
ANALYSIS OF DAILY RAINFALL AND RUNOFF DATA OF SERANG RIVER BASIN, INDONESIA

A DISSERTATION

UNESCO SPONSORED INTERNATIONAL HYDROLOGY COURSE UNIVERSITY OF ROORKEE ROORKEE-247 667 (INDIA)

DECEMBER, 1993

CANDIDATE'S DECLARATION

Ι hereby certify that the work which is being presented in the dissertation entitled "ANALYSIS OF DAILY RAINFALL AND RUNOFF DATA OF SERANG RIVER BASIN, INDONESIA" in partial fulfilment of the requirement for the award of the Degree of Master of Engineering in Hydrology, submitted the in Department of Hydrology, University of Roorkee, is an authentic record of my work carried out during a period from July 17, 1993 to December 14, 1993 under the supervision of Dr. N.K. Goel, Reader Department of Hydrology University of Roorkee.

The matter embodied in this dissertation has not been submitted by me for the award of any other degree.

SUTJIPTO

Ň

Candidate's Signature

This is to certify that the above statement made by the candidate is correct to the best of my knowledge.

ì

40EL) 15/12/82 (Dr. N.K.

Reader, Department of Hydrology University of Roorkee Roorkee

ACKNOWLEDGEMENT

I wish to express my grateful appreciation and profound gratitude to Dr. N.K. Goel Reader, Department of Hydrology, University of Roorkee, for his excellent guidance and continuous encouragement at every stage of the work. I also thank him for placing at my disposal all the materials and reference necessary to carryout the work in time.

I wish to acknowledge also my sincerest thanks to Director General of Water Resources Development, and The Research Institute for Water Resources Development, Ministry of Public works, for their encouragement and for giving me the opportunity to participate in this International Post Graduate and Master of Engineering Course, Department of Hydrology, University of Roorkee.

I also wish to express my thanks to Dr. B.S. Mathur Professor and Head of the Department of Hydrology, and to all the faculty members, Sh. R.S.Kurothe, Mr.Vu Hong Chau, and to all staff of Department of Hydrology for their kind guidance and co-operation during the study. Finally, I would like to place on record my warm appreciation to my parents, and to my family for their excellent patience, encouragement, and prayer during my study in India.

(Sutjipto)

Roorkee, December#1993

ii

SYNOPSIS

Linear Perturbation Model (LPM) is a simple and versatile technique used to extend the runoff record using rainfall data.

Model developed by Nash and Barsi (1983) for flow forecasting on larger catchment considering the relatively regular seasonal variation of potential evaporation has been studied in detail utilizing the daily rainfall runoff data of 10 raingauge stations and 3 discharge sites of Serang river basin, Indonesia.

The specific objectives of the study are as follow :

- Processing of the daily rainfall and runoff data of Serang basin, Indonesia.
- 2. To develop/understand the methodology of linear perturbation model.
- 3. To evaluate the performance of linear perturbation model and compare it with the performance of single input total response linear model in calibration and validation mode.
- 4. To study the effect of number of error terms on efficiency of the model
- 5. To study the periodic structure of the daily time series of rainfall and runoff data using harmonic analysis.
- 6. And finally to suggest the rainfall runoff model parameters which can be used to extend the runoff records of three sites of Serang basin.

Based on the analysis of data and application of models, the following conclusions can be drawn.

- The increase in memory length, increases the efficiency of linear perturbation model. For the three sites the following memory lengths may be taken.
 - a. Lusi at Kunduran 3 days
 - b. Lusi at Menduran 4 days
 - c. Serang at Tongpait 5 days
- 2. For the three sites, two number of error terms in error model are significant. The increase in number of term will, though increase the efficiency, yet increase is not significant.
- 3. The number of significant harmonics to smoothen the mean daily discharge and rainfall series are (runoff = 17 and rainfall = 63)for Lusi at Kunduran, (runoff = 8 an rainfall = 38)for Lusi at Menduran, and (runoff = 2 and rainfall = 36) for Serang at Tongpait.
- 4. The linear perturbation model may be applied to other sites of other river basins on the similar lines. The performance of linear perturbation model is quite satisfactory for a basin, where seasonalities not very strong and drainage areas are also relatively small.

İν

LIST OF TABLES

PAGE NO.

PARTICULAR

TABLE

3.1 Monthly evaporation data for Rembang, Semarang and Blora 13 3.2 Length of record for 10 raingauge stations 14 3.3 Length of record for 3 stream flow qauging stations 15 5.1 Efficiency of TRL model in calibration and validation mode for Lusi at Kunduran 38 5.2 Efficiency of LPM1 model in calibration and validation mode for Lusi at Kunduran 39 5.3 Efficiency of LPM2 model in calibration and validation mode for Lusi at Kunduran 40 5.4 Efficiency of TRL model in calibration and validation mode for Lusi at Menduran 50 5.5 Efficiency of LPM1 model in calibration and validation mode for Lusi at Menduran 51 5.6 Efficiency of LPM2 model in calibration and validation mode for Lusi at Menduran 52 5.7 Efficiency of TRL model in calibration and validation mode for Serang at Tongpait 63

v

5.8 Efficiency of LPM1 model in calibration and validation mode for Serang at Tongpait.
5.9 Efficiency of LPM2 model in calibration and validation mode for Serang at Tongpait.
65

.

,

LIST OF FIGURES

FIG. NO.	PARTICULARS	PAGE NO.
3.1	Map of catchment area and Thiessen	
	Polygon	11
5.1	Observed mean rainfall and harmonic	
	mean rainfall of Lusi at Kunduran.	31
5.2	Observed mean discharge and harmonic	
	•mean discharge of Lusi at Kunduran	32
5.3	Observed and computed discharge in	
	calibration mode at Lusi at	
	Kunduran (1979).	33
5.4	Observed and computed discharge in	
	calibration mode at Lusi at	
i.	Kunduran (1980).	34
5.5	Observed and computed discharge in	
	calibration mode at Lusi at	
	Kunduran (1981).	35
5.6	Observed and computed discharge in	
	validation mode at Lusi at Kunduran	•
	(1983)	36

vii

5.7	Observed and computed discharge in	
	validation mode at Lusi at Kunduran	
	(1984)	37
5.8	Observed mean rainfall and harmonic	
	mean rainfall of Lusi at Menduran	42
5.9	Observed mean discharge and harmonic	
	mean discharge of Lusi at Menduran	43
5.10	Observed and computed discharge in	
	calibration mode at Lusi at	
	Menduran (1975)	45
5.11(a)	Observed and computed discharge in	
	calibration mode at Lusi at	
	Menduran (1976)	46
5.11(b)	Observed and computed discharge in	
	calibration mode at Lusi at	
	Menduran (1977)	47
5.12	Observed and computed discharge in	
	validation mode at Lusi at	
	Menduran (1980)	48
5.13	Observed and computed discharge in	
	validation mode at Lusi at	
	Menduran (1981)	49
5.14	Observed mean rainfall and harmonic	
	mean rainfall of Serang at Tongpait	54

•

viii

5.15	Observed mean discharge and harmonic	
	mean discharge of Serang at Tongpait	55
5.16	Observed and computed discharge in	ı
	calibration mode at Serang at	
	Tongpait (1979)	56
5.17	Observed and computed discharge in	
	calibration mode at Serang at	
-	Tongpait (1980)	57
5.18	Observed and computed discharge in	
	calibration mode at Serang at	
	Tongpait (1981)	58
5.19	Observed and computed discharge in	
	calibration mode at Serang at	
	Tongpait (1982)	59
5.20	Observed and computed discharge in	
	validation mode at Serang at	
	Tongpait (1976)	60
5.21	Observed and computed discharge in	
	validation mode at Serang at	
	Tongpait (1977)	61
5.22	Observed and computed discharge in	
	validation mode at Serang at	
	Tongpait (1978)	62

,

ix

CONTENTS

CHAPTER		TITLES	PAGE
	CANDIDA	TE'S DECLARATION	i
	ACKNOWL	EDGMENTS	ii
	SYNOPSI	S	iii
	LIST OF	TABLES	v
	LIST OF	FIGURES	vii
			•
I.	INTRODU	CTION	1
	1.1	General	1
	1.2	Chapterization of the Dissertation	1
II.	REVIEW	OF LITERATURE	3
	2.1	Rainfall-Runoff Process	
		and Models	. 3
	2.1.1	Classification of Rainfall-Runoff	
		Models	4
	2.2	Available models	7
	2.2.1	Event based models	7
	2.2.2	Continuous simulation models	8
	2.3	Brief About Adopted Model	8
III.	STUDY A	AREA AND DATA USED	10
	3.1	Study Area	10
	3.1.1	Topography	10

х

3.1.2	Climate	12
3.2	Data Availability	13
3.2.1	Rainfall Data	13
3.2.2	Daily Runoff Data	15
3.3	Processing of Rainfall and	
	Runoff Data	15
3.3.1	Processing of rainfall data	15
3.3.2	Processing of runoff data	17
3.4	Statement of the Problem	18
DEVELOP	MENT OF THE METHODOLOGY	20
4.1	The Hybrid Model	20
4.1.1	Parameter estimation using least	
	square approach	22
4.1.2	Computation of standard error	22
4.1.3	Smoothing of daily mean series	
	of rainfall and runoff	23
4.2	Model Updating Procedure	25
4.3	Computation of Model Efficiency	26
MODEL A	PPLICATION AND RESULTS	28
5.1	Model Application	28
5.1.1	Calibration and validation period	28
5.1.2	Model applied	29
5.1.3	Memory length (m)	29
5.1.4	Number of error terms	30

IV.

v.

5.1.5	Selection of number of harmonic in	
	LPM2	30
5.2	Results	30
5.2.1	Lusi at Kunduran	30
5.2.2	Lusi at Menduran	41
5.2.3	Serang at Tongpait	53
5.3	Discussion of Results	66
CONCLUS	IONS	68
REFEREN	CES	70
APPENDI	CES	72

ı

٠

t

VI

•

CHAPTER - I

INTRODUCTION

1.1 General

Water Resources Projects are of major importance due to great demand of power, irrigation needs, and flood control. To design and plan these projects, emphasis is being qiven on proper collection of hydrologic data. Nevertheless due to different considerations governing the location of discharge gauging station and projects sites, it is seldom that the information on runoff data is available at the point of interest for a good length of time. Thus quite often one is confronted with the problem of analysing and designing water resource projects with inadequate data. Under the circumstances, planners and engineers have to rely on tools such as synthesis and simulation of runoff data with the help of long term rainfall Simulation techniques use rainfall runoff models of data. varying degrees of complexity to generate synthetic discharges.

In literature, many rainfall-runoff models have been proposed. In the present work hybrid model (Linear Perturbation Model) proposed by Nash and Barsi (1983) has been studied in detail utilizing the daily rainfall data of 10 raingauge stationsand 3 discharge sites of Serang river basin, Indonesia.

1.2 Chapterization of the Dissertation

A brief review of rainfall runoff models is presented

in Chapter II. Chapter III gives the details of study area, availability of data and statement of the problem.

Chapter IV of the dissertation presents the methodology of linear perturbation model in detail. Application of linear perturbation model and evaluation of its performance is presented in Chapter V. Chapter VI gives the conclusions of the study.

CHAPTER II

REVIEW OF LITERATURE

2.1 Rainfall-Runoff Process and Models

The origin of rainfall-runoff modeling, in the broad sense, can be found in the second half of 19th Century when the engineers were confronted with the problems relating to urban areas, drainage of basins and river training works. According to Dooge (1957, 1973), during the last part of 19th Century and earlier part of 20th Century, most of the engineers used the empirical formulae or rational method. These approaches were mainly confined to small and mountainous watersheds and during 1920s, however, these were attemptedly extended to larger catchments.

As a modification to it, the concept of isochrones (i.e. lines of equal travel time) was developed. It can be seen as the first rainfall-runoff model based on a transfer function.

The nature of engineering problems being tackled continued to be the same during 1930's, however, the Task Committee, set up by the Boston Society of Civil Engineers (1930) realized that it is not the peak discharge, but rather estimation of a time distribution of the runoff that should be the prime concern of hydrologists. It was Sherman (1932) who introduced the concept of Unit Hydrograph based on the principle of superposition. In spite of its limitations, it proved to be a

powerful tool in predicting the overall shape of hydrographs due to complex rainfall functions. As a refinement to it, subsequently, the mathematical concept of Instantaneous Unit Hydrograph (IUH) was propounded. With the advent of computers in 1950's, various hypothetical/mathematical functions which were known earlier but could not be applied, were introduced.Many of such techniques, though satisfactory from the mathematical and philosophical point of view, lost more and more of their connection with the real world hydrological problems, and became more or less mathematical games played by mathematicians concerned only to prove the generality of their approach.

The subsequent era saw the development of so many hydrological models that it became increasingly difficult to keep a track on them. This necessitated the need to develop some broad classifications in order to find a path among the plethora of different rainfall-runoff models available today. Some such attempts have been made by Amorocho and Hart (1964), Dooge (1973), Todini (1988), Franchini and Pacciani (1991) and others.

2.1.1 Classification of Rainfall-Runoff Models

Rainfall runoff models can broadly be classified into two main categories viz. the deterministic models and the stochastic models. The stochastic models are generally avoided for rainfall-runoff modeling, or used only when dealing with time increments longer than the system dynamics (for instance monthly time increments, Todini, 1988). A broad classification of

deterministic models can be as under (Todini, 1988).

(i) Lumped integral models.

(ii) Distributed integral models.

(iii) Distributed differential models.

A model is said to be lumped if spatial variation in parameter values is not considered. In case of distributed models, the transfer function and parameters vary with respect to space.

(a) Lumped integral models

Most of the purpose oriented, event based models, belong to the category of lumped integral models. Generally, these are linear and make use of the principle of superposition. Hydrologic models proposed by Clark (1945), Nash (1957), Dooge (1959), Singh (1962) and Kulandaiswamy (1964), etc. belong to this category.

The objective of these models remained primarily to develop an Instantaneous Unit Hydrograph (IUH) or a Unit Hydrograph (UH).

(b) Distributed integral models

In lumped integral models, the system dynamics is represented in integral form and is related to a catchment or sub catchment as a whole, by considering its overall behavior.

In this category, various hydrologic simulation models of continuous category are included.A continuous watershed model

is one that operates over an extended period of time, determining flow rates and conditions during both runoff periods and periods of no surface runoff. Thus, the model keeps a continuous account of the basin moisture condition and, therefore, determines the initial conditions applicable to runoff events. Thus, the continuous watershed models represent a major part of the hydrologic cycle to account for the surface as well as sub-surface flows of a watershed.

(c) Distributed differential models

In this category, models represent the catchment behavior in terms of all the differential equations discretised in time and space, expressing mass and momentum balance for each sub-system and linking together the sub-systems by matching at each step in time their mutual boundary conditions. One typical example of such type of model is the SHE-Model.

General applicability of such models gets considerably reduced due to large data requirement and difficulties being faced in integration of various links.

Following other criteria, the models may also be classified as (i) linear models or nonlinear models, (ii) time invariant or time variant models and (iii) event based models or continuous models.

Keeping in view scope of the present study, brief description of available models, which will be of interest, is presented in the following section.

2.2 Available Models

Different models belonging to the above-mentioned categorization, which may be of utility for the present study, are described under the following two heads.

(i) Event based simulation models.

(ii) Continuous simulation models.

2.2.1 Event based simulation models

Event based models may further be classified as lumped models and distributed parameters model, depending upon neither spatial distribution of parameters is neglected or taken into account. Some of the widely used models in each category is listed below.

Lumped Models Linear

1.	Single, reservoir model
2.	Nash model (1957)
3.	Clark's model (1945)
4.	Dooge's model (1959)
5.	Kulandai Swamy's model (1964)

Distributed Models

1. Linear reservoir and Linear channel models

2. Kinematic wave theory based models.

Details of these model can be found in Singh (1989) and Mathur et al (1989).

2.2.2 Continuous simulation models

As discussed earlier, watershed models belonging to this category simulate a large part of hydrologic cycle. Some of the popular and well known watershed models of this category are as under :

- Stanford Watershed Model (SWM) and its modified
 versions such as Kentucky watershed model (KWM) and
 Optimal Set (OPSET) Parameter Models.
- (ii) USDA HL-series Watershed Hydrology models(iii) SCS 20 Watershed Model
- (iv) Stream-flow Synthesis and Reservoir Regulation (SSARR)
 Model.
- (v) Hydrologic Engineering Centre (HEC) Models.
- (vi) U.S.National Weather Service Hydrologic Model (NWSH).
- (vii) Sacramento River Forecast Centre Hydrologic Model (SRFCH).
- (viii) Texas Watershed Model.
- (ix) Swedish Models SHE Model (Systeme Hydrologique European).

Clarke(1973), Fleming(1975) and Singh(1989) have presented excellent reviews of different stream flow simulation models.

2.3 Brief about adopted model

Nash and Barsi(1983) developed a hybrid model (linear perturbation model) for flow forecasting on large catchments.

The hybrid model or linear perturbation model is simply a transfer function between perturbations/deviations of rainfall and perturbations/deviation of runoff on continuous time basis. The model avoids seperation of baseflow and excess rainfall. The model inputs are only rainfall and runoff data. This model has been applied on some of the data of W.M.O. Intercomparision, and has given better results than other models such as SSARR model. Permana (1989) also used this model for forecasting of stream flow on Negara River Basin (Indonesia) with a high degree of performance.

Hydrologic modelling is quite complex and models which require different kind of data in large quantity are difficult to apply in developing countries where these data are generally not available. Therefore, in this dissertation the hybrid model (linear perturbation model) has been used, due to following considerations.

i) The model structure is simple.

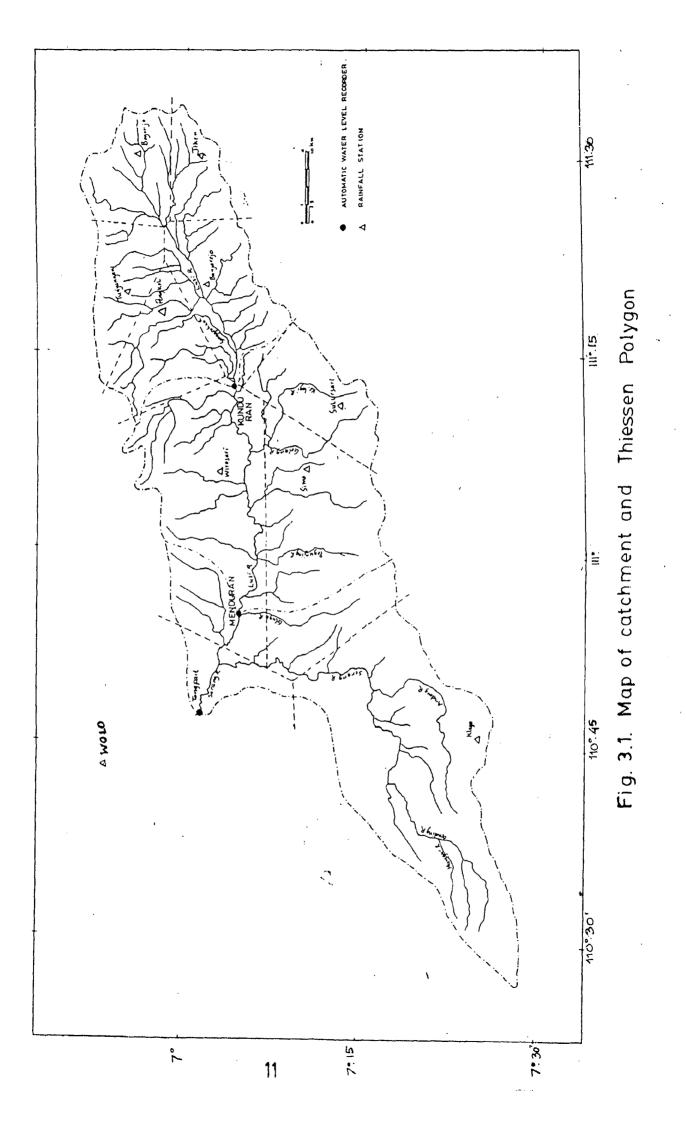
ii) Input data of only rainfall and runoff is needed.iii) The model has given good performance for larger catchments.iv) The required data for the model was readily available.

The linear perturbation model is explained in detail in chapter IV.

In next chapter, details of study area, data used and objectives of the study are explained.

CHAPTER - III

STUDY AREA AND DATA USED


3.1 Study Area

The study area (Serang Basin) is situated in the north-east part of the Central Java Province - Indonesia. It extends from $6^{\circ}42'$ to $7^{\circ}29'$ South latitude and from $110^{\circ}26'$ to $111^{\circ}32'$ East longitude. It occupies four districts namely Kabupaten Kudus in the north, Kabupaten Grobogan in the middle part, Kabupaten Boyolali in the South part, and Kabupaten Blora in the east part. It is about 50 km eastern Semarang, the capital city of Central Java Province.

The catchment area of Serang basin is about 3,350.2 km² in the Central Java Province-Republic of Indonesia. In this dissertation only a part of the catchment, consisting of 2,531.6 km² is considered. The map of the catchment area upto Tongpait gauging site is shown in Fig.3.1.

3.1.1 Topography

The study area consist of coastal area, alluvial plain, and the hilly and mountainous area. The Serang basin consists of two sub basins, that is Serang sub basin in the south west part, and Lusi sub basin in east part. The average slope of Serang sub basin is steeper than Lusi sub basin. The maximum elevation of Serang sub basin in about 3000 m(Merbabu

mountain), while the maximum elevation of Lusi sub basin is only about 400 m.

3.1.2 Climate

The climate of the Serang sub basin is characterized by typical monsoon climate. Heavy rainfall occurs during the north west monsoon (November to May). June to October is, dry season, however some rainfall occurs due to south east monsoon during this period.

