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ABSTRACT 

In this thesis work we consider the problem of analyzing the development of a 

document collection over time without requiring meaningful citation data. Given a 

collection of time stamped documents, we formulate and explore the following two 

questions. First, what are the main topics and how do these topics develop over time? 

Second, what are the documents and who are the authors that are most influential in 

this process?. We propose methods addressing these questions by taking solely text 

of the document as input. Because proposed methods use only the text of the 

documents as input, the methods are applicable to a much wider range of document 

collections (email, blogs, etc.), most of which lack meaningful citation data. We 

evaluate our methods on two kinds of data sets one is the documents from the 

proceedings of the Neural Information Processing Systems (NIPS) conference and the 

other is collection of news articles. The results show that the methods are effective 

and that addressing the questions based on the text alone . In fact, the text-based 

methods sometimes even identify influential papers that are missed by citation 

analysis. 
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Introduction and Statement of the Problem 	CHAPTER 1 

1.1 INTRODUCTION 

One of the newest areas of data mining is text mining. In the field of data mining, text 

mining has been attracting increased interest in the industry. Text mining refers to a 

collection of methods used to find patterns and create intelligence from unstructured text 

data. . It has been estimated that 85% of corporate data is of unstructured type. 

Many document collections have grown through an interactive and time-dependent 

process [5]. The word interactive means the documents share the same features (words in 

this context) and time-dependent means earlier documents shapes documents that 

followed later, with some documents introducing new ideas that lay the foundation for 

following documents. Examples of such collections are email repositories, the body of 

scientific literature, and the web. To access and analyze such collections, it is important 

to understand how they developed over time. For example, consider a historian trying to 

get an understanding of the ideas and forces leading to the Iraq war from news articles, or 

consider the head of a hiring committee trying to understand which scientists had the 

greatest influence on the development of a discipline. 

1.2 Background 

There is an enormous growth in the information available in text documents, such as 

news documents, research articles, web documents etc. Application of text mining 

techniques [1] to extract useful information from these text based resources has received 

a lot of interest recently in both academia and industry. Many of these text based 

documents have been archived, with respect to time of their publication or creation, 

giving an approximate time of occurrence for the events/information contained in the 

document. 
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The time stamps associated with text documents have been employed in discovering how 

the information in the text documents has evolved over time. In particular, time stamped 

documents have been collectively analyzed for identifying emerging trends [ 11, 13, 19] 

from research articles, detecting and tracking topics from news articles and for extracting 

timelines of events from articles. The usual approach for extracting temporal information 

(such as trends) from text documents has been to construct a time series representing the 

evolution of the keywords/topics in the document set over time. 

That means in our representation x-axis contains time(T). A decomposition of the time 

period T spanning a document set is constructed by decomposing it into equal length 

subintervals. The document set is partitioned into subsets by assigning documents to each 

subinterval based on time stamps. For example one may show the graph for a given 

document collection, time is on x-axis and the number of documents published in that 

year in y-axis. Text mining functions are applied to each document subset to compute the 

information deemed significant for the corresponding subinterval. The information 

computed is a set of keywords/phrases/nouns/topics deemed significant for that 

subinterval . 

1.3Motivation 

Consider, for example, the Asian tsunami disaster that happened in the end of 2004. A 

query to Google News returned more than 80,000 online news articles [5] about this 

event within one month . It is generally very difficult to navigate through all these news 

articles, for someone who has not been keeping track of the event but wants to know 

about this disaster, a summary of this event would be extremely useful. 

Ideally, the summary would include both the major topics about the event and the 

evolution of these themes/topics. For example, the themes may include the report of the 

happening of the event, the statistics of victims and damage, the aids from the world, and 

the lessons from the tsunami. 
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Consider another scenario in the literature domain. There are often hundreds of papers 

published annually in a research area. A researcher, especially a beginning researcher, 

often wants to understand how the research topics in the literature have been evolving. 

For example, if a researcher wants to know about information retrieval research area , 

both the historical milestones and the recent research trends of information retrieval area 

would be valuable for him. 

Topic strength 

_ _ _ _ _ text cateToiization 
— — — 	tf-idf retriev:►1 

— — IR-applications 
—4---4 	Langniage model 

1980 1990 1998 2003 

tine 

Figure 1: An example of topic strength in IR 

A plot, such as the one shown in Figure 1, which visualizes the evolution patterns of 

research topics, would not only serve as a good summary[5] of the field, but also make it 

much easier for the researcher to selectively choose appropriate papers to read based on 

his research interests., In both scenarios, we clearly see a need for discovering 

evolutionary theme patterns in a text stream. In general, it is often very useful to discover 

the temporal patterns that may exist in a stream of text articles, a task which we refer to 

as Temporal Text Mining (TTM) . 

Since most information bears some kinds of time stamps, TTM can, be expected to have 

many applications[ 1] in multiple domains. There are some previous studies [11,13], on 
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TTM but the proposed methods are generally inadequate for generating the evolutionary 

theme patterns as shown in the two examples above. So, an efficient method is required 

to generate the evolutionary theme patterns. There are some previous methods on topic 

detection [18] and identifying key players [9] but they are taking citation information in 

addition to the text of the document as input 

1.4 Problem Statement 

In this thesis work, we pose and consider the problem of discovering evolutionary theme 

pattern in document collection. This problem requires simultaneously understanding what 

topics are popular and which documents and authors drive the changes in popularity of 

the topics. In particular we address the following questions: 

• What are the key topics in a collection of documents and how did their popularity 

change over time? 

• Which are the most influential documents? 

• Who were the authors that significantly drove the evolution of ideas? 

In particular, since most collections lack meaningful citation and hyperlink structure, the 

analysis must be done entirely based on the text in the document. 

1.5 Thesis Organization 

This dissertation proposes a new and efficient technique for the identifying and 

visualizing the temporal patterns of given collection of documents.The organization of 

the dissertation report is as follows: 

Chapter 2 reviews what is data mining and knowledge discovery process, text mining, 

clustering and clustering methods , k-means and clustering algorithm. 

Chapter 3 reviews the dataset used and representation of data, and describes the 

proposed methodology to solve the problem. 

Chapter 4 reviews the results and analysis of results. 

Chapter 5 concludes the dissertation work and gives suggestions for future work. 

a] 



Data Mining 	 CHAPTER 2 

2.1 Introduction: 

Traditional statistical analysis is performed on data arrayed in spreadsheet format. That 

is, the data is arrayed in two dimensional matrices where each row represents a record 

and each column represents a feature or variable. Table 1 provides a sample of such a 

database. In Table 1, each row represents a claimant. The features are the variables claim 

number, accident date, claim status, attorney involvement, paid loss, outstanding loss, 

incurred loss, incurred allocated loss adjustment expenses (ALAE) and claimant state. As 

seen in Table 1, the data contain two key types of variables, quantitative or numeric 

variables such as incurred losses and incurred expenses and nominal or categorical 

variables such as claim status and state. Each numeric value denotes a specific quantity or 

value for that variable. Each value or category, whether numeric or alphanumeric, of a 

categorical variable embeds a coding that maps the value to one and only one category. 

This data is structured data. Structured databases result from intentional design where the 

variables have proscribed definitions and the values of the variables have prescribed 

meaning. 

Table 1: Sample Structured Data 

Claim 

No 

Accident 

Date 

Status Attorney Paid Out 

Standing 

Incurred 

ALAE 

Incurred 

Loss 

State 

19981 1/08/1999 C Yes 37,284 0 0 37,284 NY 

19984 1/16/1999 C NO 0 0 3 0 NY 

20022 1/30/2002 C NO 195 0 31,807 195 CA 

19986 9/19/1998 C Yes 99,852 0 72 99,852 NJ 

when data is unstructured there is no obvious procedure for converting the data which is 

composed of sequences of characters that vary in length and content in apparently 

random ways to information that can be used for analysis and prediction. Manual 

intervention on the part of human beings may be able to convert some unstructured data 
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to structured features which can be used to perform statistical analysis. Because of the 

effort required and difficulty of interpreting the unstructured text data, it is typically 

ignored for doing analysis. If information could be automatically extracted from 

unstructured data, a significant new source of. data could become available to 

corporations. Text mining refers to a collection of methods used to find patterns and 

create intelligence from unstructured text data. In the field of data mining, text mining 

has been attracting increased interest in the industry. 

2.2 What is data mining? 

Data mining [4,12] refers to extracting or `mining' knowledge from large amount of data. 

Data mining methodology extracts hidden predictive information from large data bases. 

The objective of data mining is to extract valuable information from data to discover the 

hidden gold. This gold is the valuable information in that data. Small changes in strategy, 

provided by data mining's discover process, can translate into a difference of millions of 

dollars to the bottom line. 

This new discipline today finds application in a wide and diverse range of business, 

scientific and engineering scenarios. For example, large databases of loan applications 

are available which record different kinds of personal and financial information about the 

applicants (along with their repayment histories). These databases can be mined for 

typical patterns leading to defaults which can help determine whether a future loan 

application must be accepted or rejected. Several terabytes of remote-sensing image data 

are gathered from satellites around the globe. Data mining can help reveal potential 

locations of some (as yet undetected) natural resources or assist in building early warning 

systems for ecological disasters like oil slicks etc. Other situations where data mining can 

be of use include analysis of medical records of hospitals in a town to predict, for 

example, potential outbreaks of infectious diseases, analysis of customer transactions for 

market research applications etc. The list of application areas for data mining is large and 

is bound to grow rapidly in the years to come. 



Simply, Data Mining, is the process of automatically searching large volumes of data for 

patterns using tools such as classification, association rule mining, clustering, etc. Data 

mining is a complex topic and has links with multiple core fields such as computer 

science and adds value to rich seminal computational techniques from statistics, 

information retrieval, machine learning and pattern recognition. 

2.2.1 KDD (knowledge discovery in databases) Process 

Knowledge discovery in Databases [4,12,26] or data mining is the effort to understand, 

analyze, and eventually make use of the huge volume of data available. Through the 

extraction of knowledge in databases, large databases will serve as a rich, reliable source 

for knowledge generation and verification, and the discovered knowledge can be applied 

to information management, query processing, decision making, process control and 

many other applications. 

Knowledge Discovery in Databases is defined as the nontrivial process of identifying 

valid, potentially useful, and ultimately understandable patterns in data. There are several 

steps in a KDD process: data selection, preprocessing, transformation, data mining, and 

interpretation/evaluation of results, as shown in figure 2. Data mining is only one step of 

the process, involving the application of discovery tools to find interesting patterns from 

targeted data. However, since data mining is the central part of the KDD process, the 

term data mining and the term knowledge discovery in databases are taken as synonyms 

to each other. 

Why do we need KDD: 

The traditional method of turning data into knowledge relies on manual analysis [12] and 

interpretation. For example, in the health-care industry, it is common for specialists to 

periodically analyze current trends and changes in health-care data, say, on a quarterly 

basis. The specialists then provide a report detailing the analysis to the sponsoring 

healthcare organization; this report becomes the basis for future decision making and 

planning for health-care management. 
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In a totally different type of application, planetary geologists sift through remotely 

sensed images of planets and asteroids, carefully locating and cataloging such geologic 

objects of interest as impact craters. Be it science, marketing, finance, health care, retail, 

or any other field, the classical approach to data analysis relies fundamentally on one or 

more analysts becoming intimately -familiar with the data and serving as an interface 

between the data and the users and products. For these (and many other) applications, 

this form of manual probing of a data set is slow, expensive, and highly subjective. In 

fact, as data volumes grow dramatically, this type of manual data analysis is becoming 

completely impractical in many domains. Databases are increasing in size in two ways: 

(1) the number N of records-  or objects in the database and 

(2) the number d of fields or attributes to an object. 

