLB->routeCacheTable); 

} 

/* Optimization: Adding routes to intermediate nodes */ 
for (i = 0; i < rrep->hopCount - 1; i++) 

for (j = 0; j <= i; j++) 

newPath[j] = rrep->path[j]; 

for (j = i + 1; j < ODMRLB MAX SR LEN; j++) 

newPath[j] = ANY DEST; 
1 

/* Check if new route is the same as one in cache */ 
if (!RoutingODMRLBCompareRoute(rrep->path[i], i + 1, 
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newPath, &ODMRLB->routeCacheTable) && 
!RoutingODMRLBCheckDataSeen(node, newPath, i + 1)) 

{ 
/* Insert the route into cache */ 
RoutingODMRLBInsertRouteCache(rrep->path[i],i + 1, 

newPath, &ODMRLB->routeCacheTable); 

} /* if a new route */ 
1 /* for */ 

} /* else */ 

GLOMOMsgFree(node, msg); 

} /* if dest */ 

/* Node is the intended intermediate node; 
cache the routes and relay the packet*/ 

else if (destAddr == node->nodeAddr) 

/* Insert the routes into cache */ 
for (i = 0; i < rrep->hopCount; i++) 

newPath[i] = rrep->path[segLeft + i]; 
} 
for (i = rrep->hopCount; i < ODMRLB MAX SR LEN; i++) 
{ 

newPath[i] = ANY DEST; 
} 

/* Check if the route is new */ 
if (!RoutingODMRLBCompareRoute(rrep->srcAddr, 

rrep->hopCount,newPath,&ODMRLB->routeCacheTable) && 
!RoutingODMRLBCheckDataSeen(node, newPath, rrep->hopCount)) 

{ 
RoutingODMRLBInsertRouteCache(rrep->srcAddr, 
rrep->hopCount, newPath, &ODMRLB->routeCacheTable); 

} /* if compare route */ 

/* Optimization: Adding routes to intermediate nodes */ 
for (j = segLeft; j< rrep->hopCount+segLeft - 1;j++) 

for (k = 0; k <= j 	segLeft; k++) 

newPath[k] = rrep->path[k + segLeft]; 
1 
for (k = j + 1 - segLeft; k < ODMRLB MAX SR LEN; k++) 

newPath[k] = ANY DEST; 
} 

/* Check if the route is new */ 
if (!RoutingODMRLBCompareRoute(rrep->path[j], 
j + 1 - segLeft, 	newPath, &ODMRLB->routeCacheTable) && 

!RoutingODMRLBCheckDataSeen(node, newPath, j + 1 - segLeft)) 
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RoutingODMRLBInsertRouteCache(rrep->path{j}, 
j + 1 - segLeft, newPath, &ODMRLB-> 
routeCacheTable); 

} /* if compare route */ 
} /* for */ 

RoutingODMRLBRelayRREP(node, msg); 

} /* else if intended receiver */ 

else 

GLOMO MsgFree(node, msg); 
} 
/* Handle Reply */ 

/* 
* RoutingODMRLBHandleError 
* 

* Processing procedure when Route Error is received 
*/ 

void RoutingODMRLBHandleError(GlomoNode *node, Message *msg, 
NODE ADDR srcAddr, NODE ADDR destAddr) 

{ 
GlomoNetworklp* ipLayer = (GlomoNetworkIp *) node-> 

networkData.networkVar; 
GlomoRoutingODMRLB* ODMRLB = (GlomoRoutingODMRLB *) ipLayer-> 

routingProtocol; 
Message *newMsg; 
ODMRLB_RouteError *rerr = (ODMRLB_RouteError *) 

GLOMOMsgReturnPacket(msg); 

/* Delete routes in cache that use the broken link */ 
RoutingODMRLBDeleteRouteCache(node, rerr->srcAddr, 

rerr=>unreachableAddr, &ODMRLB->routeCacheTable); 

/* If intermediate node of the broken route, then forward the 
packet */ 
if (rerr->path[rerr->hopCount - 1] == node->nodeAddr && 

destAddr == node->nodeAddr && 
rerr->destAddr != node-> nodeAddr) 

{ 
RoutingODMRLBRelayRERR(node, msg); 

} /* if intended receiver */ 

/* if source of the broken route */ 
else if (rerr->destAddr == node->nodeAddr) 

GLOMOMsgFree(node, msg); 
} 

} /* Handle Error 
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/* 
* RoutingODMRLBCompareRoute 
* 

