
EUCLIDEAN DISTANCE TRANSFORM OF
3D iMAG,ES ON L.A.R.'P.B.S. MODEL

A DISSERTATION
Submitted in partial fulfillment of the

requirements for the award of the degree
of

MASTER OF TECHNOLOGY
in

COMPUTER SCIENCE AND ENGINEERING

I'IYUSH DHAR D1WAN

DEPARTMENT OF ELECTRONICS & COMPUTER ENGINEERING
INDIAN INSTITUTE O TECHNOLOGY 'ROORKEE

ROORKEE -247 667 (INDIA)
JUNE, 2007

CANDIDATE'S DECLARATION

I hereby declare that the work, which is being presented in the dissertation entitled

"EUCLIDEAN DISTANCE TRANSFORM OF 3D IMAGES ON L.R.B.P.B.S.

MODEL" towards the partial fulfillment of the requirement for the award of the degree

of Master of Technology in Computer Science Engineering submitted in the

Department of Electronics and Computer Engineering, Indian Institute of Technology

Roorkee, Roorkee (India) is an authentic record of my own work carried out during the

period from July 2006 to June 2007, under the guidance of Dr. Padam Kumar,

Professor, Department of Electronics and Computer Engineering, IIT Roorkee.

I have not submitted the matter embodied in this dissertation for the award of any other

degree or diploma.

Date: eke - ®~ ~ T
Place: Roorkee 	 PIY SH DHAR DIWAN

CERTIFICATE

This is to certify that the above statement made by the candidate is correct to the best of

my knowledge and belief.

Date: o - © 	2-'_O 7-
Place: Roorkee 	 Dr. Padam Kumar

Professor

Department of Electronics and Computer Engineering

IIT Roorkee - 247 667

i

ACKNOWLEDGEMENTS

I would like to extend my heartfelt gratitude to my guide Dr. Padam Kumar, Professor,

Department of Electronics and Computer Engineering, Indian Institute of Technology

Roorkee, for his able guidance, regular source of encouragement and assistance

throughout this dissertation work. It is his vision and insight that inspired me to carry out

my dissertation in the upcoming field of Parallel Computing. I would state that the

dissertation work would not have been in the present shape without his umpteen guidance

and I consider myself fortunate to have done my dissertation under him.

I also extend my sincere thanks to Dr. D. K. Mehra, Professor and Head of the

Department of Electronics and Computer Engineering, Indian Institute of Technology

Roorkee for providing facilities for the work.

I also wish to thank all my friends for their valuable suggestions and timely help.

Finally, I would like to say that I am indebted to my parents for everything that they have

given to me. I thank them for the sacrifices they made so that I could grow up in a

learning environment. They have always stood by me in everything I have done,

providing constant support, encouragement and love.

PIYUSH DHAR DI WAN

ii

ABSTRACT

Euclidean Distance Transform (EDT) of 2-D and 3-D images is one of the useful tools

in various image processing algorithms. It is one of the basic operations in image

processing and computer vision fields and essentially used in expanding, shrinking,

thinning, segmentation, clustering and computing of images, object reconstruction, etc. It

converts a binary image consisting of black and white pixels to a representation where

each pixel has the Euclidean distance of the nearest black pixel. Many sequential and

parallel algorithms have been developed for Euclidean Distance Transform computation

of 2-D and 3-D images on various, computational platforms. The objective of this

dissertation work is to develop a time-optimal and scalable algorithm for EDT

computation of 3-D images.

In this dissertation work, an efficient and scalable parallel algorithm has been designed

and implemented for computing EDT of 3-D images, on Linear Array with

Reconfigurable Pipelined Bus System (LARPBS) multiprocessor model, which is a

recently proposed architecture based on optical buses. This work is the extension of the

algorithm for 2-D EDT computation on LARPBS architecture which is given by Chen,

Pan and Xu.

The algorithm computes the EDT of a 3-D image represented by N x N x N binary

matrix in O(N2 log N /(a(n) * b(n))) time using N2 * a(N) * b(N) processors where a(N)

and b(N) are the parameters and their values can be selected between 1 and N. By

selecting different values for a(N) and b(N), time complexity and number of processors

required can be altered which makes the algorithm more flexible and scalable. This

algorithm has been implemented and tested on the multiprocessor cluster available at the

Institute Computer Center. The performance has been analyzed and compared with other

EDT algorithms given on various parallel computing platforms.

iii

CONTENTS

CANDIDATE'S DECLARATION ...i

ACKNOWLEDGEMENTS ...ii

ABTRACT ...iii

TABLEOF CONTENTS ..iv

CHAPTER 1: INTRODUCTION ...1

1.1 Introduction ...1

1.2 Statement of the Problem ..2
1.3 Organization of the Dissertation ...2

CHAPTER 2: BACKGROUND ...3

2.1 Basic Information about Euclidean Distance Transform 3

2.2 LARPBS Multiprocessor Architecture ..6
2.3 Literature Survey and Previous Work ...9
2.4 Research Gaps and Motivation ..12

CHAPTER 3: PROPOSED ALGORITHM ...13

3.1 Brief Description of the Algorithm ...13
3.2 The Parallel Algorithm for 3-D EDT computation14
3.3 Complexity and Scalability Analysis ..19

CHAPTER 4: IMPLEMENTATION ...21

4.1 System Specification ..21

4.2 Message Passing Interface (MPI) ...22
4.3 Implementation Details ...25

4.3.1 Sequential Implementation26
4.3.2 Parallel Implementation ...27

4.4 Performance Evaluation Metrics ...29

iv

CHAPTER 5: RESULTS AND DISCUSSION ..31

5.1 Performance Evaluation and Comparison31
5.1.1 Performance of Sequential Version31
5.1.2 Performance of Parallel Version34

5.2 Complexity and Scalability Comparison36
5.3 Discussion ..3 7

CHAPTER 6: CONCLUSION ...38

6.1 Conclusions ...3 8
6.2 Suggestions for Future Work ..39

REFERENCES...40

APPENDIX

SOURCE CODE LISTING ...i

v

Chapter 1: Introduction

CHAPTER 1

INTRODUCTION

1.1 INTRODUCTION

The Euclidean Distance Transform computation of binary images is a basic operation

in image processing and computer vision fields. Some other basic operations of image

processing like image expansion, shrinking, thinning, segmentation, clustering, object

reconstruction, etc require EDT of binary images as an intermediate tool [1]. In a 3-

dimensional binary image array, consisting of 1 s and Os, I -voxels are referred as

foreground or black voxels while 0-voxels are referred as background or white voxels.

Often, we are interested in the shape and position of the black voxels relative to each

other. The extraction of such information from a binary image can be simplified

considerably by using a number of computational techniques. Some of the most

important ones include the Medial Axis Transform (MAT) introduced by Blum [2] and

the Distance Transform (DT) introduced by Rosenfeld and Pfaltz [3], [4].

The Euclidean Distance Transform of a binary image array, consisting of I and 0 voxels,

transforms it to another array where each voxel has a value or coordinates that represents

the distance or location to the nearest 1 voxel [6]. A great deal of work has been done on

EDT computation techniques of 2-D as well as 3-D images. A Sequential Brute Force

exhaustive approach for EDT computation of a 3-D binary array would have inherent

time complexity of 0 (n^6) on a sequential, uni-processor machine. To optimize this

time, many parallel algorithms have been given so far on various multiprocessor

architectures with different time complexities and different number of processors used.

The algorithm derived in this dissertation is an extension to the algorithm for 2-D EDT

computation on LARPBS model and it is given by Chen, Pan andXu [1]. This computes

EDT of an N x N x N binary image array, with respect to black voxels on LARPBS

model. LARPBS is a multiprocessor model consisting of Processor Arrays with

Reconfigurable Pipelined Optical Bus System. It has become the focus of interest for

implementation of many efficient parallel algorithms, since it limits the communication

latency and provides concurrent message transmission through the bus system [7] .

Chapter - 1: Introduction

1.2 STATEMENT OF THE PROBLEM

The Euclidean Distance Transform of a 3-D image array, consisting of black and white

voxels, transforms it to another array where each voxel has a value or coordinates that

represents the distance or location to the nearest black voxel. The aim of this dissertation

work is to design, implement and analyze the performance of an efficient and scalable

parallel algorithm for the computation of Euclidean Distance Transform of 3-

Dimensional binary images on LARPBS multiprocessor architecture.

The work towards the solution of this problem can be divided as following:

1. Design of EDT computation algorithm of 3-D binary images on LARPBS model

as an extension of the algorithm for 2-D binary images.

2. Implementation of the above algorithm on the available multiprocessor cluster.

3. Time benefit analysis of the proposed algorithm on the basis of complexity and

scalability.

4. Comparison of relative performances of this parallel algorithm with other existing

algorithms for EDT computation.

1.3 ORGANISATION OF THE DISSERTATION
This report is divided into six chapters including this introductory chapter. The rest of

this thesis is organized as follows.

Chapter 2 gives the background about the EDT algorithms and LARPBS model. It also

discusses about the related work, research gaps and motivation.

Chapter 3 discusses the proposed algorithm for 3-D EDT computation and also its

complexity and scalability analysis.

Chapter 4 provides implementation details like hardware and software specification for

the proposed algorithm on the multiprocessor cluster architecture. It also includes the

performance evaluation and comparison metrics.

Chapter 5 provides the implementation results and evaluates performance of the proposed

algorithm. It also provides a comparative analysis with other algorithms.

Chapter 6 concludes the dissertation and gives some suggestions for future work.

-2-

Chapter 2: LARPBS Multiprocessor Architecture

CHAPTER 2

BACKGROUND

2.1 BASIC INFORMATION ABOUT EUCLIDEAN DISTANCE
TRANSFORM
A three dimensional binary image is represented by a 3-D binary array in which the black

voxels are represented by 1 s and the white voxels are represented by Os. The distance

transform of binary images was first introduced by Rosenfeld and Pfalz [3]. It has been

very useful metric information for binary images in various image processing algorithms

and application. EDT of a 3-D image is defined as the transform of original array in

which every element has the value equals to the distance of the corresponding voxel in

the original array from its nearest 1-voxel.

Y-axis

X-axis

Z-axis

Figure 2.1. Direction of X, Y and Z- axis

Let us consider that an N x N x N binary image is represented by a 3-D matrix A where,

A = {(i, j, k): a(i, j, k) = 0 or l}

Also let B is a set of triples (x, y, z) containing the positions of all the I -voxels in A.

The Euclidean Distance of any voxel a(i, j, k) is defined by [7]:

d2;,~,k = 	min { (i-x) + (j-y)2 + (k-z)2 }
(x, y, z) €B

For all i, j, k = 0.........N-1.

The nearest foreground voxel from any voxel a(i, j, k) is denoted by F(i, j, k) and the

distance between these two voxels d,k is the EDT of the voxel a(i, j, k). It is clear hear

that the Euclidean Distance of all voxels in set B, i.e. all 1-voxels in the given binary

image array will be zero.

-3-

Chapter 2. LARPBS Multiprocessor Architecture

Let's see an example of 2-D, 4 x 4 binary image array A and its EDT array F:

1 0 1 1 	 0 1 0 0

A = 0 0 0 1 F = 	1 1 1 0

0 0 0 0 	 1 1 2 1

1 	1 	0 	0 	 00 	1 	2

Since every voxel in a 2-D or 3-D image array posseses its own Euclidean Distance, these

values can be determined parallaly by partitioning the whole array into smaller subarrays.

Hence, to exploit the parallelizability of 2-D or 3-D EDT computation, many parallel

algorithms have been suggested on different multiprocessor architectures which varies in

their computational time complexities and number of processors required.

Before going into the algorithm, let us put some focus on the basic properties of EDT

which will be used in the algorithm.

Lemma 1. [8J,[9] Let A = (i, j, k) and B =(p, j, k) be two voxels on the same column and

also same plane with p < i. Let F(i, j, k) = (x, y, z) and F(p, j, k) = (u, v, w), then u < x

namely F(i , j, k) is below or on the same row as F(p, j, k).

Lemma 1 is extended to more general cases in Lemma 2.

Lemma 2. [81,19] Let (i j, j, k), (i2, j, k) (ir, j, k) be voxels on the same column

and same plane and it < i2 < ... < ir. Suppose F (i,, j, k) = (xi, y f z!) for t = 1, 2......r

then x< < x2 ... < Xr.

Note: If we denote the nearest 1-voxel of a(i, j ,k) in the i`" row as RF(i, j, k), then we

have the following lemma.

Chapter 2: LARPBS Multiprocessor Architecture

Lemma 3.[1] If we denote the distance from voxel (i, j, k) to its nearest foreground pixel

as d, and denote the distance between voxels (i, j, k) and (f, g, h) as D[(i, j, k), (f, g, h)]

then we have d = min o< p w_1 D[(i, j, k), RF(p, j, k)] namely, F(i, j, - k) can be selected

from the set RF(p, j, k) where O< p 	1.

