
ON DEMAND MULTIPATH ROUTING PROTOCOL WITH
LOAD BALANCING FOR ADHOC NETWORKS

A DISSERTATION
Submitted in partial fulfillment of the

requirements for the award of the degree

of

MASTER OF TECHNOLOGY
in

INFORMATION TECHNOLOGY

By

NARASIMHA REDDY JAKKAM

DEPARTMENT OF ELECTRONICS AND COMPUTER ENGINEERING
INDIAN INSTITUTE OF TECHNOLOGY ROORKEE

ROORKEE - 247 667 (INDIA)

JUNE, 2007

CANDIDATE'S DECLARATION

I hereby declare that the work, which is being presented in the dissertation entitled "ON

DEMAND MULTIPATH ROUTING PROTOCOL WITH LOAD BALANCING

FOR ADHOC NETWORKS" towards the partial fulfillment of the requirement for the

award of the degree of Master of Technology in Information Technology submitted in
the Department of Electronics and Computer Engineering, Indian Institute of Technology

Roorkee, Roorkee (India) is an authentic record of my own work carried out during the

period from July 2006 to June 2007, under the guidance of Dr. Manoj Misra, Associate

Professor, Department of Electronics and Computer Engineering, HT Roorkee.

I have not submitted the matter embodied in this dissertation for the award of any other

degree or diploma.

Date: 2.9ruNE. ECO1 	 wawa' Way.
Place: Roorkee 	 (Narasimha Reddy Jakkam)

CERTIFICATE

This is to certify that the above statement made by the candidate is correct to the best of

my knowledge and belief.

Date: 1-3-04-6/

Place: Roorkee

Mel

(Dr. Manoj Misra)

Associate Professor

Department of Electronics and Computer Engineering

HT Roorkee — 247 667

ACKNOWLEDGEMENTS

I would like to extend my heartfelt gratitude to my guide Dr. Manoj Misra, Associate
Professor, Department of Electronics and Computer Engineering, Indian Institute of

Technology Roorkee, for his able guidance, regular source of encouragement and

assistance throughout this dissertation work. It is his vision and insight that inspired me
to carry out my dissertation in the upcoming field of Localization using Image
Processing. I would state that the dissertation work would not have been in the present
shape without his umpteen guidance and I consider myself fortunate to have done my
dissertation under him.

I also extend my sincere thanks to Dr. D. K. Mehra, Professor and Head of the
Department of Electronics and Computer Engineering, Indian Institute of Technology
Roorkee for providing facilities for the work.

I also wish to thank all my friends for their valuable suggestions and timely help.

Finally, I would like to say that I am indebted to my parents for everything that they have
given to me. I thank them for the sacrifices they made so that I could grow up in a

learning environment. They have always stood by me in everything I have done,
providing constant support, encouragement and love.

7.14amaireleo, Rally

Narasimha Reddy Jakkam

ABSTRACT

A Mobile AdHoc Network (MANET) is a collection of mobile nodes that can
communicate with each other using multihop wireless links without utilizing any fixed

based-station infrastructure and centralized management. Each mobile node in the

network acts as both a host generating flows or being destination of flows and a router

forwarding flows directed to other nodes.

Multipath routing allows the establishment of multiple paths between a single source and

single destination node. It is beneficial to avoid traffic congestion and frequent link
breaks in communication because of the mobility of nodes. It results in an increased

delivery ratio, smaller end-to-end delays for data packets. This work proposes an On-
Demand Multipath Routing protocol with load balancing (ODMRLB) to find multiple
node-disjoint paths and to distribute the traffic efficiently among the available routes.

Simulation results show that the proposed protocol achieves higher packet delivery ratio

and smaller end-to-end delay than NDMR and DSR.

CONTENTS
Candidate's Declaration

Acknowledgements 	 ii
Abstract 	 iii
List of Figures 	 vi
List of Tables 	 vii

1 Introduction and Problem Statement 	 1
1.1 Introduction 	 1
1.2 Problem Statement 	 1
1.3 Organization of Report 	 2

2 Routing in Mobile Ad hoc Networks 	 3
2.1 Ad hoc Networks 	 3

2.2 Routing Classification in Ad Hoc Networks 	 5
2.2.1 Proactive versus Reactive Approaches 	 6
2.2.2 Clustering and Hierarchical Routing 	 7

2.3 Review of Ad hoc Proactive Routing Protocols 	 8
2.3.1 Destination-Sequenced Distance-Vector Routing 	8

2.4 Review of Ad hoc Reactive Routing Protocols 	 9

2.4.1 Ad Hoc On-demand Distance Vector Routing (AODV) 	9
2.4.2 Dynamic Source Routing (DSR) 	 11

2.5 Ad Hoc On-demand Multipath Routing Protocols 	 13

2.5.1 Ad hoc On-demand Multipath Distance Vector (AOMDV) 13

2.5.2 Split Multipath Routing (SMR) 	 14

2.5.3 Multipath Source Routing (MSR) 	 15

2.5.4 Ad hoc On-demand Distance Vector Multipath Routing 	16

- iv -

3 OnDemand Multipath Routing with Load Balancing 	 18
3.1 Path Accumulation 	 19

3.2 Decreasing Broadcast Routing Overhead 	 20

3.3 Selecting Node-Disjoint Paths 	 22

3.4 Load Balancing 	 24

4 Simulation 	 25
4.1 Data Structures 	 25
4.2 Functions 	 28

4.3 Input Parameters 	 32

5 Results and Discussion 	 34
5.1 Varying Velocity 	 34

5.1.1 Packet Delivery Ratio 	 34
5.1.2 Average end-to-end delay of data packets 	 35

5.2 Varying Number of Sources . 	 37

5.2.1 Packet Delivery Ratio 	 37
5.2.2 Average end-to-end delay of data packets 	 38

6 Conclusions and Future Scope 	 39
6.1 Conclusions 	 39

6.2 Future Scope 	 39

References 	 41
Appendix : Source Code Listing 	 43

- v -

LIST OF FIGURES

Figure 2.1 Illustration of the infrastructure network model 	 4
Figure 2.2 Illustration of the infrastructure-less networks 	 4
Figure 2.3 Route discovery in AODV 	 10
Figure 2.4 Route discovery in DSR 	 11
Figure 3.1 Path Accumulation in ODMRLB 	 19
Figure 3.2 Shortest Routing Hops of Loop-free Paths 	 21
Figure 3.3 Route Request Process with Low Overhead 	 22
Figure 3.4 Node-Disjoint Paths 	 23
Figure 4.1 Flowchart of reducing broadcast routing overhead 	 29
Figure 4.2 Flowchart of selecting node-disjoint paths 	 30
Figure 4.3 Flowchart of processing an incoming RREP packet 	 31
Figure 5.1 Maximum Velocity VS Packet Delivery Ratio 	 35
Figure 5.2 Maximum Velocity VS End to end delay 	 36
Figure 5.3 Number of sources VS Packet Delivery Ratio 	 37
Figure 5.4 Number of sources VS End to end delay 	 38

- vi -

LIST OF TABLES

Table 4.1 input parameters for the simulation procedure 	 33

Table 4.2 application specification parameters 	 33

- vii -

Chapter 1 	 Introduction and Problem Statement

1.1 Introduction

A mobile ad hoc network (MANET) is an infrastructure less network consisting of a set
of mobile nodes that are able to communicate with each other in a multi hop manner
without the support of any base station or access point. A node in a MANET is not only a
node but also a router that is responsible of relaying packets for other nodes. A MANET
has the merit that it is quickly deployable. Applications of MANETs include
communications in battlefields, disaster rescue operations, and outdoor activities.

1.2 Problem Statement

Since bandwidth may be limited in a wireless network, routing along a single path may
not provide enough bandwidth for a connection. However, if multiple paths are used
simultaneously to route data, the aggregate bandwidth of the paths may satisfy the
bandwidth requirement of the application. Also, since there is more bandwidth available,
a smaller end-to-end delay may be achieved

On-demand routing protocols in particular, are widely studied because they consume less
bandwidth than proactive protocols. Ad Hoc On-demand Distance Vector (AODV) [1]
and Dynamic Source Routing (DSR) [2] are the two most widely studied on-demand ad
hoc routing protocols. Previous work [3, 4, 5] has shown limitations of the two protocols.
The main reason is that both of them build and rely on a unipath route for each data
session. Whenever there is a link break on the active route, both of the two routing
protocols have to invoke a route discovery process. On-demand multipath routing
protocols can alleviate these problems by establishing multiple paths between a source
and a destination in a single route discovery. A new route discovery is invoked only when
all of its routing paths fail or when there only remains a single path available.
Node-Disjoint Multipath Routing Protocol (NDMR) reduces routing overhead
dramatically and achieves multiple node-disjoint routing paths. NDMR [6] also uses only

one path at a time.

1

The aim of this dissertation work is

• To study the various routing protocols existing for MANETs,

• Analyze some of the proposed multipath routing techniques, and

• To provide an efficient multipath routing mechanism for utilizing the available
bandwidth effectively and balancing the load .

This consists of simulating the protocol for performance analysis.

1.3 Organization of Report

Chapter 2 presents overview of routing in adhoc networks i.e discusses existing unipath and
multipath routing protocols.
Chapter 3 describes the proposed multipath routing algorithm for finding multiple node-
disjoint paths and traffic distribution among the routes.
Chapter 4 discusses about simulation of the protocol in the Global Mobile Information
System Simulator (GloMoSim)[7].

Chapter 5 discusses about the simulation results obtained under varying the maximum
speed of the nodes and number of sources.
Chapter 6 summarizes the contributions of dissertation followed by the scope for the

future work.

2

Chapter 2 	 Routing in Mobile Ad hoc Networks

This chapter provides background and describes related research efforts and existing
problems in ad hoc routing protocols. Section 2.1 gives a general introduction about ad
hoc networks. Section 2.2 explains several important concepts, including proactive versus
reactive routing approaches and hierarchical routing. Section 2.3 describes some typical

ad hoc proactive routing protocols. Section 2.4 presents several typical ad hoc reactive
routing protocols. Section 2.5 provides a review of current on-demand multipath routing
protocols in wireless ad hoc networks.

2.1 Ad hoc Networks

There are two architectures that allow two wireless stations to communicate with each

other. The first one relies on a third fixed party i.e a base station that will hand over the
offered traffic from a station to another, as illustrated in Figure 2.1. This same entity will
regulate the allocation of radio resources. When a source node wishes to communicate
with a destination node, the former notifies the base station, which eventually establishes
the communication with the destination node. At this point, the communicating nodes do
not need to know about the route from one to the other. All that matters is that both
source and destination nodes are within the transmission range of the base station; if one
of them loses this condition, the communication will abort.

The second approach, called ad-hoc, does not rely on any stationary infrastructure. All
nodes in ad hoc networks are mobile and can be connected dynamically in an arbitrary

manner. Each node in such networks behaves as a router and takes part in discovery and
maintenance of routes to other nodes.

3

Figure 2.1 Illustration of the infrastructure network model

Figure 2.2 Illustration of the infrastructure-less networks

Figure 2.2 illustrates a simple 3-node ad-hoc network. In this figure, a source node S
wants to communicate with a destination node D. S and D are not within transmission
range of each other. Therefore, they both use the relay node R to forward packets from
one to another. R functions as a host and a router at the same time. By definition, a
router is an entity that determines the path to be used in order to forward a packet towards

4

its final destination. The router chooses the next node to which a packet should be
forwarded according to its current understanding of the state of the network.

Wireless ad hoc networks can be broadly divided into two categories: quasi-static and
mobile. In a quasi-static ad hoc network, nodes are static or portable. However, due to

power controls and link failures, the resulting network topology may be dynamic. A
typical sensor network [8] is an example of a quasi-static ad hoc network. In mobile ad
hoc networks (MANETs), the entire network may be mobile, and nodes may move

quickly relative to each other. A major technical challenge in a MANET is the design of
efficient routing protocols to cope with the rapid topology changes.

2.2 Routing Classification in Ad Hoc Networks

Routing in wireless ad hoc networks is clearly different from routing found in traditional
infrastructure networks. Routing in ad hoc networks needs to take into account many

factors including topology, selection of routing path and routing overhead, and it must
find a path quickly and efficiently. Ad hoc networks generally have lower available
resources compared with infrastructure networks and hence there is a need for optimal
routing. Also, the highly dynamic nature of these networks means that routing protocols
have to be specifically designed for them, thus motivating the study of protocols that aim
at achieving routing stability.

Designing a routing protocol for ad hoc networks is challenging because of the need to
take into account two contradictory factors:

• a node needs to know at least the "teachability" information to its neighbours for
determining a packet route; and

• the network topology can change quite often.
Furthermore, as the number of network nodes can be large, finding a route to the

destinations also requires large and frequent exchange of routing control information

among the nodes. Thus, the amount of update traffic can be quite high, and it is even

higher when the network includes high mobility nodes, which can impact the route

5

overhead of routing protocols in such a way that there might be no bandwidth leftover for

the transmission of data packets.

In wireless ad hoc networks, the communication range of a node is often limited and not
all nodes can directly communicate with one another. Nodes are required to relay packets

on behalf of other nodes to allow communication across the network. Since there is no

pre-determined topology or configuration of fixed routes, an ad hoc routing protocol is

used to dynamically discover and maintain up-to-date routes between communicating

nodes.