<u>Rainfall</u> : Average annual rainfall (10 stations) in the study area varies from 3000 to 4000 mm in the mountainous area (Merbabu and Muria mountain). The rainfall in large part (85 %) of the study area (plain area) varies from 1500 to 2000 mm. <u>Temperature</u> : The monthly mean air temperature of Serang basin also varies from $15-20^{\circ}$ C in mountainous area and $25-30^{\circ}$ C in plain area.

<u>Evaporation</u> : The monthly mean evaporation measured by class A pan at 3 stations (Rembang, Semarang, and Blora) varies from 2.65 to 5.42 mm/day and the annual mean evaporation is 3.95 mm/day. The monthly evaporation data for the three stations are

given in Table 3.1.

3.2.2 Daily runoff data

The research Institute for Water Resources Development also provided daily runoff data for Serang basin. This data is available at 3 gauging sites. The fluctuation of water level at each gauging site has been monitored and recorded by installing the automatic water level recorder. Digitizer is used to calculate the mean daily water level from the water level charts. Discharge measurements were done regularly to prepare the rating curves for the whole year. The availability of the runoff data for the 3 stations is given in Table 3.3.

Table 3.3 : The length of record for 3 stream flow gauging stations.

S.No.	Name of stream and flow gauging station	Catchment Area (km²)	Years of Record
1.	Lusi-Kunduran	734.5	1979-1984, 1990
2.	Lusi-Menduran	1830.8	1975-1977, 1980-1986, 1990
3.	Serang-Tongpait	2531.6	1973-1982, 1989-1990

Same computer programme as used for rainfall data has been used to read and write the runoff data.

3.3 Processing of Rainfall and Runoff Data

3.3.1 Processing of Rainfall Data

Processing of rainfall data mainly included the following

· ~

- (i) rewriting the data in desired format
- (ii) gap filling
- (iii) Computation of mean areal rainfall

Rewriting the data in desired format :

As already explained in previous section, programme rainfall.f was developed and used for this purpose.

Gap filling :

The rainfall data had many gaps. Using distance power method these gaps were filled up. The computer programme power. f was developed for this purpose. The same is given in Appendix-II.

Computation of mean areal rainfall

Rainfall observation from gauge point are measurements. It is well known fact that the rainfall process exhibits appreciable spatial and temporal variation. For the proper representation of spatial and temporal distribution of rainfall, there should be an adequate network of raingauge stations distributed uniformly over the whole catchment. Further, an' accurate assessment of mean areal rainfall over the catchment is a prerequisite and basic input to the model selected for the study.

In this study, the mean areal rainfall is computed using Thiessen Polygon method which is one of the popular and

versatile methods available for the estimation of mean areal rainfall. The Thiessen polygon map prepared for the study area based on the ten raingauge stations is shown in Fig.3.1.

A computer programme (rbar.f) is developed for computing the mean areal rainfall using Thiessen polygon method. The same is given in Appendix-III.

Using this programme basin average rainfall (daily) were computed for Lusi sub basin upto Kundurun, Lusi sub basin upto Mendurun and Serang basin upto Tongpait.

3.3.2 Processing of runoff data

Stream flow data form one of the important inputs to the model for its calibration and validation. In this study the availability of data is given in Table 3.3. All these data are observed and processed by Experimental station for Hydrology, Research Institute for Water Resources Development Bandung-Indonesia.

During that period, the data were missing for few days. In order to fill up the missing flow values, the hydrograph of average daily flow is plotted along with average daily rainfall. Then the missing flow values are interpolated from the hydrograph maintaining the consistency in the rainfall runoff observed in the previous and following years for the respective days, even though there are always errors associated with interpolated flow values affecting the calibration and validation of the model. More over the number of missing data

mountain), while the maximum elevation of Lusi sub basin is only about 400 m.

3.1.2 Climate

The climate of the Serang sub basin is characterized by typical monsoon climate. Heavy rainfall occurs during the north west monsoon (November to May). June to October is dry season, however some rainfall occurs due to south east monsoon during this period.

<u>Rainfall</u> : Average annual rainfall (10 stations) in the study area varies from 3000 to 4000 mm in the mountainous area (Merbabu and Muria mountain). The rainfall in large part (85 %) of the study area (plain area) varies from 1500 to 2000 mm. <u>Temperature</u> : The monthly mean air temperature of Serang basin also varies from 15-20°C in mountainous area and 25-30°C in

<u>Evaporation</u> : The monthly mean evaporation measured by class A pan at 3 stations (Rembang, Semarang, and Blora) varies from 2.65 to 5.42 mm/day and the annual mean evaporation is 3.95 mm/day. The monthly evaporation data for the three stations are

given in Table 3.1.

plain area.

Month	Monthly Evapo	Monthly Evaporation in mm for :		
Monten	Rembang	Semarang	Blora	
January	4.50	3.59	3.51	
February	3.76	3.59	3.63	
March	2.82	3.46	4.06	
April	2.65	3.49	4.03	
Мау	3.49	3.67	3.76	
June	3.09	3.67	3.23	
July	3.47	4.14	4.88	
August	4.17	4.67	5.42	
September	4.35	4.92	5.99	
October	6.41	4.85	5.41	
November	6.37	4.44	4.75	
December	3.53	3.11	3.77	

Table 3.1 : Monthly Evaporation Data for Rembang, Semarang and Blora.

3.2 Data Availability

3.2.1 Rainfall data

The meteorological and Geophysical Agency, Ministry of Transportation, Indonesia and the Research Institute of Water Resources Development (Ministry of Public Works), Bandung, West Java, Indonesia has installed a number of standard and recording type raingauges in the study area. 10 stations daily rainfall data have been used in this study. The length of record for 10

stations is given in Table 3.2.

The rainfall data were made available on floppies by the above agencies. The data were in a particular format giving various details and statistics.

A computer programme rainfall. f was developed to read the data from this agency format and to write the same in desired format. This was necessary as good amount of data had to be handled. This programme alongwith some necessary portion of input file and output file is given in Appendix I.

S.No.	Name of Raingauge station	Length of Record (Years)	Years
1.	Bogorejo (ST1)	28	1960-1987
2.	Jiken (ST2)	28	1960-1987
3.	Banjarejo (ST3)	28	1960-1987
4.	Pengkol (ST4)	26	1960-1985
5.	Tunjungan (ST5)	28	1960-1987
6.	Sulursari (ST6)	28	1960-1987
7.	Simo (ST7)	28	1960-1987
8.	Wirosari (ST8)	28	1960-1987
9.	Klego (ST9)	28	1960-1987
10.	Wolo (ST 10)	28	1960-1987

Table 3.2 : The length of record for 10 raingauge stations.

3.2.2 Daily runoff data

The research Institute for Water Resources Development also provided daily runoff data for Serang basin. This data is available at 3 gauging sites. The fluctuation of water level at each gauging site has been monitored and recorded by installing the automatic water level recorder. Digitizer is used to calculate the mean daily water level from the water level charts. Discharge measurements were done regularly to prepare the rating curves for the whole year. The availability of the runoff data for the 3 stations is given in Table 3.3.

Table 3.3 : The length of record for 3 stream flow gauging stations.

S.No.	Name of stream and flow gauging station	Catchment Area (km²)	Years of Record
1.	Lusi-Kunduran	734.5	1979-1984, 1990
2.	Lusi-Menduran	1830.8	1975-1977, 1980-1986, 1990
3.	Serang-Tongpait	2531.6	1973-1982, 1989-1990

Same computer programme as used for rainfall data has been used to read and write the runoff data.

3.3 Processing of Rainfall and Runoff Data

3.3.1 Processing of Rainfall Data

Processing of rainfall data mainly included the following

- (i) rewriting the data in desired format
- (ii) gap filling
- (iii) Computation of mean areal rainfall

Rewriting the data in desired format :

As already explained in previous section, programme rainfall.f was developed and used for this purpose.

Gap filling :

The rainfall data had many gaps. Using distance power method these gaps were filled up. The computer programme power. f was developed for this purpose. The same is given in Appendix-II.

Computation of mean areal rainfall

Rainfall observation from gauge are point measurements. It is well known fact that the rainfall process exhibits appreciable spatial and temporal variation. For the proper representation of spatial and temporal distribution of rainfall, there should be an adequate network of raingauge whole catchment. stations distributed uniformly over the Further, an accurate assessment of mean areal rainfall over the catchment is a prerequisite and basic input to the model selected for the study.

In this study, the mean areal rainfall is computed using Thiessen Polygon method which is one of the popular and

versatile methods available for the cstimation of mean areal rainfall. The Thiessen polygon map prepared for the study area based on the ten raingauge stations is shown in Fig.3.1.

A computer programme (rbar.f) is developed for computing the mean areal rainfall using Thiessen polygon method. The same is given in Appendix-III.

Using this programme basin average rainfall (daily) were computed for Lusi sub basin upto Kundurun, Lusi sub basin upto Mendurun and Serang basin upto Tongpait.

3.3.2 Processing of runoff data

Stream flow data form one of the important inputs to the model for its calibration and validation. In this study the availability of data is given in Table 3.3. All these data are observed and processed by Experimental station for Hydrology, Research Institute for Water Resources Development Bandung-Indonesia.

During that period, the data were missing for few days. In order to fill up the missing flow values, the hydrograph of average daily flow is plotted along with average daily rainfall. Then the missing flow values are interpolated from the hydrograph maintaining the consistency in the rainfall runoff observed in the previous and following years for the respective days, even though there are always errors associated with interpolated flow values affecting the calibration and validation of the model. More over the number of missing data

are not much. Therefore the flow records including interpolated values may be used for model calibration and validation without much loss of accuracy.

3.4 Statement of the Problem

The problem, precisely, is the extension of runoff records using rainfall data. For this purpose, it was decided to use the linear perturbation model for the reasons given in chapter II.

The specific objectives of the study are as follows :

- Processing of the daily rainfall and runoff data of Serang basin, Indonesia.
- 2. To develop/understand the methodology of linear perturbation model.
- 3. To evaluate the performance of linear perturbation model and compare it with the performance of single input total response linear model in calibration and validation mode.
- 4. To study the effect of number of error terms on efficiency of the model.
- 5. To study the periodic structure of the daily time series of rainfall and runoff data using harmonic analysis.

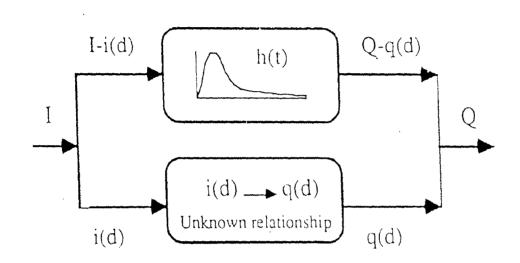
6. And finally to suggest the rainfall runoff model parameters which can be used to extend the runoff records of three sites of Serang basin.

The methodology for linear perturbation model is described in next chapter.

CHAPTER IV

DEVELOPMENT OF THE METHODOLOGY

4.1 The Hybrid Model


Nash and Barsi (1983) developed a model for flow forecasting on larger catchments considering the relatively regular seasonal variation of potential evaporation. In the model it was assumed that in a year in which the rainfall on each day is the exactly the seasonal mean for that date i(d), the corresponding discharges would also agree with their seasonal means q(d) hence :

$$i(d) \longrightarrow q(d)$$
 (4.1)

No assumption is made concerning the nature of this relationship (linear or non-linear, time invariant or not), but it would seem an attractive hypothesis that, in any particular year, the departures of the rainfall and the discharge from these seasonal means might be linearly related (shown next bage) where :

$$x = I - i(d)$$
 (4.2)
 $y = Q - q(d)$ (4.3)

For testing the hypothesis of linearity in the relationship of eq.(4.3) the values of i(d) and q(d) can be obtained by averaging the rainfall and the discharge records for each date d, over the years in the period of calibration, and

Linear Perturbation Model

smoothing by Fourier analysis. The seasonal values of i(d) and q(d) may be subtracted from the actual values of I and Q on each day in order to obtain the departures x and y. Thus, the input and output series x and y of length equal to the number of days in the calibration period are obtained.

Assuming that a general linear relationship with a memory length m exists between x and y series, as obtained, it may be expressed as a linear multiple regression of y on the m previous X values as independent variables.

$$y_i = h_1 x_i + h_2 x_{i-1} + \dots + h_m x_{i-m+1} + u_i$$
 (4.4)

where, h = the vector of regression coefficients or the discrete series of pulse response and u_i is the disturbance term. Eq.(4.4) may be solved to obtain h using method of least square

Eq.(4.4) can also be expressed as :

$$y_{i} = \sum_{j=1}^{m} h_{j} x_{i-j+1} + u_{i}$$
 (4.5)

In the matrix form the above equation is written as :

$\begin{bmatrix} \mathbf{y}_1 \end{bmatrix}$		×1	0	0	0]	$\begin{bmatrix} h_1 \end{bmatrix}$		[u ₁]	
У ₂		x_2	× ₁	0	0			h ₂	,	^u ₂	
Y 3		×3	× ₂	×1	0					-	
		•	×3	×.2	x 1						
	=	•		x 3	× 2				+		
		• × _m		•	•	×2	×1	hm			
		•			•	-	x ₂				Į
v		×	X		•		x	h n		u	
y _n		x n	×n-1		•		$\begin{bmatrix} x \\ n-m+1 \end{bmatrix}$	[n		u n	

4.1.1 Parameter estimation using least square approach Let \hat{H} be the least square estimate of H then : $Y = X \hat{H} + e$ (4.7)

where e is the column vector of the residuals

$$e = Y - \hat{Y} ; e = Y - X \hat{H}$$

$$e^{T}e = (Y - X\hat{H})^{T} (Y - X\hat{H})$$

$$= Y^{T} Y - 2 \hat{H}^{T} X^{T} Y + H^{T} X^{T} X \hat{H}$$

$$\frac{\delta}{\delta H} = (e^{T}e) = -2 X^{T} Y + 2 X^{T} X H = 0$$

$$(X^{T}X) \hat{H} = X^{T} Y \qquad (4.8)$$

and hence

$$\hat{H} = (X^T X)^{-1} X^T Y$$
 (4.9)

4.1.2 Computation of Standard Errors

The variance of the estimates of h (or standard errors of estimates of h) can also be obtained using following equation

22 ·

: (Johnston, 1972)

 $Var (H) = v^{-1} \sigma^2$ (4.10)

where $V = [X^T X]$

Under the usual assumptions of a linear regression model, σ^2 is the variance of the disturbance term e_i , and unbiased estimator of σ^2 is given by :

$$s^{2} = (n - m)^{-1} \sum_{i=1}^{n} e_{i}^{2}$$
 (4.11)

The variance of h_i may be obtained by taking the ith term of the principal diagonal of V^{-1} and multiplying by S^2 . The standard error of h_i is the square root of its variance. It generally indicates the firmness in the estimation of H.

4.1.3 Smoothing of daily mean series of rainfall and runoff In linear perturbation model, the deviations/ perturbation from seasonal mean of rainfall and runoff are required. The daily seasonal mean of rainfall and runoff are periodic in nature but because of short length of data and natural characteristics of variables involved had fluctuations.

The smoothening of daily mean series is done with the help of harmonic analysis. The details are as follows :

Let
$$X_{T}$$
 is the parameter for the τ^{th} day.
 $X_{S\tau}$ is the smoothed parameter for τ^{th} day

$$X_{S\tau} = \nu_{X} + \sum_{j=1}^{m} A_{j} \cos \frac{2\pi j\tau}{\omega} + B_{j} \sin \frac{2\pi j\tau}{\omega}$$
(4.12)

where :

 ω is number of seasons in a year for daily data, ω =365. m is number of harmonics to be fitted to data U_{μ} overall mean

$$A_{j} = \frac{2}{\omega} \sum_{\tau=1}^{\omega} X_{\tau} \quad \cos \frac{2\pi j\tau}{\omega}$$
(4.13)

$$B_{j} = \frac{2}{\omega} \sum_{\tau=1}^{\omega} X_{\tau} \sin \frac{2\pi j\tau}{\omega}$$
(4.14)

Variance
$$(h_j) = \frac{A_j^2 + B_j^2}{2} = c_j^2$$
 (4.15)

Fraction of variance explained by $h_j = \Delta P_j$

$$\Delta P_{j} = \frac{\text{Var } (h_{j})}{s^{2} (X_{\tau})}$$
(4.16)

$$P_{\min} = a \sqrt{\frac{\omega}{cn}}$$
(4.17)

Where :
$$a = 0.033$$

 $C = 1$ for mean and $C = 2$ for s.d.
 $n =$ number of years of data
 $P_{max} = 1 - P_{min}$ (4.18)

$$P_{1} = \Delta P_{1}$$

$$P_{2} = \Delta P_{1} + \Delta P_{2}$$

$$P_{w/2} = \Delta P_{1} + \Delta P_{2} + \Delta P_{3} + \cdots \Delta P_{w/2}$$

Selection of the significant harmonic

If $P_{w/2} < P_{min}$ then no harmonic is significant

If $P_{w/2} > P_{max}$ then only some of the w/2 harmonics are significant

If
$$P_{min} < P_{w/2} < P_{max}$$
, then all w/2harmonics are significant

4.2 Model Updating Procedure

Having obtained the pulse response or regression coefficients h, the y values can be obtained using the following matrix equation

$$Y = XH \tag{4.19}$$

Finally the mean q(d) is added with y values to give the estimates for Q values. The residual errors are obtained after subtracting the computed Q values from the corresponding observed Q values. The residual errors (e_i) thus obtained are analysed to identify the following persistence structure :

$$e_i = b_1 e_{i-1} + b_2 e_{i-2} + b_3 e_{i-3} + \dots + b_n e_{i-n} + E_i$$

...(4.20)

where, b_1 , b_2 , b_3 etc. are the regression coefficients to be obtained from least square analysis and E_i is the random component of mean zero.

The model results during the calibration period are updated the error model (4.20) after identifying the persistence structure i.e. number of error terms to be included to improve the estimates of discharge.

Thus the discharge at any day t will be given by following equation

$$Q_{t} = q (d_{t}) + h_{1} (I_{t} - i(d_{t})) + h_{2} (I_{t-1} - i(d_{t-1})) + \cdots$$

+ $h_{m} (I_{t-m+1} - i (d_{t-m+1}) + b_{1} e_{t-1} + b_{2} e_{t-2} + \cdots$
.... + $b_{\eta} e_{t-\eta}$ (4.21)

where,

۶ _t	runoff for the day t
q(d _t)	seasonal mean of runoff for day t
i(d _t)	seasonal mean of rainfall for day t
^I t	rainfall for day t
$h_1, h_2, \dots h_m$	regression coefficients
m	memory length to be decided by trial and error
b_1, b_2b_n etc.	coefficients of error terms to be evaluated
'	during calibration period
^e t-1	error for the (t-1) day.

4.3 Computation of Model Efficiency

The efficiency of the model is computed by

.

Efficiency =
$$\left(1 - \frac{RV}{IV}\right) \times 100$$
 (4.22)

where

$$RV = remaining variance$$

$$= \sum_{i=1}^{n} (Q_i - \hat{Q}_i)^2$$

$$Q_i = Observed discharge for the ith day$$

$$\hat{Q_i} = computed discharge using the model for the ith day
n = total no. of observations
$$IV = Initial variance$$

$$= \sum_{i=1}^{n} (Q_i - \bar{Q})^2$$

$$\bar{Q} = overall mean daily discharge$$$$

The efficiency is computed by eq.(4.22) during calibration period and testing period.

The computer programme lpm. f was developed in FORTRAN-77 language for the linear perturbation model. The programme is interactive in nature and is given in Appendix-IV along with are input file and output file.

CHAPTER V

MODEL APPLICATION AND RESULTS

5.1 Model Application

5.1.1 Calibration and validation period

The linear perturbation model has been applied to the following three sub-basins

(i) Lusi at Kundurun (C.A = 734.5 km^2)

(ii) Lusi at Mendurun (C.A. = 1830.8 km^2)

(iii) Serang at Tongpait (C.A. = 2531.6 km^2)

For computing the mean areal rainfall upto Kundurun rain gauge station (ST1 to ST5) were considered. For mean areal rainfall upto Mendurun (ST1 to ST8) and upto Tongpait (ST1 to ST10) were used. Thus the data used for further analysis is given below :

Site	Runoff	average rainfall over the basin
Kundurun	1979-84, 1990	(1960-1987)
Mendurun	1975-77, 1980-86, 1990	0 (1960-87)
Tongpait	1973-1982, 1989-1990	(1960-87)

The selection of calibration and validation periods are as follows

Site	Calibration	Testing
Kundurun	1979-8	1983-84
Mendurun	1975-77	1980-81
Tongpait	1979-82	1976-78

5.1.2 Models Applied

The following models have been applied

- (i) Single input total response linear model (TRL)
- (ii) Linear perturbation model with observed daily means of rainfall (amr) and runoff (amdis) (LPM 1)
- (iii) Linear perturbation model with smoothened/harmonic daily means of rainfall (hmr) and runoff (hmdis) (LPM2)

In single input and total response model (TRL) the total rainfall at any day t and total runoff at any day t are used. In LPM (both the options) perturbations are used.