Lemma 4. [1] Let (i j, j, k), (i2, j, k) (ir, j, k) be voxels on the j`h column, km

plane, and i1 <j2 < . - . < ir. Let F(i,, j, k) = RF(gt, j, k) ,where t = 1,2........r. Then,

g,. and

2. For every i c (i1-1, i), F (i, j, k) can be found in RF (g..j, j, k), RF (g,1+1, j, k).......RF

(g1, j, k).

Note: Lemma. 1 to 4 will be used in 2-D EDT computation within a single 2-D plane.

While Lemma 5 and 6 will be used in 3-D EDT computaion of complete 3-D array.

Lemma 5. [6] Let Q(xQ, yQ, zi) and P(xp, yp, z2) be 2 voxels with same X and Y

cordinates and zl <z2 i.e. Q is above P in the direction of Z-axis. Let FQ and Fp be the

nearest 1 -voxels of Q and P with coordinates (xFQ, YFQ, a) and (XFP, YFP, b) respectively.

Then b > a i.e. Fp is below FQ.

Lemma 6. [6] Let Q(xQ, yQ, zj) and P(xp, yP, Z2) be 2 voxels with same X and Y

cordinates and z1< Z2 i.e. Q is above P in the direction of Z-axis. Let FQ(Tf) be the nearest

I -voxel of voxel Q on plane r. Then,

If FQ = FQ(Tr), 0 < r < N-1, then Fp e FQ (TW,) where FQ (T) = Fp (TW,) for r < w < N-1.

-5-

Chapter 2: LARPBS Multiprocessor Architecture

2.2 "LINEAR ARRAY WITH RECONFIGURABLE PIPELINED BUS

SYSTEM" MULTIPROCESSOR ARCHITECTURE
Processor array with reconfigurable pipelined buses is a recently proposed architecture

for efficient computations of various parallel algorithms. These systems allow concurrent

transmission of multiple messages across the bus in a pipelined fashion and the bus can

be reconfigured dynamically under program control to support different algorithmic

requirements [7]. Figure 2.2 illustrates the optical bus system in an n- processor system.

CI) Pct. .o 	 DirLct Coi.pkr

Figure 2.2. A linear optical bus system of n processors.

In multiprocessor systems the communication diameter i.e. the maximum distance

between processors grows with the size of the system and the interconnection network

used for inter-processor communication [10]. Hence, increasing the size of these

networks may not contribute in optimization of the time complexities of the parallel

algorithms designed for them. Processor arrays with reconfigurable buses overcome this

bottleneck by partitioning the bus into many segments, and all segments can be

reconfigured as a single global bus [11]. The pipelined optical bus system uses optical

waveguides instead of electrical signals to transfer messages among processors [7]. Fiber

optics communications offer a combination of high bandwidth, low error probability, and

gigabit transmission capacity. This design integrates the advantages of both optical

transmission and electronic computation [7]. The detailed Bus organization of LARPBS

system is illustrated in Figure 2.3.

Chapter 2: LARPBS Multiprocessor Architecture

Switches for conditional delays

Switches for partition

Select

Reference

Message

..,..,.. 	J~ 	 apiiuccZ)fwupicrs

Figure 2.3. LARPBS - Linear Array with a Reconfigurable Pipelined Bus [10].

An optical bus has two other important characteristics: unidirectional propagation and

predictable propagation delay. These advantages of using waveguides enable

synchronized concurrent accesses of an optical bus in a pipelined fashion [10]. Such

systems support massive simultaneous communications and so they are appropriate for

communication intensive operations such as broadcasting, one-to-one communication,

multicasting, compression, split, and many other irregular communication patterns [10].

Many parallel algorithms have been proposed on LARPBS model to solve problems such

as sorting, selecting, matrix computation, and computational geometry etc [11]. Even

many parallel algorithms on PRAM can be transformed into LARBPS algorithms using

the results for PRAM simulation on the LARPBS model [11].

In terms of architecture, Linear Array with Reconfigurable Pipelined Bus System

(LARPBS) is an array of N processors P1, P2 ._........ PN connected by an optically pipelined

bus. A bus cycle is the end-to-end propagation delay on the bus. The time complexity of

any algorithm is determined in terms of time steps, when a single time step comprises of

one bus cycle and one local computation step [10]. Following operations, on the

LARPBS model will be used in the algorithm [11]:

-7-

Chapter 2: LARPBS Multiprocessor Architecture

• Broadcasting: A source processor P; sends a message to all the other N-1

processors P1, P2........, Pi_1, P;+l............, P. All the messages are sent

simultaneously.

• Multicasting: A source processor sends a message to a subset of the N processors.

• One-to-One Communication: A subset of processors P11, Pi2 , Pin, are senders

and another subset of processors Pkl, Pk2......... Pkm are the receivers. Processor

P;j sends a message to processor Pkj for I < j < m. All these messages are sent

simultaneously.

• Multiple Multicasting: There are g disjoint groups of receiving processors, Gk =

{Pjk,1, Pjk,2}, 1 < k < g. Also, there are g senders P11 , Pi2.......Pig.

Processor Pik broadcasts a message to all the processors in Gk, for 1 < k < g.

• Integer Summation: Each processor P; holds an integer value I; of bounded

magnitude and precision. This operation computes the sum of these integer values

and move the sum to the first processor.

Lemma 2.1 [14] The minimum value of n data items can be computed on the LARPBS in

0(1) time by using n processors if each item is of bounded magnitude and precision.

Lemma 2.2 [15] One-to-one communication, broadcasting, multicasting, multiple

multicasting, ordered compression, binary prefix sum and summation of integers of

bounded magnitude and precision can be done in O(1) time on the LARPBS model.

Chapter 2: LARPBS Multiprocessor Architecture

2.3 LITERATURE SURVEY AND PREVIOUS WORK
Parallel algorithms for EDT computation have been one of the focuses of interest for

researchers in recent years. Several parallel algorithms have been given to compute EDT

of 2-D and 3-D images so far. These algorithms tend to divide the overall computation

into various parallel subtasks. Different algorithm uses different number of processor to

execute these subtasks in parallel and then by gathering the results from all the

processors, the actual EDT of given image array is computed. The implementations of

such algorithms are based upon various multi-processor architectures like PRAM etc. Let

us put some focus on the work done so far on various algorithms for EDT computation.

Yamada [16] was the first to propose an algorithm to compute the exact EDT of an N x N

binary image. The running time of his algorithm was 0 (N3). Later, Kolountzakis and

Kutulakos [17] proposed an 0 (N2 log N) time algorithm. Chen and Cheung [8] presented

an optimal 0 (N2) time sequential algorithm for this problem. Since it is desirable to

compute the distance transform even faster for many real-time applications, several

parallel algorithms have been developed for this problem on different parallel

architectures. Fujiwara et al. [18] presented two work-optimal algorithms with running

times 0 (log N) on an N2/ log N processor EREW PRAM and in 0 (log N/log. log N)

time on an (N2 log log N)/ log N processor Common CRCW PRAM.

With the increasing prevalence of 3-D voxel images, it is useful to consider the distance

transform of a 3-D digital image array. Saito and Toriwaki [19] presented several EDT

algorithms based on the scan approach for an n-dimensional image array. For the 3-D

EDT problem, Toriwaki's EDT algorithm takes 0 (N4) time complexity. Lee et al. [6]

have also presented the algorithm for 3-D EDT computation with 0 (log2N) time

complexity on EREW PRAM model. The previous best algorithm for computing the

EDT on the LARPBS is by Pan et al. [20]. Their algorithm runs either in 0(log N log log

N) time on an N2-processor LARPBS or in 0(log log N) time on an N3-processor

LARPBS.

S

Chapter 2: LARPBS Multiprocessor Architecture

A summery of the parallel algorithms for 2-D and 3-D EDT computation given so far on

different architectures is listed in Table 2.1.

Table 2.1

Summery of Parallel Algorithms for EDT computation

Algorithm Time Complexity Number of
Processors

Computing
Architecture

Chen and Pan 0(log n log log n) n2/(log log n) LARPBS

Datta et al. 0(log log n) 0(n2) LARPBS

Pan et al. 0(log log n) n3 LARPBS

Pan et al. 0(log n log log n) n LARPBS

Datta et al. 0(1) O(n) REMESH

Pan and Li 0(1) O(n) REMESH

Datta et al. 0((log log n)2) O(n +e / (log log n)) PRAM CRCW

Hayashi et al. 0(log log n) O(n / (log log n)) PRAM CRCW

A. Fujiwara et al. 0(log n / log log n) n2 log log n / log n PRAM CRCW

Pavel and Akl O(log n) n2 PRAM EREW

Lee at al. O(log 	n) n3 PRAM EREW

Chen and Chuang 0(n 2/p + n log n) p PRAM EREW

Chen and Chuang 0(n log n) n/ log n PRAM EREW

A. Fujiwara et al. 0(log n) n2/log n PRAM EREW

Now let us move our focus towards the work done so far on Processor Array

architectures with reconfigurable optical buses like LARPBS model. During the past

decade, several optical bus parallel models have been proposed, together with a suite of

basic and advanced algorithms. The Linear Array with a Reconfigurable Pipelined Bus

System (LARPBS) is one of the recently proposed multiprocessor architectures based on

optical buses.

-10-

Chapter 2: LARPBS Multiprocessor Architecture

The Linear Array with Reconfigurable Pipelined Bus System (LARPBS) was first

published in 1996 [21]. This is one of 10 distinct fiber-based optical bus models that

appeared between 1990 and 1998 [21]. Of the ten models, LARPBS appears the most

popular based upon not only the number of publications that strongly relate to this model

but also the extent of algorithm design, model extension and derived models from

LARPBS [21].

The related work on practical implementations of Optical Buses includes feasibility study

of power budget and scalability of it with multiple processor systems [10]. The majority

of later work on LARPBS mostly concern algorithm design and model refinements.

The main motivation of the development and implementation of optical interconnections

is to overcome the bottlenecks that electrical data buses produce due to their relatively

low bandwidth [10]. Optical buses allow high bandwidth and pipelined message

transmission facilities and these have been frequently used for design and performance

analysis of fast parallel algorithms for many different problems in recent years.

Chapter 2: LARPBS Multiprocessor Architecture

2.4 RESEARCH GAPS AND MOTIVATION
We have seen that a great deal of work has been already done on the algorithms for EDT

computation. Most of the available algorithms for EDT computation have been designed

and implemented for 2-D EDT computation on various multiprocessor platforms like

EREW, CRCW PRAM etc. But only a few other algorithms discuss the parallel

computation approach for 3-D EDT computation on these architectures. These algorithms

vary in their time complexities, number of processors used and the scalability factor.

Most of them are time optimal but not enough scalable for higher dimensions and

different computational architecture. They have been designed for specific architecture

and posses fixed time complexities. This lack of scalability is one of the research issues.

Another major issue in the specified architectures is the Inter-processor Communication

overhead. Several strategies have been suggested for reducing this overhead. Processor

Arrays with Optical Buses is one of the recent architectures which tend to optimize the

inter-processor communication. LARPBS model is based on this architecture. This model

provides high speed data transmission through reconfigurable fiber optics buses. The

algorithm given by Chen et al. [1] discusses a parallel approach for 2-D EDT

computation on LARPBS model. This algorithm is scalable enough and resolves the

communication overhead issues well, but there is no further discussion available for 3-D

EDT computation either in this literature or in its related work. Also the algorithms which

are designed for 3-D EDT computation, none of them are based upon LARPBS

architecture.

Above discussion shows that there is an empty space for an efficient and scalable 3-D

EDT parallel algorithm for of 3-D binary images which would possibly overcome the

above issues. This space has derived the motivation for extending the 2-D EDT parallel

algorithm on LARPBS model for 3-D images as well.

- 12 -

Chapter 3: Proposed Algorithm

CHAPTER 3

PROPOSED ALGORITHM

3.1 BRIEF DESCRIPTION OF THE ALGORITHM
This parallel algortihm can be broadly devided into 2 phases:

1. Phase I: Plane Phase

In this phase Euclidean Distance of every voxel on its own plane is computed using 2-D

EDT algorithm for LARPBS model [1]. Input to this phase is a 3-D binary array which

is stored at the participating processors. This algorithm runs N times in parallel in this

phase for N 2-D arrays of the whole 3-D array. This phase uses total n2*a(n)*b(n)

number of processors where 1 < a(n) < n and I < b(n) < n . These processors are

divided into n sets of n *a(n) *b(n) processors. Every set computes the 2-D EDT for each

plane. This phase consists of 2 subphases which are:

a. Row major Phase: Every 2-D plane array is scanned Row wise parallely by group

of processors. Each Row is further divided into groups and for each voxel in each

group, their Row-wise closest 1-voxel i.e. RF(i, j, k) is determined parallely by

processor assigned to the group.

b. Column major phase: Every 2-D plane array is scanned Column wise parallely by

group of processors. Some row indices are selected to partition every column. Then

using the results obtained in Row major phase with Lemma 3 and 4, the Euclidean

Distance for each voxel, on the same plane is computed.

2. Phase II: Vertical Phase
After having calculated the Euclidean Distance on the same plane for each voxel, this

phase integrates the results of Phase I for each plane with other plane's results to

compute the actual EDT for each voxel in the complete 3-D array. This is done by

assigning N2 vertical columns parallely in the 3-D array to N2 group of processors.