2.2.1 Proactive versus Reactive Approaches

Ad hoc routing protocols may generally be categorized as being either proactive or on-

demand (reactive) according to their routing strategy. Proactive protocols require that

nodes in a wireless ad hoc network should keep track of routes to all possible destinations

so that when a packet needs to be forwarded, the route is already known and can be used
immediately. Any changes in topology are propagated through the network, so that all

nodes know of those changes in topology. Examples include "destination-sequenced
distance-vector" (DSDV) routing [9], "wireless routing protocol" (WRP) [10].

On-demand protocols only attempt to build routes when desired by the source node so

that the network topology is detected as needed (on-demand). When a node wants to

send packets to some destination but has no routes to the destination, it initiates a route

discovery process within the network. Once a route is established, it is maintained by a

route maintenance procedure until the destination becomes inaccessible or until the route

is no longer needed. Examples include "ad hoc on-demand distance vector routing"

(AODV) [1], "dynamic source routing" (DSR) [2]. Proactive protocols have the

advantage that new communications with arbitrary destinations experience minimal

delay, but suffer the disadvantage of the additional control overhead to update routing

information at all nodes. To cope with this shortcoming, reactive protocols adopt the

inverse approach by finding a route to a destination only when needed. Reactive

protocols often consume much less bandwidth than proactive protocols, but they will

6

typically experience a long delay for discovering a route to a destination prior to the
actual communication. However, because reactive routing protocols need to broadcast
route requests, they may also generate excessive traffic if route discovery is required
frequently.

2.2.2 Clustering and Hierarchical Routing

Scalability is one of the important problems in ad hoc networking. Scalability in ad hoc
networks can be broadly defined as the network's ability to provide an acceptable level of
service to packets even in the presence of a large number of nodes in the network. In
proactive routing protocols, when the number of nodes in the network increase, the

number of topology control messages increases nonlinearly and they may consume a
large portion of the available bandwidth. In reactive routing protocols, large numbers of
route requests to the entire network may eventually become packet broadcast storms.

Typically, when the network size increases beyond certain thresholds, the computation
and storage requirements become infeasible. When mobility is considered, the frequency
of routing information updates may be significantly increased, thus worsening the
Scalability issues.

One way to address these problems and to produce scalable and efficient solutions is
hierarchical routing. Wireless hierarchical routing is based on the idea of organizing
nodes in groups and then assigning nodes different functionalities inside and outside a
group. Both the routing table size and update packet size are reduced by including in
them only part of the network. For reactive protocols, limiting the scope of route request
broadcasts also helps to enhance efficiency. The most popular way of building hierarchy

is to group nodes geographically close to each other into clusters. Each cluster has a
leading node (cluster head) to communicate with other nodes on behalf of these clusters.

Example of hierarchical ad hoc routing protocol is "zone routing protocol" (ZRP).

7

2.3 Review of Ad hoc Proactive Routing Protocols

This section presents brief description for the proactive routing protocol Destination-

Sequenced Distance-Vector (DSDV) Routing Algorithm.

2.3.1 Destination-Sequenced Distance-Vector Routing
The Destination-Sequenced Distance-Vector (DSDV) Routing Algorithm [9] is a

proactive hop-by-hop distance vector routing protocol, which is based on the idea of the

classical Bellman-Ford Routing Algorithm with certain improvements. Every mobile

station maintains a routing table that lists all available destinations, the number of hops to
reach the destination and the sequence number assigned by the destination node. The

sequence number is used to distinguish stale routes from new ones to avoid the formation
of loops. The stations periodically transmit their routing tables to their immediate

neighbours. A station also transmits its routing table if a significant change has occurred
in its table from the last update sent. The update is both time-driven and event-driven.

The routing table updates can be sent in two ways:
• a "full dump" where the full routing table is sent to the neighbours (which could

span many packets); or
• an incremental update where only those entries from the routing table that have
had a metric change since the last update are sent (and these must fit in a single
packet). If there is space in the incremental update packet, then those entries
whose sequence number has changed may be included. When the network is

relatively stable, incremental updates are sent to avoid extra traffic and full dumps

are relatively infrequent. In a fast-changing network, incremental packets can
grow large so full dumps will be more frequent.

Each route update packet, in addition to the routing table information, also contains a
unique sequence number assigned by the transmitter. The route labelled with the highest

(i.e. most recent) sequence number is used. If two routes have the same sequence number
then the route with the best metric (i.e. shortest route) is used. Based on past history, the

stations estimate the settling time of routes. The stations delay the transmission of a

8

routing update by settling time so as to eliminate those updates that would occur if a

better route were found very soon.

2.4 Review of Ad hoc Reactive Routing Protocols

Reactive protocols take a lazy approach to routing. In contrast to proactive routing

protocols, all up-to-date routes are not maintained at every node, but instead the routes

are created as and when required. When a source wants to send to a destination, it

invokes the route discovery mechanisms to find the path to the destination. In this section

several typical reactive (on-demand) routing protocols are introduced.

2.4.1 Ad Hoc On-demand Distance Vector Routing (AODV)
Ad hoc on-demand distance vector (AODV) routing [1] adopts both a modified on-

demand broadcast route discovery approach used in DSR [2] and the concept of

destination sequence number adopted from destination-sequenced distance-vector routing

(DSDV)[9]. When a source node wants to send a packet to some destination and does not

have a valid route to that destination, it initiates a path discovery process and broadcasts a

route request (RREQ) message to its neighbours. The neighbours in turn forward the

request to their neighbours until the RREQ message reaches the destination or an
intermediate node that has an up-to-date route to the destination. Figure 2.3(a) illustrates

the propagation of the broadcast RREQs in an ad hoc network.

In AODV, each node maintains its own sequence number and a broadcast ID. Each
RREQ message contains the sequence numbers of the source and destination nodes and is

uniquely identified by the source node's address and a broadcast ID. AODV utilizes

destination sequence numbers to ensure loop-free routing and use of up-to-date route

information. Intermediate nodes can reply to the RREQ message only if they have a route

to the destination whose destination sequence number is greater or equal to that contained

in the RREQ message. So that a reverse path can be set up, each intermediate node

records the address of the neighbour from which it received the first copy of the RREQ

message and additional copies of the same RREQ message are discarded.

9

Once the RREQ message reaches the destination (or an intermediate node with a fresh

route) the destination (or the intermediate node) responds by sending a route reply packet

(a) RREQ tion

e

Figure 2.3 Route discovery in AODV

back to the neighbour from which it first received the RREQ message. As the RREP

message is routed back along the reverse path, nodes along this path set up forward path

entries in their routing tables (Figure 2.3(b)).

When a node detects a link failure or a change in neighbourhood, a route maintenance

procedure is invoked: If a source node moves, it can restart the route discovery procedure

to find a new route to the destination. If a node along the route moves so that it is no

longer contactable, its upstream neighbour sends a link failure notification message to

each of its active upstream neighbours. These nodes in turn forward the link failure

10

notification to their upstream neighbours until the link failure notification reaches the
source node.

2.4.2 Dynamic Source Routing (DSR)
Dynamic source routing (DSR) [2] is an on-demand routing protocol for wireless ad hoc
networks. DSR is based on the concept of source routing, in which a source node
indicates the sequence of intermediate routes in the header of a data packet. Like other
on-demand routing protocols, the operation of DSR can be divided into two procedures:
route discovery and route maintenance.

tia

EP

Figure 2.4 Route discovery in DSR

11

Each node in the network keeps a cache of the source routes that it has learned. When a

node needs to send a packet to some destination, it first checks its route cache to

determine whether it already has an up-to-date route to the destination. If no route is

found, the node initiates the route discovery procedure by broadcasting a route request

message to neighbouring nodes. This route request message contains the address of the

source and destination nodes, a unique identification number generated by the source

node, and a route record to keep track of the sequence of hops taken by the route request

message as it is propagated through the network. When an intermediate node receives a

route discovery request, it checks whether its own address is already listed in the mute

record of the route request message. If not, it appends its address to the route record and

forwards the route request to its neighbours. Figure 2.4(a) illustrates the formation of the

route record as the route request propagates through the network.

When the destination node receives the route request, it appends its address to the route

record and returns it to the source node within a new route reply message. If the

destination already has a route to the source, it can use that route to send the reply;

otherwise, it can use the route in the route request message to send the reply. The first

case is for situations where a network might be using unidirectional links and so it might

not be possible to send the reply using the same route taken by the route request message.

If symmetric links are not supported, the destination node may initiate its own route

discovery message to the source node and piggyback the route reply on the new route

request message. Figure 2.4(b) shows the transmission of route record back to the source

node.

Route maintenance uses route error messages and acknowledgement messages. If a node

detects a link failure when forwarding data packets, it creates a route error message and

sends it to the source of the data packets. The route error message contains the address of

the node that generates the error and the next hop that is unreachable. When the source

node receives the route error message, it removes all routes from its route cache that have

the address of the node in error. It may initiate a route discovery for a new route if

needed. In addition to route error message, acknowledgements are used to verify the

12

correct operation of links. To reduce the route search overhead, an important optimization

is allowing an intermediate node to send a route reply to the source node if it already has

an upto- date route to the destination.

2.5 Ad Hoc On-demand Multipath Routing Protocols

Standard on-demand routing protocols in ad hoc wireless networks, such as AODV and

DSR, are mainly intended to discover a single route between a source and destination

node. When the route disconnects, nodes of the broken route simply drop data packets

because no alternate path to the destination is available until a new route is established.

Multipath routing is useful for finding multiple paths between a source and destination in

a single discovery. These multiple paths between source and destination can be used to

compensate for the dynamic and unpredictable topology change in ad hoc networks.

Recently, several different multipath routing mechanisms have been proposed. This

section introduces some main characteristics of these multipath protocols. AOMDV [12]

and AODVM [11] routing protocols are based on the AODV [1] routing protocol,

whereas SMR [13] and MSR [14] are based on DSR [2].

2.5.1 Ad hoc On-demand Multipath Distance Vector (AOMDV)
Ad hoc On-demand Multipath Distance Vector (AOMDV) [12] is an extension to the

AODV protocol for computing multiple loop-free and link-disjoint paths. The protocol

computes multiple loop-free and link-disjoint paths. Loop-freedom is guaranteed by

using a notion of "advertised hop count". Link-disjointness of multiple paths is achieved

by using a particular property of flooding.

To keep track of multiple routes, the routing entries for each destination contain a list of

the next-hops together with the corresponding hop counts. All the next hops have the

same sequence number. For each destination, a node maintains the advertised hop count,

which is defined as the maximum hop count for all the paths. This is the hop count used

for sending route advertisements of the destination. Each duplicate route advertisement

received by a node defines an alternative path to the destination. To ensure loop freedom,

a node only accepts an alternative path to the destination if it has a lower hop count than

13

the advertised hop count for that destination. Because the maximum hop count is used,

the advertised hop count therefore does not change for the same sequence number. When
a route advertisement is received for a destination with a greater sequence number, the

next-hop list and advertised hop count are reinitialized.

AOMDV can be used to find link-disjoint routes. To find disjoint routes, each node does

not immediately reject duplicate. RREQs. Each RREQ carries an additional field called
firsthop to indicate the first hop (neighbour of the source) taken by it. Also, each node

maintains a first hop list for each RREQ to keep track of the list of neighbours of the

source through which a copy of the RREQ has been received. In an attempt to get

multiple link-disjoint routes, the destination replies to duplicate RREQs regardless of
their first hop. To ensure link-disjointness in the first hop of the RREP, the destination

only replies to RREQs arriving via unique neighbours. The trajectories of each RREP

may intersect at an intermediate node, but each takes a different reverse path to the source

to ensure link-disjointness.

2.5.2 Split Multipath Routing (SMR)
Split Multipath Routing (SMR) proposed in [13] is an on-demand multipath source

routing protocol that builds multiple routes using a request/reply cycle. SMR can find an
alternative route that is maximally disjoint from the source to the destination. When the

source needs a route to the destination but no route information is known, it floods the
Route Request (RREQs) message to the entire network in order to find maximally

disjoint paths, so the approach has a disadvantage of transmitting more RREQ packets.

Because this packet is flooded, several duplicates that traversed through different routes
reach the destination. The destination node selects multiple maximally disjoint routes and

sends Route Reply (RREP) packets back to the source via the chosen routes. In order to

choose proper maximally disjoint route paths, the destination must know the entire path

of all available routes. Therefore, SMR uses the source routing approach where the

information of the nodes that comprise the route is included in the RREQ packet.

14

SMR is similar to DSR, and is used to construct maximally disjoint paths. Unlike DSR,

intermediate nodes do not keep a route cache, and therefore, do not reply to RREQs. This

is to allow the destination to receive all the routes so that it can select the maximally

disjoint paths. Maximally disjoint paths have as few links or nodes in common as

possible. Duplicate RREQs are not necessarily discarded. The algorithm only selects two

routes. In the algorithm, the destination sends a RREP for the first RREQ it receives,

which represents the shortest delay path. The destination then waits to receive more

RREQs. From the received RREQs, the path that is maximally disjoint from the shortest

delay path is selected. If more than one maximally disjoint path exists, the shortest hop
path is selected. If more than one shortest hop path exists, the path whose RREQ was

received first is selected. The destination then sends an RREP for the selected RREQ.