5.1.3 Memory Length (m)

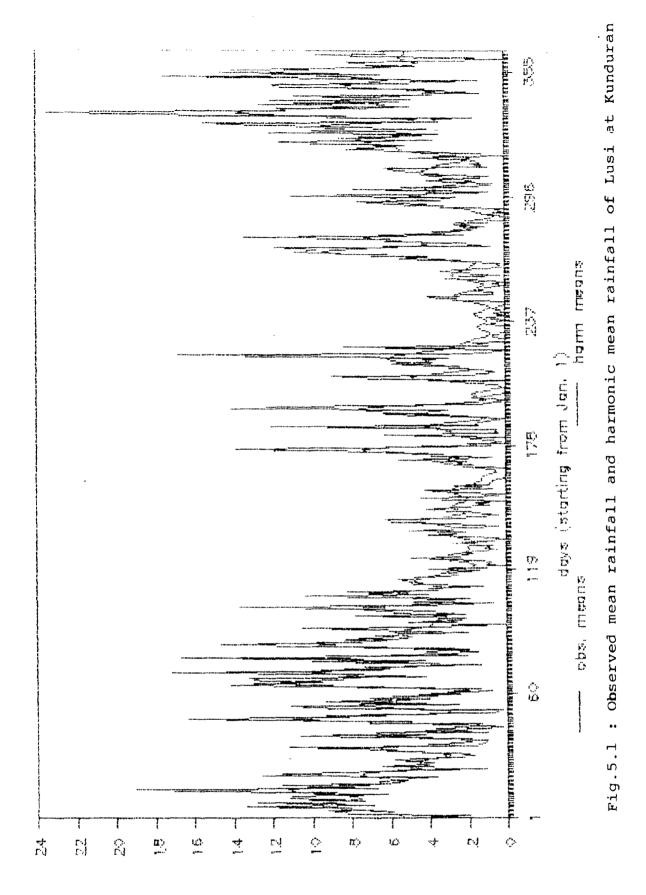
In all the three models (TRL, LPM1, LPM2) the effect of memory lengths (1 to 10) have been studied in calibration mode. For the three sites, depending upon the efficiencies one memory length for each site has been selected.

5.1.4 Number of Error Terms

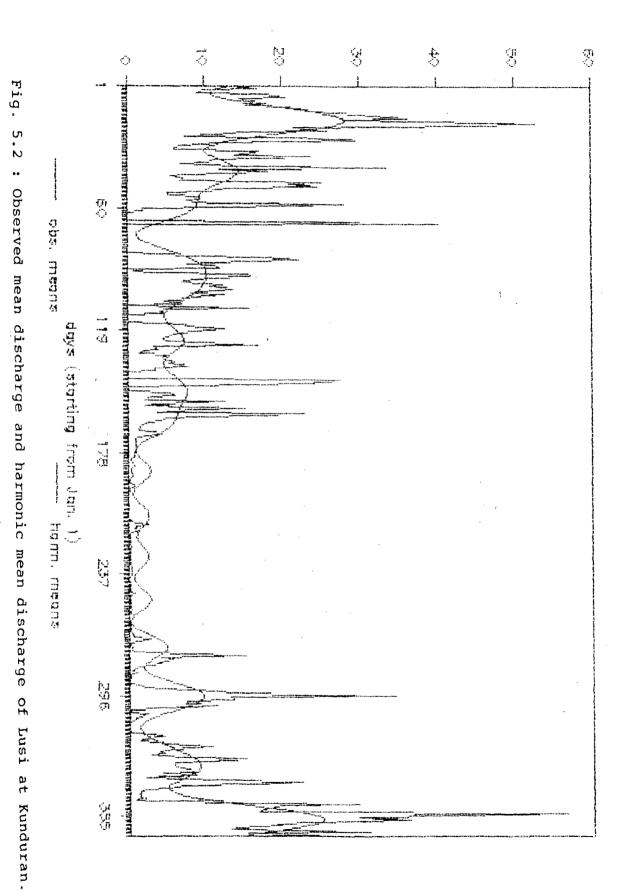
All the three models have been studied with following error terms in error model during calibration mode and testing mode.

- (i) no error model i.e. no error term
- (ii) one error term
- (iii) two error terms
- (iv) three error terms
- (v) four error terms
 - 5.1.5 Selection of Number of Harmonic in LPM2

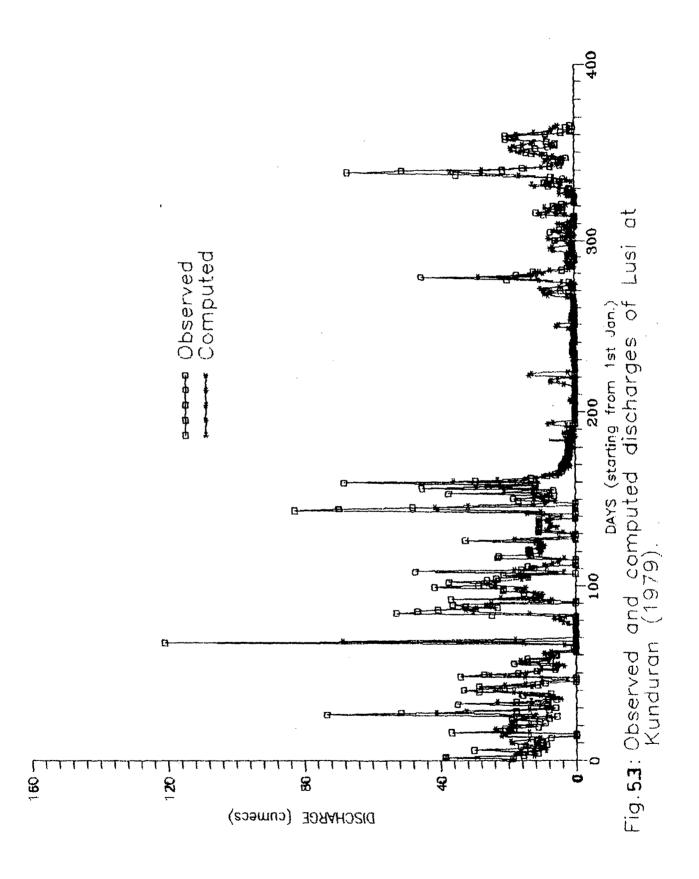
The number of harmonics for smoothening the observed mean daily rainfall and runoff series have been selected on the basis of P_{max} and P_{min} test.

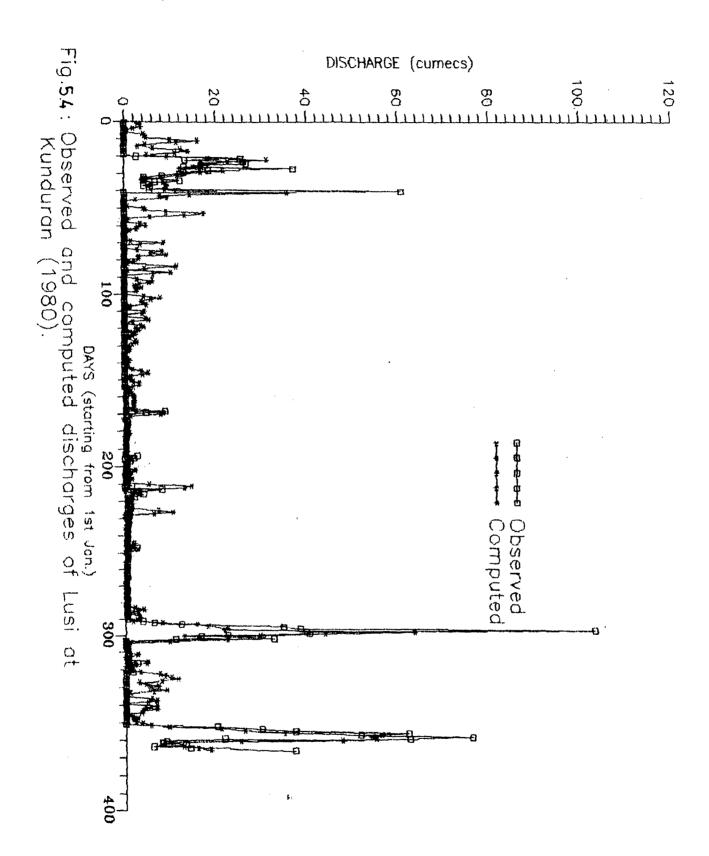

5.2 Results

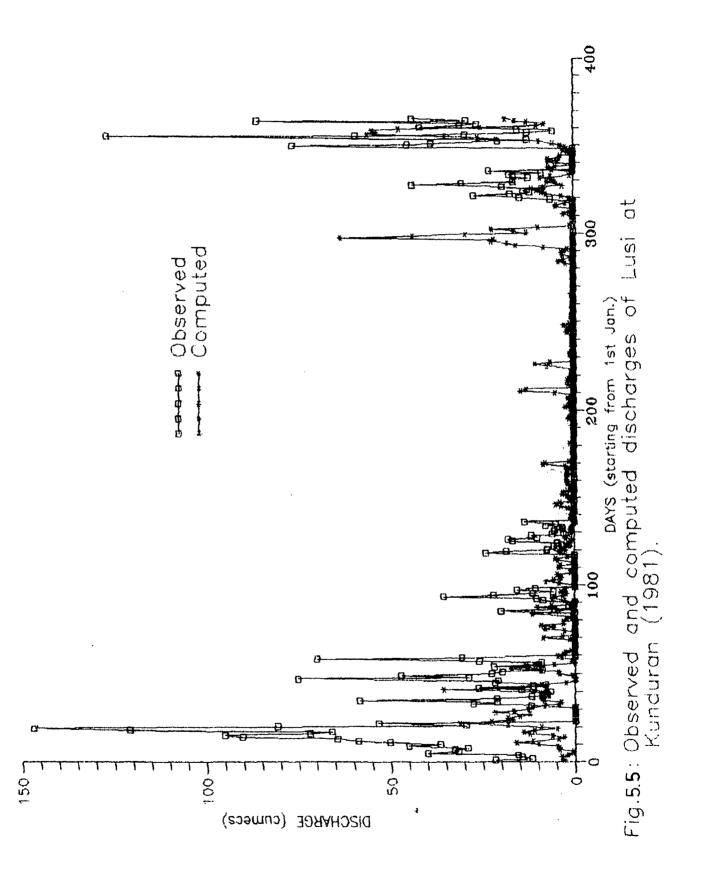
5.2.1 Lusi at Kundurun

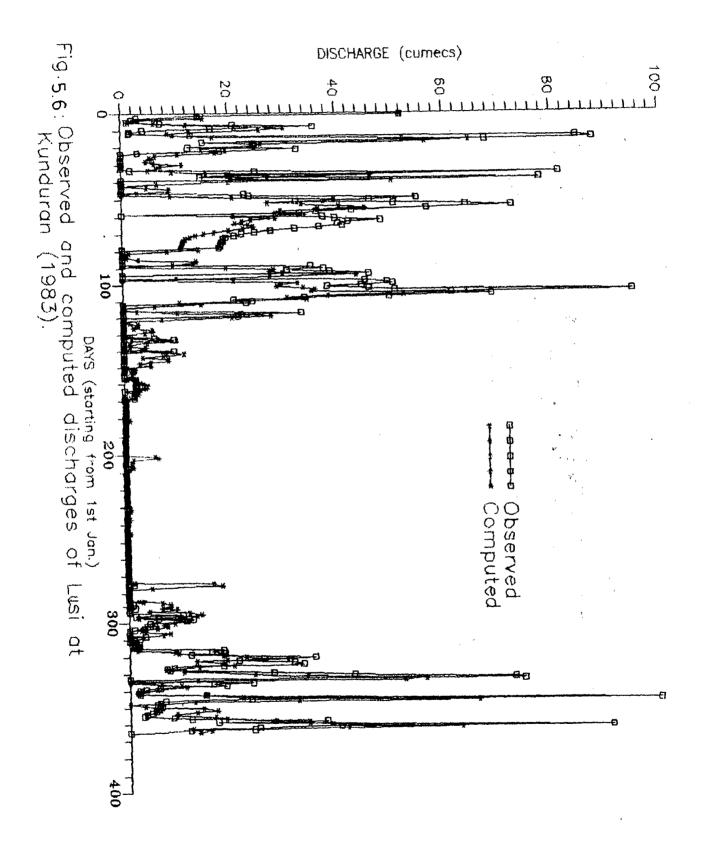

For Kundurun, the number of significant harmonics are 17 for mean daily discharges and 63 for mean daily rainfall series. The observed and smoothened mean daily rainfall and runoff are plotted in Fig.5.1 and 5.2. The observed and computed discharges in calibration mode are plotted in Fig.5.3-5.5 and in validation mode (1983-84) in Fig.5.6-5.7.

The efficiency of different models with memory lengths (1-10) and no. of error terms 0 to 4 in calibration and validation modes are shown in Table 5.1 to 5.3.


It may be seen from Table 5.1 to 5.3 that




(mm) libinibi


discharge (curriecs)

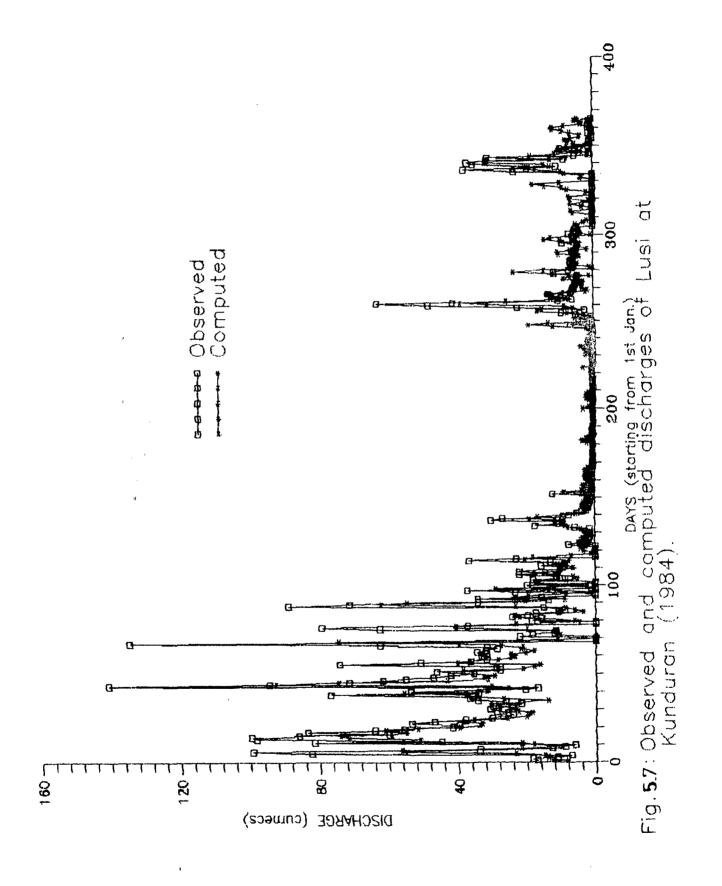


Table	5	•1	:	Efficiency	\mathbf{of}	TRL	mc	del	in	calibration	and
				validation	mod	le f	or	Lusi	at	Kunduran.	

.

Calibration

Memory Length		Efficiency	with no.	of error	terms	
		0	1	2	3	4
	1	3.59	39.17	40.55	41.36	41.67
	2	15.14	48.53	49.82	50.41	50.56
	3	19.65	50.47	52.21	52.88	52.96
	4	21.09	51.32	52.82	53.49	53.58
	5	21.57	51.35	52.74	53.34	53.47
	6	22.00	51.37	52.75	53.35	53.47
	7	22.60	51.66	53.04	53.67	53.75
	8	22.98	51.93	53.33	53.91	53.99
	9	23.14	52.04	53.39	53.97	54.04
	10			53.32		
Valida	tic	on with mem		.h 3		
•• •• •• •• •• ••	 3	21.43		55.48	56.28	

Table 5.2 : Efficiency of LPM1 model in calibration and validation mode for Lusi at Kunduran.

•

.

Calibration

.

1

Mamory					
Length	Efficiency				
_		1			4
1	41.51	64.02	65.00	65.25	65.34
2	46.84	67.64	68.68	69.00	69.08
3	48.64	68.19	69.31	69.74	69.77
4	49.50	68.51	69.52	69.92	69.98
5	49.96	68.57	69.50	69.84	69.94
6	50.33	68.58	69.46	69.83	69.91
7	51.08	68.88	69.81	70.19	70.24
8	51.74	69.26	70.20	70.53	70.57
9	51.89	69.29	70.20	70.54	70.58
10	51.89	69.24	70.15	70.49	70.52
Validati	on with mer	nory lengt			
3	17.48	54.77	55.26	56.16	56.35

Table 5.3 : Efficiency of LPM2 model in calibration and validation mode for Lusi at Kunduran.

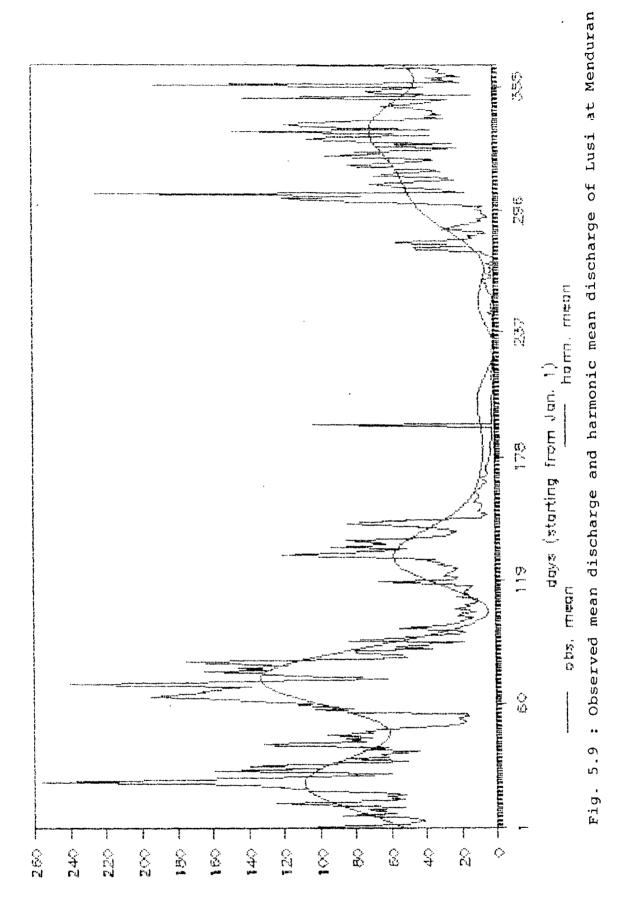
Calibration

Memory Length		Efficiency	with no.	of error	terms	
Ļ		0	1	2	3	4
	1	26.11	48.52	49.13	49.44	49.54
	2	31.85	52.29	53.02	53.32	53.35
	3	34.68	53.62	54.58	54.92	54.93
	4	35.65	54.13	54.93	55.26	55.28
	5	35.98	.54.14	54.89	55.17	55.2
	6	36.33	54.16	54.85	55.14	55.17
	7	36.99	54.45	55.12 💚	55.43	55.44
	8	37.57	54.78	55.50	55.77	55.78
	9	37.84	54.95	55.65	55.93	55.93
	10	37.86	54.91	55.61	55.87	55.88
Valida	ti	on with mem		h 3		
	3	24.54				

- (i) Performance of TRL model is comparable with linear perturbation model in validation mode. However LPM models give better performance in calibration mode.
 (ii) Performance of LPM1 is better than LPM2 model.
- (iii) In case of LPM1 and LPM2, as the memory length increases, the efficiency also increases. This increase is significant upto memory length 3. Hence memory length of 3 may be selected.
- (iv) The incorporation of error model in LPM1 and LPM2 significantly improves the performance. As the number of error terms increases there is improvement in efficiency. However this increase in efficiency is not significant after two error terms.

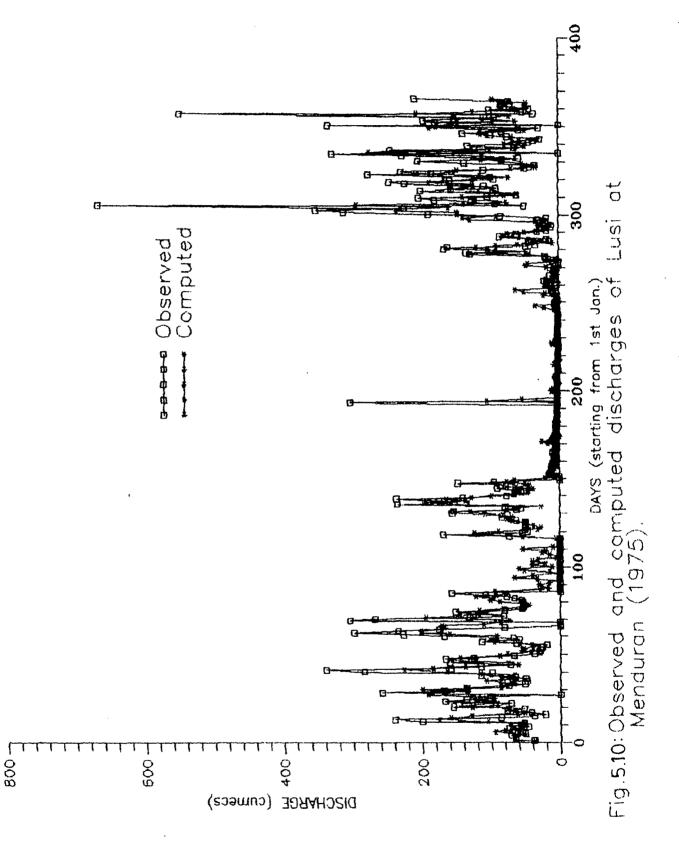
Through the performance of LPM2 is inferior to that of LPM1, yet it is recommended to be selected as it uses smoothened means. Finally for Lusi at Kundurun, LPM2 model with memory length of three days and two error terms is recommended.