Every group of processors is further subdivided into subgroups. These subgroups

calculates the EDT of the voxels present in the veritcal column.

-13-

Chapter 3: Proposed Algorithm

3.2 THE PARALLEL ALGORITHM FOR 3-D EDT COMPUTATION
Computaional Plateform: LARPBS system.

Initial Input: A 3-D binary martix of order N x N x N consisting Is and Os.

Final Output: A 3-D matrix containing Euclidean Distance Transform of corresponding

Input matrix.

Phase I: Plane Phase

Row Major Phase

For n sets of n *a(n) *b(n) processors having k = 0 to n-1

Parbegin

For n sets of a(n) *b(n) processors having i = 0 to n-1
Parbegin

1. Divide n voxels of each row into a(n) *b(n) groups. One processor contains group
of q = n/(a(n) *b(n)) voxels.

2. Find leftmost and rightmost 1-voxel in each row. Let them be if and rf
respectively.

3. All voxels left to if will have RF(i,j,k) = If and similerly all the voxels right to rf
will have RF(i,j,k) = rf.

4. Let t`h group of voxels is contained by processor PE(t) and its leftmost 1-voxel is

lf(t) and lb(t) is number of 0-voxel at the left of lf(t). Similerly its rightmost 1-

voxel is rf(t) and rb(t) is number of 0-voxels at the right of rf(t).

lb(t) = lf(t) - t* q ±1;

rb(t) = (t+1)*q- rf(t);

Every Processor collects lf(t), lb(t), rf(t), rb(t) values and sends lf(t) and lb(t) to

PE(t-1) and gets rf(t- t) and rb(t-1) from PE(t-1). Similerly sends rf(t) and rb(t) to

PE(t+l) and gets lf(t+1) and lb(t+l) from PE(t+l).

Note: All these messages can be comuunicated simultaneously without any

significant delay in LARPBS model.

-14-

Chapter 3: Proposed Algorithm

5. If lb(t) < rb(t-1) then

For all voxels left to lf(t) at PE(t), set RF value to voxel [i, lf(t), k].

Else

For initial [lb(t)-rb(t-1)]/2 voxels at PE(t), set RF value as [i,rb(t-1),k] and for rest

voxels at the left of lf(t), set RW value as [i, lf(t),k]. Similerly set RF values for

the voxels rigth to rf(t) at PE(t).

6. For all other voxels between lf(t) and rf(t) at PE(t), set their RF value according to

their closeness from adjecent left and right foreground voxels.

Parend.

Parend.

Column Major Phase

For n sets of n*a(n) *b(n) processors having k = 0 to n-1

Parbegin

For n sets of a(n) *b(n) processors having j = 0 to n-1

Parbegin

1. Divide a(n) *b(n) processors into b(n) gropus of a(n) proecessors per group.

PE~(p,q) denotes qlh processor in p`h group in jth column for j = 0 to N-1, p= 0

to b(n)- l ,q = 0 to a(n)-1. Every such processor contains n/a(n) number of

processors.

2. Send voxel (t*a(n)+I, j,k) and its RF value, to processor PE~(0,l) where t= 0 to

n/a(n)- I and 1=0 to a(n)- 1.

3. Broadcast n/a(n) RF values stored at PE~(0,1),1=0....a(n)-1 to

PEj (r,l),r=0....b(n)-1.

4. Divide voxels in the jth column into b(n) groups. Let g = n/b(n). Then select

b(n) pivot voxels to compute their F and d values. First, send voxel (tg, j, k) to

PE~(t,0), t= 0.. . b(n)-1.

5. For t=0 b(n)-1

Broadcast voxels (tg, j, k) stored at PE~(t,0) to PEj(t,$), s = 0 a(n)-1.

-15-

Chapter 3: Proposed Algorithm

6. For t = 0 b(n)-1

For 1 = 0 a(n)-1

Compute the Distance from voxel (tg, j, k) to n/a(n) RF values stored in

PE~(t, 1) and find the minimum which is called Local Minimum.

7. Now divide a(n) processors PEE(t, s),s =0 to a(n), into smaller groups, to find

the minimum from a(n) local minima obtained in previous step and store them

PE~(t, 0). These values are the F and d values for voxels (tg, j, k).

Let xg be the row index of F(tg, j, k) and nnumber of RF values corresponding

to the voxels in t`" group be Lt = x(t+1)g — xg.
8. Now repartition the jth group of a(n)*b(n) processors in to b(n) groups where

tt" group will have [L`*a(n)*b(n)]/n processors. Here

Lt*a(n)*b(n)/n < a(n) * b(n) since 	t_ob~°H L< < n. Further partition
these [Lt*a(n)*b(n)]/n processors into b(n) subgroups of [Lt*a(n)]/n
processors which will keep the voxels and their RF value of t h̀ group of
voxels in j`" column. Here qt" processor in pth subgroup and tth group is
denoted by PE~t(p, q).

10. Distribute RF values to PE~t(0,1), 1= 0 to [Lt*a(n)]/n — 1. Each processor will
have n/a(n) RF values.

11. For 1= 0 to [L`*a(n)]/n — 1

Broadcast n/a(n) RF values from PE~t(0,1) to PE~t(p,l) , p= 0b(n)-1.
12. Let g= n/b(n) and h=n/[b(n)]2. Divide these g voxels into b(n) subgroups and

get the b(n) pivot voxels to compute their F and d values. Send pivot voxel

(tg + ph, j, k) to processor PE3t(p,0),p = 0 b(n)-1.

13. For p = 0b(n)-1

Broadcast the pivot pixel (tg + ph, j, k) stored at PEEt(p,0) to PE~t(p,$), s =
0...a(n)-1.

14. For p = 0b(n) - 1

For s=0 a(n) - 1

Compute the distance between pivot voxels (tg + ph, j, k) and n/a(n) RF

values which are stored at PE~t(p,$) and find out the minimum as local

minimum.

-16-

Chapter 3: Proposed Algorithm

15. Divide the processors PE~t(p,$), s = 0..... [Lt*a(n)]/n — 1 into smaller subgroups

to get the minimum form [Lt*a(n)]/n local minima.These values are the F and

d value of pivot voxels (tg+ph, j, k), t, p = 0....b(n)-1.

16. Now voxels in jth column are further partitioned into [b(n)]2 subgroups by

these pivot voxels.

Repeat steps 8 to 15 recursively until all the voxels gets the F and d value at the

corresponding processor assigned to them.

Parend

Parend

This completes the EDT algorithm for 2-D planes. After this phase, ED on the same

plane for every voxel has been calculated. Figure 3 illustrates the operation of Phase I.

Plane To

Plane Tk

Plane TN_t

Figure 3.1. Illustration of Completion of Phase I.

Phase II: Vertical Phase

This phase integrates these results obtained in phase I for estimating the actual 3-D EDT

for each voxel. In this phase, the processors are reconfigured into N2 groups of a(n) *b(n)

processors. Each group processes one vertical column of N voxels parallely.

Let g = n/(a(n)*b(n)) denotes number of voxels per processor and PE1(p) denotes the p h̀

processor in (i,j)`" group. Let PFk(i, j, k) denotes the ED of voxel (i, j, k) on the same

plane Tk computed for every voxel in Phase I.

In this phase, following facts are considered to reduce the search region for computation

of F(i, j, k):

- 17-

Chapter 3. Proposed Algorithm

1 On the basis of Lemma 5 and 6, it can be deduced that, for any 2 voxels Q and P

with same X and Y—coordinates and Q above P in Z-axis direction, if FQ is known

first then the possible region for Fp would be starting from FQ to the end of image

array in Z-axis direction. It is impossible for Fp to be located in the region

between the starting of image and FQ. So it is unnecessary to search for nearest 1-

voxel in this region. Hence this is avoided in this phase.

2 Secondly, since the distance to nearest 1-voxel on the same plane i.e. PFk(i, j, k) is
already known, so for computing F(i, j, k) of each voxel, those planes can also be

ignored which have Z-direction distance from the current plane to be more than

PFk(i, j, k).
Let RGk denotes the region in which F(i, j, k) is expected to lie. This region is
restricted by the two factors mentioned above.

Steps:

1. Assign N, PFk(i, j, k), 0 < k < N-1 values to group of a(n) *b(n) processors. Each
processor will have g = n/(a(n)*b(n)) PFk(i, j, k) values.

2. Fori=0toN-1 andj=0toN-1

Parbegin

1. Start with the middle voxel of the column having k = N/2.

2. Compute the expected region RGk for plane Tk using the first fact mentioned
above.

3. Ignore those planes Th from the expected region RGk which satisfy the

condition: I t — k I > PFk(i, j, k)

4. For all h c RGk

a. Broadcast PFh(i, j, h) value from processor PE1(h/g) to processor PE;~(k/g).

b. Set F(i, j, k) = { (x, y, h) I min{ (k-h)2 + PFh(i, j, h)Z } }
heRGk

d2;~j,k = (x -i)2+ (Y -j)2 +(h-k)2

5. Divide the column into 2 parts:

a. To or the last plane before Tk for which EDT has been computed upto Tk_ i _
b. Tk to either TN _ I or first plane after Tk for which EDT has been computed.

Recursively repeat the whole process in parallel for these 2 subparts of the

original column.

Parend.

Chapter 3: Proposed Algorithm

3.3 COMPLEXITY AND SCALABILITY ANALYSIS
The estimation of time complexity and number of processor used in the above algorithm

is as follows:

■ Phase I: Plane Phase

In this phase first, each plane is scanned Row mojor. LARPBS premitive operations like

multicasting, extraction etc are performed in this phase which takes 0(1) time. Then

every processors computes RF values for n/(a(n)*b(n)) voxels so this takes

O(n/(a(n)*b(n))) time if n > a(n)*b(n) otherwise it takes O(1) time. In Column major

scan of each plane, every step takes O(n/a(n)) time while there are [log n/ log b(n)] steps

in the recusion. So the complexity of column major scan is O((n log n)/(a(n)* log b(n))).

So the complexity of Phase I will be O(n/(a(n)*b(n))) + O((n log n)/ (a(n)* log b(n))).

Assuming n> a(n)*b(n), the overall complexity of this phase will also be

O(n log n/(a(n) *log b(n))).

■ Phase II: Vertical Phase

In this phase N2 groups of a(N)*b(N) processors process one vertical column of N voxels

in parallel. At each step we devide the vertical column into 2 regions and recursively

compute the EDT of the regions. In the worst case the region to be considered could have

N voxels, and the whole column is scanned in log N passes. So the total complexity of

computing EDT of one vertical column is O(N log N) provided every processor would

compute EDT for 1 voxel. But since here every processor computes EDT for

N/(a(N)*b(N)) voxels, so the complexity is increased to O(N21ag N/(a(n) * b(n))).

Considering both phases, the overall complexity would be:

0(N log N/(a(N)*log b(N))) + O(N2 log N /(a(n) * b(n)))

Or effectively it will be O(N2 log N /(a(n) * b(n))).

- 19-

Chapter 3: Proposed Algorithm

Estimation of total number of processors used:
■ Phase I:

• Row Major Subphase: N groups of a(N) * b(N) processor for n rows in each
plane, and total N planes.

• Column Major Subphase: N groups of a(N) * b(N) processor for N columns in
each plane, and total N planes.

Total = N2 * a(N) * b(N) processors in both subphases.

■ Phase II:
N2 groups of a(N) * b(N) processor for N2 vertical columns in the whole 3-D array.
Total = N2 * a(N) * b(N) processors.

So altogether this algorithm needs N2 * a(N) * b(N) number of processors to complete.

Scalability of the Algorithm : In this algorithm, the time complexity and number of

processors required have not been made strictly fixed but rather two parameters a(N) and

b(N) have been used to alter these attributes of the algorithm. The values of the two

parameters can be selected between 1 to N. By choosing different values for a(N) and

b(N), the time complexity and number of processors needed, can be varied, which makes

the algorithm more flexible and scalable. For example let us take a(N) = N, and b(N) = N,

then the overall time complexity of the algorithm will be O(N2log N/(N*N)) = O(log N)
and the total number of processor required will be NZ * N * N = N4. Similerly the
algorithm can be scaled to different time complexities and different number of processors
available in the multiprocessor system.

-20-

Chapter 4: Implementation

CHAPTER 4

IMPLEMENTATION

4.1 SYSTEM SPECIFICATION
The scalable parallel algorithm for 3-D EDT computation discussed in the last chapter

has been designed for LARPBS multiprocessor model. But the research work done so far

on LARPBS model, concludes that the practical implementation and the feasibility

analysis of this model are still undergoing processes. So the algorithms designed for this

architecture have been usually implemented on different multiprocessor systems. To

emulate LARPBS system on other architectures, the inter-processor communication

overheads are just considered to be in the scale of LARPBS architecture and the parallel

processing of the algorithms can be performed on any other multiprocessor systems. For

the implementation of the 3-D EDT algorithm designed in this work, the same strategy

has been followed. The implementation of the parallel algorithm has been done on the

multiprocessor cluster available in the Institute Computer Center. This had been one of

the major challenges in this dissertation work to emulate the LARPBS model on the

available multiprocessor cluster. This cluster has the following system configuration

which has been used as the implementation platform:

■ Hardware Specification:

• HP DL 140G2 6-CPU Cluster, which are mapped onto 45 Processing Elements.