* Check if new route is the same as the one in cache 
* return TRUE if new route is the same; FALSE otherwise 
*/ 

BOOL RoutingODMRLBCompareRoute(NODE_ADDR destAddr, 
int hopCount, NODE_ADDR *path, 
ODMRLBRouteCache *routeCache) 

{ 

int i, j; 
BOOL found = FALSE; 
ODMRLB RouteCacheEntry *current; 

* 

printf("COMPARE ROUTE: hop count = %d\n", hopCount); 
*/ 

for (current = routeCache->head; 
current != NULL && current->destAddr <= destAddr; 
current = current->next) 

if (current->destAddr == destAddr && current->hopCount 
hopCount) 

{ 

for (i = 0; i < hopCount; i++) 
{ 

if (current->path[i] != path[i]) 
{ 

found = FALSE; 
break; 

} 

else 
{ 

found = TRUE; 
} 

if (found == TRUE) 
{ 

return (found); 
} 

} 
} 

return (found); 

} /* Compare route */ 

/* 
* RoutingODMRLBGetRoute 

* Extract a route from the route cache table 
*/ 
NODE ADDR *RoutingODMRLBGetRoute(NODE ADDR destAddr, 

ODMRLB kaouteCache *routeCache) 
{ 
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ODMRLBRouteCacheEntry *current; 

for (current = routeCache->head; 
current != NULL && current->destAddr <= destAddr; 
current = current->next) 

{ 
if (current->destAddr == destAddr) 
{ 
return(current->path); 
} 

} 

printf("ERROR: Get Route - No route can be retrived from 
Cache\n"); 

return(NULL); 
} /* Get route */ 

/* 
* RoutingODMRLBHandleProtocolPacket 
* 

* Called when packet is received from MAC 
*/ 
void RoutingODMRLBHandleProtocolPacket( 

GlomoNode *node, Message *msg, NODE_ADDR srcAddr, 
NODE ADDR destAddr, int ttl) 

{ 

ODMRLB PacketType *ODMRLBHeader = 
(ODMRLB PacketType*)GLOMO_MsgReturnPacket(msg); 

switch (*ODMRLBHeader) 
1 

case ODMRLB ROUTE REQUEST: 
{ 

RoutingODMRLBHandleRequest(node, msg, ttl); 

break; 
} /* RREQ */ 

case ODMRLB ROUTE REPLY: 
{ 

RoutingODMRLBHandleReply(node, msg, destAddr); 
break; 

} /* RREP */ 

case ODMRLB ROUTE ERROR: 
{ 
RoutingODMRLBHandleError(node, msg, srcAddr, destAddr); 
break; 
} /* RERR */ 

} /* switch */ 
} /* RoutingODMRLBHandleProtocolPacket */ 
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/* 
* RoutingODMRLBHandleProtocolEvent 
* 

* Handles all the protocol events 
*/ 
void RoutingODMRLBHandleProtocolEvent(GlomoNode *node, Message *msg) 

GlomoNetworklp* ipLayer = (GlomoNetworkIp *) node-> 
networkData.networkVar; 

GlomoRoutingODMRLB* ODMRLB = (GlomoRoutingODMRLB *) ipLayer-> 
routingProtocol; 

switch (msg->eventType) { 

/* Remove an entry from the request seen table */ 
case MSG_NETWORK FlushTables: { 

RoutingODMLBDeleteSeenTable(&ODMRLB->requestSeenTable); 
GLOMO MsgFree(node, msg); 
break; 

} 

/* check if a route is obtained after sending a Route 
Request */ 
case MSG_NETWORKCheckReplied: { 
ODMRLB CR *cr 	(ODMRLB CR *)GLOMO MsgReturnInfo(msg); 
int ttl; 
if (!RoutingODMRLBCheckRouteExist( 
cr->destAddr, &ODMRLB->routeCacheTable)) 
{ 
if (cr->ttl == 1) 
{ 

ttl = ODMRLB MAX TTL; 
} 

else 
{ 

ttl = 1; 
} 

RoutingODMRLBRetryRREQ(node, cr->destAddr, ttl); 

/* if no route */ 

GLOMO MsgFree(node, msg); 

break; 
} 
/*added*/ 
case MSG_NETWORK_CheckRequest: { 

ODMRLB CR *cr = (ODMRLB CR *)GLOMO MsgReturnInfo(msg); 
Routin-.50DMRLBStartTransnlission(node,msg,cr->destAddr); 
break; 
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default: 
fprintf(stderr, "RoutingODMRLB: Unknown MSG type %d!\n", 

msg->eventType); 
assert(FALSE); 