2.5.3 Multipath Source Routing (MSR)
Multipath Source Routing (MSR) [14, 15] is an extension of the on-demand DSR [2]
protocol. It consists of a scheme to distribute traffic among multiple routes in a network.

MSR uses the same route discovery process as DSR with the exception that multiple
paths can be returned, instead of only one.

When a source requires a route to a destination but no route is known (in the cache), it
will initiate a route discovery process by flooding a RREQ packet throughout the

network. A route record in the header of each RREQ records the sequence of hops that

the packet passes. An intermediate node contributes to the route discovery by appending

its own address to the route record. Once the RREQ reaches the destination, a RREP will

reverse the route in the route record of the RREQ and traverse back through this route.

Each route is given a unique index and stored in the cache, so it is easy to pick multiple

paths from there. Independence between paths is very important in multipath routing,

therefore disjoint paths are preferred in MSR. As MSR uses the same route discovery

process as DSR, where the complete routes are in the packet headers, looping will not
occur. When a loop is detected, it will be immediately eliminated.

15

Since source routing is used in MSR, intermediate nodes do nothing but forward the

packet according to the route in the packet-header. The routes are all calculated at the

source. A multiple-path table is used for the information of each different route to a

destination. This table contains for each route to the destination: the index of the path in

the route cache, the destination ID, the delay and the calculated load distribution weight

of a route. The traffic to a destination is distributed among multiple routes. The weight of

a route simply represents the number of packets sent consecutively on that path.

2.5.4 Ad hoc On-demand Distance Vector Multipath Routing
Ad hoc On-demand Distance Vector Multipath Routing (AODVM) [11] is an extension

to AODV for finding multiple node disjoint paths. Instead of discarding the duplicate

RREQ packets, intermediate nodes are required to record the information contained in

these packets in the RREQ table. For each received copy of an RREQ message, the

receiving intermediate node records the source that generated the RREQ, the destination

for which the RREQ is intended, the neighbour that transmitted the RREQ, and some

additional information in the RREQ table. Furthermore, intermediate relay nodes are
precluded from sending an RREP message directly to the source.

When the destination receives the first RREQ packet from one of its neighbours, it

updates its sequence number and generates an RREP packet. The RREP packet contains

an additional field called "last hop ID" to indicate the neighbour from which the

particular copy of RREQ packet was received. This RREP packet is sent back to the

source via the path traversed by the RREQ. When the destination receives duplicate

copies of the RREQ packet from other neighbours, it updates its sequence number and

generates RREP packets for each of them. Like the first RREP packet, these RREP

packets also contain their respective last hop nodes' IDs.

When an intermediate nod e receives an RREP packet from one of its neighbours, it

deletes the entry corresponding to this neighbour from its RREQ table and adds a routing

entry to its routing table to indicate the discovered route to the originator of the RREP

packet (the destination). The node, then, identifies the neighbour in the RREQ table via

16

which, the path to the source is the shortest, and forwards the RREP message to that

neighbour. The entry corresponding to this neighbour is then deleted from the RREQ

table. In order to ensure that a node does not participate in multiple paths, when nodes

overhear any node broadcasting an RREP message, they delete the entry corresponding to

the transmitting node from their RREQ tables.

Intermediate nodes make decisions on where to forward the RREP messages (unlike in

source routing) and the destination, which is in fact the originator of these messages, is

unaware as to how many of these RREP messages that it generated actually made it back

to the source. Thus, it is necessary for the source to confirm each received RREP

message by means of a Route Confirmation message (RRCM). The RRCM message can,

in fact, be added to the first data packet sent on the corresponding route and will also

contain information with regards to the hop count of the route, and the first and last hop

relays on that route.

17

Chapter 3 OnDemand Multipath Routing with Load Balancing

ODMRLB is proposed to find multiple nose-disjoint paths and to distribute the traffic
efficiently among the available paths. It follows NDMR [6] approach to find multiple

node-disjoint paths with minimum broadcast overhead.

When a source node wants to communicate with a destination node, it checks its route
table to confirm whether it has a valid route to the destination. If so, it sends the packet to

the appropriate next hop towards the destination. However, if the node does not have a

valid route to the destination, it must initiate a route discovery process. To begin such a

process, the source creates a RREQ (Route Request) packet. This packet contains

message type, source address, current sequence number of source, destination address,

the broadcast ID and route path. The broadcast ID is incremented every time when the

source node initiates a RREQ. In this way, the broadcast ID and the address of the source
node form a unique identifier for the RREQ.

Finding node-disjoint multiple paths with low broadcast overhead is not an easy task

when the network topology is unknown and changing dynamically. This section briefly
describes the mechanism of ODMRLB that enables path accumulation during a multipath

route discovery cycle and records the shortest routing hops to minimize its routing

overhead and achieve multiple node-disjoint routing paths. ODMRLB routing

computation has three key components to avoid introducing a broadcast flood in

MANETs:

• Path accumulation;

• Decreasing multipath broadcast routing packets;

• Selecting node-disjoint paths.

18

3.1 Path Accumulation
The main goal of ODMRLB is to build multiple node-disjoint paths and distributing the

load efficiently among the routes. To achieve this goal, the destination must know the
entire routing path list of all available routes so that it can select the right node-disjoint

route paths from the candidate paths. When the RREQ packets are generated or

forwarded by the nodes in the network, each node appends its own address to the routing

request packets. When a RREQ packet arrives at its destination, the destination is

responsible for judging whether or not the routing path is a node-disjoint path. After

confirming a node-disjoint path, the destination generates a Route Reply (RREP) packet

that contains the node list of the whole route path and unicasts it back towards the source

that originated the RREQ message along the reverse route path. When an intermediate
node receives a RREP, it updates its routing table entry and its reverse routing table entry

by using the nodes list of the whole route path contained in the RREP.

RR Ps

Figure 3.1 Path Accumulation in ODMRLB

As an example, consider five nodes A, B, C, D and E as shown in Figure 3.1 Node A

wants to send data to node E. Since A does not have a route for E in its routing table, it

broadcasts a route request. Node B receives the route request, appends its own address to

the request, and forwards the request since it also has no route to E. Similarly, when node

C and node D receive the RREQ, they append their address to the request and forward it.

When the request reaches destination E, node E checks the path accumulation list (A-B-

C-D) from the RREQ and judges whether or not the routing path is a node-disjoint path.

If it is, node E generates a RREP packet that contains the path accumulation list of the

19

whole route path and unicasts it back to the source that originated the RREQ message
along the reverse route path. If not, node E discards the received RREQ.

3.2 Decreasing Broadcast Routing Overhead
In DSR and AODV, if a source node does not know a route to a destination, it will

initiate a route discovery by flooding a Route Request (RREQ) message. The RREQ

message carries the source ID and the RREQ sequence number. When an intermediate

node receives a RREQ, if it is the first time that the node receives this RREQ message,

then the node will broadcast the RREQ message again. Otherwise, the node will drop the
RREQ packet.

In ODMRLB, using this method of broadcasting RREQ, the possibility of finding node-

disjoint multiple paths is almost zero so a novel method is used_. The reason is that later

duplicate RREQ packets, which may come from a different path, are dropped. However,

if all of the duplicate RREQ packets are re-broadcast, this will lead to a routing packet

broadcast storm and decrease dramatically the performance of the ad hoc networks. In

order to avoid this problem, a novel approach recording the Shortest Routing Hops of
Loop-free Paths is implemented to decrease routing broadcast overhead.

When a node receives a RREQ packet for the first time, it checks the path accumulation
list from the packet and calculates the number of hops from the source to itself and

records the number as the shortest number of hops in its reverse route table entry. If the

node receives the RREQ duplicate again, it computes the number of hops from the source

to itself and compares it to the number of the shortest hops recorded in its reverse route

table entry. If the number of hops is larger than the shortest number of hops in its reverse

route table entry, the node drops the RREQ packet. Otherwise (less than or equal to),

the node appends its own address to the route path list of the RREQ packet and

broadcasts the RREQ packet to its neighbouring nodes.

20

Figure 3.2 Shortest Routing Hops of Loop-free Paths

For example, in Figure 3.2, from source node S to node c there are five route paths: S-c,

S-b-c, S-a-c, S-b-g-c, S-a-e-c. The numbers of hops are 1, 2, 2, 3 and 3 respectively.
When node c receives the RREQ packet at the first time from path S-c, it records 1 as the
shortest number of hops in its reverse route table entry. When the node c receives the
RREQ duplicates from the other four route paths, it calculates the number of hops and

compares it to the shortest number of hops in its reverse route table entry. Because the

numbers of hops of route list of the four route paths are all greater than 1, the four RREQ
duplicate packets are dropped.

From the example it can be seen that "recording the shortest routing hops" approach

results in most of the RREQ packets being discarded in the process of discovering

multiple node-disjoint paths. Furthermore, the approach can also avoid forming loop

paths. This is a novel and practical approach to guarantee loop-free paths as well as to
dramatically decrease the routing overhead.

Figure 3.3 illustrates the mute request process with low overhead in the entire network.

Source S broadcasts a route request packet. Each intermediate node uses the approach

with low routing overhead to propagate and discard packets. Therefore, only seven

packets (S-c-f-D, S-a-i-g-D, S-b-e-h-D, S-c-i-g-D, S-c-e-h- D, S-c-f-g-D, S-c-f-h-D) can

reach the destination D. Most of packets are discarded. However, not all of paths packets

that arrive in destination are node-disjoint. In next section how to choose node-disjoint

paths will be discussed.

21

Src best

Propagated Packet
--40- Discarded Packet

Figure 33 Route Request Process with Low Overhead

3.3 Selecting Node-Disjoint Paths

In the algorithm of selecting node-disjoint paths, the destination is responsible for
selecting and recording multiple node-disjoint route paths. In order to decrease the
overhead of the route table in each node, the number of node-disjoint routing paths has
been limited to three although more than three node-disjoint routes can be searched. In
Figure 3.4, its three node-disjoint route paths are: S-a-i-g-D, S-c-f-D, S-b-e-h-D. When
receiving the first RREQ packet (the shortest route path: S-c-f-D), the destination records
the list of node IDs for the entire route path in its reverse route table and sends a RREP
that includes the route path towards the source along the reverse route. When the
destination receives a duplicate RREQ, it will compare the whole route path in the RREQ
to all of the existing node-disjoint route paths in its route table entry. If there is not a
common node (except source and destination) between the route path from the current
received RREQ and any node-disjoint route path recorded in the destination's reverse
route table entry, the route path of the current RREQ (such as S-a-i-g-D or S-b-e-h-D)
satisfies the requirement of node-disjointness and is recorded in the reverse route table of
the destination. Otherwise, the route path (such as paths: S-c-i-g-D, 	S-c-f-g-D,
S-c-f-h-D) and the current received RREQ are discarded.

22

Figure 3.4 Node-Disjoint Paths

Because the node IDs of the entire path are included in the RREP, each intermediate node

receiving a RREP can record some necessary information from the path to its route table
before forwarding the RREP. At first, the intermediate node sets up a forward path entry

to the destination in its route table and a reverse path entry to the source in its reverse

route table. According to the information in path IDs list, the forward path entry records

the IP address of the destination and the IP address of the neighbour from which the
RREP arrived. The reverse path entry records the IP address of the source and the IP
address of the next hop to the source. Finally the intermediate node forwards the RREP

towards the source node along the reverse route path. When the RREP arrives at the

source node, it does not need to be forwarded. The source node records the next hop to

destination into its multiple route forward path entry. After the first RREP arrives at the

source, the newly established route can now be used to send the data packets.

23

3.4 Load Balancing
Upon receiving the RREPs, source node routes data packets to destination node through

the available paths. The source node can get a maximum of RMAX reply packets. Data

packets are routed over the routes in such a way that the total number of congested

packets in each route is maintained equally. The source node records the total number of

packets sent to each route. When the host wants to choose a route for packet

transmission, it checks these numbers. In addition, it has information about the size route

of each route. Therefore, it chooses a route based on the product of number of packets

transmitted and the size of the route. The route for which the calculated product is less is

chosen for that packet transmission. By using this algorithm, traffic is guaranteed to be

shared equally over multiple paths.

24

Chapter 4 	 Simulation

This section describes the data structures and main functions used to implement

ODMRLB.