• Xeon i386 processor.

■ Software Specifications:

• LAM/MPI.

• Red Hat Enterprise Linux ES release 3 (Taroon) — Kernel 2.4.21-4.ELsmp.

Here it is important to note that, since the inter processor communication operations like

broadcasting, multicasting etc with negligible time requirement which are specific to

LARPBS model, are not provided by the cluster platform, so these operations have been

implemented through the primitives provided by MPI and LAM on the HP cluster and the

time overhead have been taken in the order of LARPBS model. Detailed discussion about

MPI primitives is given in next section.

-21-

Chapter 4: Implementation

4.2 MESSAGE PASSING INTERFACE (MPI)
Message passing is a paradigm used widely on certain classes of parallel machines,

especially those with distributed memory. MPI enables developers to efficiently program

"tightly coupled" algorithms which require nodes to communicate during the course of a

computation [23]. MPI is a library of subprograms that can be called by a C program.
The foundation of the library is a small group of functions that can be used to achieve

parallelism by message passing [24]. A message passing function is simply a function
that explicitly transmits data from one process to another. Message passing is a powerful

and very general method of expressing parallelism.

Message passing can be used to create extremely efficient parallel programs, and it is
currently the most widely used method of programming parallel computers. The main

advantages of establishing a message-passing standard are portability and ease-of-use. In
a distributed memory communication environment in which the higher level routines and

abstractions are built upon lower level message passing routines the benefits of
standardization are particularly apparent [24]. This standard is intended to allow users to

write portable message passing programs. The standard includes [23]:

• Point-to-point communication

• Collective operations

• Process groups

• Communication contexts

• Process topologies

• Bindings for Fortran and C

• Environmental Management and inquiry

• Profiling interface

MPI provides many features intended to improve performance on scalable parallel

computers with specialized inter-processor communication hardware. Thus, it is expected
that native, high-performance implementations of MPI will be provided on such

machines. At the same time, implementations of MPI on top of standard UNIX inter-
processor communication protocols will provide portability to workstation clusters and

heterogeneous networks of workstations.

-22-

Chapter 4: Implementation

Each MPI program must have MPI_InitO and MPI_FinalizeO functions. The first and the

last MPI statements in an MPI program are MPI_Init() and MPI_Finalize() respectively

[22]. All processes must initialize MPI by calling MPI_Init() function and finalize MPI

by calling MPI Finalize() function. The calling syntax for these functions are

err = MPI_Init(&argc, &argv)

err = MPI_FinalizeO

where err is the error number.

In basic message passing the processors coordinate their activities by explicitly sending

and receiving messages. For example, at its most basic, the Message Passing Interface

(MPI) provides functions for sending a message and receiving a message [23]. The

process of sending and receiving is illustrated in Figure 4.1 [25] and the syntaxes are
given below:

int MPI_Send(void* buffer, /* in */

int count, /* in */

MPI_Datatype datatype, /* in */

int destination, /* in */

int tag, /* in */

MPI Comm communicator /* in */

int MPI Recv(void* buffer, /* out */

int count, /* in */

MPI_Datatype datatype, /* in */

int destination, /* in */

int tag, /* in */

MPI Comm communicator /* in */

MPI Status* status /* out */

A Broadcast is a collective communication in which a single process sends the same data

to every process to the communicator. Each system that runs MPI has a broadcast

function MPI_Bcast. The syntax of MPI_Bcast is given below:

- 23 -

Chapter 4: Implementation

int MPI Beast (void* 	 message 	/*in / out */,

int 	 count 	/*in */,

MPI Datatype 	datatype 	/*in */,

int 	 root 	/* in */,

MPI Comm 	comet. 	/* in */

This simply sends a copy of data in message on the process with the rank root to each
process on the communicator comm. It is called by all the process in the communicator
with the same arguments for root and comm. Hence a broadcast message can not be
received by function MPI Recv.

The current version of MPI assumes that processes are statically allocated, i.e., the

number of processes is set at the beginning of program execution, and no additional

processes are created during execution. Each process is assigned a unique integer rank in
the range 0, 1, .. . , p — 1, where p is the number of processes. These processes are
assigned to the participating processors by the master processor which also integrates the

results from all the computing processors and is responsible for final results.

Process 0 	 Process 1 	 Process 2

M

P! Send

mpute 1

MPI Recv

Compute

M
MPI Recv

Compute 1

MPI Sen

.
COfl1F to

Figure 4.1: Illustration of MPI Send and MPI Recv functions by multiple Processors.

Chapter 4: Implementation

4.3 IMLEMENTATION DETAILS
As mentioned in earlier chapters, we have extended Chen 's approach [I] for the 2D-EDT

problem for an N xN x N, 3-D image array. Chen et al. [1] have proposed the algorithm

and architecture for the 2D-EDT problem. For an N x N 2D image array, Chen 's

algorithm consists of two main passes, the row scan, and the column scan. First, the rows

are scanned in parallel by group of processors then every column is scanned and then, the

results are merged. After the column scan, the 2-D EDT results are obtained. A great

advantage of Chen 's algorithm is the ability to scale the 2-D EDT computation with the

variations in the number of processors available and also in the time complexity of the

overall process. The benefit of this property is that their algorithm is easily parallelized

and implemented on different architectures with different time requirement for EDT

computation.

The extended algorithm for 3-D binary image arrays continues even after the row and

column scan of each 2-D plane in the whole 3-D array. After having calculated the

individual EDTs at each 2-D plane, the results for each voxel, are integrated to find out

the actual 3-D EDT for each voxel. The 3-D EDT algorithm also possesses the properties

of the original 2-D algorithm.

The algorithm discussed in the last chapter has been implemented in 2 versions:

sequential and parallel. The performance of both versions of the 3-D EDT algorithm has

been compared and analyzed with the results of parallel algorithms proposed by Lee et al.

[6] (denoted by 3DEDT_LEE), Yamada [16] (denoted as 3DEDT YD) and Saito and

Toriwaki [19] (denoted 3DEDT_SCAN). Detail discussion about both the versions is

given in the subsequent subsections.

-25-

Chapter 4: Implementation

4.3.1 Sequential Implementation
The sequential version has been implemented on a simple Pentium-IV machine using

C++ language. In this version, the EDT of an N x N x N 3-D binary image array has been

calculated by simply following the approach discussed in our algorithm but in sequential

manner. In this version, it has been considered that all the parallel processing mentioned

in the original algorithm is performed sequentially on a uni-processor machine.

The input has been taken from a file which stores the 3-D binary array containing 1 s and

Os. This file is read into a 3-D matrix in the program. Then the given 3-D binary voxel

array of size N x N x N is divided into N planes of N x N binary voxels. For each 2-D

plane separately, EDT values are calculated in the function plane-Phase (). To calculate

the values of 2-D EDT for each voxel at the same plane, the same strategy is followed

which is mentioned in the parallel algorithm i.e. scanning 2-D plane row wise then

column wise and integrating both results. But this process is performed sequentially one

by one for each plane.

After having calculated the 2-D EDT values for each plane individually, function

vertical_phase() is called separately for each vertical column of 3-D binary array which

compares the 2-D EDT values for each voxel on their own planes, with the distances of

other 1-voxels on different planes, to get the actual 3-D EDT values for each voxel. This

function is called recursively for each vertical column in such fashion that at each run it

divides the whole vertical column into parts and calculates the actual EDT of the dividing

voxel. Finally, the computation of 3-D EDT for each voxel gets over by function

vertical_phase () for each vertical column and the output values are stored in the 3-D

array which contains the Euclidean Distances for each voxel.

This sequential version of 3-D EDT algorithm has been implemented just for the sake of

the performance comparison with the sequential versions of some other 3-D EDT

algorithms. The performances have been compared on the basis of the increasing number

of 1-voxels in the input array and different values of N. The performance evaluation and

comparison results will be discussed in the next chapter. 	 0

-26-

Chapter 4: Implementation

4.3.2 Parallel Implementation

The parallel algorithm has been implemented on the HP cluster using MPI, for a 3-D

binary voxel array of size 128 x 128 x 128. The inter processor communication involved

in the algorithm is specific to LARPBS model but they have been implemented using the

available MPI primitives for the cluster architecture which has been used as the platform

to emulate the LARPBS model. We have compared the performance of this algorithm

with the performances of other parallel 3-D EDT algorithms. The comparison is based

upon time complexities, computational time and scalability etc. Performance of the

algorithm has been analyzed with different values of the parameters a(N) and b(N),

thereby altering the number of processors used. Performance comparison results will be

discussed in the next chapter.

The implementation of parallel algorithm is decomposed into 2 phases. Initially the input

file containing the input 3-D binary array is available at shared memory of the cluster.

The computation is initiated by the master processor by reading the input array and

distributing it to the participating processors. The processing of both phases has been

explained in subsequent subsections.

a. Implementation of Phase I:
This phase can also be called Plane Phase, as in this phase we compute Euclidean

Distance for every voxel on its own plane by following the approach of 2D-EDT

algorithm on LARPBS model [1]. Initially we have taken total 32 processors for the

complete computation but the code has also been run with different number of

processors. These processors are subdivided into different sets of processors. Every set

computes the 2-D EDT for each plane. The master processor distributes the input 3-D.

binary array to the participating processors according to allocation strategy mentioned

in the algorithm. Now, this phase is run for each of N 2-D arrays from the whole 3-D

array. Each plane is scanned through 2 subphases which are explained below:

-27-

Chapter 4. Implementation

I) Row major scan:

The processors assigned for one plane are further subdivided into N sets to process
each row of the 2-D array. Every processor from these subgroup gets some voxels at
each row. The value of leftmost 1-voxel denoted as if and right most 1-voxel denoted
as rf are calculated at each row. Now voxels at each row are scanned by the assigned
processer. The processors start determining the RF values for each voxel i.e. the

distance of nearest 1-voxel on the same row, according to the procedure explained in
the algorithm. Once the RF values for each voxel from all the rows are known, this
scan is over. The processors assigned for each row contains the RF values of the
voxels assigned to them. Now each 2-D array is scanned columnwise.
Note: All these messages between the processors are supposed to be transfered
simultaneously without any significant delay in LARPBS model but the cluster

architecture involves some delay in this process. This delay has not been taken into
consideration in the performance evaluation in order to maintain the standards of
LARPBS model.

II) Column major scan:

Once the row major scan is over, the processors are redistributed through the columns
of each 2-D array into subgroups. These subgroups of processors are assinged the
group of voxels from each column so there are N such subgroups for N columns. The

group of voxels in each column are assigned to these processors by following the way

explained in the algorithm. Row indices are selected in order to partition each column.
After this assignment of voxels to group of processors, the processors transfer the RF
values of the old voxel sets to other groups according to the procedure explained in the
algorithm and compare those values to the newly obtained values in each column. In
this process the set of proccessors are reconfigured for a couple of times. At the end of

this process the processors choose the minimum value among all the distances of I -
voxels from the voxel under consideration and sets as the EDT for that voxel at the
same plane. After this scan, the processing of phase I completes and the processors

contain the values of 2-D EDT for the assigned voxels on their own plane. In the next
phase i.e. Vertical phase these results are integrated with the results obtained by
scanning the vertical columns of the 3-D array to obtain the actual 3-D EDT transform.

Chapter 4: Implementation

b. Implementation of Phase II:
This phase can also be called Vertical Phase since the 3-D array is scanned vertically i.e.

each vertical column is scanned by the group of processors. So there are N2 such groups

of processors formed for N2 columns. Now on the basis of the properties explained in the

algorithm, the search region is reduced for each voxel. Once the search region is decided

for each voxel, the processors are reassigned with the 2-D EDT values determined in

phase I for different number of voxels.

Now each vertical column is scanned and partitioned according to the algorithm and the

processors associated with each voxel determine the distances of other 1-voxels which

are not on the same plane. Then comparison between these distances is performed to get

the actual Euclidean Distance for a particular voxel. The corresponding processor sends

this result to the master processor which stores these values into the output array. The

partition process of each vertical column is performed recursively and at each step we

calculate the EDT values of different number of voxels. This whole process runs for all

the N2 columns parallely by different group of processors. They all send their results to

the master processor as and when the compute the EDT for their assigned voxels. Once

the result is collected from all the participating processors, the master processor displays

the output matrix which is the Euclidean Distance Transfer of the original input matrix.

4.4 PERFORMANCE EVALUATION METRICS
The algorithm for 3-D EDT computation has been implemented in 2 versions sequential

and Parallel. The performances of both versions have been evaluated on basis of different

factors. In case of sequential version, the major evaluation metrics are different numbers

of 1-voxels in the 3-D input matrix and different sizes of the 3-D input matrix. Its

performance has been compared with the sequential versions of other EDT algorithm on

different platforms on these 2 factors. As this version is implemented and run on a single

machine, so there is no factor of inter processor communication overhead involved.