5.2.2 Lusi at Mendurun

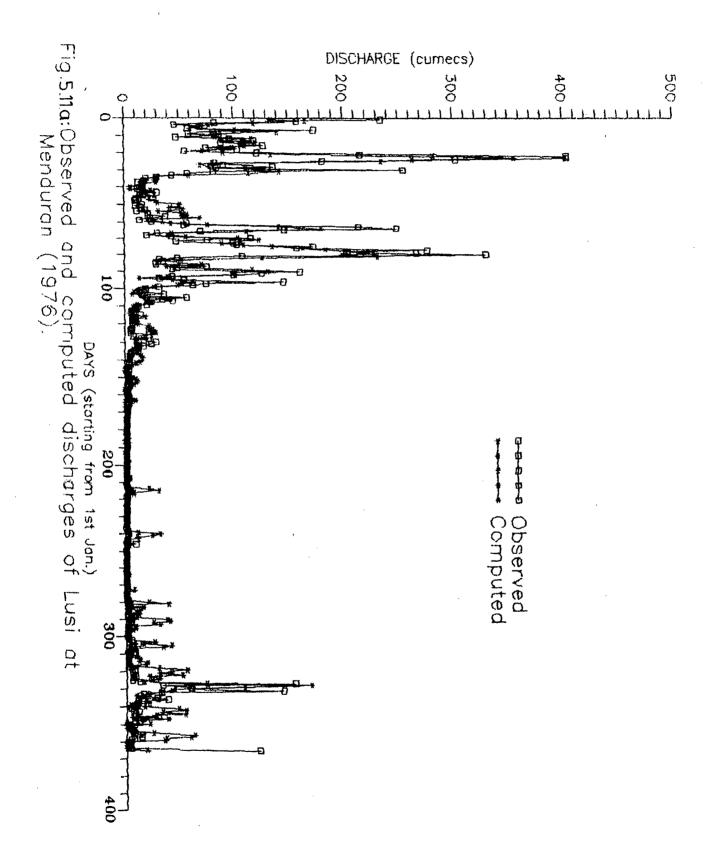

For Menduran, the number of significant harmonics are 8 for mean daily discharges and 38 for mean daily rainfall series. The observed and smoothened mean daily rainfall and run off are plotted in Fig.5.8 and 5.9. The observed and computed

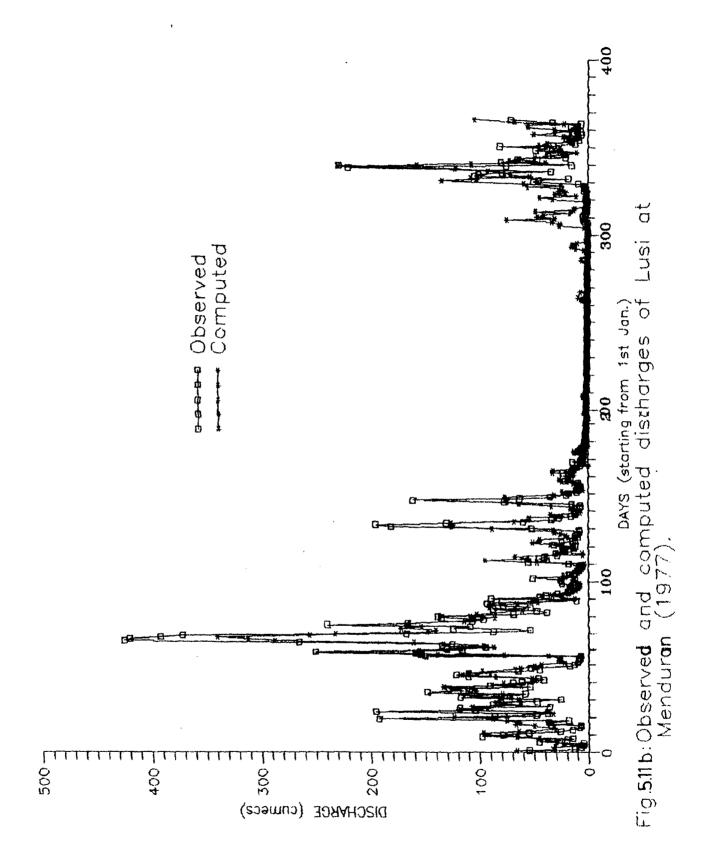
rainfall (mm)

.

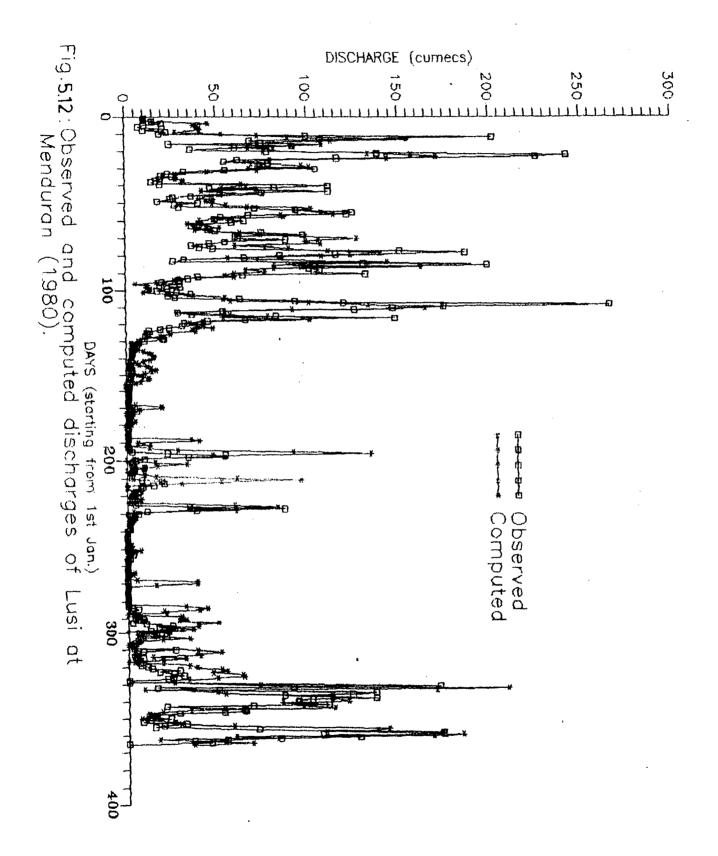

(ceuno) eñiciquesp

discharges in calibration mode (1975-77) are plotted in Fig.5.10 to 5.11 and validation mode (1980-81) in Fig.5.12-5.13.


The efficiency of different models with memory length (1-10) and no. of error terms 0 to 4 in calibration and validation modes are shown in Table 5.4 to 5.6.


It may be seen from Table 5.4 to 5.6 that

- (i) Performance of TRL model is comparable with linear perturbation model in validation mode. However LPM models give better performance in calibration mode without incorporating any error model and after incorporating error models.
- (ii) Perfromance of LPM1 is better than LPM2 model
- (iii) In case of LPM1 and LPM2, as the memory length increases, the efficiency also increases. This increase is significant upto memory length 4. Hence memory length of 4 may be selected.
- (iv) The incorporation of error model in LPM1 and LPM2 significantly improves the performance. As the number of error terms increases there is improvement in efficiency. However this increase in efficiency is not significant after two error terms. Finally for Lusi at Menduran, LPM2 model with memory length of four days and two error terms is recommended.



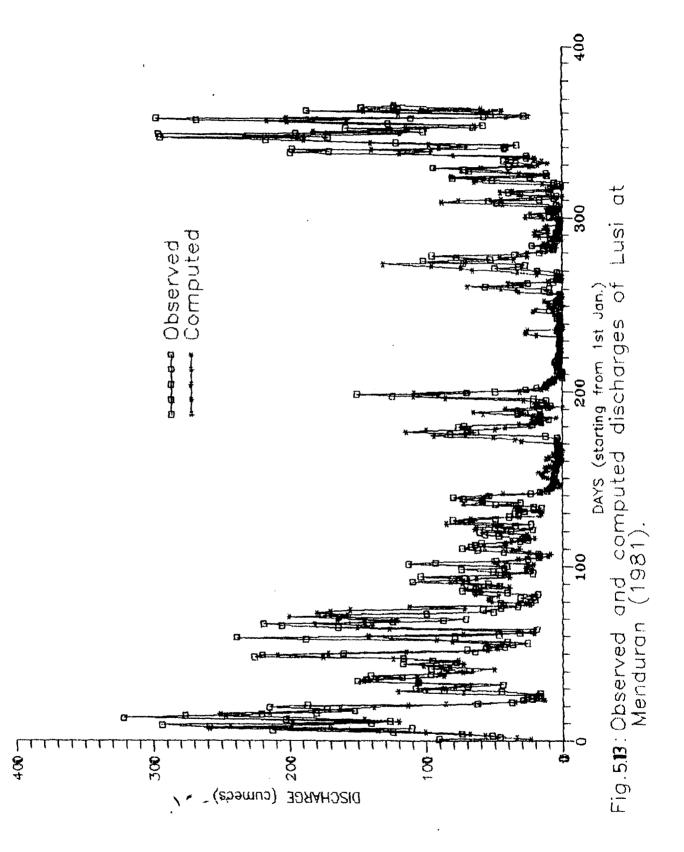


Table 5.4 : Efficiency of TRL model in calibration and validation mode for Lusi at Menduran.

Calibration

Memory Length		Efficiency	with no.	of error	terms	
Lengen		0	1	2	3	4
	1	17.03	39.95	39.95	40.00	40.16
	2	38.53	54.33	55.38	55.56	55.69
	3	44.48	56.97	58.37	58.90	58.93
	4	48.68	59.88	61.55	61.92	61.92
•	5	49.89	60.78	62.37	62.55	62.55
	6	50.15	60.82	62.24	62.46	62.49
1	7	50.45	60.60	62.14	62.37	62.40
	8	51.76	61.79	63.34	63.55	63.55
	9'	51.88	61.88	63.41	63.62	63.64
1	0	51.91	61.87	63.41	63.60	63.63

Validation with memory length 4

4 54.48 67.59 66.91 67.81 67.81 50

Table 5.5 : Efficiency of LPM1 model in calibration and validation mode for Lusi at Menduran.

.

Calibration

Memory Length	Efficiency	with no.	of error	terms	
			2		4
1	53.86	67.71	68.81	68.83	68.86
2	62.13	72.47	73.50	73.58	73.60
3	65.06	73.48	74.60	74.80	74.81
4	67.25	74.93	76.00	76.13	76.14
5	67.90	75.31	76.27	76.33	76.33
6	68.28	75.44	76.26	76.33	76.33
7	68.58	75.36	76.19	76.26	76.26
8	69.43	75.77	76.66	76.71	76.71
9	69.93	76.27	77.04	77.08	77.08
10					77.02
Validati	on with mem	ory lengt	th 4		
4	55.74	68.70		68.53	68.54

•

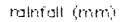
Table 5.6 : Efficiency of LPM2 model in calibration and validation mode for Lusi at Menduran.

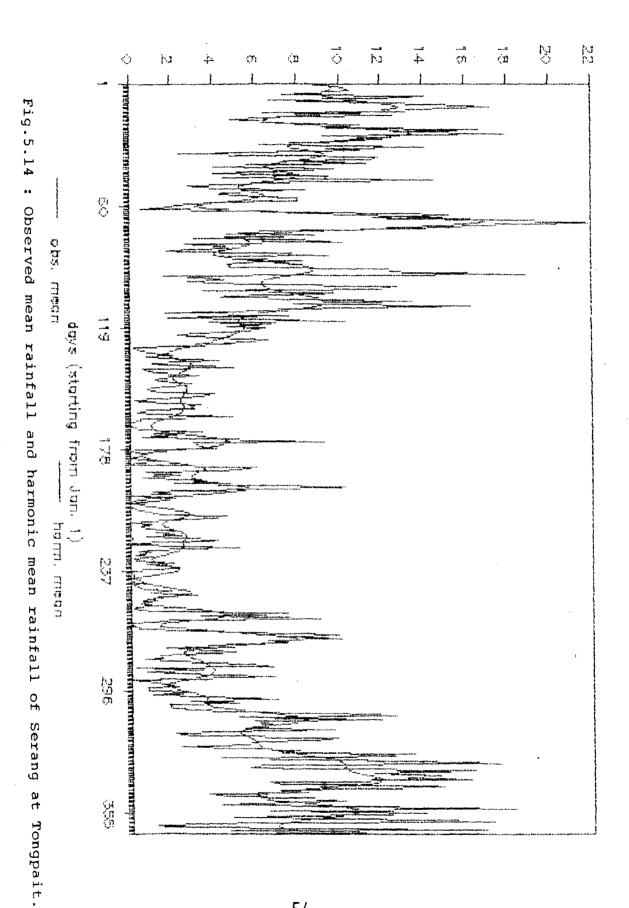
Calibration

emory ength	,	Efficiency	with no.	of error	terms	
		0	1	2	3	4
	1	39.52	52.62	53.61	53.60	53.60
	2	49.61	59.33	60.24	60.30	60.31
	3	53.59	60.30	61.26	61.44	61.44
	4	55.37	62.29	63.31	63.44	63.44
	5	56.16	62.90	63.85	63.89	63.89
	6	56.26	62.90	63.76	63.81	63.81
	7	56.45	62.76	63.65	63.70	63.70
	8	57.84	63.91	64.78	64.81	64.82
	9	58.08	64.03	64.87	64.90	64.92
	10	58.18	64.06	64.89	64.91	64.94

Validation with memory length 4

4	48.58	64.62	64.30	64.68	64.67

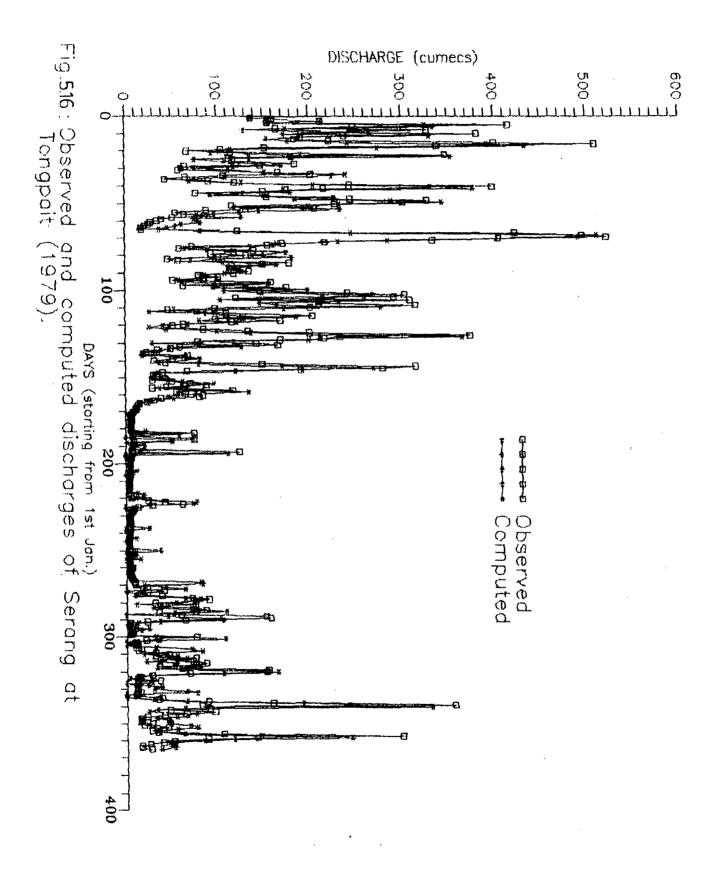

5.2.3 Serang at Tongpait

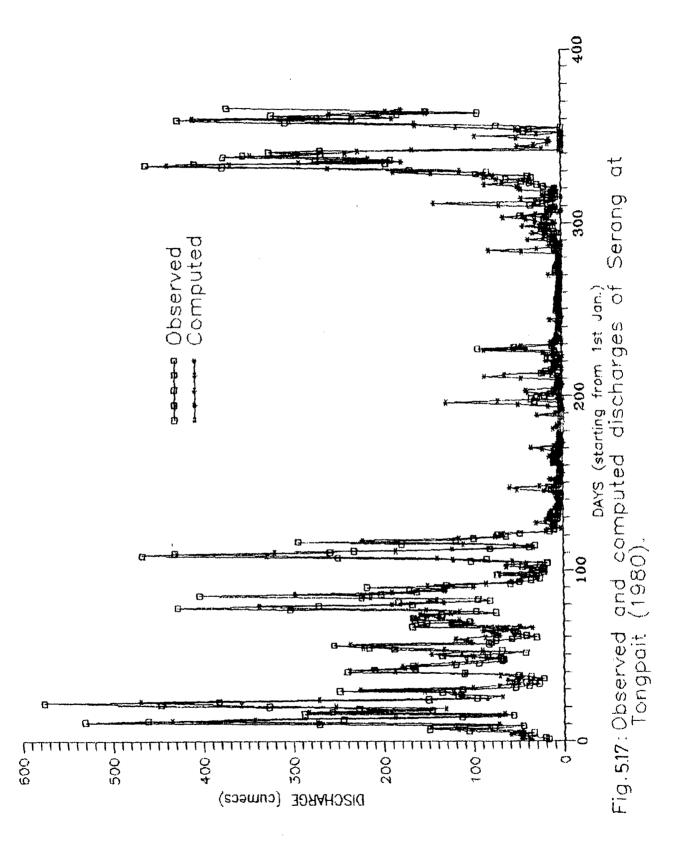

For Serang river at Tongpait, the number of significant harmonics are 2 for mean daily discharges and 36 for mean daily rainfall series. The observed and smoothened mean daily rainfall and runoff are plotted in Fig.5.14 and 5.15. The observed and computed discharges in Fig.5.16 to 5.19 for calibration mode and in Fig.5.20 to Fig.5.22 for validation mode (1976-78).

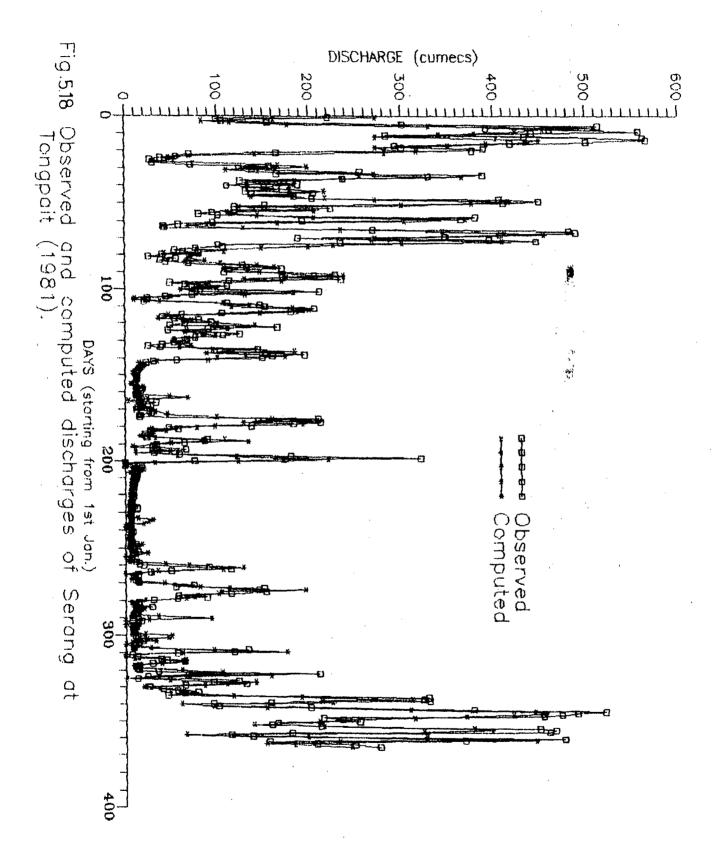

The efficiency of different models with memory lengths (1-10) and no. of error terms 0 to 4 in calibration and validation models are shown in table 5.7 to 5.9.

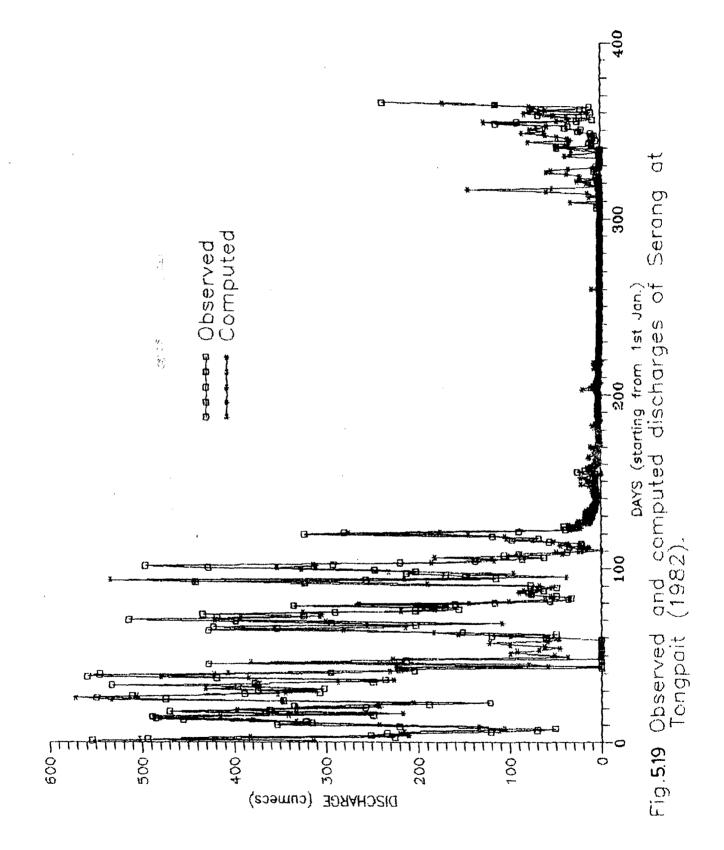
It may be seen from Table 5.7 to 5.9 that

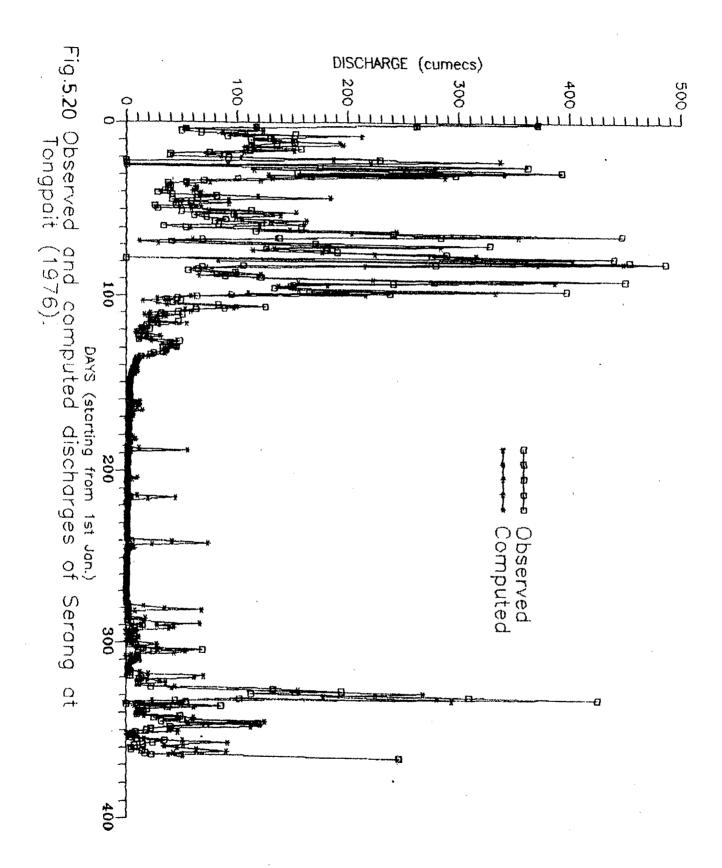
- (i) Performance of TRL model is comparable with linear perturbation model in validation mode. However LPM models give better performance in calibration mode.
- (ii) Perfromance of LPM1 is better than LPM2 model
- (iii) In case of LPM1 and LPM2, as the memory length increases, the efficiency also increases. This increase is significant upto memory length 5. Hence memory length of 5 may be selected.
- (iv) The incorporation of error model in LPM1 and LPM2 significantly improves the performance. As the number of error terms increases there is improvement in efficiency. However this increase in efficiency is not significant after two error terms.