Who could be expected to digest millions of records, each having tens or hundreds of 

fields? We believe that this job is certainly not one for humans; hence, analysis work 

needs to be automated, at least partially. The need to scale up human analysis capabilities 

to handling the large number of bytes that we can collect is both economic and scientific. 

Businesses use data to gain competitive advantage, increase efficiency, and provide more 

valuable services to customers. 

Data we capture about our environment are the basic evidence we use to build theories 

and models of the universe we live in. Because computers have enabled humans to gather 

more data than we can digest, it is only natural to turn to computational techniques to 

help us unearth meaningful patterns and structures from the massive volumes of data. 

Hence, KDD is an attempt to address a problem that the digital information era made a 

fact of life for all of us: data overload. 



ig 

Data Mining: A KDD Process 

Pattern E luat' 

— Data mining: the core of 	 r. knowledge discovery 	Data Mining 
process. 

Task-relevant D 
Data Selection 
Data Preprocessin 

Data Wareh 

Data Cleaning 
Data Integration 

Databases 

Figure 2: A KDD Process 

The KDD process is interactive and iterative, involving numerous steps with many 

decisions made by the user. Here, we broadly outline some of its basic steps: 

First is developing an understanding of the application domain and the relevant prior 

knowledge and identifying the goal of the KDD process from the customers viewpoint. 

Second is creating a target data set: selecting a data set, or focusing on a subset of 

variables or data samples, on which discovery is to be performed. 

Third is data cleaning and preprocessing. Basic operations include removing noise if 

appropriate, collecting the necessary information to model or account for noise, deciding 

on strategies for handling missing data fields, and accounting for time-sequence 

information and known changes. 

Fourth is data reduction and projection finding useful features to represent the data 

depending on the goal of the task. With dimensionality reduction or transformation 
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methods, the effective number of variables under consideration can be reduced, or 

invariant representations for the data can be found. 

Fifth is matching the goals of the KDD process (step 1) to a particular data-mining 

method. For example, summarization, classification, regression, clustering, and so on, are 

described later. 

Sixth is exploratory analysis and model and hypothesis selection: choosing the data 

mining algorithm(s) and selecting method(s) to be used for searching for data patterns. 

This process includes deciding which models and parameters might be appropriate (for 

example, models of categorical data are different than models of vectors over the real ) 

and matching a particular data-mining method with the overall criteria of the KDD 

process (for example, the end user might be more interested in understanding the model 

than its predictive capabilities). 

Seventh is data mining: searching for patterns of interest in a particular representational 

form or a set of such representations, including classification rules or trees, regression, 

and clustering. The user can significantly aid the data-mining method by correctly 

performing the preceding steps. 

Eighth is interpreting mined patterns, possibly returning to any of steps 1 through 7 for 

further iteration. This step can also involve visualization of the extracted patterns and 

models or visualization of the data given the extracted models. 

Ninth is acting on the discovered knowledge: using the knowledge directly, incorporating 

the knowledge into another system for further action, or simply documenting it and 

reporting it to interested parties. This process also includes checking for and resolving 

potential conflicts with previously believed (or extracted) knowledge. 

The KDD process can involve significant iteration and can contain loops between any 

two steps. The basic flow of steps (although not the potential multitude of iterations and 

loops) is illustrated in figure 2.Most previous work on KDD has focused on step 7, the 
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data mining. However, the other steps are as important (and probably more so) for the 

successful application of KDD in practice. 

2.2.2 Data-Mining Methods 

The two high-level primary goals of data mining in practice tend to be prediction and 

description. As stated earlier, prediction involves using some variables or fields in the 

database to . predict unknown or future values of other variables of interest, and 

description focuses on finding human-interpretable patterns describing the data. Although 

the boundaries between prediction and description are not sharp (some of the predictive 

models can be descriptive, to the degree that they are understandable, and vice versa), the 

distinction is useful for understanding the overall discovery goal. The relative importance 

of prediction and description for particular data-mining applications can vary 

considerably. The goals of prediction and description can be achieved using a variety of 

particular data-mining methods which are listed below. 

1.Classification is learning a function that maps (classifies) a data item into one of 

several predefined classes Examples of classification methods used as part of knowledge 

discovery applications include the classifying of trends in financial. 

income 

Figure 3: A simple linear classification boundary for loan data set. 
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markets and the automated identification of objects of interest in large image databases. 

Figure 3 shows a simple partitioning of the loan data into two class regions; note that it is 

not possible to separate the classes perfectly using a linear decision boundary. The bank 

might want to use the classification regions to automatically decide whether future loan 

applicants will be given a loan or not. 

2.Regression is learning a function that maps a data item to a real-valued prediction 

variable. Regression applications are many, for example, predicting the amount of 

biomass present in a forest given remotely sensed microwave measurements, 

income 

Figure 4: A linear regression for the loan data set 

estimating the probability that a patient will survive given the results of a set of 

diagnostic tests, predicting consumer demand for a new product as a function of 

advertising expenditure, and predicting time series where the input variables can be time-

lagged versions of the prediction variable. 

3. Clustering is a common descriptive task, where one seeks to identify a finite set of 

categories or clusters to describe the data. The categories can be mutually exclusive and 

exhaustive or consist of a richer representation, such as hierarchical or overlapping 

categories. Examples of clustering applications in a knowledge discovery context include 

12 



discovering homogeneous subpopulations for consumers in marketing databases and 

identifying subcategories of spectra from infrared sky measurements. 

clusterl 

CN 
4- 

income 

Figure 5 : A simple clustering of load data set into 3 clusters. 

Figure 5 shows a possible clustering of the loan data set into three clusters; note that the 

clusters overlap, allowing data points to belong to more than one cluster. The original 

class labels have been replaced by a + to indicate that the class membership is no longer 

assumed known. Closely related to clustering is the task of probability density 

estimation, which consists of techniques for estimating from data the joint multivariate 

probability density function of all the variables or fields in the database 

4. Summarization involves methods for finding a compact description for a subset of 

data. A simple example would be tabulating the mean and standard deviations for all 

fields. More sophisticated methods involve the derivation of summary rules, multivariate 

visualization techniques, and the discovery of functional relationships between variables. 

Summarization techniques are often applied to interactive exploratory data analysis and 

automated report generation. Dependency modeling consists of finding a model that 

describes significant dependencies between variables. Dependency models exist at two 

levels: 

13 



(1) the structural level of the model specifies (often in graphic form) which variables are 

locally dependent on each other 

(2) the quantitative level of the model specifies the strengths of the dependencies using 

some numeric scale. 

For example, probabilistic dependency networks use conditional independence to specify 

the structural aspect of the model and probabilities or correlations to specify the 

strengths of the dependencies. Probabilistic dependency networks are increasingly 

finding applications in areas as diverse as the development of probabilistic medical 

expert systems from databases, information retrieval, and modeling of the human 

genome. Change and deviation detection focuses on discovering -the most significant 

changes in the data from previously measured or normative values. 

2.2.3 Temporal Data mining 

Temporal data mining [20] is' concerned with data mining of large sequential data sets. 

By sequential data, we mean data that is ordered with respect to some index. For 

example, time series constitute a popular class of sequential data, where records are 

indexed by time. Other examples of sequential data could be text, gene sequences, protein 

sequences, lists of moves in a chess game etc.. Here, although there is no notion of time as 

such, the ordering among the records is very important and is central to the data 

description/ modeling. 

2.3 What is Text Mining? 

Text Mining [1] is the discovery by computer of new, previously unknown information, 

by automatically extracting information from different written resources. A key element 

is the linking together of the extracted information together to form new facts or new 

hypotheses to be explored further by more conventional means of experimentation. 

Text mining is a variation on a field called data mining, that tries to find interesting 

patterns from large databases. 
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A typical example in data mining is using consumer purchasing patterns to predict which 

products to place close together on shelves, or to offer coupons for, and so on. For 

example, if you buy a flashlight, you are likely to buy batteries along with it. A related 

application is automatic detection of fraud, such as in credit card usage. Analysts look 

across huge numbers of credit card records to find deviations from normal spending 

patterns. A classic example is the use of a credit card to buy a small amount of gasoline 

followed by an overseas plane flight. The claim is that the first purchase tests the card to 

be sure it is active. 

The difference between regular data mining and text mining is that in text mining the 

patterns are extracted from natural language text rather than from structured databases of 

facts. Databases are designed for programs to process automatically; text is written for 

people to read. We do not have programs that can "read" text and will not have such for 

the foreseeable future. Many researchers think it will require a full simulation of how the 

mind works before we can write programs that read the way people do. 

Temporal Text Mining (TTM) 

Temporal Text Mining (TTM) is concerned with discovering temporal patterns in text 

information collected over time. Since most text information bears some time stamps, 

TTM has many applications in multiple domains, such as summarizing events in news 

articles and revealing research trends in scientific literature. 

2.4 Clustering 

2.4.1 Clustering [6, 21] is the classification of objects into different groups, or more 

precisely, the partitioning of a data set into subsets (clusters), so that the, data in each 

subset (ideally) share some common trait - often proximity according to some defined 

distance measure. A cluster is a collection of data objects that are similar to one another 

within the same cluster and are dissimilar to the objects in other.  clusters. 
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2.4.2 Distance Measure 

An important step in any clustering is to select a distance measure, which will determine 

how the similarity of two elements is calculated. This will influence the shape of the 

clusters, as some elements may be close to one another according to one distance and 

further away according to another. For example, in a 2-dimensional space, the distance 

between the point (x=1, y=0) and the origin (x=0, y=0) is always 1 according to the usual 

norms, but the distance between the point (x=1, y=1) and the origin can be 2.428 or 1 if 

you take respectively the 1-norm, 2-norm or infinity-norm distance. 

Common distance functions: 

• Euclidean distance (or the squared Euclidean distance). 

• Manhattan distance (also called taxicab norm or 1-norm) 

• maximum norm 

• Mahalanobis distance 

1. 	Euclidean Distance: In mathematics, the Euclidean distance or Squared• 

Euclidean distance is the "ordinary" distance between two points that one 

would measure with a ruler, which can be proven by repeated application of 

the Pythagorean theorem. Euclidean Distance is the most common use of 

distance. In most cases when people said about distance, they will refer to 

Euclidean distance. Euclidean distance or simply 'distance' examines the root 

of square differences between coordinates of a pair of objects. 

One-dimensional distance 

For two 1D points, P=(p,,) and Q=(q,,), the distance is computed as: 

(Px — q )2 = 'Px -4x~ 

The absolute value signs are used, since distance is normally considered to be an 
unsigned scalar value. 
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Two-dimensional distance 

For two 2D points, P=Q , py) and Q = (q,, , qy), the distance is computed as: 

V(Pz — q,,)2  (p —  q)2  

Alternatively, expressed in circular coordinates (also known as polar coordinates), using 
P = (r,, O,) and Q = (rz , ®2 ) the distance can be computed as: 

,Jr1 2  +r 2 — rr2  cos(e, — 02 ) 

N-dimensional Distance: 
The Euclidean distance between two points P = ( p1,p2,p3..........,pn)  and Q = 
(gl,q2,q3.........q„) , in Euclidean n-space , is defined as 

(p1  — q1)2 +(P2 —q2)2 +..........+(Pn — qn)2  = 	(p1 —q1 )2  

In text mining each document is represented in n-dimensional point and the Euclidean 

distance between the points will be measured by using the above formula. 

2. Manhattan distance (or taxicab distance): The taxicab distance between two points 

in a Euclidean space with fixed Cartesian coordinate system is the sum of the lengths of 

the projections of the line segment between the points onto the coordinate axes. For 

example, in the plane, the taxicab distance between the point P1  with coordinates (x1 , yi ) 

and the point P2  at (X2, Y2) is Jx1 - x2 + LY I - Y2. 