Complete execution is performed sequentially and the total execution time is compared

with the same of the implementations of other algorithms.

-29-

Chapter 4: Implementation

The parallel version of the algorithm has been implemented on HP cluster architecture

which emulates the performance of LARPBS model. Inter processor communication

overhead is one of the major factors which affects the performance of the algorithm. Here

we have supposed this overhead to be in the order of the LARPBS model in order to

maintain the computation time of the algorithm. Apart from this factor some other factors
which affect the performance are listed below:
1. Different sizes of 3-D input matrix i.e. different values of N.
2. Different values of parameter a(N) and b(N) taken between 1 and N.
3. Variable Number of processors used.
4. Variable Time Complexities.

In the next chapter we will discuss the performance evaluation of both versions on the

basis of these metrics along with the comparative analysis of the performances of our
algorithm with other 3-D EDT algorithms.

-30-

Chapter 5: Results and Discussion

CHAPTER 5

RESULTS AND DISCUSSION

In this chapter, we will discuss and analyze the performance results of both version of

implementation of the 3-D EDT algorithm designed in this dissertation work compare.

5.2 PERFORMANCE EVALUATION AND COMPARISION

5.1.1 Performance of Sequential Version
The sequential version has been implemented on a single Pentium-IV machine using C++

language. In this version, the EDT of an N x N x N 3-D binary image array has been

calculated by following the approach discussed in our algorithm but in sequential

manner. The execution time of this version is compared with that of 3 sequential versions

of other 3-D EDT algorithms with the change in various parameters.

The performance of the sequential versions of our 3-D EDT algorithm has been

compared and analyzed with the performances of the algorithms proposed by Lee et al.

[6] (denoted by 3DEDT_LEE), Yamada [16] (denoted as 3DEDT_YD) and Saito and
Toriwaki [19] (denoted as 3DEDT SCAN).

Fig. 5.1 shows the performance comparisons for the 3D-EDT sequential algorithms with

the increasing number of 1-voxels Vn X Vn in the input binary image matrix of size

128 x 128 x 128 where the 1-voxel distribution is uniform. As we can see from Fig. 5.1,

program 3DEDT_YD is very time-consuming when the number of I -voxels is sparse

because the propagation distance is long and requires more iteration. By increasing the

number of 1 -voxels, the running time of program 3DEDT_YD converges to a stable time.

The running time of program 3DEDT_YD is very sensitive to the number and the

distribution of 1-voxels. The program 3DEDT_SCAN runs much faster and more stably

than program 3DEDT_YD. interestingly however, 3DEDT LEE shows an even stable

and better performance than the other two.

-31-

Chapter 5: Results and Discussion

Our implementation shows comparatively better performance than 3DEDT YD and
3DEDT SCAN. For less number of 1- voxels it gives a little worse performance than
3DEDT LEE but for higher number of 1-voxels it improves and shows a better
performance.

Performance Comparison between sequential versions of 3-D EDT
algorithms for 128 x 128 x 128 image array

200

180 .i8O.45

160

	

140 	 140.73

120 •

100
E
i= 80

60

40

20

	

0 	:-4.$ 	• 	 w._~.__._; ~-@6 	6.4

0 	32 	64 	96 	128
Number of 1-voxels Vn x Vn

•— 3DEDT LEE -f- 3DEDT SCAN --o - 3DEDT YD - - 3DEDT OUR

Figure 5.1 Performance Comparison between sequential versions of 3-D EDT algorithms
with increasing number of 1-voxels.

Fig; 5.2 shows the performance comparisons of the above mentioned 3D-EDT sequential
algorithms with the increasing size of the voxel image array. Without being affected with
the size N, our sequential implementation runs with almost same performance as

3DEDT_LEE algorithms performance. Here also we can see that 3DEDT YD still
exhibits the poorest performance, while 3DEDT_SCAN shows an average performance
among the all the other algorithms.

-32-

Chapter 5:. Results- and Discussion

Performance Comparison between 3DEDT algorithms for N x N x N image
array

20

18 	
18.65

16
15~

14

1:::E
5

4

0
32 	64 	96 	128

Size N

L. 3DEDT LEE U— 3DEDT SCAN — t -- 3DEDT YD)E— 3DEDT OUR

Figure 5.2 Performance Comparison between sequential versions of 3-D EDT algorithms
with increasing size of input array.

Run Time Ratio (RTT) can be defined as the ratio of the time taken by any other
algorithm to that of our algorithm. Table 5.1 shows the run time ratio of our sequential
implementation with other 3 sequential algorithms for various values of N.

Table 5.1 RTT comparison between the sequential algorithms for different values of N.
EDT
Algorithm(X)

Time
Complexity

RTT = X / (3DEDT_OUR)
N=32 N=64 N=96 N=128

3DEDT_LEE O(N) 0.6 1.66 1.57 0.78
3DEDT_SCAN O(N) 0.6 4.91 4.27 1.89
3DEDT_YD O(N) 9.3 17.68 10.71 2.94

-33-

Chapter 5: Results and Discussion

5.1.2 Performance of Parallel Version
Here, the parallel 3D-EDT algorithm has been implemented the HP cluster architecture

using MPI (Message Passing Interface) to emulate the LARPBS model. For a 128 x 128
X 128 3-D voxel image array. Here it should be noted that the delay involved in the inter

processor communication in LARPBS model is negligible as we have seen in chapter 2.
While the HP cluster system is non-shared memory architecture and the data exchange

time exceeds the processor computation time. So in order to maintain the overhead as per

the LARPBS model standards, we have ignored the actual delay introduced because of
inter processor communication and considered only the actual computational time.

For each sub image array, the computation loading is different for each processor and it is

dependent on the particular 1-voxel pattern that is loaded. The running time on the cluster
is bounded by the worst computation time for each sub image array. So, for each phase,
we sum up the worst computation time of each processor.

Parallel Algorithm's Performance for image array of size 128
x 128 x 128

40

35
37.2

30

25

20 y
F 15

10

5

0
1 	 S 	16 	24 	 32 	40

Number of Processors

—•3DEDT LEE —f-3DEDT OUR

Figure 5.3 Performance Comparison of Parallel 3-D EDT algorithms with increasing

number of processors used.

-34-

Chapter 5: Results and Discussion

Fig. 5.3 shows the parallel algorithm's running time with different number of processors

used, and it is compared with Lee et al. [6] (denoted by 3DEDT_LEE), to obtain the

speed up curve of the proposed parallel algorithm. From Fig. 5.3, we see that both
performances are quite close but with higher number of processors our algorithm does a

little better than 3DEDT_LEE. On the other hand with less number of processors

3DEDT_LEE performs well than our algorithms.

Finally, we have analyzed the performance of the parallel MPI program running on HP

cluster on the basis of the data exchange rate, actual computational time and the total
running time of the program. This analysis has been shown in Figure 5.4. From this

figure it is clear that the contribution of data exchange time in total running time is less
significant than the actual computational time since our algorithm exhibit quite a small

amount of data exchange which makes the inter processor communication overhead
negligible and improves the overall performance.

Parallel Algorithm's Peroformance on HP Cluster for 128 x
128 x 128 3-D image array

	

40 	7

35

30

25

20

	

E 15 	
1g ~g 14.66

	

10. 	 9.16 10.45
__ ___ ___________

6.96 10

	

5 	 3.54
0 0.1 	_ 	3 -

]_1
	.

1 	8 	16 	24 	32 	40

Number of Processors

D Data Exchange Time ® Computational Time © Running Time

Figure 5.3 Performance of 3-D EDT parallel MPI program running on HP Cluster.

- 35 -

Chapter 5: Results and Discussion

5.2 COMPLEXITY AND SCALABILITY COMPARISON
We have discussed in the chapter 3 that the complexity of our algorithm is O(N2 log N

/(a(n) * b(n))) and the total number of processor used in both phases are N2*a(n) *b(n).

This is clear that by selecting different values for parameters a(N) and b(N), we can make

our algorithm more flexible and also scalable to different architectures on the basis of the

number of processors available for computation. Also we can achieve, different time

complexities by varying the values of these parameters. Table 5..2 gives the summery

about the various time complexities and number of processors required by the selection

of various values for a(N) and b(N). The list does not end here but can be extended for

some more values of these parameteres.

Table 5.2 Different algorithms derivable from this framework

a(N) b(N) Time Complexity Number of Processors

N N O(log N) N4

N Constant r O(N log N) rN3

N/ log N log N O(N log N) N3

N/ log N Constant r O(N log N) rN3 / log N

1 log N O(N) N2 log N

1 Constant r 0(N2 log N) rN2

N N°' 5 O(N 	log N) N

log N Constant r O(N) N2 log N

The performance of our algorithm has been compared with 3 other 3DEDT algorithms. If

we talk about the complexities of these algorithms, Yamada's algorithm takes 0 (N3)

time in the worst case. It requires N iterations to converge in the worst case. During each

iteration, it takes 0 (N2). So the sequential time to scan the whole image array, in the

worst case would be 0 (N3). Saito and Toriwaki [19] presented several EDT algorithms

based on the scan approach for an n-dimensional image array. For the 3D-EDT problem,

Saito and Toriwaki's EDT algorithm also takes 0 (N4) time complexity. Our sequential

implementation on the other hand takes 0 (N3) time to scan the whole 3-D array.

-36-

Chapter 5: Results and Discussion

5.3 DISSCUSSION
We have implemented the proposed algorithm sequentially and compared the

performance of our implementation with those proposed by Lee [6], Yamada [16] and

Toriwaki [19]. Based on the comparison, the algorithm presented in this paper exhibits a

better performance to the other three algorithms. We also implemented the parallel

algorithm which runs on an HP DL cluster and compared it with Lee's parallel

implementation. Its performance demonstrates near to that of Lee's. The latter, however,

takes too much data exchange time.

The performance improvements of our implementation of the 3D EDT algorithm can be

achieved through proper selection of a(N) and b(N). To get the higher speed, the time

complexity 0 (N2 log N / (a (n) * b (n))) must be minimized, i.e., a (n) * b (n) should

reach its minimum. Therefore, we must choose both parameters as small as possible. To

get the highest efficiency, the time-processor cost 0 (N4 log N) must be minimized, but

since it is independent of a (N) and b (N) so variation in these parameters will not affect

the efficiency of the algorithm.

-37-

Chapter 6: Conclusion and Future Work

CHAPTER 6

CONCLUSIONS AND FUTURE WORK

6.1 CONCLUSIONS
A scalable parallel algorithm for 3-D EDT computation on LARPBS model has been

designed and implemented in this dissertation work. The algorithm is an extension to 2-D

EDT algorithm on the same model. The algorithm computes the 3-D EDT with time

complexity O(N2 log N /(a(n) * b(n))) and N2*a(n) *b(n) number of processors.

LARPBS model has been chosen for this algorithm since it gives the benefit of low

communication time between processors and high speed data transfer. The operations like

multicasting, broadcasting etc which involve heavy interprocessor communication, can

be performed in constant time on this model. This algorithm takes the advantage of these

features and results in low communication overhead.

After the introductory chapter 1, in chapter 2 we discussed about the basic information

and some properties of Euclidean Transform. Some useful lemmas were given which are

helpful in understanding the wrokflow and Igic of the algorithm. We also dicussed about

the architechture of LARPBS model, its properties, workflow, interprocessor

communication mechanism etc. Rest of the chapter dicussed about the work done so far

in these areas and the research gaps which gave the motivation for this work.

We derived the parallel algorithmm for 3-D EDT computation as an extension to the 2-D

EDT algorithm for the same LARPBS model in chapter 3. Along with the algorithm, its

complexity and scalability analysis has also been given in this chapter.

The detailed discussion about the implementations platform, implementation tool i.e.

LAM/MPI was done in Chapter 4. The sequential and parallel implementation of the 3-D

EDT algorithm were discussed in detail. This chapter also gives a breif information about

the metrics used for the performance analysis and comaparison.

:

Chapter 6: Conclusion and Future Work

Finally Chapter 5 gives the detailed performance analysis and comaprative study between

the other 3-D EDT algorithms for other platform with our algorithm and both

implentations of it. The basis of the performance and comaparison are the metrics given

in the last chapter.

6.2 SUGGESSION FOR FUTURE WORK
One of the major challenge faced during this dessertation work is the emulatioon of

LARPBS model on the available HP cluster architecture. So for future work in this area

involves the developement of some tools which could effciently emulate the performance

of LARPBS model through other multiprocessor models sothat the algorithms

specifically designed for LARPBS can be implemented, evaluated and analyzed, on

other architectures as well.

A second intiatve which could be taken is incorporation of some efficient task scheduling

or task-to-processors mapping approaches for various multiprocessor architectures with

the derived algorithm would further optimize the perfomance of the algorithm by

reducing communication overheads. This is seen that during the design of the parallel

algorithms, the hardware architectures are ususally not considered. When the algorithm

is designed for any specific model than by considering the hardware architecture of that

model we can opt some efficient task scheduing strategy for the given multiprocessor

platform, which may result into further optimization of the algorithm. In future these

issues could be taken into research efforts.