4.1 Data Structures
The following are the data structures used in implementing ODMRLB protocol.

An enumerated data structure called 'Packet Type' is used to identify type of a packet

i.e., ROUTE_REQUEST packet, ROUTE_REPLY packet or ROUTE_ERROR packet.

typedef enum

ROUTE_REQUEST,

ROUTE_REPLY,

ROUTE_ERROR

} PacketType;

The following structure `RouteRequest' represents the contents of a route request packet.

pktType is to be set to ROUTE_REQUEST to identify the packet as Route Request
packet . <srcAddr > represents the originator of the route request . <targetAddr> is the
destination for which the root has to be discovered. < seqNumber> and <srcAddr>
combinely used to uniquely identify a packet. Each intermediate node adds its ID to the

<path> variable. So the <path> variable will be having a sequence of nodes through
which the packet is propagated to reach the destination.

typedef struct{

PacketType pktType;

NODE_ADDR srcAddr;

NODE_ADDR targetAddr;

int seqNumber;

int hopCount;

NODE_ADDR path [MAX_SR LEN];

int broadcastid;

} RouteRequest;

25

The structure 'RouteReply', given next represents the contents of a route reply packet.
pktType is to be set to ROUTE REPLY to identify the packet as RouteReply packet.
<srcAddr > represents the originator of the route reply packet. <targetAddr> is the
source for which the root has discovered . The <path> variable will have a sequence of
nodes through which the data packets can be routed from <targetAddr> to <srcAddr>.
<segLeft> represents the number of nodes remaining through which the reply has to be

propagated to reach the destination.

typedef struct{
PacketType pktType;

NODE_ADDR targetAddr; 	/* Source of the route */

NODE_ADDR srcAddr; 	/* Destination of the route */
int hopCount;

int segLeft;

NODE_ADDR path [MAX_SR LEN];

} RouteReply;

The structure `RouteError', given next represents the contents of a route error packet.
pktType is to be set to ROUTE ERROR to identify the packet as RouteError packet.
<srcAddr > represents the originator of the route error packet . <destAddr > is the source
of the broken root. <unreachableAddr> is the immediate downstream of the broken link
The <path> variable will have a sequence of nodes through which the error packets has
to be routed to reach the source of the broken route. When an intermediate node

forwarding a packet detects through Route Maintenance that the next hop along the route

for that packet is broken, if the node has another route to the packet's destination in its

Route Cache, the node salvages (redirects) the packet rather than discarding it. To

salvage a packet, the node replaces the original source route on the packet with the route

from its Route Cache. The node then forwards the packet to the next node indicated

26

along this source route. If this packet is salvaged in this way, the salvaged bit has to be
set to TRUE otherwise, it will be set to FALSE.

typedef struct
{

PacketType pktType;

NODE_ADDR srcAddr; 	 /* Originator of the Route Error */
NODE_ADDR destAddr; 	 /* Source of the broken route */

NODE_ADDR unreachableAddr; 	/* Immediate downstream of broken link */
int hopCount;

BOOL salvaged;

NODE_ADDR path [MAX_SR LEN];

}RouteError;

Finally, the structure ODMRLB_Stats defines the total statistics at each node in the

network.

typedef struct
{

int numRequestSent;

hit numReplySent;

hit numErrorSent;

int numDataSent;

int numDataTxed;

int numDataReceived;

hit numRoutes;

int numHops;

int numLinkBreaks;

hit numSalvagedPackets;

int numDroppedPackets;

} ODMRLB_Stats;

/* Total no of route request pkts transmitted*/

/* Total number of route reply packets transmitted */

/ * Total number of route error packets transmitted */

/* Total no of data pkts sent at the source */

/* Total number of data packets transmitted */

/* Total no. of data pkts received at destination*/

/* Total number of routes discovered*/

/* number of hops*/

/* Total number of link breaks discovered*/

/*Total number of packets salvaged*/

/*Total number of packets dropped*/

27

4.2 Functions
• RoutingOdmrlbHandleProtocolPacket: This function is called when a packet is

received from MAC layer. It checks whether the packet corresponds to

ROUTE REQUEST packet, ROUTE REPLY packet, or ROUTE ERROR

packet and calls the appropriate function.

• RoutingOdmrlbHandleRequest: This function is called when the

RoutingOdmrlbHandleProtocolPacket function receives a packet of type

ROUTE REQUEST. It checks whether the node receiving the packet is the
destination for the packet. If it is not for that node it just broadcasts the packet by

using the function RoutingOdmrlbRelayRREQ. If it is for that node, it stores the
route in its reply cache table and initiates route reply by using the function

RoutingOdmr1bInitiateRREP if it is the first route request packet received or if the

path is non-disjoint with the other paths available for the source.

• RoutingOdmrlbHandleReply: This function is called when the

RoutingOdmrlbHandleProtocolPacket function receives a packet of type

ROUTE REPLY. It checks whether this node is the destination of the packet .If
this is the destination of the packet, this route is inserted into the route cache .If

this node is not the destination of the packet it forwards the packet by using the

function RoutingOdmribRelayRREP

• RoutingOdmrlbHandleError :This function is called when the

RoutingOdmrlbHandleProtocolPacket function receives a packet of type

ROUTE ERROR. It deletes routes in cache that use the broken link. If this node

is the intermediate node of the broken route, then forwards the packet by using the

function RoutingOdmrlbRelayRERR If this node is the source of the broken

route, it discards the packet.

28

Rreq_ID = broadcast ID
The broadcast ID= RREQ _ID of

SOW" _broadcast ID table

The hopcount of the route path
< reverse shortest routing

hopeount ofreveming table

forward the RREQ to
neighbouring nodes

The hopcount of the route
path = reverse shortest

routing hopcount of reverse
routing table?

Receive a RREQ packet

Read TTL value from RREQ packet

No
The TTL value < TTL

threshold value

Read destination address from the RRE
packet

The destination address=
my node address

Read broadcast ID from the RREQ

Yes

•

Select
Node-Disjoint

Path

Read RoutePath from the RREQ,
compute the hopcount of the

route path and assign the value
to reverse shortest routing

hopcount of reverse routing table

Append my node
address to the

route path

1
Update TTL 	= TTL+1)

Read route path from RREQ
and compute the hopcount of the route path

Yes

Reverse shortest routing
hopeount=the hopcount of

the rout ng path

discard the RREQ

Figure 4.1 flowchart of reducing broadcast routing overhead

29

Save the route path in
reverse route table

The broadcastlD = Rreq_ID
of source broadcastlD

table,

Select
Node-Disjoint

Path

The broadcastID> Rreq_ID at
source_broadcastID table ?

Initiate reverse route table

Yes

1
Record next hop towards source node in reverse

route table
Yes

Append destination address to the route
path

Compare with existing route
paths, is it a node disjoint

path?

Destination sequence number + 1

Create a RREP Discard the RREQ

V
Send the RREP to the node from which

the
RREQ comes End

Rreq_ID = broadcastED

Figure 4.2 Flowchart of selecting node-disjoint paths

30

y
Read node list of the route path

from the RREP packet Yes

Record next hop toward destination
to route table entry and next hop

toward
source to reverse route table entry

Read destination sequence
number from the RREP packet

The destination
sequence number <

destination sequence
number in route table ?

The destination
sequence number >

destination sequence
number in route table ?

Update destination sequence number
and clear nexthop field and its valid flag

Save next hop and its
valid flag to route table

begin

Receive a RREP packet

Read source IP address from the RREP packet

Source IP address =
my IP address ?

Yes

V

Forward the RREP toward source
node along reverse route path

Discard the
RREP packet

Are some data
packets

waiting to being sent?

Yes

Send the data packet

Figure 43 Flowchart of processing an incoming RREP packet

31

• RoutingOdmr1bHandleProtocolEvent : Whenever a timer expires for an event

RoutingOdmrlbHandleProtocolEvent function is called . It checks for the type of

events such as NETWORK_FlushTables, NETWORK CheckReplied
If the type of the event is NETWORK_CheckRequest, then the source node

distributes the packets in to multiple paths in the inverse ratio of their hopcount

using the function RoutingOdmrlbStartTransmission.

• RoutingOdmr1bInitiateRREQ: Initiate a Route Request packet when no route to

destination is known.

• RoutingOdmrlbRetryRREQ: Send RREQ again after not receiving any RREP.

• RoutingOdmrlbRelayRREQ: Forward (re-broadcast) the Route Request.

• RoutingOdmr1bInitiateRREP: Destination of the route sends Route Reply in

reaction to Route Request.

• RoutingOdmrlbRelayRREP : Forward the Route Reply.

• RoutingOdmr1bInitiateRERR : The node that detects the link break sends a Route

Error back to the source.

• RoutingOdmrlbRelayRERR : Forward the Route Error packet.

The flow chart of reducing routing overhead is illustrated in Figure 4.1.The flow chart of
selecting node-disjoint paths is shown in Figure 4.2. A flowchart of processing an

incoming RREP packet is illustrated in Figure 4.3.

4.3 Input parameters
The input parameters that need to be specified in configin file before starting the

simulation are given in Table 1. After specifying the input configuration parameters, data

sessions are specified in the application configuration (app. conf) file using the Constant
Bit Rate (CBR) traffic generator. Table 2 shows the parameters in the app. conf file.

32

SIMULATION-TIME 300S

TERRAIN-DIMENSIONS (1000, 1000)

NUMBER-OF-NODES 50

MOBILITY RANDOM-WAYPOINT

MOBILITY-WP-PAUSE 50S

MOBILITY-WP-MIN-SPEED 0

MOBILITY-WP-MAX-SPEED 10

NETWORK-PROTOCOL IP

ROUTING-PROTOCOL ODMRLB

APP-CONFIG-FILE ./app.conf

APPLICATION-STATISTICS YES

ROUTING-STATISTICS YES

GUI-OPTION YES

NODE-PLACEMENT RANDOM

Table 4.1 input parameters for the simulation procedure

Traffic

Generator

Source

node

Destination

node

items to

send

Item

size
Interval Start

time

End

time

CBR 1 5 100 512 1.0S OS 300S
CBR 2 6 100 512 1.5S 20S 200S

CBR 4 9 100 512 0.1S 200S 300S

CBR 3 8 100 512 0.1S 100 S 200S

Table 4.2 application specification parameters

33

Chapter 5 	 Results and Discussion

In order to compare and evaluate performances of the three protocols (ODMRLB,NDMR
and DSR) , two parameters are varied in the simulations:

• Maximum velocity of the nodes

• Number of sources

At first, simulations are carried out by keeping the number of sources constant and

varying the velocity. The number of nodes and sources are 50 and 20 respectively.

Then, the number of sources is varied from 5 to 25 in intervals of 5 for 50 nodes . When

varying the number of sources, velocity is kept at a uniform rate of 0-20m/s.

The following metrics are used in varying scenarios to evaluate the three different
protocols:

• Packet delivery ratio: The ratio of the data packets delivered to the destinations to
those generated by the CBR sources.

• Average delay of data packets: This includes all possible delays from the moment the
packet is generated to the moment it is received by the destination node.

5.1 Varying Velocity
The first set of experiments varies the velocity for 20 sources of 50 nodes network. The

mobility was varied to see how it affects the different metrics that are measured. The

packet sending rate is fixed at 10 packets / sec. The results are collected at constant

speeds of 2, 4, 6, 8, 10, 12, 14, 16, 18, 20 m/s.

5.1.1 Packet Delivery Ratio
Packet delivery ratio is defined as ratio of the data packets delivered to the destination to

those generated by the CBR sources. Packet delivery ratio is a very important metric

since it shows the loss rate, which in turn affects the maximum throughput of the

network. The packet delivery ratio of the three protocols is shown in Figure 5.1. The

Figure depicts the variation of the packet delivery ratio as a function of velocity of nodes.

34

r

0

i 1.2
1

cDi .' 0.8
. 	0.6 T)

 0.4
2 0.2 u co 	0 a.

0 2 4 6 8 10 12 14 16 18 20
Maximum Velocity(m/s)

ODMRLB
NDMR
DSR

As the velocity of the nodes increases, the probability of link failure increases and hence

the number of packet drops also increases. ODMRLB has much higher packet delivery

ratio than both NDMR and DSR. More than 95% data packets of NDMR can be

delivered to specified destinations in all of mobility conditions in the 50-node network.

DSR have a similar low delivery ratio situation in that only 65% sent packets are received

at higher speeds. The reason is that ODMRLB has multiple paths with node-disjoint ness.

As the load is distributed through multiple node-disjoint paths in the inverse ratio of their

path length, more bandwidth is available. Hence the packet delivery ratio is high.

Figure 5.1 Maximum Velocity VS Packet Delivery Ratio

5.1.2 Average end-to-end delay of data packets
The average end-to-end delay includes all possible delays from the moment the packet is
generated to the moment it is received by the destination node.

Generally, there are three factors affecting end-to-end delay of a packet:

(1) Route discovery time, which causes packets to wait in the queue before a route path is

found;

35

(2) Buffering waiting time, which causes packets to wait in the queue before they can be

transmitted;

(3) The length of routing path. The more number of hops a data packet has to go through,

the more time it takes to reach its destination node.

En
d

to
 e

nd
 de

la
y 600

500
400
300
200
100

0 I 	[III III 	 I

0 2 4 6 8 10 12 14 16 18 20

Maximum Velocity (m/s)

ODMRLB
--m— N D MR

DSR

Figure 5.2 Maximum Velocity VS End to end delay

Figure 52 depicts the variation of the average end-to-end delay as a function of velocity

of nodes. It can be seen that the general trend of all curves is an increase in delay with the
increase of velocity of nodes. The reason is mainly that high mobility of nodes results in

an increased probability of link failure that causes an increase in the number of routing
rediscovery processes. This makes data packets have to wait for more time in its queue

until a new routing path is found. The delay of ODMRLB remains approximately equal at

all mobile velocities. Delay in DSR increases quickly as velocity increases. This is

because availability of alternate node-disjoint routing paths in ODMRLB eliminates route

discovery latency that contributes to the delay when active route fails. In addition, the

source node distributes data packets in the available node-disjoint routing paths to avoid

congestion. This reduces the waiting time of data packets in queue.

36

1.2
.0

cc
0.8

a)
as 0.6

▪ 0.4 cu
g 0.2
a.

