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ABSTRACT 

Euclidean Distance Transform (EDT) of 2-D and 3-D images is one of the useful tools 

in various image processing algorithms. It is one of the basic operations in image 

processing and computer vision fields and essentially used in expanding, shrinking, 

thinning, segmentation, clustering and computing of images, object reconstruction, etc. It 

converts a binary image consisting of black and white pixels to a representation where 

each pixel has the Euclidean distance of the nearest black pixel. Many sequential and 

parallel algorithms have been developed for Euclidean Distance Transform computation 

of 2-D and 3-D images on various, computational platforms. The objective of this 

dissertation work is to develop a time-optimal and scalable algorithm for EDT 

computation of 3-D images. 

In this dissertation work, an efficient and scalable parallel algorithm has been designed 

and implemented for computing EDT of 3-D images, on Linear Array with 

Reconfigurable Pipelined Bus System (LARPBS) multiprocessor model, which is a 

recently proposed architecture based on optical buses. This work is the extension of the 

algorithm for 2-D EDT computation on LARPBS architecture which is given by Chen, 

Pan and Xu. 

The algorithm computes the EDT of a 3-D image represented by N x N x N binary 

matrix in O( N2  log N /(a(n) * b(n))) time using N2  * a(N) * b(N) processors where a(N) 

and b(N) are the parameters and their values can be selected between 1 and N. By 

selecting different values for a(N) and b(N), time complexity and number of processors 

required can be altered which makes the algorithm more flexible and scalable. This 

algorithm has been implemented and tested on the multiprocessor cluster available at the 

Institute Computer Center. The performance has been analyzed and compared with other 

EDT algorithms given on various parallel computing platforms. 
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Chapter 1: Introduction 

CHAPTER 1 

INTRODUCTION 

1.1 INTRODUCTION 

The Euclidean Distance Transform computation of binary images is a basic operation 

in image processing and computer vision fields. Some other basic operations of image 

processing like image expansion, shrinking, thinning, segmentation, clustering, object 

reconstruction, etc require EDT of binary images as an intermediate tool [1]. In a 3-

dimensional binary image array, consisting of 1 s and Os, I -voxels are referred as 

foreground or black voxels while 0-voxels are referred as background or white voxels. 

Often, we are interested in the shape and position of the black voxels relative to each 

other. The extraction of such information from a binary image can be simplified 

considerably by using a number of computational techniques. Some of the most 

important ones include the Medial Axis Transform (MAT) introduced by Blum [2] and 

the Distance Transform (DT) introduced by Rosenfeld and Pfaltz [3], [4]. 

The Euclidean Distance Transform of a binary image array, consisting of I and 0 voxels, 

transforms it to another array where each voxel has a value or coordinates that represents 

the distance or location to the nearest 1 voxel [6]. A great deal of work has been done on 

EDT computation techniques of 2-D as well as 3-D images. A Sequential Brute Force 

exhaustive approach for EDT computation of a 3-D binary array would have inherent 

time complexity of 0 (n^6) on a sequential, uni-processor machine. To optimize this 

time, many parallel algorithms have been given so far on various multiprocessor 

architectures with different time complexities and different number of processors used. 

The algorithm derived in this dissertation is an extension to the algorithm for 2-D EDT 

computation on LARPBS model and it is given by Chen, Pan andXu [1]. This computes 

EDT of an N x N x N binary image array, with respect to black voxels on LARPBS 

model. LARPBS is a multiprocessor model consisting of Processor Arrays with 

Reconfigurable Pipelined Optical Bus System. It has become the focus of interest for 

implementation of many efficient parallel algorithms, since it limits the communication 

latency and provides concurrent message transmission through the bus system [7] . 
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1.2 STATEMENT OF THE PROBLEM 

The Euclidean Distance Transform of a 3-D image array, consisting of black and white 

voxels, transforms it to another array where each voxel has a value or coordinates that 

represents the distance or location to the nearest black voxel. The aim of this dissertation 

work is to design, implement and analyze the performance of an efficient and scalable 

parallel algorithm for the computation of Euclidean Distance Transform of 3-

Dimensional binary images on LARPBS multiprocessor architecture. 

The work towards the solution of this problem can be divided as following: 

1. Design of EDT computation algorithm of 3-D binary images on LARPBS model 

as an extension of the algorithm for 2-D binary images. 

2. Implementation of the above algorithm on the available multiprocessor cluster. 

3. Time benefit analysis of the proposed algorithm on the basis of complexity and 

scalability. 

4. Comparison of relative performances of this parallel algorithm with other existing 

algorithms for EDT computation. 

1.3 ORGANISATION OF THE DISSERTATION 
This report is divided into six chapters including this introductory chapter. The rest of 

this thesis is organized as follows. 

Chapter 2 gives the background about the EDT algorithms and LARPBS model. It also 

discusses about the related work, research gaps and motivation. 

Chapter 3 discusses the proposed algorithm for 3-D EDT computation and also its 

complexity and scalability analysis. 

Chapter 4 provides implementation details like hardware and software specification for 

the proposed algorithm on the multiprocessor cluster architecture. It also includes the 

performance evaluation and comparison metrics. 

Chapter 5 provides the implementation results and evaluates performance of the proposed 

algorithm. It also provides a comparative analysis with other algorithms. 

Chapter 6 concludes the dissertation and gives some suggestions for future work. 

-2- 
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CHAPTER 2 

BACKGROUND 

2.1 BASIC INFORMATION ABOUT EUCLIDEAN DISTANCE 
TRANSFORM 
A three dimensional binary image is represented by a 3-D binary array in which the black 

voxels are represented by 1 s and the white voxels are represented by Os. The distance 

transform of binary images was first introduced by Rosenfeld and Pfalz [3]. It has been 

very useful metric information for binary images in various image processing algorithms 

and application. EDT of a 3-D image is defined as the transform of original array in 

which every element has the value equals to the distance of the corresponding voxel in 

the original array from its nearest 1-voxel. 

Y-axis 

X-axis 

Z-axis 

Figure 2.1. Direction of X, Y and Z- axis 

Let us consider that an N x N x N binary image is represented by a 3-D matrix A where, 

A = {(i, j, k): a(i, j, k) = 0 or l} 

Also let B is a set of triples (x, y, z) containing the positions of all the I -voxels in A. 

The Euclidean Distance of any voxel a(i, j, k) is defined by [7]: 

d2;,~,k = 	min { (i-x) + (j-y)2 + (k-z)2 } 
(x, y, z) €B 

For all i, j, k = 0.........N-1. 

The nearest foreground voxel from any voxel a(i, j, k) is denoted by F(i, j, k) and the 

distance between these two voxels d,k is the EDT of the voxel a(i, j, k). It is clear hear 

that the Euclidean Distance of all voxels in set B, i.e. all 1-voxels in the given binary 

image array will be zero. 

-3- 



Chapter 2. LARPBS Multiprocessor Architecture 

Let's see an example of 2-D, 4 x 4 binary image array A and its EDT array F: 

1 0 1 1 	 0 1 0 0 

A = 0 0 0 1 F = 	1 1 1 0 

0 0 0 0 	 1 1 2 1 

1 	1 	0 	0 	 00 	1 	2 

Since every voxel in a 2-D or 3-D image array posseses its own Euclidean Distance, these 

values can be determined parallaly by partitioning the whole array into smaller subarrays. 

Hence, to exploit the parallelizability of 2-D or 3-D EDT computation, many parallel 

algorithms have been suggested on different multiprocessor architectures which varies in 

their computational time complexities and number of processors required. 

Before going into the algorithm, let us put some focus on the basic properties of EDT 

which will be used in the algorithm. 

Lemma 1. [8J,[9] Let A = (i, j, k) and B =(p, j, k) be two voxels on the same column and 

also same plane with p < i. Let F(i, j, k) = (x, y, z) and F(p, j, k) = (u, v, w), then u < x 

namely F(i , j, k) is below or on the same row as F(p, j, k). 

Lemma 1 is extended to more general cases in Lemma 2. 

Lemma 2. [81,19] Let (i j, j, k), (i2, j, k) .............. (ir, j, k) be voxels on the same column 

and same plane and it  < i2  < ... < ir. Suppose F (i,, j, k) = (xi, y f  z!) for t = 1, 2......r 

then x< < x2  ... < Xr. 

Note: If we denote the nearest 1-voxel of a(i, j ,k) in the i`" row as RF(i, j, k), then we 

have the following lemma. 
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Lemma 3.[1] If we denote the distance from voxel (i, j, k) to its nearest foreground pixel 

as d, and denote the distance between voxels (i, j, k) and (f, g, h) as D[(i, j, k), (f, g, h)] 

then we have d = min o< p  w_1 D[(i, j, k), RF(p, j, k)] namely, F(i, j, - k) can be selected 

from the set RF(p, j, k) where O< p 	1. 

Lemma 4. [1] Let (i j, j, k), (i2, j, k) .............. (ir, j, k) be voxels on the j`h  column, km 

plane, and i1 <j2  < . - . < ir. Let F(i,, j, k) = RF(gt, j, k) ,where t = 1,2........r. Then, 

g,. and 

2. For every i c (i1-1, i), F (i, j, k) can be found in RF (g..j, j, k), RF (g,1+1, j, k).......RF 

(g1, j, k). 

Note: Lemma. 1 to 4 will be used in 2-D EDT computation within a single 2-D plane. 

While Lemma 5 and 6 will be used in 3-D EDT computaion of complete 3-D array. 

Lemma 5. [6] Let Q( xQ, yQ, zi) and P(xp, yp, z2) be 2 voxels with same X and Y 

cordinates and zl <z2 i.e. Q is above P in the direction of Z-axis. Let FQ and Fp be the 

nearest 1 -voxels of Q and P with coordinates (xFQ, YFQ,  a) and ( XFP, YFP, b) respectively. 

Then b > a i.e. Fp is below FQ. 

Lemma 6. [6] Let Q( xQ, yQ, zj) and P(xp, yP, Z2)  be 2 voxels with same X and Y 

cordinates and z1< Z2 i.e. Q is above P in the direction of Z-axis. Let FQ(Tf) be the nearest 

I -voxel of voxel Q on plane r. Then, 

If FQ = FQ(Tr ), 0 < r < N-1, then Fp e FQ (TW,) where FQ (T) = Fp (TW,) for r < w < N-1. 

-5- 
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2.2 "LINEAR ARRAY WITH RECONFIGURABLE PIPELINED BUS 

SYSTEM" MULTIPROCESSOR ARCHITECTURE 
Processor array with reconfigurable pipelined buses is a recently proposed architecture 

for efficient computations of various parallel algorithms. These systems allow concurrent 

transmission of multiple messages across the bus in a pipelined fashion and the bus can 

be reconfigured dynamically under program control to support different algorithmic 

requirements [7]. Figure 2.2 illustrates the optical bus system in an n- processor system. 

CI) Pct. .o 	 DirLct Coi.pkr 

Figure 2.2. A linear optical bus system of n processors. 

In multiprocessor systems the communication diameter i.e. the maximum distance 

between processors grows with the size of the system and the interconnection network 

used for inter-processor communication [10]. Hence, increasing the size of these 

networks may not contribute in optimization of the time complexities of the parallel 

algorithms designed for them. Processor arrays with reconfigurable buses overcome this 

bottleneck by partitioning the bus into many segments, and all segments can be 

reconfigured as a single global bus [11].  The pipelined optical bus system uses optical 

waveguides instead of electrical signals to transfer messages among processors [7]. Fiber 

optics communications offer a combination of high bandwidth, low error probability, and 

gigabit transmission capacity. This design integrates the advantages of both optical 

transmission and electronic computation [7]. The detailed Bus organization of LARPBS 

system is illustrated in Figure 2.3. 
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Switches for conditional delays 

Switches for partition 

Select 

Reference 

Message 

..,..,.. 	J~ 	 apiiuccZ)fwupicrs 

Figure 2.3. LARPBS - Linear Array with a Reconfigurable Pipelined Bus [10]. 

An optical bus has two other important characteristics: unidirectional propagation and 

predictable propagation delay. These advantages of using waveguides enable 

synchronized concurrent accesses of an optical bus in a pipelined fashion [10]. Such 

systems support massive simultaneous communications and so they are appropriate for 

communication intensive operations such as broadcasting, one-to-one communication, 

multicasting, compression, split, and many other irregular communication patterns [10]. 