/* switch */ 

/* RoutingODMRLBRandleProtocolEvent */ 

/* 
* RoutingODMRLBInitiateRREQ 
* 

* Initiate a Route Request packet when no route to destination is known 
*/ 
void RoutingODMRLBInitiateRREQ(GlomoNode *node, NODE ADDR destAddr) 

{ 
GlomoNetworkIp* ipLayer = (GlomoNetworkIp *) node-> 

networkData.networkVar; 
GlomoRoutingODMRLB* ODMRLB = (GlomoRoutingODMRLB *) ipLayer-> 

routingProtocol; 
Message *newMsg; 
ODMRLB RouteRequest *rreq; 
ODMRLB CR cr; 
char *pktPtr; 
int pktSize = sizeof(ODMRLB_RouteRequest); 
int i; 

newMsg = GLOMO_MsgAlloc(node, GLOMO MAC LAYER, 0, 
MSG MAC_FromNetwork); 

GLOMO MsgPacketAlloc(node, newMsg, pktSize); 

pktPtr = (char *) GLOMO_MsgReturnPacket(newMsg); 
rreq = (ODMRLB_RouteRequest *) pktPtr; 

rreq->pktType = ODMRLB_ROUTE_REQUEST; 
rreq->srcAddr = node->nodeAddr; 
rreq->targetAddr = destAddr; 
rreq->seqNumber = RoutingODMRLBGetSeq(node); 
rreq->hopCount = 1; 
for (i = 0; i < ODMRLB MAX SR LEN; i++) 
{ 

rreq->path[i] = ANY_DEST; 
} 

NetworkIpSendRawGlomoMessage( 
node, newMsg, ANYDEST, CONTROL, IPPROTOODMRLB, 1); 

ODMRLB->stats.numRequestSent++; 

if(RoutingODMRLBCheckRequestTable(destAddr,&ODMRLB->requestTable)) 

RoutingODMRLBUpdateTtl(destAddr, &ODMRLB->requestTable); 

else 
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RoutingODMRLBInsertRequestTable(destAddr,&ODMRLB->requestTable); 
1 

if(rreq->hopCount==1) 
RoutingODMRLBInsertRequestSeen(node, node->nodeAddr, rreq-> 

seciNumber,. rreq->srcAddr,rreq->hopCount, 
&ODMRLB-,>requestSeenTable); 

else if(rreq->hopCount>1) 
RoutingODMRLBInsertRequestSeen(node, node->nodeAddr, 
rreq->segNumber, rreq->path[rreq->hopCount -2],rreq->hopCount, 
&ODMRLB->requestSeenTable); 

else 

cr.destAddr = destAddr; 
cr.ttl = 1; 

RoutingODMRLBSetTimer(node, MSG_NETWORK_CheckReplied, cr, 
(clocktype)ODMRLB_RINGO REQUEST_TO); 

} /* RoutingODMRLBInitiateRREQ */ 

/* 
* RoutingODMRLBRetryRREQ 
* 
* Send RREQ again after not receiving any RREP 
*/ 
void RoutingODMRLBRetryRREQ(GlomoNode *node, NODE ADDR destAddr, int 
ttl) 
{ 

GlomoNetworklp* ipLayer = (GlomoNetworkIp *) node-> 
networkData.networkVar; 

GlomoRoutingODMRLB* ODMRLB = (GlomoRoutingODMRLB *) ipLayer-> 
routingProtocol; 

Message *newMsg; 
ODMRLB RouteRequest *rreq; 
ODMRLB CR cr; 
char *pktPtr; 
clocktype backoff; 
int pktSize = sizeof(ODMRLB_RouteRequest); 
int i; 

newMsg = GLOMO_MsgAlloc(node, GLOMO_MAC_LAYER, 0, 
MSG_MAC_FromNetwork); 

GLOMOMsgPacketAlloc(node, newMsg, pktSize); 

pktPtr = (char *) GLOMO_MsgReturnPacket(newMsg); 
rreq = (ODMRLB RouteRequest *) pktPtr; 

rreq->pktType = ODMRLB_ROUTE REQUEST; 
rreq->srcAddr = node->nodeAdar; 
rreq->targetAddr = destAddr; 
rreq->seqNumber = RoutingODMRLBGetSeq(node); 
rreq->hopCount = 1; 
for (i = 0; i < ODMRLB MAX SR LEN; i++) 
{ 

rreq->path[i] = ANY_DEST; 
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} 