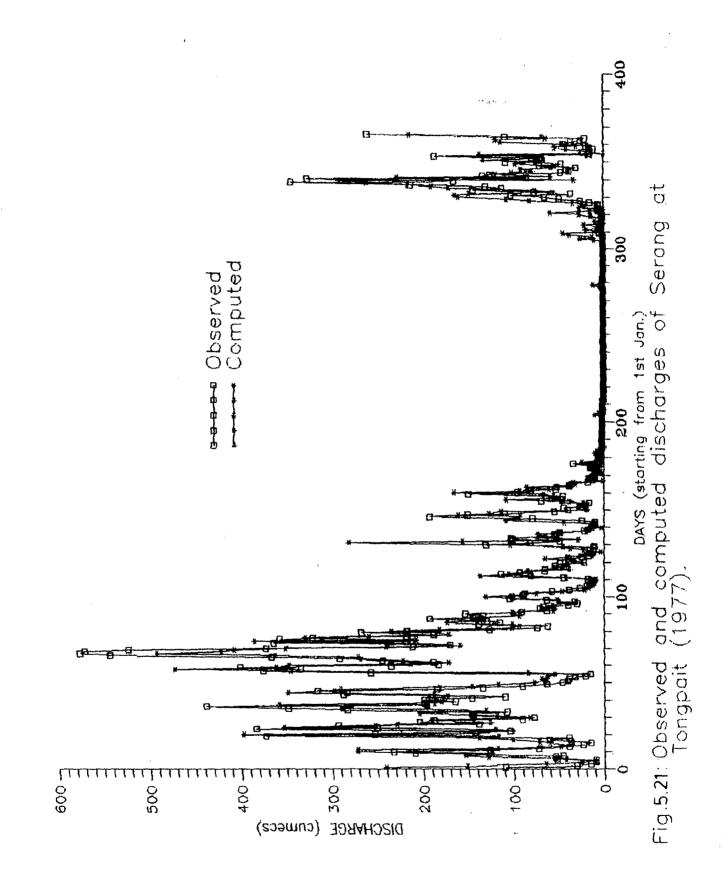





(sevuno) ebuoyosjp






)/

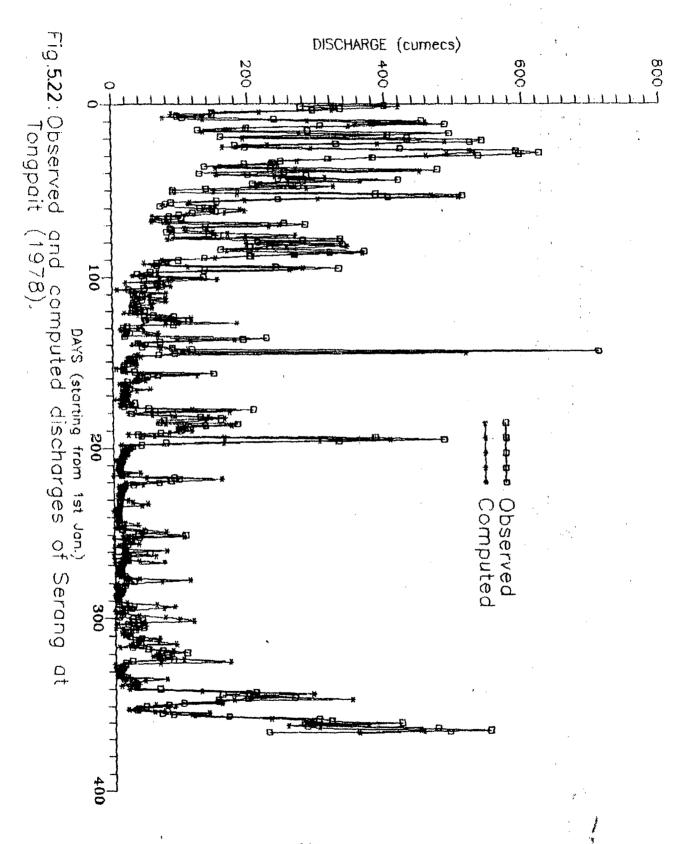


Table 5.7: Efficiency of TRL model in calibration and validation mode for Serang at Tongpait.

Calibration

.

	Efficiency	with no.	of error	terms	
Length	0	1	2	3	4
1	8.87	41.89	41.79	42.64	43.26
2	39.75	65.89	65.80	66.66	67.03
3	54.90	78.34	78.32	78.41	78.82
4	58.50	79.82	79.82	80.28	80.38
5	60.15	80.77	80.79	81.19	81.44
6	61.04	81.32	81.35	81.71	81.94
7	61.48	81.41	81.44	81.78	82.00
8	61.87	81.57	81.60	81.95	82.18
9	62.29	81.78	81.84	82.28	82.50
	62.54				
	on with mem				
	51.35				

Table 5.8	:	Efficiency	of	LPM1	model ;	in ca	alibration	and
		validation	mod	le for	: Serang	g at	Tongpait.	

Calibration

,

Memory Length	Efficiency	with no.	of error	terms	
-	0	1	2	3	4
1			74.57		
2	70.80	81.01	81.01	81.06	81.15
3	77.44	86.50	86.51	86.58	86.67
4	78.50	86.80	86.82	86.94	86.98
5	79.16	87.19	87.22	87.32	. 87.40
6	79.45	87.40	87.45	87.55	87.61
7	79.58	87.40	87.44	87.51	87.58
8	79.71	87.54	87,59	87.67	87.74
9	79.85	87.65	87.72	87.83	87.89
10	79.92	87.69	87.74	87.86	87.92
				•• •• •• •• •• •• •• •	
	on with mem				
	49.38	69.85	69.27	69.63	70.11

Table 5.9 : Efficiency of LPM2 model in calibration and validation mode for Serang at Tongpait.

Calibration

.

. •

mory ngth	Efficiency	with no.	of error	terms	
	0	1	2	3	4
1	41.54	68.19	68.51	68.94	69.0
2	54.75	74.11	74.12	74.27	74.41
3	63.01	80.72	80.74	80.87	80,9
4	64.70	81.26	81.29	81.54	81.5
5	65,46	81.76	81.82	82.06	82.1
6	65.78	81.97	82.05	82.25	82.3
7	65.90	81.98	82.06	82.25	82.3
8	66.00	82.06	82.15	82.35	82.4
9	66.17	82.21	82.32	82.58	82.6
10	66.29	82.29	82.29	82.55	82.6
ilidati	on with mem	ory lengt			• •• •• •• •• •• •• ••

5 55.75 70.86 70.34 67.54 70.51

Finally for Serang at Tongpait, LPM2 model with memory length of five days and two error terms is recommended.

5.3 Discussion of Results

The results of application of LPM model and TRL model have been discussed in the previous section for individual sites. Keeping in view all the results, the following observations can be made.

 For Serang river basin, there is no strong seasonality in rainfall and runoff. At the most the hydrological year can be divided in two parts i.e. dry season (June to Oct.) and wet season (Nov. to May). Within wet season or dry season the variation is not much.

It is because of this reason that LPM models are not giving significantly better performance than TRL model.

- 2. In general, LPM models are better than TRL model.
- 3. LPM1 model is better than LPM2 model. However due to smoothening of means. The determination in efficiency is not significant.
- 4. As the catchment area increases, the performance of linear perturbation model improves. For Serang at Tongpait the efficiency in calibration and validation mode are 81.8% and 70.34% which are quite satisfactory.

5. The incorporation of error model improves the efficiency significantly. For all the three sites the error model with two error terms are sufficient.

The incorporation of error model, in forecasting the flows in real time will be quite useful. However for extending the stream flow records with the help of long term rainfall records, the error model can not be incorporated, as we will not have the observed runoff values.

6. As the catchment area increases, we require much lesser no. of harmonics to smoothen the mean daily discharge and rainfall series.

CHAPTER VI

CONCLUSIONS

Linear perturbation model and single input total response linear model have been applied to three sites of Serang river basin of Indonesia. The effect of memory length and no. of error terms in error model have been studied. Based on the analysis of data and application of models, the following conclusions can be drawn.

- The increase in memory length, increases the efficiency of linear perturbation model. For the three sites the following memory lengths may be taken
 - a. Lusi at Kundurun 3 days
 - b. Lusi at Memdurun 4 days
 - c. Serang at Tonfpait 5 days
- 2. For the three sites, two number of error terms in error model are sufficient. The increase in number of error term will, through increase the efficiency, yet increase is not significant.
- 3. For the three sites, the significant harmonics to smoothen the mean daily discharge and rainfall series are as given under

Site	No. of significant harmonics					
_	Runoff	rainfall				
a. Lusi at Kundurun	17	63				
b. Lusi at Mendurun	8	38				
c. Serang at Tongpait	2	36				

 For the three sites the coefficients of equation (4.21) are as follows

· · · · · · · · · · · · · · · · · · ·	Coefficients								
Site	h1	h ₂	h ₃	h4	h ₅	b ₁	^b 2	b ₃	^b 4
Lusi at Kundurun	0.35	0.54	0.41	0	0	0.47	0.13	0	0
Lusi at Mendurun	2.11	3.00	1.47	1.84	0	0.35	0.17	0	0
Serang at Tonfpait	1.53	4.93	4.33	1.76	1.37	0.73	-0.07	0	0

For extension of runoff records, error model can not be used. Hence b_1, b_2 will be zero for all three sites.

For forecasting of flows, the error model should be incorporated and b_1, b_2 are given above should be used.

5. The conclusions drawn in the study are site specific. The linear perturbation model may be applied to other sites of other river basins on the similar lines. The performance of

perturbation model is quite satisfactory for a basin, where seasonality is not very strong as drainage are also relatively small.

REFERENCES

- Clark, C.O., (1945). Storage and unit hydrograph. Transactions of the American Society of Civil Engineers, 110 : 1419-1446.
- Clarke, R.T., (1973). Mathematical models in hydrology. F.A.O., Publication 19, Rome, Italy.
- Committee on flood, (1930). Journal of Boston Society of Civil Engineers, 17/7 : 285 : 464.
- Dooge, J.C.I., (1957). The rational method for estimating flood peak. Engineering (London), 184 : 311-374.
- Dooge, J.C.I. (1959). "A general theory of the unit hydrograph". Journal of Geophysical Research, 64(2) : 241-256.
- Dooge, J.C.I., 1973. The linear theory of hydrologic systems. Tech. Bull. U.S.Dep. Agric. No.1468, U.G.Govt. Print. Off., Washington, D.C.
- Fleming, G., (1975). Computer simulation technology in hydrology. American Elsevier Publishing Co.Inc., U.S.A.
- Kulandaiswamy, U.C., (1964). A basic study of rainfall excess-surface runoff relationship in a basin sysyem. Ph.D. Thesis, Dept. of Civil Engineering, Uni. of Illinois, U.S.A.

- Mathur, B.S., Singh, R. and Goel, N.K., (1989). Indo-German bilateral project on 'Watershed Management'. Dept. of Hydrology, University of Roorkee, Roorkee, India.
- Nash, J.E., (1957). The form of the instantaneous unit hydrograph. International Association of Scientific Hydrology Publication, 45(3) : 114-121.
- Nash J.E., and Barsi, B.I., (1983). A hybrid model for flow forecasting on large catchment J. Hydrology, 65 : 125-137.
- Permana, H., (1989). Flow forecasting for Negara river basin, Indonesia. M.E. Thesis, Department of Hydrology, University of Roorkee, Roorkee, India.

Sherman, L.K. (1932). Stream flow from rainfall by the unit graph method. Engineering News Rec. 108 : 501 : 505.

- Singh, K.P., (1962). A non linear approach to the instantaneous unit hydrograph theory. Ph.D. Thesis, University of Illinois, Urbana, U.S.A.
- Singh, V.P., (1989). Hydrologic systems-Vol.II Watershed modeling Englewood cliffs, New Jercy : Prentice Hall. Todini, E., (1988). Rainfall-runoff modelling past, present and future, Journal of Hydrology, 100 : 341-352.

RAINFALL F

```
С
       С
       *
       *
С
         DISSERTATION WORK OF SUTJIPTO
       *
         GUIDED BY DR. NK. GOEL
С
С
       *
         PROGRAMME FOR PLOTTING AND CHANGING THE FORMAT OF RAIN- *
       *
         FALL/RUNOFF DATA
С
       *
С
          DEPARTMENT OF HYDROLOGY UNIVERSITY OF ROORKEE INDIA
C
       *****
C
DIMENSION RAIN(12,32), NDAY(12), ARAIN(50,12,31), XX1(366)
       INTEGER YEAR
       CHARACTER *200 NAME
       CHARACTER *20 FILE1, FILE2
       DATA NDAY/31,28,31,30,31,30,31,31,30,31,30,31/
       WRITE(*,*) ' INPUT FILE NAME = '
       READ(*,'(A)')FILE1
       WRITE(*,*) ' OUTPUT FILE NAME = '
       READ(*,'(A)')FILE2
 OPEN(UNIT=1,FILE=FILE1)
       OPEN(UNIT=2, FILE=FILE2)
 OPEN(UNIT=3, FILE='PLOT')
 READ(1,*)IT1,IT2,IT3
 DO 30 I=1,2
 30 READ(1,200)NAME
 WRITE(2,31)NAME
 31 FORMAT(2X,A160)
 REWIND1
       READ(1,*) IT1, IT2, IT3
 WRITE(2,20) IT1, IT2, IT3
       DO 10 I1=1,IT1
 DO 1 I=1,2
 1 READ(1,200) NAME
 200
       FORMAT(A200)
 READ(1, *)YEAR
       WRITE(*,*)YEAR
 DO 2 I=1,2
```

```
2 READ(1,200)NAME
K1 = 28
A = YEAR - 1900
IF(MOD(A, 4), EQ.0)THEN
K1=29
        ENDIF
DO 3 J=1,K1
3 READ (1,*) IDAY, (RAIN(I,J), I=1,12)
DO 4 J = K1 + 1, 30
4 READ(1,*) IDAY, RAIN(1,J), (RAIN(1,J), I=3,12)
READ(1,*) IDAY, RAIN(1,31), RAIN(3,31), RAIN(5,31), RAIN(7,31),
     1 RAIN(8,31), RAIN(10,31), RAIN(12,31)
DO 5 I=1,8
 5 READ(1,200)NAME
С
        WRITE(2,21)YEAR
       FORMAT(2X,F10.0)
 21
 20 FORMAT(2X,618)
J=1
 J1=31
WRITE(2,23)YEAR, J, J1
 23 FORMAT(2X,616)
 WRITE(2,22)(RAIN(1,J),J=1,31)
 J=2
 J1=K1
 WRITE(2,23)YEAR, J, J1
 WRITE(2,22)(RAIN(2,J),J=1,K1)
 J = 3
 J1 = 31
 WRITE(2,23)YEAR, J, J1
 WRITE(2,22)(RAIN(3,J),J=1,31)
 J = 4
 J1 = 30
 WRITE(2,23)YEAR, J, J1
 WRITE(2,22)(RAIN(4,J),J=1,30)
 J=5
 J1=31
```

WRITE(2,23)YEAR, J, J1 WRITE(2,22)(RAIN(5,J),J=1,31) J=6 J1=30 WRITE(2,23)YEAR, J, J1 WRITE(2,22)(RAIN(6,J),J=1,30) J=7 J1=31 WRITE(2,23)YEAR, J, J1 WRITE(2,22)(RAIN(7,J), J=1,31) J = 8J1 = 31WRITE(2,23)YEAR, J, J1 WRITE(2,22)(RAIN(8,J),J=1,31) J=9J1 = 30WRITE(2,23)YEAR, J, J1 WRITE(2,22)(RAIN(9,J),J=1,30) J=10 J1=31 WRITE(2,23)YEAR, J, J1 WRITE(2,22)(RAIN(10,J),J=1,31) J = 11J1 = 30WRITE(2,23)YEAR, J, J1 WRITE(2,22)(RAIN(11,J),J=1,30) J=12 J1 = 31WRITE(2,23)YEAR, J, J1 WRITE(2,22)(RAIN(12,J),J=1,31) 22 FORMAT(1X, 10F7.2)**10 CONTINUE** REWIND 2 READ(2,31)NAME READ(2,20)IT1,IT2,IT3 DO 100 I=1,IT1

74

ιż,

. ;

Ť

```
ILAST=0
ISTART=1
DO 500 K=1,12
READ(2,*)YEAR1,MONTH,NDAY1
ILAST=ILAST+NDAY1
READ(2,*)(XX1(J),J=ISTART,ILAST)
ISTART=ILAST+1
500 CONTINUE
CALL PLOT(XX1,365,1,YEAR1)
100 CONTINUE
STOP
```

END

```
SUBROUTINE PLOT (X1, N, OPTION, Y1)
       DIMENSION X1(1), A(101)
       DATA CHAR, GRID, BLANK, ZERO, ANEG/1H*, 1H+, 1H, 1H0, 1H-/
       IF(OPTION.EQ.0) GO TO 71
WRITE(3,100)Y1
100 FORMAT(//10x, 'HYETOGRAPH FOR THE YEAR = ',2F8.0)
       X1MAX = X1(1)
       DO 51 I=1,N
       IF(X1MAX-X1(I))52,51,51
52
       X1MAX = X1(I)
51
       CONTINUE
       SF1 = X1MAX / 100.
       SF2=SF1
       WRITE(3,1)X1MAX
1
       FORMAT(20X, 'MAX. VALUE OF X1 IS', F10.1)
       WRITE(3,2)SF1
2
       FORMAT(20X, 'ONE SQUARE IS EQUAL TO'F10.2)
3
       FORMAT(16X, 101A1)
       DO 55 I=1,101
```

55	A(I)=GRID
	WRITE(3,4)(J,J=1,101,10)
4	FORMAT(/2X,'NUM.',' X1',5X,I2,10(6X,I4))
	I = 1
	IF(X1(1).GT.0.0)GO TO 60
	NA=1
	A(NA)=ANEG
	GO TO 61
60	NA = X1(1) / SF1 + 1.5
	A(NA)=CHAR
61 .	WRITE(3,5)I,X1(I),(A(J),J=1,101)
5	FORMAT(1X,15,F10.1,101A1)
	DO 56 I=1,101
56	A(I)=BLANK
	DO 57 I=2,N
ı	IF(X1(I).GT.0.0)GO TO 62
	NA=1
	A(NA)=ANEG
	GO TO 63
62	AA=X1(I)/SF1+1.5
	NA=AA
	A(NA)=CHAR
63	WRITE(3,5)I,X1(I),(A(J),J=1,101)
	DO 58 J=1,101
58	A(J)=BLANK
57	CONTINUE
	DO 59 J=1,101
59	A(J)=GRID
	WRITE(3,3)(A(JJ),JJ=1,101)
	WRITE(3,4)(J,J=1,101,10)
71	RETURN
	END
c	

.

ī

.

. . . .

.

.

.