Taxicab distance depends on the rotation of the coordinate system, but does not depend 

on its reflection about a coordinate axis or its translation. 

3. Mahalanobis distance: Mahalanobis distance is a distance measure introduced by P. 

C. Mahalanobis in 1936. It is based on correlations between variables by which different 

patterns can be identified and analyzed. It is a useful way of determining similarity of an 

unknown sample set to a known one. It differs from Euclidean distance in that it takes 

into account the correlations of the data set and is scale-invariant, i.e. not dependent on 

the scale of measurements. 
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Formally, 	the Mahalanobis distance from 	a group of values 	with 	mean 

,U = Cut , p2..........,u, )T 	and covariance matrix I for the multivariate 	vector 

x = (xl , x2 , x3 ,.......xn  )T  is defined as : 

DM  (x) = (x — p)T  -' (x — p) 

2.4.3 Clustering Methods 

There exist a large number of clustering algorithms in the literature. The choice of 

clustering algorithm depends both on the type of data available and on the particular 

purpose and application. 

In general, major clustering methods can be classified into the following categories. 

1. Partitioning methods. 

2. hierarchical methods 

3. Density-based methods 

4. Grid-based methods 

5. Model-based methods. 

1. Partitioning Methods: Given a database of n objects or data tuples, a partitioning 

method constructs `K' partitions of the data , where each partition represents a cluster and 

K <= n. That is, it classifies the data into K groups , which together satisfy the following 

requirements: 

(1) Each group must contain at least one object 

(2) Each object must belong to exactly one group. 

Given K , the number of partitions to construct , a partitioning method creates an initial 

partitioning . It then uses an iterative relocation technique that attempts to improve the 

partitioning by moving the objects from one group to another. The general criterion of a 

good partitioning is that objects in the same cluster are "close" or related to each.other, 

whereas objects of different clusters are "far apart" or very different. Most applications 

adopt one of two popular heuristic methods: 



1 .K-means algorithm: where each cluster is represented by the mean value of the objects 

in the cluster. 

2. K-medoids algorithm: where each cluster is represented by one of the objects located 

near the center of the cluster. 

These heuristic methods work well for finding spherical-shaped clusters in small to 

medium-sized databases. To find clusters with complex shapes and for clustering very 

large data sets, partitioning-based methods need to be extended. 

2. Hierarchical methods: 

A hierarchical clustering method [15] works by grouping data objects into a tree of 

clusters. Hierarchical clustering methods can be further classified into agglomerative and 

divisive hierarchical clustering, depending on whether the hierarchical decomposition is 

formed in a bottom-up or to-down fashion. 

1. agglomerative hierarchical clustering: This bottom-up strategy starts by placing 

each object in its own cluster and then merges these atomic clusters into larger and larger 

clusters, until all of the objects are in a single cluster or until certain termination 

conditions are satisfied. Most hierarchical clustering methods belong to this category. 

They differ only in their definition of inter cluster similarity. A detailed description of 

algorithm can be found in [28, 29]. 

2.Divisive hierarchical clustering: This top-down strategy does the reverse of 

agglomerative hierarchical clustering by starting with all objects in one cluster. It 

subdivides the cluster into smaller and smaller pieces, until each object forms a cluster on 

its own or until it satisfies certain termination conditions, such as a desired number of 

clusters is obtained or the distance between the two closest clusters is above a certain 

threshold distance. Figure 2.1 shows the sequence of steps in both divisive and 

agglomerative hierarchical clustering. 
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Figure 2.1: Agglomerative and divisive hierarchical clustering on data objects {a,b,c,d,e} 

Hierarchical methods suffer from the fact that once a step (merge or split) is done , it can 

never be undone. This rigidity is useful in that it leads to smaller computation costs by 

not worrying about a combinatorial number of different choices 

Algorithm: 

Given a set of N items to be clustered, and an N x N distance (or similarity) matrix, the 

basic process of Johnson's (1967) hierarchical clustering is this: 

1. Start by assigning each item to its own cluster, so that if you have N items, you now have 

N clusters, each containing just one item. Let the distances (similarities) between the 

clusters equal the distances (similarities) between the items they contain. 

2. Find the closest (most similar) pair of clusters and merge them into a single cluster, so 

that now you have one less cluster. 

3. Compute distances ( similarities) between the new cluster and each of the old clusters. 

4. Repeat steps 2 and 3 until all items are clustered into a single cluster of size N. 

Step 3 can be done in different ways, which is what distinguishes single-link from 

complete-link and average-link clustering. In single-link clustering (also called the 
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connectedness or minimum method), we consider the distance between one cluster and 

another cluster to be equal to the shortest distance from any member of one cluster to any 

member of the other cluster. If the data consist of similarities, we consider the similarity 

between one cluster and another cluster to be equal to the greatest similarity from any 

member of one cluster to any member of the other cluster. In complete-link clustering 

(also called the diameter or maximum method), we consider the distance between one 

cluster and another cluster to be equal to the longest distance from any member of one 

cluster to any member of the other cluster. In average-link clustering, we consider the 

distance between one cluster and another cluster to be equal to the average distance from 

any member of one cluster to any member of the other cluster 

3. Density based methods: Most partitioning methods cluster objects based on the 

distance between objects. Such methods can find only spherical-shaped clusters and 

encounter difficulty at discovering clusters of arbitrary shapes. Other clustering methods 

have been developed based on the notions of density. Their general idea is to continue 

growing the given cluster as long as the density (number of objects or data points) in the 

neighborhood exceeds some threshold; that is, for each data point within a given cluster, 

The neighborhood of a given radius has to contain at least a minimum number of points. 

Such a method can be used to filter out noise (outliers) and discover clusters of arbitrary 

shape. To discover clusters with arbitrary shape, density —based clustering methods have 

been developed. These typically regard clusters as dense regions of objects in the data 

space that are separated by regions of low density (representing noise). DBSCAN and 

OPTICS are the two well known density based algorithms. Detailed discussion about 

these methods can be found in [23, 24] 

DBSCAN (Density based spatial clustering of applications with noise) [23] :is a density-

based clustering algorithm. The algorithm grows regions with sufficiently high density 

into clusters and discovers clusters of arbitrary shape in spatial data-bases with noise. It 

defines a cluster as a maximal set of density-connected points. 
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OPTICS (Ordering Points To Identify the Clustering Structure): Although DBSCAN 

can cluster objects given input parameters, it still leaves the user with the responsibility 

of selecting parameter values that will lead to the discovery of acceptable clusters. Such 

parameter settings are usually empirically set and difficult to determine, especially for 

real-world , high-dimensional data sets. Most algorithms are more sensitive to such 

parameter values. To help overcome this difficulty , a cluster analysis method called 

OPTICS was proposed. Rather than produce a data set clustering explicitly , OPTICS 

computes an augmented cluster ordering for automatic and interactive cluster analysis. 

This ordering represents the density-based clustering obtained from a wide range of 

parameter settings. 

4. Grid-based methods: Grid-based methods quantize the object space into a finite 

number of cells that form a grid structure. All of the clustering operations are performed 

on grid structure (i.e., on the quantized space). The main advantage of this approach is its 

fast processing time , which is typically independent of the number of data objects and 

dependent only on the number of cells in each dimension in the quantized space. STING 

— a typical grid-based clustering algorithm. 

5. Model-based methods: Model-based methods [14] hypothesize a model for each of 

the clusters and find the best fit of the data to the given model. A model-based algorithm 

may locate clusters by constructing a density function that reflects the spatial distribution 

of the data points. It also leads to a way of automatically determining the number of 

clusters based standard statistics , taking "noise" or outliers into account and thus 

yielding robust clustering methods. 
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Design and Implementation 	 CHAPTER 3 

3.1 Data set used 

Before presenting the methods addressing the three questions stated in the problem 

statement, the dataset (collection of text articles) we use must satisfy some of the 

properties like 

1. the text of the each documents is accessible, 

2. the documents have meaningful timestamps and these timestamps and authors 

names are accessible. 

Examples of such collections are email, proceedings of scientific conferences, 

scientific journals, news, and blogs. As a testbed, we chose a collection of scientific 

articles, in particular the articles published in the proceedings of the Neural 

Information Processing Systems (NIPS) conference between 1987 and 2000. The 

reason for choosing this data set is. First, we believe that scientific document 

collections fulfill the assumptions stated above. Second, for scientific articles, citation 

data is available and we can compare our methods against citation counts. . There are 

a total of 1955 documents. We use only the text (not the citation or bibliographic 

information) from these documents. As meta-data, we use only the time-stamps of the 

documents and the author names of each article. 

We have also used one more dataset . It consists of 357 news articles collected from 

various news sources like BBC, Times of India, and CNN. The data set consists of 

documents related to various topics like Microsoft news, Tsunami, Indian cricket, 

Bombay blasts and kargil war. In general the dependency between these news articles 

is very less when compared to the dependency between the NIPS documents. 

A well known method to represent the dataset is described below. 
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3.2 Vector representation of a document: The initial step of the before applying the 

proposed methodology is representation of a document and the data set. In particular, 

we convert the text documents to a standard TFIDF representation [ 17, 27] . In this 

representation, the features are words from the available text. After removing stop 

words and words that only occur once. To build a TFIDF vector for each document, 

we count the number of times term `t' appeared in the document. Then we multiply 

by the IDF weighting factor of n log(nt) , where n is the number of documents in the 

corpus and 'nt' is the number of documents that contain the term t;. To determine the 

similarity of two documents, we use the standard cosine similarity between the 

TFIDF vectors. 

3.3 Term weighting using TFIDF: 

Usually we want to say that some terms are more important than some other terms. We 

can express this by weighting terms of a vector. Very often, the standard TFIDF function 

is used: 

tfidf(t_k,d_j) _ #(t_k,d_j) * log(ITrl/#Tr(t_k)), 

in which 

#(t_k,d_j) denotes the number of times term t k occurs in document dj 

#Tr(t_k) denotes the number of documents in Tr in which t k occurs 

ITrj 
	

denotes the number of documents. 

For instance, in the Docl, the term 'application' occurs once, and in the collection it 

occurs 2 times (no.of documents 10): 

Tfidf (application,Doc1) = 1 * log(10 / 2) = log 5 — 0.70 

tfidf(current,Doc1) = 1 * log(10 / 7) =,log 1.4 - 0.15 

Now we have features (words) and their weights. We construct a m * n matrix where `m' 

is the number of documents and `n' is the total (sum of non repeated features in all the 
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documents) number of features. An element A in matrix is the tfidf value of feature `j' 

in document `i'. Aij = 0 if the document i doesn't contain the term T. An example vector 

representation of dataset is shown in below figure3. 