-39-

References

REFERENCES

[I] Ling Chen, Yi Pan, and Xiao-hua Xu, "Scalable and Efficient Parallel Algorithms for

Euclidean Distance Transform on the LARPBS Model ", IEEE Transactions on Parallel

and Distributed Systems, Vol. 15, No. 11, November 2004.

[2] H. Blum, "A Transformation for Extracting New Descriptors of Shape ". Models for

the Perception of Speech and Visual Form, Mass.: MIT Press, W. Wathen-Dunn, ed., pp.

362-380, 1967.

[3] A. Rosenfeld and J.L. Pfalz, "Sequential Operations in Digital Picture Processing"

ACM, vol. 13, pp. 471-494, 1966.

[4] A. Rosenfeld and J.L. Pfalz, "Distance Function on Digital Pictures ". Pattern

Recognition, vol. 1, pp. 33-61, 1968.

[5] A. Rosenfeld and J. L. Pfalz, "Distance function on digital pictures and Pattern

Recognition ".

[6] Yu-Hua Lee, Shi-Jinn Horng, and Jennifer Seitzer, "Parallel Computation of the

Euclidean Distance Transform on a Three-Dimensional Image Array", IEEE

Transactions on Parallel and Distributed Systems, Vol. 14, No. 3, March 2003.

[7] Yi Pan Mounir Harndi, "Quicksort on A Linear Array With A Reconfigurable

Pipelined Bus System ".

[8] L. Chen and H. Y. H. Chuang, "A fast algorithm for Euclidean distance maps of a 2-

D binary image ". Inform. Process. Lett., 51 (1994), pp. 25-29.

[9] L. Chen, "An Optimal Algorithm for Complete Euclidean Distance Transform ",

Chinese J. of Computer, vol. 18, no. 8, pp. 611-616, 1995.

References

[10] Ren'e Rold'an a, Brian J. d'Auriol, "A Preliminary Feasibility Study of the LARPBS

Optical Bus Parallel Model"

[11] Amitava Datta, Subbiah Soundaralakshmi, "Fast and Scalable Algorithms for the

Euclidean Distance Transform on the LARPBS".

[12] Z. Guo, R. Melhem, R. Hall, D. Chiarulli, and S. Levitan, "Array Processors with

Pipelined Optical Busses". Journal of Parallel and Distributed Computing, 1, 2, 3, pp.

269-282 (1991).

[13] A. Fujiwara, T. Masuzawa, and H. Fujiwara, "An Optimal Parallel Algorithm for
the Euclidean Distance Maps of 2-D Binary Images ", Information Processing Letters,

vol. 54, pp. 277-282, 1995.

[14] K. Li, Y. Pan and M. Hamdi, "Solving graph theory problems using reconfigurable

pipelined optical buses ", Parallel Computing, 26 (2000), pp. 723-735.

[15] K. Li, Y. Pan and S. Q. Zheng, "Fast and processor efficient parallel matrix
multiplication algorithms on a linear array with a reconfigurable pipelined bus system ",
IEEE Trans. Parallel and Distributed Systems, 9, (8), (1998), pp. 705-720.

[1.6] Yamada H., "Complete Euclidean distance transformation by parallel operation ".
Proc. 7th International Conference on Pattern Recognition, 1984, pp. 69-71.

[17] M. N. Kolountzakis and K.N. Kuatulakos, "Fast Computation of the Euclidean

Distance Maps for the Binary Image", Information Processing Letters, vol. 43, pp. 181-

184, 1992.

[18] A. Fujiwara, T. Masuzawa and H. Fujiwara, "An optimal parallel algorithm for the

Euclidean distance maps of 2-D binary images ". Inform. Process. Lett. 54, (1995), 295-

-41 -

References

[19] T. Saito and J. Toriwaki, "New Algorithms for Euclidean Distance Transformation

of an n-Dimensional Digitized Picture with Applications, " Pattern Recognition, vol. 27,

pp. 1551-1565, 1994.

[20] Y. Pan, Y. Li, J. Li, K. Li and S.-Q. Zheng, "Computing distance maps efficiently

using an optical bus ", Proc. IPDPS 2000 Workshop on Parallel and Distributed

Computing in Image Processing, Video Processing and Multimedia (PDIVM 2000),

LNCS 1800, pp. 178-185.

[21] Yi Pan and Keqin Li. "Linear array with a reconfigurable pipelined bus system —

concepts and applications. " In H.R. Arabnia, editor, Proc. of the International

Conference on Parallel and Distributed Processing Techniques and

Applications(PDPTA'96), Vol. III, pages 1431-1441, Sunnyvale, California, USA,

August 1996.

[22] Y. Pan, Y. Li, J. Li, K. Li, and S.-Q. Zheng, "Efficient Parallel Algorithms for

Distance Maps of 2D Binary Images Using an Optical Bus ", IEEE Trans. Systems, Man,

and Cybernetics—Part A: Systems and Humans, vol. 32, no. 2, pp. 228-236, Mar. 2002.

[23] MPI information Available at website,

http://www-unix.incs.anl. gov/mpi/, Last Accessed May 25, 2007

[24] Peter S. Pacheco, "Parallel Processing With MPI", Morgan Kaufmann Publishers.

[25] LAM/MPI information Available at:

http://www.lam-mpi.or g/~, using/dots/7.1.3-user.pdf

4

-42-

APPENDIX

SOURCE CODE LISTING

Sequential Implementation of 3D EDT Algorithm in C++.

--Edt.h

/* Euclidean distance transform */

#ifndef EDT _H

#define EDT_H

#include <algorithm>

#include "image.h"

#define INF 1E20

/* edt of 1 d function using squared distance */

static float *dt(float *f, int n)

{

float *d = new float[n];

int *v = new int[n];

float *z = new float[n+l];

int k = 0;

v[0] = 0;

z[O] = -INF;

z[1] = +INF;

for (int q = 1; q <= n-1; q++)

float s = ((f[q]+square(q))-(f[v[k]]+square(v[k])))/(2*q-2*v[k]);

while (s <= z[k]) {

k--;

s = ((fjq]+square(q))-(f[v[k]]+square(v[k])))/(2*q-2*v[k]);

1

k++;

v[k] = q;
z[k] = s;
z[k+l] = +INF;

}

k=0;
for (int q = 0; q <= n-1; q++) {

while (z[k+l] < q)
k++;

d[q] = square(q-v[k]) + f[v[k]];

}

delete [] v;
delete [] z;
return d;

i]

/* dt of 2d function using squared distance */
static void dt(image<float> *im)
{

int width = im->widthO;
int height = im->height();
float *f = new floatj_std::max(width,height)];

// transform along columns
for (int x = 0; x < width; x++)

{

for (int y = 0; y < height; y++)
{

ii

f[y] = imRef(im, x, y);

}

float *d = dt(f, height);

for (int y = 0; y < height; y++) {

imRef(im, x, y) = d[y];

}

delete [] d;

}

// transform along rows

for (int y = 0; y < height; y++) {

for (int x = 0; x < width; x++) {

f[x] = imRef(im, x, y);

}

float *d = dt(f, width);

for (int x = 0; x < width; x++) {

imRef(im, x, y) = d[x];

}

delete [Id;

}

delete f;

/* dt of binary image using squared distance */

static image<float> *dt(image<uchar> *im, uchar on = 1)

{

int width = im->widthQ;

int height = im->heightQ;

image<float> *out = new image<float>(width, height, false);

for (int y = 0; y < height; y++) {

iii

for (int x = 0; x < width; x++)

{

if (imRef(im, x, y) == on)

imRef(out, x, y) = 0;

else

imRef(out, x, y) = INF;

}

}

dt(out);

return out;

}

#endif

------------ima ge. h---------

/* a simple image class */

#ifndef IMAGE H

#define IMAGE H

#include <cstring>

template <class T>

class image

{

public:

/* create an image */

image(const int width, const int height, const bool init = true);

/* delete an image */

—imageQ;

Iv

/* init an image */

void init(const T &val);

/* copy an image */

image<T> *copy() const;

/* get the width of an image. */

int width() const { return w; }

/* get the height of an image. */

int height() const { return h; }

/* image data. */

T *data;

/* row pointers. */

T **access;

private:

int w, h;

};

/* use imRef to access image data. */

#define imRef(im, x, y) (im->access[y] [x])

/* use imPtr to get pointer to image data. */

#define imPtr(im, x, y) &(im->access[y][x])

template <class T>

image<T>::image(const int width, const int height, const bool init) {

v

w = width;

h=height;

data = new T[w * h]; // allocate space for image data

access = new T* [h]; // allocate space for row pointers

// initialize row pointers

for (int i = 0; i < h; i++)

access[i] = data -E- (i * w);

if (init)

memset(data, 0, w * h * sizeof(T));

}

template <class T>

image<T>::—image() {
delete [] data;

delete [] access;
}

template <class T>

void image<T>::init(const T &val) {

T *ptr = imPtr(this, 0, 0);

T *end = imPtr(this, w-1, h-1);

while (ptr <= end)

*ptr++ = val;

template <class T>

image<T> *image<T>::copyO const I
image<T> * im = new image<T>(w, h, false);

vi

memcpy(im->data, data, w * h * sizeof(T));

return im;

---i m c o n v. h--

#ifndef CONY H

#define CONV_H

#include <climits>

#include "image.h"

#include "imutil.h"

#include "misc.h"

#defineRED WEJGHT 	0.299

#define GREEN WEIGHT 0.587

#define BLUE WEIGHT 0.114

static image<uchar> *imageRGBtoGRAY(image<rgb> *input) {

int width = input->widthO;

int height = input->heightO;

image<uchar> *output = new image<uchar>(width, height, false);

for (int y = 0; y < height; y++) {

for (int x = 0; x < width; x++) {

imRef(output, x, y) = (uchar)

(imRef(input, x, y).r * RED_WEIGHT +

imRef(input, x, y).g * GREEN_WEIGHT +

imRef(input, x, y).b * BLUE_WEIGHT);

vii

}

}

return output;

}

static image<rgb> *imageGRAYtoRGB(image<uchar> *input) {

int width = input->width();

int height = input->height();

image<rgb> *output = new image<rgb>(width, height, false);

for (int y = 0; y < height; y++) {

for (int x = 0; x < width; x++) {

imRef(output, x, y).r = imRef(input, x, y);

imRef(output, x, y).g = imRef(input, x, y);

imRef(output, x, y).b = imRef(input, x, y);

}

}

return output;

}

static image<float> * imageUCHARtoFLOAT(image<uchar> * input) {

int width = input->widthO;

int height = input->heightO;

image<float> *output = new image<float>(width, height, false);

for (int y = 0; y < height; y++) {

for (int x = 0; x < width; x++) {

imRef(output, x, y) = imRef(input, x, y);

}

}

return output;

viii

}

static image<float> * i mageINTtoFLOAT(image<int> *input) {

int width = input->width();

int height = input->heighto ;

image<float> *output = new image<float>(width, height, false);

for (int y = 0; y < height; y++) {

for (int x = 0; x < width; x++) {

imRef(output, x, y) = imRef(input, x, y);

}

}

return output;

}

static image<uchar> *imageFLOATtoUCHAR(image<float> *input,

float min, float max) {

int width = input->width();

int height = input->heightO;

image<uchar> *output = new image<uchar>(width, height, false);

if (max == min)

return output;

float scale = UCHAR_MAX / (max - min);

for (int y = 0; y < height; y++) {

for (int x = 0; x < width; x++) {

uchar val = (uchar)((imRef(input, x, y) - min) * scale);

imRef(output, x, y) = bound(val, (uchar)0, (uchar)UCHAR_MAX);

}

}

ix

return output;

}

static image<uchar> *imageFLOATtoUCHAR(image<float> *input) {

float min, max;

min_max(input, &min, &max);

return imageFLOATtoUCHAR(input, min, max);

}

static image<long> *imageUCHARtoLONG(image<uchar> *input) {

int width = input->width();

int height = input->heightO;

image<long> *output = new image<long>(width, height, false);

for (int y = 0; y < height; y++) {

for (int x = 0; x < width; x++) {

imRef(output, x, y) = imRef(input, x, y);

}

}

return output;

}

static image<uchar> *imageLONGtoUCHAR(image<long> *input, long min, long max)

{

int width input->widthO;

int height = input->heighto ;

image<uchar> *output = new image<uchar>(width, height, false);

if (max == min)

return output;

x

float scale = UCHAR MAX / (float)(max - min);

for (int y = 0; y < height; y++) {

for (int x = 0; x < width; x++) {

uchar val = (uchar)((imRef(input, x, y) - min) * scale);

imRef(output, x, y) = bound(val, (uchar)0, (uchar)UCHAR_MAX);

}

}

return output;

static image<uchar> *imageLONGtoUCHAR(image<long> *input) {

long min, max;

min_max(input, &min, &max);

return imageLONGtoUCHAR(input, min, max);

