
FRAMEWORK FOR EXTRACTION OF PROTEIN
FUNCTIONS AND INTERACTIONS FROM

BIOMEDICAL LITERATURE

A DISSERTATION

Submitted in partial fulfillment of the
requirements for the award of the degree

of
MASTER OF TECHNOLOGY

in
COMPUTER SCIENCE AND ENGINEERING

MUMMIDI LAKSHMI NARAYANA

K

¼t5y zo,,*! X

DEPARTMENT OF ELECTRONICS & COMPUTER ENGINEERING
INDIAN INSTITUTE OF TECHNOLOGY ROORKEE

ROORKEE -247 667 (INDIA)
MAY, 2007

Candidate's Declaration

I hereby declare that the work being presented in the dissertation report titled

"Framework for Extraction of Protein Functions and Interactions from Biomedical

Literature" in partial fulfillment of the requirement for the award of the degree of

Master of Technology in Computer Science and Engineering, submitted in the

Department of Electronics and Computer Engineering, Indian Institute of Technology

Roorkee, is an authenticate record of my own work carried out under the guidance of

Dr. R. C. Joshi, Professor, Department of Electronics and Computer Engineering,

Indian Institute of Technology Roorkee.

I have not submitted the matter embodied in this dissertation report for the award of

any other degree.

Dated: 15— c-n7. 	 (Mummidi Laks~N rayana)

Place: IIT Roorkee.

Certificate
This is to certify that above statements made by the candidate are correct to the best of

my knowledge and belief.

Dated:

Place: IIT Roorkee.

Dr. R. C. Joshi,

Professor,

Department of Electronics and

Computer Engineering, IIT Roorkee,

Roorkee -247667 (India).

1

ACKNOWLEDGEMENTS

I am thankful to Indian Institute of Technology Roorkee for giving me this

opportunity. It is my privilege to express thanks and my profound gratitude to my

supervisor Prof. R. C. Joshi for his invaluable guidance and constant encouragement

throughout the dissertation. I was able to complete this dissertation in this time due to

constant motivation and support obtained from Prof. R. C. Joshi.

I am also grateful to the staff of software laboratory and Research Scholar's

laboratory for their kind cooperation extended by them in the execution of this

dissertation. I am also thankful to all my friends who helped me directly and

indirectly in completing this dissertation.

Most importantly, I would like to extend my deepest appreciation to my family for

their love, encouragement and moral support. Finally I thank God for being kind to

me and driving me through this journey.

(MUMMIDI LAKSHMARAYANA)

ii

Abstract

Significant advances are being made in the field of biomedicine. The biomedical
researchers present their research finally in the form of text. It has become a challenge
for biomedical researchers to search for the latest discoveries of protein functions and
interactions and required information in the ever increasing published literature. Text
mining thus becomes helpful in conversion of this information into structured
database format. In this report, we propose the method of function phrase chunking to
extract protein functions and interaction phrase chunking for protein-protein
interactions from biomedical literature. The proposed methods can be used to assist
database curators in interpreting protein function and interaction terms and to aid bio-
medical researchers in searching protein functions and protein-protein interactions
from biomedical text literature. The experimental results on more than 0.12 million
abstracts of protein functions and 0.17 million abstracts of protein-protein interactions
shows the effectiveness of our system. The high precision and recall ranges of 87.6%-
70% and 70.6%-59% respectively of our protein function extraction system and
similarly the high precision aInd recall ranges of 94%-85% and 90%-73% respectively
of protein-protein interaction extraction system indicate the outperforming efficiency

of our system in comparison with existing systems.

111

Table of Contents

Candidate's Declaration & Certificate ... i
Acknowledgements...ii
Abstract

Tableo f Contents ..iv

Chapter 1 Introduction and Statement of the Problem1

1.1 Introduction ...1
1.2 Motivation ...2
1.3 Problem Statement3
1.4 Organization of the Report ..3

Chapter 2 Background and Literature Review ..5
2.1 Gene Ontology ..5

2.1.1 Molecular Functions ..6
2.1.2 Biological Processes ..7
2.1.3 Cellular Components ...8

2.2 Protein — Protein Interactions ..9
2.3 Text Mining in Biomedicine ...10
2.4 Protein Function and Interaction Extraction Related Work11

2.4.1 Protein Function Extraction Systems11
2.4.2 Protein-protein Interaction Extraction Systems16

Chapter 3 Mining Techniques Used in the Extraction:.................19

3.1 Support Vector Machines ...19
3.2 Conditional Random Fields ...21
3.3 Phrase Chunking ..2 5

Chapter 4 Framework for Protein Function and Interaction Extraction26
4.1 Protein Functions and Interactions Data Set27
4.2 Preprocessing of Data Sets ..28
4.3 Feature Extraction from input articles ...28
4.4 Training the SVM Classifier ..30

iv

4.5 Protein Name Tagging using CRF Tagger30
4.6 Term Extraction using a variant of Phrase Chunking30

Chapter 5 Implementation Details of framework32
5.1 System Requirements ...32
5.2 Implementation of Preprocessing Module32
5.3 Implementation of Classification Module33

5.3.1 Representation of Feature Vectors34
5.3.2 Scaling ..34
5.3.3 RBF Kernel ...34
5.3.4 Cross Validation ...35

5.4 Implementation of CRF Tagging ...36
5.4.1 Implementation of Viterbi Algorithm37

Chapter6 Results and Discussion ..42
6.1 Accuracy of Classification ..42
6.2 Performance of Function and Interaction Phrase Chunking44
6.3 Comparative Study ..45

Chapter 7 Conclusion and Scope for the Future Work:......................48
7.1 Conclusion48
7.2 Discussion and Scope for the future work49

References ..50
Appendix: Source Code Listing .. I

v

Introduction and Statement of the Problem CHAPTER 1

1.1 Introduction
In this. era of genomics, understanding protein functions (PFs) and protein-protein
interactions (PPIs) is one of the most challenging and important goal. Research in the
area of proteins and their behavior is increasing. However, since most of the research
is published in journal or conference papers instead of being directly accessible from

a database, it consumes a lot of time for biomedical researchers to read volumes of
papers to understand functions of the proteins and interactions of the proteins of

interest. Text mining thus becomes an indispensable technique to aid biomedical

researchers in surveying them rapidly. Hence, our protein functions and interactions

extraction system aims at providing knowledge of protein functions and protein
interactions in structured database form.

There has been much study towards the application of text mining techniques to

automatically extract knowledge from biomedical literature [1-3]. The need of

biomedical researchers can be summarized as follows: They have a list of proteins

they are interested in and they want to know which papers describe these proteins and
what properties of these are reported in these papers. In recent years, the, study has

greatly advanced from term recognition, such as gene and protein names [4-6] to
extraction of complex relationships between different types of terms, such as protein

sub-cellular location [7], biomolecular relations. [8], pathways [9], protein functions
[10-11] and protein-protein; interactions [12-13]. Literature information is also
integrated into biological analysis.

For most of these issues, recognition of gene or protein names in text is the first step

and has been well studied to be near a mature technique. Extracting protein function

and protein-protein interaction is a challenging task which needs more sophisticated

approaches of natural language processing.

1

1.2 Motivation

Electronic storage of literature and access to it does not help in extracting - and

discovering the knowledge about the biomedical entities. Database curators and

researchers use PubMed (PubMed Central (PMC) is the U.S. National Institutes of

Health (NIH) free digital archive of biomedical and life sciences journal literature) to

perform complex searches to retrieve documents and spend substantial time reading

and extracting important knowledge from them. This is a time consuming, manual

method that requires reading many texts, often heterogeneous in structure, contents

and semantics. Nevertheless, electronic storage has made it possible to apply text-
based knowledge discovery tools and methods (Text Mining) to discover precise and

fine-grained facts and relationships. Some of the examples include identification of

protein-protein interactions and prediction of protein functions. Moreover, by

combining the electronically available biomedical literature to other data resources,

such as ontology, information extraction can be customized. The terms from ontology

can be 'extracted from the literature and can be associated to the biological entities.

Most of the cases, the main cause of diseases in living beings is malfunctioning of

proteins or improper interactions between the proteins, so inorder to find the root

cause of a disease one has to identify the protein that is malfunctioning or the type of

interaction that is causing the disease. The extraction of protein functions and

interactions from biomedical literature helps in identifying the function that a

particular protein is supposed to do, the types of interactions that a protein should

participate and helps in identifying the malfunctioning and improper interacting

proteins. Thereby the diseases can be cured by making the protein function in proper

way by administering medicines. There are many techniques which dealt with the

extraction of these function and interaction terms from biomedical literature.

Recently, the state-of-the-art methods in text mining were presented in a competition

for assessment of text mining systems in biology, the BioCreAtivE (Critical

Assessment of Information Extraction systems in Biology) (BioCreAtIvE, 2003). One

of the two "biologically meaningful" tasks defined by BioCreAtivE was the automatic

extraction of functional annotations to proteins from full-text documents related to

them, by using the Gene Ontology (GO) classification system. Among the 20

2

participants, the best annotations were achieved with a perfect prediction percentage
equal to 11.80%, which is still too low. This shows that automated methods for
functional annotation of genes are still far from being perfect. And also the automated
systems for the extraction of protein-protein interactions are performing with low

accuracy rates.

These observations have motivated the need of an automatic text mining tool which•
extracts the protein functions and protein-protein interactions efficiently with higher

accuracies from biomedical literature.

1.3 Problem Statement

The problem is to extract the protein functions and protein-protein interactions from
biomedical literature using a text mining technique called phrase chunking, a variant

of text chunking. In this dissertation we have made an attempt to design and

implement the framework to solve the mentioned problem. The main problem can be
further divided into the following subtasks:

• To classify the input biomedical text articles into the either articles related to
protein function and protein-protein interaction or not.

To tagg the names of proteins in the texts using a tagger which uses

Conditional Random Fields.

• To extract the actual term from the text describing the protein function or

protein-protein interaction.

1.4 Organization of the. Report

This dissertation proposes a new and efficient technique for the extraction of protein
function and protein-protein interactions from the biomedical literature. The

organization of the dissertation is as follows:

Chapter 2 gives the background of protein functions and protein-protein interactions,

description of some well known information extraction techniques in this field.

3

Chapter 3 gives the description of data mining techniques that are used in the

proposed framework for the extraction of the protein function and protein-protein

interactions.

Chapter 4 describes the proposed framework of the protein information extraction

with detailed description of each module.

Chapter 5 discusses the performance metrics used, the data set used for the training

and testing purpose, the performance of the system, the snapshots of various screens

and graphs depicting the performance.

Chapter 6 concludes the dissertation work and gives suggestions for future work.

n
0

Background and Literature Review 	CHAPTER 2

2.1 Gene Ontology

Gene Ontology (GO) - The Gene Ontology Consortium's ontology

(http://www.geneontology.org), GO, provides a dynamic controlled vocabulary for all

organisms, with sufficient flexibility to accommodate the constant changes in

biological knowledge. GO is aimed at providing a controlled terminology for labeling

gene functions in a more precise, reliable, computer-readable manner. It maintains

three separate taxonomies of terms, namely, "Molecular Function", `Biological

Process", and "Cellular Component". Unlike other schemes, GO is not a tree-like

hierarchy, but a directed acyclic .graph (DAG), where any term may have more than

one parent as well as zero, one, or more children. This permits a more complete and

realistic description of a term. Protein functions of any organism are described using

the gene ontology.

The shape of a protein determines its biological activity. A single protein may have

varying structure and more than one function. Proteins have many different biological

functions. Proteins are classified according to their biological roles.

Enzymatic Proteins: The most varied and most highly specialized proteins are those

with catalytic activity--the enzymes. Virtually all the chemical reactions of organic

biomolecules in cells are catalyzed by enzymes. Many thousands of different

enzymes, each capable of catalyzing- a. different kind of chemical reaction, have been

discovered in different organisms. Digestive enzymes hydrolyze the polymers in food.

Transport Proteins: These proteins are involved in transporting other substances. For

example, hemoglobin, the iron-containing protein of blood, transports oxygen from

the lungs to other parts of the body. Other proteins transport molecules across cell

membranes.

Structural Proteins: Structural proteins are very important for support. Collagen and

elastin provide a fibrous framework in animal connective tissues, such as tendons and

5

'ligaments. Keratin is the protein of hair, horns, feathers, quills, and other skin

appendages of animals.

Storage Proteins: These proteins store amino acids. Ovalbumin is the protein of egg

white, used as an amino acid source for the developing embryo. Casein, the protein of

milk, is the major source of amino acids for baby mammals. Plants store proteins in

seeds.

Hormonal Proteins: Hormonal proteins coordinate the bodily activities. Insulin, a

hormone secreted by the pancreas, helps regulate the concentration of sugar in the

blood.

Receptor Proteins: Receptor proteins are built into the membrane of a nerve cell and

they detect chemical signals released by other nerve cells. They are involved in the

cell's response to chemical stimuli.

Contractile Proteins: These proteins are very important in movement. Actin and

myosin are responsible for the movement of muscles. Contractile proteins are

responsible for the undulations of cilia and flagella, which propel many cells.

Defensive Proteins: These ;proteins protect against diseases. Antibodies combat

bacteria and viruses.

Gene ontology describes the protein functions using three terms namely Molecular

functions, Biological processes and Cellular components. Each of these is described

in detail as follows:

2.1.1 Molecular functions
Molecular function describes activities, such as catalytic or binding activities, that

occur at the molecular level. GO molecular function terms represent activities rather

than the entities (molecules or complexes) that perform the actions, and do not specify

where or when, or in what context, the action takes place. Molecular functions

generally correspond to activities that can be performed by individual gene products,

but some activities are performed by assembled complexes of gene products.

Examples of broad functional terms are catalytic activity, transporter activity, or

R

binding; examples of narrower functional terms are adenylate cyclase activity or Toll

receptor binding.

The following molecular function terms have standard definitions:

x binding
Interacting selectively with x.

[Enzyme] activity
Catalysis of the reaction: [reaction catalyzed by enzyme].

x receptor activity
Combining with x to initiate a change in cell activity.

x transporter activity •
Enables the directed movement of x into, out of, within or between cells.

2.1.2 Biological Processes
A biological process is a process of a living organism. Biological processes are made

up of any number of chemical reactions or other events that result in a transformation.
A biological process is series of events accomplished by one or more ordered

assemblies of molecular functions. Examples of broad biological process terms are
cellular physiological process or signal transduction. Examples of more specific terms

are pyrimidine metabolism or alpha-glucoside transport. It can be difficult to
distinguish between a biological process and a molecular function, but the general

rule is that a process must have more than one distinct steps.

Regulation of biological processes occurs where any process is modulated in its

frequency, rate or extent. Biological processes are regulated by many means;

examples include the control of gene expression, protein modification or interaction

with a protein or substrate molecule.

Biological processes are often regulated by genetics. Mutant phenotypes may lead to
interruptions to a biological process.

Biological processes include:
• Cell adhesion, the attachment of a cell, either to another cell or to an

underlying substrate such as the extracellular matrix, via cell adhesion

molecules.
• Intercellular communication, any process that mediates interactions between a

cell and its surroundings. Encompasses interactions such as signaling or

7

attachment between one cell and another cell, between a cell and an

extracellular matrix, or between a cell and any other aspect of its environment.

• Morphogenesis, cell growth and cellular differentiation

• Cell physiological process,, the processes pertinent to the integrated function of

a cell.

• Cell recognition, the process by which a cell in a multicellular organism

interprets its surroundings.

• Physiological process, those processes specifically pertinent to the functioning

of integrated living units: cells, tissues, organs, and organisms.
• Pigmentation

• Biological reproduction

• Response to stimulus, a change in state or activity of a cell or an organism (in

terms of movement, secretion, enzyme production, gene expression, etc.) as a

result of a stimulus.

• Interaction between organisms, the processes by which an organism has an

observable effect on another organism of the same or different species.

• Also fermentation, fertilization, 'germination, geotropism, heliotropism,

hybridization, metamorphosis, photosynthesis, transpiration.

2.1.3 Cellular component
A cellular component is just that, a component of a cell, but with the provision that it

is part of some larger object; this may be an anatomical structure (e.g. rough

endoplasmic reticulum or nucleus) or a gene product group (e.g. ribosome,

proteasome or a protein dimer). Biological matter or biological material refers to the

unique, highly organized substances of which cellular life is composed of, for instance

membranes, proteins, and nucleic acids. They may also be called cellular components.

Most biological matter has the characteristics of soft matter, being governed by

relatively small energies. All known life is made of biological matter. To be

differentiated from other theoretical or fictional life forms, such life may be called

carbon-based, cellular, organic, biological, or even simply living—as some

definitions of life exclude alternative biochemistry.

The following cellular component terms have standard definitions:

Organelle envelope
The double lipid bilayer enclosing the organelle and separating its contents from the

rest of the cytoplasm; includes the intermembrane space.

Organelle membrane, organelle with a single membrane
The lipid bilayer surrounding a(n) organelle.

Organelle membrane, organelle with a double membrane
Either of the lipid bilayers that enclose the organelle and form the organelle envelope.

Organelle inner membrane
The inner, i.e. lumen-facing, lipid bilayer of the organelle envelope.

Organelle outer membrane
The outer, i.e. cytoplasm-facing, lipid bilayer of the organelle envelope.

Organelle membrane lumen
The region between the inner and outer lipid bilayers of the organelle envelope.

2.2 Protein-Protein Interactions

Protein-protein 	interactions 	(PPIs) 	(http://en.wikipedia.org/wiki/Protein-

protein_interaction) refer to the association of protein molecules. The interactions

between proteins are important for many biological functions. For example, signals

from the exterior of a cell are mediated to the inside of that cell by protein-protein

interactions of the signaling molecules. This process, called signal transduction, plays

a fundamental role in many biological processes and in many diseases (e.g. cancer).

Proteins might interact for a long time to form part of a protein complex, a protein

may be carrying another protein (for example, from cytoplasm to nucleus or vice

versa in the case of the nuclear pore importins), or a protein may interact briefly with

another protein just to modify it (for example, a protein kinase will add a phosphate to

a target protein). This modification of proteins can itself change protein-protein

interactions. For example, some proteins with SH2 domains only bind to other

proteins when they are phosphorylated on the amino acid tyrosine. In conclusion,

protein-protein' interactions are of central importance for virtually every process in a

living cell. Information about these interactions improves our understanding of

diseases and can provide the basis for new therapeutic approaches.

0

2.3 Text Mining In Biomedicine

In biomedical science, the increasing need for obtaining semantic information from

biomedical literature and its easy availability has encouraged many research groups to

develop text mining methods for automatic analysis and extraction of facts from it.

The earlier works focused on tasks needing limited linguistic context and processing

at the level of words, such as identifying protein names in literature [4-6], or on tasks

relying on word co-occurrences [14] and pattern matching. Later linguistic techniques

were used to interpret the datafrom expression array experiments [15] and to handle

biological relations represented in complex sentences, such as protein localization,

protein function identification [10-11] and protein-protein interactions [12-13].

Finally, there was the emergence of natural language technologies to handle more

complex relations across sentences. The common aim of all these approaches is to

acquire knowledge about the 'functions or interactions of protein or genes.

In the biomedical field, text mining can be used for the following purposes:

• Extract gene and protein names from biological literature.

• Uncover underlying themes or concepts contained in large document

collections, such as in EDGAR, an application developed by Rindesch et al.