Figure 3: An example vector representation of data set: 
0,0,0,0,0,0,0,0,0,4.49,4.49,0,0,0,0,4.49,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 

1,0,0,0,0,0,0,0,0,0,4.49,0,0,0,0,7.61,0,0,0,0,0,0,0,0,0,0,0,0,0,0,10.2, 

2,0,0,0,0,0,0,0,0,7.61,4.49,0,0,0,4.49,7.61,0,0,0,0,0,0,0,0,0,0,0,0,0,0 

3,0,0,0,0,0,0,0,0,0,4.49,0,0,0,0,4.49,0,0,0,0,0,0,0,0,0,4.49,0,0,4.49,0 

4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4.4 

5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4 . 4 

6,0,0,0,0,0,0,0,0,0,10.2,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 

7, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4.49, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4.49, 0, 0 

8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4.49, 0, 0, 0, 0, 0, 0, 0, 4.49, 0, 0, 0, 0, 0, 0, 0, 0, 0 

9,0,0,0,0,7.61,7.61,0,0,0,0,0,0,0,0,10.2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 

10, 4.49, 7.61, 0, 0, 0, 0, 0, 0, 0, 4.49, 0, 0, 0, 0, 10.2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 

11, 4.49, 4.49, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 25.08, 4.49, 4.49, 0, 4.49, 0, 0, 0, 0, 0, 0 

12,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4.49,4.49,0,0,4.49,0,0 

1.3, 0, 0, 0, 0, 4.49, 4.49, 7.61, 0, 0, 0, 0, 0, 0, 0, 7.61, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 

14,0,0,0,0,4.49,7.61,4.49,0,0,0,0,0,0,0,10.2,4.49,0,0,4.49,0,0,0,0,10.2 

,0,0,0,.10.2,0,10.2,0,0,7.61,0,7.61, 4.49,0,4.49,0,0,0,14.45,0,0,0,0,7.61 

15, 4.49, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,.0, 0, 0, 4.49, 0, 0, 

16, 10.2, 0, 0, 0, 0, 0, 0, 0, 0, 4.49, 0, 0, 0, 0, 4.49, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1 

17, 0, 4.49, 0, 0, 0, 0, 7.61, 0, 0, 4.49, 0, 0, 0, 0, 7.61, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 

18, 0, 4.49, 0, 0, 0, 0, 0, 0, 4 .49, 4.49, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4.49, 0, 0, 0, 0, 0, 

The above matrix is of 18 * 30 size, that means it represents 18 documents and total 

number of features 30 in one matrix. Each row represents a document and each column 

represents a one of the features. A zero in matrix represents the document doesn't contain 

the feature in that particular column. The first column in the matrix represents document 

number. 

Sections 3.4 and 3.5 and 3.6 discusses the proposed methodologies to address the three 

questions stated in problem statement in section 1.4. 
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3.4 How do key topics change over time? 

The first problem we consider is that identifying and visualizing the key topics of a 

document collection i.e we are trying to discover all the topics in our dataset, and how the 

popularity of these topics develops over time i.e if a train accident is happened today then 

the popularity of this topic is more today, there is no popularity for this topic yesterday 

and the popularity of this topic decreases when time goes on.. 

3.4.1. Method 

Our method towards solving the first problem proceeds in three steps. 

Step1: In the first step, we determine the key topics in the document collection via 

clustering. Each cluster represents a key topic. 

Step2: In the second step, we describe the topics which are identified in step 1. 

Step3: In the final step, we visualize the temporal behavior of topics as a flow through 

time indicating increasing or decreasing popularity. 

As the clustering algorithm in the first step we use one of the well known portioning 

methods, the k-means clustering algorithm 

3.4.2 K-means clustering Algorithm: 

The k-means algorithm [7, 8, 10, 16, 25] is an algorithm to cluster objects based on 

attributes into k partitions/clusters. It assumes that the object attributes form a vector 

space. The objective it tries to achieve is to minimize total intra-cluster mean, or, the 

squared error function 

k 	 2 

V = 	YIJL~ -~GI~I 
1=1 

Where there are k clusters Si, i=1,2,3,----k. and 1u, is the mean point or centroid of all 

points xj c Si. 

The algorithm starts by partitioning the input points into k initial sets, either at random or 

using some heuristic data. It then calculates the mean point, or centroid, of each set. It 

constructs a new partition by associating each point with the closest centroid. Then the 
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centroids are recalculated for the new clusters, and algorithm repeated by alternate 

application of these two steps until convergence, which is obtained when the points no 

longer switch clusters (or alternatively centroids are no longer changed). The algorithm 

has remained extremely popular because it converges extremely quickly in practice. In 

fact, many have observed that the number of iterations is typically much less than the 

number of points. 

Algorithm: 

For given N objects (text documents in our case) the K-means algorithm works as 

follows: 

Step 1. Begin with a decision on the value of k = number of clusters (N >= k) 

Step 2. Put any initial partition that classifies the data into k clusters. You may assign the 

training samples randomly, or systematically as the following: 

Take the first k training sample as single-element clusters 

1.Assign each of the remaining (N-k) training sample to the cluster with the nearest 

centroid. 

2. After each assignment, recomputed the centroid of the gaining cluster. 

Step 3 . Take each sample in sequence and compute its distance from the centroid of each 

of the clusters. If a sample is not currently in the cluster with the closest centroid, switch 

this sample to that cluster and update the centroid of the cluster gaining the new sample 

and the cluster losing the sample. 

Step 4 . Repeat step 3 until convergence is achieved, that is until a pass through the 

training sample causes no new assignments. 

If the number of data is less than the number of cluster then we assign each data as the 

centroid of the cluster. Each centroid will have a cluster number. If the number of data is 

bigger than the number of cluster, for each data, we calculate the distance to all centroid 

and get the minimum distance. This data is said belong to the cluster that has minimum 

distance from this data. 
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Since we are not sure about the location of the centroid, we need to adjust the centroid 

location based on the current updated data. Then we assign all the data to this new 

centroid. This process is repeated until no data is moving to another cluster anymore. 

Mathematically this loop can be proved to be convergent. The convergence will always 

occur if the following condition satisfied: 

1.Each switch in step 2 the sum of distances from each training sample to that training 

sample's group centroid is decreased. 

2.There are only finitely many partitions of the training examples into k clusters. 

Now, we have K clusters each cluster representing a topic, i.e there are K topics in our 

data set. Now we know there are K topics in our dataset but what are those topics, So, our 

next challenge is how to describe these clusters. To describe each cluster's topic, we 

extract the five words with the highest weights in the cluster's centroid document. These 

five words are the most important terms in defining the topic which the cluster is 

representing. The number five is somewhat arbitrary, but was chosen because we found 

that five words are sufficient to convey a good sense of the cluster's content. 

Finally, we need to plot a graph which shows how the topic popularity varies over time. 

For that on x-axis we have taken time and have divided that axis into equal time intervals. 

For each time interval, we compute the number of documents that fall into each cluster in 

that time interval and plot a graph for each cluster. For example if our data set contains 

documents having timestamps in the range jan-2000 to dec-2000 then our x-axis id 

divided into 12 equal intervals each interval represents a month in year 2000. 

Now, all we have to do is for each cluster draw a curve such that each point on that curve 

is (x,y), where x-represents the month in year 2000 and y is the total number of 

documents in that cluster published in that month , i.e a point on a cluster curve (2,15) 

conveys the information that this topic has 15 documents in feb-2000. 
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3.2 Which are the most influential documents? 

After visualizing clusters and determining how the topics developed over time, there is 

need to identify the most influential documents. Unlike traditional methods we used only 

text of the document to find the influential documents. Our goal is to provide a general 

solution that will work for any text document. 

Method 

Before presenting the method let us define what the word "influence" means. We define 

the impact/influence of a document as the amount of followup work it generates. If there 

are two documents in a dataset which are sharing many words/features (i.e using similar 

vocabulary) and the documentl's publication date is earlier than document2 then we can 

say that the document1 influenced/leads document2 and document2 is depended/followed 

on document1. 

The general idea is illustrated in Figure 4. In this figure, the x-axis represents time and 

the y-axis documents. The circles in the graph represent documents, where the open 

circles are of one topic and the black dots are of another topic. The open circles (and 

black dots) towards the left of their respective clusters are leaders because they are 

published earlier than the documents which shares the same vocabulary. On the other 

hand, the circles (and dots) towards the right are followers because documents with 

similar content precede these documents. 

I 
time 

Figure 4 Which are the most influential documents 
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We propose a measure named lead/lag index to measure whether a document is more of a 

leader or more of a follower based on the text content or features they are sharing and 

comparing their timestamps. We assume that leaders have many papers following them, 

and vice versa. 

More formally, the index is defined as follows. For each document d, we find the k 

nearest neighbors knn(d) in terms of the Euclidean distance between TFIDF vectors. We 

then count the number of neighbors that are published later than d 

klater = I{d'I (d' c knn(d)) A (time(dl) > time(d))}~ 

and the number of papers that precede the paper 

kearlier = I { d' I (d' e knn(d)) ^ (time(d') < time(d)) } I . 

For a document klater measure will be the number of documents that are nearer to that 

document and having the timestamp more than this document. By using the distance 

measures discussed in section 2.3.2 we can calculate the distance between two 

documents. For a document `d' , all we have to do is find the first `k' nearest documents 

to that document and find how many documents are published later than this document, 

and how many documents are published earlier than this document. The number of 

documents published latter will become klater and the number of documents published 

earlier will become kearlier. We have to compute the klater and kearlier measures to all 

the documents in the dataset. By comparing these two numbers, it is possible to 

determine the whether the document is more of a leader or follower. If the klater value is 

more than kearlier then we can say that the document is more of a leader than follower. 

The document which is having the highest klater value is proposing new ideas. But by 

seeing only the klater value we can't say that the document is introducing new ideas, 

because for that document if the kearlier measure is almost equal to the klater then this 

indicates that the document has taken many ideas from earlier documents so our measure 

for calculating the influence of the document must take both klater and kearlier into 



account. We are proposing one such measure called `raw lead/lag index of a document d 

is computed by subtracting the number klater of papers following the current paper in 

time from the number kearlier of papers preceding the current paper in time. 

Id  raw =  klater -- kearlier 

However, the index is strongly affected by edge effects. For example, kearlier is 

guaranteed to be zero for documents from the first timestamp. To avoid such biases, we 

scale each year's documents by normalizing [30] it across all papers from the same time 

stamp. In particular, we subtract the average of the raw lead/lag indices for a year from 

each raw lead/lag index in that year. 

d 	1 	d 	jdi  : time(di ) = time(do  
I scaled = — I raw — 	 di 

k 	I {d1 :time(d,)=time(d)} 	raw 

The resulting scaled lead/lag index corrects for such edge effects. The higher the scaled 

lead/lag index, the more influential the paper. Since the scaled lead/lag index is also 

normalized with respective to k, the scaled lead/lag index scores typically fall in the 

interval from -1 to +1, with extremely strong papers receiving scores slightly above +1 

and extremely lagging papers receiving scores slightly below -1. 
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3.3. Who are the most influential authors? 

Since papers do not write themselves, once we can determine the most leading 

documents, the next logical step is to ask who wrote them. Given a collection of 

documents, we would like to answer the questions of which authors produce the most 

original work, which authors are most influential in spreading their ideas. 

Method 

The document lead/lag index already provides a method for determining the influence of 

a document. To identify the most influential authors in the document collection, we 

can aggregate the document lead/lag information by author. More specifically, consider 

an author with n papers receiving scaled lead/lag scores Ldl  scaled, ---------,L  scaled• 

One simple method to find rank of the author is calculating the average of lead/lag 

scores. For more accurate results we are using the formula proposed in [30].. 

Rank= m+2 * 
n 

Where `m' is the mean calculated for the lead/lag scores the author received for his 

articles , v is the variance , and n is the number of documents. 
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Results and Discussions 	 CHAPTER 4 

4.1 How do the topics change over time:( Results) 

We applied our proposed method on two data sets news articles, and NIPS data set. Our 

data sett contains 357 news articles when each document relates to one of five different 

topics, Microsoft news, Bombay blasts, tsunami, kargil war and Indian cricket. Dataset2 

contains 1955 research papers. In particular we have used K-means clustering algorithm 

for clustering the documents. Figure 4.1 shows the results of the method as applied to the 

dataset 1 for k=3. 