76

•

1 1979	1979
1 MEAN	DAILY DISCHARGE DATA OF LUSI AT KUNDURAN YEAR 1979
	(FOR INPUT FILE OF RAINFALL.F)

1979	9											
DAY	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC
	***										•····	
1	10.9	32.1	5.9	. U	17.8	ē, o	. ÿ	.ũ	. 7	. 9	7.2	3.1
2	30.8	17.8	6.1	36.9	10,5	37.6	1.6	.0	. 2	1.7	4.5	7.0
3	15.0	0.5	.0	11.9	10.3	12.3	2.3	.0	. 2	20.1	2.3	15,1
4	11.5	6.1	.0	10.5	10.3	6.5	1.5	. 0	. 2	45.3	1.5	67.2
5	13.7	7.0	.0	10.5	11.5	45.3	1.2	.0	. 2	12.0	.0	51.1
6	30.2	15.8	.0	15.3	32.6	25.7	1.2	.0	. 2	17.2	. 0	21.1
7	11.8	7.6	.0	21.5	.0	11.8	1.3	.0	.0	11.5	.0	15.1
8	16.6	28.7	121.0	21.3	.0	68.3	1.6	.0	.0	12.3	.0	7.2
9	8.9	33.3	. 0	41.7	.0	29.6	1.7	.0	.0	3.8	.0	4,1
10	10.1	21.3	.0	28.7	.0	14.5	.7	.0	.0	2.1	.0	3.9
11	11.8	28.7	.0	24.8	11.0	13.1	.7	.0	.0	1.3	9.1	4.1
12	11.5	11.5	.0	37.6	11.0	8.3	.0	.0	. 8	.9	11.3	4.7
13	7.6	9.1	.0	26.3	10.8	5.9	.0	.0	.5	.7	4.5	2.1
14	.0	.0	.0	23.6	10.8	4.8	.0	.0	.4	.5	3.4	0.7
15	.0	.0	.0	14.2	10.8	3.9	.0	.0	.0	.0	3.8	12.6
16	36.9	.0	.0	21.3	10.8	3.9	.0	.0	.0	.0	6.1	14.2
17	18.4	34.2	.0	. 0	10.8	4.1	.0	.0	.0	.0	3.7	16.4
18	21.0	27.2	.0	47.3	10.8	3.9	.0	.0	.3	.0	. 0	11.5
19	11.3	17.2	.0	16.1	. 0	3.6	.0	.0	.3	.7	.0	7.0
20	18.6	11.7	.0	12.3	. 0	3.1	.0	.0	. 3	. 8	. 0	5.7
21	9.3	6.3	.0	14.2	. 0	3.0	.0	.0	. 4	.7	.0	5.1
22	11.0	6.3	.0	. 0	.0	2.8	.0	.6	.4	. 5	1.6	n. 1
23	19.2	6.3	.0	. 0	82.7	2.4	. 0	.8	. 1	.7	1.6	20.4
24	8.1	18.4	24.8	.0	69.8	2.3	.0	.7	1.5	.7	1.7	19.2
25	5.7	14.2	52.9	. 0	48.0	2.3	.0	.7	1.8	.5	1.7	20.4
26	73.5	7.6	46.8	23.0	.0	2.3	. 0	.6	0.1	. 5	1.6	6.5
27	51.8	14.5	40.7	22.7	. 0	2.1	.0	.5	4.2	5.7	7.6	1,0
28	17.8	8.3	23.0	13.4	. 0	2.0	.0	.0	. 3	2.0	6.0	1.2
29	8.1		32.6	13.4	16.9	2.1	.0	.0	.4	1.5	0,9	, 1
30	6.1		36.4	13.7	18.4	.9	.0	. 2	.9	.7	4.3	2.6
31	10.1		.0		8.5		.0	. 2		.9		1.1

TOTAL	534.1	402.7	390.2	522.2	420.2	334.7	14.7	4.3	22.1	146.2	93.3	395.0
MEAN	17.2	14.4	12.6	17.4	13.6	11.2	.5	. 1	.7	4.7	3.1	12.0
MAXI	73.5	35.1	121.0	47.3	82.7	68.3	2.3	. 8	8.1	45.3	11.3	67.2
MINI	.0	.0	.0	.0	. 0	. 9	. 0	. 0	.0	. 0	.0	. 1
MEAN	9.0	MAXIMUM	121.0	MINIMUM	. 0	VOLUME	283.4	MILLION H	3 A N	INUAL RUNO	FF .	305.9 Mil

÷.,

• .

1 MEAN	DAILY	DISCHARG	E DATA	OF LUSI	AT KUNI	DURAN Y	EAR 197	9	
		(FOR O	UTPUT F	TLE OF	RAINFA	LL.F)			•
	1 1	979 1	979						
1979	1	31							
18.90	38.80	15.80	11.50	13.70	30.20	11.80	16.60	8.90	10.10
11.80	11.50	7.60	0.00	0.00	36.90	18.40	21.00	11.30	18.60
9.30	11.00	19.20	8.10	5.70	73.50	51.80	17.80	8.10	6.10
10.10									
1979	2	28							
35.10	17.80	8.50	6.10	7.00	15.80	7.60	28.70	33.30	21.30
28.70	11.50	9.10	0.00	0.00	0.00	34.20	27.20	17.20	11.70
6.30	6.30	6.30	18.40	14.20	7.60	14.50	8.30		
1979	3	31							
5.90	6.10	0.00	0.00	0.00	0.00	0.0.0	121.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	24.80	52.90	46.80	40.70	23.00	32.60	36.40
0.00				•					
1979	4	30							
0.00	36.90	11.90	10.50	10.50	15.30	21.50	21.30	41.70	28.70
24.80	37.60	26.30	23.60	14.20	21.30	0.00	47.30	16.10	12.30
14.20	0.00	0.00	0.00	0.00	23.00	22.70	13.40	13.40	13.70
1979	5								
13.90	10.50		10.30		32.60		0.00		0.00
11.00			10.80		10.80			0.00	0.00
0.00		82.70	69.80	48.00	0.00	0.00	0.00	16.90	18.40
8.50									
1979	•								
6.30			6.50	45.30	25.70	11.80	68.30	29.60	14.50
13.10			4.80		3.90	4.10		3.60	3.10
3.00			2.30	2.30	2.30	2.10	2.00	2.10	0.90
1979				•					
0.90			1.50		1.20	1.30			0.70
0.70			0.00		0.00	0.00		0.00	0.00
0.00		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00									
1979	8	31							

0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	Û.ÛÛ	Ô.ŮŬ	0.00	0.00	0.00	0.00	0.00
0.00	0.60	0.80	0.70	0.70	0.60	0.50	0.00	0.00	0.20
0.20									
1979	9	30							
0.20	0.20	0.20	0.20	0.20	0.20	0.00	0.00	0.00	0.00
0.00	0.80	0.50	0.40	0.00	0.00	0.00	0.30	0.30	0.30
0.40	0.40	0.30	1.50	1.80	8.10	4.20	0.30	0.40	0.90
1979	10	31							
0.90	1.70	20.10	45.30	12.00	17,20	11.50	12.30	3.80	2.10
1.30	0.90	0.70	0.50	0.00	0.00	0.00	0.00	0.70	0.80
0.70	0.50	0.70	0.70	0.50	0.50	5.70	2.00	1.50	0.70
0.90									
1979	11	30							
7.20	4.50	2.30	1.60	0.00	0.00	0.00	0.00	0.00	0.00
9.10	11.30	4.50	3.40	3.80	6.10	3.70	0.00	0.00	0.00
0.00	1.60	1.60	1.70	1.70	1.60	7.60	6.80	8.90	4.30
1979	12	31							
3.40	7.00	35.10	67.20	51.10	21.30	15.30	7.20	4.30	3.90
4.10	4.70	2.40	8.70	12.60	14.20	16.40	11.50	7.80	5.70
5.70	8.10	20.40	19.20	20.40	8.50	3.90	1.20	0.70	2.60
1.30									

.

•

,

79

.

,

.

POWER.F

```
С
       *******
С
       *
С
       *
           DISSERTATION WORK OF SUTJIPTO
С
       *
           GUIDED BY DR.NK.GOEL
С
       ×
           MASTER PROGRAMME FOR FILLING THE MISSING DATA USING
С
       *
           POWER DISTANCE METHOD
С
       *
           DEPARTMENT OF HYDROLOGY UNIVERSITY OF ROORKEE INDIA
С
                    ****
C
       * * * * * * * * * * * *
 DIMENSION RAIN1(31), RAIN2(31), CALRAIN(31)
       CHARACTER*200 TITLE1
 CHARACTER*80 FN1
 CHARACTER*80 FN2
 CHARACTER*80 FN3
 WRITE (*,*) 'INPUT FILE NAME OF RAINFALL STATION1 ?'
 READ (*,'(A)')FN1
 WRITE (*,*) 'INPUT FILE NAME OF RAINFALL STATION2 ?'
 READ (*, '(A)')FN2
       WRITE (*,*) 'OUTPUT FILE NAME ?'
 READ(*,'(A)')FN3
 OPEN(UNIT=1,FILE=FN1,STATUS='OLD')
 OPEN(UNIT=2,FILE=FN2,STATUS='OLD')
 OPEN(UNIT=3,FILE=FN3)
       READ(1,9999) TITLE1
       READ(1, *)TT1,TT2,TT3
 9999 FORMAT(200A)
 READ(2,9999)TITLE1
 READ(2, *)TT1, TT2, TT3
 WRITE(3.5)
5 FORMAT(' RAINFALL DATA FROM THE CALCULATION')
 WRITE(3,10)TT1,TT2,TT3
10 FORMAT(3F7.0)
 D1=6.5
 D2 = 9.0
 DO I=1,100
 DO J=1,12
```

```
READ (1,*,END=99) NYEAR1,MON1,MONDAY
 READ(\hat{2}, \hat{*}, END=\hat{9}\hat{9})NYEAR2, MON2, MONDAY
 IF (NYEAR1.NE.NYEAR2) THEN
 TYPE 2,NYEAR1
 GO TO 99
 END IF
 IF (MON1.NE.MON2) THEN
 TYPE 4, MON1
 GO TO 99
 END IF
2 FORMAT('YEAR NO.' 15' NOT MATCHING')
4 FORMAT('MONTH NO.' I5 'NOT MATCHING')
 READ (1, *) (RAIN1(J1), J1=1, MONDAY)
 READ(2, *)(RAIN2(J1), J1=1, MONDAY)
 WRITE(3,1)NYEAR1, MON1, MONDAY
1 \text{ FORMAT}(315)
 DO J1=1, MONDAY
 CALRAIN(J1) = ((RAIN1(J1)/D1**2) + (RAIN2(J1)/D2**2))
      1 /((1/D1**2)+(1/D2**2))
END DO
 WRITE(3,6)(CALRAIN(J1), J1=1, MONDAY)
6 \text{ FORMAT}(10\text{F7.2})
 END DO
 END DO
99 STOP
```

END

Appendix III

RBAR.F

```
C
С
С
          DISSERTATION WORK OF SUTJIPTO
C
          GUIDED BY DR.NK. GOEL
С
          MASTER PROGRAMME FOR COMPUTATION OF AVERAGE RAINFALL
С
          OF SERANG RIVER BASIN, INDONESIA USING THIESEN POLYGON
С
          METHOD
С
           DEPARTMENT OF HYDOLOGY UNIVERSITY OF ROORKEE, INDIA
        *
С
        С
        DIMENSION RAIN1(31), RAIN2(31), RAIN3(31), RAIN4(31),
        RAIN5(31), RAIN6(31), RAIN7(31), RAIN8(31), RAIN9(31),
     1
     1
        RAIN10(31), AVERAIN(31)
        CHARACTER*200 TITLE1
        CHARACTER*80 FN1, FN2, FN3, FN4, FN5, FN6, FN7, FN8, FN9,
     1
        FN10, FN11
        WRITE (*,*) 'INPUT FILE NAME OF RAINFALL STATION1 ?'
        READ (*, '(A)')FN1
        WRITE (*,*) 'INPUT FILE NAME OF RAINFALL STATION2 ?'
        READ (*, '(A)')FN2
        WRITE (*,*)'INPUT FILE NAME OF RAINFALL STATION3 ?'
        READ (*, '(A)')FN3
        WRITE (*,*) 'INPUT FILE NAME OF RAINFALL STATION4 ?'
        READ (*, '(A)')FN4
        WRITE (*,*) 'INPUT FILE NAME OF RAINFALL STATION5 ?'
        READ (*,'(A)')FN5
        WRITE (*,*) 'INPUT FILE NAME OF RAINFALL STATION6 ?'
        READ (*, '(A)')FN6
        WRITE (*,*) 'INPUT FILE NAME OF RAINFALL STATION7 ?'
        READ '(*, '(A)') FN7
        WRITE (*,*) 'INPUT ,FILE NAME OF RAINFALL STATION8 ?'
        READ (*,'(A)')FN8
        WRITE (*,*) 'INPUT FILE NAME OF RAINFALL STATION9 ?'
        READ (*, '(A)')FN9
        WRITE (*,*) 'INPUT FILE NAME OF RAINFALL STATION10 ?'
        READ (*,'(A)')FN10
        WRITE (*,*) 'OUTPUT FILE NAME ?'
        READ(*,'(A)')FN11
        OPEN(UNIT=1, FILE=FN1, STATUS='OLD')
        OPEN(UNIT=2,FILE=FN2,STATUS='OLD')
        OPEN(UNIT=3, FILE=FN3, STATUS='OLD')
        OPEN(UNIT=4, FILE=FN4, STATUS='OLD')
        OPEN(UNIT=5,FILE=FN5,STATUS='OLD')
        OPEN(UNIT=6, FILE=FN6, STATUS='OLD')
        OPEN(UNIT=7, FILE=FN7, STATUS='OLD')
        OPEN(UNIT=8, FILE=FN8, STATUS='OLD')
        OPEN(UNIT=9,FILE=FN9,STATUS='OLD')
        OPEN(UNIT=10, FILE=FN10, STATUS='OLD')
        OPEN(UNIT=11,FILE=FN11)
        READ(1,9999) TITLE1
        READ(1, *)TT1, TT2, TT3
  9999
         FORMAT(200A)
        READ(2,9999)TITLE1
         READ(2,*)TT1,TT2,TT3
```

5

10

•

,

READ(3,9999)TITLE1 READ(3,*)TT1,TT2,TT3 READ(4,9999)TITLE1

READ(4,*)TT1,TT2,TT3 READ(5,9999)TITLE1

READ(5,*)TT1,TT2,TT3

	READ(6,9999)TITLE1
	READ(6,*)TT1,TT2,TT3
	READ(7,9999)TITLE1
	READ(7,*)TT1,TT2,TT3
	READ(8,9999)TITLE1
	READ(8, *)TT1,TT2,TT3
	READ(9,9999)TITLE1
	READ(9, *)TT1,TT2,TT3
	READ(10,9999)TITLE1
	READ(10,*)TT1,TT2,TT3
	WRITE(11,5)
	FORMAT(' AVERAGE RAINFALL OF THE BASIN')
	WRITE(11,10)TT1,TT2,TT3
	FORMAT(3F7.0)
	A1=0.053
	A2=0.037
	A3=0.082
	A4 = 0.064
	A5=0.05
	A6=0.061
	A7=0.176
	A8=0.188
	A9=0.260
	A10=0.029
	DO I=1,100
	DO J=1,12 .
	READ (1,*,END=99) NYEAR1,MON1,MONDAY
	READ(2,*,END=99)NYEAR2,MON2,MONDAY
	READ(3, \star , END=99)NYEAR3, MON3, MONDAY
	READ(4, *, END=99)NYEAR4, MON4, MONDAY
	READ(5, *, END=99)NYEAR5, MON5, MONDAY
	READ(6, *, END=99)NYEAR6, MON6, MONDAY
	READ(7, *, END=99)NYEAR7, MON7, MONDAY
	READ(8, *, END=99)NYEAR8, MON8, MONDAY
	READ(9, *, END=99)NYEAR9, MON9, MONDAY
	READ(10, *, END=99)NYEAR10, MON10, MONDAY
	IF (NYEAR1.NE.NYEAR2.OR.NYEAR1.NE.NYEAR3.OR.NYEAR1.NE.
1	NYEAR4.OR.NYEAR1.NE.NYEAR5.OR.NYEAR1.NE.NYEAR6.OR.NYEAR1
1	.NE.NYEAR7.OR.NYEAR1.NE.NYEAR8.OR.NYEAR1.NE.NYEAR9.OR.
1	NYEAR1.NE.NYEAR10)THEN
	WRITE(11,2)NYEAR1
	GO TO 99
	END IF
_	IF (MON1.NE.MON2.OR.MON1.NE.MON3.OR.MON1.NE.MON4
1	.OR.MON1.NE.MON5.OR.MON1.NE.MON6.OR.MON1.NE.MON7
1	.OR.MON1.NE.MON8.OR.MON1.NE.MON9.OR.MON1.NE.MON10
1)THEN
	WRITE(11,4)MON1

.

2 4	GO TO 99 END IF FORMAT('YEAR NO.' I5' NOT MATCHING') FORMAT('MONTH NO.' I5 'NOT MATCHING') READ (1,*)(RAIN1(J1),J1=1,MONDAY) READ (2,*)(RAIN2(J1),J1=1,MONDAY) READ (3,*)(RAIN3(J1),J1=1,MONDAY) READ (4,*)(RAIN4(J1),J1=1,MONDAY) READ (5,*)(RAIN5(J1),J1=1,MONDAY) READ (6,*)(RAIN6(J1),J1=1,MONDAY) READ (7,*)(RAIN7(J1),J1=1,MONDAY)
	READ (8,*)(RAIN8(J1),J1=1,MONDAY) READ (9,*)(RAIN9(J1),J1=1,MONDAY) READ (10,*)(RAIN10(J1),J1=1,MONDAY)
1	WRITE(11,1)NYEAR1,MON1,MONDAY FORMAT(315) DO J1=1,MONDAY
1 1	AVERAIN(J1)=A1*RAIN1(J1)+A2*RAIN2(J1)+A3*RAIN3(J1)+ A4*RAIN4(J1)+A5*RAIN5(J1)+A6*RAIN6(J1)+A7*RAIN7(J1)+ A8*RAIN8(J1)+A9*RAIN9(J1)+A10*RAIN10(J1) END DO
6	WRITE(11,6)(AVERAIN(J1),J1=1,MONDAY) FORMAT(10F7.2) END DO
99	END DO STOP END

.

.

Appendix IV

TESTING.F

```
C *******
Ċ
С
        * DISSERTATION WORK OF SUTJIPTO
С
        * GUIDED BY DR.N.K.GOEL
С
        * HYBRID MODEL FOR DAILY RUNOFF ANALYSIS, MEAN DAILY RUNOFF *
С
        ×
         AND MEAN DAILY RAINFALL ARE SMOOTHENED USING HARMONICS
С
       *
          FITTING AND MODEL PARAMETERS ARE UPTODATED
С
        *
          DEPARTMENT OF HYDROLOGY UNIVERSITY OF ROORKEE, INDIA
С
С
        *********************
 DIMENSION SUMD(365), SUMR(365), NYEAR(50), NDAY(12), DIS(31)
 DIMENSION DISCHARG(1500), AMDIS(365), DIFFO(1500), R(31)
 DIMENSION RF(1500), AMR(365), DIFFR(1500), Y(1500), A(2500)
 DIMENSION X(1500,30), XT(30,1500), XTX(30,30), XTY(30)
 DIMENSION XINV(30,30), COEF(30), LMN(1500), MNO(1500)
 DIMENSION CDIS(1500), CDIFFQ(1500), SS1(12)
 DIMENSION ERR(1500), ERH(30)
 DIMENSION Y1(1500), A1(2500), CERR(1500)
 DIMENSION X1(1500,30), XT1(30,1500), XTX1(30,30), XTY1(30)
 DIMENSION XINV1(30,30), COEF1(30), LMN1(1500), MNO1(1500)
 DIMENSION HMDIS(365), HMR(365), T(30)
        CHARACTER*200 TITLE1
 CHARACTER*80 FN1
 CHARACTER*80 FN2
 CHARACTER*80 FN3
 OPEN(UNIT=7, FILE='TESTING.DAT', STATUS='OLD')
 OPEN(UNIT=8, FILE='COEF1.DAT')
 WRITE (*,*) 'INPUT FILE NAME OF RUNOFF ?'
 READ (7, '(A)')FN1
 WRITE (*,*) 'INPUT FILE NAME OF RAINFALL ?'
 READ (7, '(A)')FN2
        WRITE (*,*) 'OUTPUT FILE NAME ?'
 READ(7, '(A)') FN3
 WRITE(*,*) 'DO YOU WANT TO CALIBRATE THE MODEL?'
 READ(7,334)IANS
 334 FORMAT(A4)
```

```
DATA NDAY/31,28,31,30;31,30,31,31,30,31,30,31/
DATA IYES/'YES'/
OPEN(UNIT=1,FILE=FN1,STATUS='OLD')
OPEN(UNIT=2,FILE=FN2,STATUS='OLD')
OPEN(UNIT=3, FILE=FN3)
DO 1 I=1,365
SUMD(I)=0.0
SUMR(I)=0.0
1 CONTINUE
WRITE(*,*)'BEGINING YEAR'
READ(7,*)NBYEAR
WRITE(*,*)'ENDING YEAR'
READ(7, *)NEYEAR
NYR=NEYEAR-NBYEAR+1
K_{2} = 0
K1 = 0
SUMD1=0
       READ(1,9999) TITLE1
       READ(1, *)TT1, TT2, TT3
9999 FORMAT(200A)
       DO 2 I=1,NYR
K=0
DO 3 J=1,12
READ (1, *) NYEAR(I), MON, MONDAY
READ (1, *) (DIS(J1), J1=1, MONDAY)
IF(J.EQ.2.AND.MONDAY.EQ.29)THEN
DIS(28) = (DIS(28) + DIS(29))/2.
END IF
DO 4 J1=1,NDAY(J)
K = K + 1
SUMD(K) = SUMD(K) + DIS(J1)
K2 = K2 + 1
DISCHARG(K2) = DIS(J1)
4 CONTINUE
3 CONTINUE
2 CONTINUE
```

```
86
```

.

```
IF(IANS.NE.IYES)THEN
```

OPEN(UNIT=4,FILE='COEF.DAT',STATUS='OLD')

READ(4,*)(HMDIS(I),I=1,365)

GO TO 742

END IF

DO 5 I=1,K

AMDIS(I)=SUMD(I)/NYR

5 CONTINUE

CALL HARM(AMDIS, HMDIS, NYR, 20, 365, 2, 1, 1.)