0

- ODMRLB
- NDMR
- DSR

5 10 15 20 25
Number of sources

5.2 Varying Number of Sources

The second set of experiments varies the number of sources with a random velocity of 0-
20 m/s for 50 nodes. The network load is varied by changing the number of sources. The
packet sending rate is still fixed at 10 packets / second. The number of sources is varied
from 5 to 25 in intervals of 5 for 50 nodes.

5.2.1 Packet Delivery Ratio
The packet delivery ratio of the three protocols is shown in Figure 5.3. The Figure
describes the variation of the packet delivery ratio as a function of the number of sources.
It can be seen that the packet delivery ratio for ODMRLB has better performance than
those of both NDMR and DSR with the increase in the number of sources. When the
number of sources increases, DSR drops a larger fraction of the packets.

Figure 5.3 Number of sources VS Packet Delivery Ratio

37

5 10 15 20 25

Number of Sources

600
-5.," 500
S 400
-0 300
a)

•

200
• 100
= 0

ODMRLB
NDMR

A 	 DSR

5.2.2 Average end-to-end delay of data packets
Figure 5.4 depicts the variation of the average end-to-end delay as a function of the

number of sources. It can be seen that ODMRLB has a lower average delay than both

NDMR and DSR. The primary reason is that the number of route discoveries is reduced

in ODMRLB. Although ODMRLB has a low number of route discoveries, its delay also

increases gradually with the increase of number of source. The reason is that increase of

the numbers of sources leads to higher network load traffic in the ad hoc networks.

Because of the limitation of a constrained wireless bandwidth, packets that will be sent or

forwarded have to stay in buffers and wait for a longer time to get a radio channel

available in order to avoid collisions in the air.

Figure 5.4 Number of sources VS Fad to end delay

38

Chapter 6 	 Conclusions and Future Scope

6.1 Conclusions
An ad hoc wireless network is a collection of mobile nodes that communicate with each

other by forming a multi-hop radio network and maintaining connectivity management

without an existing network infrastructure. Such networks are expected to play

increasingly important roles in future civilian and military applications. Design of

efficient and reliable routing protocols in such network are challenging issues. The goal

of this research is to explore efficient multipath routing in mobile ad hoc networks.

ODMRLB protocol is designed and implemented to overcome the shortcomings of on-

demand existing unipath and multipath routing protocols. It is evident from simulation

results that ODMRLB outperforms NDMR, DSR. ODMRLB has a higher packet delivery

ratio, lower end-to-end delay than NDMR, DSR. These characteristics make the protocol

suitable for reliable real time data and multimedia communication applications in ad hoc

networks.

6.2 Future Scope
The research work focuses on node-disjoint multipath routing in mobile ad hoc networks.

Other important aspects, which need to be further investigated, are:

• Multicast Routing

Multicast is the process of sending packets from a transmitter to multiple destinations
identified by a single address. The packets of each multicast group are forwarded

according to a multicast tree. Multicast routing in MANET is also hard since the network

topology changes quite frequently. Therefore, frequent maintenance of the multicast tree

will result in a substantial amount of control overhead. How to reduce routing overhead

has to be considered when designing multicast routing.

39

• Distributed Security

Due to the broadcast nature of radio communication, wireless networks are susceptible to
eavesdropping, malicious jamming and interference, which a well-designed physical
layer should be able to avoid. Because usually there are no central control and no trusted

authorities in an ad hoc network, how to secure key distribution and manage data
encryption and authentication has to be considered when designing a secure mechanism
of ad hoc networks.

• Effect of quality of wireless links

Because nodes move in and out of each other's range, the network topology changes
frequently. The network's dynamic nature, combined with adverse wireless link's effects,
raises issues that are difficult to address. In the physical layer, some techniques are
needed to adapt to rapidly changing channel characteristics to make wireless link quality
less sensitive to node performance.

40

References
[1] Charles E. Perkins and Elizabeth M. Royer, "Ad-Hoc On Demand Distance Vector

Routing", In Proceedings of the Second IEEE Workshop on Mobile Computing Systems
and Applications, IEEE Computer Society, February 1999, pp. 90-100.

[2]David B. Johnson and David A. Maltz, "Dynamic Source Routing in Ad Hoc Wireless

Networks", In Mobile Computing, edited by Tomasz Imielinski and Hank Korth, chapter

5, Kluwer Academic Publishers, 1996 , pp. 153-181.

[3] Charles E. Perkings, Elizabeth M.Royer, and Samir R.Das, "Performance Comparison

of Two On-Demand Routing Protocols for Ad Hoc Networks", IEEE Personal
Communications, February 2001, pp. 16 - 28.

[4] J. Broch, D.A. Maltz, D.B. Johnson, Y.C. Hu, and J.Jetcheva, "A Performance

Comparison of Multi-Hop Wireless Ad Hoc Network Routing Protocols", In Proceedings
of the Fourth Annual ACM/IEEE International Conference on Mobile Computing and

Networking (MobiCom'98), Dallas, Texas, USA, October 25-30, 1998, pp. 1 — 13.

[5]S. R. Das, R. Castaeda, J. Yan, and R. Sengupta, "Comparative performance

evaluation of routing protocols for mobile ad hoc networks," in Proceedings of 7th
International Conference on Computer Communications and Networks (IC319, October
1998, pp. 153-161.

[6]Xuefei Li and Laurie Cuthbert, "On-demand Node-Disjoint Multipath Routing in

Wireless Ad hoc Network," 29th Annual IEEE International Conference on Local

Computer Networks (LCN'04), 2004, pp. 419-420.

[7]Mario Gerla, Lokesh Bajaj, Mineo Takai, Rajat Ahuja, and Rajive Bagrodia,

"GloMoSim: A Scalable Network Simulation Environment", Technical Report 990027,

University of California, 13, 1999

41

[8] D.Estrin, R.Govindan, J.Heidemann, and S.Kumar, "Next Century Challenges:

Scalable Coordination in Sensor Networks", ACM Mobicom, 1999, pp. 263 - 270.

[9] C. E. Perkins and P. Bhagwat, "Highly Dynamic Destination-Sequenced Distance-
Vector Routing (DSDV) for Mobile Computers", In Proceedings of ACM SIGCOMM,
1994, pp. 234-244.

[10] S. Murthy and J.J. Garcia-Luna-Aceves, "An efficient routing protocol for wireless

networks", ACM Mobile Networks and Applications Journal, 1996, pp. 183-197.

[11] Z.Ye, S.V. Krishnamurthy, and S.K. Tripathi, "A Framework for Reliable Routing
in Mobile Ad Hoc Networks", IEEE INFOCOM (2003), vol.1, 30 March-3 April 2003,
pp. 270 - 280.

[12] Mahesh K. Marina and Samir R. Das, "On-demand Multipath Distance Vector
Routing in Ad Hoc Networks", In Proceedings of the 9th IEEE International Conference
on Network Protocols (ICNP), Niivember 2001, pp. 14 — 23.

[13] S.J.Lee and M.Gerla, "Split Multipath Routing with Maximally Disjoint Paths in Ad
Hoc Networks", In Proceedings of the IEEE ICC, 2001, pp. 3201-3205.

[14] L. Wang, Y. Shu, M. Dong, L. Zhang, and 0. Yang, "Adaptive Multipath Source
Routing in Ad hoc Networks", IEEE ICC 2001, vol.3, June 2001, pp. 867-871.

[15] L. Wang, Y. Shu, Z. Zhao, L. Zhang, and 0. Yang, "Load Balancing of Multipath
Source Routing in Ad hoc Networks", in Proceedings of IEEE ICCC '02, vol.5, April
2002, pp. 3197 - 3201.

42

APPENDIX: SOURCE CODE LISTING

Odmrlb h

#ifndef _ODMRLB H_
#define ODMRLB H

#include - "ip.h"
*include "nwcommon.h"
*include "main.h"

#define ODMRLB MAX SR LEN
	

9

/* Broadcast jittering time to avoid collisions */
*define ODMRLB BROADCAST JITTER 	10 * MILLI SECOND

/* Max time between route requests */
#define ODMRLB MAX REQUEST PERIOD 	10 * SECOND

/* Length of one backoff period */
*define ODMRLB REQUEST PERIOD 	500 * MILLI SECOND

/* TO for non propagating request */
%define ODMRLB RINGO REQUEST TO 	30 * MILLI SECOND

/* Saved in Request table for this amount of time */
#define ODMRLB FLUSH INTERVAL 	30 * SECOND

// Maximum time a packet will be buffered waiting for a route.
#define ODMRLB MAX PACKET BUFFER TIME 	11110 * SECOND

#define ODMRLB MAX TTL
	

255

*define ROUTE MAX 5

#define IPOPT ODMRLB 217

/* ODMRLB option fields for IP header *
typedef struct {

unsigned char salvagedBit;
unsigned char segmentLeft;

} ODMRLBIpOptionType;

/* Type of packet */
typedef enum {

ODMRLB ROUTE REQUEST,
ODMRLB ROUTE REPLY,
ODMRLB ROUTE ERROR

ODMRLB PacketType;

typedef struct
{

ODMRLB_PacketType pktType;
NODE ADDR srcAddr;

43

NODE_ADDR targetAddr;
int seqNumber;
int hopCount;
NODE_ADDR path[ODMRLB_MAXSR_LEN];

} ODMRLB RouteRequest;

typedef struct

ODMRLB_PacketType pktType;
NODE_ADDR targetAddr;
NODE ADDR srcAddr;

int hopCount;
int segLeft;
NODE_ADDR path[ODMRLB_MAX_SR_LEN];

1 ODMRLB RouteReply;

typedef struct
{

ODMRLB_PacketType pktType;
NODE ADDR srcAddr;

NODE ADDR destAddr;
NODE_ ADDR unreachableAddr;

broken link */
int hopCount;
BOOL salvaged;
NODE_ADDR path[ODMRLB_MAX_SRLEN];

} ODMRLBRouteError;

typedef struct RCE
{

/* Source of the route */
/* Destination of the route

/* Originator of the Route Error

/* Source of the broken route */
/* Immediate downstream of

NODE_ADDR destAddr;
int hopCount; 	 /* Hop length to the destAddr

NODE ADDR path[ODMRLB _MAX SR LEN];
struct RCE *prev;
struct RCE *next;

} ODMRLBRonteCaCheEntry;

typedef struct
{

ODMRLB_RouteCacheEntry *head;
int count;

} ODMRLB RouteCache;

typedef struct RRCE
{

NODE_ADDR destAddr;
int hopCount;

NODE ADDR path[ODMRLBMAXSR_LEN];
clocktype destReached;
struct RRCE *prev;
struct RRCE *next;

} ODMRLB RouteReplyCacheEntry;

/* Count of current entries */

/* Hop length to the destAddr

44

typedef struct
{

ODMRLB_RouteReplyCacheEntry *head;
int count; /* Count of current entries

1 ODMRLB RouteReplyCache;

typedef struct RQE
f

NODE_ADDR destAddr;
clocktype lastRequest; /* Time when last sent a request

*/
clocktype backoffInterval; /* No additional Req for this

time */
int ttl;
struct RQE *next;

1 ODMRLBRequestTableEntry;

typedef struct

ODMRLB_RequestTableEntry *head;
int count;

1 ODMRLBRequestTable;

typedef struct STE

NODE_ADDR srcAddr;
int eqNumber;
NODE ADDR prevNode;
int hopCount;
struct STE *next;

1 ODMRLBRequestSeenEntry;

typedef struct

ODMRLBRequestSeenEntry *front;
ODMRLB_RequestSeenEntry *rear;
int count;

1 ODMRLBRequestSeen;

typedef struct fifo
{

NODE_ADDR destAddr;
clocktype timestamp;
Message *msg;
struct fifo *next;

ODMRLB BUFFER Node;

typedef struct
{

ODMRLB BUFFER Node *head;
int size;

1 ODMRLB_BUFFER;
typedef struct

NODE_ADDR destAddr;
int ttl;

} ODMRLB CR;

45

typedef struct
1

/* Total number of route request packets transmitted */
int numRequestSent;

/* Total number of route reply packets transmitted */
int numReplySent;

/* Total number of route error packets transmitted */
int numErrorSent;

/* Total number of data packets originated as the source */
int numDataSent;

/* Total number of data packets tranmitted */
int numDataTxed;

/* Total number of data packets received as the destination */
int numDataReceived;

int numRoutes;

int numHops;

int numLinkBreaks;

int numSalvagedPackets;
int numDroppedPackets;

} ODMRLB Stats;

typedef struct glomo_network_ODMRLB str {
ODMRLB_RouteCache routeCacheTabIe;
ODMRLB RouteReplyCache routeReplyCacheTable;
ODMRLB:RequestTable requestTable;
ODMRLB_RequestSeen requestSeenTable;
ODMRLB BUFFER buffer;
int seliNumber;
ODMRLB Stats stats;

} GlomoRoutingODMRLB;

void RoutingODMRLBInit(
GlomoNode *node,
GlomoRoutingODMRLB **ODMRLBPtr,
const GlomoNodeInput *nodeInput);

void RoutingODMRLBFinalize(GlomoNode *node);

void RoutingODMRLBHandleRequest(GlomoNode *node, Message *msg,
int ttl);

void RoutingODMRLBHandleReply(
GlomoNode *node, Message *msg, NODE ADDR destAddr);

void RoutingODMRLBHandleError(GlomoNode *node, Message *msg, NODE_ADDR
srcAddr, NODE ADDR destAddr);