Figure 4.1: k-means clusters(k=3) for datasetl 

K-Means CLusters (K=3) 
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Figure 4.2: description of each cluster 

Cluster descriptions: 

Cluster 0: week Microsoft 	software 	chief 	news 

Cluster 1: week 	earlier 	coach 	news 	team 

Cluster 2: world disaster 	nagapatnam villages research 
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Figure 4.2 shows the description of each cluster after extracting five high weighted 

features from the centre document of each cluster. Our method of extracting keywords 

from the cluster centroids works reasonably well — many of the words are highly 

informative for the cluster content. The top five words shown give a reasonable 

description of the main topics in the given dataset 

Total number of documents in clusterO are 74 , out of those 73 are belongs to the topic 

Microsoft and remaining document belongs to kargil war topic. The extracted five words 

(week, Microsoft, software, chief, news) are good enough to describe the topic related to 

Microsoft. Total number of documents in clusterl are 66 , out of those 65 are belongs to 

the topic Indian cricket and remaining document belongs to Bombay blasts topic. The 

extracted five words (week, earlier, coach, news , team) are good enough to describe the 

topic related to Indian cricket. Most of the documents in this cluster discusses about the 

coach selection of Indian cricket team, So here the two terms `coach' and `team' are good 

enough to describe the topic. Total number of documents in cluster2 are 280 , out of 

those 50 documents belongs to the topic kargil war and 6 documents to Indian cricket 

and 90 belongs to tsunami and 73 to Bombay blasts topic. The extracted five words 

(world, disaster ,nagapatnam , villages , research) are good enough to describe the topic 

related to tsunami. 

Figure 4.3 and 4.4 shows the resulted graph ' and cluster descriptions for k=4. Total 

number of documents in clusterO are 65 , all of them belongs to the topic Microsoft topic. 

The difference between clusterO for k=3 and for k=4 is , number of documents related to 

the topic changed so as the center of the cluster , and the five words which describe the 

cluster. The extracted five words (week, Microsoft, software, chief, news) are good 

enough to describe the topic related to Microsoft. The number of documents in cluster]. 

are 43 , all the documents belongs to the topic Indian cricket . Even though the number 

of documents in this cluster have been reduced from 63 to 43 by increasing the k value , 

the center of the cluster so as the description of the has not changed. The extracted 
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Figure 4.3 shows the results of the method as applied to the datasetl for k=4 

K-Means Clustering (k=4) 
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Figure 4.4: description of each cluster (for k=4) 

Cluster descriptions: 

Cluster 0: based Microsoft days data software 
Cluster 1: week earlier coach news team 
Cluster 2: dead villages nagapatnam similar research 
Cluster 3: chief district city dead blasts 

five words (week, earlier, coach , news , team) are good enough to describe the topic 

related to Indian cricket. Total number of clusters in cluster2 are 184 , out of those 50 

documents belongs to the topic kargil war and 17 documents to Indian cricket and 90 

belongs to tsunami and 27 to Bombay blasts topic. The extracted five words (world, 

disaster ,nagapatnam , villages , research) are good enough to describe the topic related to 

tsunami. 

Figure 4.5 and 4.6 shows the results of the method as applied to the datasetl for k=5 

35 



Total number of documents in clusterO are 65 , all of them belongs to the topic Microsoft 

topic. The extracted five words (week, Microsoft, software, chief, news) are good enough 

to describe the topic related to Microsoft. The number of documents in clusterI are 43, 

all the documents belongs to the topic Indian cricket .. The extracted five words (week, 

earlier, coach, news, team) are good enough to describe the topic related to Indian cricket. 

Total number of clusters in cluster2 are 100 , out of those 51 documents belongs 

Figure 4.5 shows the results of the method as applied to the datasetl for k=5 

K-Means Clustering (K=5) 
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Figure 4.6 : cluster descriptions of clusters in figure 4.5 

Cluster Descriptions: 

Cluster 0: based Microsoft days data software 
Cluster 1: week earlier coach news team 
Cluster 2: dead die war India kargil 
Cluster 3: chief district city dead blasts 
Cluster 4: world aid million villages coastal 

to the topic kargil war and 28 documents to Indian cricket and 20 belongs to tsunami and 

II documents belongs to Bombay blasts topic. The extracted five words (dead, die 
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war, India, kargil) are good enough to describe the topic related to kargil war. Till now 

we haven't got a document belongs to kargil war topic in the center of any cluster, but in 

cluster 3 ( for k=5) the extracted 5 words are form the document which belongs to kargil 

war. Total number of documents in cluster4 are 74 , all of them belongs to tsunami topic 

The extracted 5 words (world , aid , million, , villages, coastal) are good enough to 

explain the cluster topic tsunami. 

Now, we have got all the topics as clusters , For k=3 and k=4 we are not able to 

recognize all the topics in the given dataset. But for k=5 we found all the topics .So, our 

proposed method for describing the clusters is giving good results if the documents are 

well clustered. 

As explained in section 3, our dataset2 contains 1995 documents from NIPS conference . 

Figure 4.7 shows resultant graph after application of our method to find the trends in 

topics on dataset2. Figure 4.8 and shows the cluster descriptions for k=7. Figure 4.9 

shows the tabular description of total number of documents in each year, for each cluster. 

Figure 4.7 shows how our method finds the trends in the topics detected by using the 

clusters on NIPS data set. 

K-means clusters (k=7) 
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Figure 4.8 : cluster descriptions of figure 4.7. 
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Cluster descriptions: 

Cluster 0: units , node, training, nodes, tree 
Cluster 1: Spike cells neurons cell firing 
Cluster 2: Image images object objects recognition 
Cluster 3: policy reinforcement state controller action 
Cluster 4: bayesian, mixture, posterior, likelihood, em 
Cluster 5: speech, word, hmm, recognition, mlp 
Cluster 6:kernel, margin, svm, vc, xi 

Figure 4.9. Figure shows number of documents published in each cluster 

Year/cluster 1987 1989 1990 1992 1993 1995 1997 1999 	2' 
Cluster 0 1 7 9 14 9 11 18 17 
Cluster 1 15 20 24 29 37 22 19 8 
Cluster 2 18 28 19 31 49 41 19 29 
Cluster 3 45 67 34 48 46 35 61 32 
Cluster 4 11 21 26 . 38 47 46 90 98 
Cluster 5 69 54 67 54 38 59 34 74 
Cluster 6 35 49 64 70 64 89 112 132 

After having a glance at a graph shown above one can easily find the trends in given 

dataset. The cluster4 and cluster6 are having 11 and 35 research papers in year 1987 but 

in year 2000 they are having 123 and 156 documents respectively, that clearly shows that 

cluster4 and cluster 6 are the active research areas in year 2000.. The clusterl and 

cluster2 are started slowly in year 1987 but almost disappeared in year 2000. 

Overall, we believe that our proposed method for finding trends and visualization and 

describing the clusters is producing good results. 



4.2 which are the most influential documents? 

We computed the id à V  and the scaled lead lag index for our two datasets. The value of k 

is the only parameter that needs to be selected. With a small k, only the closest 

documents to a particular document are considered. If a paper is very influential , then 

other documents influenced by that paper are missed in this analysis. On the other end of 

the spectrum, if k is too large , documents that are only marginally affected by a 

particular paper are included in the ranking. This can lead to noisier results. We run the 

experiments for different values of k. 

Figure 4.10. Based on the lead/lag index , below is a list of the most influential NIPS 

papers when considering the paper's K=14 nearest neighbors. 

Rank Year Citations Paper Title 
1.156 1997 191 "improving the accuracy and speed of 

Support vector machines" 
1.064 1999 44 "Using analytic qp and sparseness to speed 

training of support vector machines" 
0.997 1999 34 "approximate learning of dynamic models" 

0.975 1997 371 "support vector method for function 
approximation , regression estimation, and 

signal processing. 
0.953 1998 32 "training methods for adaptive boosting of 

neural networks" 
0.950 1997 4 "modeling complex cells in an awake macaque 

during natural image viewing" 
0.945 1996 27 "em optimization of latent-variable density 

models" 
0.904 1996 756 "a new learning algorithm for blind signal 

separation" 
0.896 1996 20 "fast learning by bounding likelihoods in 

sigmoid type belief networks" 
0.876 1999 73 "dynamically adapting kernels in support vector 

machines" 

Different values of k agreed more or less on which documents are most influential, with 

only small changes in the ordering among the top scoring papers. This indicates that the 



method is robust with respect to the choice of k, and that most reasonable values of k 

produce comparable results. 

Figure 4.11 Based on the lead/lag index, below is a list of the most influential NIPS 

papers when considering the paper's K=24nearest neighbors. 

Rank Year Citations Paper Title 
1.324 1996 756 "a new learning algorithm for blind signal 

separation" 
1.246 1997 371 "support vector method for function 

approximation, regression estimation, and 
signal processing. 

0.986 1997 191 "improving the accuracy and speed of supp 
vector machines" 

0.975 1992 293 "Second order derivatives for network 
pruning" 

0.953 '1998 32 "training methods for adaptive boosting of 
neural networks" 

0.948 1999 73 "dynamically adapting kernels in support 
vector machines" 

0.945 1992 56 "Induction of Multi scale Temporal Structure" 
0.943 1999 44 "Using analytic qp and sparseness to speed 

training of support vector machines" 
0.896 1996 20 "fast learning by bounding likelihoods in 

sigmoid type belief networks" 
0.876 1997 4 "modeling complex cells in an awake 

macaque during natural image viewing" 

The results from our method are different from what citation analysis would produce. The 

number of citations of each paper according to Google Scholar is given in the third 

column of Figure 4.10. Our method reflects the importance of ideas presented in the 

paper, not how often this paper was cited, that too for a document we are calculating the 

idscaled lead/lag index with in the dataset given , but the citation information takes all 

the papers into account. These results validate our assumption that measuring textual 

similarity provides an adequate method for determining which papers have influence on 

later papers in the document collection.. 
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Figure 4.12 Based on the lead/lag index , below is a list of the most influential NIPS 

papers when considering the paper's K=5 nearest neighbors on "Microsoft " cluster. 

Rank Publication date Title of article 

0.96 12-01-05 Microsoft Releases 3 New 
Windows Security Patches 

0.93 17-12-04 Microsoft says IE updates 
possible 

0.91 21-12-04 Microsoft to step up SP2 
downloads 

0.533333333 07-02-05 Microsoft pitches new Visual 
Studio tools 

0.4332233 02-09-05 Microsoft launches iTunes 

rival 

As described in chapter 3 our dataset2 contains 74documents related microsoft news, 

figure 5 shows the resulted ranks , in addition to their publication dates and titles of 

those articles after applying our methodology to find the influential documents in given 

collection. As this data doesn't contain any citation data , the citation data column is 

omitted in this table. 

We need to experiment our data for different k values and analyze the results. If a 

document is ranked one for one k value, we can't say that this document is the most 

influenced document , because the same document may get different ranks for different k 

values. However our method is identifying influential documents correctly with slight 

change in the ordering. 
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4.3 Who are the most influential authors? 

For different `k' values , we computed the authors lead/lag index for all authors in the 

two data sets. Figure 4.13 and 4.14 lists the authors ranks for NIPS dataset , and figure 

4.15 lists the authors ranks for one of the news article clusters (Microsoft) 

We computed the author lead/lag index for all authors in the NIPS collection. Figure 4.13 

has the results for k = 14. Overall, we find that this ranking for the most part identifies a 

document collection's key players. From bibliometrics, we know that typically the best 

predictor of an author's importance is the number of citations that author receives. 

Therefore, we compare our ranks of the authors to the number of citations an author has 

received on Google Scholar. (We accumulated the citations of each document written by 

the author) . Additionally, we present number of papers the author has published in NIPS. 