[16] for extracting drug, genes and relations among them.

• Develop knowledge repositories by automatic knowledge acquisition from

biomedical literature, like creating ontology.

• Classify documents into predefined categories and sub-categories based on

their contents.

• Discover knowledge about biological processes and their regulation, for

example, prediction of metabolic pathways [9] and acquisition of knowledge

about functions of genes from microarray data.

• Cluster documents automatically, into categories that are intelligently selected

from the words and phrases contained within the documents themselves.

• Identify the relationships between 'sets of concepts, extracted from the text in a

graphical format. This "lexical network" enables the end user to identify

previously unrecognized or unknown relationships in the contents. For

example, construction of a protein-protein interactions network based on the

associations identified from the freely available biomedical literature [17].

10

2.4 Protein Function and Interaction Extraction Related Work

2.4.1 Protein Function Extraction Systems
This section provides the various systems developed to extract the protein functions

from biomedical literature using various text mining techniques.

a. Mining protein function from text using term-based support vector machines
Simon B. Rice et al. [18] employed a supervised machine learning approach to

assignment of GO terms to proteins, together with an extensive terminological

processing of documents (which aimed at generation of relevant features for

classification and protein annotation). They based their method on SVMs, which has

been demonstrated to perform well at the document classification task, as they

construed the protein function assignment task as a modified form of this problem.

The approach is mainly based on the idea that biological entities (represented by

domain terms) that co-occur in text with a protein of interest are indicative of its

function, and that proteins with similar co-occurrences of terms have related roles.

Consequently, learning relevant and informative co-occurring terms for a given GO

term should give clues for assignment of that GO term to proteins that have similar

distributional patterns.

Assignments of GO terms (both for learning and predicting) were based on collecting

"weak" co-occurrence evidence within documents, rather than on explicit statement(s)

of protein function. Therefore, an important facet of this approach was that GO

assignments were not derived from a single, "relevant" passage or sentence, but from

document(s) relevant to a given protein. Further, selection of supporting passages (as

minimal retrieval units they used paragraphs as tagged in an SGML-tagged version of

distributed documents) was based on a similar idea. Each paragraph pertaining to a

given protein was assessed with respect to a given GO term, and the highest scoring

passage was selected. More specifically, the employed method involved three steps:

a) pre-processing of documents and feature selection, b) training the SVMs on the

released training data, and c) .predicting GO terms and selection of paragraphs for

target (testing) genes.

11

b. Automatic extraction of gene/protein biological functions from biomedical text
A.Koike et al. [11] proposed automatic extraction of gene/protein biological functions

from biomedical text using the following procedure. The steps are as follows.

Step 1. Recognition of gene/protein/family names and GO functional terms
Gene name recognition was carried out using the GENA gene name dictionary

(http://gena.ontology.ims.u-tokyo.ac jp/search/servlet/gena) 	and - family 	name

dictionary (http://marine.ims.u-tokyo.ac jp:8080/Dict/family), which was constructed

based on major database entries. In this system, a protein name that does not specify

the gene locus was treated as a family name. For example, since `14-3-3' does not

specify the gene locus ('14-3-3 alpha', '14-3-3 beta', etc.), it was registered as a

protein family - name. The variations in gene name were generated based on these

dictionaries and were quickly searched against abstracts using a devised trie with

many heuristics, such as replacing special characters with spaces, searching inside and

outside the parenthesis separately [e.g. mitogen-activated protein kinase (MAPK)

1-mitogen-activated kinase 1+MAPK1], and using continuous expressions (e.g.

GATA-4/5/6-*GATA4, GATA5, GATA6).

Step 2. Shallow parsing, noun phrase bracketing and sentence structure analysis

Shallow parsing was done for sentences with gene name IDs using FDG-Lite

(http://www.connexor.com/). After noun phrase bracketing using

dependency/syntactic tags and morphological tags, parentheses, coordinate clauses,

subordinate clauses, etc. were analyzed using various standard rules.

FDG-Lite, developed by Voutilainen .et al. at the University of Helsinki, gives the

base form, dependency/syntactic tags and morphological tags. When a determiner,

adverbial and adjective modifiers, coordinating conjunction, participle, noun and

pronoun are contiguous, they are regarded as a noun phrase. Boundary recognition of

noun phrases including a coordinating conjunction and comma requires the use of

certain devices. The number of . coordinating conjunctions before the target

coordinating conjunction, whether or not a `past_participle modifier' is located after

the target coordinating conjunction, whether or not the verb is before or after the

target coordinating conjunction, and whether or not the target coordinating

conjunction is in a subordinate phrase or adverbial phrase beginning with an

12

interrogative are checked for the boundary of the noun phrase including coordinating

conjunctions and comma.

In principle, a predecessor noun phrase of the predicate verb was regarded as a

subject, and just behind the noun phrase or preposition phrase of the predicate verb

was regarded as an object. Certain rules were used for complicated sentence

structures, such as coordinate-conjunction and insertion-phrase structures.

Step 3. ACTOR—OBJECT relationships extraction The gene—function relationships

were extracted when they were -expressed in ACTOR—OBJECT relationships with

predefined verbs or in modification relationships. Here, ACTOR (agent) means the

doer of action and OBJECTmeans the receiver of action (higher concept of `object'

of subject—object). Basically, only when `ACTOR' is a gene name and `OBJECT' is a

gene function, the relationship was -extracted. For some verbs, such as `require', the

reverse relation was extracted. They have used these terms, since relationships

between ACTOR/OBJECT and gene name/function are not affected by the passive

voice or active voice although subject—object relationships are affected (in most cases,

the subject is protein and the object is its function in active voice, while the opposite

holds true in passive voice).

c. Literature Extraction of Protein Functions Using Sentence Pattern Mining
Jung-Hsien Chiang and Hsu-Chun Yu proposed a technique [19] for literature

extraction of protein functio?s. This technique used sentence pattern mining for the

purpose. Sentence pattern mining involves usage of predefined patterns (rules) to

identify the protein function from the texts. The input documents can be full text

articles or abstracts and the output is protein-GO-document relations. Input

documents were processed through the steps of preprocessing, protein name indexing,

GO term indexing, co-occurrence extraction, and phrase parsing to transform

sentences into phrase structures. Then, the work flow was divided into two phases:

mining and matching. In the mining phase, sentence patterns were mined from sample

sentences that describe protein functions. In the matching phase, these sentence

patterns were then matched with new sentences to extract protein-GO-document

relations.

13

Recognition of GO Term Variants

Since authors describe protein functions in various forms instead of following the

controlled vocabulary of GO, many terms in the articles are equivalent to GO terms in

meaning, but appear in different forms. The recognition of these variants is, hence, a
critical issue for robust GO' term indexing. They have classified variations of GO
terms into three major categories: morphological, syntactic, and semantic.

Morphological variants: One or more words of the 'original term are replaced with

their morphologically related words in the variant and the other words remain
unchanged. For example, cellular membrane is a morphological variant of the term

cell membrane (GO: 0005886).

Syntactic variants: The content words of the original term are found in the variant, but

the syntactic structure of the term is modified. For example, transport from the ER to

the Golgi is a syntactic variant of ER to Golgi transport (GO: 0006888), and binding

to the origin of DNA replication is a variant of DNA replication origin binding (GO:

0003688).

Semantic variants: One or more words of the original term are replaced with their

synonyms in the variant and the other words remain unchanged. For example,

delivery of copper ion is a semantic variant of copper ion transport (GO: 0006825).

Morphological variants were identified by adopting the Java Lexical Tools, which

uses the UMLS SPECIALIST Lexicon to handle lexical variants. For each word in a

GO term, they have used the Lexical Variant Generation (LVG) program of the Java

Lexical Tools to generate its inflectional and derivational variants. Inflectional

variants include the singular and plural forms of nouns, the various tenses of verbs,

and the positive, comparative, and superlative of adjectives and adverbs. Derivational

variants are words that change syntactic category from the original words.

To cope with syntactic variants, they have mined GO variation rules from biomedical

literature. These variation rules represent common formats of changes between a GO

term and its variant. Variation rules have the following format:

(X i I Y1)+-+(Xi !Yk)+

14

where the antecedent is a GO term and the consequent is its variant. X1 are token

sequences that both appear in the term and the variant and X. in the variant can be

morphological variants of X. in the term. Y j are token sequences that appear only in

the term, i.e., deleted parts of the term in the variant. Yk are token sequences that

appear only in the variant, i.e., inserted parts of the term in the variant. The antecedent

and the consequent are represented by regular expressions and, hence, the symbol

represents "or" and + means that the previous item occurs one or more times.

To deal with semantic variants, they have compiled synonyms of GO terms with the

following three methods:

1. They utilized the mappings of other classification systems to GO, provided by the

Gene Ontology Consortium. GO is not the only attempt to build structured controlled

vocabularies from genome annotation; hence, it makes translation tables between

concepts of other classification system and GO. We adopt the mappings of UniProt

Knowledgebase, EGAD, TIGR Role, and MIPS Funcat at present.

2. The Lexical Variant Generation program was used to generate synonyms of words

in GO terms.

3. They have compiled synonyms of GO term words from GO itself and from

biomedical literature. Each pair of term and synonym in GO is compared to collect

word pairs, one of which appears only in the term and the other appears only in the

synonym. The frequencies of these word pairs in GO are counted and high-frequency

word pairs are screened to acquire correct synonyms.

Sentence Pattern Mining
Observing the sentences that report protein functions, they could find plenty of

sentence patterns, i.e., wording or writing styles, commonly used by authors to

describe protein functions, e.g., "<protein> participates in <GO>" and "<protein> is

localized to <GO>." These sentence patterns were very useful characteristics for

identifying sentences describing protein functions. They defined sentence patterns as

follows:

A sentence pattern

SP = {CprefixElCinffixE2Csafx}

15

i

is a sequence of parsed phrases. E, and E2 are parsed phrases, which represent

named entities to be extracted. One of the parsed tokens in E, has a "F" slot and one

of the parsed tokens in E2 has a "G " slot and vice versa. C prefx , Cinf ix and Csuffx are

sequences of parsed phrases which represent contextual phrases of the named

entities.

To acquire sentence patterns from text, the problem of sentence pattern mining is

defined as follows:
Given a set of co-occurrence sentences which have been transformed into

parsed phrases, sentence pattern mining is to find the complete set of sentence

patterns in this set of sentences.

For the purpose of sentence pattern mining, they have divided the co-occurrence

sentences, which have been parsed for phrases, into positive and negative examples.

Positive examples are co-occurrence sentences where the occurring protein has the

co-occurring GO function in database annotation, and negative, examples are the other

cooccurrence sentences. Sentence patternmining consists of three steps:

1. Candidate sentence patterns are mined from the positive examples by

aligning each pair of sentences.

2. The support and confidence of each candidate sentence pattern is calculated

by matching the pattern with each positive or negative example.

3. Candidate sentence patterns are screened according to their support and

confidence levels, in order to acquire appropriate sentence patterns.

2.4.2 Protein-Protein Interaction Extraction Systems

This section provides the various systems developed earlier for the extraction of

protein-protein interactions from biomedical literature using various text mining

techniques.

a. Extraction using Longest Common Subsequences (ELCS)
Blaschke et al. [15] manually developed rules for extracting interacting proteins. Each

of their rules (or frames) is a sequence of words (or POS tags) and two protein-name

tokens. Between every two adjacent words is a number indicating the maximum

number of intervening words -allowed when matching the rule to a sentence. In

16

Bunescu et al. [20], they described a new method ELCS (Extraction using Longest

Common Subsequences) that automatically learns such rules. ELCS' rule

representation is similar to that in Blaschke et al. [15], except that it currently does not

use POS tags, but allows disjunctions of words.

- (7) interaction (0) [between I off (5) PROT (9) PROT (17) .

shows an example of a rule learned by ELCS. Words in square brackets separated by

`I' indicate disjunctive lexical constraints, i.e. one of the given words must match the

sentence at that position. The numbers in parentheses between adjacent constraints

indicate the maximum number of unconstrained words allowed between the two

(called a word gap). The- protein names are denoted here with PROT. A sentence

matches the rule if and only if it satisfies the word constraints in the given order and

respects the respective word gaps.

b. Extraction using a Relation Kernel (ERIC)
Both Blaschke and ELCS do interaction extraction based on a limited set of matching

rules, where a rule is simply a sparse (gappy) subsequence of words (or POS tags)

anchored on the two protein-name tokens. Therefore, the two methods share a

common limitation: either through manual selection (Blaschke), or as a result of the

greedy learning procedure (ELCS), they end - up using only a subset of all possible

anchored sparse subsequences. Ideally, they would want to use all such anchored

sparse subsequences as features, with weights reflecting their relative accuracy.

However explicitly creating for each sentence a. vector with a position for each such

feature is infeasible, due to the high dimensionality of the feature space. Here they

could exploit an idea used before in string kernels [21]: computing the dot-product

between two such vectors amounts to calculating the number of common anchored

subsequences between the two sentences. This could be done very efficiently by

modifying the dynamic programming algorithm from [21] to account only for

anchored subsequences i.e. sparse subsequences which contain the two protein-name

tokens. Besides restricting the word subsequences to be anchored on. the two protein

tokens, they could further prune down the feature space by utilizing the following

property of natural language statements: whenever a sentence asserts a relationship

between two entity mentions, it generally does this using one of the following three

patterns:

17

• [FI] Fore—Inter: words before and between the two entities mentions are

• simultaneously used to express the relationship. Examples: `interaction of

< P, >with <P2 >', ̀ activation of <1> by <P2 >'.

• [I] Inter: only words between the two entity mentions are essential for

asserting the relationship. Examples: ` <J > interacts with <P2 >', ` < P1 >

is activated by <P2 >'.

• [IA] Inter—After: words between and after the two entity mentions are

• simultaneously used to express the relationship. Examples: ` <P1 >—< Pz >

complex', ̀ <J > and interact <P2 >'.

18

Mining Techniques Used in Framework 	CHAPTER 3

3.1 Support Vector Machines

The Support Vector Machines (SVMs) [22] are very effective methods for general

purpose supervised pattern recognition. The SVM approach is not only well founded

theoretically because it is based on extremely well developed machine learning theory

and Statistical Learning Theory [23], but is also superior in practical applications.

The following subsections present the working and implementation of the SVM for

our problem.

a. Classification using support vector machines
When used for classification, SVMs separate a given set of binary labeled data.with a

hyper-plane that is maximally distant from them. Since, most practical classification

problems are non-linear; the SVMs employ a technique of kernels that automatically

realizes a non-linear mapping to a feature space. The hyperplane found by the SVM in

the feature space corresponds to a nonlinear boundary in the input space.

port Vectors o

C)
I

GY

Fig. 3.1 The optimal separating hyperplane (OSH), support vectors a, and the slack

variables

LLJ

In their basic form, SVMs learn linear decision rules h(z) = sign(w.z + b) described

by a weight vector w and a threshold b. Let the input be a sample of n training

examples with the j h̀ input point being xj = (x; , x2 ,..., x).

Let this input point be labeled by the random variable Yj E {—1,+1}. For a linearly

separable input, the SVM finds the hyperplane with maximum Euclidean distance to

the closest training examples. This distance is called the margin 8 as depicted in Fig.

3.1. For non separable training sets, the amount of training error is measured using

slack variable] as shown in Fig. 3.1 for a two class problem. Computing

hyperplanes is equivalent to solving the following primal optimization problem.

minimize
n

(3.1.1)

subject to

Vn=,:yj[w.xj+b]>-1— j 	 (3.1.2)

(3.1.3)

The second constraint requires that all the training examples are classified properly up
n ~

to a slack . Therefore, 	is an upper bound on the number of training errors.
j=1

The factor C in Eq. (3.1.1) is a parameter that allows trading off training error verses

model complexity. Note that the margin of the resulting hyperplane is S =1 / wll . The

hyperplane that separates the positive from the negative examples and has maximal

margin is called the maximal margin hyperplane or the optimal separating hyperplane

(OSH) as shown in Fig. 3.1. The hyperplanes that contain the training points with the

minimal distance to the OSH are called the margin hyperplanes and they form the

boundary of the margin. They are represented as Hl and 112 in Fig. 3.1.

b. Parameter and kernel selection
The performance of SVM classification is strongly related to the choice of the kernel

function and the penalty parameter C. There are a large number of kernel functions

available. In general, radial basis function (RBF) is a reasonable first choice. The RBF

20

kernel non-linearly maps samples into a higher dimensional space, and can handle the

case when the relation between class labels and attributes is nonlinear. The RBF

kernel can be described as

k(x, z) = exp(—y x IIx — z'I2) 	 (3.1.4)

For finding the optimum values of parameters (C, y) automatically, a grid search

technique is used using cross validation. Basically pairs of (C, y) are tried and the one

with the best cross-validation accuracy is picked.

In our work, we have used 'SVM based classification for classifying the input text

articles. The articles are classified as being related to protein functions and

interactions or not. The complete discussion is given in next chapter.

3.2 Conditional Random Fields (CRFs)

Conditional random fields [24] are probabilistic models that were designed for

segmenting and labeling sequence data. The following subsections present the

working of the CRF.

a. Conditional Random Fields

Let o = {o, ,..., o. } be some input data observation sequence. Let S be a finite set of

states, each is associated with a labell(E L = (Il'IQ }) . Let s = {sl ,...,s,. }be some

state sequence. CRFs are defined as the conditional probability of a state sequence

given an input observation sequence as follows,

1 	T PO'(s 1 o) = Z(o) exp 	F(s, o, t) 	 (3.2.1)

r
Where Z(o) _ exp 	F(s', o, t) is a normalized factor summing over all label

s 	r-~

sequences. F(s, o, t) is the sum of CRF features at time position t:

	

F'(s, o, t) = I 2; f, (s,-1 , s,) +1); g; (o, s,) 	 (3.2.2)

in which f,. and g; are edge and state feature functions, respectively. A; and

2 (E 0 = {2, 22 ,...}) are the feature weights associated with f and

[s,_1 = l] [s, = 1]

21

g; (o, s,.) = [x; (o, t)] [s, =1]

where s, = I means that label I is associated with state s, . And x1 (o, t) is a logical

context predicate that indicates whether or not the observation sequence .o (at time t)
holds a particular property or fact of empirical data.

b. Inference in CRFs

Inference in CRFs is to find the most likely state sequence s* given the input

observation sequence o,

s * = arg max p9 (s I o) = arg max exp 	F(s, o, t) 	 (3.2.3)

To find s*, one can apply the dynamic programming using the Viterbi algorithm [25].

To avoid an exponential-time search over all possible settings of s, Viterbi stores the

probability of the most likely path up to time t which accounts for the first t

observations and ends in state s,. We denote this probability to be ip, (s,)(0 <_ t < T)

and apo (s;) to be the probability of starting in each states; . The recursion is given by:

(p~+, (s,) = max,, {gyp, (si) exp F(s, o, t + 1) }
	

(3.2.4)

The recursion terminates when t =T-J and the biggest value is p* = arg max, qpT (se) .

At this time, we can backtrack through the stored information to find the most likely

sequence s*.

c. Training CRFs

CRFs are trained by searching the set of weights B = {A, 'Z ,...} to maximize the log-

likelihood, L, of a given training data set D = {o 0), s
N

L = Z log(pe (sU) 1 o')) — 	~k z
j=1 	 k 26

(3.2.5)

where the second sum is a Gaussian prior over feature weights with variance 0-2 ,

which provides smoothing to'deal with sparsity in the training data.