Many parallel algorithms have been proposed on LARPBS model to solve problems such 

as sorting, selecting, matrix computation, and computational geometry etc [11].  Even 

many parallel algorithms on PRAM can be transformed into LARBPS algorithms using 

the results for PRAM simulation on the LARPBS model [11]. 

In terms of architecture, Linear Array with Reconfigurable Pipelined Bus System 

(LARPBS) is an array of N processors P1, P2 ._........ PN connected by an optically pipelined 

bus. A bus cycle is the end-to-end propagation delay on the bus. The time complexity of 

any algorithm is determined in terms of time steps, when a single time step comprises of 

one bus cycle and one local computation step [10]. Following operations, on the 

LARPBS model will be used in the algorithm [11]: 

-7- 
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• Broadcasting: A source processor P; sends a message to all the other N-1 

processors P1, P2........, Pi_1, P;+l............, P. All the messages are sent 

simultaneously. 

• Multicasting: A source processor sends a message to a subset of the N processors. 

• One-to-One Communication: A subset of processors P11, Pi2 , .... Pin, are senders 

and another subset of processors Pkl, Pk2......... Pkm are the receivers. Processor 

P;j sends a message to processor Pkj for I < j < m. All these messages are sent 

simultaneously. 

• Multiple Multicasting: There are g disjoint groups of receiving processors, Gk = 

{Pjk,1, Pjk,2 ..........}, 1 < k < g. Also, there are g senders P11 , Pi2.......Pig. 

Processor Pik  broadcasts a message to all the processors in Gk, for 1 < k < g. 

• Integer Summation: Each processor P;  holds an integer value I; of bounded 

magnitude and precision. This operation computes the sum of these integer values 

and move the sum to the first processor. 

Lemma 2.1 [14] The minimum value of n data items can be computed on the LARPBS in 

0(1) time by using n processors if each item is of bounded magnitude and precision. 

Lemma 2.2 [15] One-to-one communication, broadcasting, multicasting, multiple 

multicasting, ordered compression, binary prefix sum and summation of integers of 

bounded magnitude and precision can be done in O(1) time on the LARPBS model. 
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2.3 LITERATURE SURVEY AND PREVIOUS WORK 
Parallel algorithms for EDT computation have been one of the focuses of interest for 

researchers in recent years. Several parallel algorithms have been given to compute EDT 

of 2-D and 3-D images so far. These algorithms tend to divide the overall computation 

into various parallel subtasks. Different algorithm uses different number of processor to 

execute these subtasks in parallel and then by gathering the results from all the 

processors, the actual EDT of given image array is computed. The implementations of 

such algorithms are based upon various multi-processor architectures like PRAM etc. Let 

us put some focus on the work done so far on various algorithms for EDT computation. 

Yamada [16] was the first to propose an algorithm to compute the exact EDT of an N x N 

binary image. The running time of his algorithm was 0 (N3). Later, Kolountzakis and 

Kutulakos [17] proposed an 0 (N2  log N) time algorithm. Chen and Cheung [8] presented 

an optimal 0 (N2) time sequential algorithm for this problem. Since it is desirable to 

compute the distance transform even faster for many real-time applications, several 

parallel algorithms have been developed for this problem on different parallel 

architectures. Fujiwara et al. [18] presented two work-optimal algorithms with running 

times 0 (log N) on an N2/ log N processor EREW PRAM and in 0 (log N/log. log N) 

time on an (N2  log log N)/ log N processor Common CRCW PRAM. 

With the increasing prevalence of 3-D voxel images, it is useful to consider the distance 

transform of a 3-D digital image array. Saito and Toriwaki [ 19] presented several EDT 

algorithms based on the scan approach for an n-dimensional image array. For the 3-D 

EDT problem, Toriwaki's EDT algorithm takes 0 (N4) time complexity. Lee et al. [6] 

have also presented the algorithm for 3-D EDT computation with 0 (log2N) time 

complexity on EREW PRAM model. The previous best algorithm for computing the 

EDT on the LARPBS is by Pan et al. [20]. Their algorithm runs either in 0(log N log log 

N) time on an N2-processor LARPBS or in 0(log log N) time on an N3-processor 

LARPBS. 

S 
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A summery of the parallel algorithms for 2-D and 3-D EDT computation given so far on 

different architectures is listed in Table 2.1. 

Table 2.1 

Summery of Parallel Algorithms for EDT computation 

Algorithm Time Complexity Number of 
Processors 

Computing 
Architecture 

Chen and Pan 0( log n log log n) n2/(log log n) LARPBS 

Datta et al. 0( log log n) 0(n2 ) LARPBS 

Pan et al. 0( log log n) n3  LARPBS 

Pan et al. 0( log n log log n) n LARPBS 

Datta et al. 0(1) O(n) REMESH 

Pan and Li 0(1) O(n) REMESH 

Datta et al. 0( (log log n)2 ) O(n +e  / (log log n)) PRAM CRCW 

Hayashi et al. 0( log log n) O(n / (log log n)) PRAM CRCW 

A. Fujiwara et al. 0( log n / log log n) n2  log log n / log n PRAM CRCW 

Pavel and Akl O(log n) n2  PRAM EREW 

Lee at al. O(log 	n) n3  PRAM EREW 

Chen and Chuang 0(n 2/p + n log n) p PRAM EREW 

Chen and Chuang 0( n log n) n/ log n PRAM EREW 

A. Fujiwara et al. 0( log n) n2/log n PRAM EREW 

Now let us move our focus towards the work done so far on Processor Array 

architectures with reconfigurable optical buses like LARPBS model. During the past 

decade, several optical bus parallel models have been proposed, together with a suite of 

basic and advanced algorithms. The Linear Array with a Reconfigurable Pipelined Bus 

System (LARPBS) is one of the recently proposed multiprocessor architectures based on 

optical buses. 

-10- 
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The Linear Array with Reconfigurable Pipelined Bus System (LARPBS) was first 

published in 1996 [21]. This is one of 10 distinct fiber-based optical bus models that 

appeared between 1990 and 1998 [21]. Of the ten models, LARPBS appears the most 

popular based upon not only the number of publications that strongly relate to this model 

but also the extent of algorithm design, model extension and derived models from 

LARPBS [21]. 

The related work on practical implementations of Optical Buses includes feasibility study 

of power budget and scalability of it with multiple processor systems [10]. The majority 

of later work on LARPBS mostly concern algorithm design and model refinements. 

The main motivation of the development and implementation of optical interconnections 

is to overcome the bottlenecks that electrical data buses produce due to their relatively 

low bandwidth [10]. Optical buses allow high bandwidth and pipelined message 

transmission facilities and these have been frequently used for design and performance 

analysis of fast parallel algorithms for many different problems in recent years. 
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2.4 RESEARCH GAPS AND MOTIVATION 
We have seen that a great deal of work has been already done on the algorithms for EDT 

computation. Most of the available algorithms for EDT computation have been designed 

and implemented for 2-D EDT computation on various multiprocessor platforms like 

EREW, CRCW PRAM etc. But only a few other algorithms discuss the parallel 

computation approach for 3-D EDT computation on these architectures. These algorithms 

vary in their time complexities, number of processors used and the scalability factor. 

Most of them are time optimal but not enough scalable for higher dimensions and 

different computational architecture. They have been designed for specific architecture 

and posses fixed time complexities. This lack of scalability is one of the research issues. 

Another major issue in the specified architectures is the Inter-processor Communication 

overhead. Several strategies have been suggested for reducing this overhead. Processor 

Arrays with Optical Buses is one of the recent architectures which tend to optimize the 

inter-processor communication. LARPBS model is based on this architecture. This model 

provides high speed data transmission through reconfigurable fiber optics buses. The 

algorithm given by Chen et al. [1] discusses a parallel approach for 2-D EDT 

computation on LARPBS model. This algorithm is scalable enough and resolves the 

communication overhead issues well, but there is no further discussion available for 3-D 

EDT computation either in this literature or in its related work. Also the algorithms which 

are designed for 3-D EDT computation, none of them are based upon LARPBS 

architecture. 

Above discussion shows that there is an empty space for an efficient and scalable 3-D 

EDT parallel algorithm for of 3-D binary images which would possibly overcome the 

above issues. This space has derived the motivation for extending the 2-D EDT parallel 

algorithm on LARPBS model for 3-D images as well. 

- 12 - 



Chapter 3: Proposed Algorithm 

CHAPTER 3 

PROPOSED ALGORITHM 

3.1 BRIEF DESCRIPTION OF THE ALGORITHM 
This parallel algortihm can be broadly devided into 2 phases: 

1. Phase I: Plane Phase 

In this phase Euclidean Distance of every voxel on its own plane is computed using 2-D 

EDT algorithm for LARPBS model [1]. Input to this phase is a 3-D binary array which 

is stored at the participating processors. This algorithm runs N times in parallel in this 

phase for N 2-D arrays of the whole 3-D array. This phase uses total n2*a(n)*b(n) 

number of processors where 1 < a(n) < n and I < b(n) < n . These processors are 

divided into n sets of n *a(n) *b(n) processors. Every set computes the 2-D EDT for each 

plane. This phase consists of 2 subphases which are: 

a. Row major Phase: Every 2-D plane array is scanned Row wise parallely by group 

of processors. Each Row is further divided into groups and for each voxel in each 

group, their Row-wise closest 1-voxel i.e. RF(i, j, k) is determined parallely by 

processor assigned to the group. 

b. Column major phase: Every 2-D plane array is scanned Column wise parallely by 

group of processors. Some row indices are selected to partition every column. Then 

using the results obtained in Row major phase with Lemma 3 and 4, the Euclidean 

Distance for each voxel, on the same plane is computed. 

2. Phase II: Vertical Phase 
After having calculated the Euclidean Distance on the same plane for each voxel, this 

phase integrates the results of Phase I for each plane with other plane's results to 

compute the actual EDT for each voxel in the complete 3-D array. This is done by 

assigning N2  vertical columns parallely in the 3-D array to N2  group of processors. 

Every group of processors is further subdivided into subgroups. These subgroups 

calculates the EDT of the voxels present in the veritcal column. 

-13- 
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3.2 THE PARALLEL ALGORITHM FOR 3-D EDT COMPUTATION 
Computaional Plateform: LARPBS system. 

Initial Input: A 3-D binary martix of order N x N x N consisting Is and Os. 

Final Output: A 3-D matrix containing Euclidean Distance Transform of corresponding 

Input matrix. 

Phase I: Plane Phase 

Row Major Phase 

For n sets of n *a(n) *b(n) processors having k = 0 to n-1 

Parbegin 

For n sets of a(n) *b(n) processors having i = 0 to n-1 
Parbegin 

1. Divide n voxels of each row into a(n) *b(n) groups. One processor contains group 
of q = n/(a(n) *b(n)) voxels. 

2. Find leftmost and rightmost 1-voxel in each row. Let them be if and rf 
respectively. 

3. All voxels left to if will have RF(i,j,k) = If and similerly all the voxels right to rf 
will have RF(i,j,k) = rf. 

4. Let t`h  group of voxels is contained by processor PE(t) and its leftmost 1-voxel is 

lf(t) and lb(t) is number of 0-voxel at the left of lf(t). Similerly its rightmost 1-

voxel is rf(t) and rb(t) is number of 0-voxels at the right of rf(t). 

lb(t) = lf(t) - t* q ±1; 

rb(t) = (t+1)*q- rf(t); 

Every Processor collects lf(t), lb(t), rf(t), rb(t) values and sends lf(t) and lb(t) to 

PE(t-1) and gets rf(t- t) and rb(t-1) from PE(t-1). Similerly sends rf(t) and rb(t) to 

PE(t+l) and gets lf(t+1) and lb(t+l) from PE(t+l). 

Note: All these messages can be comuunicated simultaneously without any 

significant delay in LARPBS model. 
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5. If lb(t) < rb(t-1) then 

For all voxels left to lf(t) at PE(t), set RF value to voxel [i, lf(t), k]. 

Else 

For initial [lb(t)-rb(t-1)]/2 voxels at PE(t), set RF value as [i,rb(t-1),k] and for rest 

voxels at the left of lf(t), set RW value as [i, lf(t),k]. Similerly set RF values for 

the voxels rigth to rf(t) at PE(t). 