46

void RoutingODMRLBInitRouteCache(ODMRLBRouteCache *routeCache);

void RoutingODMRLBInitRequestSeen(ODMRLB RequestSeen *requestSeen);

void RoutingODMRLBInitRequestTable(ODMRLB_RequestTable *requestTable);

void RoutingODMRLBInitSeq(GlomoNode *node);

void RoutingODMRLBInitBuffer(ODMRLBBUFFER *buffer);

void RoutingODMRLBInitStats(GlomoNode *node);

void RoutingODMRLBDeleteSeenTable(ODMRLB_RequestSeen *requestSeen);

BOOL RoutingODMRLBCheckRouteExist(NODE_ADDR destAddr,
ODMRLBRouteCaohe *routeCache);

BOOL RoutingODMRLBLookupRequestSeen(NODEADDR srcAddr, int seq,
ODMRLB_RequestSeen *requestSeen);

BOOL RoutingODMRLBLookupRequestTable(NODE_ADDR destAddr,
ODMRLB_RequestTable *requestTable);

void RoutingODMRLBInsertRequestSeen(GlomoNode *node, NODE_ADDR srcAddr,
int seq, NODE_ADDR prevNode,

int hopCount, ODMRLB_RequestSeen *requestSeen);

void RoutingODMRLBInsertRouteCache(NODE ADDR destAddr,
int hopCount,NODEADDR *path, ODMRLB:RouteCache *routeCache);

ODMRLB RouteCacheEntry *RoutingODMRLBInsertRCInOrder(
NODE ADDR destAddr, int hopCount, NODE_ADDR *path,

ODMRLB RouteCacheEntry *old, ODMRLB RouteCacheEntry *last);

void RoutingODMRLBInsertRequestTable(NODE_ADDR destAddr,
ODMRLB RequestTable *requestTable);

ODMRLB RequestTableEntry *RoutingODMRLBInsertRTInOrder(
NODE_ ADDR destAddr,ODMRLB_RequestTableEntry *old);

void Routing0DRLBInsertBuffer(Message *msg, NODE_ADDR destAddr,
ODMRLB BUFFER *buffer);

ODMRLB BUFFER Node *RoutingODMRLBInsertBufInOrder(Message *msg,
NODE_ADDR destAddr, ODMRLB_BUFFERNode *old);

BOOL RoutingODMRLBCompareRoute(NODE_ADDR destAddr,
int hopCount, NODE_ADDR *path, ODMRLB_RouteCache *routeCache);

void RoutingODMRLBDeleteRouteCache(GlomoNode *node,
NODE_ADDR fromHop, NODE ADDR nextHop, ODMRLB_RouteCache *routeCache);

void RoutingODMRLBRemoveOldPacketsFromBuffer(ODMRLBBUFFER *buffer);

BOOL RoutingODMRLBDeleteBuffer(NODE_ADDR destAddr,
ODMRLB BUFFER *buffer);

void RoutingODMRLBDeleteRequestTable(NODE_ADDR destAddr,
ODMRLBRequestTable *requestTable);

47

BOOL RoutingODMRLBCheckDataSeen(
GlomoNode *node, NODE_ADDR *header, int currentHop);

BOOL RoutingODMRLBCheckRequestPath(
GlomoNode *node, NODE ADDR *path, int currentHop);

NODE_ADDR *RoutingODMRLBGetRoute(NODE ADDR destAddr,
ODMRLBJOuteCache *routeCache);

int RoutingODMRLBGetHop(NODE ADDR destAddr,
ODMRLBRou- eCache *routeCache);

int RoutingODMRLBGetSeq(GlomoNode *node);

BOOL RoutingODMRLBCheckUnprocessedPath(GlomoNode *node,
int currentHop,int segmentLeft, NODE ADDR *header);

Message *
RoutingODMRLBGetBufferedPacket(NODEADDR destAddr,

ODMRLB BUFFER *buffer);
BOOL RoutingODMRLBLookupBuffer(NODE ADDR destAddr,

ODMRLB BUFFER *buffer);
void RoutingODMRLBUpdateRequestTable(NODE ADDR destAddr,

ODMRLBJequestTable *requestTable);
void RoutingODMRLBUpdateTtl(NODE ADDR destAddr,

ODMRLB kequestTable *requestTable);
BOOL RoutingODMRLBCheckRequest'lgole(NODE ADDR destAddr,

ODMRLB_kequestTable *requestTable);

clocktype RoutingODMRLBGetBackoff(NODE ADDR destAddr,
ODMRLB kequestTable *requestTable);

void RoutingODMRLBHandleProtocolPacket(
GlomoNode *node, Message *msg, NODE_ADDR srcAddr,
NODE ADDR destAddr, int ttl);

void RoutingODMRLBHandleProtocolEvent(GlomoNode *node, Message *msg);

void RoutingODMRLBRouterFunction(
GlomoNode *node, 	Message *msg,
NODE ADDR destAddr,BOOL *packetWasRouted);

void RoutingODMRLBPeekFunction(GiomoNode *node, const Message *msg);
void RoutingODMRLBPacketDropNotificationHandler(
GlomoNode *node, const Message* msg, const NODE ADDR nextHopAddress)

void RoutingODMRLBSendReply(GlomoNode *node, Message *msg);
int RoutingODMRLBCheckDisjointRouteExist(GlomoNode *node,

Message *msg);
int RoutingODMRLBComparePath(int hopCountl,NODE ADDR *pathl,

int hopCoun-T2,NODEADDR -*path2);
int selectRouteNumber(NODE_ADDR destAddr,

ODMRLB RouteCache *routeCache,int numSent[]);
int RoutingODMRLBGetHop2TNODE_ADDR destAddr,

ODMRLB RouteCache *routeCache,int routeNum);
NODE ADDR *RoutingODMRLBetRoute2(NODE ADDR destAddr,

48

ODMRLBRouteCache *routeCache,int routeNum);
void RoutingODMRLBTransmitData2(GlomoNode *node, Message *msg,

NODE ADDR destAddr, int routeNum);
void RoutingODMRLBStartTransmission(GlomoNode *node, Message *msg,

NODE ADDR destAddr);
void RoutingODMRLBSetTimer(

GlomoNode *node, long eventType, ODMRLB_CR cr, clocktype delay);
void RoutingODMRLBInitiateRREQ(GlomoNode *node, NODE_ADDR destAddr);
void RoutingODMRLBRetryRREQ(GlomoNode *node, NODE_ADDR destAddr,

int ttl);
void RoutingODMRLBTransmitData(GlomoNode *node, Message *msg,

NODE_ADDR destAddr);
void RoutingODMRLBRelayRREQ(GlomoNode *node, Message *msg, int ttl);
void RoutingODMRLBInitiateRREP(GlomoNode *node, Message *msg);
void RoutingODMRLBInitiateRREPbyIN(GlomoNode *node, Message *msg);
void RoutingODMRLBRelayRREP(GlomoNode *node, Message *msg);
void RoutingODMRLBInitiateRERR(GlomoNode *node, NODE ADDR destAddr,

NODE_ADDR unreachableAddr, NODE_ADDR *errorPath);
void RoutingODMRLBRelayRERR(GlomoNode *node, Message *msg);
void RoutingODMRLBSalvageData(GlomoNode *node, Message *msg);
void Routing°DMRLDSalvageRERR(GlomoNode *node, NODE_ADDR targetAddr,

NODE ADDR srcAddr, NODE_ADDR unreachableAddr);
void RoutingODMRLBGratui-EousRREP(GlomoNode *node, NODE_ADDR srcAddr,

NODE_ADDR destAddr, NODE_ADDR *old, int count, int length);
void AddCustom0Did-RLBIpOptionFields(GiomoNode* node, Message* msg);
ODMRLBIpOptionType* GetPtrToODMRLBIpOptionField(Message* msg);
extern double ceil(double x);
BOOL RoutingODMRLBNeednotForwardRequest(NODE_ADDR srcAddr,

int seq,NODE ADDR prevNode,int hopCount,
5DMRLB_RequestSeen *requestSeen);

void RoutingODMRLBInitRouteReplyCache(
ODMRLB_RouteReplyCache *routeReplyCache);

void RoutingODMRLBInsertRouteReplyCache(NODE ADDR destAddr,
int hopCount,NODEADDR *path,ODMRLB_RoueReplyCache *routeCache);

ODMRLB_RouteRepiyCacheEntry *RoutingODMRLBInsertRCReplyInOrder(
NODE ADDR destAddr,int hopCount,NODE ADDR *path,

ODMRLB RouteReplyCacheEntry *old,
ODMRLB RouteReplyCacheEntry *last);

void RoutingODMRLBDeleteRouteReplyCache(
ODMRLB RouteReplyCache *routeCache, NODE ADDR destAddr);

#endif /* ODMRLB H */

49

,a 21•‘:
Wu, 	 doe* WM6,,

Odmrlb.pc

#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <assert.h>
#include <math.h>

#include "api.h"
#include "structmsg.h"
#include "fileio.h"
#include "message.h"
*include "network.h"
#include "odmrlb.h"
#include "ip.h"
*include "nwip.h"
*include "nwcommon.h"
*include "application. h"
#include "transport.h"
#include "javagui.h"

void RoutingODMRLBHandleRequest(GlomoNode *node, Message *msg, int ttl)
{

GlomoNetworkIp* ipLayer = (GlomoNetworklp *) node->
networkData.networkVar;

GlomoRoutingODMRLB* ODMRLB = (GlomoRoutingODMRLB *) ipLayer->
routingProtocol;

ODMRLB RouteRequest *rreq = (ODMRLB RouteRequest*)
GLOMO iisgReturnPacket(msg);

IpHeaderType *ipHdr = (IpHeaderType *)GLOMO MsgReturnPacket(msg);

/* If destination of the route (dest sends Reply to every
requests) */ 	 •
if (rreq->targetAddr == node->nodeAddr)
{

RoutingODMRLBSendReply(node,msg);

/* Not a destination; if the request can be forwarded */
else if (rreq->hopCount==l)

/* Insert request info into request seen table */
RoutingODMRLBInsertRequestSeen(node,

rreq->srcAddr, rreq->seqNumber, rreq->srcAddr,
rreq->hopCount, &ODMRLB->requestSeenTable);

/* Check if its address is in the path of the packet */
if (!RoutingODMRLBCheckRequestPath(node,rreq->path,rreq->hopCount-1))
{

/* Relay the packet if ttl > 0 */
if (ttl > 0 && rreq->hopCount < ODMRLB MAX SR LEN)
{

RoutingODMRLBRelayRREQ(node, msg, ttl);

50

else

} /* if ttl > 0 */

else
{

}
GLOMO MsgFree(node, msg);

} /* if check request path */
else
{

GLOMOMsgFree(node, msg);
}
} /* else if lookup request seen

else if ((rreq->hopCount>1)&&
(!RoutingODMRLBNeednotForwardRequest(rreq->srcAddr,

rreq->segNumber, rreq->path[rreq->hopCount -2],
rreq->hopCount, &ODMRLB->requestSeenTable)))

/* Insert request info into request seen table */
RoutingODMRLBInsertRequestSeen(node,

rreg->srcAddr,rreq->seqNumber,
rreq->path[rreq->hopCount -2],rreq->hopCountr
&ODMRLB->requestSeenTable);

/* Check if its address is in the path of the packet */
if (!RoutingODMRLBCheckRequestPath(node,

rreq->path,rreq->hopCount - 1))

/* Relay the packet if ttl > 0 */
if (ttl > 0 && rreq->hopCount < ODMRLB MAX SR LEN)
{

RoutingODMRLBRelayRREQ(node, msg, ttl);
/* if ttl > 0 */

else

GLOMO MsgFree(node, msg);
}

} /* if check request path */

else

GLOMOMsgFree(node, msg);

} /* else if lookup request seen */

GLOMOMsgFree(node, msg);
J.
} /* Handle Request */

51

/*
* RoutingODMRLBHandleReply

* Processing procedure when Route Reply is received
*/

void RoutingODMRLBHandleReply(
GlomoNode *node, Message *msg, NODE ADDR destAddr)
{

GlomoNetworklp* ipLayer = (GlomoNetworkIp *) node->
networkData.networkVar;

GlomoRoutingODMRLB* ODMRLB = (GlomoRoutingODMRLB *) ipLayer->
routingProtocol;

Message *newMsg;
ODMRLB CR cr;
ODMRLB RouteReply *rrep = (ODMRLB_RouteReply *)

GLOMO_MsgReturnPacket(msg);
NODE — ADDR newPath[ODMRLB MAX SR LEN]; _ _ _ .
int segLeft;
int i, j, k;

segLeft = rrep->segLeft - 1;

/* I'm the destination of the packet (source of the route) */
if (rrep->targetAddr == node->nodeAddr && destAddr == node->nodeAddr)
{

/* A new (and first) route to the destination */
if (!RoutingODMRLBCheckRouteExist(rrep->srcAddr, &ODMRLB->

routeCacheTable) &&
!RoutingODMRLBCheckDataSeen(node,rrep->path,rrep->hopCount)

&& rrep->srcAddr 1= ANY DEST)
{
RoutingODMRLBInsertRouteCache(rrep->path[rrep->hopCount - 1],

rrep->hopCount, rrep->path, &ODMRLB->routeCacheTable);

cr.destAddr = destAddr;
cr.ttl = 0;
RoutingODMRLBSetTimer(node, MSG_ NETWORK_CheckRequest, Cr,

(clocktype)5);

ODMRLB->stats.numRoutes++;
ODMRLB->stats.numHops += rrep->hopCount;

RoutingODMRLBDeleteRequestTable(rrep->srcAddr,&ODMRLB->
requestTable);

// Remove packets expired waiting for route.