When the labels make the state sequence unambiguous, the likelihood function in

exponential models such as CRFs is convex, thus searching the global optimum is

guaranteed. However, the optimum cannot be found analytically. Parameter

estimation for CRFs requires an iterative procedure. It has been shown that quasi-

22

This method can avoid the explicit estimation of the Hessian matrix of the log-

likelihood by building up an approximation of it using successive evaluations of the

gradient.

L-BFGS is a limited-memory quasi-Newton procedure for convex optimization that

requires the value and the gradient vector of the function to be optimized. Let s~j)

denote the state path of training sequence j in the training set D, then the log-

likelihood gradient component of 2k is

N 	 N

	

dL 	Y Ck (sv)' o
u)) — 	PO (s I o (j))C

k (s, o (j)) _ '12 	(3.2.6)

	

k 	j=1 	 j=1 s 	 6

where Ck(s, o) is the count of feature f given s and o. The first two terms correspond

to the difference between the empirical and the model expected values of feature fk .

The last term is the first-derivative of the Gaussian prior.

d. Second-order Conditional Random Fields

Although. the first-order Markov CRFs described above perform well for many

segmenting and labeling tasks, they fail to encode the long-range interactions among

states due to the limitation of the first-order Markov dependency (i.e., the current state

depends only on one previous state). The second-order (Markov) CRFs are stronger in

capturing such, interactions, and thus perform better on labeling/segmenting tasks

where the sequential dependencies are essential facts for inference.

In the second-order CRFs, we divide features into four categories: edge feature type 1

(e'), state feature type 1 (sl), edge feature type 2 (e2), and state feature type 2 (s2).

Only e1 and s1 are used for first-order CRFs and all of those four are used for second-

order models. The sum of feature, F(s, o, t), is now rewritten as follows,

F(S,o,t) = 	Aj(,_1 ,s,)+ 	2jgj.(o,s,) +I j 2kfk(s(_ ,sf_l,s,)+E'Zhgh(o,S,-1,s,)
j 	 k 	 h

(3.2.7)

where f (type el), gj (type s'),fk (type e2), and gh (type s2) are defined as follows,

fi (s1 _1 , s,) = [st _1 s = Z l]

g j (o, s,) — [Xi (o, t)] [s1 =1]

23

A (s,-z,sg-1,s,) =.[s1 _2 s1 _1 =l l][s,_,s1 =Z l]

gh (o, s,) ° [xh (o, t)] [S,_IS(= ll]

A feature of type el is a special case of type s2 if the logical predicate Xh(O, t) is always

true. Because t starts from 1, we need to add a pseudo-state so at the beginning of each

sequence. In principle, so can be associated with any label 1 (EL = {1,,..., lQ }).

However, this would distort or influence the actual sequential dependencies among

labels in training data. Therefore, it is better to use a pseudo-label to for so. The label

set is now L ={lo ,l,,...,l Q } .

Training for and inference in CRFs need an efficient forward-backward computation

which manipulates on transition matrix Mt at every time position t of each sequence

[24]. Unlike in first-order CRFs, the dimension of transition matrixes in second-order

CRFs is ILI2 x IL12,

M[l "l'][l'l] = exp F(s, o, t)
	

(3.2.8)

Supposing that labels 1", l', and I are represented in integer numbers, the real index of

l'l is 1'[LI + 1, and similarly for! "1'. The four types of features can be summed to build

the transition matrix Mt as follows: feature type e2 is corresponding to matrix cell

[1 "1'][l'1]; feature type el and s2 are corresponding to matrix column [1'1]; and feature

sl is corresponding to matrix columns [*1] (where * is an arbitrary label 1').

e. Inference in Second-order CRFs
Inference in second-order CRFs using Viterbi algorithm also involves the transition

matrixes. The recursive variable for second-order CRFs is as,

cor 1 (s j ,s1) =max,k5j {cp,(sk ,s j)expF(s,o,t+1)} 	 (3.2.9)

where sk, ss, and si are states of time positions t -1, t, and t + 1, respectively.

If we have some constraints for Viterbi inference, we can apply them at this level. For

example, every matrix cell M,11"1;1112 1] must be zero if 1, ~ l2 because a state cannot

be associated with two different labels on the same label path. Also, if we want to

prevent the occurrence of a particular pair of consecutive labels lul", we only need to

' 24

set the column [l"l"] of the transition matrix to zero. This will disable all label paths
going through this pair of labels.

3.3 Phrase Chunking
Phrase chunking is a variant of relation extraction. It is the task of discovering

semantic connections between entities. In text, this usually amounts to examining
pairs of entities in a document and determining whether a relation exists between
them. Common approaches to this problem include pattern matching, kernel [26], and
logistic regression. The pair wise classification approach of kernel methods and
logistic regression is commonly a two phase method: first the entities in a document
are identified, and then a relation type is predicted for each pair of entities. This

approach presents two difficulties: (1) enumerating all pairs of entities, even when

restricted to pairs within a sentence, results in a low density of positive relation
examples; and (2) errors in the entity recognition phase can propagate to errors in the
relation classification stage. We avoid these difficulties by formulating above task of

relation extraction as a _sequence labeling task such as named entity recognition or
part-of-speech tagging, so we can now apply models that have been successful on
those tasks. The sequential labeling approach can handle many correlated features, as

demonstrated in work on maximum-entropy [24].

Text chunking consists of dividing a text in syntactically correlated parts of words.

For example, the sentence He reckons the current account deficit will narrow to only
1.8 billion in September. can be divided as follows:
[NP He] [VP reckons] [NP the current account deficit] [VP will narrow] [PP to] [NP

only # 1.8 billion] [PP in] [NP September].

The goal of this machine learning method is to recognize the chunk segmentation of

the test data after the training as well as possible. The training data can be used for

training the text chunker. The chunkers will be evaluated with the F rate, which is a
combination of the precision and recall rates: F = 2*precision*recall /
(recall+precision). The precision and recall numbers will be computed over all types

of chunks.

25

Framework of Extraction System 	 CHAPTER 4

Extraction of protein functions and protein-protein interactions involves lot of text

processing techniques and computational methods. Here we have used a number of

techniques to employ the system. These techniques range from wide areas of data

mining such as preprocessing the text articles, parts-of-speech tagging of sentences,

tagging the biomedical terms in the texts, classification of articles and relation

extraction etc.

The framework of our proposed automated protein function (PF) and protein-protein

interaction (PPI) extraction system is as shown in Fig. 4.1. The skeleton of the

framework is same for both the protein function and protein-protein interaction

system, except that the input articles, features used for the classification purpose and

training data for the taggers vary.

Separate components are provided in the framework for the following:

• Preprocessing the input text articles.

• Feature extraction, the theme from the abstracts containing PFs and PPIs is

extracted.

• Classification of abstracts for relevance with PFs and PPIs.

• The protein name tagging to extract the protein names.

• Classification to identify the sentence containing the function or interaction

sentence. Phrase chunking to finally extract the protein function or protein-

protein interaction term from the sentence.

Each of these components is discussed in detail in next sub-sections.

FM

n

CRF Tagger

Preprocessing

Input Text
Articles 	 Feature Extraction

r • ,

. v

.
SVM Classifier

•. 0..000....•

■

CRF Tagger

Training Classifier

Classification

Relevant
Abstracts

Protein Name Tagging

Extraction of PF or PPI sentences

PUBMED
Abstracts

>r 	POS Tagging

POS Tagger Final xtraction of 	 or PPI term

Output: Protein Functions or Protein-Protein
Interactions

Fig. 4.1 The proposed framework for protein function and protein-protein interaction

extraction

4.1 Protein Functions and Interactions Data Set

We adopted the corpus taken from PubMed for protein functions. PubMed Central

(PMC) is the U.S. National Institutes of Health (NIH) free digital archive of

biomedical and life sciences journal literature. The corpus consists of 13,014 abstracts

related to protein functions. These abstracts are obtained from PubMed using the

pmids given in the task 2 of BioCreAtivE (Critical Assessment of Information

27

Extraction Systems in Biology; http://www.mitre.org/public/biocreative) Competition.

A total of 79,231 sentences are detected in these abstracts.

We used the information from a domain-specific database to gather labeled data for

the task of classifying the interactions between proteins in text. The manually-curated

HIV-1 	Human 	Protein 	Interaction 	Database

(www.ncbi.nlm.nih.gov/RefSeq/HIVInteractions/index.html) provides a summary of

documented interactions between HIV-1 proteins and host cell proteins, other HIV-1

proteins, or proteins from disease organisms associated with HIV or AIDS. We use

this database also because it contains information about the type of interactions, as

opposed to other protein interaction databases (BIND, MINT, and DIP) that list the

protein pairs interacting, without specifying the type of interactions. In this database,

the definitions of the interactions depend on the proteins involved and the articles

describing the interactions; thus there are several definitions for each interaction type.

For the interaction bind and the proteins ANT and Vpr, we find (among others) the

definition "Interaction of HIV- 1 Vpr with human adenine nucleotide translocator

(ANT) is presumed based on a specific binding interaction between Vpr and rat

ANT"

4.2 Preprocessing of Data Sets

The PubMed abstracts are processed initially to make them useful for the next phases.
As different authors use different writing styles in representations and naming conventions of
biomedical terms, the preprocessing is a must phase. Text is made into tokens using white-

space as delimiter and removing all punctuation marks and stop words. The parts-of-

speech tags are assigned to each token using Grok, an open-source natural language

processing library (Grok, http://grok.sourceforge.net/, 2006). The POS tagger, Grok

uses a maximum entropy model trained on English data from the Wall Street Journal

and the Brown corpus and achieves greater than 96% accuracy on unseen data.

4.3 Feature Extraction from input articles

The feature extraction phase concentrates on picking up the theme from the abstracts

containing the protein functions and human protein-protein interactions. The features

are extracted using probability distribution model. The standard probabilistic model

28

for the distribution of a certain type of event over units of a fixed size is the Poisson

distribution as discussed in earlier section.

For the purpose of feature extraction in protein function abstracts, we have used 9,716

general PubMed abstracts and 12,945 PubMed abstracts that are manually-curated as

dealing with Protein functions. First we constructed a dictionary containing the

frequencies of most common words in 9,716 general PubMed abstracts. Next the

frequencies of words from training set of 12,945 function abstracts were compared

against the calculated dictionary frequencies of general abstracts for unexpectedly

higher or lower frequencies, indicating words that are useful for classifying the

function abstracts from the ordinary abstracts.

Much similarly for the purpose of feature extraction in protein-protein interaction

abstracts, we have used 9,716 general PubMed abstracts that contain the term `HIV'

and 923 PubMed abstracts that are manually-curated as dealing with HIV-1 Human

Protein Interactions. Next the features are extracted as described above.

The probabilities p(k, 2.,) of the word 'i' is calculated as in equation (4.3.1).

p(k,2;)= k2' 	 (4.3.1)

where 'k 'is the frequency of the word '1 'with dictionary frequency as '2 '.

We might say that p. (k) = p(k, 2) is the probability of a document having exactly k

occurrences of word ` i ', where ` A, ' is appropriately estimated for each word.

Generally to avoid floating point errors, the log of the probability was calculated as

shown in equation (4.3.2).

In p(k, 2.) —2; + k ln(2,) — ln(k!) 	 (4.3.2)

The tokens with part-of-speech as noun were removed in order to remove the bias

from the training data. The words with most negative Iog probability value imply the

rare occurrence of these words in general abstracts, thereby implying their relevance

to function and interaction words. Hence such words are considered as features for

our system.

29

4.4 Training the SVM classifier

The abstracts from PubMed may not all deal with protein functions and protein-

protein interactions. The abstracts which deal with the protein functions and protein

interactions are of main concern for the work. The abstracts are classified using a

SVM trained on the features extracted in the above phase to obtain the required

abstracts.

For this phase, 1,225 abstracts without PFs and 1964 abstracts with PFs and a well

pruned feature set of 2000 words are used to train the SVM classifier for protein

functions. And 978 abstracts without PPIs and 923 abstracts with PPIs are used to

train the SVM classifier for protein-protein interactions. The SVMs are trained using

these features

4.5 Protein Name Tagging Using CRF Tagger

Conditional random fields are probabilistic models that were designed for segmenting

and labeling sequence data as discussed in section 3. As protein names are normalized

in the preprocessing phase, the names are now a set of biomedical words appearing as

consequent words. The protein names from the biomedical texts are tagged using the

CRF tagger. Words in the sentence are assigned labels by states in the CRF

framework. For this purpose we used well known Abner [27] protein name tagger, an

open source tool which makes use of CRFs.

4.6 Term Extraction using a variant of Phrase Chunking

Abstracts describe the entire work carried out by the researchers. The sentences

describing the relation between proteins are of main concern for us. These sentences

are extracted by identifying functions and interaction terms between proteins from all

the sentences.

Text chunking an intermediate step towards full parsing of natural language -

recognizes phrase types in input text sentences. Phrase chunking, a variant of text

chunking deals with a similar kind of task: it involves recognizing the chunks that

consist of protein function and protein-protein interaction phrases. This task was

performed using second order sequential CRF and it labels each word with a label

30

indicating whether the word is inside the function and interaction chunk (I), or

outside a chunk (0). Our chunking CRF has a second-order Markov dependency
between chunk tags. This is easily encoded by making the CRF labels pairs of

consecutive chunk tags. That is, the label at position i is y; = c;_lc, , where c; is the

chunk tag of word i, one of I or O. In addition, successive labels are

constrained: y! _, = c_2c1 _ j, y; = c,_,c; , and c9 = O. These constraints on the model

topology were enforced by giving appropriate features a weight of— cc, forcing all the

forbidden labeling to have zero probability.

The input chunks were initially tagged with POS tags and function phrase tags to

generate the training data. The training data was generated using 7,454 PF sentences

and 3,852 non-PF sentences for tagging protein function terms. Then the actual

function terms from the data were extracted using the trained CRF. The sentence with

a protein name and the function chunk extracted using the above methodology was

considered as the PF sentence. For the training data of interaction terms, 940 PPI

sentences and 852 non-PPI sentences are used. Then the actual interaction terms from

the data were extracted using the trained CRF. The sentence with more than two

protein names and the interaction chunk extracted using the above methodology was

considered as the PPI sentence.

31

Implementation Details of Framework 	CHAPTER 5

This chapter presents the implementation details of the framework discussed in the

earlier chapter. The individual modules in the previously discussed framework can

perform independently from each other but in the same order as shown in the

framework. The modules are implemented according to implementation convenience

using different language tools like C, C++ and Java. The implementation details are

discussed in the following sections.

5.1 System Requirements

The programs are written in C, C++ and Java. So the system requires a standard C++

compiler and Java Development Kit with Java Virtual Machine on the system._

Memory requirements depend upon the number of input text abstracts or full articles.

The operating system requirements for the programs written in C and C++ are as

shown below

• Linux/Unix:

Compiler: GNU C Compiler (gcc) and GNU C++ Compiler (g++)

Library: STL

• MS Windows 2000, XP:

Compiler: MS Visual jC++ 7.0

Library: STL

The system should have a UNIX or Windows Operating System and a Java Compiler

for the programs written in Java. The system with a Pentium IV processor, having

minimum 256MByte RAM is needed for the entire framework.

5.2 Implementation of Preprocessing Module

The input abstracts are initially processed to remove the unnecessary terms. The stop

words which occur with high frequencies in general obstruct the efficient extraction of

feature. The stop words are removed from the input texts by using a predefined set of

stop words. The preprocessing module is implemented as a Java program which

matches the words in the input text with the stop words and removes them from the

input text. The special characters are also removed using the same program to make

the text useful for the remaining phases.

32

5.3 Implementation of Classification Module

The classification module is one of the major modules of the framework. The main

purpose of this module is to extract the relevant text articles from the input articles

which may not all contain the protein functions or protein-protein interactions. The

classification module is implemented using the modified support vector machines in

Java. The classifier requires the input in a standard format as described in the

LIBSVM [29] software package.

A classification task usually involves with training and testing data which consist of

some data instances. Each instance in the training set contains one "target value"

(class labels) and several "attributes" (features). The goal of SVM is to produce a

model which predicts target value of data instances in the testing set which are given

only the attributes.

Given 	a 	training 	set 1 of instance-label 	pairs 	(x; , y;),i =1,...,Iwhere

x; E R' and y E {1,-1}', the support vector machines (SVM) require the solution of the

following optimization problem:

min 	1 WT W +Cly; 	 (5.3.1)
iv,b,~ _ 	2 	 ;=1

subject to y; (wT cb(x;) + b) >-1— ~; ,

~; ? 0.
	 (5.3.2)

Here training vectors x; are mapped into a higher (maybe infinite) dimensional space

by the function 0. Then SVM finds a linear separating hyperplane with the maximal

margin in this higher dimensional space. C> 0 is the penalty parameter of the error

term. Furthermore, K(x ; , x~) q(x ;)T Ø(x) is called the kernel function.

The kernel used in our program is Radial Basis Function (RBF) kernel:

K(x ; , x~) = exp(—yl x; — x
i

~), y >0.

Here, y is kernel parameter.

The following procedure has been used to implement the svm classification:

• Transform data to the format of SVM software

33

• Conduct simple scaling on the data

• Consider the RBF kernel K(x, y) = e-yllX-yllz

• Use cross-validation to find the best parameter C and y .

• Use the best parameter C and y to train the whole training set.

• Test

We discuss this procedure in detail in the following sub sections.

5.3.1 Representation of Feature Vectors
SVM requires that each data instance is represented as a vector of real numbers.

Hence, if there are categorical attributes, we first have to convert them into numeric

data. We recommend using m numbers to represent an m-category attribute. Only one

of the m numbers is one, and others are zero. For our problem, a sample four-category

attribute such as {protein, binding, activation, response} can be represented as

(0,0,0,1), (1,0,0,0), (0,0,1,0) and (0,1,0,0).

5.3.2 Scaling

Scaling the vectors before applying SVM is very important. The main advantage is to

avoid attributes in greater numeric ranges dominate those in smaller numeric ranges.

Another advantage is to avoid numerical difficulties during the calculation. Because

kernel values usually depend on the inner products of feature vectors, e.g. the linear

kernel and the polynomial kernel, large attribute values might cause numerical

problems. Here we have scaled the attributes of vectors to range [0,1].

5.3.3 RBF Kernel
The RBF kernel nonlinearly maps samples into a higher dimensional space, so it,

unlike the linear kernel, can handle the case when the relation between class labels

and attributes is nonlinear. Furthermore, the linear kernel is a special case of RBF as

shows that the linear kernel with a penalty parameter C has the same performance as

the RBF kernel with some parameters (C, y).

The second reason is the number of hyperparameters which influences the complexity

of model selection. The polynomial kernel has more hyperparameters than the RBF

34

kernel. Finally, the RBF kernel has less numerical difficulties. One key point is

0< K,t < 1 in contrast to polynomial kernels of • which kernel values may go to

infinity (yx,T x1 + r > 1) or zero (yx;T x + r < 1) while the degree is large.

5.3.4 Cross-validation

There are two parameters while using RBF kernels: C and y. It is not known

beforehand which C and y are the best for one problem; consequently some kind of

model selection (parameter search) must be done. The goal is to identify good (C, y)

so that the classifier can accurately predict unknown data (i.e., testing data). Note that

it may not be useful to achieve high training accuracy (i.e., classifiers accurately

predict training data whose class labels are indeed known). Therefore, a common way

is to separate training' data to two .parts of which one is considered unknown in

training the classifier. Then the prediction accuracy on this set can more precisely

reflect the performance on classifying unknown data. An improved version of this

procedure is cross-validation.