6. For all other voxels between lf(t) and rf(t) at PE(t), set their RF value according to 

their closeness from adjecent left and right foreground voxels. 

Parend. 

Parend. 

Column Major Phase 

For n sets of n*a(n) *b(n) processors having k = 0 to n-1 

Parbegin 

For n sets of a(n) *b(n) processors having j = 0 to n-1 

Parbegin 

1. Divide a(n) *b(n) processors into b(n) gropus of a(n) proecessors per group. 

PE~(p,q) denotes qlh processor in p`h group in jth column for j = 0 to N-1, p= 0 

to b(n)- l ,q = 0 to a(n)-1. Every such processor contains n/a(n) number of 

processors. 

2. Send voxel (t*a(n)+I, j,k) and its RF value, to processor PE~(0,l) where t= 0 to 

n/a(n)- I and 1=0 to a(n)- 1. 

3. Broadcast n/a(n) RF values stored at PE~(0,1),1=0....a(n)-1 to 

PEj (r,l),r=0....b(n)-1. 

4. Divide voxels in the jth column into b(n) groups. Let g = n/b(n). Then select 

b(n) pivot voxels to compute their F and d values. First, send voxel (tg, j, k) to 

PE~(t,0), t= 0.. . b(n)-1. 

5. For t=0 ....... b(n)-1 

Broadcast voxels (tg, j, k) stored at PE~(t,0) to PEj(t,$), s = 0 ...... a(n)-1. 
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6. For t = 0 ...... b(n)-1 

For 1 = 0 ...... a(n)-1 

Compute the Distance from voxel (tg, j, k) to n/a(n) RF values stored in 

PE~(t, 1) and find the minimum which is called Local Minimum. 

7. Now divide a(n) processors PEE(t, s),s =0 to a(n), into smaller groups, to find 

the minimum from a(n) local minima obtained in previous step and store them 

PE~(t, 0). These values are the F and d values for voxels (tg, j, k). 

Let xg be the row index of F(tg, j, k) and nnumber of RF values corresponding 

to the voxels in t`" group be Lt = x(t+1)g — xg. 
8. Now repartition the jth group of a(n)*b(n) processors in to b(n) groups where 

tt" group will have [L`*a(n)*b(n)]/n processors. Here 

Lt*a(n)*b(n)/n < a(n) * b(n) since 	t_ob~°H L< < n. Further partition 
these [Lt*a(n)*b(n)]/n processors into b(n) subgroups of [Lt*a(n)]/n 
processors which will keep the voxels and their RF value of t h̀ group of 
voxels in j`" column. Here qt" processor in pth subgroup and tth group is 
denoted by PE~t(p, q). 

10. Distribute RF values to PE~t(0,1), 1= 0 to [Lt*a(n)]/n — 1. Each processor will 
have n/a(n) RF values. 

11. For 1= 0 to [L`*a(n)]/n — 1 

Broadcast n/a(n) RF values from PE~t(0,1) to PE~t(p,l) , p= 0 ... .b(n)-1. 
12. Let g= n/b(n) and h=n/[b(n)]2. Divide these g voxels into b(n) subgroups and 

get the b(n) pivot voxels to compute their F and d values. Send pivot voxel 

(tg + ph, j, k) to processor PE3t(p,0),p = 0 ..... b(n)-1. 

13. For p = 0 .....b(n)-1 

Broadcast the pivot pixel (tg + ph, j, k) stored at PEEt(p,0) to PE~t(p,$), s = 
0...a(n)-1. 

14. For p = 0 .....b(n) - 1 

For s=0  ..... a(n) - 1 

Compute the distance between pivot voxels (tg + ph, j, k) and n/a(n) RF 

values which are stored at PE~t(p,$) and find out the minimum as local 

minimum. 
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15. Divide the processors PE~t(p,$), s = 0..... [Lt*a(n)]/n — 1 into smaller subgroups 

to get the minimum form [Lt*a(n)]/n local minima.These values are the F and 

d value of pivot voxels (tg+ph, j, k), t, p = 0....b(n)-1. 

16. Now voxels in jth column are further partitioned into [b(n)]2 subgroups by 

these pivot voxels. 

Repeat steps 8 to 15 recursively until all the voxels gets the F and d value at the 

corresponding processor assigned to them. 

Parend 

Parend 

This completes the EDT algorithm for 2-D planes. After this phase, ED on the same 

plane for every voxel has been calculated. Figure 3 illustrates the operation of Phase I. 

Plane To 

Plane Tk 

Plane TN_t 

Figure 3.1. Illustration of Completion of Phase I. 

Phase II: Vertical Phase 

This phase integrates these results obtained in phase I for estimating the actual 3-D EDT 

for each voxel. In this phase, the processors are reconfigured into N2 groups of a(n) *b(n) 

processors. Each group processes one vertical column of N voxels parallely. 

Let g = n/(a(n)*b(n)) denotes number of voxels per processor and PE1(p) denotes the p h̀ 

processor in (i,j)`" group. Let PFk( i, j, k) denotes the ED of voxel (i, j, k) on the same 

plane Tk computed for every voxel in Phase I. 

In this phase, following facts are considered to reduce the search region for computation 

of F(i, j, k): 
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1 On the basis of Lemma 5 and 6, it can be deduced that, for any 2 voxels Q and P 

with same X and Y—coordinates and Q above P in Z-axis direction, if FQ is known 

first then the possible region for Fp would be starting from FQ to the end of image 

array in Z-axis direction. It is impossible for Fp to be located in the region 

between the starting of image and FQ. So it is unnecessary to search for nearest 1-

voxel in this region. Hence this is avoided in this phase. 

2 Secondly, since the distance to nearest 1-voxel on the same plane i.e. PFk(i, j, k) is 
already known, so for computing F(i, j, k) of each voxel, those planes can also be 

ignored which have Z-direction distance from the current plane to be more than 

PFk(i, j, k). 
Let RGk denotes the region in which F(i, j, k) is expected to lie. This region is 
restricted by the two factors mentioned above. 

Steps: 

1. Assign N, PFk(i, j, k), 0 < k < N-1 values to group of a(n) *b(n) processors. Each 
processor will have g = n/(a(n)*b(n)) PFk(i, j, k) values. 

2. Fori=0toN-1 andj=0toN-1 

Parbegin 

1. Start with the middle voxel of the column having k = N/2. 

2. Compute the expected region RGk for plane Tk using the first fact mentioned 
above. 

3. Ignore those planes Th from the expected region RGk which satisfy the 

condition: I t — k I > PFk( i, j, k) 

4. For all h c RGk 

a. Broadcast PFh(i, j, h) value from processor PE1(h/g) to processor PE;~(k/g). 

b. Set F(i, j, k) = { (x, y, h) I min{ (k-h)2 + PFh(i, j, h)Z } } 
heRGk 

d2;~j,k = (x -i)2+ (Y -j )2 +(h-k)2 

5. Divide the column into 2 parts: 

a. To or the last plane before Tk for which EDT has been computed upto Tk_ i _ 
b. Tk to either TN _ I or first plane after Tk for which EDT has been computed. 

Recursively repeat the whole process in parallel for these 2 subparts of the 

original column. 

Parend. 
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3.3 COMPLEXITY AND SCALABILITY ANALYSIS 
The estimation of time complexity and number of processor used in the above algorithm 

is as follows: 

■ Phase I: Plane Phase 

In this phase first, each plane is scanned Row mojor. LARPBS premitive operations like 

multicasting, extraction etc are performed in this phase which takes 0(1) time. Then 

every processors computes RF values for n/(a(n)*b(n)) voxels so this takes 

O(n/(a(n)*b(n))) time if n > a(n)*b(n) otherwise it takes O(1) time. In Column major 

scan of each plane, every step takes O(n/a(n)) time while there are [ log n/ log b(n)] steps 

in the recusion. So the complexity of column major scan is O((n log n)/(a(n)* log b(n))). 

So the complexity of Phase I will be O(n/( a(n)*b(n))) + O((n log n)/ (a(n)* log b(n)) ). 

Assuming n> a(n)*b(n), the overall complexity of this phase will also be 

O(n log n/(a(n) *log b(n)) ). 

■ Phase II: Vertical Phase 

In this phase N2  groups of a(N)*b(N) processors process one vertical column of N voxels 

in parallel. At each step we devide the vertical column into 2 regions and recursively 

compute the EDT of the regions. In the worst case the region to be considered could have 

N voxels, and the whole column is scanned in log N passes. So the total complexity of 

computing EDT of one vertical column is O(N log N) provided every processor would 

compute EDT for 1 voxel. But since here every processor computes EDT for 

N/(a(N)*b(N)) voxels, so the complexity is increased to O(N21ag N/(a(n) * b(n))). 

Considering both phases, the overall complexity would be: 

0( N log N/(a(N)*log b(N))) + O( N2  log N /(a(n) * b(n))) 

Or effectively it will be O(N2 log N /(a(n) * b(n))). 
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Estimation of total number of processors used: 
■ Phase I: 

• Row Major Subphase: N groups of a(N) * b(N) processor for n rows in each 
plane, and total N planes. 

• Column Major Subphase: N groups of a(N) * b(N) processor for N columns in 
each plane, and total N planes. 

Total = N2  * a(N) * b(N) processors in both subphases. 

■ Phase II: 
N2  groups of a(N) * b(N) processor for N2  vertical columns in the whole 3-D array. 
Total = N2  * a(N) * b(N) processors. 

So altogether this algorithm needs N2  * a(N) * b(N) number of processors to complete. 

Scalability of the Algorithm : In this algorithm, the time complexity and number of 

processors required have not been made strictly fixed but rather two parameters a(N) and 

b(N) have been used to alter these attributes of the algorithm. The values of the two 

parameters can be selected between 1 to N. By choosing different values for a(N) and 

b(N), the time complexity and number of processors needed, can be varied, which makes 

the algorithm more flexible and scalable. For example let us take a(N) = N, and b(N) = N, 

then the overall time complexity of the algorithm will be O( N2log N/(N*N)) = O( log N) 
and the total number of processor required will be NZ  * N * N = N4. Similerly the 
algorithm can be scaled to different time complexities and different number of processors 
available in the multiprocessor system. 
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CHAPTER 4 

IMPLEMENTATION 

4.1 SYSTEM SPECIFICATION 
The scalable parallel algorithm for 3-D EDT computation discussed in the last chapter 

has been designed for LARPBS multiprocessor model. But the research work done so far 

on LARPBS model, concludes that the practical implementation and the feasibility 

analysis of this model are still undergoing processes. So the algorithms designed for this 

architecture have been usually implemented on different multiprocessor systems. To 

emulate LARPBS system on other architectures, the inter-processor communication 

overheads are just considered to be in the scale of LARPBS architecture and the parallel 

processing of the algorithms can be performed on any other multiprocessor systems. For 

the implementation of the 3-D EDT algorithm designed in this work, the same strategy 

has been followed. The implementation of the parallel algorithm has been done on the 

multiprocessor cluster available in the Institute Computer Center. This had been one of 

the major challenges in this dissertation work to emulate the LARPBS model on the 

available multiprocessor cluster. This cluster has the following system configuration 

which has been used as the implementation platform: 

■ Hardware Specification: 

• HP DL 140G2 6-CPU Cluster, which are mapped onto 45 Processing Elements. 

• Xeon i386 processor. 

■ Software Specifications: 

• LAM/MPI. 

• Red Hat Enterprise Linux ES release 3 (Taroon) — Kernel 2.4.21-4.ELsmp. 

Here it is important to note that, since the inter processor communication operations like 

broadcasting, multicasting etc with negligible time requirement which are specific to 

LARPBS model, are not provided by the cluster platform, so these operations have been 

implemented through the primitives provided by MPI and LAM on the HP cluster and the 

time overhead have been taken in the order of LARPBS model. Detailed discussion about 

MPI primitives is given in next section. 
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4.2 MESSAGE PASSING INTERFACE (MPI) 
Message passing is a paradigm used widely on certain classes of parallel machines, 

especially those with distributed memory. MPI enables developers to efficiently program 

"tightly coupled" algorithms which require nodes to communicate during the course of a 

computation [23]. MPI is a library of subprograms that can be called by a C program. 
The foundation of the library is a small group of functions that can be used to achieve 

parallelism by message passing [24]. A message passing function is simply a function 
that explicitly transmits data from one process to another. Message passing is a powerful 

and very general method of expressing parallelism. 