742 WRITE(3,951)

951 FORMAT(5X'MEAN VALUES OF AMDIS')

WRITE(3,452)(AMDIS(I),I=1,K)

GO TO 666

666 WRITE(3,451)

451 FORMAT(10X, 'SMOOTHENED MEAN VALUES OF DISCHARGE HMDIS') WRITE(3,452)(HMDIS(I),I=1,K) WRITE(8,452)(HMDIS(I),I=1,K)

DO I=1,K

HMDIS(I)=AMDIS(I)

END DO

452 FORMAT(10F7.2)

NB=1

DO 6 II=1,NYR

NE = NB + 364

K = 0

DO 7 I=NB,NE

K=K+1

DIFFQ(I)=DISCHARG(I)-HMDIS(K)

7 CONTINUE

NB=NE+1

6 CONTINUE

NDQ = K2

K2 = 0

K1 = 0

SUMR1=0.0

READ(2,9999)TITLE1

```
READ(2,*)TT1,TT2,TT3
DO 10 II=1,NYR
K = 0
DO 11 J=1,12
READ (2,*) NYEAR(II), MON, MONDAY
READ (2, *) (R(J1), J1=1, MONDAY)
IF(J.EQ.2.AND.MONDAY.EQ.29)THEN
R(28) = (R(28) + R(29))/2.
END IF
DO 12 J1=1, NDAY(J)
K = K + 1
SUMR(K) = SUMR(K) + R(J1)
K2 = K2 + 1
RF(K2) = R(J1)
12 CONTINUE
11 CONTINUE
10 CONTINUE
IF(IANS.NE.IYES)THEN
READ(4, *)(HMR(1), I=1, 365)
GO TO 743
END IF
DO 14 I=1,K
AMR(I) = SUMR(I) / NYR
14 CONTINUE
CALL HARM(AMR, HMR, NYR, 100, 365, 36, 1, 1.)
J1 = 365
743 WRITE(3,954)
954 FORMAT(5X'MEAN VALUES OF AVERAGE RAINFALL AMR')
WRITE(3,452)(AMR(I),I=1,K)
        GO TO 888
888 WRITE(3,454)
 454 FORMAT(10x, 'SMOOTHENED MEAN VALUES OF AVERAGE RAINFALL HMR')
WRITE(3,452)(HMR(I),I=1,K)
 WRITE(8,452)(HMR(I),I=1,K)
 DO I=1, K
        HMR(I) = AMR(I)
```

```
88
```

```
END DO
NB=1
DO 15 II=1,NYR
NE = NB + 364
K = 0
DO 16 I=NB,NE
K = K + 1
    DIFFR(I) = RF(I) - HMR(K)
16 CONTINUE
NB = NE + 1
15 CONTINUE
WRITE(*,*)'SUPPLY MEMORY LENGTH'
READ(*,*)ML.
K=O
DO 19 I=ML,NDQ
K = K + 1
Y(K) = DIFFQ(I)
19 CONTINUE
DO 20 I=1,ML
K = 0
DO 21 J=ML+1-I,NDQ-I+1
K = K + 1
X(K,I) = DIFFR(J)
21 CONTINUE
20 CONTINUE
N=NDQ-ML+1
M=ML
IF(IANS.NE.IYES)THEN
READ(4, *)(COEF(I), I=1, M)
READ(4,*)(COEF1(I),I=1,4)
CLOSE(UNIT=4)
GO TO 338
END IF
DO 22 I=1,N
DO 23 J=1,M
XT(J,I) = X(I,J)
```

```
23 CONTINUE
 22 CONTINUE
 DO 24 I=1,M
 DO 25 J=1,M
 XTX(I, J) = 0.0
 DO 26 K=1,N
 XTX(I,J) = XTX(I,J) + XT(I,K) * X(K,J)
 26 CONTINUE
 25 CONTINUE
 24 CONTINUE
 DO 27 I=1,M
 XTY(I) = 0.0
 DO 28 J=1,N
 XTY(I) = XTY(I) + XT(I,J) * Y(J)
 28 CONTINUE
 27 CONTINUE
 K = 0
DO 29 I=1,M
 DO 30 J=1,M
 K = K + 1
 A(K) = XTX(I,J)
 30 CONTINUE
C WRITE (*,*)'I=',I,(XTX(I,J),J=1,M)
 29 CONTINUE
 CALL MINV(A,M,D,LMN,MNO)
 K = 0
 DO 31 I=1,M
 DO 32 J=1,M
 K = K + 1
 XINV(I,J) = A(K)
 32 CONTINUE
 31 CONTINUE
 DO 33 I=1,M
 COEF(I) = 0.0
 DO 34 J=1,M
 34 COEF(I) = COEF(I) + XINV(I, J) * XTY(J)
```

```
33 CONTINUE
```

```
338 WRITE(3,740)ML
```

```
740 FORMAT(6X, 'MEMORY LENGTH=', I3, ' DAYS')
WRITE (3,540)
```

WRITE(*,540)

```
540 FORMAT(10X, 'REGRESSION COEFFICIENTS')
```

```
WRITE(3, 541)(COEF(1), I=1, M)
```

```
WRITE(8,541)(COEF(I),I=1,M)
```

```
WRITE(*,541)(COEF(I),I=1,M)
```

```
541 FORMAT(10F9.5)
```

DO 35 I=1,ML-1

```
CDIFFQ(I)=DIFFQ(I)
```

```
35 CONTINUE
```

K = 0

```
DO 36 I=ML,NDQ
```

```
K = K + 1
```

```
CDIFFQ(I) = 0.0
```

```
DO 37 J=1,M
```

```
CDIFFQ(I) = CDIFFQ(I) + X(K, J) * COEF(J)
```

```
37 CONTINUE
```

```
36 CONTINUE
```

```
NB=1
```

```
DO 38 II=1,NYR
```

```
NE = NB + 364
```

```
K = 0
```

```
DO 39 I=NB,NE
```

```
K = K + 1
```

```
CDIS(I)=CDIFFQ(I)+HMDIS(K)
```

```
IF(CDIS(I).LT.0.0)CDIS(I)=0.0
```

```
39 CONTINUE
```

```
NB = NE + 1
```

```
38 CONTINUE
```

```
SSM=0.0
```

```
DO 42 I=1,NDQ
```

```
ERR(I)=DISCHARG(I)-CDIS(I)
```

```
SSM=SSM+ERR(I)*ERR(I)
```

```
42 CONTINUE
VARE=SSM7(NDQ-M)
IF(IANS.NE.IYES) GO TO 777
             1
DO 99 I=1,M
VARH=XINV(I,I)*VARE
ERH(I) = SQRT(VARH)
99 CONTINUE
912
       FORMAT(10F9.3)
WRITE(3,542)
WRITE(*,542)
542 FORMAT(10X, 'STANDARD ERROR OF REGRESSION COEFFICIENTS')
WRITE(3,541)(ERH(I),I=1,M)
WRITE(*,541)(ERH(I),I=1,M)
DO I=1,M
T(I) = (COEF(I) / ERH(I))
END DO
WRITE(3,911)
WRITE(*,911)
911 FORMAT(10X, 'T VALUES OF COEFFICIENTS')
WRITE(3,912)(T(I),I=1,M)
WRITE(*,912)(T(I),I=1,M)
777 WRITE(*,*)'DO YOU WANT TO INCORPORATE ERROR MODEL ?'
READ(*,334)IANS1
        IF(IANS1.NE.IYES)GO TO 999
        WRITE (*,*)'SUPPLY LEAD TIME FOR UPDATING'
READ (*, *) NP
K = 0
DO 44 I=NP+ML,NDQ
K = K + 1
Y1(K) = ERR(I)
44 CONTINUE
KKK = 4
DO 45 I=1,KKK
K = 0
DO 46 J=ML+1-I, NDQ-NP+1-I
 K = K + 1
```

```
92
```

```
X1(K,I) = ERR(J)
```

46 CONTINUE

```
45 CONTINUE
```

IF(IANS.NE.IYES)GO TO 744

```
NN=NDQ-NP-ML+1
```

MM = KKK

```
DO 47 I=1,NN
```

- DO 48 J=1,MM
- XT1(J,I) = X1(I,J)
- **48 CONTINUE**
- 47 CONTINUE

DO 49 I=1,MM

```
DO 50 J=1,MM
```

```
XTX1(I,J) = 0.0
```

```
DO 51 K=1,NN
```

```
XTX1(I,J) = XTX1(I,J) + XT1(I,K) * X1(K,J)
```

- 51 CONTINUE
- 50 CONTINUE
- 49 CONTINUE

```
DO 52 I=1,MM
```

```
XTY1(I) = 0.0
```

```
DO 53 J=1,NN
```

```
XTY1(I) = XTY1(I) + XT1(I, J) * Y1(J)
```

```
53 CONTINUE
```

```
52 CONTINUE
```

```
K = 0
```

```
DO 54 I=1,MM
```

```
DO 55 J=1,MM
```

```
K = K + 1
```

A1(K) = XTX1(I,J)

```
55 CONTINUE
```

```
54 CONTINUE
```

CALL MINV(A1,MM,D,LMN1,MNO1)

K = 0

DO 56 I=1,MM

DO 57 J=1,MM

```
K = K + 1
        XINV1(I,J) = A1(K)
57 CONTINUE
56 CONTINUE
DO 58 I=1.MM
COEF1(I) = 0.0
DO 59 J=1,MM
COEF1(I) = COEF1(I) + XINV1(I, J) * XTY1(J)
59 CONTINUE
58 CONTINUE
WRITE(8,541)(COEF1(I), I=1, MM)
744 K=0
MM=KKK
DO 60 I=ML,NDQ
IF(I.GE.NP+ML)THEN
K = K + 1
CERR(I)=0.0
DO 61 J=1,MM
 CERR(I) = CERR(I) + X1(K, J) * COEF1(J)
 61 CONTINUE
 CDIS(I)=CDIS(I)+CERR(I)
        IF(CDIS(I).LT.0.0)CDIS(I)=0.0
 END IF
 60 CONTINUE
 WRITE(3,643)NP
 643 FORMAT(4X, 'LEAD TIME USED IN UPDATING-', I3, 'DAYS')
 WRITE(3,642)
 642 FORMAT(10X, 'REGRESSION COEFFICIENTS IN UPDATING EQUATION')
 WRITE(3,541)(COEF1(J), J=1, MM)
 999
       CONTINUE
 NB=1
 NE=0
 WRITE(3,747)
 747 FORMAT(10X, 'COMPUTED DISCHARGE ORDINATES')
DO 62 II=1,NYR
 DO 63 J=1,12
```

```
94
```

```
NE = NE + NDAY(J)
WRITE(3,745)NYEAR(II),J
WRITE(3,746)(CDIS(I),I=NB,NE)
NB = NE + 1
63 CONTINUE
62 CONTINUE
745 FORMAT(215)
746 FORMAT(10F7.2)
NB=1
SS2=0
DO 64 I=1,NDQ
SS2=SS2+DISCHARG(I)
64 CONTINUE
AMEAN=SS2/NDO
SS2 = 0.0
SS3 = 0.0
DO 65 I=1,NYR
 WRITE(3,235)NYEAR(I)
235 FORMAT(1X, 'YEAR: --', I4)
SS=0.0
DO 66 J=1,12
IF(I.EQ.1.AND.J.EQ.1)THEN
NE=NDAY(J)
ELSE
ŃE=NE+NDAY(J)
END IF
SS1(J) = 0.0
DO 67 K=NB,NE
SS1(J) = SS1(J) + (CDIS(K) - DISCHARG(K)) * *2
SS2=SS2+(DISCHARG(K)-AMEAN)**2
67 CONTINUE
NB=NE+1
66 CONTINUE
WRITE(3,236)
236 FORMAT(10X, 'MONTHLY VARIANCES')
WRITE(3,237)(SS1(J),J=1,12)
```

```
237 FORMAT(4X,6F9.1)
DO 68 J=1,12
SS=SS+SS1(J)
68 CONTINUE
WRITE(3,238)
238 FORMAT(10X, 'ANNUAL VARIANCE')
WRITE(3,237)SS
SS3=SS3+SS
65 CONTINUE
EFF = (SS2 - SS3)/SS2
EFF=EFF*100
WRITE(3,438)EFF
WRITE(*,438)EFF
438 FORMAT(4X, 'OVERALL EFFICIENCY (%) = ', F10.3)
C TESTING OF THE MODEL IN TESTING MODEL
1000 STOP
END
С
С
 SUBROUTINE MINV(A,N,D,L,M)
DIMENSION A(1), L(1), M(1)
C SEARCH FOR LARGEST ELEMENT
 D=1.0
 NK = -N
 DO 80 K=1,N
 NK = NK + N
 \Gamma(K) = K
 M(K) = K
 KK = NK + K
 BIGA=A(KK)
 DO 20 J=K,N
 IZ=N*(J-1)
 DO 20 I=K,N
 IJ=IZ+I
 10 IF(ABS(BIGA)-ABS(A(IJ))) 15,20,20
 15 BIGA=A(IJ)
```

```
L(K) = I
M(K) = J
 20 CONTINUE
C INTERCHANGE ROWS
 J = L(K)
 IF(J-K) 35,35,25
 25 KI=K-N
 DO 30 I=1,N
 KI = KI + N
 HOLD = -A(KI)
 JI = KI - K + J
 A(KI) = A(JI)
 30 A(JI)=HOLD
C INTERCHANGE COLUMNS
 35 I = M(K)
 IF(I-K)45,45,38
 38 JP=N*(I-1)
 DO 40 J=1,N
 JK=NK+J
 JI=JP+J
 HOLD = -A(JK)
 A(JK) = A(JI)
 40 A(JI)=HOLD
C DIVIDE COLUMNS BY MINUS PIVOT
 45 IF(BIGA)48,46,48
 46 D=0.0
 RETURN
 48 DO 55 I=1,N
 IF(I-K)50,55,50
 50 IK=NK+I
 A(IK) = A(IK) / (-BIGA)
 55 CONTINUE
C REDUCE MATRIX
 DO 65 I=1,N
 IK=NK+I
 HOLD = A(IK)
```

52	X(I) = X(I) + A(J) * COS(THETA) + B(J) * SIN(THETA)
51	X(I) = X(I) + XBAR
С	CHECK IF THERE ARE NEGATIVE ORDINATES
	DO 53 I=1,W
	IF(X(I).LT.0.0)GO TO 54
53	CONTINUE
	GO TO 55
С	CALCULATE THE TOTAL NEGATIVE VOLUME
54	IF(KMAX.EQ.0)GO TO 56
	GO TO 57
56	SVOL=0.0
	DO 58 I=1,W
	IF(X(I).LT.0.0)SVOL=SVOL+(X(I)*(-1.0))
58	CONTINUE
	TVOL=(SVOL/(XBAR*W))*100.0
57	CONTINUE
С	CHECK THE OPTIONS
	IF(NOPT.EQ.0)GO TO 55
C	CARRY OUT THE CORRECTIONS
	KMAX=KMAX+KDEL
	DO 59 J=1,N
	IF(NOPT.EQ.1)AK(J) = KMAX
	IF(NOPT.EQ.2)AK(J) = (FLOAT(J)/FLOAT(N)) * KMAX
59	CONTINUE
С	CALCULATE CONSTRAINED COEFFICIENTS
	DO 60 J=1,N
	A(J) = ((W/2.) * A(J)) / ((W/2.) + AK(J))
	B(J) = ((W/2.) * B(J)) / ((W/2.) + AK(J))
60	CONTINUE
	GO TO 61
55	CONTINUE
	WRITE(3,2)
2	FORMAT(/6X'A(J)'5X'B(J)'1X'C(J)**2/2'3X'VAR'
	13X'VARH(J)'2X'CUM. SUM')
	SUM=0.0
	DO 62 J=1,N

r

```
L(K) = I
M(K) = J.
 20 CONTINUE
C INTERCHANGE ROWS
 J=L(K)
 IF(J-K) 35,35,25
 25 KI = K - N
DO 30 I=1,N
 KI = KI + N
 HOLD = -A(KI)
 JI = KI - K + J
A(KI) = A(JI)
 30 A(JI)=HOLD
C INTERCHANGE COLUMNS
 35 I = M(K)
 IF(I-K)45,45,38
 38 JP=N*(I-1)
 DO 40 J=1, N
 JK=NK+J
 JI=JP+J
 HOLD = -A(JK)
 A(JK) = A(JI)
 40 A(JI) = HOLD
C DIVIDE COLUMNS BY MINUS PIVOT
 45 IF(BIGA)48,46,48
 46 D=0.0
 RETURN
 48 DO 55 I=1,N
 IF(I-K)50, 55, 50
 50 IK=NK+I
 A(IK) = A(IK) / (-BIGA)
 55 CONTINUE
C REDUCE MATRIX
 DO 65 I=1,N
 IK = NK + I
 HOLD=A(IK)
```

```
IJ=I-N
 DO 65 J=1,N
 IJ=IJ+N
 IF(I-K)60, 65, 60
 60 \text{ IF}(J-K)62, 65, 62
 62 KJ = IJ - I + K
 A(IJ) = HOLD * A(KJ) + A(IJ)
65 CONTINUE
C DIVIDE ROW BY PIVOT
 KJ = K - N
 DO 75 J=1,N
 KJ=KJ+N
 IF(J-K)70,75,70
 70 A(KJ) = A(KJ) / BIGA
75 CONTINUE
C PRODUCT OF PIVOTS
 D=D*BIGA
C REPLACE PIVOT BY RECIPROCAL
A(KK) = 1.0/BIGA
80 CONTINUE
C FINAL ROW AND COLUMN INTERCHANGE
 K = N
 100 K = (K-1)
 IF(K)150,150,105
 105 I = L(K)
 IF(I-K)120,120,108
 108 JQ = N * (K-1)
 JR=N*(I-1)
 DO 110 J=1,N
         JK = JQ + J
 HOLD=A(JK)
 JI≃JR+J
 A(JK) = -A(JI)
 110 A(JI) = HOLD
 120 J = M(K)
 IF(J-K)100,100,125
```

```
125 KI=K-N
DO 130 I=1,N
KI = KI + N
HOLD=A(KI)
JI = KI - K + J
A(KI) = -A(JI)
 130 A(JI)=HOLD
GO TO 100
150 RETURN
 END <sup>1</sup>
С
С
 SUBROUTINE LEAP(NY,ND)
 IF(MOD(NY,4).EQ.0) THEN
 ND = 29
 ELSE
 ND=28
 END IF
 RETURN
 END
C....
        SUBROUTINE CONS(X, XBAR, VARX, A, B, N, W, NOPT)
        DIMENSION X(1), A(1), B(1), AK(100), VARH(100), C(100)
        INTEGER W
        A AND B ARE COEFFICIENTS
С
С
       N IS NO. OF HARMONICS TO BE FITTED
С
        W IS NO. OF SEASONS IN A YEAR. HERE W=365
С .
        SET THE MAXIMUM SMOOTHING PARAMETER
С
        INCREMENT OF KMAX =1% OF MAXIMUM POSSIBLE HARMONICS
        KMAX = 0
        KDEL=0.01*(W/2.)
        PAI=3.141592654
61
        DO 51 I=1,W
        X(I) = 0.0
        DO 52 J=1,N
        THETA=2.*PAI*J*I/W
```

```
99
```

52	X(I) = X(I) + A(J) * COS(THETA) + B(J) * SIN(THETA)
51	X(I) = X(I) + XBAR
С	CHECK IF THERE ARE NEGATIVE ORDINATES
	DO 53 I=1,W
	IF(X(I).LT.0.0)GO TO 54
53	CONTINUE
	GO TO 55
С	CALCULATE THE TOTAL NEGATIVE VOLUME
54	IF(KMAX.EQ.0)GO TO 56
	GO TO 57
56	SVOL=0.0
	DO 58 I=1,W
	IF(X(I).LT.0.0)SVOL=SVOL+(X(I)*(-1.0))
58	CONTINUE
	TVOL = (SVOL / (XBAR*W)) * 100.0
57	CONTINUE
С	CHECK THE OPTIONS
	IF(NOPT.EQ.0)GO TO 55
C	CARRY OUT THE CORRECTIONS
	KMAX=KMAX+KDEL
	DO 59 J=1,N
	IF(NOPT.EQ.1)AK(J) = KMAX
	IF(NOPT.EQ.2)AK(J) = (FLOAT(J)/FLOAT(N)) * KMAX
59	CONTINUE
С	CALCULATE CONSTRAINED COEFFICIENTS
	DO 60 J=1,N
	A(J)=((W/2.)*A(J))/((W/2.)+AK(J))
	B(J) = ((W/2.) * B(J)) / ((W/2.) + AK(J))
60	CONTINUE
	GO TO 61
55	CONTINUE
	WRITE(3,2)
2	FORMAT(/6X'A(J)'5X'B(J)'1X'C(J)**2/2'3X'VAR'
	13X'VARH(J)'2X'CUM. SUM')
	SUM=0.0
	DO 62 J=1, N

•

	$C(J) = (A(J) * 2 \cdot + B(J) * 2 \cdot) / 2 \cdot$
	VARH(J) = C(J) / VARX
	SUM=SUM+VARH(J)
	WRITE(3,3)A(J),B(J),C(J),VARX,VARH(J),SUM
62	CONTINUE
3	FORMAT(4F9.1,F9.4,F9.4)
	WRITE(3,4)KMAX,KDEL
4	FORMAT(' KMAX='I5,'KDEL='I5)
	WRITE(3,5)TVOL
5	FORMAT(5X, 'NEGATIVE VOLUME='F7.3'%')
С	WRITE(3,1)(X(I),I=1,W)
1	FORMAT(3X'SMOOTHENED SERIES'/(10F9.1))
i.	RETURN
	END
C***	***************************************
С	SUBROUTINE FOR HARMONIC ANALYSIS
	SUBROUTINE HARM(X,XH,N,NH,NS,NH1,NOPT,A1)
С	X:SERIES FOR HARMONIC ANALYSIS
С	XH: SMOOTHEND SERIES
С	N:NO OF YEARS FOR WHICH DATA ARE AVAILABLE.
С	NS:NO. OF SEASONS IN A YEAR
с	NH:MAXIMUM NO. OF HARMONICS TO BE FITTED TO DATA.
С	NH1:NO OF DESIRED HARMONICS FOR THE DATA.
С	NOPT: OPTION CODE FOR SUBROUTINE FOR HARMONIC ANALYSIS
С	WITH NON NEGATIVITY CONSTRAINT.
с	A1:CONSTANT USED IN PMIN AND PMAX TEST.
С	A1=1 FOR MEAN
С	A1=2 FOR STANDARD DEVIATION.
	DIMENSION X(1),XH(365),A(100),B(100)
	PAI=3.141592654
	DO 50 J=1,NH
	A(J) = 0.0
	B(J) = 0.0
	DO 51 I=1,NS
	A(J) = A(J) + X(I) * COS(2 * PAI * J * I / NS)
51	B(J)=B(J)+X(I)*SIN(2.*PAI*J*I/NS)

.