In v -fold cross-validation, we first divide the training set into v subsets of equal size.

Sequentially one subset is tested using the classifier trained on the remaining v -1

subsets. Thus, each instance of the whole training set is predicted once so the cross-

validation accuracy is the percentage of data which are correctly classified.

The cross-validation procedure can prevent the overfitting problem. We use Figure

5.1 which is a binary classification problem (triangles and circles) to illustrate this

issue. Filled circles and triangles are the training data while hollow circles and

triangles are the testing data. The testing accuracy the classifier in Figures 5.1(a) and

5.1(b) is not good since it overfits the training data. If we think training and testing

data in Figure 5.1(a) and 5.1(b) as the training and validation sets in cross-validation,

the accuracy is not good. On the other hand, classifier in 5.1(c) and 5.1(d) without

overfitting training data gives better cross-validation as well as testing accuracy.

The program for the svm based classification is done in Java. The entire module is-
implemented using various sub . modules for solving the mathematical part, for

35

preparing the matrix in the required form, for making the kernel related calculations

and for finally cross validating sub module for the input data.

►1

(a) Training data and an overfitting

classifier

•

\A %

L

A

A
0

C)

O

	

e 	e

(b) Applying an overfitting classifier

on testing data

O
e

1 d 	4

	

S 	 Q

Wil

(c) Training data and a better classifier 	(d) Applying a better classifier on

testing data

Figure 5.1: An overfitting classifier and a better classifier (Dark circle and triangle:

training data; Hollow circle and triangle: testing data)

5.4 Implementation of CRF Tagging

The CRF tagging is done at; two phases of the framework, the protein name tagging

and tagging the final terms of protein functions or protein-protein interactions. The

protein name tagging is done using a well known tagger Abner, as protein name

tagging is of not main concern for us. The important phase in framework is tagging

the exact terms of functions and interactions.

{ 	36

The program for tagging is done using a variant of phrase chunking using F1exCRFs

in C++ language. F1exCRFs makes use of Viterbi algorithm for this purpose. The

relevant POS tagged text articles are given as input to the tagging phase to extract the

terms. The tagging is done manually first to get the training data for the CRF tagger.

The input sentences are tagged with parts-of-speech initially using Grok, and the

protein function or protein-protein interaction terms are tagged manually.

The important options for the FIexCRF are f rare threshold and cp_rare_threshold.

The rare thresholds for features (f_rare threshold) and context predicates

(cp_rare threshold) are 1 and 1. These thresholds mean that context predicates and

features whose occurrence frequencies are smaller than or equal to 1 will be removed.

To use FlexCRFs for segmenting and labeling sequence data, Users must first prepare

training (and testing) data. Training and testing data should have the format specified

by the following rules:

<Data>:= a list of <Data Sequences>

<A Data Sequence>:= a list of <Data Observations>

<A Data Observation>:= a list of <Context Predicates> + <A Label>

<A Context Predicate>:= A string token

<A label>:= A string token

In other words, training or testing data sets consist of a list of data sequences; and two

consecutive data sequences are separated by a blank line. Each data sequence consists

of a series of data observations; and each data observation is placed on a line. Each

data observation contains a list of context predicates and a label that are separated by

blank characters. Context predicates and labels are represented as string tokens, i.e.,

strings without-blank characters.

5.4.1 Implementation of Viterbi Algorithm
The Viterbi algorithm provides an efficient way of finding the most likely state

sequence in the maximum a posteriori probability sense of a process assumed to be a

finite-state discrete-time Markov process. Such processes can be subsumed under the

general statistical framework of compound decision theory as discussed below.

37

Suppose we have a text of n characteres. Each character yields a feature vector z,,

i=1,2,...,n. Let p(Z I C) denote the probability density function of the vector sequence

Z = z1 ,z2 ,...,z,, conditioned on the sequence of identities C = c1 ,c2 ,...,cn , where Zk

is the feature vector for the k-th character, and where ck takes on M values (number

of letters in the alphabet) for k=1,2,. ..,n. Also, let P(C) be the a priori probability of

the sequence of values C. In other words P(C) is the a priori probability distribution

of all sequences of n characters. The probability of correctly classifying the text is

maximized by choosing that sequence of characters that has a maximum posterior

probability or the so called: maximum aposteri (MAP) probability, given by P(CIZ).

From Bayes' rule we obtain

P(Z)
Since p(Z) is independent of the sequence C (it is just a scale factor) we need only

maximize the discriminant function

g' (Z) = p(Z I C)P(C)

The amount of storage required for these probabilities is huge in practice, for that

reason, assumptions are made' in order to reduce the problem down to manageable

size. These assumptions are:

• The size of the sequence of observations is not very large. Let n be the size of

a word. Then P(C) is the frequency of occurrence of words.

• Conditional independence among the features vectors. The shape of a

character, which generates a given feature vector, is independent of the shapes

of neighboring characters and is, therefore, dependent only on the character in

question.

Under these assumptions, and taking logarithms, discriminant function reduces to
n

gc (Z) = 	log P(Z P I Ci) + log P(c, .C2 ,..., Cn)
i=1

For the case of the Viterbi algorithm, if we assume that the process is first-order

Markov, then above equation reduces to:
n

g, (Z) = E log P(z; c;) + log[P(c1 I co) + P(c2 c1) + ... + P(cn I cn+1)]

To illustrate how the Viterbi algorithm obtains this shortest path, we need to represent

the Markov process in an easy way. A state diagram, like one shown in Fig. 5.2, is

38

often used. In this state diagram, the nodes (circles) represent states, arrows represent

transitions, and over the course of time the process traces some path from state to

state through the state diagram.

Fig. 5.2 State diagram of a three-state process

A more redundant description of the same process is shown in Fig. 5.3, this
description is called trellis. In a trellis, each node corresponds to a distinct state at a

given time, and each arrow represents a transition to some new state at the next instant

of time. The trellis begins and ends at the known states co and c„ . Its most important

property is that to every possible state sequence C there corresponds a unique path

through the trellis, and vice versa.

State k=0 	k-1 	k-2 	k-3 	k=4 	k=ii-2

1

Fig. 5.3 Trellis for the three-state process of Fig. 5.2.

Now, suppose we assign to every path a length proportional to — log[p(Z I C) + P(C)] .

Since log() is a monotonic function and there is a one-to-one correspondence between

paths and sequences, we only need to find the path whose — log[p(Z I C) + P(C)] is

minimum, this will give us the state sequence for which p(Z I C)P(C) is maximum,

in other words, the state sequence with the maximum aposteriori (MAP) probability,
which take us back to the original problem we want to solve. The total length of the

path corresponding to some state sequence C is

39

n
— log[P(Z I C)P(C)] = 1l(tk)

k=1

where l (tk) is the associated length to each transition t k from Ck to Ck+l . The shortest

such path segment is called the survivor corresponding to the node Ck , and is

denoted S(ck) . For any time k>O, there are M survivors in all, one for each C k . The

observation - is this: the shortest- complete path S must begin with one of these

survivors. Thus for any time k we need to remember only the M survivors S(ck) and

their correspondent lengths. To get to time k+1, we need only extend all time-k

survivors by one time unit, compute the lengths of the extended path segments, and

for each node ck+l as the corresponding time-(k+1) survivor. Recursion proceeds
i

indefinitely without the number of survivors ever exceeding M. This algorithm is a

simple version of forward dynamic programming.

The Viterbi algorithm seen as finding the shortest route through a graph is:

Input:

Z - zzz ,...,z„ 	 the input observed sequence

Initialization:
k=1 	 time index

S(c,)= c,

L(cl)=0 	 this is a variable that accumulates the lengths,

the initial length is 0

Recursion:

For all transitions tk = (ck , Ck+l)

compute: L(ck , ck+l) = L(ck) + Z{tk = (Ck" ck+l)} among all Ck

Find L(ck+,) = min L(Ck , Ck+l)

For each ck+l

store L(ck+,) and the corresponding survivor S(ck+l)

k=k+1
Repeat until k=n

With finite state sequences C the algorithm terminates at time n with the shortest

complete path stored as the survivor S(ck) .

¶

The above discussed Viterbi algorithm is implemented in C++. There are separate sub

modules for the. string tokenizer, building the.model using the training data and the crf

module to finally extract the terms of protein functions and protein-protein

interactions. The training data for protein function tagging data is prepared as shown

below for the sentence "The DT C-terminal domain of HIV-1 Vpu (amino acids)

interacts with the cytoplasmic domain of CD4 (amino acids) and causes the rapid

degradation of CD4 in the endoplasmic reticulum ":

The DT NREL
C-terminal JJ NREL
domain NN NREL
of IN NREL
HIV-1 NNP NREL
Vpu NNP NREL
(amino 	VBD NREL
acids) 	NNS NREL
interacts NNS NREL
with IN NREL
the DT NREL
cytoplasmic JJ 	NREL
domain NN NREL
of IN NREL
CD4 CD NREL
(amino NN NREL
acids) 	NNS NREL
and CC NREL
causes VBZ NREL
the DT NREL
rapid JJ 	NREL
degradation NN 	REL
of IN NREL
CD4 NNP NREL
in IN NREL
the DT NREL
endoplasmic JJ 	NREL
reticulum NN NREL
. . 0

The first column gives the tokens of the string, the second column are the parts-of-

speech tags and the third column is the class to which the token belongs to (NREL-

represents non-function term and REL-represents the protein function term). The test

data has to be presented without the third column to,the trained model. And similar

algorithm is used for the extraction of the protein interaction extraction.

41

Results and Discussions 	 CHAPTER 6

6.1 Accuracy of Classification

The protein function extraction system consists of a module for classifying whether

input abstracts are discussing the protein functions or not as shown in Fig. 4.1. The

accuracy of the classifier was compared with two types of classifiers namely Naive

Bayesian based classification and SVM based classification, and the results of SVM

based classifier outperformed the earlier. For protein function abstracts, the SVM

classifier obtained a precision value of 0.97 at recall value of 0.94. Till the recall

value of 0.9 the precision was found to be around 95%. The precision — recall curve

for this classification is as shown in Fig. 6.1. The graph points are obtained by varying

a threshold on the minimum acceptable extraction confidence, based on the

probability estimates from LibSVM [29]. Due to efficient extraction of features, the

classification performed much better and classifier is not biased towards the training
data.

1

0.95

0.8

0.75

-S 	 f s S.

0.7

SVM
0.65 , 	 Naive Bayesian

0.55 	0.6 	0.65 	0.7 	0.75 	0.8
	

0.85 	0.9 	0.95 	1
Recall

Fig. 6.1 The performance of Nave Bayesian and SVM classifiers on protein function

abstracts

EN

Accuracy is estimated as 95%. Accuracy is a percentile expression of the number of

times that the SVM is correct in its classification (either function abstract or not).

Estimated precision is 95%. Precision is the percentage of times that the SVM is

correct in its classification of an abstract as describing a function. Recall is estimated

as 94% and is the percentage of known function articles that the SVM would classify

as being about a function.

For classification of protein interactions abstracts, the accuracy of the classification

was compared with two types of classifiers namely Naive Bayesian based

classification and SVM based classification, and the results of SVM based classifier

outperformed the earlier in this case also. The SVM classifier obtained a precision

value of 0.95 at recall value of 0.85. Till the recall value of 0.6 the precision was

found to be 100%. The precision-recall curve for this classification is as shown in Fig.

6.2.

1

0.98

0.96 ,

0.94-

0.92 -

Cl)
	0.9 -

a.
0.88 -

0.86

0.84 	 SVM

nlai% Bayes
0.82

0.8
0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

Recall

Fig. 6.2 The performance of Naive Bayesian and SVM classifiers on protein-protein

interaction abstracts

43

Accuracy is estimated at 94%. (either interaction abstract or not). Estimated precision

is 94%. Precision is the percentage of times that the SVM is correct in its

classification of an abstract as describing an interaction. Recall is estimated as 88%

and is the percentage of known interaction articles that the SVM would classify as

being about an interaction.

6.2 Performance of Function and Interaction Phrase Chunking

The main task of the system was the extraction of the PF sentence with function

phrase from the abstract. This task was done using function phrase chunking

technique. The performance of which is as shown in the Fig. 6.3.

70

0

0

20 	
Precision %~

10-
	 Recall %

0
1
	

2 	3 	4 	5 	6 	7
Rare context predicate threshold

Fig. 6.3 The performance of the function phrase chunking technique

The precision value of this phase of the system was found to be 79.49% and recall

was found to be 62.28% at moderate rare context predicate threshold value of 5.

Hence, the system has got the precision value much superior to many other existing
function extraction systems.

Extraction of the PPI sentence with interaction phrase from the abstract is done using

interaction phrase chunking technique. The performance of which is as shown in the

Fig. 6.4.

e

90 	 I 	- 	 _

80

70

.s

M

20
	Precision %

10 	 Recall %

0
1 	2 	3 	4 	5 	6 	7

Rare context predicate threshold

Fig. 6.4 The performance of the interaction phrase chunking technique

The precision value of this phase of the system was found to be 85.85% and recall

was found to be 85.74% at minimum rare context predicate threshold value of 9.

Hence, the system has got the precision value much superior to many other existing
kernel based classification systems.

6.3 Comparative Study

We compare the following three systems on the task of retrieving protein functions

with our system implemented using phrase chunking (CRF) and are shown in table 1.
• [Sentence Pattern Mining (SPM)]: we report the performance of the

sentence pattern mining based system of [111.

• [Term-based SVM (TbSVM)I: We report the performance of mining protein
functions using term-based SVMs of [i $1.

45

• (Full Sentence Parsing (FSP)]: Extraction using a Full-Sentence Parser, we

report the performance of this from [28].

Method Precision % Recall %

CRF(Proposed System) 79.49 62.28

SPM 67.2 40.0

TbSVM

FSP

50.0 -

i 	50.0 30.4

Table 1: The comparison of existing function extraction systems with our

implementation

We compare the following three systems on the task of retrieving protein interactions

with our system implemented using CRF and are shown in table 2.

• (Manual]: we report the performance of the rule-based system from [12].

• I ELCSI: Extraction using Longest Common Subsequence, we report the 10

fold cross-validated results from [12].

• I FRKI: Extraction using a Relation Kernel, we report the performance of this

from [12].

Method

CRF (Proposed System)

Precision %

85.85

Recall %

85.74

Manual 68.5 32.4

ELCS 55.3 35.2

ERK 73.9 35.2

Table 2: The comparison of existing interaction extraction systems with our

implementation

The screen shot of the implemented system is as shown in Fig. 6.5, in which the user

is allowed to search for the interaction between the protein names provided by him as

M

input. In the output, the protein names are highlighted and the interaction between

them is shown as being underlined.

Protein-protein interaction extractor 	 _ r1 15c

node : User 	aev 	 next

HN Tat protein 	RNA polymerase III
The 1W Tat protein is able to uoreaulate the transcriotion by RMA 	 of cotransfected or endogenous
cellular Alu-repeated sequences in both HeLa and Jurkat T cells

User 	 PubMed idr 1403646

TFIIIC, 	RNA polymerase III
CINOr This effect is mediated by an increase In thea ctivlty of transcription factor TFC, which binds to the B box In the RIiA

polymerase U Aiu promoter.

PubMed Mt 1403646

Tat 	TAR
Much attention has been focused on the Interaction of Tat with a specific RNA target termed TAR (transactivation
responsive) which is present in the leader sequence of all HIV-1 mRNAs.

PubMed int 1505523

Tat 	RNA polymerase
These observations and the result of pulse-chase experiments support strongly the hypothesis that Tat enhances
the ability otA pol i nerass to elongate over longer distances.

Pul3Med ki: 155M 13

tat-I gene product 	NF-kappa B
PIØV

	 next

Fig. 6.5 The screenshot showing the interaction term extraction technique

ji7

Conclusion and Scope for Future Work 	CHAPTER 7

7.1 Conclusion
In the proposed technique to extracting protein functions and interactions from text,

we have used SVMs and variants of Phrase Chunking to extract the function and

interaction terms.

This system is tested on 127137 PubMed abstracts containing keywords `protein' and

`function' and on 171,106 PubMed abstracts containing keywords `protein' and

`interaction'. The test resulted in the extraction of 	protein functions and 26923

protein-protein interactions.

The proposed variants of phrase chunking mechanism can efficiently reduce the effort

of manual recognition of the protein functions and interactions in biomedical text

articles. The evaluation of the results shows the capabilities and limitations of

supervised machine-learning approaches in text mining. The following conclusions

can be made from the results obtained using the proposed system and above

mentioned data:

• The system can yield good performance only if sufficient training data is

obtained, and significant amount of supporting data is used for prediction.

• The classification module resulted in very good precision and recall values of

around 95% and 96% for protein functions and 94% and 93% for interactions.

• The results show that performance improves as the number of relevant

documents increases. This implies that our function and interaction term

assignments are accurate and with good recall.

• The performance of protein function and protein-protein interaction term

extraction is far better than the existing techniques as shown in comparative

study of chapter 6.

Hence, this work can aid the understanding of protein functions and interactions for

biomedical researchers and assist database curators in annotating protein functions

and interactions efficiently, thus promoting the progress of genomics research.

7.2 Scope for Future Work

There is obviously significant room for improving the methods that we used for the

extraction of protein function and protein-protein interaction terms. The possible

improvements in the future are listed as below:

• Protein name tagging is itself an area of research. Other efficient techniques

can also be explored in this area for tagging the protein names.

• The extraction of function and interaction terms is done using Conditional

Random Fields in our system, but many more techniques can also be explored

for this purpose.

• An extra module can be implemented for extracting the specific functions or

interactions related to a particular protein from the entire database of functions

and interactions.

• The work can be extended to parallel processing environment where extraction

of function and interaction term can be made using parallel CRFs.

In the future, there will be enormous need for the rapid annotations of protein

functions and interactions for biomedical researchers to access the biomedical

problems of human beings and to prescribe the drugs for their cure.

S
4(

T

r
References

[1] 	L. Hirschman, J.C. Park, J. Tsuj i i, 	W 	, 	 ccomplishments

and Challenges in Literature Data Mining for 	 , vol. 18, no.

12, pp. 1553-1561, 2002.

[2] J. H. Chiang, H. C. Yu and H. J. Hsu, "GIS: A Biomedical Text-Mining

System for Gene Information Discovery", Bioinformatics, vol. 20, no. 1, pp. 120-121,

2004.

[3] Emilia Stoica and Marti Hearst, "Predicting Gene Functions from Text Using

a Cross-Species Approach", Proceedings of Pacific Symposium on Biocomputing, pp.

88-99, September, 2006.

[4] L. Tanabe and W.J. Wilbur, "Tagging Gene and Protein Names in Biomedical

Text", Bioinformatics, vol. 18, no. 8, pp. 1124-1132, 2002.

[5] H. Yu and E. Agichtein, "Extracting Synonymous Gene and Protein Terms

from Biological Literature", Bioinformatics, vol. 19, Suppl. 1, pp. i340-i349, 2003.

[6] G.D. Zhou, J. Zhang, J. Su, D. Shen, and C. L. Tan, "Recognizing Names in

Biomedical Texts: A Machine Learning Approach", Bioinformatics, vol. 20, no. 7, pp.