Message passing can be used to create extremely efficient parallel programs, and it is 
currently the most widely used method of programming parallel computers. The main 

advantages of establishing a message-passing standard are portability and ease-of-use. In 
a distributed memory communication environment in which the higher level routines and 

abstractions are built upon lower level message passing routines the benefits of 
standardization are particularly apparent [24]. This standard is intended to allow users to 

write portable message passing programs. The standard includes [23]: 

• Point-to-point communication 

• Collective operations 

• Process groups 

• Communication contexts 

• Process topologies 

• Bindings for Fortran and C 

• Environmental Management and inquiry 

• Profiling interface 

MPI provides many features intended to improve performance on scalable parallel 

computers with specialized inter-processor communication hardware. Thus, it is expected 
that native, high-performance implementations of MPI will be provided on such 

machines. At the same time, implementations of MPI on top of standard UNIX inter-
processor communication protocols will provide portability to workstation clusters and 

heterogeneous networks of workstations. 
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Each MPI program must have MPI_InitO and MPI_FinalizeO functions. The first and the 

last MPI statements in an MPI program are MPI_Init() and MPI_Finalize() respectively 

[22]. All processes must initialize MPI by calling MPI_Init() function and finalize MPI 

by calling MPI Finalize() function. The calling syntax for these functions are 

err = MPI_Init(&argc, &argv) 

err = MPI_FinalizeO 

where err is the error number. 

In basic message passing the processors coordinate their activities by explicitly sending 

and receiving messages. For example, at its most basic, the Message Passing Interface 

(MPI) provides functions for sending a message and receiving a message [23]. The 

process of sending and receiving is illustrated in Figure 4.1 [25] and the syntaxes are 
given below: 

int MPI_Send(void* buffer, /* in */ 

int count, /* in */ 

MPI_Datatype datatype, /* in */ 

int destination, /* in */ 

int tag, /* in */ 

MPI Comm communicator /* in */ 

int MPI Recv(void* buffer, /* out */ 

int count, /* in */ 

MPI_Datatype datatype, /* in */ 

int destination, /* in */ 

int tag, /* in */ 

MPI Comm communicator /* in */ 

MPI Status* status /* out */ 

A Broadcast is a collective communication in which a single process sends the same data 

to every process to the communicator. Each system that runs MPI has a broadcast 

function MPI_Bcast. The syntax of MPI_Bcast is given below: 
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int MPI Beast ( void* 	 message 	/*in / out */, 

int 	 count 	/*in */, 

MPI Datatype 	datatype 	/*in */, 

int 	 root 	/* in */, 

MPI Comm 	comet. 	/* in */ 

This simply sends a copy of data in message on the process with the rank root to each 
process on the communicator comm. It is called by all the process in the communicator 
with the same arguments for root and comm. Hence a broadcast message can not be 
received by function MPI Recv. 

The current version of MPI assumes that processes are statically allocated, i.e., the 

number of processes is set at the beginning of program execution, and no additional 

processes are created during execution. Each process is assigned a unique integer rank in 
the range 0, 1, .. . , p — 1, where p is the number of processes. These processes are 
assigned to the participating processors by the master processor which also integrates the 

results from all the computing processors and is responsible for final results. 

Process 0 	 Process 1 	 Process 2 

M

P! Send

mpute 1 

MPI Recv 

Compute 

M 
MPI Recv 

Compute 1 

MPI Sen 

. 
COfl1F to 

Figure 4.1: Illustration of MPI Send and MPI Recv functions by multiple Processors. 
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4.3 IMLEMENTATION DETAILS 
As mentioned in earlier chapters, we have extended Chen 's approach [I] for the 2D-EDT 

problem for an N xN x N, 3-D image array. Chen et al. [1] have proposed the algorithm 

and architecture for the 2D-EDT problem. For an N x N 2D image array, Chen 's 

algorithm consists of two main passes, the row scan, and the column scan. First, the rows 

are scanned in parallel by group of processors then every column is scanned and then, the 

results are merged. After the column scan, the 2-D EDT results are obtained. A great 

advantage of Chen 's algorithm is the ability to scale the 2-D EDT computation with the 

variations in the number of processors available and also in the time complexity of the 

overall process. The benefit of this property is that their algorithm is easily parallelized 

and implemented on different architectures with different time requirement for EDT 

computation. 

The extended algorithm for 3-D binary image arrays continues even after the row and 

column scan of each 2-D plane in the whole 3-D array. After having calculated the 

individual EDTs at each 2-D plane, the results for each voxel, are integrated to find out 

the actual 3-D EDT for each voxel. The 3-D EDT algorithm also possesses the properties 

of the original 2-D algorithm. 

The algorithm discussed in the last chapter has been implemented in 2 versions: 

sequential and parallel. The performance of both versions of the 3-D EDT algorithm has 

been compared and analyzed with the results of parallel algorithms proposed by Lee et al. 

[6] (denoted by 3DEDT_LEE), Yamada [16] (denoted as 3DEDT YD) and Saito and 

Toriwaki [19] (denoted 3DEDT_SCAN). Detail discussion about both the versions is 

given in the subsequent subsections. 
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4.3.1 Sequential Implementation 
The sequential version has been implemented on a simple Pentium-IV machine using 

C++ language. In this version, the EDT of an N x N x N 3-D binary image array has been 

calculated by simply following the approach discussed in our algorithm but in sequential 

manner. In this version, it has been considered that all the parallel processing mentioned 

in the original algorithm is performed sequentially on a uni-processor machine. 

The input has been taken from a file which stores the 3-D binary array containing 1 s and 

Os. This file is read into a 3-D matrix in the program. Then the given 3-D binary voxel 

array of size N x N x N is divided into N planes of N x N binary voxels. For each 2-D 

plane separately, EDT values are calculated in the function plane-Phase (). To calculate 

the values of 2-D EDT for each voxel at the same plane, the same strategy is followed 

which is mentioned in the parallel algorithm i.e. scanning 2-D plane row wise then 

column wise and integrating both results. But this process is performed sequentially one 

by one for each plane. 

After having calculated the 2-D EDT values for each plane individually, function 

vertical_phase() is called separately for each vertical column of 3-D binary array which 

compares the 2-D EDT values for each voxel on their own planes, with the distances of 

other 1-voxels on different planes, to get the actual 3-D EDT values for each voxel. This 

function is called recursively for each vertical column in such fashion that at each run it 

divides the whole vertical column into parts and calculates the actual EDT of the dividing 

voxel. Finally, the computation of 3-D EDT for each voxel gets over by function 

vertical_phase () for each vertical column and the output values are stored in the 3-D 

array which contains the Euclidean Distances for each voxel. 

This sequential version of 3-D EDT algorithm has been implemented just for the sake of 

the performance comparison with the sequential versions of some other 3-D EDT 

algorithms. The performances have been compared on the basis of the increasing number 

of 1-voxels in the input array and different values of N. The performance evaluation and 

comparison results will be discussed in the next chapter. 	 0  
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4.3.2 Parallel Implementation 

The parallel algorithm has been implemented on the HP cluster using MPI, for a 3-D 

binary voxel array of size 128 x 128 x 128. The inter processor communication involved 

in the algorithm is specific to LARPBS model but they have been implemented using the 

available MPI primitives for the cluster architecture which has been used as the platform 

to emulate the LARPBS model. We have compared the performance of this algorithm 

with the performances of other parallel 3-D EDT algorithms. The comparison is based 

upon time complexities, computational time and scalability etc. Performance of the 

algorithm has been analyzed with different values of the parameters a(N) and b(N), 

thereby altering the number of processors used. Performance comparison results will be 

discussed in the next chapter. 

The implementation of parallel algorithm is decomposed into 2 phases. Initially the input 

file containing the input 3-D binary array is available at shared memory of the cluster. 

The computation is initiated by the master processor by reading the input array and 

distributing it to the participating processors. The processing of both phases has been 

explained in subsequent subsections. 

a. Implementation of Phase I: 
This phase can also be called Plane Phase, as in this phase we compute Euclidean 

Distance for every voxel on its own plane by following the approach of 2D-EDT 

algorithm on LARPBS model [1]. Initially we have taken total 32 processors for the 

complete computation but the code has also been run with different number of 

processors. These processors are subdivided into different sets of processors. Every set 

computes the 2-D EDT for each plane. The master processor distributes the input 3-D. 

binary array to the participating processors according to allocation strategy mentioned 

in the algorithm. Now, this phase is run for each of N 2-D arrays from the whole 3-D 

array. Each plane is scanned through 2 subphases which are explained below: 
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I) Row major scan: 

The processors assigned for one plane are further subdivided into N sets to process 
each row of the 2-D array. Every processor from these subgroup gets some voxels at 
each row. The value of leftmost 1-voxel denoted as if and right most 1-voxel denoted 
as rf are calculated at each row. Now voxels at each row are scanned by the assigned 
processer. The processors start determining the RF values for each voxel i.e. the 

distance of nearest 1-voxel on the same row, according to the procedure explained in 
the algorithm. Once the RF values for each voxel from all the rows are known, this 
scan is over. The processors assigned for each row contains the RF values of the 
voxels assigned to them. Now each 2-D array is scanned columnwise. 
Note: All these messages between the processors are supposed to be transfered 
simultaneously without any significant delay in LARPBS model but the cluster 

architecture involves some delay in this process. This delay has not been taken into 
consideration in the performance evaluation in order to maintain the standards of 
LARPBS model. 

II) Column major scan: 

Once the row major scan is over, the processors are redistributed through the columns 
of each 2-D array into subgroups. These subgroups of processors are assinged the 
group of voxels from each column so there are N such subgroups for N columns. The 

group of voxels in each column are assigned to these processors by following the way 

explained in the algorithm. Row indices are selected in order to partition each column. 
After this assignment of voxels to group of processors, the processors transfer the RF 
values of the old voxel sets to other groups according to the procedure explained in the 
algorithm and compare those values to the newly obtained values in each column. In 
this process the set of proccessors are reconfigured for a couple of times. At the end of 

this process the processors choose the minimum value among all the distances of I -
voxels from the voxel under consideration and sets as the EDT for that voxel at the 
same plane. After this scan, the processing of phase I completes and the processors 

contain the values of 2-D EDT for the assigned voxels on their own plane. In the next 
phase i.e. Vertical phase these results are integrated with the results obtained by 
scanning the vertical columns of the 3-D array to obtain the actual 3-D EDT transform. 
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b. Implementation of Phase II: 
This phase can also be called Vertical Phase since the 3-D array is scanned vertically i.e. 

each vertical column is scanned by the group of processors. So there are N2  such groups 

of processors formed for N2  columns. Now on the basis of the properties explained in the 

algorithm, the search region is reduced for each voxel. Once the search region is decided 

for each voxel, the processors are reassigned with the 2-D EDT values determined in 

phase I for different number of voxels. 

Now each vertical column is scanned and partitioned according to the algorithm and the 

processors associated with each voxel determine the distances of other 1-voxels which 

are not on the same plane. Then comparison between these distances is performed to get 

the actual Euclidean Distance for a particular voxel. The corresponding processor sends 

this result to the master processor which stores these values into the output array. The 

partition process of each vertical column is performed recursively and at each step we 

calculate the EDT values of different number of voxels. This whole process runs for all 

the N2  columns parallely by different group of processors. They all send their results to 

the master processor as and when the compute the EDT for their assigned voxels. Once 

the result is collected from all the participating processors, the master processor displays 

the output matrix which is the Euclidean Distance Transfer of the original input matrix. 

4.4 PERFORMANCE EVALUATION METRICS 
The algorithm for 3-D EDT computation has been implemented in 2 versions sequential 

and Parallel. The performances of both versions have been evaluated on basis of different 

factors. In case of sequential version, the major evaluation metrics are different numbers 

of 1-voxels in the 3-D input matrix and different sizes of the 3-D input matrix. Its 

performance has been compared with the sequential versions of other EDT algorithm on 

different platforms on these 2 factors. As this version is implemented and run on a single 

machine, so there is no factor of inter processor communication overhead involved. 