RoutingODMRLBRemoveOldPacketsFromBuffer(&ODMRLB->buffer);

/* Send buffered data packets that waited for a route */
while (RoutingODMRLBLookupBuffer(rrep->srcAddr, &ODMRLB->buffer))

newMsg = RoutingODMRLBGetBufferedPacket(rrep->srcAddr,
&ODMRLB->buffer);

52

RoutingODMRLBTransmitData(node, newMsg, rrep->srcAddr);

RoutingODMRLBDeleteBuffer(rrep->srcAddr, &ODMRLB->buffer)

} /* while */

/* Optimization: Adding routes to intermediate nodes */

for (i = 0; i < rrep->hopCount - 1; i++)

for (j = 0; j <= i; j++)

newPath[j] = rrep->path[j];
}
for (j = i + 1; j < ODMRLB_MAX_SR_LEN; j++)
{

newPath[j] = ANY_DEST;
}

/* Check if the route is new */
if (!RoutingODMRLBCompareRoute(rrep->path[i],i + 1, newPath,

&ODMRLB->routeCacheTable) &&
!RoutingODMRLBCheckDataSeen(node, newPath, i + 1))

RoutingODMRLBInsertRouteCache(rrep->path[i],i + 1,
newPath, &ODMRLB->routeCacheTable);

} /* if a new route */
} /* for */

} /* if check route exist */

/* routes to the destination already exist */
else
{

/* if the route is not the same as one in the cache */
if (!RoutingODMRLBCompareRoute(rrep->path[rrep->hopCount - 1],

rrep->hopCount,rrep->path,&ODMRLB->routeCacheTable) &&
!RoutingODMRLBCheckDataSeen(node, rrep->path, rrep->hopCount))
{
RoutingODMRLBInsertRouteCache(rrep->path[rrep->hopCount - 1],

rrep->hopCount, rrep->path,&ODMRLB->routeCacheTable);

}

/* Optimization: Adding routes to intermediate nodes */
for (i = 0; i < rrep->hopCount - 1; i++)

for (j = 0; j <= i; j++)

newPath[j] = rrep->path[j];

for (j = i + 1; j < ODMRLB MAX SR LEN; j++)

newPath[j] = ANY DEST;
1

/* Check if new route is the same as one in cache */
if (!RoutingODMRLBCompareRoute(rrep->path[i], i + 1,

53

newPath, &ODMRLB->routeCacheTable) &&
!RoutingODMRLBCheckDataSeen(node, newPath, i + 1))

{
/* Insert the route into cache */
RoutingODMRLBInsertRouteCache(rrep->path[i],i + 1,

newPath, &ODMRLB->routeCacheTable);

} /* if a new route */
1 /* for */

} /* else */

GLOMOMsgFree(node, msg);

} /* if dest */

/* Node is the intended intermediate node;
cache the routes and relay the packet*/

else if (destAddr == node->nodeAddr)

/* Insert the routes into cache */
for (i = 0; i < rrep->hopCount; i++)

newPath[i] = rrep->path[segLeft + i];
}
for (i = rrep->hopCount; i < ODMRLB MAX SR LEN; i++)
{

newPath[i] = ANY DEST;
}

/* Check if the route is new */
if (!RoutingODMRLBCompareRoute(rrep->srcAddr,

rrep->hopCount,newPath,&ODMRLB->routeCacheTable) &&
!RoutingODMRLBCheckDataSeen(node, newPath, rrep->hopCount))

{
RoutingODMRLBInsertRouteCache(rrep->srcAddr,
rrep->hopCount, newPath, &ODMRLB->routeCacheTable);

} /* if compare route */

/* Optimization: Adding routes to intermediate nodes */
for (j = segLeft; j< rrep->hopCount+segLeft - 1;j++)

for (k = 0; k <= j 	segLeft; k++)

newPath[k] = rrep->path[k + segLeft];
1
for (k = j + 1 - segLeft; k < ODMRLB MAX SR LEN; k++)

newPath[k] = ANY DEST;
}

/* Check if the route is new */
if (!RoutingODMRLBCompareRoute(rrep->path[j],
j + 1 - segLeft, 	newPath, &ODMRLB->routeCacheTable) &&

!RoutingODMRLBCheckDataSeen(node, newPath, j + 1 - segLeft))

54

RoutingODMRLBInsertRouteCache(rrep->path{j},
j + 1 - segLeft, newPath, &ODMRLB->
routeCacheTable);

} /* if compare route */
} /* for */

RoutingODMRLBRelayRREP(node, msg);

} /* else if intended receiver */

else

GLOMO MsgFree(node, msg);
}
/* Handle Reply */

/*
* RoutingODMRLBHandleError
*

* Processing procedure when Route Error is received
*/

void RoutingODMRLBHandleError(GlomoNode *node, Message *msg,
NODE ADDR srcAddr, NODE ADDR destAddr)

{
GlomoNetworklp* ipLayer = (GlomoNetworkIp *) node->

networkData.networkVar;
GlomoRoutingODMRLB* ODMRLB = (GlomoRoutingODMRLB *) ipLayer->

routingProtocol;
Message *newMsg;
ODMRLB_RouteError *rerr = (ODMRLB_RouteError *)

GLOMOMsgReturnPacket(msg);

/* Delete routes in cache that use the broken link */
RoutingODMRLBDeleteRouteCache(node, rerr->srcAddr,

rerr=>unreachableAddr, &ODMRLB->routeCacheTable);

/* If intermediate node of the broken route, then forward the
packet */
if (rerr->path[rerr->hopCount - 1] == node->nodeAddr &&

destAddr == node->nodeAddr &&
rerr->destAddr != node-> nodeAddr)

{
RoutingODMRLBRelayRERR(node, msg);

} /* if intended receiver */

/* if source of the broken route */
else if (rerr->destAddr == node->nodeAddr)

GLOMOMsgFree(node, msg);
}

} /* Handle Error

55

/*
* RoutingODMRLBCompareRoute
*

* Check if new route is the same as the one in cache
* return TRUE if new route is the same; FALSE otherwise
*/

BOOL RoutingODMRLBCompareRoute(NODE_ADDR destAddr,
int hopCount, NODE_ADDR *path,
ODMRLBRouteCache *routeCache)

{

int i, j;
BOOL found = FALSE;
ODMRLB RouteCacheEntry *current;

*

printf("COMPARE ROUTE: hop count = %d\n", hopCount);
*/

for (current = routeCache->head;
current != NULL && current->destAddr <= destAddr;
current = current->next)

if (current->destAddr == destAddr && current->hopCount
hopCount)

{

for (i = 0; i < hopCount; i++)
{

if (current->path[i] != path[i])
{

found = FALSE;
break;

}

else
{

found = TRUE;
}

if (found == TRUE)
{

return (found);
}

}
}

return (found);

} /* Compare route */

/*
* RoutingODMRLBGetRoute

* Extract a route from the route cache table
*/
NODE ADDR *RoutingODMRLBGetRoute(NODE ADDR destAddr,

ODMRLB kaouteCache *routeCache)
{

56

ODMRLBRouteCacheEntry *current;

for (current = routeCache->head;
current != NULL && current->destAddr <= destAddr;
current = current->next)

{
if (current->destAddr == destAddr)
{
return(current->path);
}

}

printf("ERROR: Get Route - No route can be retrived from
Cache\n");

return(NULL);
} /* Get route */

/*
* RoutingODMRLBHandleProtocolPacket
*

* Called when packet is received from MAC
*/
void RoutingODMRLBHandleProtocolPacket(

GlomoNode *node, Message *msg, NODE_ADDR srcAddr,
NODE ADDR destAddr, int ttl)

{

ODMRLB PacketType *ODMRLBHeader =
(ODMRLB PacketType*)GLOMO_MsgReturnPacket(msg);

switch (*ODMRLBHeader)
1

case ODMRLB ROUTE REQUEST:
{

RoutingODMRLBHandleRequest(node, msg, ttl);

break;
} /* RREQ */

case ODMRLB ROUTE REPLY:
{

RoutingODMRLBHandleReply(node, msg, destAddr);
break;

} /* RREP */

case ODMRLB ROUTE ERROR:
{
RoutingODMRLBHandleError(node, msg, srcAddr, destAddr);
break;
} /* RERR */

} /* switch */
} /* RoutingODMRLBHandleProtocolPacket */

57

/*
* RoutingODMRLBHandleProtocolEvent
*

* Handles all the protocol events
*/
void RoutingODMRLBHandleProtocolEvent(GlomoNode *node, Message *msg)

GlomoNetworklp* ipLayer = (GlomoNetworkIp *) node->
networkData.networkVar;

GlomoRoutingODMRLB* ODMRLB = (GlomoRoutingODMRLB *) ipLayer->
routingProtocol;

switch (msg->eventType) {

/* Remove an entry from the request seen table */
case MSG_NETWORK FlushTables: {

RoutingODMLBDeleteSeenTable(&ODMRLB->requestSeenTable);
GLOMO MsgFree(node, msg);
break;

}

/* check if a route is obtained after sending a Route
Request */
case MSG_NETWORKCheckReplied: {
ODMRLB CR *cr 	(ODMRLB CR *)GLOMO MsgReturnInfo(msg);
int ttl;
if (!RoutingODMRLBCheckRouteExist(
cr->destAddr, &ODMRLB->routeCacheTable))
{
if (cr->ttl == 1)
{

ttl = ODMRLB MAX TTL;
}

else
{

ttl = 1;
}

RoutingODMRLBRetryRREQ(node, cr->destAddr, ttl);

/* if no route */

GLOMO MsgFree(node, msg);

break;
}
/*added*/
case MSG_NETWORK_CheckRequest: {

ODMRLB CR *cr = (ODMRLB CR *)GLOMO MsgReturnInfo(msg);
Routin-.50DMRLBStartTransnlission(node,msg,cr->destAddr);
break;

58

default:
fprintf(stderr, "RoutingODMRLB: Unknown MSG type %d!\n",

msg->eventType);
assert(FALSE);

/* switch */

/* RoutingODMRLBRandleProtocolEvent */

/*
* RoutingODMRLBInitiateRREQ
*

* Initiate a Route Request packet when no route to destination is known
*/
void RoutingODMRLBInitiateRREQ(GlomoNode *node, NODE ADDR destAddr)

{
GlomoNetworkIp* ipLayer = (GlomoNetworkIp *) node->

networkData.networkVar;
GlomoRoutingODMRLB* ODMRLB = (GlomoRoutingODMRLB *) ipLayer->

routingProtocol;
Message *newMsg;
ODMRLB RouteRequest *rreq;
ODMRLB CR cr;
char *pktPtr;
int pktSize = sizeof(ODMRLB_RouteRequest);
int i;

newMsg = GLOMO_MsgAlloc(node, GLOMO MAC LAYER, 0,
MSG MAC_FromNetwork);

GLOMO MsgPacketAlloc(node, newMsg, pktSize);

pktPtr = (char *) GLOMO_MsgReturnPacket(newMsg);
rreq = (ODMRLB_RouteRequest *) pktPtr;

rreq->pktType = ODMRLB_ROUTE_REQUEST;
rreq->srcAddr = node->nodeAddr;
rreq->targetAddr = destAddr;
rreq->seqNumber = RoutingODMRLBGetSeq(node);
rreq->hopCount = 1;
for (i = 0; i < ODMRLB MAX SR LEN; i++)
{

rreq->path[i] = ANY_DEST;
}

NetworkIpSendRawGlomoMessage(
node, newMsg, ANYDEST, CONTROL, IPPROTOODMRLB, 1);

ODMRLB->stats.numRequestSent++;

if(RoutingODMRLBCheckRequestTable(destAddr,&ODMRLB->requestTable))

RoutingODMRLBUpdateTtl(destAddr, &ODMRLB->requestTable);

else

59

RoutingODMRLBInsertRequestTable(destAddr,&ODMRLB->requestTable);
1

if(rreq->hopCount==1)
RoutingODMRLBInsertRequestSeen(node, node->nodeAddr, rreq->

seciNumber,. rreq->srcAddr,rreq->hopCount,
&ODMRLB-,>requestSeenTable);

else if(rreq->hopCount>1)
RoutingODMRLBInsertRequestSeen(node, node->nodeAddr,
rreq->segNumber, rreq->path[rreq->hopCount -2],rreq->hopCount,
&ODMRLB->requestSeenTable);

else

cr.destAddr = destAddr;
cr.ttl = 1;

RoutingODMRLBSetTimer(node, MSG_NETWORK_CheckReplied, cr,
(clocktype)ODMRLB_RINGO REQUEST_TO);

} /* RoutingODMRLBInitiateRREQ */

/*
* RoutingODMRLBRetryRREQ
*
* Send RREQ again after not receiving any RREP
*/
void RoutingODMRLBRetryRREQ(GlomoNode *node, NODE ADDR destAddr, int
ttl)
{