}

static image<uchar> *imageSHORTtoUCHAR(image<short> *input,

short min, short max) {

int width = input->widthO;

int height = input->heightQ;

image<uchar> *output = new image<uchar>(width, height, false);

if (max == min)

return output;

float scale = UCHAR—MAX / (float)(max - min);

for (int y = 0; y < height; y++) {

for Grit x = 0; x < width; x++) {

uchar val = (uchar)((imRef(input, x, y) - min) * scale);

imRef(output, x, y) = bound(val, (uchar)0, (uchar)UCHAR_MAX);

}

xi

-------------------------------- ---------------p n mfile. h--

/* basic image I/O */

#ifndef PNM FILE H

#define PNM FILE H

#include <cstdlib>

#include <climits>

#include <cstring>

#include <fstream>

#include "image.h"

#include "misc.h''

#define BUF SIZE 256

class pnm_error {) ;

static void read packed(unsigned char *data, int size, std::ifstream &f) {

unsigned char c = 0;

int bitshift = -1;

for (int pos = 0; pos < size; pos++) {

if (bitshift == -1) {

c = f. getU;

bitshift = 7;

}
data[pos] = (c >> bitshift) & 1;

bitshift--;

xiv

static void write_packed(unsigned char *data, int size, std::ofstream &f) {

unsigned char c = 0;

int bitshift = 7;

for (int pos = 0; pos < size; pos++) {

c = c + (data[pos] << bitshift);

bitshift--;

if ((bitshift = _ -1) 1 1 (pos == size-1)) {

f.put(c);

bitshift = 7;

c=0;

}

}

}

static void pnm_read(std::ifstream &file, char *buf) {

char doe [BUF_SIZE];

char c;

file >> c;

while (c == '#') {

file.getline(doc, BUF_SIZE);

file >> c;

}

file.putback(c);

file.width(BUF_S IZE);

file >> buf;

file.ignoreQ;

xv

static image<uchar> *loadPBM(const char *name) {

char buf[BUF_SIZE];

/* read header */

std::ifstream file(name, std::ios::in I std::ios::binary);

pnm_read(file, buf);

if , (strncmp(buf, "P4", 2))

throw pn.m_error();

pnm_read(file, buf);

int width = atoi(buf);

pnm_read(file, buf);

int height = atoi(buf);

/* read data */
image<uchar> *im = new image<uchar>(width, height);

for (int i = 0; i < height; i++)

read packed(imPtr(im, 0, i), width, file);

return im;

0

static void savePBM(image<uchar> *im, const char *name) {

int width = im->width();

int height = im->he.ightO;

std::ofstream file(name, std::ios::out I std::ios::binary);

file << "P4\n" << width << " " << height << "\n";

for (int i = 0; i < height; i++)
write packed(imPtr(im, 0, 1), width, file);

xvi

float scale = UCHAR_MAX / (float)(max - min);

for (int y= 0; y < height; y++) {

for (int x = 0; x < width; x++) {

uchar val = (uchar)((imRef(input, x, y) - min) * scale);

imRef(output, x, y) = bound(val, (uchar)O, (uchar)UCHAR_MAX);

}

}
return output;

P

static image<uchar> *imageLONGtoUCHAR(image<long> *input) {

long min, max;

min_max(input, &min, &max);

return imageLONGtoUCHAR(input, min, max);

}

static image<uchar> * imageS HORTtoUC HAR(image<short> *input,

short min, short max) {

int width = input->width();

int height = input->heightQ;

image<uchar> * output = new image<uchar>(width, height, false);

if (max == min)

return output;

float scale = UCHAR_MAX / (float)(max - min);

for (int y = 0; y < height; y++) {

for (int x = 0; x < width; x++) {

uchar val = (uchar)((imRef(input, x, y) - min) * scale);

imRef(output, x, y) = bound(val, (uchar)0, (uchar)UCHAR_MAX);

}

xi

return output;

}

static image<uchar> *imageSHORTtoUCHAR(image<short> *input) {

short min, max;

minmax(input, &min, &max);

return imageSHOR T toUCHAR(input, min, max);

}

#endif

---i m u til. h---

/* some image utilities */

#ifndef IMUTIL H

#define IMUTIL II

#include "image.h"

#include "misc.h"

/* compute minimum and maximum value in an image */

template <class T>

void min_max(image<T> *im, T *ret_min, T *ret_max) {

int width = im->widthO;

int height = im->heightO;

T min = imRef(im, 0, 0);

T max = imRef(im, 0, 0);

for (int y = 0; y < height; y++) {

xii

for (int x = 0; x < width; x++) {

T val = imRef(im, x, y);

if (min > val)

min = val;

if (max < val)

max = val;

*ret_min = min;

*ret_max = max;

/* threshold image */

template <class T>

image<uchar> *threshold(image<T> *src, int t) {

int width = src->widthO;

int height = src->heightO;

image<uchar> *dst = new image<uchar>(width, height);

for (int y = 0; y < height; y++) {

for (int x = 0; x < width; x++) {

imRef(dst, x, y) = (imRef(src, x, y) >= t);

}

}

return dst;

}

#endif

---p n m f i l e. h--------------------- ---------------------------

/* basic image I/O */

#ifndef PNM FILE H

#define PNM FILE H

#include <cstdlib>

#include <climits>

#include <cstring>

#include <fstream>

#include "image.h"

#include "misc.h"

#define BUF SIZE 256

class pnm_error { };

static void read packed(unsigned char *data, int size, std::ifstream &f) {

unsigned char c = 0;

int bitshift = -1;

for (int pos = 0; pos < size; pos++) {

if (bitshift == -1) {

c = f.getO;

bitshift = 7;

}

data[pos] _ (c >> bitshift) & 1;

bitshift--;

xiv

static void write_packed(unsigned char *data, int size, std::ofstream &f) {

unsigned char c = 0;

int bitshift = 7;

for (int pos = 0; pos < size; pos++) {

c = c I (data[pos] << bitshift);

bitshift--;

if ((bitshift =_ -1) (pos == size-1)) {

f.put(c);

bitshift = 7;

C =0;
}

}

}

static void pnm_read(std::ifstream &file, char *buf) {

char doc[BUF_SIZE];

char c;

file >> c;

while (c =_ '#') {

file.getline(doc, BUF_SIZE);

file >> c;
}

file.putback(c);

f le.width(BUF_SIZE);

file >> buf;

file. ignored ;
}

xv

static image<uchar> *loadPBM(const char *name) {

char buf[BUF_SIZE];

/* read header */
std::ifstream file(name, std: :ios::in I std: :ios: :binary);

pnm_read(file, buf);

if , (strncmp(buf, "P4", 2))

throw pnm_errorQ;

pnm_read(file, buf);

int width = atoi(buf);
pnm_read(file, buf);

int height = atoi(buf);

/* read data */
image<uchar> * im = new image<uchar>(width, height);

for (int i = 0; i < height; i++)
read packed(imPtr(im, 0, i), width, file);

return im;

static void savePBM(image<uchar> *im, const char *name) {

int width = im->widthO;

int height = im->heightO;
std::ofstream file(naine, std::ios::out I std::ios::binary);

file << "P4\n" << width << " „ << height << "\n";

for (int i = 0; i < height; i++)
write packed(imPtr(im, 0, i), width, file);

xvi

static image<uchar> * loadPGM(const char *name) {

char buf{BUF_SIZE];

/* read header */

std::ifstream file(naine, std::ios::in I std: :ios: :binary);

pnm_read(file, buf);

if , (strncmp(buf, P5", 2))

throw pnm_erroro ;

pnm_read(file, buf);

int width = atoi(buf);

pnm_read(file, buf);

int height = atoi(buf);

pnm_read(file, buf);

if (atoi(buf) > U CHAR_MAX)

throw pnm_error();

/* read data */

image<uchar> *inn = new image<uchar>(width, height);

file.read((char *)imPtr(im, 0, 0), width * height * sizeof(uchar));

return im;

static void savePGM(image<uchar> *im, const char *name) {

int width = im->widthO;

int height = im->heightO;

std::ofstream file(name, std: :ios: :out I std: :ios: :binary);

xvii

file << "P5\n" << width << " " << height << "\n" << UCHAR MAX << "\n";

file.write((char *)imPtr(im, 0, 0), width * height * sizeof(uchar));
}

static image<rgb> *loadPPM(const char *name) {

char buf[BUF_SIZE], doc[BUF_SIZE];

/* read header */

std::ifstream file(narne, std::ios::in I std::ios::binary);

pnm_read(file, buf);

if , (strncmp(buf, "P6", 2))

throw pnm_error();

pnm_read(file, but);

int width = atoi(buf);

pnm_read(file, buf);

int height = atoi(bul);

pnm_read(file, buf);

if (atoi(buf) > UCHAR_MAX)

throw pnm_errorO;

/* read data */

image<rgb> *im = new image<rgb>(width, height);

file.read((char *)imPtr(im, 0, 0), width * height * sizeof(rgb));

return im;

}

static void savePPM(image<rgb> *im, const char *name) {

int width = im->width();

xviii

int height = im->hei.ghtQ;

std::ofstream file(narne, std::ios::out I std::ios::binary);

file << "P6\n" << wi dth << " " << height << "\n" << UCHAR_MAX << "\n",

file.write((char *)imPtr(im, 0, 0), width * height * sizeof(rgb));

}
template <class T>

void load_image(irnage<T> **im, const char *name) {

char buf[BUF_SIZ]L];

/* read header */

std::ifstream file(name, std::ios::in I std::ios::binary);

pnm_read(file, buf);

if , (strncmp(buf, "VLIB", 9))

throw pnm_errorO;

pnm_read(file, buf);

int width = atoi(buf);

pnm_read(file, buf);

int height = atoi(buf);

/* read data */

*im = new image<T>(width, height);

file.read((char *)imPtr((*im), 0, 0), width * height * sizeof(T));

}

template <class T>

void save image(image<T> *im, const char *name) {

int width = im->width();

int height = im->height();

std::ofstream file(narne, std::ios::out I std::ios::binary);

file << "VLIB\n" << width << I' << height << "\n";

xix

file.write((char *)imPtr(im, 0, 0), width * height * sizeof(T));

#endif

---------edt. cpp--

/* This program calculates the 3-D EDT of the image stored in the input file */

#include <cstdio>

#include <cstdlib>

#include <cmath>

#include "pnmfile.h"

#include "imconv.h"

#include "dt.h"

int main(int argc, char **argv) {

if (argc != 3) {

fprintf(stderr, "usage: %s input(pbm) output(pgm)\n", argv[0]);

return 1;

char *input name = argv [1];

char *output name = argv[2];

// load input

image<uchar> *input = loadPBM(input_name);

// compute dt

image<float> *out = dt(input);

// take square roots

xx

for (int y = 0; y < out->heightO; y++) {

for (int x = 0; x < out->widthQ; x++) {

imRef(out, x, y) = sqrt(imRef(out, x, y));

// convert to grayscale

image<uchar> *gray = imageFLOATtoUCHAR(out);

// save output

savePGM(gray, output_name);

delete input;

delete out;

delete gray;

xxi

Parallel Implementation of 3D EDT Algorithm in MPI and C.

-----------Mpi initmodule.h---------------------------------

/* begin MODULE mpi_module */

#include "mpi.h"

INT update_bc_2(INT mp, TNT m, REAL **vt, INT k, INT below, INT above)

11
MPI Status status[6]; /* SGI doesn't define MPI _STATUS _SIZE */

MPI_Sendrecv(vt[mp]+1, m, MPI DOUBLE, above, 0, vt[O]+l, m,

MPI DOUBLE, below, 0, MPI—COMM—WORLD, status);

MPI_Sendrecv(vt[1]+l, m, MPI DOUBLE, below, 1, vt[mp+1]+l, m,

P1 DOUBLE, above, 1, MPI_COMM_WORLD, status);

return (0);

/* end MODULE mpi_module */

--initialize.h---

#include <math.h>

#include <stdio.h>

#include <stdlib.h>

#define CHAR char

#define REAL double

#define INT int

#define OUTPUT stdout 	/* output to standard out 	 */

#define PLOT—FILE "plots" /* output files base name 	 */

#define INCREMENT 100 	/* number of steps between convergence check *I

#define P 1 	/* define processor count for serial codes */

#define K 0 	/* current thread number for serial code is 0 */

#define MAX_M 128 	/* maximum size of Input Array 	*/

#include "utils.h" 	/* header file of function prototype in utils.c */

#endif

-------------------allocate.c----------------------

main()

{
MAIN PROGRAM ********************************

* Allocates the 3-D input array into the shared memory of cluster *
***/

INT iter, m, mp;

REAL gdel;

CHAR line[10];

REAL **u, **u;

fprintf(OUTPUT,"Enter size of interior points, m :");

(void) fgets(line, sizeof(line), stdin);