Complete execution is performed sequentially and the total execution time is compared 

with the same of the implementations of other algorithms. 
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The parallel version of the algorithm has been implemented on HP cluster architecture 

which emulates the performance of LARPBS model. Inter processor communication 

overhead is one of the major factors which affects the performance of the algorithm. Here 

we have supposed this overhead to be in the order of the LARPBS model in order to 

maintain the computation time of the algorithm. Apart from this factor some other factors 
which affect the performance are listed below: 
1. Different sizes of 3-D input matrix i.e. different values of N. 
2. Different values of parameter a(N) and b(N) taken between 1 and N. 
3. Variable Number of processors used. 
4. Variable Time Complexities. 

In the next chapter we will discuss the performance evaluation of both versions on the 

basis of these metrics along with the comparative analysis of the performances of our 
algorithm with other 3-D EDT algorithms. 
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CHAPTER 5 

RESULTS AND DISCUSSION 

In this chapter, we will discuss and analyze the performance results of both version of 

implementation of the 3-D EDT algorithm designed in this dissertation work compare. 

5.2 PERFORMANCE EVALUATION AND COMPARISION 

5.1.1 Performance of Sequential Version 
The sequential version has been implemented on a single Pentium-IV machine using C++ 

language. In this version, the EDT of an N x N x N 3-D binary image array has been 

calculated by following the approach discussed in our algorithm but in sequential 

manner. The execution time of this version is compared with that of 3 sequential versions 

of other 3-D EDT algorithms with the change in various parameters. 

The performance of the sequential versions of our 3-D EDT algorithm has been 

compared and analyzed with the performances of the algorithms proposed by Lee et al. 

[6] (denoted by 3DEDT_LEE), Yamada [16] (denoted as 3DEDT_YD) and Saito and 
Toriwaki [19] (denoted as 3DEDT SCAN). 

Fig. 5.1 shows the performance comparisons for the 3D-EDT sequential algorithms with 

the increasing number of 1-voxels Vn X Vn in the input binary image matrix of size 

128 x 128 x 128 where the 1-voxel distribution is uniform. As we can see from Fig. 5.1, 

program 3DEDT_YD is very time-consuming when the number of I -voxels is sparse 

because the propagation distance is long and requires more iteration. By increasing the 

number of 1 -voxels, the running time of program 3DEDT_YD converges to a stable time. 

The running time of program 3DEDT_YD is very sensitive to the number and the 

distribution of 1-voxels. The program 3DEDT_SCAN runs much faster and more stably 

than program 3DEDT_YD. interestingly however, 3DEDT LEE shows an even stable 

and better performance than the other two. 
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Our implementation shows comparatively better performance than 3DEDT YD and 
3DEDT SCAN. For less number of 1- voxels it gives a little worse performance than 
3DEDT LEE but for higher number of 1-voxels it improves and shows a better 
performance. 

Performance Comparison between sequential versions of 3-D EDT 
algorithms for 128 x 128 x 128 image array 
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Figure 5.1 Performance Comparison between sequential versions of 3-D EDT algorithms 
with increasing number of 1-voxels. 

Fig; 5.2 shows the performance comparisons of the above mentioned 3D-EDT sequential 
algorithms with the increasing size of the voxel image array. Without being affected with 
the size N, our sequential implementation runs with almost same performance as 

3DEDT_LEE algorithms performance. Here also we can see that 3DEDT YD still 
exhibits the poorest performance, while 3DEDT_SCAN shows an average performance 
among the all the other algorithms. 
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Performance Comparison between 3DEDT algorithms for N x N x N image 
array 
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Figure 5.2 Performance Comparison between sequential versions of 3-D EDT algorithms 
with increasing size of input array. 

Run Time Ratio (RTT) can be defined as the ratio of the time taken by any other 
algorithm to that of our algorithm. Table 5.1 shows the run time ratio of our sequential 
implementation with other 3 sequential algorithms for various values of N. 

Table 5.1 RTT comparison between the sequential algorithms for different values of N. 
EDT 
Algorithm(X) 

Time 
Complexity 

RTT = X / (3DEDT_OUR ) 
N=32 N=64 N=96 N=128 

3DEDT_LEE O(N) 0.6 1.66 1.57 0.78 
3DEDT_SCAN O(N) 0.6 4.91 4.27 1.89 
3DEDT_YD O(N) 9.3 17.68 10.71 2.94 
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5.1.2 Performance of Parallel Version 
Here, the parallel 3D-EDT algorithm has been implemented the HP cluster architecture 

using MPI (Message Passing Interface) to emulate the LARPBS model. For a 128 x 128 
X 128 3-D voxel image array. Here it should be noted that the delay involved in the inter 

processor communication in LARPBS model is negligible as we have seen in chapter 2. 
While the HP cluster system is non-shared memory architecture and the data exchange 

time exceeds the processor computation time. So in order to maintain the overhead as per 

the LARPBS model standards, we have ignored the actual delay introduced because of 
inter processor communication and considered only the actual computational time. 

For each sub image array, the computation loading is different for each processor and it is 

dependent on the particular 1-voxel pattern that is loaded. The running time on the cluster 
is bounded by the worst computation time for each sub image array. So, for each phase, 
we sum up the worst computation time of each processor. 

Parallel Algorithm's Performance for image array of size 128 
x 128 x 128 

40 

35 
37.2 

30 

25 

20 y 
F 15 

10 

5 

0 
1 	 S 	16 	24 	 32 	40 

Number of Processors 

—•3DEDT LEE —f-3DEDT OUR 

Figure 5.3 Performance Comparison of Parallel 3-D EDT algorithms with increasing 

number of processors used. 
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Fig. 5.3 shows the parallel algorithm's running time with different number of processors 

used, and it is compared with Lee et al. [6] (denoted by 3DEDT_LEE), to obtain the 

speed up curve of the proposed parallel algorithm. From Fig. 5.3, we see that both 
performances are quite close but with higher number of processors our algorithm does a 

little better than 3DEDT_LEE. On the other hand with less number of processors 

3DEDT_LEE performs well than our algorithms. 

Finally, we have analyzed the performance of the parallel MPI program running on HP 

cluster on the basis of the data exchange rate, actual computational time and the total 
running time of the program. This analysis has been shown in Figure 5.4. From this 

figure it is clear that the contribution of data exchange time in total running time is less 
significant than the actual computational time since our algorithm exhibit quite a small 

amount of data exchange which makes the inter processor communication overhead 
negligible and improves the overall performance. 

Parallel Algorithm's Peroformance on HP Cluster for 128 x 
128 x 128 3-D image array 
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Figure 5.3 Performance of 3-D EDT parallel MPI program running on HP Cluster. 
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5.2 COMPLEXITY AND SCALABILITY COMPARISON 
We have discussed in the chapter 3 that the complexity of our algorithm is O( N2  log N 

/(a(n) * b(n))) and the total number of processor used in both phases are N2*a(n) *b(n). 

This is clear that by selecting different values for parameters a(N) and b(N), we can make 

our algorithm more flexible and also scalable to different architectures on the basis of the 

number of processors available for computation. Also we can achieve, different time 

complexities by varying the values of these parameters. Table 5..2 gives the summery 

about the various time complexities and number of processors required by the selection 

of various values for a(N) and b(N). The list does not end here but can be extended for 

some more values of these parameteres. 

Table 5.2 Different algorithms derivable from this framework 

a(N) b(N) Time Complexity Number of Processors 

N N O(log N) N4  

N Constant r O(N log N) rN3  

N/ log N log N O(N log N) N3  

N/ log N Constant r O(N log N) rN3  / log N 

1 log N O(N) N2  log N 

1 Constant r 0(N2  log N) rN2  

N N°' 5  O(N 	log N) N 

log N Constant r O(N) N2  log N 

The performance of our algorithm has been compared with 3 other 3DEDT algorithms. If 

we talk about the complexities of these algorithms, Yamada's algorithm takes 0 (N3) 

time in the worst case. It requires N iterations to converge in the worst case. During each 

iteration, it takes 0 (N2). So the sequential time to scan the whole image array, in the 

worst case would be 0 (N3). Saito and Toriwaki [19] presented several EDT algorithms 

based on the scan approach for an n-dimensional image array. For the 3D-EDT problem, 

Saito and Toriwaki's EDT algorithm also takes 0 (N4) time complexity. Our sequential 

implementation on the other hand takes 0 (N3) time to scan the whole 3-D array. 
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5.3 DISSCUSSION 
We have implemented the proposed algorithm sequentially and compared the 

performance of our implementation with those proposed by Lee [6], Yamada [16] and 

Toriwaki [19]. Based on the comparison, the algorithm presented in this paper exhibits a 

better performance to the other three algorithms. We also implemented the parallel 

algorithm which runs on an HP DL cluster and compared it with Lee's parallel 

implementation. Its performance demonstrates near to that of Lee's. The latter, however, 

takes too much data exchange time. 

The performance improvements of our implementation of the 3D EDT algorithm can be 

achieved through proper selection of a(N) and b(N). To get the higher speed, the time 

complexity 0 (N2  log N / (a (n) * b (n))) must be minimized, i.e., a (n) * b (n) should 

reach its minimum. Therefore, we must choose both parameters as small as possible. To 

get the highest efficiency, the time-processor cost 0 (N4  log N) must be minimized, but 

since it is independent of a (N) and b (N) so variation in these parameters will not affect 

the efficiency of the algorithm. 
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CHAPTER 6 

CONCLUSIONS AND FUTURE WORK 

6.1 CONCLUSIONS 
A scalable parallel algorithm for 3-D EDT computation on LARPBS model has been 

designed and implemented in this dissertation work. The algorithm is an extension to 2-D 

EDT algorithm on the same model. The algorithm computes the 3-D EDT with time 

complexity O( N2  log N /(a(n) * b(n))) and N2*a(n) *b(n) number of processors. 

LARPBS model has been chosen for this algorithm since it gives the benefit of low 

communication time between processors and high speed data transfer. The operations like 

multicasting, broadcasting etc which involve heavy interprocessor communication, can 

be performed in constant time on this model. This algorithm takes the advantage of these 

features and results in low communication overhead. 

After the introductory chapter 1, in chapter 2 we discussed about the basic information 

and some properties of Euclidean Transform. Some useful lemmas were given which are 

helpful in understanding the wrokflow and Igic of the algorithm. We also dicussed about 

the architechture of LARPBS model, its properties, workflow, interprocessor 

communication mechanism etc. Rest of the chapter dicussed about the work done so far 

in these areas and the research gaps which gave the motivation for this work. 

We derived the parallel algorithmm for 3-D EDT computation as an extension to the 2-D 

EDT algorithm for the same LARPBS model in chapter 3. Along with the algorithm, its 

complexity and scalability analysis has also been given in this chapter. 

The detailed discussion about the implementations platform, implementation tool i.e. 

LAM/MPI was done in Chapter 4. The sequential and parallel implementation of the 3-D 

EDT algorithm were discussed in detail. This chapter also gives a breif information about 

the metrics used for the performance analysis and comaparison. 
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Finally Chapter 5 gives the detailed performance analysis and comaprative study between 

the other 3-D EDT algorithms for other platform with our algorithm and both 

implentations of it. The basis of the performance and comaparison are the metrics given 

in the last chapter. 

6.2 SUGGESSION FOR FUTURE WORK 
One of the major challenge faced during this dessertation work is the emulatioon of 

LARPBS model on the available HP cluster architecture. So for future work in this area 

involves the developement of some tools which could effciently emulate the performance 

of LARPBS model through other multiprocessor models sothat the algorithms 

specifically designed for LARPBS can be implemented, evaluated and analyzed, on 

other architectures as well. 

A second intiatve which could be taken is incorporation of some efficient task scheduling 

or task-to-processors mapping approaches for various multiprocessor architectures with 

the derived algorithm would further optimize the perfomance of the algorithm by 

reducing communication overheads. This is seen that during the design of the parallel 

algorithms, the hardware architectures are ususally not considered. When the algorithm 

is designed for any specific model than by considering the hardware architecture of that 

model we can opt some efficient task scheduing strategy for the given multiprocessor 

platform, which may result into further optimization of the algorithm. In future these 

issues could be taken into research efforts. 
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APPENDIX 

SOURCE CODE LISTING 

Sequential Implementation of 3D EDT Algorithm in C++. 