Figure 4.13: The below list contains the NIPS authors with the highest ranking in the 

author lead/lag index. From considering each paper's K=14 nearest neighbors for the 

document lead lag index and then aggregating the document lead/lad index by author. 

Author Name(s) Rank No.of papers Citations 
Jordan, Michael 0.035 27 1334 

Smola, Alex 0.004 13 982 
Scholkopf -0.004 10 389 

Atkeson, Christopher g. -0.022 10 762 
Williams, Christopher k.i. -0.067 16 1245 

Sejnowski, Terrence j. -0.069 46 2768 
Hinton, Geofferey e. -0.075 27 1875 

Jaakkolla, Tommi -0.091 10 1135 
Miller, Kenneth d. -0.106 11 678 
Bengio, Yoshua -0.112 21 345 
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Figure 4.14: The below list contains the NIPS authors with the highest ranking in the 

author lead/lag index. From considering each paper's K=24 nearest neighbors for the 

document lead lag index and then aggregating the document lead/lad index by author. 

Author Name(s) Rank No.of papers Citations 
Sejnowski, Terrence j. 0.046 46 2768 

Jordan, Michael 0.007 27 1334 
Jaakkolla, Tommi 0.004 10 1135 

Smola, Alex -0.002 13 982 
Hinton, Geofferey e. -0.085 27 1875 

Williams, Christopher k.i. -0.076 16 1245 
Saad, David -0.075 11 765 

Miller, Kenneth d. -0:109 11 678 
Bengio, Yoshua -0.116 21 345 
Tresp, Volker -0.122 15 672 

More over our method to find the influential authors is producing good results with slight 

changes in the order. By using this method we can confidently say that these are the top 

`n' authors , or this author is one of the top `n' authors, but we can't say the exact 

position of author. That means we can't say "Jordan" is the most influenced author by 

seeing the figure 4.13 or we can't say "Sejnowski" is the most influenced author by 

seeing the figure 4.14, but we can say both these authors are in top 6. 

Figure 4.15: The below list contains the datasetl (`Microsoft `cluster) authors with the 

highest ranking in the author lead/lag index. From considering each paper's K=5 nearest 

neighbors 

Author Name Rank (Based on 
Lead/Lag index) 

Number of Papers 

Dawn kawamoto -0.023284 9 
David Becker -0.037231 5 
Alone Gibert 0.021000 8 
Martin Lamonica -0.058967 5 
Elinore Mills -0.094680 6 
Mike Ricciuti -0.271440 7 
Ian Fried -0.001457 15 
•Paul Roberts -0.156860 5 
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Conclusions and Feature work 	 CHAPTER 4 

Conclusions: 

We proposed the problem of discovering evolutionary theme patterns in given dataset for 

which there is no meaningful citation data available. As proof of concept, we propose 

simple methods that show that this problem is feasible and interesting. Unlike existing 

approaches from bibliometrics, the new methods are applicable even if no citation or 

hyperlink data is available. Using the proceedings of the NIPS conference as a testbed, 

the obtained results were found to give an accurate summary of the popularity of topics 

over time. To identify the papers with largest influence on topic development, we defined 

a document lead/lag index that is an effective indicator of the influence of a document. 

Finally, we extended the influence analysis to authors by aggregating document lead/lag 

indices. These lead/lag scores are the first measures able to identify key authors . 

Future work: 
We believe that discovering and visualizing evolutionary theme patterns is an exciting 

area that deserves future research. The methods presented in this thesis give evidence 

that such analyses are possible even without citation information. However, more 

principled approaches are likely to be even more accurate and could provide more 

meaningful insights. 



REFERENCES 

[1] Sophia Ananiadou, Douglas B. Kell and Jun-ichi Tsujii "Text mining and its potential 

applications in systems biology" , International conference on Trends in Biotechnology, 

Vol 24, Issue 12, pp 571-579, Dec 2006. 

[2] Qiaozhu Mei, Chao Liu, Hang Su, ChengXiang Zhai "Data mining: A probabilistic 

approach to spatiotemporal theme pattern mining on weblogs", Proceedings of the 15th 

international conference on World Wide Web WWW '06, Pages 17-26, may 2006. 

[3] R. Guha, D. Sivakumar, R. Kumar, and R. Sundaram. "Unweaving a Web of 

Documents.", In Proceedings of KDD Chicago, -2005, Pages 112-123, Aug 2005. 

[4] Jiawei Han, Micheline Kamber , " Data Mining Concepts and Techniques" , Text 

book, Elsevier Publisheers-2005. 

[5] Qiaozhu Mei, ChengXiang Zhai , " Discovering evolutionary theme patterns from 

text: an exploration of temporal text mining" ,Proceeding of the eleventh ACM SIGKDD 

Pages 356-365 ,August 2005 

[6] Hsi-Cheng Chang; Chiun-Chieh Hsu , "Using topic keyword clusters for automatic 

document clustering"; Third international conference on information technology and 

application, Volume 1, Page(s):419 — 424 , July 2005 . 

[7]Min-Ling Zhang; Zhi-Hua Zhou, "A k-nearest neighbor based algorithm for multi-

label classification", IEEE International Conference on Granular Computing, 2005, vol 2 

Pages 25-28, Ju12005. 



[8] Christian Bohm and Florian Krebs , "The k-Nearest Neighbour Join: Turbo Charging 

the KDD Process ", journal of Knowledge and Information Systems, volume 6 ,pp 101-

119, November 2004 

[9] F. B. Viegas, M. Wattenberg, and K. Dave. "Studying Cooperation and Conflict 

between Authors with history flow Visualizations". In Proceedings of CHI-2004, Vienna, 

Austria, Pages 67-76, April 2004.. 

[10] Carlos Ordonez, "Clustering binary data streams with K-means", Proceedings of 

ACM SIGMOD workshop, vol 3 ,Pages 12-19, june 2003. 

[11] A. Kontostathis, L. Galitsky, W. M. Pottenger, S. Roy, and D. J. Phelps. "A survey 

of emerging trend detection in textual data mining". Proceedings of KDD , vol 4 ,pages 

185-224, may 2003. 

[12] Brachman, R., and Anand, T, „The Process of Knowledge Discovery in Databases: 

A Human-Centered Approach" , Book Chapter, AAAI Press-2003. 

[13] S. Roy, D. Gevry, and W. M. Pottenger. "Methodologies for trend detection in 

textual data mining". In the Textmine '02 Workshop, Second SIAM International 

Conference on Data Mining, Pages 85-94. Jun 2002 

[14]C Fraley, AE Raftery , "Model-Based Clustering, Discriminant Analysis, and Density 

Estimation" , Journal of the American Statistical Association, Vol 5, Pages 435-448 Aug-

2002. 

[15] J. Kleinberg. "Bursty and Hierarchical Structure in Streams". In Proceedings of 

KDD-Pages 345-350, canada -2002. 



[16] Soucy P.; Mineau G.W, "A simple KNN algorithm for text categorization", 

Proceedings IEEE International Conference on Data Mining, 2001. Pages 647-652, Dec 

2001. 

[17] D Hiemstra , "A probabilistic justification for using tfx idf term weighting in 

information retrieval" , International Journal on Digital. Libraries, 2000 — Springer, 

Volume 3, Pages131-139 , August, 2000 

[18] Brun, A.; Smaili, K.; Haton , "Experiment analysis in newspaper topic detection.", 

Proceedings. Seventh International Symposium on String Processing and Information 

Retrieval, Page(s):55 — 64 , April 2000. 

[ 19] A. Popescul, G. W. Flake, S. Lawrence, L. H. Ungar, and C. L. Giles. " Clustering 

and Identifying Temporal Trends in Document Databases". In IEEE Advances in Digital 

Libraries ADL-2000, pages 173-182, 2000. 

[20] M. A. Hearst. "Untangling text data mining". In Proceedings of the 37th conference 

on Association for Computational Linguistics (ACL 1999), pages 3-10, 1999. 

[21 ] P. Bradley, U. Fayyad, and C. Reina. , "Scaling clustering algorithms to large 

databases". In ACM KDD Conference, 1998. 

[22] C Fraley, C. Reina , K.; Haton, "Algorithms for model-based Gaussian hierarchical 

clustering" , SIAM Journal on Scientific Computing, vol-4 , Pages 145-156, April -1998 

[23]J Sander, M Ester, HP Kriegel, X Xu , "Density-Based Clustering in Spatial 

Databases: The Algorithm GDBSCAN and Its Applications", Proceedings of Data 

Mining and Knowledge Discovery, Pages- 87-95, 1998 — Springer. 

a 



[24]M Ester, HP Kriegel, J Sander, "A Density-Based Algorithm for Discovering 

Clusters in Large Spatial Databases with Noise ", Proceedings of 2nd International 

Conference . on Knowledge Discovery and Data Mining, Pages 346-357, May -1996. 

[25] Chinrungrueng, C.; Sequin , "Optimal adaptive k-means algorithm with dynamic 

adjustment of learning rate."; IEEE transactions on neural networks, Volume 6, Issue 1, 

Page(s):157 —169, Jan. 1995. 

[26] R. Feldman and I. Dagan.," Knowledge discovery in textual databases (kdt)".. In 

proceedings of KDD, pages 112-117, 1995. 

[27] G. Salton and C. Buckley. "Weighting Approaches in Automatic Text Retrieval." 

International conference on Information Processing and Management, Pages :513-523, 

1988. 

[28] wh.Day, H.E. delsbrunner , "Efficient algorithms for agglomerative hierarchical 

clustering methods", Journal of Classification, Springer, vol 3, Pages 56-64, july 

1984 

[29] A Griffiths, I.. Dagan , "Hierarchic Agglomerative Clustering Methods for 

Automatic Document Classification", Journal of Documentation, Vol 31, Pages 155-

169, June 1984. 

[30] http://www. Ksagresearch.com/pdf_files/mapcalc%2Otraining2 .pdf 



Source Code Listing 

If finds all the features in the given dataset. 
// All the text file should be in the folder "C;\Input" 

import java. io. *; 
import java. io. File; 
import java. util. StringTokenizer; 
import Java. util.*; 

class tokenize{ 

public static void main(String args[]) { 
try{ 

Hashtable words=new Hashtable(); 
Object frequency; 

int i=0,f=0; 
String str; 
String dirname="C:\\Input", 

FileWriter fout = new FileWriter("C:\\features.txt"). 