(void) sscanf(line, "%d", &m);

fprintf(OUTPUT, "m = %d\n",m);

mp = m/P;

u = allocate_2D(m, mp); /* allocate mem for 2D array */

un = allocate_2D(m, mp);

gdel = 1.0;

iter = 0;

bc(m, mp, u. K, P);

replicate(m, mp, u, un); /* u = un */

while (gdel > TOL) { /* iterate until error below threshold */

iter++; 	/* increment iteration counter */

if(iter > MAXSTEPS) {
fprintf(OUTPUT,"Iteration terminated (exceeds %6d", MAXSTEPS);

fprintf(OUTPUT,")\n");

return (0); 	/* nonconvergent solution */

}

/* compute new solution according to the Jacobi scheme */

update] aco bi (m, mp, u, un, &gdel);

if(iter%INCREMENT == 0)
fprintf(OUTPUT,"iter,gdel: %6d, %lf\n",iter,gdel);

}

}

fprintf(OUTPUT,"Stopped at iteration %d\n",iter);
fprintf(OUTPUTThe maximum error = %f\n",gdel);

write file(m, mp, u, K, P);

return (0);

xxiv

------------------------------------util.c--

REAL **allocate 2D(INT m, INT n) {

INT i;

REAL **a;

a = (REAL **) malloc((unsigned) (m+2)*sizeof(REAL*));

/* Each pointer array element points to beginning of a row with n+2 entries*/

for (i = 0; i <=m+1; i++) {

a[i] _ (REAL *) malloc((unsigned) (n+2)*sizeof(REAL));

}

return a;

}

INT write file(INT m, INT n, REAL * * u, INT k, INT p) {
/************** :**************************************

* Writes 2D array ut columnwise (i.e. C convention)

* m - size of rows m+2

* n - size of columns n+2

* u - scratch array

*k - 0 <= k < p; = 0 for single thread code 	*

* p - p >= 0; =1 for single thread code
***/

INT ij, i, j, per_line;

CHAR filename[50], file[53];

FILE *fd;

/*

xxv

prints u, 6 per line; used for matlab plots;

PLOT_FILE contains the array size and number of procs;

PLOT_FILE.(k+l) contains u pertaining to proc k;

for serial job, PLOT _FILE. 1 contains full u array.
*/

(void) sprintf(filename, "%s", PLOT_FILE);

if(k==0) {

fd = fopen(filename, "w");

fprintf(fd, "%5d %5d %5d\n", m+2, n+2, p);

fclose(fd);

}

per_line = 6; 	 /* to print 6 per line */

(void) sprintf(file, "%s.%d", filename, k); /* create output file */

fd = fopen(file, "w");

ij = 0;

. for (j = 0; j <=n+1; j++) {

for (i = 0; i <=rn+ 1; i++) {

fprintf(fd, "%11.4f ", u[i][j]);

if ((ij+1)%per_line == 0) fprintf(fd, "\n");

ij++;

}

}

fprintf(fd, "\n");

fclose(fd);

return (0);

}

xxvi

void init_array(INT n1, INT n, REAL **a) {

/********* Initialize Array **********************

* Initialize array with nx rows and fly columns *
* * * * * * * * * * * * * * :**********************************/

INTi,j;

for (i = 0; i <=m+1; i++) {

for (j = 0; j <=n+ 1; j++) {

a[i][j] = 0.0; 	/* initialize all entries to zero */

}
}

}

void bc(INT m, INT n, REAL **u, INT k, INT p)

{

INT i;

init_array(m, n, u); 	 /* initialize u to 0 */

if(p>1){

if (k—=0) {

for (i = 0; i <=111-Fl; i++) {

u[i][0] = sin(PI*i/(m+1)); 	/* at y = 0; all x */

}

}

if(k==p-1) {

for (i = 0; i <m+1; i++) {

u[i][n+l] = sin(PI*i/(m+1))*exp(-PI); /* at y = 1; all x */

}

}

} else if (p == 1) {

for (i = 0; i <=in+ 1; i++) {

u[i][0] = sin(PI*i/(m+l)); /* at y = 0; all x */

u[i][n+l] = u[_i][0]*exp(-PI); /* at y = 1; all x */

}

} else {

printf("p is invalid\n");

}

}

void prtarray(INT m, TNT n, REAL **a, FILE *fd) {
Print Array ***********************

* Prints array "a" with in rows and n columns

* tda is the Trailing Dimension of Array a

INT i, j ;

for (i = 0; i <=m+l ; i++) {

for (j = 0; j <=n+1; j++) {

fprintf(fd, "%8.2f', a[i][j]);

}

fprintf(fd, "\n");

}

}

INT i, j ;

*del = 0.0;

for (i = 1; i <=m; i+-i-) {

for (j = 1;j <=n; j-H-+) {

unew[i][j] _ (u[i][j+l] + u[i+l][j] +

u[i-l][j] + u[i][j-1])*0.25;

del += fabs(unew[i][j] - u[i][j]); / find local max error */

for (i = 1; i <=m; i++) {

for(j=1;j<=n;j++){

u[i][j] = unew[i][j];

}

}

return (0);

}

INT update_sor(INT m, INT n, REAL **u, REAL omega, REAL *del, CHAR redblack)

{

INT i, ib, ie,j,jb,je;

REAL up;

*del = 0.0;

if (redblack == 'r') {

/* process RED odd points ... */

jb = 1; je=n; ib = 1; ie = m;

for(j =jb;j <=je;j+=2) {

for (i = ib; i <=ie; i+=2) {

up=(u[i][j+l]+u[i+l][j]+

u[i-1][j] + u[i](j-1])*0.25;

u[i][j] = (1.0 - omega)*u[i][j] + omega*up;

*del += fabs(up-u[i][j]);

}

/* process RED even points ... */

jb=2;je= ii; ib=2;ie=m;

for(j=jb;j <=_je;j+=2) {

for (i = ib; i <= ie; i+=2) {

up = (u[i] [1+1] + u[i+l] [J] +

u[i-1][j] + u[i][l-1])*0.25;
u[i] [j] = (1.0 - omega)*u[i] [j] + omega*up;

*del += fabs(up-u[i][j]);
}

}

return (0);

} else {

if (redblack =_ 'b') {

/* process BLACK odd points ... */

jb=2; je=n; ib = 1; ie=m;

for (j = jb; i <= je; j+=2) {

for(i=ib;i<=ie;i+=2) {

up = (u[i] [i+1] + u[i+l] [i] +
u[i-1]{j] + u[i][j-1])*0.25;

u[i][j] _ (1.0 - omega)*u[i][j] + omega*up;

*del += fabs(up-u[i][j]);
}

}

/* process BLACK even points ... */

jb 1; je=n; ib=2; ie=m;

for (j=jb;j<=je;j+=2){

for (i = ib; i <= ie; i+=2) {

up=(ul.l][+1]+u[i+1][j] +
u[i-1][j] + u[i][j-1])*0.25;

u[i][j] _ (1.0 - omega)*u[i][j] + omega*up;

*del += fabs(up-u[i][j]);

}

}

return (0);

} else {

return (1);

xxx

INT replicate(INT in, INT n, REAL * *a, REAL **b) {
**

* Replicates array a into array b

* m - (INPUT) size of interior points in 1st index

* n - (INPUT) size of interior points in 2st index

* a - (INPUT) solution at time N

* b - (OUTPUT) solution at time N + I

INT i, j;

for (i = 0; i <=m±1; i++) {

for (j = 0; j <=n-Fl; j++) {

b[i][1] = a[i][J];
}

}

return (0);

}

INT transpose(INT in, INT n, REAL * *a, REAL **at) {
**

* Transpose a(0:m+1,0:n+1) into at(0:n+1,0:m+1)

* m - (INPUT) size of interior points in 1st index

* n - (INPUT) size of interior points in 2st index
* a -(INPUT) a = a(O:m+1,0:n+1)

* at - (OUTPUT) at = at(0:n+1,0:m+1)
**************:***/

INT i, j,k;

for (i = 0; i <m+1; i++) {

for (j =0;j <=n+1; j++) {

(k = 0; k <=n+ 1; k++) {

at[i][i][k] = a[3]Li[k];
}

}

return (0);

void neighbors(INT k. INT p, INT UNDEFINED, INT *below, INT *above) {

* determines two adjacent threads 	 *

* k 	- (INPUT) current thread

* p 	- (INPUT) number of processes (threads) 	*

* UNDEFINED - (INPUT) code to assign to out-of-bound neighbor

* below - (OUTPUT) neighbor thread below k (usually k-1) *

* above - (OUTPUT) neighbor thread above k (usually k+1) *

if(k == 0) {

*below = UNDEFINED;

*above = k+l;

} else if(k == p-1) {

*below = k-1;

*above = UNDEFINED;

} else {

*below = k-1;

*above=k+l;

/* tells MPI not to perform send/recv */

/* tells MPI not to perform send/recv */

------------------------------finaledt.c---

INT main(INT argc, CHAR *argv[]) {
/***************MAIN PROGRAM *************************************

* Gathers all the computation results from participating processors and builds the final

EDT of input 3-D array *
***/

INT iter, m, nip, p, k, below, above;

REAL omega, rhoj, rhojsq, del, delr, delb,•gdel;

CHAR line[80], red, black;

MPI Comm grid_comm;

INT me, iv, coord[1], dims, periods, ndim, reorder;

REAL **v, **vt;

MPI_Init(&argc, &argv); 	/* starts MPI */

MPI_ Comm _rank(MPI_COMM_WORLD, &k); /* get current process id */

MPI _Comm _size(MPI_COMM_WORLD, &p); /* get # procs from env or */

periods = 0; ndim = 1; reorder = 0; red ='r'; black

if(k == 0) {

fprintf(OUTPUT,"Enter size of interior points, m ;\n");

(void) fgets(line, sizeof(line), stdin);

(void) sscanf(line, "%d", &m);

fprintf(OUTPUh,"m = %d\n",m);

}

MPI_Bcast(&m, 1, MPI_INT, 0, MPI_COMM_WORLD);

mp = m/p;

MPI_Sendrecv(vt[mp]+1, m, MPI_DOUBLE, above, 0,

vt[0]+1, m, MPI DOUBLE, below, 0,

MPI COMM WORLD, status);

v = allocate_2D(m, mp); /* allocate mem for 2D array */

vt = allocate_2D(mp, m);

gdel = 1.0;

iter = 0;

rhoj = 1.0 - Pl*P1*0.5/((m+2)*(m+2));

rhojsq = rhoj*rhoj;

/* create cartesian topology for matrix */

dims = p;

MPI_ Cart _create(MPI_ COMM _WORLD, ndim, &dims,

&periods, reorder, &gridcomm);

MPI_Comm_rank(grid_comm, &me);

MPI_Cart_coords(grid_comm, me, ndim, coord);

iv = coord[0];

bc(m, mp, v, iv, p); /* set up boundary conditions */

transpose(m, mp, v, vt); /* transpose v into vt */

replicate(mp, m, vt, v);

MPI_Cart_shift(grid_comm, 0, 1, &below, &above);

MPI_Sendrecv(vt[1]+1, m, MPI_DOUBLE, below, 1,

vt[mp+l]+l , m, MPI_DOUBLE, above, 1,

MPICOM M_WORLD, status);

omega = 1.0;

update_sor(mp, m, vt, omega, &delr, red);

update_bc_2(mp, m, vt, iv, below, above);

omega = 1.0/(1.0 - 0.5 0 * rhoj sq);

update_sor(mp, m, vt, omega, &delb, black);

update_bc_2(mp, m, vt, iv, below, above);

while (gdel > TOL) {

iter++; /* increment iteration counter */

xxxiv

omega = 1.0/(1.0 - 0.25*rhojsq*omega);

update_sor(mp, m, vt, omega, &delr, red);

update_bc_2(mp, m, vt, iv, below, above);

omega = 1.0/(1.0 - 0.25 *rhojsq*omega);

update_sor(trip, m, vt, omega, &delb, black);

update_bc_2(mp, m, vt, iv, below, above);

if(iter%INCREMENT == 0) {

del = (delr + delb)*4.0;

MPI_Allreduce(&del, &gdel, 1, MPI_DOUBLE,

MPI_MAX, MPI_COMM_WORLD); /* find global max error */

if(k==0) {

fprintf(OUTPUT,"iter gdel omega: %5d %13.5f %13.5f\n",iter,gdel,omega);

}

}

MPI_Sendrecv(vt[mp]+1, m, MPI_DOUBLE, above, 0, vt[0]+l, m, MPI_DOUBLE,

below, 0, MPI_ COMM _WORLD, status);

if(iter > MAXSTEPS) {

fprintf(OU TPUT, "Iteration terminated (exceeds %6d", MAXSTEPS);

fprintf(OUTPUT,")\n");

return (1); 	/* nonconvergent solution */

MPI_Sendrecv(vt[1]+I, m, MPI_DOUBLE, below, 1,

vt[mp+1]+1, m, MPI_DOUBLE, above, 1,

MPI COMM WORLD, status);

if (k == 0) {

fprintf(OUTPUT,"Stopped at iteration %d\n",iter);

fprintf(OUTPUT,"The maximum error = %fln",gdel);

xxxv

transpose(mp, m, vt, v); /* transpose v into vt */

write file(m; mp, v, k, p);

MPI_Barrier(MP1_ COMM _WORLD);

MPI_FinalizeQ;

return (0);

xxxvi

	Title
	Abstract
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	References
	Appendix