1178-1190, 2004.

[7] B.J. Stapley, L.A. Kelley, and M.J.E. Sternberg, "Predicting the Sub-Cellular

Location of Proteins from Text Using Support Vector Machines", Proceedings of

Pacific Symposium on Biocomputing (PSB) 2002, pp. 374-385, 2002.

[8] J. Pustejovsky, J. Castano, J. Zhang, M. Kotecki, and B. Cochran, "Robust

Relational Parsing over Biomedical Literature: Extracting Inhibit Relations,"

Proceedings of Pacific Symposium on Biocomputing (PSB) 2002, pp. 362-373, 2002.

[9] D. M. Yao, J. B. Wang, Y. M. Lu, N. Noble, H. D. Sun, X. Y. Zhu, N. Lin,

D.G. Payan, M. Li, and K. B. Qu, "Pathway Finder: Paving the Way towards

Automatic Pathway Extraction," Proceedings of Second Asia-Pacific Bioinformatics

Conf (APBC2004), pp. 53-62, 2004.

[10] Jung-Hsien Chiang and Hsu-Chun Yu, "Extracting Functional Annotations of

Proteins Based on Hybrid Text Mining Approaches", In Proceedings of BioCreative

Workshop, 2004.

[11] Asako Koike, Yoshiki Niwa and Toshihisa Takagi, "Automatic extraction of

gene/protein biological functions from biomedical text", Bioinformatics, vol. 21, no.

7, pp. 1227-1236, 2005.

50

[12] A.K. Ramani, R.C. Bunescu, R.J. Mooney and E.M. Marcotte, "Consolidating

the set of known human protein-protein interactions in preparation for large-scale

mapping of the human interactome", Genome Biology 2005, Vol. 6, Issue 5, Article

r40, pp. R40.1-R40.12, 2005.

[13] X. Chen and M. Liu! "Domain-Based Predictive Models for Protein-Protein

Interaction Prediction", Hindawi Publishing Corporation EURASIP Journal on

Applied Signal Processing, Article ID 32767, pp 1-8, 2006.

[14] Stapley, B. and Benoit, G., "Biobibliometrics: information retrieval and

visualization from co-occurrences of gene names in medline abstracts", In

Proceedings of the Pacific Symposium on Biocomputing, pp. 529-540, 2000.

[15] Blaschke, C., Oliveros, J.C. & Valencia, A., "Mining functional information

associated with expression arrays", Functional and Integrative Genomics, vol. 1, pp.

256-268, 2001.

[16] Rindesch, T., Tanabe, L., Weinstein, J. & Hunter, L., "EDGAR: extraction of

drugs, genes and relations from the biomedical literature", In Proceedings of the
Pacific Symposium on Biocomputing (PSB'00), pp. 517-528, 2000.

[17] Blaschke, C., Andrade, M.A., Ouzounis, C. and Valencia, A., "Automatic

extraction of biological information from scientific text: protein-protein interactions",

In International Conference on Intelligent Systems for Molecular Biology (ISMB'99),

pp. 60-67, 1999.

[18] Simon B Rice, Goran Nenadic and Benjamin J Stapley, "Mining protein

function from text using term-based support vector machines", BMC Bioinformatics,

Vol. 6, no. (Suppl 1): S22, pp. 1-11, May 2005.

[19] Jung-Hsien, Chiang and Hsu-Chun Yu, "Literature Extraction of Protein

Functions Using Sentence Pattern Mining", IEEE Transactions on Knowledge and

Data Engineering, Vol. 17, no. 8, pp. 1088-1098, August 2005.

[20] R. 'Bunescu, R. Ge, R. Kate, E.M. Marcotte, R.J. Mooney, A.K. Ramani, Y.W.

Wong, "Comparative experiments on learning information extractors for proteins and

their interactions", Artificial Intelligence in 	Medicine, Special Issue on

Summarization and Information Extraction from Medical Documents, 2005.

[21] Huma Lodhi, Craig Saunders, John Shawe-Taylor, Nello Cristianini, and Chris

Watkins, "Text classification using string kernels", Journal of Machine Learning

Research, vol. 2, pp. 419-444, 2002.

51

[22] A. Ratnaparkhi, "A maximum entropy model for part-of-speech tagging", In

Proceedings of the Conference on Empirical Methods in Natural Language

Processing, pp.133-142, Philadelphia, USA, 1996.

[23] K. Nigam, J. Lafferty, and A. McCallum, "Using maximum entropy for text

classification", In IJCAI99 Workshop on Machine Learning for Information Filtering,

pp. 61- 67, 1999.
[24] Lafferty, John, A. McCallum, and F. Pereira, "Conditional random fields:

Probabilistic models for segmenting and labeling sequence data", Proceedings of
Eighteenth International Conference on Machine Learning (ICML-2001), pp: 282-

289, June 28-July 01, 2001.

[25] L. R. Rabiner, "A tutorial on hidden Markov models and selected applications

in speech recognition", Proceedings of the IEEE, 77(2): pp. 257-286, February 1989.

[26] R. Bunescu and R. Mooney, "Subsequence kernels for relation extraction",

Advances in Neural Information Processing Systems, 18, MIT Press, Cambridge, MA.

2006.

[27] Burr Settles, "ABNER: an open source tool for automatically tagging genes,

proteins and other entity names in text", Bioinformatics, Vol. 21, no 14, pp. 3191-

3192, April 2005.

[28] Daraselia, N., Yuryev, A., Egorov, S., Novichkova, S., Nikitin, A. and Mazo, I

"Extracting Protein Function Information from MEDLINE using a full-sentence

parser", In Proceedings of the Second European Workshop on Data Mining and Text

Mining in Bioinformatics, Pisa, Italy, pp: 15-21, September 2004.

[29] Chih-Chung Chang and Chih-Jen Lin, "LIBSVM: a library for support vector

machines," 2001. (http://www.csie.ntu.edu;tw/—cjlin/libsvm).

52

APPENDIX

Source Code Listing

Appendix A 	 Source Code Listing

/* svm_problem.java */

public class svm_problem implements java.io.Serializable
{

public int 1; // number of instanses or lines
public double[] y; // the given output class,
public svm_node[][] x; // the feature vectores

/ * svm_node.java */

/* creates a new instance of svm_node, this is sparse representation*/
public class svm node implements java.io.Serializable
{

public int index;
public double value;

/* decision function.java */

public class decision_function
{

double[] alpha;
double rho;

/* QMatrix.java */

abstract class QMatrix {
abstract float[] get_Q(int column, int len);
abstract float[] get_QDQ;
abstract void swap_index(int i, int j);

/* svm_model.java */

public class svm_model implements java.io.Serializable
{

svm parameter param; 	// parameter
int nr_class; 	// number of classes, = 2 in regression/one class svm
inti; 	 // total #SVs
svm_node[][] SV; 	// SVs (SV[1])
double[][] sv coef; '// coefficients for SVs in decision functions (sv coef[n-

1][1])
double[] rho; 	/l constants in decision functions (rho[n*(n-1)/2])
double[] probA; 	// pariwise probability information
double[] probB;

// for classification only

Appendix A 	 Source Code Listing

int[] label; 	// label of each class (label[n])
int[] nSV; 	// number of SVs for each class (nSV[n])

// nSV[O] + nSV[1] + ... + nSV[n-1] =1

/* svm.java */

import java.io.*;
import java.util.*;
public class svm {

private static void solve_c_svc(svm_problem prob, svm_parameter param,
double[] alpha, Solver.Solutionlnfo Si,
double Cp, double Cn) // here class labels are

only +1 ,-1
{

int 1= prob.l;
double[] minus ones = new double[1];
byte[] y = new byte[1];

int i;

for(i=0;i<l;i++)
{

alpha[f] = 0;
minus : ones[i] _ -1;
if(prob.y[i] > 0) y[i] = +1; else y[i]=-l;

Solver s = new Solver();
s.Solve(l, new SVC~Q(prob,param,y), minus_ones, y,

alpha, Cp, Cn, param.eps, si, param.shrinking);

double sum alpha=0;
for(i=0;i<l;i++)

sum_alpha += alpha[i];

if (Cp==Cn)
System.out.print("nu = "+sum_alpha/(Cp*prob.l)+"fin");

for(i=0;i<l;i++)
System.out.println(alpha[i]+" "+ y[i]);

for(i=0;i<l;i++)
alpha[i'] *= y[i];

static decision_function svm_train_one(
svm_problem prob, svm_parameter param,
double Cp, double Cn)

II

Appendix A 	 Source Code Listing

double[] alpha = new double[prob.l];
Solver.Solutionlnfo si = new Solver.SolutionInfo();

solve_c_svc(prob,param,alp ha,si, Cp,Cn);

System.out.print("obj = "+si.obj+", rho = "+si.rho+"\n");

It output SVs ,

intnSV=O;
int nBSV = 0;
for(int i=0;i<prob.1;i++)
{

if(Math.abs(alpha[i]) > 0)
{

++nSV;
if(prob.y[i] > 0)
{

if(Math.abs(alpha[i]) >= si.upper_bound_p)
• ++nBSV;

else
{

if(Math.abs(alpha[i]) >= si.upper_bound_n)
++nBSV;

}
}

System.out.print("nSV = "+nSV+", riBSV = "+nBSV+"fin");

decision_ function f= new decision_functionO;
f.alpha = alpha;.
f.rho = si.rho;
return f;

}

public static svm_model svm_train(svm_problem prob, svm_parameter param)
{

svm_model model = new svm_modelO;
model.param param;

model.nr_class = 2;
model.label = null;
model.nSV = null;
model.probA = null; model.probB = null;
model.sv_coef = new double[1] [1;

III

Appendix A 	 Source Code Listing

decision_ function f = svm_train_one(prob,param,1,1);
model.rho = new double[1];
model.rho[O] = f.rho;

int nSV = 0;
int i;
for(i=0;i<prob.l;i++)

if(Math.abs(f.alpha[i]) > 0) ++nSV;
model.! = nSV;
model.SV = new svm_node[nSV] [1;
model.sv_coefj0] = new double[nSV];
intj = 0;
for(i=0; i<prob.l; i++)

if(Math.abs(f.alpha[i]) > 0) .

model.SV[j] = prob.x[i];
model.sv_coef[0][j] = falpha[i];
++j;

return model;
}

public static int svm_predict(svm_model model, svm_node[] x)
{

double[] res = new double[1];
svm_predict_values(model, x, res);

return (res[0]>0)?1:-1;

public static void svm_predict_values(svm_model model, svm_node[] x,
double[] dec_values)

{

double[] sv coef = model.sv_coef[0];
double sum = 0;
for(int i=0;i<model.l;i++)
sum += sv_coef[i] * Kernel .kfunction(x,model.SV[i] ,model .param);
sum -= model.rho[0];
dec values[0] = sum;

public static void svm_save_model(String model_file_name, svm_model model)
throws IOException

FileOutputStream fos = new FileOutputStream(model_file_name);

IV

Appendix A 	 Source Code Listing

ObjectOutputStream oos = new ObjectOutputStream(fos);
oos.writeObj ect(model);
oos.closeO;

public static svm_model svm_load_model(String model_file_name) throws
IOException

{

FilelnputStream fis = new FilelnputStream(model file_name);
ObjectInputStream ois = new ObjectlnputStream(fis);
svm_model model = null;

try!
model = (svm_model) ois .readObj ectO;

} catch (IOException ex) {
ex.printStackTrace();

} catch (ClassNotFoundException ex) {
ex.printStackTrace();

ois.closeO;

return model;

static String svm_check_parameter(svm_problem prob, svm_parameter param)
return null; 	-

public static int svm_get_svm type(svm_model model)

return model.param.svm_type;

public static int svm_get_nr class(svm_model model)
{

return model.nr class;

/* svm_parameter.java */

public class svm_parameter implements Cloneablex java.io.Serializable
{

/* svm_type */
• public static final int C_SVC = 0;

-public static final int NU_SVC = 1;
• public static final int ONE CLASS = 2;

public static final int EPSILON SVR = 3;
public static final int NU SVR = 4;

u

Appendix A 	 Source Code Listing

/* kernel type */
public static final int LINEAR = 0;
public static final int POLY = 1;
public static final int RBF = 2;
public static final int.SIGMOID = 3;
public static final int PRECOMPUTED = 4;

public int svm_type;
public int kernel type;
public int degree; 	// for poly
public double gamma;// for poly/rbf/sigmoid
public double coed; // for poly/sigmoid

// these are for training only
public double cache_size; I/ in MB
public double eps; 	II stopping criteria
public double C; 	I/ for C_SVC, EPSILON_SVR and NU_SVR
public int nr_weight; 	// for C_SVC
public int[] weight label; 	// for C_SVC
public double[] weight; 	 // for C_SVC
public double nu; 	// for NU_SVC, ONE_CLASS, and NU_SVR
public double p; 	// for EPSILON SVR
public jilt shrinking; // use the shrinking heuristics
public int probability; II do probability estimates

public Object clone()
{

try
{

return super.cloneO;
} catch (CloneNotSupportedException e)
{

return null;

/* SVC_Q.java */

public class SVC_Q extends Kernel
{

private final byte[] y;
private final Cache cache;
private final float[] QD;

SVC_Q(svm_probler4 prob, svm_parameter param, byte[] y_)
{

super(prob.1, prob.x, param);

VI

Appendix A 	 Source Code Listing

y = (byte[])y_.cloneo;
cache = new Cache(prbb.l,(int)(param.cache_size*(1<<20)));
QD = new float[prob.l];
for(int i=0;i<prob.l;i++)

QD[i]= (float)kernel_function(i,i);

float[] get_Q(int i, int len)
{

float[][] data = new float[1][];
int start;
if((start = cache.get_data(i,data,len)) < len)
{

for(int j=start;j<len;j++)
data[0][j] = (float)(y[i]*y[j]*kernel_function(i,j));

}
return data[0];

}

float[] get QD()
{

return QD;
}

void swap_index(int i, int j)
{

cache.swap_index(i,j);
super. swap_index(ij);
do {byte _=y[i]; y[i]=y[j]; y[j]=_;} while(false);
do {float = QD[i]; QD[i]=QD[j]; QD[j] _;} while(false);

0

/* Solver.java */

// Solves:
//
// 	min 0.5(\alpha^T Q \alpha) + bAT \alpha
I-
1/ 	y^T \alpha = \delta
.// 	y_i=+1 or-1
// 	0 <= alpha_i <==Cp for y_i = 1
// 	0<=alpha_i<=Cn for y_i =-1
//
// Given:
// 	Q, b, y, Cp, Cn, and an initial feasible point \alpha
// 	I is the size of vectors and matrices
// 	eps is the stopping criterion

VII

Appendix A 	 Source Code Listing

'-
/1 solution will be put in \alpha, objective value will be put in obj
//
public class Solver {

int active_size;
byte[] y;
double[] G; 	// gradient of objective function
static final byte LOWER BOUND = 0;
static final byte UPPER_BOUND = 1;
static final byte FREE = 2;
byte[] alpha status; ' // LOWER_BOUND, UPPER_BOUND, FREE
double[] alpha;
QMatrix Q;
float[] QD;
double eps;
double Cp,Cn;
double[] b;
int[] active_set;
double[] G_bar;
int 1;
boolean unshrinked; // XXX

static final double INF = java.lang.Double.POSITIVE_INFINITY;

double get C(int i)
{

return (y[i] > ()? Cp: Cn;

void update_alpha_status(int i)

if(alpha[i] >= get_C(i))
alpha status [i] = UPPER_BOUND;

else if(alpha[i] <= 0)
alpha status[i] = LOWER_BOUND;'

else alpha_status[i] = FREE;
I
boolean is_ upper_bound(int i) { return alpha_status[i] _= UPPER_BOUND; }
boolean is_lower_bound(int i){ return alpha_status[i] _= LOWER_BOUND; }
boolean is_free(int i) { return alpha_status[i] == FREE; }

// java: information about solution except alpha,
// because we cannot return multiple values otherwise...
static class Solutionlnfo {

double obj;
double rho;
double upper_bound_p;
double upper_bound_n;
double r; 	// for Solver , NU

// gradient, if we treat free variables as 0

VIII

Appendix A 	 Source Code Listing

void swap_index(int i int j)

Q.swap_index(i,j);
do {byte _=y[i]; y[i]=y[j]; y[j]=_;} while(false);
do {double = G[i]; G[i]=G[j]; G[j]=_;} while(false);
do {byte _=alpha_status[i]; alpha_status[i]°alpha_status[j];

alpha_status[j]=_;} while(false);
do {double _=alpha[i]; alpha[i]=alpha[j]; alpha[j]=_;} while(false);
do {double _=b[i]; b[i]=b[j]; b[j]=_;} while(false);
do {int _=active_set[i]; active_set[i]=active_set[j]; active_seto]=_;}
while(false);
do {double _=G bar[i]; G_bar[i]=G bar[j]; G_bar[j]=_;} while(false);

void reconstruct_gradient()
{

// reconstruct inactive elements of G from G bar and free variables

if(active_size ==1) return;

int i;
for(i=actio e_s ize; i<l ;i++)

G[i] = G_bar[i] + b[i];

for (i= 0 ; i<acti v e_s iz e; i++)
if(is_free(i))

float[] Q_i = Q.get_Q(i,l);
double alpha i = alpha[i];
for(int j=active_size~j<1 j++)

G[j] +-- alpha_i * Q_i[j];

void Solve(int 1, QMatrix Q, double[] b_, byte[] y_,
double[] alpha_, double Cp, double Cn, double eps, SolutionInfo si,

int shrinking)

this.l = 1;
this.Q = Q;
QD = Q.get_QDQ;
b = (double[])b_.cloneO;
y = (byte[])y_.clone();
alpha = (double[])alpha_.clone();
this.Cp = Cp;
this.Cn = Cn;
this.eps = eps;
this.unshrinked = false;

// initialize alpha_status

IX

Appendix A 	 Source Code Listing

alpha status = new byte[1];
for(int i=0;i<l;i++)

update_alpha_status(i);
}

// initialize active set (for shrinking)
{

active_set = new int[l];
for(int i=O;i<l;i++)

activie_set[i] = i;
active size =1;

}

// initialize gradient
{

G = new double[l];
G_bar = new double[l];
int i;
for(i=0;i<l;i++)

{ 	! G[i] = b[i];
G_bar[i] = 0;

}
for(i=0;i<l;i++)

if(! is lower _bound(i))
{

float[] Q_i = Q.get_Q(i,l);•
double alpha_i = alpha[i];
intj;
for(j=0;j <l~j++)

GO] += alpha_i*Q_i[j];
if(is_upper_bound(i))

for(j=0;j<l;j++)
G_bar[j] += get_C(i) * Q_i[j];

}
}

// optimization step

int iter = 0;
int counter - Math.min(1,1000)+1;
int[] working set = new int[2];

V

while(true)
{

// show progress and do shrinking

if(--counter == 0)
{

1:/

Appendix A 	 Source Code Listing

counter = Math.min(l, 1000);
i f(shrinking ! =0) do_shrinkingO;
System.err.print(".");

if(select working set(working set)!=0)
{

// reconstruct the whole gradient
reconstruct_gradient();
// reset active set size and check
active_size = 1;
System.err.print("*")•
if(select_working_set(working_set) !=0)

break;
else

counter = 1;
// do shrinking next iteration

inti = working_set[0];
int j = working_set[11;