----------------------------------------------Edt.h 

/* Euclidean distance transform */ 

#ifndef EDT _H 

#define EDT_H 

#include <algorithm> 

#include "image.h" 

#define INF 1E20 

/* edt of 1 d function using squared distance */ 

static float *dt(float *f, int n) 

{ 

float *d = new float[n]; 

int *v = new int[n]; 

float *z = new float[n+l ]; 

int k = 0; 

v[0] = 0; 

z[O] = -INF; 

z[1] = +INF; 

for (int q = 1; q <= n-1; q++) 

float s = ((f[q]+square(q))-(f[v[k]]+square(v[k])))/(2*q-2*v[k]); 

while (s <= z[k]) { 

k--; 

s = ((fjq]+square(q))-(f[v[k]]+square(v[k])))/(2*q-2*v[k]); 

1 



k++; 

v[k] = q; 
z[k] = s; 
z[k+l] = +INF; 

} 

k=0; 
for (int q = 0; q <= n-1; q++) { 

while (z[k+l ] < q) 
k++; 

d[q] = square(q-v[k]) + f[v[k]]; 

} 

delete [] v; 
delete [] z; 
return d; 

i] 

/* dt of 2d function using squared distance */ 
static void dt(image<float> *im) 
{ 

int width = im->widthO; 
int height = im->height(); 
float *f = new floatj_std::max(width,height)];  

// transform along columns 
for (int x = 0; x < width; x++) 

{ 

for (int y = 0; y < height; y++) 
{ 

ii 



f[y] = imRef(im, x, y); 

} 

float *d = dt(f, height); 

for (int y = 0; y < height; y++) { 

imRef(im, x, y) = d[y]; 

} 

delete [] d; 

} 

// transform along rows 

for (int y = 0; y < height; y++) { 

for (int x = 0; x < width; x++) { 

f[x] = imRef(im, x, y); 

} 

float *d = dt(f, width); 

for (int x = 0; x < width; x++) { 

imRef(im, x, y) = d[x]; 

} 

delete [Id; 

} 

delete f; 

/* dt of binary image using squared distance */ 

static image<float> *dt(image<uchar> *im, uchar on = 1) 

{ 

int width = im->widthQ; 

int height = im->heightQ; 

image<float> *out = new image<float>(width, height, false); 

for (int y = 0; y < height; y++) { 
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for (int x = 0; x < width; x++) 

{ 

if (imRef(im, x, y) == on) 

imRef(out, x, y) = 0; 

else 

imRef(out, x, y) = INF; 

} 

} 

dt(out); 

return out; 

} 

#endif 

------------ima ge. h--------- 

/* a simple image class */ 

#ifndef IMAGE H 

#define IMAGE H 

#include <cstring> 

template <class T> 

class image 

{ 

public: 

/* create an image */ 

image(const int width, const int height, const bool init = true); 

/* delete an image */ 

—imageQ; 
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/* init an image */ 

void init(const T &val); 

/* copy an image */ 

image<T> *copy()  const; 

/* get the width of an image. */ 

int width() const { return w; } 

/* get the height of an image. */ 

int height() const { return h; } 

/* image data. */ 

T *data; 

/* row pointers. */ 

T **access; 

private: 

int w, h; 

}; 

/* use imRef to access image data. */ 

#define imRef(im, x, y) (im->access[y] [x]) 

/* use imPtr to get pointer to image data. */ 

#define imPtr(im, x, y) &(im->access[y][x]) 

template <class T> 

image<T>::image(const int width, const int height, const bool init) { 

v 



w = width; 

h=height; 

data = new T[w * h]; // allocate space for image data 

access = new T* [h]; // allocate space for row pointers 

// initialize row pointers 

for (int i = 0; i < h; i++) 

access[i] = data -E- (i * w); 

if (init) 

memset(data, 0, w * h * sizeof(T)); 

} 

template <class T> 

image<T>::—image() { 
delete [] data; 

delete [] access; 
} 

template <class T> 

void image<T>::init(const T &val) { 

T *ptr = imPtr(this, 0, 0); 

T *end = imPtr(this, w-1, h-1); 

while (ptr <= end) 

*ptr++ = val; 

template <class T> 

image<T> *image<T>::copyO const I 
image<T> * im = new image<T>(w, h, false); 
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memcpy(im->data, data, w * h * sizeof(T)); 

return im; 

-----------------------------------------i m c o n v. h---------------------------------------- 

#ifndef CONY H 

#define CONV_H 

#include <climits> 

#include "image.h" 

#include "imutil.h" 

#include "misc.h" 

#defineRED WEJGHT 	0.299 

#define GREEN WEIGHT 0.587 

#define BLUE WEIGHT 0.114 

static image<uchar> *imageRGBtoGRAY(image<rgb> *input) { 

int width = input->widthO; 

int height = input->heightO; 

image<uchar> *output = new image<uchar>(width, height, false); 

for (int y = 0; y < height; y++) { 

for (int x = 0; x < width; x++) { 

imRef(output, x, y) = (uchar) 

(imRef(input, x, y).r * RED_WEIGHT + 

imRef(input, x, y).g * GREEN_WEIGHT + 

imRef(input, x, y).b * BLUE_WEIGHT); 
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} 

} 

return output; 

} 

static image<rgb> *imageGRAYtoRGB(image<uchar> *input) { 

int width = input->width(); 

int height = input->height(); 

image<rgb> *output = new image<rgb>(width, height, false); 

for (int y = 0; y < height; y++) { 

for (int x = 0; x < width; x++) { 

imRef(output, x, y).r = imRef(input, x, y); 

imRef(output, x, y).g = imRef(input, x, y); 

imRef(output, x, y).b = imRef(input, x, y); 

} 

} 

return output; 

} 

static image<float> * imageUCHARtoFLOAT(image<uchar> * input) { 

int width = input->widthO; 

int height = input->heightO; 

image<float> *output = new image<float>(width, height, false); 

for (int y = 0; y < height; y++) { 

for (int x = 0; x < width; x++) { 

imRef(output, x, y) = imRef(input, x, y); 

} 

} 

return output; 
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} 

static image<float> * i mageINTtoFLOAT(image<int> *input) { 

int width = input->width(); 

int height = input->heighto ; 

image<float> *output = new image<float>(width, height, false); 

for (int y = 0; y < height; y++) { 

for (int x = 0; x < width; x++) { 

imRef(output, x, y) = imRef(input, x, y); 

} 

} 

return output; 

} 

static image<uchar> *imageFLOATtoUCHAR(image<float> *input, 

float min, float max) { 

int width = input->width(); 

int height = input->heightO; 

image<uchar> *output = new image<uchar>(width, height, false); 

if (max == min) 

return output; 

float scale = UCHAR_MAX / (max - min); 

for (int y = 0; y < height; y++) { 

for (int x = 0; x < width; x++) { 

uchar val = (uchar)((imRef(input, x, y) - min) * scale); 

imRef(output, x, y) = bound(val, (uchar)0, (uchar)UCHAR_MAX); 

} 

} 

ix 



return output; 

} 

static image<uchar> *imageFLOATtoUCHAR(image<float> *input) { 

float min, max; 

min_max(input, &min, &max); 

return imageFLOATtoUCHAR(input, min, max); 

} 

static image<long> *imageUCHARtoLONG(image<uchar> *input) { 

int width = input->width(); 

int height = input->heightO; 

image<long> *output = new image<long>(width, height, false); 

for (int y = 0; y < height; y++) { 

for (int x = 0; x < width; x++) { 

imRef(output, x, y) = imRef(input, x, y); 

} 

} 

return output; 

} 

static image<uchar> *imageLONGtoUCHAR(image<long> *input, long min, long max) 

{ 

int width input->widthO; 

int height = input->heighto ; 

image<uchar> *output = new image<uchar>(width, height, false); 

if (max == min) 

return output; 
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float scale = UCHAR MAX / (float)(max - min); 

for (int y = 0; y < height; y++) { 

for (int x = 0; x < width; x++) { 

uchar val = (uchar)((imRef(input, x, y) - min) * scale); 

imRef(output, x, y) = bound(val, (uchar)0, (uchar)UCHAR_MAX); 

} 

} 

return output; 

static image<uchar> *imageLONGtoUCHAR(image<long> *input) { 

long min, max; 

min_max(input, &min, &max); 

return imageLONGtoUCHAR(input, min, max); 

} 

static image<uchar> *imageSHORTtoUCHAR(image<short> *input, 

short min, short max) { 

int width = input->widthO; 

int height = input->heightQ; 

image<uchar> *output = new image<uchar>(width, height, false); 

if (max == min) 

return output; 

float scale = UCHAR—MAX / (float)(max - min); 

for (int y = 0; y < height; y++) { 

for Grit x = 0; x < width; x++) { 

uchar val = (uchar)((imRef(input, x, y) - min) * scale); 

imRef(output, x, y) = bound(val, (uchar)0, (uchar)UCHAR_MAX); 

} 
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-------------------------------- ---------------p n mfile. h------------------------------------------------ 

/* basic image I/O */ 

#ifndef PNM FILE H 

#define PNM FILE H 

#include <cstdlib> 

#include <climits> 

#include <cstring> 

#include <fstream> 

#include "image.h" 

#include "misc.h'' 

#define BUF SIZE 256 

class pnm_error { ) ; 

static void read packed(unsigned char *data, int size, std::ifstream &f) { 

unsigned char c = 0; 

int bitshift = -1; 

for (int pos = 0; pos < size; pos++) { 

if (bitshift == -1) { 

c = f. getU; 

bitshift = 7; 

} 
data[pos] = (c >> bitshift) & 1; 

bitshift--; 
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static void write_packed(unsigned char *data, int size, std::ofstream &f) { 

unsigned char c = 0; 

int bitshift = 7; 

for (int pos = 0; pos < size; pos++) { 

c = c + (data[pos] << bitshift); 

bitshift--; 

if ((bitshift = _ -1) 1 1 (pos == size-1)) { 

f.put(c); 

bitshift = 7; 

c=0; 

} 

} 

} 

static void pnm_read(std::ifstream &file, char *buf) { 

char doe [BUF_SIZE]; 

char c; 

file >> c; 

while (c == '#') { 

file.getline(doc, BUF_SIZE); 

file >> c; 

} 

file.putback(c); 

file.width(BUF_S IZE); 

file >> buf; 

file.ignoreQ; 
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static image<uchar> *loadPBM(const char *name) { 

char buf[BUF_SIZE]; 

/* read header */ 

std::ifstream file(name, std::ios::in I std::ios::binary); 

pnm_read(file, buf); 

if ,  (strncmp(buf, "P4", 2)) 

throw pn.m_error(); 

pnm_read(file, buf); 

int width = atoi(buf); 

pnm_read(file, buf); 

int height = atoi(buf); 

/* read data */ 
image<uchar> *im = new image<uchar>(width, height); 

for (int i = 0; i < height; i++) 

read packed(imPtr(im, 0, i), width, file); 

return im; 

0 

static void savePBM(image<uchar> *im, const char *name) { 

int width = im->width(); 

int height = im->he.ightO; 

std::ofstream file(name, std::ios::out I std::ios::binary); 

file << "P4\n" << width << " " << height << "\n"; 

for (int i = 0; i < height; i++) 
write packed(imPtr(im, 0, 1), width, file); 

xvi 



float scale = UCHAR_MAX / (float)(max - min); 

for (int y= 0; y < height; y++) { 

for (int x = 0; x < width; x++) { 

uchar val = (uchar)((imRef(input, x, y) - min) * scale); 

imRef(output, x, y) = bound(val, (uchar)O, (uchar)UCHAR_MAX); 

} 

} 
return output; 

P 

static image<uchar> *imageLONGtoUCHAR(image<long> *input) { 

long min, max; 

min_max(input, &min, &max); 

return imageLONGtoUCHAR(input, min, max); 

} 

static image<uchar> * imageS HORTtoUC HAR(image<short> *input, 

short min, short max) { 

int width = input->width(); 

int height = input->heightQ; 

image<uchar> * output = new image<uchar>(width, height, false); 

if (max == min) 

return output; 

float scale = UCHAR_MAX / (float)(max - min); 

for (int y = 0; y < height; y++) { 

for (int x = 0; x < width; x++) { 

uchar val = (uchar)((imRef(input, x, y) - min) * scale); 

imRef(output, x, y) = bound(val, (uchar)0, (uchar)UCHAR_MAX); 