NetworkIpSendRawGlomoMessage( 
node, newMsg, ANY DEST, CONTROL, IPPROTOODMRLB, ttl); 

ODMRLB->stats.numRequestSent++; 

if(rreq->hopCount==1) 
RoutingODMRLBInsertRequestSeen(node, node->nodeAddr, 
rreq->seqNumber, rreq->srcAddr,rreq->hopCount, 
&ODMRLB->requestSeenTable); 

else if(rreq->hopCount>l) 
RoutingODMRLBInsertRequestSeen(node, node->nodeAddr, 

rreq->seqNumber,rreq->path[rreq->hopCount -2], 
rreq->hopCount,&ODMRLB->requestSeenTable); 

else 

if (ttl == ODMRLB MAX TTL) 
{ 

RoutingODMRLBUpdateRequestTable(destAddr, &ODMRLB-> 
requestTable); 

backoff = RoutingODMRLBGetBackoff(destAddr, &ODMRLB-> 
requestTable); 

else 
{ 

RoutingODMRLBUpdateTtl(destAddr, &ODMRLB->requestTable); 
backoff = ODMRLB RINGO REQUEST TO; 

} 

cr.destAddr = destAddr; 
cr.ttl = ttl; 

RoutingODMRLBSetTimer(node, MSG NETWORK CheckReplied, cr, 
backoff); 

} /* RoutingODMRLBRetryRREQ 

/* 
RoutingODMRLBTransmitData 

* 

* Obtain the route from the cache and send the data thru the source 
route 
*/ 
void RoutingODMRLBTransmitData(GlomoNode *node, Message *msg, 

NODE ADDR destAddr) 
{ 

GlomoNetworklp* ipLayer = (GlomoNetworkIp *) node-> 
networkData.networkVar; 

GlomoRoutingODMRLB* ODMRLB = (GlomoRoutingODMRLB *) ipLayer-> 
routingProtocol; 
ODMRLBIpOptionType *option; 
NODE_ADDR *route; 
int hopCount; 
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GLOMO_MsgSetLayer(msg, GLOMO MAC_LAYER, 0); 
GLOMO MsgSetEvent(msg, MSG MAC FromNetwork); 

route = RoutingODMRLBGetRoute(destAddr, &ODMRLB->routeCacheTable); 
hopCount = RoutingODMRLBGetHop(destAddr, &ODMRLB->routeCacheTable); 

if (route != NULL) 
{ 

AddCustomODMRLBIpOptionFields(node, msg); 
option = GetPtrToODMRLBIpOptionField(msg); 
option->segmentLeft = hopCount; 
option->salvagedBit = FALSE; 

NetworkIpSendPacketToMacLayerWithNewStrictSourceRoute( 
node, msg, route, hopCount, TRUE); 

ODMRLB->stats.numDataSent++; 
ODMRLB->stats.numDataTxed++; 
} 
else 
{ 
GLOMO MsgFree(node, msg); 
} 

/* RoutingODMRLBTransmitData */ 

/* 
* RoutingODMRLBRelayRREQ 
* 

* Forward (re-broadcast) the Route Request 
*/ 
void RoutingODMRLBRelayRREQ(GlomoNode *node, Message *msg, int ttl) 
{ 

GlomoNetworklp* ipLayer = (GlomoNetworklp *) node-> 
networkData.networkVar; 

GlomoRoutingODMRLB* ODMRLB = (GlomoRoutingODMRLB *) ipLayer-> 
routingProtocol; 

Message *newMsg; 
ODMRLB RouteRequest *oldRreq; 
ODMRLB RouteRequest *newRreq; 
char *pktPtr; 
int pktSize = sizeof(ODMRLB_RouteRequest); 
clocktype delay; 
int i; 

oldRreq = (ODMRLB_RouteRequest *) GLOMO_MsgReturnPacket(msg); 

newMsg = GLOMO_MsgAlloc(node, GLOMO_MAC_LAYER, 0, 
MSGMAC_FromNetwork); 