GlomoNetworklp* ipLayer = (GlomoNetworkIp *) node->
networkData.networkVar;

GlomoRoutingODMRLB* ODMRLB = (GlomoRoutingODMRLB *) ipLayer->
routingProtocol;

Message *newMsg;
ODMRLB RouteRequest *rreq;
ODMRLB CR cr;
char *pktPtr;
clocktype backoff;
int pktSize = sizeof(ODMRLB_RouteRequest);
int i;

newMsg = GLOMO_MsgAlloc(node, GLOMO_MAC_LAYER, 0,
MSG_MAC_FromNetwork);

GLOMOMsgPacketAlloc(node, newMsg, pktSize);

pktPtr = (char *) GLOMO_MsgReturnPacket(newMsg);
rreq = (ODMRLB RouteRequest *) pktPtr;

rreq->pktType = ODMRLB_ROUTE REQUEST;
rreq->srcAddr = node->nodeAdar;
rreq->targetAddr = destAddr;
rreq->seqNumber = RoutingODMRLBGetSeq(node);
rreq->hopCount = 1;
for (i = 0; i < ODMRLB MAX SR LEN; i++)
{

rreq->path[i] = ANY_DEST;

60

}

NetworkIpSendRawGlomoMessage(
node, newMsg, ANY DEST, CONTROL, IPPROTOODMRLB, ttl);

ODMRLB->stats.numRequestSent++;

if(rreq->hopCount==1)
RoutingODMRLBInsertRequestSeen(node, node->nodeAddr,
rreq->seqNumber, rreq->srcAddr,rreq->hopCount,
&ODMRLB->requestSeenTable);

else if(rreq->hopCount>l)
RoutingODMRLBInsertRequestSeen(node, node->nodeAddr,

rreq->seqNumber,rreq->path[rreq->hopCount -2],
rreq->hopCount,&ODMRLB->requestSeenTable);

else

if (ttl == ODMRLB MAX TTL)
{

RoutingODMRLBUpdateRequestTable(destAddr, &ODMRLB->
requestTable);

backoff = RoutingODMRLBGetBackoff(destAddr, &ODMRLB->
requestTable);

else
{

RoutingODMRLBUpdateTtl(destAddr, &ODMRLB->requestTable);
backoff = ODMRLB RINGO REQUEST TO;

}

cr.destAddr = destAddr;
cr.ttl = ttl;

RoutingODMRLBSetTimer(node, MSG NETWORK CheckReplied, cr,
backoff);

} /* RoutingODMRLBRetryRREQ

/*
RoutingODMRLBTransmitData

*

* Obtain the route from the cache and send the data thru the source
route
*/
void RoutingODMRLBTransmitData(GlomoNode *node, Message *msg,

NODE ADDR destAddr)
{

GlomoNetworklp* ipLayer = (GlomoNetworkIp *) node->
networkData.networkVar;

GlomoRoutingODMRLB* ODMRLB = (GlomoRoutingODMRLB *) ipLayer->
routingProtocol;
ODMRLBIpOptionType *option;
NODE_ADDR *route;
int hopCount;

61

GLOMO_MsgSetLayer(msg, GLOMO MAC_LAYER, 0);
GLOMO MsgSetEvent(msg, MSG MAC FromNetwork);

route = RoutingODMRLBGetRoute(destAddr, &ODMRLB->routeCacheTable);
hopCount = RoutingODMRLBGetHop(destAddr, &ODMRLB->routeCacheTable);

if (route != NULL)
{

AddCustomODMRLBIpOptionFields(node, msg);
option = GetPtrToODMRLBIpOptionField(msg);
option->segmentLeft = hopCount;
option->salvagedBit = FALSE;

NetworkIpSendPacketToMacLayerWithNewStrictSourceRoute(
node, msg, route, hopCount, TRUE);

ODMRLB->stats.numDataSent++;
ODMRLB->stats.numDataTxed++;
}
else
{
GLOMO MsgFree(node, msg);
}

/* RoutingODMRLBTransmitData */

/*
* RoutingODMRLBRelayRREQ
*

* Forward (re-broadcast) the Route Request
*/
void RoutingODMRLBRelayRREQ(GlomoNode *node, Message *msg, int ttl)
{

GlomoNetworklp* ipLayer = (GlomoNetworklp *) node->
networkData.networkVar;

GlomoRoutingODMRLB* ODMRLB = (GlomoRoutingODMRLB *) ipLayer->
routingProtocol;

Message *newMsg;
ODMRLB RouteRequest *oldRreq;
ODMRLB RouteRequest *newRreq;
char *pktPtr;
int pktSize = sizeof(ODMRLB_RouteRequest);
clocktype delay;
int i;

oldRreq = (ODMRLB_RouteRequest *) GLOMO_MsgReturnPacket(msg);

newMsg = GLOMO_MsgAlloc(node, GLOMO_MAC_LAYER, 0,
MSGMAC_FromNetwork);

GLOMOMsgPacketAlloc(node, newMsg, pktSize);

pktPtr = (char *) GLOMO_MsgReturnPacket(newMsg);
newRreq = (ODMRLB_RouteRequest *) pktPtr;

newRreq->pktType = oldRreq->pktType;
newRreq->srcAddr = oldRreq->srcAddr;

62

newRreq->targetAddr = oldRreq->targetAddr;
newRreq->seqNumber = oldRreq->seqNumber;
newRreq->hopCount = oldRreq->hopCount 1;
for (i = 0; i < oldRreq->hopCount - 1; i++)

newRreq->path[i] = oldRreq->path[i];
}
newRreq->path[oldRreq->hopCount - 1] = node->nodeAddr;
for (i = oldRreq->hopCount; i < ODMRLB MAX SR LEN; i++)
{

newRreq->path[i] = ANYDEST;
}
delay - pc_erand(node->seed) * ODMRLB_BROADCAST_JITTER;
NetworkIpSendRawGlomoMessageWithDelay(

node, newMsg, ANY_DEST, CONTROL, IPPROTO ODMRLB, ttl, delay);
ODMRLB->stats.numRequestSent++;
GLOMO_MsgFree(node, msg);

} /* RoutingODMRLBRelayRREQ

*

* RoutingODMRLBCheckDisjointRouteExist
*

* Check for route replies
*/

int RoutingODMRLBCheckDisjointRouteExist(GlomoNode *node, Message *msg)
{

GlomoNetworklp* ipLayer = (GlomoNetworklp *)node->
networkData.networkVar;

GlomoRoutingODMRLB* ODMRLB = (GlomoRoutingODMRLB *) ipLayer->
routingProtocol;

ODMRLB RouteRequest *rreq = (ODMRLB_RouteRequest *)
GLOMO MsgReturnPacket(msg);

ODMRLB CR Cr;
ODMRLB_RouteReplyCache *routeCache=&ODMRLB->routeReplyCacheTable;

NODE ADDR destAddr=rreq->targetAddr;

ODMRLB_RouteReplyCacheEntry *current;

if (routeCache->count == 0)
{
return 0;
}

for (current - routeCache->head;
current != NULL ;
current = current->next)

{

if (current->destAddr == destAddr)

if(RoutingODMRLBComparePath(rreq->hopCount,rreq->path,current->
hopCount,current->path)!=0)

63

return 1;

}

return 0;

1/*RoutingODMRLBCheckDisjointRouteExist*/

/*
*RoutingODMRLBDeleteRouteReplyCache
*/
void RoutingODMRLBDeleteRouteReplyCache(ODMRLB_RouteReplyCache
*routeCache,NODE_ADDR destAddr)

ODMRLB_RouteReplyCacheEntry *toFree;
ODMRLB RouteReplyCacheEntry *current;

if (routeCache->count == 0)
{
return;
}

else if (routeCache->head->destAddr == destAddr)
{
while(routeCache->head->destAddr == destAddr)
{
toFree = routeCache->head;
routeCache->head = toFree->next;
if(routeCache->count>1)
toFree->next->prev=NULL;

pc_free(toFree);
--(routeCache->count);
}
}

else
{

for (current = routeCache->head;
current->next != NULL && current->next->destAddr < destAddr;

current = current->next)
{

}

while (current->next != NULL && current->next->destAddr == destAddr)

toFree = current->next;
current->next = toFree->next;
toFree->next->prev=current;
pc_free(toFree);
--(routeCache->count);
}
}

}/*RoutingODMRLBDeleteRouteReplyCache*/

/*
* RoutingODMRLBSendReply
*/

64

void RoutingODMRLBSendReply(GlomoNode *node, Message *msg)

GlomoNetworkIp* ipLayer = (GlomoNetworkIp *)
node->networkData.networkVar;

GIomoRoutingODMRLB* ODMRLB = (GlomORoutingODMRLB *) ipLayer->
routingProtocol

ODMRLB RouteRequest *rreq = (ODMRLB„RouteRequest *)
GLOMO M8gReturnPacket(msg);

ODMRLB CR cr;
ODMRLBRouteRepIyCache *routeCaohe=&ODMRLB->rotteReplyCacheTable;

ii(RoutingODMRLBCheckDisjointRouteExist(node,msg)==0)
{

RoutingODMRLBInsertRouteReplyCache(rreq->srcAddr, rreq->hopCount,
rreq->path, &ODMRLB>routeReplyCacheTable);

RoutingODMRLBInitiateRREP(tode, msg);
1
else
GLOMO_MsgFree(node, msg);
}/*RoutingODMRLBSendReply*/

* ROutingODMRLBStartTransmission

*

*/
void RoutingODMRLBStartTransmission(GlomoNode *tbde, Message *MSg,

NODEADDR destAddZ)

GlOMONetworkIp* ipLayer = (GlomoNetworkIp *) node->
networkData.networkVarl•

GlomoRoutingODMRLB* ODMRLB = (GlOmoRoutingODMRLB *) ipLayer7>
routingProt000ll•

Message *newMsg;
int numSentJROUTE• MAX-1-1]={0};.
int count=0,routeRUm;

while (RoutingODMRLBLookupBuffer(destAddr, &ODMRLB->buffer))

newMsg =.ROutingODMRLBGetBufferedPacket(deStAddr•
•:grODMRLB->btlffer);

routeNum=seleCtRouteNumber(destAddr,&ODMRLB-> routeCaCheTable,
•• numSentiI

•RoutingODMRLBTransmitData2(node,newMsg, destAddr,routeNum);
RoutingODMRLBDeIeteBuffer(destAddr, &ODMRLB.,>10Offer);

1 /* while */

}/*RoutingODMRLBStartTransmission*/

65

* RoutingODMRLBInitiateRREP
*

* DeStination of the route sends Route Reply. in reaction to Route
Request
*/

void RoutingODMRI3InitiateRREPG1omoNode *node, Message *msg)

{
GlomONetworkIp* ipLayer = (GlomoN.etworklp *)nocip->

ne:twokpata.networkVar;
GlmdRoutinTDDMRLB* ODMRLB = (GlomoRoutingODMRLB *ipLayer'->

routingProtocol;
Message *newMsg;
ODMRLB.RoutRequest *rreq2kt;
ODMRLB RouteReply *rrepPkt;
char .*pktPtr;
int pktSize = sizeof(ODMRLB RouteReplyT;
int

.r,

••clocktype delay;•
.rreqPkt. - (ODMRLW-

-
RotteRequest *)• GLOM° MsgReturnBacket(msg) 	.

newMsg =GLOMO_Msg-Alloc.(node,GLOMO_MAC L-FiVERi 0, MSG MAC FrOMNetwprk);
GLOMO_MsgPacketAlloc(node, newMsg," pktSize);
pktPtr = (char *) GLOp4O_MgReturnpacket(nwMsg);
.r.eppkt = (ODMRLB_RouteReply *) pktPtr;
rreppkt->pktType.:.= ODMRLBLROLITEREPLy;
rrepPkt->targetAddr = rre4Pkt->srcAddr;
rrepPkt->srCAddr = node->nodeAddr;
rreppkt->hopColint = 1;
rrepPkt->segLeft = rregPkt->hopCount;

i < rreCiPkt->hopCoupt - 1; i++)
4

rrepPkt>pathLij = rreqpkt>path[i];

rrepPkt->path[rreqPkt->hopCount - 1] = node->n0d0A00 ,
for (i = rreqPkt7>hOpCount; i < ODMRLB MAX SR LEN;
{

rrepPkt->path4i] = ANYDEST.;!

delay = pc erand(node->seed) * ODMRLB BROADCAST JITTER. - -
If (rregPkt->hopCount > 1)

NetworkIpSendRaWGlomoMessageToMacLayerWithDeiay(
node, newMsg, rrepPkt->path[:tregPkt->hopCdOnt - 2],
CONTROL, IPPROTO ODMRLE, 1, DUAULTINTERFACE,

rrepPkt->path[rreqpkt->hopCount -2], delay): ;
1
else
4

NetworkIpSendRawGlomoMessageTOMacLayerWithDelay(
node, newMsg, rrepPkt->targetAddr, CONTROL, IpPROTO: ODMRLB
1,DEFAULT INTERFACE, rreppkt->targetAddr, delay);:

ODMRLB->stats.numReplySent++;
GLOMO Msgfree(node, msg);
/* RoutingODMRLBInitiateRREP

66

	Title

	Abstract

	Chapter 1

	Chapter 2

	Chapter 3

	Chapter 4

	Chapter 5
	Chapter 6

	References

	Appendix