++iter;

// update alpha[i] and alpha[j], handle bounds carefully

float[] Q_i = Q.get_Q(i,active_size);
float[] Qj = Q.get_Q(j,active_size);

double C_i = get C(i);
double Crj = get Ce);

double old_alpha_i = alpha[i];
double old_alpharj = alpha[j];

if(y[i] !=y[j])

double quad_coef = Q_i [i]+QJj[j]+2*Q_iU];
if (quad_coef <= 0)

quad_coef = le-12;
double delta = (-G[i]-G[j])/quad_coef;
double diff = alpha[i] - alpha[j];
alpha[i] += delta;
alpha[j] += delta;

if(diff > 0)

if(alpha[j] < 0)

alpha[j] = 0;

XI

Appendix A 	 Source Code Listing

alpha[i] = diff;
}

}
else
{

if(alpha[i] < 0)

alpha[i] = 0;
alpha[j] = -diff;

}
if(diff > C_i - C_j)
{

if(alpha[i] > C_i)
{

alpha[i] = C_i;
alpha[j] = C_i - diff;

}
else
{

if(alpha[j] > C_j)
{

alpha[j] = Cj;
alpha[i] = Cf + diff;

}

double quad coef = 0_i[i]+Q j[j]-2*Q_i[j];
if (quad_coef <= 0)

quad_coef = le-12;
double delta = (G[i]-G[j])/quad_coef;
double sum = alpha[i] + alpha[j];
alpha[i] - delta;
alpha[j] += delta;

if(sum > C_i)
{

if(alpha[i]j> C_i)
{

alpha[i] = C_i;
alpha[j] = sum - C_i;

}
}
else
{

if(alpha[j] < 0)

}
else
{

XII

Appendix A 	 Source Code Listing

alpha[j] _ .0;
alpha[i] = sum;

}
}
if(sum > Cj)
{

if(alpha[j] > Cj)
{

alpha[]] = Cj;
alpha[i] = sum - Cj;

}

else
{

if(alpha[i] < 0)
{

alpha[i] =.0;
alpha[]] = sum;

}
}

}

// update G

double delta_alpha_i = alpha[i] - old_alpha_i;
double, delta alpha] = alpha[]] - old alphaj;

for(int k=0;k<active_size;k++)
{

G[k] += Q_i[k]*delta_alpha_i + Q_j[k]*delta_alpha_j;
}

// update alpha status and G bar

{
boolean ui = is_upper_bound(i);
boolean uj = is_upper_bound(j);
update_alpha_status(i);
update_alpha_status(j);
int k;
if(ui != is_upper bound(i))
{

Qi = Q.get Q(i,l);
if(ui)

for(k=0;k<l;k++)
G bar[k] -= C_i * Q_i[k];

else
for(k=0;k<1;k++)

G_bar[k] += C_i * Q_i[k];
}

XIII

Appendix A 	 Source Code Listing

if(uj != is_upper_bound(j))
{

= Q•get_Q(j,1);
if(uj)

for(k=0;k<l;k++)
G_bar[k] -= Cj * Qj [k];

else
for(k=O;k<l;k++)

G_bar[k] += Cj * Qj [k];

}

// calculate rho

si.rho = calculate rhoO;

// calculate objective value
{

double v = 0;
int i;
for(i=0; i<l;i++)

v += alpha[i] * (G[i] + b[i]);

si.obj = v/2;
}

// put back the solution
{

for(int i=0;i<l;i++)
alpha_[active_set[i]] = alpha[i];

}

si.upper_bound_p = Cp;
si.upperrbound n = Cn;

System.out.print("\noptimization finished, #iter = "+iter+"\n");

// return 1 if already optimal, return 0 otherwise
int select_working_set(int[] working_set)
{

// return i, j such that
// is maximizes -y_i * grad(f)_i, i in I_up(\alpha)
// j : mimimizes the decrease of obj value
// (if quadratic coefficeint <= 0, replace it with tau)
// -yj*grad(f)_j <-y_i*grad(f)_i, j in I_low(\alpha)

XIV

Appendix A 	 Source Code Listing

double Gmax = -INF;
double Gmax2 = -INF;
int"Gmax idx = -1;
int Gmin_idx = -1;
double obj_diff min = INF;

for(int t=0;t<active_size;t++)
if(Y[t] –+1)
{

if(! is_upper_bound(t))
if(-G[t] >= Gmax)
{

Gmax = -G[t];
Gmax_idx = t;

fU
}
else
{

if(! is lower_bound(t))
if(G[t] >= Gmax)
{

Gmax = G[t];
Gmax_idx = t;

}
Ii

int i = Gmax_idx;
float[] Qi = null;
if(i !_ -1) // null Qi not accessed: Gmax=-INF if i=-1

Qi = Q.get_Q(i,active_size);

for(int j=Oj<active size;j++)
{

if(Y[j]—+1)
{

if (!is_lower bound(j))
{

double grad_diff=Gmax+G[j];
if (G[j] >= Gmax2)

Gmax2 = GO];
if (grad_diff > 0)
{

double obj_diff;
double quad_coe&zQ_i[i]+QD[j]-

2*Y[i]*Q_i[1];
if (quad_coef > 0)

obj_diff = -
(grad_diff* grad_diff)/quad_coef;

else

xv

Appendix A 	 Source Code Listing

obj_diff = -
(grad_d'iff* grad_di ff)/ 1 e- 12;

if (obj_diff <= obj_diff min)
{

Gmin_idx j;
obj_diff min = obj_diff;

}
}

}
}
else
{

if (!is_upper_bound(j))
{

double grad_diff= Gmax-G[j];
if(-G[j] >= Gmax2)

Gmax2 = -GO];
if (grad_diff > 0)
{

double obj_diff;
double

quad_coef Q_i[i]+QD[j]+2*y[i]*Q i[j];
if (quad_coef > 0)

obj_diff = -
(grad_diff* grad_diff)/quad_coef;

else
obj_diff = -

(grad_diff*grad_diff)/1 e-12;

if (obj_diff <= obj_diff min)
{

Gmin_idx j;
obj_diff min = obj_diff;

}

}
}

}

if(Gmax+Gmax2 < eps)
return 1;

working_set[0 j = Gmax_idx;
working set[1] = Gmin_idx;
return 0;

}

// return 1 if already optimal, return 0 otherwise
int max violating pair(int[] working set)

XVI

Appendix A 	 Source Code Listing

11 return ij which maximize -grad(f)^T d, under constraint
/l ifalpha_i =C,d!=+1
II ifalpha_i = 0, d I= -1

I_up(\aipha) {

I_low(lalpha))

double Gmaxl = -INF;

int Gmaxl_idx = -1;

int Gmax2_idx = -1;
double Gmax2 = -INF;

11 max { -y_i * grad(f)_i I i in

71 max { y_i * grad(f)_i I i in

for(int i=0;i<active_size;i++)
{

if(y[il==+1) 1/ y = +I
{

if(!is_upper_bound(i))11 d = +l
{

if(-G[i] >= Gmaxl)
{

Gmaxl = -G[i];
Gmax 1 idx = i;

}
}
if(!is_ lower _bound(i))ll d = -1
{

if(G[i] >= Gmax2)
{

Gmax2 =
Gmax2_idx = i;

)
]

}
else 	11y=-1

if(!is_upper_bound(i))11 d = +1
{

if(-G[i] >= Gmax2)
{

Gmax2 = -G[i];
Gmax2_idx = i;

}
}
if(!is_lower_bound(i))/1 d = -1
{

if(G[i] >= Gmaxl)
{

Gmaxl = G[i];
Gmax 1 _idx = i;

XVII

Appendix A 	 Source Code Listing

if(GmaxI+Gmax2 < eps)
return 1;

working_set[0] = Gmaxl_idx;
working_set[1] = Gmax2_idx;
return 0;

}

void do_shrinking()
{

int ij,k;
int[] working set = new int[2];

• if(max_violating_pair(working~set)!=0) return;
• i = working_set[0];

j = working set[1];
double Gml
-double Gm2 = y[i]*G[i];

// shrink

for(k=0;k<active_size;k++)
{

if(is_ lower _bound(k))
{

if(y[k]==+1)
{

if(-G[k] >= Gml) continue;
}
else if(-G[k] >= Gm2) continue;

}
else if(~is_upper bound(k))

{ 	if(y[k]+1)
{

if(G[k] >= Gm2) continue;
}
else if(G[k] >= Gml) continue;

}
else continue;

-active_size;
swap_ index(k,active_size);
--k; 	// look at the newcomer

}

XVIII

Appendix A 	 Source Code Listing

// unshrink, check all variables again before final iterations

if(unshrinked I I -(Gm! + Gm2) > eps* 10) return;

unshrinked = true;
reconstruct gradientO;

for(k=1-1;k>=active_size;k--)
{

if(is_ lower _bound(k))
{

if(y[k]==+1)
{

if(-G[k] < Gm 1) continue;
}
else if(-G[k] < Gm2) continue;

}

else if(is_upper_bound(k))
{

if(y[k]==+1)
{

if(G[k] < Gm2) continue;
}
else if(G[k] < Gml) continue;

}
else continue;

swap _index(k, activesize);
active size++;
++k; // look at the newcomer

fU
}

double calculate _rho()
{

double r;
int nr_free = 0;

double ub = INF, lb = -INF, sum_free =0;
for(int i=0;i<active_size;i++)
{

double yG = y[i]*G[i];

if(is_ lower _bound(i))
{

if(y[i] > 0)
ub = Math.min(ub,yG);

else
lb = Math.max(lb,yG);

}

else if(:is_upper bound(i))
I~

XIX

Appendix A 	 Source Code Listing

if(y[i] < 0)
ub = Math.min(ub,yG);

else
lb = Math.max(1b,yG);

}
else
{

++nr free;
sum_free += yG;

}
}

if(nr_free>0)
r = surn_free/nr_free;

else
r = (ub+Ib)/2;

return r;

/* Cache.java */

// Kernel Cache
//
// 1 is the number of total data items
// size is the cache size limit in bytes
/!

class Cache {
private final int 1;
private int size;
private final class head_t
{

head_t prey, next; 	// a cicular list
float[] data;
int len; 	// data[O,len) is cached in this entry

}
private final head t[] head;
private head_t lru head;

Cache(int 1, int size_)
{

1=1_;
size = size_;
head = new head_t[l];
for(int i=0;i<l;i++) head[i] = new head _to;
size /= 4;

}

}

xx

Appendix A 	 I 	 Source Code Listing

size -=1 * (16/4); 	// sizeof(head_t) == 16
size = Math.max(size, 2*1); // cache must be large enough for two

columns
iru_head = new head_to;
lru head.next = lru head.prev =1ru_head;

private void lru_delete(head_t h)
{

// delete from current location
h.prev.next = h.next;
h.next.prev = h.prev;

private void lru_insert(head_t'h)
{

//insert to lastl position
h.next = lru_head;
h.prev = lru head.prev;
h.prev.next = h;
h.next.prev = h;

// request data (O,len)
// return some position p where (p,len) need to be filled
// (p >= len if nothing needs to be filled)
// java: simulate pointer using single-element array
int get_data(int index, float[][] data, int len)
{.

head_t h = head[index];
if(h.len > 0) lru_delete(h);
int more = ten- h.len;

if(more > 0)
{

// free old space
while(size < more)

head_t old = lru_head.next;
lru_delete(old);
size += old.len;
old.data = null;
old.len = 0;

// allocate new space
float[] new_data = new float[len];
if(h.data != null) System.arraycopy(h.data, 0,new_data,0,h. len);
h.data = new data;
size -=! more; .

XXI

Appendix A 	 Source Code Listing

do {int = h.len; h.len=len; len =_;} while(false);
}

lru_insert(h);
data[O] = h.data;
return len;

void swap_index(int i, int j)
{ 	

if(i= j) return;

if(head[i].len > 0) lru_delete(head[i]);
if(head[j].Ien > 0) lru_delete(head[j]);
do {float[] —=head[i].data; head[i] .data=head[j] .data; head[j].data=;}
while(false); -
do {int _=head[i].len; head[i].len=head[j].len; head[j].len=_;}
while(false);

if(head[i].len > 0) lru_insert(head[i]);
if(head[j].Ien > 0) lru_insert(head[j]);

if(i>j) do {int _=i; i j; j _;} while(false);
for(head_t h = Iru_head.next; h!=1ru_head; h=h.next)
{

if(h.len > i)
{

if(h.len >j)
do {float = h.data[i]; h.data[i]=h.data[j];
h.data[j]=_;} while(false);

else-
{

// give up
lru_delete(h);
size += h.len;
h.data = null;
h.len=0;

}
}

}
}

/* Kernel.java */

abstract class Kernel extends ',QMatrix {
private svm_node[] [] x;
private final double[] x square;

// svmjarameter
private final int kernel type;

XXII

Appendix A 	 Source Code Listing

private final int degree;
private final double gamma;
private final double coefO;

abstract float[] get_Q(irit column, int len);
abstract float[] get_QDO;

void swap_index(int i, int j)
{

do {svm_node[] _=x[i]; x[i]=x[j]; x[j]=_;} while(false);
if(x_square != null) do {double _=x square[i];
x_square[i]=x.. square[j]; x_square[j]=_;} while(false);

}

private static double powi(double base, int times)
{

double tmp = base, ret = 1.0;

for(int t=times; t>0; t/=2)

if(t%2=1) ret*=tmp;
tmp = tmp * tmp;

return ret;

private static double tanh(double x)
{

double e = Math.exp(x);
return 1.0-2.0%(e*e+1);

double kernel_function(int i, int j)

switch(kernel_type)

case svm_parameter.LINEAR:
return dot(x[i],x[j]);

case svm parameter.POLY:
return powi(gamma*dot(x[i],x[j])+coef0,degree);

case svm_parameter.RBF:
return Math.exp(-gamma*(x_square[i]+x_square[j]-

2*dot(x[i],x[j])));
case svm parameter.SIGMOID:

return tanh(gamma*dot(x[i],x[j])+coefO);
case svm parameter.PRECOMPUTED:

return x[i] [(int)(x[j] [0] . value)] .value;
default:

return 0; 	// java

XXIII

Appendix A 	 Source Code Listing

Kernel(int 1, svm_node[][] x_, svm parameter param)
{

this.kernel_type = param.kernel_type;
this.degree = param.degree;
this.gamma = param.gamma;
this.coeflJ = param.coefO;

x = (svm_node[] [])x_.cloneO;

if(kernel_type = svm_parameter.RBF)
{

x_square = new double[I];
for(int i=0;i<l;i++)

x square[i] = dot(x[i],x[i]);
}
else x square= null;

I]

static double dot(svm_node[] x, svm_node[] y)

double sum = 0;
int xlen = x.length;
int ylen = y.length;
int i = 0;
intj = 0;
while(i < xlen&& j < ylen)
{

if(x[i].index = y[j].index)
sum += x[i++].value * y[j++].value;

else
{

if(x[i].index > y[j].index)
++j;

else
++i;

}
}
return sum;

static double k_function(svm_node[] x, svm_node[] y,
svm parameter param)

{
switch(param.kerne 1_type)
{

case svm parameter.LINEAR:
return dot(x,y);

case svm parameter.POLY:

XXI V

Appendix A 	 Source Code Listing

return
powi(param.gamma* dot(x,y)+param .coefO, param.degree);

case svm parameter.RBF:
{

double sum = 0;
int xlen =-x.length;
int ylen = y.length;
inti=0;
intj = 0;
while(i < xlen && j < ylen)

if(x[i].index = y[j].index)
{

double d = x[i++].value - y[j++].value;
sum +d *d;

}
else if(x[i].index > y[j].index)
{

sum += y[j].value * y[j].value;
++j;

}
else
{

sum += x[i].value * x[i].value;
++i;

while(i < xlen)
{ 	 V

sum += x[i].value * x[i].value;
++i;

while(j < ylen)
{

sum += y[j].value * y[j].value;

}
return Math.exp(-param.gamma*sum);

} 	 .
case svm parameter.SIGMOID:

return tanh(param.gamma*dot(x,y)+param.coef0);
case svm parameter.PRECOMPUTED:

return x[(int)(y[0] .value)] .value;
default:

return 0;
}

I

xxv

Appendix A 	 Source Code Listing

/* viterbi.cpp */

#include <math.h>
#include "viterbi.h"
#include "model.h"

using namespace std;

viterbi::viterbi() {
pmodel NULL;
popt = NULL;
pdata = NULL;
pdict = NULL;
pfgen = NULL;

Mi = NULL;
Vi= NULL;

}

viterbi::—viterbiO {
if (Mi) {

delete Mi;
}

if (Vi) {
delete Vi;

}

void viterbi::init(model * pmodel) {
this->pmodel = pmodel;
popt = pmodel->popt;
pdata = pmodel->pdata;
pdict = pmodel->pdict;
pfgen = pmodel->pfgen;

int dim = popt->num_labels;
if (popt->order == SECOND_ORDER) {

dim = popt->num_2orderlabels;
}

Mi = new doublematrix(dim, dim);
Vi = new doublevector(dim);

for (int i = 0; i < dim; i++) {
temp.push_back(pair<double, int>(0.0, -1));

}

// mapping label (string) => label (index) for constraints
maplbstr2int::iterator it; p

XXVI

Appendix A 	 Source Code Listing

popt->prevfixed intlabel s.clear();
popt->nextfixedintlabels.clearO;

vector<int> labels;

.int len = popt->prevfixedstrlabels.size();
for(inti=0;i<len;i++) {

labels.clearO; 	'.

it = pdata->plbs2i->find(popt->prevfixedstrlabels[i][0]);
if (it != pdata->plbs2i->end()) {

labels.push_back(it->second);
} else {

continue;

for (int j = 1; j < popt->prevfixedstrlabels[i].sizeO; j++) {
it = pdata->plbs2i->find(popt->prevfixedstrlabels[i][j]);
if (it != pdata->plbs2i->end()) {

labels.push_back(it->second);
}

if (labels.size() <= 1) {
continue;

}

popt->prevfixedintlabels.push back(labels);

len = popt->nextfixedstrlabels.size();
for (int i = 0; i < len; i++) {

labels.clearO;

it = pdata->plbs2i->find(popt->nextfixedstrlabels[i][0]);
if (it != pdata->plbs2i->end()) {

labels.push_back(it->second);
} else {

continue;

for (int j = 1; j < popt->nextfixedstrlabels[i].size(); j++) {
it = pdata->plbs2i->find(popt->nextfixedstrlabels[i][j]);
if (it != pdata->plbs2i->endO) {

labels.push_back(it->second);

if (labels.size() <= 1) {

XXVII

Appendix A 	 Source Code Listing

continue;
}

popt->nextfixedintlabels.push_back(labels);

void viterbi::computeMiO {
*Mi = 0;

pfgen->start_scan_efeatures();
while (pfgen->has_next_efeature()) {

feature f;
pfgen->next efeature(f);

if (f.ftype == EDGE_FEATURE1) {
// edge feature type 1

if (popt->order — FIRST ORDER) {
Mi->get(f.yp, f.y) += pmodel->lambda[f.idx] * f.val;

} else if (popt->order = SECOND_ORDER) {
int col = f.yp * popt->num_labels + fy;
for (int row = 0; row < Mi->rows; row++) {

Mi->get(row, col) += pmodel->lambda[f.idx] * f.val;