} 
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return output; 

} 

static image<uchar> *imageSHORTtoUCHAR(image<short> *input) { 

short min, max; 

minmax(input, &min, &max); 

return imageSHOR T toUCHAR(input, min, max); 

} 

#endif 

-----------------------------------------i m u til. h----------------------------------------- 

/* some image utilities */ 

#ifndef IMUTIL H 

#define IMUTIL II 

#include "image.h" 

#include "misc.h" 

/* compute minimum and maximum value in an image */ 

template <class T> 

void min_max(image<T> *im, T *ret_min, T *ret_max) { 

int width = im->widthO; 

int height = im->heightO; 

T min = imRef(im, 0, 0); 

T max = imRef(im, 0, 0); 

for (int y = 0; y < height; y++) { 
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for (int x = 0; x < width; x++) { 

T val = imRef(im, x, y); 

if (min > val) 

min = val; 

if (max < val) 

max = val; 

*ret_min = min; 

*ret_max = max; 

/* threshold image */ 

template <class T> 

image<uchar> *threshold(image<T> *src, int t) { 

int width = src->widthO; 

int height = src->heightO; 

image<uchar> *dst = new image<uchar>(width, height); 

for (int y = 0; y < height; y++) { 

for (int x = 0; x < width; x++) { 

imRef(dst, x, y) = (imRef(src, x, y) >= t); 

} 

} 

return dst; 

} 

#endif 



-----------------------------------------------p n m f i l e. h---------------------  --------------------------- 

/* basic image I/O */ 

#ifndef PNM FILE H 

#define PNM FILE H 

#include <cstdlib> 

#include <climits> 

#include <cstring> 

#include <fstream> 

#include "image.h" 

#include "misc.h" 

#define BUF SIZE 256 

class pnm_error { }; 

static void read packed(unsigned char *data, int size, std::ifstream &f) { 

unsigned char c = 0; 

int bitshift = -1; 

for (int pos = 0; pos < size; pos++) { 

if (bitshift == -1) { 

c = f.getO; 

bitshift = 7; 

} 

data[pos] _ (c >> bitshift) & 1; 

bitshift--; 
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static void write_packed(unsigned char *data, int size, std::ofstream &f) { 

unsigned char c = 0; 

int bitshift = 7; 

for (int pos = 0; pos < size; pos++) { 

c = c I (data[pos] << bitshift); 

bitshift--; 

if ((bitshift =_ -1) (pos == size-1)) { 

f.put(c); 

bitshift = 7; 

C =0;  
} 

} 

} 

static void pnm_read(std::ifstream &file, char *buf) { 

char doc[BUF_SIZE]; 

char c; 

file >> c; 

while (c =_ '#') { 

file.getline(doc, BUF_SIZE); 

file >> c; 
} 

file.putback(c); 

f le.width(BUF_SIZE); 

file >> buf; 

file. ignored ; 
} 
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static image<uchar> *loadPBM(const char *name) { 

char buf[BUF_SIZE]; 

/* read header */ 
std::ifstream file(name, std: :ios::in I std: :ios: :binary); 

pnm_read(file, buf); 

if ,  (strncmp(buf, "P4", 2)) 

throw pnm_errorQ; 

pnm_read(file, buf); 

int width = atoi(buf); 
pnm_read(file, buf); 

int height = atoi(buf); 

/* read data */ 
image<uchar> * im = new image<uchar>(width, height); 

for (int i = 0; i < height; i++) 
read packed(imPtr(im, 0, i), width, file); 

return im; 

static void savePBM(image<uchar> *im, const char *name) { 

int width = im->widthO; 

int height = im->heightO; 
std::ofstream file(naine, std::ios::out I std::ios::binary); 

file << "P4\n" << width << " „ << height << "\n"; 

for (int i = 0; i < height; i++) 
write packed(imPtr(im, 0, i), width, file); 
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static image<uchar> * loadPGM(const char *name) { 

char buf{BUF_SIZE]; 

/* read header */ 

std::ifstream file(naine, std::ios::in I std: :ios: :binary); 

pnm_read(file, buf); 

if ,  (strncmp(buf, P5", 2)) 

throw pnm_erroro ; 

pnm_read(file, buf); 

int width = atoi(buf); 

pnm_read(file, buf); 

int height = atoi(buf); 

pnm_read(file, buf); 

if (atoi(buf) > U CHAR_MAX) 

throw pnm_error(); 

/* read data */ 

image<uchar> *inn = new image<uchar>(width, height); 

file.read((char *)imPtr(im, 0, 0), width * height * sizeof(uchar)); 

return im; 

static void savePGM(image<uchar> *im, const char *name) { 

int width = im->widthO; 

int height = im->heightO; 

std::ofstream file(name, std: :ios: :out I std: :ios: :binary); 
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file << "P5\n" << width << " " << height << "\n" << UCHAR MAX << "\n"; 

file.write((char *)imPtr(im, 0, 0), width * height * sizeof(uchar)); 
} 

static image<rgb> *loadPPM(const char *name) { 

char buf[BUF_SIZE], doc[BUF_SIZE]; 

/* read header */ 

std::ifstream file(narne, std::ios::in I std::ios::binary); 

pnm_read(file, buf); 

if ,  (strncmp(buf, "P6", 2)) 

throw pnm_error(); 

pnm_read(file, but); 

int width = atoi(buf); 

pnm_read(file, buf); 

int height = atoi(bul); 

pnm_read(file, buf); 

if (atoi(buf) > UCHAR_MAX) 

throw pnm_errorO; 

/* read data */ 

image<rgb> *im = new image<rgb>(width, height); 

file.read((char *)imPtr(im, 0, 0), width * height * sizeof(rgb)); 

return im; 

} 

static void savePPM(image<rgb> *im, const char *name) { 

int width = im->width(); 
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int height = im->hei.ghtQ; 

std::ofstream file(narne, std::ios::out I std::ios::binary); 

file << "P6\n" << wi dth << " " << height << "\n" << UCHAR_MAX << "\n", 

file.write((char *)imPtr(im, 0, 0), width * height * sizeof(rgb)); 

} 
template <class T> 

void load_image(irnage<T> **im, const char *name) { 

char buf[BUF_SIZ]L]; 

/* read header */ 

std::ifstream file(name, std::ios::in I std::ios::binary); 

pnm_read(file, buf); 

if ,  (strncmp(buf, "VLIB", 9)) 

throw pnm_errorO; 

pnm_read(file, buf); 

int width = atoi(buf); 

pnm_read(file, buf); 

int height = atoi(buf); 

/* read data */ 

*im = new image<T>(width, height); 

file.read((char *)imPtr((*im), 0, 0), width * height * sizeof(T)); 

} 

template <class T> 

void save image(image<T> *im, const char *name) { 

int width = im->width(); 

int height = im->height(); 

std::ofstream file(narne, std::ios::out I std::ios::binary); 

file << "VLIB\n" << width << I'  << height << "\n"; 
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file.write((char *)imPtr(im, 0, 0), width * height * sizeof(T)); 

#endif 

---------edt. cpp---------------------------------------------------- 

/* This program calculates the 3-D EDT of the image stored in the input file */ 

#include <cstdio> 

#include <cstdlib> 

#include <cmath> 

#include "pnmfile.h" 

#include "imconv.h" 

#include "dt.h" 

int main(int argc, char **argv) { 

if (argc != 3) { 

fprintf(stderr, "usage: %s input(pbm) output(pgm)\n", argv[0]); 

return 1; 

char *input  name = argv [ 1 ]; 

char *output  name = argv[2]; 

// load input 

image<uchar> *input = loadPBM(input_name); 

// compute dt 

image<float> *out = dt(input); 

// take square roots 

xx 



for (int y = 0; y < out->heightO; y++) { 

for (int x = 0; x < out->widthQ; x++) { 

imRef(out, x, y) = sqrt(imRef(out, x, y)); 

// convert to grayscale 

image<uchar> *gray = imageFLOATtoUCHAR(out); 

// save output 

savePGM(gray, output_name); 

delete input; 

delete out; 

delete gray; 
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Parallel Implementation of 3D EDT Algorithm in MPI and C. 

-----------Mpi initmodule.h--------------------------------- 

/* begin MODULE mpi_module */ 

#include "mpi.h" 

INT update_bc_2( INT mp, TNT m, REAL **vt, INT k, INT below, INT above) 

11 
MPI Status status[6]; /* SGI doesn't define MPI _STATUS _SIZE */ 

MPI_Sendrecv( vt[mp ]+1, m, MPI DOUBLE, above, 0, vt[O]+l, m, 

MPI DOUBLE, below, 0, MPI—COMM—WORLD, status); 

MPI_Sendrecv( vt[1 ]+l, m, MPI DOUBLE, below, 1, vt[mp+1]+l, m, 

P1 DOUBLE, above, 1, MPI_COMM_WORLD, status); 

return (0); 

/* end MODULE mpi_module */ 

------------------------------------------initialize.h--------------------------------------------------- 

#include <math.h> 

#include <stdio.h> 

#include <stdlib.h> 

#define CHAR char 

#define REAL double 



#define INT int 

#define OUTPUT stdout 	/* output to standard out 	 */ 

#define PLOT—FILE "plots" /* output files base name 	 */ 

#define INCREMENT 100 	/* number of steps between convergence check *I 

#define P 1 	/* define processor count for serial codes */ 

#define K 0 	/* current thread number for serial code is 0 */ 

#define MAX_M 128 	/* maximum size of Input Array 	*/ 

#include "utils.h" 	/* header file of function prototype in utils.c */ 

#endif 

-------------------allocate.c---------------------- 

main() 

{ 
MAIN PROGRAM ******************************** 

* Allocates the 3-D input array into the shared memory of cluster * 
*********************************************************/ 

INT iter, m, mp; 

REAL gdel; 

CHAR line[10]; 

REAL **u, **u; 

fprintf(OUTPUT,"Enter size of interior points, m :"); 

(void) fgets(line, sizeof(line), stdin); 

(void) sscanf(line, "%d", &m); 

fprintf(OUTPUT, "m = %d\n",m); 

mp = m/P; 



u = allocate_2D(m, mp); /* allocate mem for 2D array */ 

un = allocate_2D(m, mp); 

gdel = 1.0; 

iter = 0; 

bc(m, mp, u. K, P); 

replicate(m, mp, u, un); /* u = un */ 

while (gdel > TOL) { /* iterate until error below threshold */ 

iter++; 	/* increment iteration counter */ 

if(iter > MAXSTEPS) { 
fprintf(OUTPUT,"Iteration terminated (exceeds %6d", MAXSTEPS); 

fprintf(OUTPUT," )\n"); 

return (0); 	/* nonconvergent solution */ 

} 

/* compute new solution according to the Jacobi scheme */ 

update] aco bi (m, mp, u, un, &gdel); 

if(iter%INCREMENT == 0) 
fprintf(OUTPUT,"iter,gdel: %6d, %lf\n",iter,gdel); 

} 

} 

fprintf(OUTPUT,"Stopped at iteration %d\n",iter); 
fprintf(OUTPUTThe maximum error = %f\n",gdel); 

write file( m, mp, u, K, P ); 

return (0); 
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------------------------------------util.c---------------------------------------------------------------- 

REAL **allocate  2D(INT  m, INT n) { 

INT i; 

REAL **a; 

a = (REAL **) malloc((unsigned) (m+2)*sizeof(REAL*)); 

/* Each pointer array element points to beginning of a row with n+2 entries*/ 

for (i = 0; i <=m+1; i++) { 

a[i] _ (REAL *) malloc((unsigned) (n+2)*sizeof(REAL)); 

} 

return a; 

} 

INT write file( INT m, INT n, REAL * * u, INT k, INT p) { 
/************** :************************************** 

* Writes 2D array ut columnwise (i.e. C convention) 

* m - size of rows m+2 

* n - size of columns n+2 

* u - scratch array 

*k - 0 <= k < p; = 0 for single thread code 	* 

* p - p >= 0; =1 for single thread code 
*****************************************************/ 

INT ij, i, j, per_line; 

CHAR filename[50], file[53]; 

FILE *fd; 

/* 
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prints u, 6 per line; used for matlab plots; 

PLOT_FILE contains the array size and number of procs; 