File dir= new File(dirname), 	// dir working 
if(dir. isDirectory()){ 
String s[]=dir.list(); 
for(int fi=0;fi<s.length;fi++){ 
File file=new File(dirname+"/"+s[fi]); 

if(!file.isDirectory()){ 	// file operations 
FileReader fin = new FileReader(file.getAbsolutePathO); 
BufferedReader bin=new BufferedReader(fin); 

StringTokenizer st, 
while(( str=bin.readLine())!=null) { 
str= str. toLowerCase(); 

st=new StringTokenizer(str,"_ @$%!#&*+,O[]\"\'_ 
while(st.hasMoreTokens()) { 
str=st. nextTokenO; 
if(str. length O<=3) 
continue, 
else{ 
if((frequency=words. get(str))==null) 
words.put(str,new lnteger(1)); 
else 
words.put(str,new Integer(((Integer)frequency).intValueO+1)); 

} // end of else 

}//end  of while 

bin.closeO; 
}// 	file 

}//for all files 
} // if directory 
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Enumeration kys = words.keys(); 
while(kys.hasMoreElements()){ 

str=(String) kys.nextElement(); 
if((((I nteger)(frequency=words. get(str))). intValue())>3) 

fout.write(str+"\t"+(Integer)frequency+"\n"); 

fout.close(); 
)catch(Exception e){ System. out.println(e);} 

} 

// This program removes the stop words that are present in the fearutes list 

import java.io.*; 
import java.io.File; 
import java.util.StringTokenizer; 
import java.util.*; 

class stopwordsremover{ 

public static void main(String args[]) { 
try{ 

Hashtable words=new Hashtable(); 
Object frequency; 

int i=O,f=O,nowords; 
String str,strl,str2; 
FileReader findct = new FileReader("C:\\engIish.stop"); 
BufferedReader bindct=new BufferedReader(findct); 

StringTokenizer st; 
while(( str=bindct.readLine())!=null) { 
str.trim(); 
words.put(str,new Integer(0)); 
} // end of readline while 
bindct.close(); 
String dirname="C:\\tokens"; 
FileWriter fout = new FileWriter("C:\\stop.txt"); 
File dir= new File(dirname); 	 // dir working 
if(dir. isDirectory()){ 
String s[]=dir.list(); 
for(int fi=0;fi<s.length;fi++) { 
File file=new File(dirname+"P'+s[fi]); 
if(!file.isDirectory()){ 	// file operations 
FileReader fin = new FileReader(file.getAbsolutePath()); 
BufferedReader bin=new BufferedReader(fin); 
while(( str=bin. readLine())!=null) { 

str. trim (); 
st=new StringTokenizer(str,"\t"); 
str1=st. nextToken(); 
if((frequency=words.get(strl ))==null) 

fout.write(str+"\n"); 
else{} 
} // end of readline while 

bin.close(); 
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fout.write("\n"); 
}// 	end for each file 

}//for all files 
fout. close{); 
} // if directory 

}catch(Exception e){ System.out. println(e);} 

// This program finds the document_frequency (idf value)for dictionary of words 

import java.io.*; 
import java.io.File; 
import java.util.StringTokenizer; 
import java.util.*;  

class document_frequency { 

public static void main(String args[]) { 
try{ 

Hashtable words=new Hashtable(); 
Object frequency; 

int i=0,f=0,nowords; 
String str,strl,str2; 
FileReader findct = new FileReader("C:\\stop.txt"); 
BufferedReader bindct=new BufferedReader(findct); 
StringTokenizer st; 
while(( str=bindct.readLine())1=null) { 
words. put(str.trim(), new 1 nteger(0)); 

} // end of readline while 
bindct.close(); 
Hashtable words_doc=new Hashtable(); 
Object frequency_doc; 
String dirname="C:\\corpus"; 
FileWriter fout = new FileWriter("C:\\docfreq.txt"); 
File dir= new File(dirname); 	// dir working 
if(dir. isDirectory()){ 
String s[]=dir.list(); 
for(int fi=0;fi<s.length;fi++){ 
File file=new File(dirname+"/"+s[fi]); 
if(!file.isDirectory()){ 	// file operations 

.;FileReader fin = new FileReader(file.getAbsolutePath()); 
BufferedReader bin=new Buffered Reader(fin); 
while(( str=bin.readL!ne())!=null) { 
str=str.toLowerCase(); 
st=new StringTokenizer(str,"_ @$%!#&*+,()[]\"\'= ;:./\n"); 
while(st.hasMoreTokens()) { 
str=st.nextToken(); 
if(str.length()<3) 
continue; 
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else{ 
if((frequency_doc=words_doc.get(str))==null) 
words_doc. put(str, new Integer(1)); 
else 
words_doc.put(str,new Integer(((Integer)frequency_doc).intValueQ+1)); 

} 	// end of else 
} //end of more tokens while 

} // end of readline while 
bin.close(); 
Enumeration kys = words_doc.keys(); 
while(kys.hasMoreElements()){ 
str=(String) kys.nextElement(); 

if((((Integer)(frequency_doc=words_doc.get(str))).intValue(})>O) 
if((frequency=words.get(str))!=null) 
words. put(str,new I nteger(((I nteger)freq uency). intValue()+1)); 
words_doc.put(str,new Integer(0)); 

} // end of has more elements while 
}// file 

}//for all files 
} //if directory 

Enumeration kys = words.keys(); 
while(kys.hasMoreElements()){ 
str=(String) kys.nextElement(); 
freq ue ncy=words. get(str); 
fout.write(str+"\t"+(I nteger)frequency+"\n"); 
} // end of has more tokens while 

fout.write("\n"); 
fout.close(); 

)catch(Exception e){ System.out. println(e);} 

If This represents whole data set in a vector representaion. 

import java.io.*;  
import Java. ia.File; 
import java.util.StringTokenizer; 
import java.util.*; 

class gettrainingdata { 

public static void main(String args[]) { 
try{ 

int once=0,files=0; 
Hashtable words=new Hashtable(); 
Hashtable wordsl =new HashtableQ; 
Object frequency; 
int i=0,f=0,nowords; 
String str,strl,str2,tmp; 
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StringTokenizer st; 
FileWriter fout1=new FileWriter("C:\\features2.txt"); 
FileReader findct = new FileReader("c:\\docfreq.txt"); 
BufferedReader bindct=new Buffered Reader(findct ); 
while(( str=bindct.readLine())!=null) { 

st=new StringTokenizer(str.trim(),"\t"); 
tmp=st.nextToken(); 

words.put(tmp,new Integer(0)); 
wordsl.put(tmp,new lnteger(st.nextToken())); 

} // end of read line while 

bindct.close(); 
String dirname="C:\\corpus"; 
FileWriter fout = new FileWriter("C:\\output.arff'); 
fout.write("@relation thesis"+"\n"); 
Enumeration kys = words. keys(); 
while(kys.hasMoreElementsO){ 

str=(String) kys.nextElement(); 
fout.write("@attribute "+str +" real" +"\n"); 

} // end of has more elements while 
fout.write("@data "+"\n"); 
File dir= new Fiie(dirname); 	 // dir working 
if(dir.isDirectory()){ 
String s[]=dir.list(); 
for(int fi=0;fi<s. length ;fi++) { 
File file=new File(dirname+"/"+s[fi]); 
if(!file.isDirectoryQ){ 	If file operations 
files-s-+; 
FileReader fin = new FileReader(file.getAbsolutePath()); 
BufferedReader bin=new BufferedReader(fin); 
nowords=O; 
while(( str=bin.readLine())!=null) { 

st=new StringTokenizer(str,"_ @$%!#&"+,()[]\"\'_ ;:./1n"); 
whi!e(st.hasMoreTokens()) { 
str=st.nextToken(); 
if(str.length()<=3) 
continue; 
else{ 
if(! ((frequency=words. get(str))==null).) 
words.put(str,new Integer(((Integer)frequency).intValue()+1)); 
nowords++ ; 

} // end of else 

} // end of has more tokens while 
}I/ end of read line while 

bin.close(); 
Vector kysvector = new Vector(words.keySet()); 
Object array[]=new Object[kysvector.size()]; 
kysvector.copyl nto(array); 
Arrays.sort(array); 

for(i=O; i<array. length;i++){ 
str=(String) array[i]; 
fout1.write(str+"\n"); 

int df=((Integer)(frequency=wordsl.get(str))).intValue(); 
if((((Integer)(frequency=words.get(str))).intValue())>O) { 
words.put(str,new Integer(0)); 
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} 
int tf=((Integer)(frequency)).intValue(); 
if(df==0) df=1; 
double tfidf=tf*Math.log(674/df)*100; 
if(i<array.length-1) 
fout.write(((int)tfidf)/100.0+","); 
else 
fout.write(((int)tfidf)/100.0+"\n"); 
} // end of readline while 
once++; 

}// 	file 
}//for all files 

fout.closeo ; 
} // if directory 

foutl .close(); 
)catch(Exception e){ System. out.println(e);} 

// Divides each document into respective folders, each folder represents a cluster 

import java.io.*; 
import java.io.File; 
import java.util.StringTokenizer; 
import java.util.*; 

class folders { 

public static void main(String args[]) { 
try{ 

int once=0,i; 
String str; 
int noofclusters=4; 
boolean status; 
for(i=0; i<noofclusters; i++) 
status = new File("C:\\cluster"+i).mkdir(); 

StringTokenizer st; 
FileReader findct = new FileReader("c:\\four.arff'); 
BufferedReader bindct=new BufferedReader(findct ); 
String dirname="C:\\corpus"; 
File dir= new File(dirname); 	// dir working 
String s[]=dir.list(); 
for(int fi=0;fi<s.length;fi++){ 
File file=new File(dirname+"/"+s[fi]); 
str=bindct.readLine(); 

st=new StringTokenizer(str,"/,"); 
while(st.hasMoreTokens()) 
str=st. nextToken(); 

String str1=str; 
char ch=strl.charAt(strl.length()-1); 
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int tmp=lnteger.parselnt("+ch); 
File outputFile = new File("C:"+"\\"+"cluster"+tmp+"\\"+file.getName()); 
FileReader in = new FileReader(file); 
FileWriter out = new FileWriter(outputFile); 
int c; 

while ((c = in.read()) != -1) 
out.write(c); 
in.close(); 
out.close(); 
}// end of for 
findct.close(); 
}catch(Fxception e){ System.out.printin(e);} 

/I Describes each cluster 

import Java. 10. 
import java.io.File; 
import java.util.StringTokenizer; 
import java.util."; 

class clster{ 
static double arr[][]=new double[5]12]; 
public static void main(String args[]) { 
try{ 
double temp; 
String str; 
int i=0,j=0,k=0,1=0; 
for(i=0; i <5; i++) 

for(j=0;j <2; j++) 
arr[i][j]=-1.0; 

int count=0; 
FileWriter fout=new FileWriter("C:\\clusters.txt"); 
File file=new File("C:\\reesult4.txt"); 
FileReader fin = new FileReader(file.getAbsolutePath()); 
BufferedReader bin=new BufferedReader(fin); 
StringTokenizer st; 
while(( str=bin.readLine())!=null) { 
str=str.to Lowe rCase(); 

st=new StringTokenizer(str," ',At,An"); 
while(st.hasMoreTokens()) { 
count++; 
str=st.nextToken(); 

temp= Double.parseDouble(str); 
if(count<=5) 
{ 

arr[count-1 ][1 ]=temp; 
arr[cou nt-1 ][0]=count; 
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else if(count>5) 
placein(temp,count); 
if(co u nt==5) 
{ 

for(k=4; k>=0; k--) 
{ 

for(1=1; I<=k; l++) 

if(arr[I-1 ][1 ] > arr[I][1 ]) 

double temp3,temp4; 
temp3=arr[I-1 ][1 ]; 
arr[I-1 ][1 ]=arr[l][1 ]; 
arr[l][1 ]=temp3; 
//System.out.println( arr[k][I] 
temp4=arr[l-1][0]; 
arr[I-1 ][0]=arr[l][0]; 
arr[l][O]=temp4; 

/I System.out.println( arr[k][0] 
} 

+ II 1+ arr[I][1 ] + " "+tempi); 

+ " "+ arr[l][0] + " "+temp4); 

}// end of if count==5 
// end of more tokens 
File fuel =new File("C:\\output.txt"); 
FileReader fin  = new FileReader(filel.getAbsolutePath()); 
BufferedReader binl=new Buffered Reader(fin 1); 
String tmpstr=" 
String str2=" 
int m; 
int temparr[]=new int[51; 
for( m=O;m<5;m++) 
temparr[m]=(int)arr[m][0]; 
Arrays. sort(tem parr); 
int temp2=0; 

- for( m=O;m<5;m++) 
{ 

int templ=temparr[m]; 
for(int n=1;n<=tempt-temp2;n++) 
str2=bin 1.readLine(); 
tempt=tempt ; 
str2=str2.trim(); 
tmpstr=tmpstr+" "+str2; 
// endof for m 

fout.write(tmpstr+"\n"); 
count=O; 