} else if (f.ftype = EDGE_FEATURE2) {
// edge feature type, 2

if (popt->order — FIRST_ORDER) {
// do nothing

} else if (popt->order = SECOND_ORDER) {
Mi->get(f.yp, f.y) += pmodel->lambda[f.idx] * f.val;

}
}

if (popt->order == FIRST 'ORDER) {
for (int i = 0; i < Mi->rows; i++) {

for (int j = 0; j < Mi->cols; j++) {
Mi->get(i, j) = exp(Mi->get(i, j));

} else if (popt->order = SECOND_ORDER) {
for (int i = 0; i < Mi->rows; i++) {

for (int j = 0; j < Mi->cols; j++) {

Appendix A 	 Source Code Listing

if (i % popt->num_labels == j / popt->num_labels) {
Mi->get(i, j) = exp(Mi->get(i, j));

} else {
Mi->get(i, j) = 0.0;

}
}

}

void viterbi::apply(dataset * pdataset) {
computeMiO;

dataset:: iterator datait;
int count = 0;
for (datait = pdataset->begin(); datait != pdataset->end(); datait++) {

if (popt->order = FIRST_ORDER) {
apply_1 order(*datait);

} else if (popt->order == SECOND_ORDER) {
apply_2 order(* datait);

count++;
// cout << "sequence: " << count << endl;

void viterbi::apply(dataset * pdataset, int n) {
computeMi();

dataset:: iterator datait;
int count = 0;
for (datait = pdataset->begin(); datait != pdataset->endQ; datait++)

if (popt->order = FIRST_ORDER) {
apply_Iorder(*datait, n);

} else if (popt->order = SECOND_ORDER) {
apply_2order(*datait, n);

count++;
// cout << "sequence: " << count << endl;

void viterbi::apply_Iorder(sequence & seq) {
inti,j,k;

int seq_len = seq.sizeO;
if (seq_len == 0) {

return;
}

XXIX

Appendix A 	 Source Code Listing

int memorysize = memory.size();
-// if the current sequence is the longest one (up to the current point),
I/ then allocate more memory
if (memorysize < seq_len) {

for (i = 0; i < seq_len - memorysize; i++) {
memory.push_back(temp);

// we need to scale forward variable to [0, 1] to avoid numerical problems
int scalesize = scale.sizeO;
// if the current sequence is the longest one (up to the current point),
//then allocate more room :for scale variable
if (scalesize < seq_len) {

for (i,= 0; i < seq_len - scalesize; i++) {
scale.push_back(1.0);

// compute Mi and Vi for the first position in the sequence
compute_log_Mi_lorder(seq, 0, Mi, Vi, 1);
for (j = 0; j < popt->num_labels'; j++) {

memory[0][j].first = (*Vi)[j];
memory[0][j].second = j;

}
I/ calculate scale factor for the first position
scale[0] = (popt->is_scaling) ? viterbi::sum(memory[0]) : 1;
// scaling for the first position
viterbi::divide(memory[0], scale[0]);

// the main loop
for (i = 1; i < seq_len; i++), {

11 compute Mi matrix and Vi vector at position "i"
compute_log_Mi_ 1 order(seq, i, Mi, Vi, 1);

// applying constraints
int num_cnts = popt->prevfixedintlabels.sizeO;
for (int cc = 0; cc < num_cnts; cc++) {

int col = popt->prevfixedint1abels[cc][0];
for (int row = 0; row < popt->num_labels; row++) {

intin=0;
for (int count 1; count < popt->prevfixedintlabels[cc].size();

count++) {
if (row = popt->prevfixedintlabels[cc] [count]) {

in = 1;

}
if (! in) {

Mi->mtrx[row][col] = 0;

XXX

Appendix A 	 Source Code Listing

}

num cats = popt->nextfixedintlabels. size ();
for (int cc = 0; cc < num_cnts; cc++) {

int row = popt->nextfixedintlabels[cc][0];
for (int cot = 0; col -< popt->num_labels; col++) {

intin=0;
for (int count = 1; count < popt->nextfixedintlabels[cc].size();

count++) {
if (col = popt->nextfixedintlabels[cc] [count]) {

in = 1;
}

}
if (!in) {

Mi->mtrx[row] [col] = 0;
I

},
El

// for all possible labels at the position "i"
for 0 = 0; j < popt->num labels; j++) {

memory[i][j].first - 0.0;
memory[i][j].second = 0;

II find the maximal value and its index and store them in memory
II for later tracing back to find the best path
for (k = 0; k < popt->num_labels; k++) {

double tempval= memory[i-1][k].ftrst * Mi->mtrx[k][j] * (*Vi)[j];

if (tempval > memory[i][j].first) {
memory[i][j].first = tempval;
memory[i][j].second = k;

}
I

// scaling for memory at position "i"
scale[i] = (popt->is_scaling) ? viterbi::sum(memory[i]) : 1;
viterbi::divide(memory[i], scale[i]);

I

// viterbi backtrack to find the best path
int max_idx = viterbi::find_max(memory[seq_len - 1]);
seq[seq_len - 1].model_label= max_idx;
for (i = seq_len - 2; i >= 0; i--) {

seq[i].model_label= memory[i + 1] [max_idx].second;
max_idx = seq[i] .model _label;

}
I

XXXI

Appendix A 	 Source Code Listing

void viterbi::apply_lorder(sequence & seq, int n) {
inti,j,k,h; 	 I

int seq_len = seq.sizeo;
if (seq_len = 0) {

return;
}

mem infor;
infor.pathval= 0.0;
infor.previouslabel = -1;'
infor.previousindex = -1;

int premaxlen = statelens.size();
if (premaxlen < seq_len) {

for (i = 0; i < seq_len - premaxlen; i++)
statelens.push_back(0);

}

if (statelbls.size() != n * popt->num_labels) {
for (i = 0; i < n * popt->nu'm_labels; i++) {

statelbls.push_back(infor);
sortidxes.push_back(pair<int, double>(0, 0.0));

premaxlen = seglbls.sizeO;
if (premaxlen < seq_len) {

for (i = 0; i < seq_len - premaxlen; i++) {
seglbls.push_back(statelbls);

// scaling
premaxlen = scale.sizeO;
if (premaxlen < seq_len) {

for (i = 0; i < seq_len - premaxlen; i++) {
scale.push—back(1.0);

// compute Mi and Vi for the first position in the sequence
compute_log_Mi_lorder(seq, 0, Mi, Vi, 1);

statelens[0] = 1;
// for the first position
for (j = 0; j < popt->num_labels; j++) {

seglbls[0][j * n].pathval = (*Vi)[j];

XXXII

Appendix A 	 Source Code Listing

seglbls[O] [j * n].previouslabel = j;
seglbls[O][j * n].previousindex = 0;

// scaling
scale[0] = (popt->is scaling) ?

viterbi::sum(seglbls[O], popt->num_labels, n, statelens[0]) : 1;
viterbi::divide(seglbls[0], popt->num_labels, n, statelens[0], scale [0]);

// the main loop
for (i = 1; i < seq_len; i++) {

If compute Mi matrix and Vi vector at position "i"
compute_log_Mi_lorder(seq, i, Mi, Vi, 1);

statelens[i] = n;
if (statelens[i] > statelens[i - 1] * popt->num_labels)

statelens[i] = statelens[i - 1] * popt->num_labels;

// for all possible labels at the position "i"
for (j = 0; j < popt->num_labels; j++) {

int count = 0;
// for all possible labels at the position "i-I"
for (k = 0; k < popt->num_labels; k++) {

for (h = 0; h < statelens[i - 1]; h++) {
sortidxes[count]..first = k * n + h;
sortidxes[count].second =

seglbls[i - 1] [k * n + h] .pathval
Mi->mtrx[k][j] * (*Vi)[j];

count++;
)

quicksort(sortidxes, 0, count - 1);

for (k = 0; k < stateilens[i]; k++) {
seglbls[i](j * n + k].pathval= sortidxes[k].second;
seglbls[i][j * n + k].previouslabel = sortidxes[k].first / n;
seglbls[i][j * n + k].previousindex = sortidxes[k].first % n;

]
// end of (for all possible labels at the position "i")

// scaling for the current position
scale[i] = (popt->is_scaling) ?

viterbi::sum(seqlbls[i], popt->num_labels, n, statelens[i]) : 1;
viterbi::divide(seglbls[i], popt->num_labels, n, statelens[i], scale[i]);

} // end of the main loop

XXXIII

Source Code

int count = 0;
for (j = 0; j < popt->num_labels; j++) {

for (k = 0; k < statelens[seq_len - 1]; k++) {
sortidxes[count].first =j * n + k;
sortidxes[count].second = seglbls[seq_len - 1][j * n + k].pathval;
count++;

quicksort(sortidxes, 0, count - 1);

int realsize = n;
if (realsize > count) {

realsize = count;

// allocate memory for n-best path information
for (i = 0; i"< seq_len; i++) {

seq[i].pnbestinfo = new nbestinfo;
while (seq[i].pnbestinfo->model_labels.size() < realsize)

seq[i] .pnbestinfo->model_lab els.push_back(-1);

if (i=0) {
while (seq[0].pnbestinfo->pathvals.size() < realsize)

seq [0] .pnbestirifo->pathvals.push_back(0.0);

double sumpathvals = 0.0;
// n-best backtracking
for (i = 0; i < realsize; i++) {

seq[0].pnbestinfo->pathvals[i] = sortidxes[i].second;
sumpathvals += seq[0].pnbestinfo->pathvals[i];

int major = sortidxes[i].first / n;
seq[seq_len - 1].pnbestinfo->model_labels[i] = major;
int minor = sortidxes[i].first % n;

for (j = seq_len - 2; j >= 0; j--) {
seq[j].pnbestinfo->model_labels[i] _

seglbls[j + 1][major * n + minor] .previouslabel;
int mj = seglbls[j + 1][major * n + minor] .previous label;
int mn = seglbls[j + 1][major * n + minor].previousindex;
major = ml;
minor = mn;

}

XXXIV

Appendix A 	 Source Code Listing

// scaling path values
if (sumpathvals > 0) {

for (i = 0; i < realsize; i++) {
seq[O].pnbestinfo->pathvals[i] = seq[0].pnbestinfo->pathvals[i] /

sumpathvals;

// calculating entropy
vector<double> ps;
for (i = 0; i < seq_ien; i++)' {

// the best path
seq[i] .model_label = seq[i].pnbestinfo->model_labels[0];

ps.clearO;
for 0 = 0; j < popt->num_labels; j++) {

ps.push_back(0.0);

for (j =0;j < realsize j++) {
ps[seq[i].pnbestinfo->model_labelso]] += seq[0].pnbestinfo->pathvals[j];

int count = 0;
for 0 = 0; j < popt->num_labels; j++)

if (ps[j] > 0.0) {
count++;

}

seq[i].pnbestinfo->entropyval= 0.0;
if (count > 1) {

for 0.= 0; j < popt->num_labels; j++) {
if (ps[j] >0.0) {

seq[i].pnbestinfo->entropyval -= pso] * log(ps[j]);

seq[i].pnbestinfo->entropyval /= ps.sizeO;

void viterbi::apply_2order(sequence & seq)
int i, j, k;

map<int, pair<int, int> >::'terator lbmapit;

int seq_len = seq.size();
if (seq_len = 0) {

return;

Appendix A 	 Source Code Listing

int Ifo = popt->num_labels -1;
if -(popt->Ifo >= 0) {

Ifo = popt->lfo;
}

int memorysize = memory.sizeO;
// if the current sequence is the longest one (up to the current point),
// then allocate more memory
if (memorysize < seq_len) -{

for (i = 0; i < seq_len memorysize; i++) {
memory.push_back(temp);

// we need to scale forward variable to [0, 1] to avoid numerical problems
int scalesize = scale.sizeO;
// if the current sequence is the longest one (up to the current point),
//then allocate more room for scale variable
if (scalesize < seq_len) {

for (i = 0; i < segjen - scalesize; i++) {
scale.push_back(1.0);

// compute Mi and Vi for tie first position in the sequence
compute_log_Mi_2order(seq, 0, Mi, Vi, 1);

for (j = 0; j < popt->num_2orderlabels; j++) {
memory[0] [j].first = (* Vi)[j];

] memory[0][j].second = j;

// calculate scale factor for the first position
scale[0] _ (popt->is_scaling) ? viterbi: :sum(memory[0]): 1;
// scaling for the first position
viterbi: : divide(memory[0], scale[0]);

// the main loop
for (i = 1; i < seq_len; i++) {

// compute Mi matrix and Vi vector at position "i"
compute_log_Mi_2order(seq, i, Mi, Vi, 1);

// applying constraints
int num_cnts = popt->prevfixedintlabels.sizeO;
for (int cc = 0; cc < num_cnts; cc++) {

int col = popt->prevfixedintlabels[cc][0];
for (int row = 0; row < popt->num_labels; row++) {

int in = 0; _

XXXVI

Appendix A 	 Source Code Listing

for (int count = 1; count < popt->prevfixedintlabels[cc].size();
count++) {

if (row = popt->prevfixedintlabels [cc] [count])
in = 1;

}

if (!in) {
int index = row * popt->num_labels + col;
(*Vi)[index~ = 0;

}

num cuts = popt->nextfixedintlabel s. sizeO;
for (int cc = 0; cc < num_cnts; cc++) {

int row = popt->nextfixedintlabel s[cc] [0];
for (int col = 0; col <- popt->num_labels; col++) {

int in = 0;
for (int count = 1; count < popt->nextfixedintlabels[cc].size();

count++) {
if (cot = popt->nextfixedintlabels[cc] [count])

in = 1;

}
if (!in) {

int index = row * popt->num_labels + col;
(*Vi)[index] = 0;

}

// for all possible labels at the position "i"
for (j = 0; j < popt->num_2orderlabels; j++) {

memory[i][j].first = 0.0;
memory[i][j].second = 0;

// find the maximal value and its index and store them in memory
// for later tracing back to find the best path
for (k 0; k < popt->num_2orderlabels; k++) {

double tempval memory[i-1][k].first * Mi->mtrx[k][j] *

if (tempval > memory[i][j].first) {
memory[i][j].first = tempval;
memory[i][j].second = k;

}

// scaling for memory at position "i"
scale[i] = (popt->is_scaling) ? viterbi::sum(memory[i]) : 1;

XXXVII

Appendix A 	 Source Code Listing

viterbi::divide(memory[i], scale[i]);

// viterbi backtrack to find the best path
int max_idx = viterbi::find_max(memory[seq_len - 1]);
seq[seq_len - 1].model label= max_idx;
for (i = seq_len - 2; i >= 0;1 i--) {

seq [i] .model_label = rnemory[i + 1] [max_idx] .second;
max_idx = seq[i] .model _label;

// converting from second-order labels to first-order ones
for (i = 0; i < seq_len; i++) {

lbmapit = pdata->plb2to1->find(seq[i] .model _label);
if (lbmapit != pdata->plb2toI->end()) {

seq[i].model_label = lbmapit->second.second;

}
}

void viterbi::apply_2order(sequence & seq, int n) {
inti,j,k,h;

map<int, pair<int, int> >::iterator lbmapit;

int seq_len = seq.size();
if (seq_len = 0) {

return;

mem infor;
infor.pathval = 0.0;
infor.previouslabel = -1;
infor.previousindex = -1;

int premaxlen = statelens.sizeO;
if (premaxlen < seq_len) {

for (i = 0; i < seq_len - premaxlen; i++)
statelens.push_back(0);

if (statelbls.size() != n * popt->num_2orderlabels) {
for (i = 0; i <n * popt->num_2orderlabels; i++) {

statelbls.push_back(infor);
sortidxes.push_back(pair<int, double>(0, 0.0));

premaxlen = seglbls.size();

:•:'i 11.1

Appendix A 	 Source Code Listing

if (premaxlen < seq_len) {
for (i = 0; i < seq_len - premaxlen; i++)

seglbls.push_back(statelbls);

// scaling
premaxlen = scale.sizeQ;
if (premaxlen < seq_len) {

for (i = 0; i < seq_len - premaxlen; i++)
scale, push_back(1.0);

// compute Mi and Vi for the first position in the sequence
compute_log_Mi_2order(seq, 0, Mi, Vi, 1);

statelens[O] = 1;

// for the first position
for (j = 0; j < popt->num_2orderlabels; j++) {

seglbls[0][j * n].pathval = (*Vi)[j];
seglbls[0][j * n].previouslabel= j;
seglbls[0] [j * n].previousindex = 0;

// scaling
scale[0] = (popt->is_scaling) ?

viterbi::sum(seglbls[0], popt->num_2orderlabels, n, statelens[0]) : 1;
viterbi::divide(seglbls[0], popt->num2orderlabels, n, statelens[0], scale[0]);

// the main loop
for (i = 1; i < seq_len; i++) {

// compute Mi matrix and Vi vector at position "i"
compute_logMi 2order(seq, i, Mi, Vi, 1);

statelens[i] = n; .
if (statelens[i] > statelens[i - 1] a popt->num 2orderlabels) {

statelens[i] = statelens[i - 1] * popt->num 2orderlabels;

// for all possible labels at the position "i'.'
for (j = 0; j < popt->num_2orderlabels; j++) {

int count = 0;
// for.all possible labels at the position "i-l"
for (k = 0; k < popt' >num_2orderlabels; k++)

for (h = 0; h <~statelens[i - 1]; h++) {
sortidxes[count].first = k * n + h;
sortidxes[count].second =

seglbls[i - 1][k * n + h].pathval * Mi->mtrx[k][j]
* (*Vi)[1l;

Appendix A 	 Source Code Listing

count++;
}

quicksort(sortidxes, 0, count - 1);

for (k = 0; k < state!lens[i]; k++) {
seglbls[i][j * n + k].pathval = sortidxes[k].second;
seglbls[i][j * n + k].previouslabel = sortidxes[k].first / n;
seglbls[i][j * n + k].previousindex = sortidxes[k].first % n;

}
// end of (for all possible labels at the position "i")

// scaling for the current position
scale[i] _ (popt->is_scaling) ?

viterbi::sum(seglbls[i], popt->num_2orderlabels, n, statelens[i]) : 1;
viterbi::divide(seglbls[i], popt->num_2orderlabels, n, statelens[i], scale[i]);

// end of the main loop

int count = 0;
for (j = 0; j < popt->num_2orderlabels; j++) {

for (k =0; k < stateleris[seq_len - 1]; k++) {
sortidxes[count].first = j * n + k;
sortidxes[count].second = seglbls[seq_len - 1][j * ri + k].pathval;
count++;

quicksort(sortidxes, 0, count -• 1);

int realsize = n;
if (realsize > count) {

realsize = count;

6
// allocate memory for n-best path information
for (i = 0; i < seq_len; i++) {

seq[i].pnbestinfo = new nbestinfo;
while (seq[i] .pnbestinfo->model_labels. size() < realsize)

seq [i].pnbestinfo->model_labels.push_back(-1);

if (i = 0) {
while (seq[0].pnbestinfo->pathvals.sizeO-< realsize) {

seq[0].pnbestinfo->pathvals.push_back(0.0);