GLOMOMsgPacketAlloc(node, newMsg, pktSize); 

pktPtr = (char *) GLOMO_MsgReturnPacket(newMsg); 
newRreq = (ODMRLB_RouteRequest *) pktPtr; 

newRreq->pktType = oldRreq->pktType; 
newRreq->srcAddr = oldRreq->srcAddr; 
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newRreq->targetAddr = oldRreq->targetAddr; 
newRreq->seqNumber = oldRreq->seqNumber; 
newRreq->hopCount = oldRreq->hopCount 1; 
for (i = 0; i < oldRreq->hopCount - 1; i++) 

newRreq->path[i] = oldRreq->path[i]; 
} 
newRreq->path[oldRreq->hopCount - 1] = node->nodeAddr; 
for (i = oldRreq->hopCount; i < ODMRLB MAX SR LEN; i++) 
{ 

newRreq->path[i] = ANYDEST; 
} 
delay - pc_erand(node->seed) * ODMRLB_BROADCAST_JITTER; 
NetworkIpSendRawGlomoMessageWithDelay( 

node, newMsg, ANY_DEST, CONTROL, IPPROTO ODMRLB, ttl, delay); 
ODMRLB->stats.numRequestSent++; 
GLOMO_MsgFree(node, msg); 

} /* RoutingODMRLBRelayRREQ 

* 

* RoutingODMRLBCheckDisjointRouteExist 
* 

* Check for route replies 
*/ 

int RoutingODMRLBCheckDisjointRouteExist(GlomoNode *node, Message *msg) 
{ 

GlomoNetworklp* ipLayer = (GlomoNetworklp *)node-> 
networkData.networkVar; 

GlomoRoutingODMRLB* ODMRLB = (GlomoRoutingODMRLB *) ipLayer-> 
routingProtocol; 

ODMRLB RouteRequest *rreq = (ODMRLB_RouteRequest *) 
GLOMO MsgReturnPacket(msg); 

ODMRLB CR Cr; 
ODMRLB_RouteReplyCache *routeCache=&ODMRLB->routeReplyCacheTable; 

NODE ADDR destAddr=rreq->targetAddr; 

ODMRLB_RouteReplyCacheEntry *current; 

if (routeCache->count == 0) 
{ 
return 0; 
} 

for (current - routeCache->head; 
current != NULL ; 
current = current->next) 

{ 

if (current->destAddr == destAddr) 

if(RoutingODMRLBComparePath(rreq->hopCount,rreq->path,current-> 
hopCount,current->path)!=0) 
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return 1; 

} 

return 0; 

1/*RoutingODMRLBCheckDisjointRouteExist*/ 

/* 
*RoutingODMRLBDeleteRouteReplyCache 
*/ 
void RoutingODMRLBDeleteRouteReplyCache(ODMRLB_RouteReplyCache 
*routeCache,NODE_ADDR destAddr) 

ODMRLB_RouteReplyCacheEntry *toFree; 
ODMRLB RouteReplyCacheEntry *current; 

if (routeCache->count == 0) 
{ 
return; 
} 

else if (routeCache->head->destAddr == destAddr) 
{ 
while(routeCache->head->destAddr == destAddr) 
{ 
toFree = routeCache->head; 
routeCache->head = toFree->next; 
if(routeCache->count>1) 
toFree->next->prev=NULL; 

pc_free(toFree); 
--(routeCache->count); 
} 
} 

else 
{ 

for (current = routeCache->head; 
current->next != NULL && current->next->destAddr < destAddr; 

current = current->next) 
{ 

} 

while (current->next != NULL && current->next->destAddr == destAddr) 

toFree = current->next; 
current->next = toFree->next; 
toFree->next->prev=current; 
pc_free(toFree); 
--(routeCache->count); 
} 
} 

}/*RoutingODMRLBDeleteRouteReplyCache*/ 

/* 
* RoutingODMRLBSendReply 
*/ 
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void RoutingODMRLBSendReply(GlomoNode *node, Message *msg) 

GlomoNetworkIp* ipLayer = (GlomoNetworkIp *) 
node->networkData.networkVar; 

GIomoRoutingODMRLB* ODMRLB = (GlomORoutingODMRLB *) ipLayer-> 
routingProtocol 

ODMRLB RouteRequest *rreq = (ODMRLB„RouteRequest *) 
GLOMO M8gReturnPacket(msg); 

ODMRLB CR cr; 
ODMRLBRouteRepIyCache *routeCaohe=&ODMRLB->rotteReplyCacheTable; 

ii(RoutingODMRLBCheckDisjointRouteExist(node,msg)==0) 
{ 

RoutingODMRLBInsertRouteReplyCache(rreq->srcAddr, rreq->hopCount, 
rreq->path, &ODMRLB>routeReplyCacheTable); 