}//end  of while 
fout.close(); 
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}catch(Exception e){ System. out. printIn(e);} 

static void placein(double temp,double count) 
{ 

int ij; 
double tempi; 
if(temp< arr[O][1]) 
return; 
for(i=1;i<5;i++) 
{ 

if(arr[i][1] > temp){ 
for(j=1 ;j<=i-1; j++) 

arr[j-1 ][0]=arr[j][O]; 
arr[j-1 ][1 ]=arr[j][1 ]; 

arr[i-1 ][O]=count; 
arr[i-1 ][1 ]=temp; 
return; 

} 

} 
for(j=1; j<= 4;j++) 

{ 
arr[j-1 ][0]=arrU][0]; 
arr[j-1 ][1 ]=arr[j][1 ]; 

arr[4][O]=count; 
arr[4][1 ]=temp; 
return; 

// program to visualize the results 

import java.io.*; 
import java.io. File; 
import java.util.StringTokenizer; 
import java.util.*; 

class graph2{ 

//static double arr[][]=new double[5][2]; 
public static void main(String args[]) { 
try{ 

String dirname="C:\\temp"; 
int arr[]=new int[13]; 

int i=0; 
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int day, month, year; 
String filename; 
FileWriter fout = new FileWriter("C:"+"\\"+"graph4.txt"); 
File dir= new File(dirname); 
if(dir.isDirectory()){ 
String s[]=dir.list(); 
for(int fi=0;fi<s.length;fi++){ 
File file=new File(dirname+"/"+s[fi]); 
if(file.isDirectory()){ 	// file operations 

String s1 []=file.list(); 
for(i=0;i<13;i++) 
arr[i]=O; 
for(int fj=0;fj<sl.length;fj++){ 

File file 1=new File(dirname+"/"+file+"/"+s1 [fj]); 
filename=filet .getName(); 
StringTokenizer st; 
st=new StringTokenizer(filename,"='); 
day=l nteger. parsel nt(st. nextToken ()); 
month= Integer. parsel nt(st. nextToken ffl; 
year=l nteger. parsel nt(st. nextToken()); 
if(year==4) 

arr[O]++; 
else 

arr[month]++; 

}//end of for 	fj 
}// end of if fiel is directory 
for(i=0; i<13; i++) 
fout.write(arr[i]+"\t"); 

fout.write("\n"); 
}//end of for fi 
// end of if directory is directory 

fout.close(); 
}catch(Exception e){ System.out. println(e);} 

//Finds the k-nearest neighours for all the documents in the data set. 

import java.io.*; 
import java.io.File; 
import java.util.'StringTokenizer; 
import java.util.*; 
import java.lang.*; 
class influentiall{ 

static double arr[][]=new double[5][2]; 
public static void main(String args[]) { 
try{ 
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File file=new File("C:1\document.txt"); 
StringTokenizer st; 
int noofdocuments=65; 
int counti=0,countj=0; 
String str=; 
int ij; 
FileWriter fout = new FileWriter("C:\\influential.txt"); 
for(i=0;i<noofdocuments;i++) { 

for(int ii=0;ii<5;ii++) 
for(int jj=0;jj<2;jj++) 

arr[ii]Uj]=-1.0; 
int count=0; 

counti=0; 
Vector v1 =new Vector(); 
FileReader fin = new FileReader(file.getAbsolutePath()); 
Buffered Reader bin=new BufferedReader(fin); 
do{ 

str=bin. read Line(); 
} while((counti++)!=i); 

st=new StringTokenizer(str,"'',At,An"); 
while(st.hasMoreTokens()) { 

str=st. nextToken(); 
double teml= Double.parseDouble(str); 
v1 .add Element(new Double(tem 1)); 
} // end of more tokens 

bin.close(); 
fin .close(); 
for(j=0;j<noofdocuments;j++) 

countj=0; 
Vector v2=new Vector(); 

end of read line 

FileReader fin1 = new FileReader(file.getAbsolutePath()); 
BufferedReader bin 1=new BufferedReader(fin 1); 

do{ 
str=bin 1. readLine(); 

}while((countj++)!=j); 
st=new StringTokenizer(str," ',/\t,/\n"); 

while(st.hasMoreTokens()) { 
str=st. nextToken(); 

double tem= Double.parseDouble(str); 
v2.addElement(new Double(tem)); 
} // end of more tokens 
double temp=finddistance(vl,v2); 
finl.close(); 
bin1.close(); 
count++; 
if(count<=5) 
{ 

arr[count-1 ][1 ]=temp; 
arr[count-1 ][0]=j; 
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else if(count>5) 
placein(temp,j); 

if(count==5) 	{ 
for(int k=4;k>=0;k--) { 
for(int I=1;1<=k;l++) { 

if(arr[I-1][1] > arr[I][1]) { 
double temp3,temp4; 
temp3=arr[l-1][1] ; 
arr[I-1 ][1 ]=arr[l][1 ]; 
arr[l][1 ]=temp3; 

temp4=arr[I-1 ][0]; 
arr[I-1 ][0]=arr[I][0]; 
arr[l][O]=temp4; 

}//end of for loop j 
for(int kk=O;kk<5;kk++) 

fout.write((arr[kk][O]+1)+" "); 
fout.write("\n"); 
}// end of for loop i 
fout.close(); 

)catch(Exception e){ System.out. println(e);} 
}// end of main 

//}// end of class 

static double finddistance(Vector vi ,Vector v2) 

int nooffeatures=303; 
int i=0; 
double distance=O; 
fo r(i=0; i <n ooffeatu res; i++) 

double x= ((Double)v1.elementAt(i)).doubleValue(); 
double y= ((Double)v2.elementAt(i)).doubleValue(); 
distance+=(Math. pow((y-x),2)); 

return distance; 
}II end of find distance 

static void placein(double temp,double count) 
{ 
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int i,j; 
double tempi; 
if(temp< arr[O][1]) 

return; 
for(i=1;i<5;i++) { 
if(arr[i][1] > temp){ 
for(= l ;j <=i-1; j++) 

arrU-1 ][0]=arr[j][0]; 
arr[j-1 ][1 ]=arr[j][1 ]; 

arr[i-1 ][O]=count; 
arr[i-1 ][1 ]=temp; 
return; 

} 
} 
for(j=1;j<=4;j++) 

arr[j-1 ][0]=arr[j][0]; 
arr[j-1 ][1 ]=arr[j][1 ]; 

} 

arr[4][0]=count; 
arr[4][1]=temp; 
return; 

} 
}//end  of main 

// finds the scaled lead/lag index for each document in the dataset. 

import Java. lo. 
import java.io. File; 
import Java. util. StringTokenizer; 
import Java.util.*; 

class document frequency { 
public static void main(String args[]) { 

try{ 

FileWriter fout=new FileWriter("C:\\idraw.txt"); 
PrintWriter pout=new PrintWriter(fout); 
int i=O,f=O,nowords; 
String str,strl,str2; 
double arr[]=new double[5]; 
int docno=0; 
File file=new File("C:\\influential.txt"); 
FileReader fin = new FileReader(file.getAbsolutePath()); 
BufferedReader bin=new BufferedReader(fin); 
while(( str=bin.readLine())!=null) { 
str=str.toLowerCase(); 
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1=0; 
StringTokenizer st=new StringTokenizer(str,"' ',At,/\n"); 
while(st.hasMoreTokens()) { 
str=st. nextToken(); 

arr[i++]= Double. parseDouble(str); 
} // end of has more tokens while 

int id=0; 
id=findrank(arr,docno); 
docno++; 
pout.println(id); 

}//end  of read line 

fout.close(); 
pout.close(); 
bin.close(); 
fin.close(); 
findscaledrank(); 

)catch(Exception e){ System. out. println(e);} 

static int findrank(double arr[],int docno) 
{ 

int i=0; 
String strl,str2; 
String dirname="C:\\clusterO"; 
int sday,smonth,syear,dday,dmonth,dyear; 
int klater=0,kearlier=0; 
File dir= new File(dirname); 
String s[]=dir.list(); 
File sfile=new File(dirname+"P'+s[docno]); 
strl =sfile.getName(); 
StringTokenizer st; 
st=new StringTokenizer(strl,""); 
sday= Integer. parselnt(st.nextToken()); 
smonth=Integer.parselnt(st.nextToken()); 
syear=Integer. parsel nt(st. nextToken ()); 
for(i=0; i<5; i++) 

{ 
File dfile=new Fife(dirname+"/"+s[((int)arr[i])]); 
str2=dfile.getName(); 
st=new StringTokenizer(str2,""); 

dday=Integer.parselnt(st. nextToken()); 
dmonth=Integer. parselnt(st. nextToken()); 
dyear=Integer. parseInt(st.nextToken()); 
if(dyear>syear) 

klater++; 
else if(dyear==syear && dmonth>smonth) 

klater++; 
else if(dmonth==smonth && dday>sday) 

klater++; 
else 

kearlier++; 
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}//end of for 
int idraw=klater-kearlier; 
return idraw; 

} // end of find rank 

static void findscaledrank() 
{ 

try 
{ 

String str; 
int docno=0,idsum=0,doccount=0,count=0; 

FileWriter fout1=new FileWriter("C:\\idscaled.txt"); 
PrintWriter pout=new PrintWriter(foutl); 
FileWriter fout=new FileWriter("C:\\filenames.txt"); 
String strl=,str2; 
int sday,smonth,syear,dday,dmonth,dyear; 
String dirname='C:\\clusterO' ; 
File dir= new File(dirname); 

String s[]=dir.list(); 
for(int t=0;t<s.length;t++) 
{ 

File sfile=new File(dirname+"/"+s[t]); 
str1=sfile.getName(); 
fout.write(strl ); 
fout.write("\n"); 

} 
fout.closeO; 
for(int j=0;j<s.length;j++) { 	{ 
int idraw=getidraw(j); 
File sfile=new File(dirname+"/"+s[docno++]); 
str1=sfile.getName(); 
StringTokenizer st; 
st=new StringTokenizer(str1,"-"); 
sday=Integer.parselnt(st.nextToken()); 
smonth=l nteger. parse) nt(st. nextToken()); 
syear=l nteger. parsel nt(st. nextToken()); 
for(int i=0;i<s.length;i++) { 	{ 
File dfile=new File(dirname+"/' +s[i]); 
str2=dfile.getName(); 

st=new StringTokenizer(str2,"-"); 
dday=l nteger. parse) nt(st. nextToken()); 
d month=Integer. parsel nt(st. nextToken()); 
dyear=l nteger. parsel nt(st. nextToken()); 
if(sday==dday && smonth==dmonth && syear==dyear) 

{ 
doccount++; 
idsum+=getidraw(i); 

} //end of if 
}//end of for i 
double idscaled= (double)((double)(1/5.0)''((double)idraw-((double)doccount/(double) 

idsum))); 
pout.println(idscaled+" "+strl); 
doccount=0; idsum=0; 

}//end offorj 



pout.close(); 
fout1.closeO; 

)catch(Exception e){ System. out.println(e);} 
}//end of find scaled 

static int getidraw(int x) 
{ 

int idra=O; 
try { 

String str; 
int i=-1; 
File file2=new File("C:\\idraw.txt"); 
FileReader fin2 = new FileReader(file2.getAbsolutePath()); 
BufferedReader bin2=new BufferedReader(fin2); 
do 
{ 

str=bin2. read Line(); 
i++; 

}while(i!=x) ; 
str=str.trim{); 
idra= Integer. parseInt(str); 
return idra; 

}catch(Exception e){ System.out.println(e);} 
return idra; 

}//end of get id raw 
// end of main 

65 


	Title
	Abstract
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Conclusions
	References