VAI

Appendix A 	 Source Code Listing

double sumpathvals = 0.0;
// n-best backtracking
for (i = 0; i < realsize; i++)I {

seq[0].pnbestinfo->pathvals[i] = sortidxes[i].second;
sumpathvals += seq[0;].pnbestinfo->pathvals[i];

int major = sortidxes[i].first / n;
seq[seq_len - 1].pnbestinfo->model_labels[i] = major;
int minor = sortidxes[i].first % n;

for (j = seq_len - 2; j >= 0; j--) {
seq[j].pnbestinfo->model_labels[i] _

seglbls[j + 1][major * n + minor].previouslabel;
int mj = seglbls[j + 1][major * n + minor].previouslabel;
int mn = seglbls[j + 1][major * n + minor].previousindex;
major = mj;
minor = mn;

// scaling path values
if (sumpathvals > 0) {

for (i = 0; i < realsize; i++) {
seq[0].pnbestinfo->pathvals[1] = seq[O].pnbestinfo->pathvals[i] /

sumpathvals;

// calculating entropy
vector<double> ps;
for (i = 0; i < seq_len; i++) {

// the best path
seq[i] .model_label = seq[i].pnbestinfo->model_labels[0];

ps.clear();
for a = 0; j < popt->nim_2orderlabels; j++) {

ps.push_back(0.0);
}.

for 0 = 0; j < realsize; j++) {
ps[seq[i].pnbestinfo->model_labels[j]] += seq[0].pnbestinfo->pathvals[j];

int count = 0;
for 0 = 0; j < popt->num_2orderlabels; j++)

if (ps[j] > 0.0) {
count++;

}
}

XLI

Appendix A. 	 I 	 Source Code Listing

seq[i] .pnbestinfo->entropyval = 0.0;
if (count > 1) {

for (j = 0; j < popt->num_2orderlabels; j++) {
if (ps[j] > 0.0) {

seq[i].pnbestinfo->entropyval -= ps[j] * log(ps[j]);

seq[i].pnbestinfo->entropyval /= ps.size();

// converting from second-order labels to first-order ones
for (i = 0; i < seq_len; i++)i {

lbmapit = pdata->plb2to1->find(seq[i].model_label);
if (lbmapit != pdata->plb2to 1->end()) {

seq[i] .model_label = lbmapit->second.second;

for (j = 0; j < realsize; j++) {
Ibmapit = pdata->plb2to1->find(seq[i].pnbestinfo->model_labelsu]);
if (lbmapit != pdata->plb2toI->endo)) {

seq[i].pnbestinfo->model_labelsU] = lbmapit->second.second;

// compute .log Mi (for first-order Markov)
void viterbi::compute_ 1og_Mi_lordetr(sequence & seq, int pos, doublematrix * Mi,

doublevector1 * Vi, int is_exp) {
*Vi = 0.0;

// start scan features for sequence "seq" at.position "i"
pfgen->start_scan_sfeatures_at(seq, pos);
// examine all features at position "pos"
while (pfgen->has_next_sfeatureO) {

feature f;
pfgen->next sfeature(f);

if (f.ftype = STAT_FEATURE1) {
// state feature (type 1)
(*Vi)[f.y] += pmodel->lambda[f.idx] * f.val;

// take exponential operator
if (is ^exp) {

for (int i = 0; i < Mi->.rows;- i++) {

XLII

Appendix A 	 Source Code Listing

// update for Vi

}
(*Vi)[i] = exp((*Vif[i]);

// compute log Mi (second-order Markov)
void viterbi::compute_log Mi_2order(sequence & seq, int pos, doublematrix * Mi,

doublevector *. Vi, int is_exp) {
*Vi = 0.0;

// start scan features for sequence "seq" at position "i"
pfgen->start_scan_sfeatures_at(seq, pos);
// examine all features at position "pos"
while (pfgen->has_next_sfeature()) {

feature f;
pfgen->next sfeature(f);

if (f.ftype = STAT_FEATURE 1) {
// state feature (type 1)
for (int i = 0; i < popt->num_labels; i++) {

(*Vi)[i * popt->num_labels + f.y] += pmodel->Iambda[f.idx] * f.val;

} else if (f.ftype = STAT_FEATURE2) {
// state feature (type 2)
(*Vi)[f.y] += pmodel->lambda[f.idx] * f.val;

}

int No = popt->num_labels. - 1;
if (popt->Ifo >= 0) {

Ifo = popt->lfo;

// take exponential operator
if (is_exp) {

if (pos = 0) {
for (intj = 0; j < Mi->rows; j++) {

if 0 / popt->num_labels =1fo)
(*Vi)[j] = exp((*Vi)[j]);

}else{
(*Vi)[j] = 0;

else {
for (int j = 0; j < Mi->rows; j++) {

(*Vi)[j] = exp((*Vi)[j]);

XLIII

Appendix A 	 Source Code Listing

}
}

// this is used by viterbi search
double viterbi::sum(vector<pair<double, int> > & vect) {

double res = 0.0;

for (int i = 0; i < vect.size(); i++) {
res += vect[i].first;

}

// if the sum in (-1, 1), then set it to 1
if(res<1 &&res>-1) {

res 1;
}

return res;
}

// this is necessary for scaling
double viterbi::divide(vector<pair<double, int> > & vect, double val) {

for (int i = 0; i < vect.size(); i++) {
vect[i].first /= val;

}

// this is called once in the viterbi search to trace back the best path
int viterbi::find_max(vector<pair<double, int> > & vect) {

int maxxidx = 0;
double max val = -1.0;

for (inti = 0; i < vect.sizeO; i++) {
if (vect[i].first > max val) {

max_val = vect[i].first;
maxidx = i;

}
}

return max_idx;

double viterbi::sum(vector<pair<vector<mem>, int> > & vect) {
double res = 0.0;

for (int i = 0; i < vect.sizeO; i++) {
for (int j = 0; j < vect[i].second; j++) {.

res += vect[i].first[j].pathval;
}

}

XLIV

Appendix A 	 Source Code Listing

if (res < 1 && res > -1) {
res = 1;

}

return res;

double viterbi::sum(vector<mem> & vect, int num_labels, int n, int len) {
double res = 0.0;

for (int i = 0; i < num_labels; i++) {
for (int j = 0; j < len; j++) {

res += vect[i * n +j].pathval;
}

}

if (res < 1&& res > -1) {
res = 1;

}

return res;

double viterbi::divide(vector<pair<vector<mem>, int> > & vect, double vaI) {
for (int i = 0; i < vect.sizeO; i++) {

for (int j = 0; j < vect[i].second; j++) {
vect[i].first[j].pathval /= val;

}
}

}

double viterbi::divide(vector<mem> & vect, int num_labels, int n,
int len, double val) {

for (int i = 0; i < num_labels; i++) {
for (int j = 0; j < len; j,++) {

vect[i * n + j].pathval /= val;
}

}
}

void viterbi::quicksort(vector<pair<int, double> > & vect, int left, int right) {
int 1_hold, r_hold;
pair<int, double> pivot;

1_hold = left;
r_hold = right;
int pivotidx = left;
pivot = vect[pivotidx];

XLV

Appendix A 	 Source Code Listing

while (left < right) {
while (vect[right].second <= pivot.second && left < right) {

right--;
}
if (left != right) {

vect[left] = vect[right];
left++;

}
while (vect[l'eft].second >= pivot.second && left < right) {

left++;
}
if (left != right) {

vect[right] = vect[left];
right--;

}

vect[left] = pivot;
pivotidx = left;
left = 1_hold;
right = r_hold;

if (left < pivotidx) {
quicksort(vect, left, pivotidx - 1.);

}
if (right > pivotidx) {

quicksort(vect, pivotidx + 1, right);
}

}

/* crf.cpp*/
#include <stdio.h>
#include <stdlib.h>
#include "strtokenizer.h"
#include "option.h"
#include "data.h"
#include "dictionary.h"
#include "feature.h"
#include "featuregen.h"
#include "trainer.h"
#include "viterbi.h"
#include "valuation.h"
#include "model.h"

using namespace std;

int main(int argc, char * * argv) {
// the command line must be:
// segment -all/-trn/-tst/-prd -d <model directory> -o <option filename>

XLVI

Appendix A 	 Source Code Listing

int is_all = ! strcmp(argv[1], "-all");
int is_trn = ! strcmp(argv[1], "-trn");
int is_tst = !strcmp(argv[1], "-tst");
int is_prd = ! strcmp(argv [1], "-prd");

// the first parameter must be "-all", "-train", or "-test"
if (!is_all && !is _trn && !is_tst && !is_prd) {

return 0;

//the second parameter must be "-d"
if (strcmp(argv[2], "-d")) {'

return 0;

//the third parameter must be the model directory
string model_dir = argv[3];
if (model_dir[model_dir.size() - 1] !_'/') {

model_dir += "/";
},

// the fourth parameter must be "-o"
if (strcmp(argv[4], "-o")) {

return 0;

// the fifth parameter must pe the option filename
string optfile = model_dir + argv[5];

// open the option file to read parameters
FILE * optf;
optf = fopen(optfile.c_strO, "r");
if (! optf) {

//if can not open the option file
printf("cannot open the option file for reading\n");
return 0;

// create an option object
option opt(optf, model_dir);

FILE * itrndataf;
FILE * itstdataf;
FILE * iulbdataf;

FILE * imodelf;

if (is_all 11 is tm) {
// try to open training data file

XL VII

Appendix A 	 Source Code Listing

itrndataf = fopen((optL model_dir + opt.trndata_file).c_str(), "r");
if (!itrndataf) {

printf("cannot open the training data file for reading\n");
return 0;

if (is_all 11 is_tst) {
// try to open testing data file
itstdataf = fopen((opt.model_dir + opt.tstdata_file).c_str(), "r");
if (!itstdataf) {

printf("cannot open the testing data file for reading\n");
return 0;

if (is_prd) { 	 -
//try to open unlabeled data file
iulbdataf = fopen((opt.model_dir + opt.ulbdata_file).c_str(), "r");
if (!iulbdataf) {

printf("cannot open the unlabeled data file for reading\n");
return 0;

if (is tst 1I is_prd) {
// try to open model file (contain cpmap, labelmap, dictionary, and features)
imodelf = fopen((opt.model_dir + opt.model_file).c_str(), "r");
if (!imodelf) {

printf("cannot open the model file for reading\n");
return 0;

// data object
data dt(&opt);
// dictionary object
dictionary dict(&dt, &opt);
// featuregen object
featuregen fgen(&opt, &dict, &dt);

// both training and testing
if (is_all) {

printf("reading training data ...\n");
dt.read_trndata(itrndataf);
printf("reading %d training sequence completed.\n\n", opt.num_trnsegs);

printf("reading testing data ...\n");
dt.readtstdata(itstdataf);
printf(" reading %d testing sequences completed.\n\n", opt.num tstsegs);

XL VIII

Appendix A 	 Source Code Listing

printf("generating dictionary ...\n");
dict.dict_gen();
printf("generating %d context predicates completed.\n\n", opt.num_cps);

printf("generating CRF features from training data
fgen.gen_featuresO;
printf("generating %di CRF features completed.\n\n", opt.num_features);

printf("pruning unused context predicates ...\n");
dt.cp_prune(&dict);
printf("the number of context predicates after pruning: %d\n\n", opt.num_cps);

// create model file
FILE * omodelf;
omodelf = fopen((opt.model_dir + opt.model_file).c strO, "w");

printf("saving context predicate map ...\n");
dt.write_cp_map(omodelf, &dict);
printf("saving context predicate map completed.\n\n");

printf("saving label map file ...\n");
dt.write_lb map(omodelf);
printf("saving label map completed.\n\n");

if (opt.order = SECOND_ORDER) {
printf("saving second-order label map ...\n");
dt.write_2order_lb_map(omodel f);
printf("saving second-order label map completed.\n\n");

printf("saving second-order to first-order label map
dt.write_2to 1_lb_map(omodelf);
printf("saving second-order to first-order label map completed.\n\n");

}

If create the trainer object
trainer tm;
// create the viterbi object
viterbi vtb;
// create the evaluation object
evaluation eval;

// create the CRF model
model mdl(&opt, &dtL &dict, &fgen, &trn, &vtb, &eval);

// create training log file
FILE * otrnlogf;
if (opt.is_logging) {

otrnlogf = fopen((opt.modeI_dir + opt.trainlog_file).c_strO, "w");

XLIX

Appendix A 	 Source Code Listing

// saving dictionary
printf("saving the context predicate dictionary to file ...\n");
dict.write_dict(omodelf);
printf("saving the dictionary completed.\n\n");

// start to train the CRF model
printf("start to train the CRF model ...\n\n");
mdl.train(otrnlogf);

// saving the set of features
printf("saving the CRF features to file ...\n");
fgen.write features(omodelf);
printf("saving the CRF features completed.\n\n");

// start to label for testing data
printf("labeling for testing data ...\n");
mdl.applytstdataO;
printf("labeling for testing data completed.\n\n");

// saving testing output to file
FILE * otstdataf;
otstdataf = fopen((opt.model_dir + opt.tstdata_file + " .model ").c_strO, "w");
printf("writing testing output to file ...\n");
dt.write_tstdata(otstdataf);
printf("writing testing output completed.\n\n");

// performance evaluation on testing dataset
mdl. peval->evaluate(otrnlogf);
printf("\n");

fclose(optf);
fclose(itrndataf);
fclose(itstdataf);
fclose(otstdataf);
fclose(otrnlogf);
fclose(omodelf);

// training only
if (is_trn) {

printf("reading training data
dt.read_trndata(itrndataf);
printf("reading %d training sequence completed.\n\n", opt.num tmsegs);

printf("generating dictionary ...\n");
dict.dict_gen();
printf(" generating %d context predicates completed.\n\n", opt.num_cps);

printf("generating CRF features from training data

M

Appendix A 	 Source Code Listing

fgen. gen_features();
printf(" generating %d CRF features completed.\n\n", opt.num_features);

printf("pruning unused context predicates ...\n");
dt.cp_prune(&dict);
printf("the number oflcontext predicates after pruning: %d\n\n", opt.num_cps);

// create model file
FILE * omodelf;
omodelf = fopen((opt.model_dir + opt.model_file).c_str(), "w");

printf("saving context predicate map ...\n");
dt.write_cp_map(omodelf, &dict);
printf("saving context predicate map completed.\n\n");

printf("saving label map file ...\n");
dt.write_lb_map(omodelf);
printf("saving label map completed.\n\n");

if (opt.order == SECOND_ORDER) {
printf("saving second-order label map
dt.write_2order_lb_map(omodelf);
printf("saving seco' d-order label map completed.\n\n");

printf("saving second-order to first-order label map ...\n");
dt.write_2to 1 _Ib_map (omodelf);
printf("saving second-order to first-order label map completed.\n\n");

// create the trainer object
trainer trn;

If create the CRF model
model mdl(&opt, &dt, &dict, &fgen, &trn, NULL, NULL);

II create training log file
FILE * otrnlogf;
if (opt.is_logging) {

otrnlogf = fopen((opt.model_dir + opt.trainlog_file).c_strO, "w");
}

// save the dictionary i
printf("saving the context predicate dictionary to file
dict.write_dict(om o de lf);
printf("saving the dictionary completed.\n\n");

// start to train the CRF model
printf("start to train the CRF model ...\n\n");
mdl.train(otrnlogf);

LI

Appendix A 	 Source Code Listing

// saving the set of features
printf("saving the CRF features to file ...\n");
fgen.write features(omodelf);
printf("saving the CRF features completed.\n\n");

fclose(optf);
fclose(itrndataf);
fclose(otrnlogf);
fclose(omodelf);

// testing only
if (is tst) {

printf("reading context predicate map from file ...\n");
dt.read_cp_map(imodelf);
printf("reading %d context predicate mappings completed.\n\n",

opt.num_cps);

printf("reading label map from file ...\n");
dt.read_lb_map(imodelf);
printf("reading %d label mappings completed.\n\n",'opt.num_labels);

if (opt.order == SECOND_ORDER) {
printf("reading second-order label map ...\n");
dt.read_2order_lb_map(imodelf);
printf("reading second-order label map completed.\n\n");

printf("reading second-order to first-order label map ...\n");
dt.read_2to 1_lb_map(imodelf);
printf("reading second-order to first-order label map completed.\n\n");

}

printf("reading dictionary from file.. .\n");
dict.read_dict(imodelf);
printf("reading %d context predicates completed.\n\n", opt.num_cps);

printf("reading_CRF features from file ...\n");
fgen. read_features(imodelf);
printf("reading %d CRF features completed.\n\n", opt.num_features);

printf("reading testing data ...\n");
dt.read_tstdata(itstdataf);
printf("reading %d testing sequences completed.\n\n", opt.num_tstsegs);

// create the viterbi object
viterbi vtb;
// create the evaluation object
evaluation eval;

// create the CRF model

LII

Appendix A 	 Source Code Listing

model mdl(&opt, &dt, &dict, &fgen, NULL, &vtb, &eval);

// start to label for testing data
printf("labeling for testing data ...\n");
if (opt.nbest <= 1) { ,

mdl.apply tstdataO;
} else {

mdl . apply_tstdata(opt.nbest);
}
printf(" labeling for testing data completed.\n\n");

If saving testing output to file
FILE * otstdataf;
otstdataf = fopen((opt.model_dir + opt.tstdata_file + ".model").c_str(), "w");
printf("writing testing output to file ...\n");
dt.write_tstdata(otstdataf) ;
printf("writing testing output completed.\n\n");

// performance evaluation on testing dataset
opt.is_logging = 0;
mdl.peval->evaluate(NULL);
printf("\n");

fclose(optf);
fclose(itstdataf);
fclose(otstdataf);
fclose(imodelf);

// prediction
if (is_prd) {

printf("reading context predicate map from file ...\n");
dt. r e a d_c p_m ap (i m o d e l f) ;
printf("reading %d context predicate mappings completed.\n\n"

opt.num_cps);

printf("reading label rap from file ...\n");
dt.read_lb_map(imodelf ;
printf("reading %d label mappings completed.\n\n", opt.num_labels);

if (opt.order == SECOND_ORDER) {
printf("reading second-order label map ...\n");
dt.read_2order_lb_map(imodelf);
printf("reading second-order label map completed.\n\n");

printf("reading second-order to first-order label map ...\n");
dt.read_2to 1_lb_map(imodelf);
printf("reading second-order to first-order Iabel map completed.\n\n");

}

LIII

Appendix A 	 Source Code Listing

printf("reading dictionary from file.. .\n");
dict.read_dict(imodelf);
printf("reading %d coh text predicates completed.\n\n", opt.num_cps);

printf("reading CRF features from file ...\n");
fgen.read_features(imodelf);
printf("reading %d CRF features completed.\n\n", opt.num_features);

printf("reading unlabeled data :..\n");
dt.readulbdata(iulbdataf);
printf("reading %d unlabeled sequences completed .\n\n", opt.num_ulbsegs);

// create the viterbi object
viterbi vtb;

// create the CRF model.
model mdl(&opt, &dt, &dict, &fgen, NULL, &vtb, NULL);

// start to label for testing data
printf("predicting for unlabeled data ...\n");
mdl.apply_ulbdataO; 1
printf("predicting for unlabeled data completed.\n\n");

// saving data output to file
FILE * oulbdataf;
oulbdataf = fopen((op't.model_dir + opt.ulbdata_file + ".model").c_str(), "w");
printf("writing data with predicted labels to file ...\n");
dt.write_ulbdata(oulbdataf);
printf("writing data with predicted labels completed.\n\n");

fclose(optf);
fclose(iulbdataf);
fclose(oulbdataf);
fclose(imodelf);

return 0;
} // end of main function

LIV