RoutingODMRLBInitiateRREP(tode, msg); 
1 
else 
GLOMO_MsgFree(node, msg); 
}/*RoutingODMRLBSendReply*/ 

* ROutingODMRLBStartTransmission 

* 

*/ 
void RoutingODMRLBStartTransmission(GlomoNode *tbde, Message *MSg, 

NODEADDR destAddZ) 

GlOMONetworkIp* ipLayer = (GlomoNetworkIp *) node-> 
networkData.networkVarl• 

GlomoRoutingODMRLB* ODMRLB = (GlOmoRoutingODMRLB *) ipLayer7> 
routingProt000ll• 

Message *newMsg; 
int numSentJROUTE• MAX-1-1]={0};. 
int count=0,routeRUm; 

while (RoutingODMRLBLookupBuffer(destAddr, &ODMRLB->buffer)) 

newMsg =.ROutingODMRLBGetBufferedPacket(deStAddr• 
•:grODMRLB->btlffer); 

routeNum=seleCtRouteNumber(destAddr,&ODMRLB-> routeCaCheTable, 
•• numSentiI 

•RoutingODMRLBTransmitData2(node,newMsg, destAddr,routeNum); 
RoutingODMRLBDeIeteBuffer(destAddr, &ODMRLB.,>10Offer); 

1 /* while */ 

}/*RoutingODMRLBStartTransmission*/ 

65 



* RoutingODMRLBInitiateRREP 
* 

* DeStination of the route sends Route Reply. in reaction to Route 
Request 
*/ 

void RoutingODMRI3InitiateRREPG1omoNode *node, Message *msg )  

{ 
GlomONetworkIp* ipLayer = (GlomoN.etworklp *)nocip-> 

ne:twokpata.networkVar; 
GlmdRoutinTDDMRLB* ODMRLB = (GlomoRoutingODMRLB *ipLayer'-> 

routingProtocol; 
Message *newMsg; 
ODMRLB.RoutRequest *rreq2kt; 
ODMRLB RouteReply *rrepPkt; 
char .*pktPtr; 
int pktSize = sizeof(ODMRLB RouteReplyT; 
int 

.r,

••clocktype delay;• 
.rreqPkt. - (ODMRLW-

-
RotteRequest *)• GLOM° MsgReturnBacket(msg) 	. 

newMsg =GLOMO_Msg-Alloc.(node,GLOMO_MAC L-FiVERi 0, MSG MAC FrOMNetwprk); 
GLOMO_MsgPacketAlloc(node, newMsg," pktSize); 
pktPtr = (char *) GLOp4O_MgReturnpacket(nwMsg); 
.r.eppkt = (ODMRLB_RouteReply *) pktPtr; 
rreppkt->pktType.:.= ODMRLBLROLITEREPLy; 
rrepPkt->targetAddr = rre4Pkt->srcAddr; 
rrepPkt->srCAddr = node->nodeAddr; 
rreppkt->hopColint = 1; 
rrepPkt->segLeft = rregPkt->hopCount; 

i < rreCiPkt->hopCoupt - 1; i++) 
4 

rrepPkt>pathLij = rreqpkt>path[i]; 

rrepPkt->path[rreqPkt->hopCount - 1] = node->n0d0A00 ,  
for (i = rreqPkt7>hOpCount; i < ODMRLB MAX SR LEN; 
{ 

rrepPkt->path4i] = ANYDEST.;! 

delay = pc erand(node->seed) * ODMRLB BROADCAST JITTER. - - 
If (rregPkt->hopCount > 1) 

NetworkIpSendRaWGlomoMessageToMacLayerWithDeiay( 
node, newMsg, rrepPkt->path[:tregPkt->hopCdOnt - 2], 
CONTROL, IPPROTO ODMRLE, 1, DUAULTINTERFACE, 

rrepPkt->path[rreqpkt->hopCount -2], delay): ; 
1 
else 
4 

NetworkIpSendRawGlomoMessageTOMacLayerWithDelay( 
node, newMsg, rrepPkt->targetAddr, CONTROL, IpPROTO: ODMRLB 
1,DEFAULT INTERFACE, rreppkt->targetAddr, delay);:  

ODMRLB->stats.numReplySent++; 
GLOMO Msgfree(node, msg); 
/* RoutingODMRLBInitiateRREP 
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