PLOT_FILE.(k+l) contains u pertaining to proc k; 

for serial job, PLOT _FILE. 1 contains full u array. 
*/ 

(void) sprintf(filename, "%s", PLOT_FILE); 

if(k==0) { 

fd = fopen(filename, "w"); 

fprintf(fd, "%5d %5d %5d\n", m+2, n+2, p); 

fclose(fd); 

} 

per_line = 6; 	 /* to print 6 per line */ 

(void) sprintf(file, "%s.%d", filename, k); /* create output file */ 

fd = fopen(file, "w"); 

ij = 0; 

. for (j = 0; j <=n+1; j++) { 

for (i = 0; i <=rn+ 1; i++) { 

fprintf(fd, "%11.4f ", u[i][j]); 

if ((ij+1)%per_line == 0) fprintf(fd, "\n"); 

ij++; 

} 

} 

fprintf(fd, "\n"); 

fclose(fd); 

return (0); 

} 
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void init_array(INT n1, INT n, REAL **a) { 

/********* Initialize Array ********************** 

* Initialize array with nx rows and fly columns * 
* * * * * * * * * * * * * * :**********************************/ 

INTi,j; 

for (i = 0; i <=m+1; i++) { 

for (j = 0; j <=n+ 1; j++) { 

a[i][j] = 0.0; 	/* initialize all entries to zero */ 

} 
} 

} 

void bc(INT m, INT n, REAL **u, INT k, INT p) 

{ 

INT i; 

init_array( m, n, u); 	 /* initialize u to 0 */ 

if(p>1){ 

if (k—=0) { 

for (i = 0; i <=111-Fl; i++) { 

u[i][0] = sin(PI*i/(m+1)); 	/* at y = 0; all x */ 

} 

} 

if(k==p-1) { 

for (i = 0; i <m+1; i++) { 

u[i][n+l] = sin(PI*i/(m+1))*exp(-PI); /* at y = 1; all x */ 

} 

} 

} else if (p == 1) { 

for (i = 0; i <=in+ 1; i++) { 



u[i][ 0] = sin(PI*i/(m+l)); /* at y = 0; all x */ 

u[i][n+l] = u[_i][0]*exp(-PI); /* at y = 1; all x */ 

} 

} else { 

printf("p is invalid\n"); 

} 

} 

void prtarray( INT m, TNT n, REAL **a, FILE *fd) { 
Print Array *********************** 

* Prints array "a" with in rows and n columns 

* tda is the Trailing Dimension of Array a 

INT i, j ; 

for (i = 0; i <=m+l ; i++) { 

for (j = 0; j <=n+1; j++) { 

fprintf(fd, "%8.2f', a[i][j]); 

} 

fprintf(fd, "\n"); 

} 

} 

INT i, j ; 

*del = 0.0; 

for (i = 1; i <=m; i+-i-) { 

for (j = 1;j <=n; j-H-+) { 

unew[i][j] _ ( u[i ][j+l] + u[i+l][j ] + 

u[i-l][j ] + u[i ][j-1] )*0.25; 

*del += fabs(unew[i][j] - u[i][j]); /* find local max error */ 



for (i = 1; i <=m; i++) { 

for(j=1;j<=n;j++){ 

u[i][j] = unew[i][j]; 

} 

} 

return (0); 

} 

INT update_sor( INT m, INT n, REAL **u, REAL omega, REAL *del, CHAR redblack) 

{ 

INT i, ib, ie,j,jb,je; 

REAL up; 

*del = 0.0; 

if (redblack == 'r') { 

/* process RED odd points ... */ 

jb = 1; je=n; ib = 1; ie = m; 

for(j =jb;j <=je;j+=2) { 

for ( i = ib; i <=ie; i+=2) { 

up=(u[i ][j+l]+u[i+l][j ]+ 

u[i-1][j ] + u[i ](j-1] )*0.25; 

u[i][j] = (1.0 - omega)*u[i][j] + omega*up; 

*del += fabs(up-u[i][j]); 

} 

/* process RED even points ... */ 

jb=2;je=  ii; ib=2;ie=m; 

for(j=jb;j <=_je;j+=2) { 

for (i = ib; i <= ie; i+=2) { 

up = (u[i ] [1+1 ] + u[i+l ] [J ] + 



u[i-1][j ] + u[i ][l-1] )*0.25; 
u[i] [j] = (1.0 - omega)*u[i] [j] + omega*up; 

*del += fabs(up-u[i][j]); 
} 

} 

return (0); 

} else { 

if (redblack =_ 'b') { 

/* process BLACK odd points ... */ 

jb=2; je=n; ib = 1; ie=m; 

for (j = jb; i <= je; j+=2) { 

for(i=ib;i<=ie;i+=2) { 

up = (u[i ] [i+1 ] + u[i+l ] [i ] + 
u[i-1]{j ] + u[i ][j-1] )*0.25; 

u[i][j] _ (1.0 - omega)*u[i][j] + omega*up; 

*del += fabs(up-u[i][j]); 
} 

} 

/* process BLACK even points ... */ 

jb 1; je=n; ib=2; ie=m; 

for (j=jb;j<=je;j+=2){ 

for (i = ib; i <= ie; i+=2) { 

up=(ul.l ][+1]+u[i+1][j ] + 
u[i-1][j ] + u[i ][j-1] )*0.25; 

u[i][j] _ (1.0 - omega)*u[i][j] + omega*up; 

*del += fabs(up-u[i][j]); 

} 

} 

return (0); 

} else { 

return (1); 
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INT replicate( INT in, INT n, REAL * *a, REAL **b) { 
******************************************************** 

* Replicates array a into array b 

* m - (INPUT) size of interior points in 1st index 

* n - (INPUT) size of interior points in 2st index 

* a - (INPUT) solution at time N 

* b - (OUTPUT) solution at time N + I 

INT i, j; 

for (i = 0; i <=m±1; i++) { 

for (j = 0; j <=n-Fl; j++) { 

b[i][1] = a[i][J]; 
} 

} 

return (0); 

} 

INT transpose( INT in, INT n, REAL * *a, REAL **at) { 
********************************************************** 

* Transpose a(0:m+1,0:n+1) into at(0:n+1,0:m+1) 

* m - (INPUT) size of interior points in 1st index 

* n - (INPUT) size of interior points in 2st index 
* a  -(INPUT) a = a(O:m+1,0:n+1) 

* at - (OUTPUT) at = at(0:n+1,0:m+1) 
**************:*******************************************/ 

INT i, j,k; 



for (i = 0; i <m+1; i++) { 

for (j =0;j  <=n+1; j++) { 

(k = 0; k <=n+ 1; k++) { 

at[i][i][k] = a[3]Li[k]; 
} 

} 

return (0); 

void neighbors(INT k. INT p, INT UNDEFINED, INT *below, INT *above) { 

* determines two adjacent threads 	 * 

* k 	- (INPUT) current thread 

* p 	- (INPUT) number of processes (threads) 	* 

* UNDEFINED - (INPUT) code to assign to out-of-bound neighbor 

* below - (OUTPUT) neighbor thread below k (usually k-1) * 

* above - (OUTPUT) neighbor thread above k (usually k+1) * 

if(k == 0) { 

*below = UNDEFINED; 

*above = k+l; 

} else if(k == p-1) { 

*below = k-1; 

*above = UNDEFINED; 

} else { 

*below = k-1; 

*above=k+l; 

/* tells MPI not to perform send/recv */ 

/* tells MPI not to perform send/recv */ 



------------------------------finaledt.c----------------------------------------------- 

INT main(INT argc, CHAR *argv[]) { 
/***************MAIN PROGRAM ************************************* 

* Gathers all the computation results from participating processors and builds the final 

EDT of input 3-D array * 
*****************************************************************/ 

INT iter, m, nip, p, k, below, above; 

REAL omega, rhoj, rhojsq, del, delr, delb,•gdel; 

CHAR line[80], red, black; 

MPI Comm grid_comm; 

INT me, iv, coord[ 1 ], dims, periods, ndim, reorder; 

REAL **v, **vt; 

MPI_Init(&argc, &argv); 	/* starts MPI */ 

MPI_ Comm _rank(MPI_COMM_WORLD, &k); /* get current process id */ 

MPI _Comm _size(MPI_COMM_WORLD, &p); /* get # procs from env or */ 

periods = 0; ndim = 1; reorder = 0; red ='r'; black 

if(k == 0) { 

fprintf(OUTPUT,"Enter size of interior points, m ;\n"); 

(void) fgets(line, sizeof(line), stdin); 

(void) sscanf(line, "%d", &m); 

fprintf(OUTPUh,"m = %d\n",m); 

} 

MPI_Bcast(&m, 1, MPI_INT, 0, MPI_COMM_WORLD); 

mp = m/p; 

MPI_Sendrecv( vt[mp ]+1, m, MPI_DOUBLE, above, 0, 

vt[0 ]+1, m, MPI DOUBLE, below, 0, 

MPI COMM WORLD, status); 



v = allocate_2D(m, mp); /* allocate mem for 2D array */ 

vt = allocate_2D(mp, m); 

gdel = 1.0; 

iter = 0; 

rhoj = 1.0 - Pl*P1*0.5/((m+2)*(m+2)); 

rhojsq = rhoj*rhoj; 

/* create cartesian topology for matrix */ 

dims = p; 

MPI_ Cart _create(MPI_  COMM _WORLD, ndim, &dims, 

&periods, reorder, &gridcomm); 

MPI_Comm_rank(grid_comm, &me); 

MPI_Cart_coords(grid_comm, me, ndim, coord); 

iv = coord[0]; 

bc( m, mp, v, iv, p); /* set up boundary conditions */ 

transpose(m, mp, v, vt); /* transpose v into vt */ 

replicate(mp, m, vt, v); 

MPI_Cart_shift(grid_comm, 0, 1, &below, &above); 

MPI_Sendrecv( vt[1 ]+1, m, MPI_DOUBLE, below, 1, 

vt[mp+l ]+l , m, MPI_DOUBLE, above, 1, 

MPICOM M_WORLD, status); 

omega = 1.0; 

update_sor( mp, m, vt, omega, &delr, red); 

update_bc_2( mp, m, vt, iv, below, above); 

omega = 1.0/(1.0 - 0.5 0 * rhoj sq); 

update_sor( mp, m, vt, omega, &delb, black); 

update_bc_2( mp, m, vt, iv, below, above); 

while (gdel > TOL) { 

iter++; /* increment iteration counter */ 

xxxiv 



omega = 1.0/(1.0 - 0.25*rhojsq*omega); 

update_sor( mp, m, vt, omega, &delr, red); 

update_bc_2( mp, m, vt, iv, below, above); 

omega = 1.0/(1.0 - 0.25 *rhojsq*omega);  

update_sor( trip, m, vt, omega, &delb, black); 

update_bc_2( mp, m, vt, iv, below, above); 

if(iter%INCREMENT == 0) { 

del = (delr + delb)*4.0; 

MPI_Allreduce( &del, &gdel, 1, MPI_DOUBLE, 

MPI_MAX, MPI_COMM_WORLD); /* find global max error */ 

if(k==0) { 

fprintf(OUTPUT,"iter gdel omega: %5d %13.5f %13.5f\n",iter,gdel,omega); 

} 

} 

MPI_Sendrecv( vt[mp ]+1, m, MPI_DOUBLE, above, 0, vt[0 ]+l, m, MPI_DOUBLE, 

below, 0, MPI_  COMM _WORLD, status); 

if(iter > MAXSTEPS) { 

fprintf(OU TPUT, "Iteration terminated (exceeds %6d", MAXSTEPS); 

fprintf(OUTPUT," )\n"); 

return (1); 	/* nonconvergent solution */ 

MPI_Sendrecv( vt[1 ]+I, m, MPI_DOUBLE, below, 1, 

vt[mp+1]+1, m, MPI_DOUBLE, above, 1, 

MPI COMM WORLD, status); 

if (k == 0) { 

fprintf(OUTPUT,"Stopped at iteration %d\n",iter); 

fprintf(OUTPUT,"The maximum error = %fln",gdel); 

xxxv 



transpose(mp, m, vt, v); /* transpose v into vt */ 

write file( m;  mp, v, k, p); 

MPI_Barrier(MP1_  COMM _WORLD); 

MPI_FinalizeQ; 

return (0); 

xxxvi 
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