•

	A(J) = 2.*A(J) / NS
	B(J) = 2.*B(J) / NS
50	CONTINUE
c	PMAX AND PMIN TEST
C	ANS=NS
	PMIN=0.033*SQRT(ANS/(A1*N))
	PMAX=1PMIN
1	WRITE(3,1)
1	FORMAT(10X'HARMONIC ANALYSIS')
n	WRITE(3,2)
2	FORMAT(/2X'J'6X'A(J)'5X'B(J)'1X'C(J)**2/2'3X'VARX'2X'VARH(J)'
	11X'CUM. SUM'5X'PMIN'5X'PMAX')
	SUM1=0.0
52	DO 52 $I=1,NS$
JZ	SUM1=SUM1+X(I) XBAR=SUM1/NS
	SUM2=0.0
	DO 53 I=1,NS
	SUM2 = SUM2 + (X(I) - XBAR) * *2.
53	CONTINUE
55	VARX=SUM2/(NS-1.)
	SUM3=0.0
	DO 54 J=1,NH
	CJ = (A(J) + 2 + B(J) + 2 +)/2
	VARHJ=CJ/VARX
	SUM3=SUM3+VARHJ
	WRITE(3,3)J,A(J),B(J),CJ,VARX,VARHJ,SUM3,PMIN,PMAX
54	CONTINUE
3	FORMAT(I3,4F9,1,4F9.3)
	WRITE(3,4)NH1
4	FORMAT(2X'SELECTED HARMONICS ARE'15)
с	CALCULATE HARMONIC SERIES
	DO 55 I=1,NS
	XH(I) = 0.0
	DO 56 J=1,NH1
	THETA=2.*PAI*J*I/NS

.

56 XH(I) = XH(I) + A(J) * COS(THETA) + B(J) * SIN(THETA)

55 XH(I)=XBAR+XH(I)

C CALCULATE HARMONIC SERIES WITH NON NEGATIVITY CONSTRAINT CALL CONS(XH,XBAR,VARX,A,B,NH1,NS,1) RETURN

END

HARMONIC ANALYSIS

J	A(J)	B(J) C(J)**2/2	VARX	VARH(J)	CUM. SUM	PMIN	PMAX
1	7.0	3.4	30.3	92.7	0.326	0.326	0.364	0.636
2	3.6	0.1	6.6	92.7	0.071	0.397	0.364	0.636
3	2.8	2.0	6.1	92.7	0.065	0.463	0.364	0.636
4	1.4	1.5	2.1	92.7	0.023	0.486	0.364	0.636
5	1.1	1.0	1.1	92.7	0.012	0.498	0.364	0.636
6	-0.4	-0.8	0.4	92.7	0.004	0.502	0.364	0.636
7	0.6	-0.9	0.6	92.7	0.006	0.508	0.364	0.636
8	0.1	0.6	0.2	92.7	0.002	0.510	0.364	0.636
9	-0.4	0.6	0.3	92.7	0.003	0.513	0.364	0.636
10	-1.0	-0.1	0.5	92.7	0.005	0.518	0.364	0.636
11	-0.6	-1.9	2.0	92.7	0.022	0.540	0.364	0.636
12	-0.2	-1.8	1.6	92.7	0.018	0.558	0.364	0.636
13	-1.6	-1.7	2.7	92.7	0.029	0.587	0.364	0.636
14	-1.7	-1.3	2.3	92.7	0.025	0.612	0.364	0.636
15	-0.8	-1.0	0.8	92.7	0.009	0.621	0.364	0.636
16	0.0	-1.0	0.5	92.7	0.005	0.626	0.364	0.636
17	0.0	-1.6	1.3	92.7	0.014	0.640	0.364	0.636
18	-0.3	-1.0	0.6	92.7	0.006	0.647	0.364	0.636
19	-1.4	0.3	1.0	92.7	0.010	0.657	0.364	0.636
20	-0.4	-0.1	0.1	92.7	0.001	0.658	0.364	0.636
SEI	LECTED HARM	IONICS ARE	17					

A(J) B(J) C(J) * * 2/2VARH(J) CUM. SUM VAR 5.5 0.2011 2.6 18.6 92.7 0.2011 0.0437 0.2447 2.8 0.1 4.1 92.7 2.2 1.6 3.7 0.0402 0.2849 92.7 1.1 1.2 1.3 92.7 0.0142 0.2991 0.9 0.8 0.7 92.7 0.0072 0.3064 -0.3 0.0028 0.3091 -0.6 0.3 92.7 0.5 -0.7 0.3 92.7 0.0037 0.3129 0.1 0.5 92.7 0.0013 0.1 0.3141 -0.3 0.5 0.2 92.7 0.0018 0.3160 -0.8 0.0031 0.3191 -0.1 0.3 92.7

-0.	Λ -	1.5	1.3	ר נס	0 01	26 0	222 7		
-0. -0.		1.4		92.7			3327		
				92.7			3436		
-1. -1.		1.4	1.7	92.7			3617		
		1.0	1.4	92.7			3770		
-0.		0.8	0.5	92.7			3825		
0.		0.8	0.3	92.7			3857		
0.		1.3	0.8	92.7	0.00	8/ 0.	3943		
KMAX =			1 0 4 6 0						
	ATIVE V								
	N VALUE			17 00	20 62	14 00	15 20	10 07	15 60
13.57		10.10		17.93	20.63	14.90	15.30		15.60
20.73		24.07	30.17		36.30	28.17	47.33		34.07
21.60	26.00	15.17		7.53	28.87	29.70		7.07	6.13
6.13	17.13		14.03		11.23		6.93		33.67
12.00	18.33	7.67	5.73	7.27		25.10	21.07		13.30
10.50	5.13	5.60	9.47			11.20			1.97
2.03	0.00	0.00	0.00		0.00		0.00		0.00
0.00	0.00	0.00	0.00	0.00			0.00		0.00
0.00	0.00	8.27	17.63			7.80	11.40		0.00
2.90	15.80	15.87	10.87 7.87	7.33		12.43	10.70		9.57
8.27	12.53	8.77		4.73		0.00		5.37	4.10
4.73	0.00	0.00	0.00		7.67	7.57			7.03
6.23	5.40	4.63	5.00	9.47			3.93		1.50
	4.70			5.33				0.00	
0.00	0.00	27.57	23.27		0.00	0.00	0.00	5.63	6.13
2.83	2.37	12.53	4.10	2.33	15.23	8.70	4.07	22.87	9.97
4.93	4.47	2.87	2.07		1.40	1.40	4.33	2.87	1.30
1.13	1.10	1.10	1.00	1.00	0.97	0.93	0.87	0.80	0.83
0.43	0.43	0.67	0.87		0.50	0.50	0.53	0.63	0.67
0.33	0.33	0.10	0.93	0.63	0.00	0.37	0.17	0.10	0.13
0.13	0.10	0.07	0.07	0.07	0.10	0.10	0.10	0.07	0.10
0.50	0.00	2.70	0.97	0.87	1.37	0.70	0.37	0.30	0.27
0.27	0.30	0.37	0.43	0.30	0.30	0.30	0.30	0.23	0.23
0.23	0.23	0.23	0.40	0.47	0.43	0.43		0.37	0.17
0.17	0.23	0.23	0.20	0.20	0.20	0.93		0.30	0.23
0.23	0.20	0,.20	0.17	0.43	0.33	0.30	0.13	0.13	0.13

0.23	0.27	0.30	0.23	0.20	0.60	0.70	2.80	1.50
0.27	0.43	0.40	0.67	6.80	15.20	4.13	5.83	3.93
1.40	0.80	0.53	1.07	0.33	0.27	0.13	0.13	0.13
2.33	4.37	11.83	13.00	34.57	13.50	13.63	7.63	7.43
4.17	0.23	0.30	2.50	1.60	0.87	0.70	0.13	0.10
0.10	0.13	0.20	3.13	4.63	1.70	1.40	3.67	7.30
5 . 73	3.93	4.57	2.83	7.03	15.20	10.73	6.03	6.00
7.7 3	8.80	4.33	8.80	2.33	11.70	22.40	17.03	7.10
2.40	1.43	1.30	1.37	1.57	0.80	2.90	29.67	19.83
17.43	16.77	56.67	42.37	29.73	36.37	29.10	19.17	19.70
13.53	30.97	15.37	27.53					
SMOOT	HENED M	IEAN VAL	UES OF	DISCHAR	GE HMDI	S		
12.13	11.30	10.93	11.05	11.66	12.73	14.21	16.00	18.01
22.18	24.10	25.75	27.04	27.89	28.26	28.12	27.50	26.43
23.23	21.28	19.25	17.24	15.35	13.67	12.27	11.19	10.47
10.06	10.30	10.76	11.39	12.10	12.82	13.48	14.03	14.42
14.63	14.45	14.10	13.61	13.03	12.39	11.75	11.14	10.60
9.80	9.55	9.39	9.29	9.24	9.19	9.11	8.96	8.73
7.92	7.35	6.66	5.90	5.09.	4.27	3.47	2.75	2.13
1.35	1.23	1.30	1.55	1.97	2.54	3.22	4.00	4.82
6.46	7.23	7.93	8.54	9.06	9.49	9.82	10.06	10.22
10.36	10.36	10.31	10.22	10.09	9.93	9.72	9.47	9.18
8.44	8.02	7.56			6.15			5.09
								6.74
7.22	7.33	7.34						5.79
5.15	4.91	4.76						5.74
6.48	6.83	7.14	7.40	7.59				7.65
7.39	7.23	7.08	6.94					6.44
6.20	6.03	5.80	5.51	5.15	4.74			3.28
2.31	1.89	1.55	1.29	1.13	1.08	1.12	1.26	1.46
2.01	2.29	2.55	2.76	2.90	2.96	2.93		2.62
2.06	1.74	1.44	1.16	0.94	0.79	0.72	0.75	0.85
1.27	1.55	1.84	2.13		2.57			2.70
2.42	2.20	1.96	1.71	1.49	1.30	1.18	1.12	1.14
1.39	1.59	1.82	2.06	2.28	2.47			2.62
2.34	2.11	1.84	1.56	1.29	1.05	0.87	0.77	0.76
	0.27 1.40 2.33 4.17 0.10 5.73 7.73 2.40 17.43 13.53 SMOOT 12.13 22.18 23.23 10.06 14.63 9.80 7.92 1.35 6.46 10.36 8.44 4.80 7.92 1.35 6.46 10.36 8.44 4.80 7.22 5.15 6.48 7.39 6.20 2.31 2.01 2.06 1.27 2.42 1.39	0.27 0.43 1.40 0.80 2.33 4.37 4.17 0.23 0.10 0.13 5.73 3.93 7.73 8.80 2.40 1.43 17.43 16.77 13.53 30.97 SMOOTHENED M 12.13 11.30 22.18 24.10 23.23 21.28 10.06 10.30 14.63 14.45 9.80 9.55 7.92 7.35 1.35 1.23 6.46 7.23 10.36 10.36 8.44 8.02 4.80 4.81 7.22 7.33 5.15 4.91 6.48 6.83 7.39 7.23 6.20 6.03 2.31 1.89 2.01 2.29 2.06 1.74 1.27 1.55 2.42 2.20 1.39 1.59	0.27 0.43 0.40 1.40 0.80 0.53 2.33 4.37 11.83 4.17 0.23 0.30 0.10 0.13 0.20 5.73 3.93 4.57 7.73 8.80 4.33 2.40 1.43 1.30 17.43 16.77 56.67 13.53 30.97 15.37 SMOOTHENED MEAN VAL 12.13 11.30 10.93 22.18 24.10 25.75 23.23 21.28 19.25 10.06 10.30 10.76 14.63 14.45 14.10 9.80 9.55 9.39 7.92 7.35 6.66 1.35 1.23 1.30 6.46 7.23 7.93 10.36 10.36 10.31 8.44 8.02 7.56 4.80 4.81 4.92 7.22 7.33 7.34 5.15 4.91 4.76 6.48 6.83 7.14 7.39 7.23 7.08 6.20 6.03 5.80 2.31 1.89 1.55 2.06 1.74 1.44 1.27 1.55 1.84 2.42 2.20 1.96 1.39 1.59 1.82	0.270.430.400.671.400.800.531.072.334.3711.8313.004.170.230.302.500.100.130.203.135.733.934.572.837.738.804.338.802.401.431.301.3717.4316.7756.6742.3713.5330.9715.3727.53SMOOTHENED MEAN VALUES OF12.1311.3010.9311.0522.1824.1025.7527.0423.2321.2819.2517.2410.0610.3010.7611.3914.6314.4514.1013.619.809.559.399.297.927.356.665.901.351.231.301.556.467.237.938.5410.3610.3610.3110.228.448.027.567.084.804.814.925.127.227.337.347.265.154.914.764.706.486.837.147.407.397.237.086.946.206.035.805.512.311.891.551.292.012.292.552.762.061.741.441.161.271.551.842.132.422.201.961.71 </td <td>0.27$0.43$$0.40$$0.67$$6.80$$1.40$$0.80$$0.53$$1.07$$0.33$$2.33$$4.37$$11.83$$13.00$$34.57$$4.17$$0.23$$0.30$$2.50$$1.60$$0.10$$0.13$$0.20$$3.13$$4.63$$5.73$$3.93$$4.57$$2.83$$7.03$$7.73$$8.80$$4.33$$8.80$$2.33$$2.40$$1.43$$1.30$$1.37$$1.57$$17.43$$16.77$$56.67$$42.37$$29.73$$13.53$$30.97$$15.37$$27.53$SMOOTHENED MEAN VALUES OF DISCHAR$12.13$$11.30$$10.93$$11.05$$11.66$$22.18$$24.10$$25.75$$27.04$$27.89$$23.23$$21.28$$19.25$$17.24$$15.35$$10.06$$10.30$$10.76$$11.39$$12.10$$14.63$$14.45$$14.10$$13.61$$13.03$$9.80$$9.55$$9.39$$9.29$$9.24$$7.92$$7.35$$6.66$$5.90$$5.09$$1.35$$1.23$$1.30$$1.55$$1.97$$6.46$$7.23$$7.93$$8.54$$9.06$$10.36$$10.36$$10.31$$10.22$$10.09$$8.44$$8.02$$7.56$$7.08$$6.60$$4.80$$4.81$$4.92$$5.12$$5.39$$7.22$$7.33$$7.34$$7.26$$7.08$$5.15$<</td> <td>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</td> <td>0.270.430.400.676.8015.204.131.400.800.531.070.330.270.132.334.3711.8313.0034.5713.5013.634.170.230.302.501.600.870.700.100.130.203.134.631.701.405.733.934.572.837.0315.2010.737.738.804.338.802.3311.7022.402.401.431.301.371.570.802.9017.4316.7756.6742.3729.7336.3729.1013.5330.9715.3727.5355SMOOTHENED MEAN VALUES OF DISCHARGE HMDIS12.1311.3010.9311.0511.6612.7314.2123.2321.2819.2517.2415.3513.6712.2710.0610.3010.7611.3912.1012.8213.4814.6314.4514.1013.6113.0312.3911.759.809.559.399.299.249.199.117.927.356.665.905.094.273.471.351.231.301.551.972.543.226.467.237.938.549.069.499.6210.3610.3110.2210.099.939.728.448.027.56<td< td=""><td>0.270.430.400.676.8015.204.135.831.400.800.531.070.330.270.130.132.334.3711.8313.0034.5713.5013.637.634.170.230.302.501.600.870.700.130.100.130.203.134.631.701.403.675.733.934.572.837.0315.2010.736.037.738.804.338.802.3311.7022.4017.032.401.431.301.371.570.802.9029.6717.4316.7756.6742.3729.7336.3729.1019.1713.5330.9715.3727.5327.5327.5327.5327.53SMOOTHENED MEAN VALUES OFDISCHARGE HMDIS11.6012.7314.2116.0022.1824.1025.7527.0427.8928.2628.1227.5023.2321.2819.2517.2415.3513.6712.2711.1910.0610.3010.7611.3912.1012.8213.4814.0314.6314.4514.1013.6113.0312.3911.7511.449.809.559.399.299.249.199.118.967.927.356.665.905.094.273.472.751.351.231.30</td></td<></td>	0.27 0.43 0.40 0.67 6.80 1.40 0.80 0.53 1.07 0.33 2.33 4.37 11.83 13.00 34.57 4.17 0.23 0.30 2.50 1.60 0.10 0.13 0.20 3.13 4.63 5.73 3.93 4.57 2.83 7.03 7.73 8.80 4.33 8.80 2.33 2.40 1.43 1.30 1.37 1.57 17.43 16.77 56.67 42.37 29.73 13.53 30.97 15.37 27.53 SMOOTHENED MEAN VALUES OF DISCHAR 12.13 11.30 10.93 11.05 11.66 22.18 24.10 25.75 27.04 27.89 23.23 21.28 19.25 17.24 15.35 10.06 10.30 10.76 11.39 12.10 14.63 14.45 14.10 13.61 13.03 9.80 9.55 9.39 9.29 9.24 7.92 7.35 6.66 5.90 5.09 1.35 1.23 1.30 1.55 1.97 6.46 7.23 7.93 8.54 9.06 10.36 10.36 10.31 10.22 10.09 8.44 8.02 7.56 7.08 6.60 4.80 4.81 4.92 5.12 5.39 7.22 7.33 7.34 7.26 7.08 5.15 <	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.270.430.400.676.8015.204.131.400.800.531.070.330.270.132.334.3711.8313.0034.5713.5013.634.170.230.302.501.600.870.700.100.130.203.134.631.701.405.733.934.572.837.0315.2010.737.738.804.338.802.3311.7022.402.401.431.301.371.570.802.9017.4316.7756.6742.3729.7336.3729.1013.5330.9715.3727.5355SMOOTHENED MEAN VALUES OF DISCHARGE HMDIS12.1311.3010.9311.0511.6612.7314.2123.2321.2819.2517.2415.3513.6712.2710.0610.3010.7611.3912.1012.8213.4814.6314.4514.1013.6113.0312.3911.759.809.559.399.299.249.199.117.927.356.665.905.094.273.471.351.231.301.551.972.543.226.467.237.938.549.069.499.6210.3610.3110.2210.099.939.728.448.027.56 <td< td=""><td>0.270.430.400.676.8015.204.135.831.400.800.531.070.330.270.130.132.334.3711.8313.0034.5713.5013.637.634.170.230.302.501.600.870.700.130.100.130.203.134.631.701.403.675.733.934.572.837.0315.2010.736.037.738.804.338.802.3311.7022.4017.032.401.431.301.371.570.802.9029.6717.4316.7756.6742.3729.7336.3729.1019.1713.5330.9715.3727.5327.5327.5327.5327.53SMOOTHENED MEAN VALUES OFDISCHARGE HMDIS11.6012.7314.2116.0022.1824.1025.7527.0427.8928.2628.1227.5023.2321.2819.2517.2415.3513.6712.2711.1910.0610.3010.7611.3912.1012.8213.4814.0314.6314.4514.1013.6113.0312.3911.7511.449.809.559.399.299.249.199.118.967.927.356.665.905.094.273.472.751.351.231.30</td></td<>	0.270.430.400.676.8015.204.135.831.400.800.531.070.330.270.130.132.334.3711.8313.0034.5713.5013.637.634.170.230.302.501.600.870.700.130.100.130.203.134.631.701.403.675.733.934.572.837.0315.2010.736.037.738.804.338.802.3311.7022.4017.032.401.431.301.371.570.802.9029.6717.4316.7756.6742.3729.7336.3729.1019.1713.5330.9715.3727.5327.5327.5327.5327.53SMOOTHENED MEAN VALUES OFDISCHARGE HMDIS11.6012.7314.2116.0022.1824.1025.7527.0427.8928.2628.1227.5023.2321.2819.2517.2415.3513.6712.2711.1910.0610.3010.7611.3912.1012.8213.4814.0314.6314.4514.1013.6113.0312.3911.7511.449.809.559.399.299.249.199.118.967.927.356.665.905.094.273.472.751.351.231.30

0.84	1.00	1.24	1.53	1.85	2.17	2.47	2.70	2.86	2.93
2.88	2.74	2.49	2.17	1.79	1.39	1.00	0.66	0.41	0.25
0.23	0.34	0.60	0.98	1.46	2.03	2.63	3.24	3.80	4.29
4.67	4.91	5.00	4.94	4.73	4.41	3.99	3.52	3.05	2.62
2.27	2.04	1.97	2.07	2.35	2.81	3.44	4.19	5.04	5.94
6.84	7.68	8.43	9.03	9.46	9.69	9.71	9.53	9.15	8.60
7.91	7.12	6.27	5.40	4.56	3.77	3.07	2.49	2.03	1.71
1.54	1.50	1.59	1.80	2.11	2.51	2.97	3.50	4.07	4.67
5.29	5.92	6.54	7.14	7.70	8.20	8.64	8.98	9.21	9.31
9.28	9.12	8.82	8.39	7.87	7.28	6.67	6.09	5.58	5.21
5.04	5.10	5.45	6.10	7.08	8.37	9.94	11.74	13.72	15.79
17.87	19.84	21.63	23.13	24.28	25.00	25.27	25.07	24.42	23.35
21.94	20.28	18.47	16.64	14.89					

HARMONIC ANALYSIS

J	A(J)	B(J) (C(J)**2/2	VARX	VARH(J)	CUM. SUM	PMIN	PMAX
1	2.7	0.9	4.1	18.3	0.225	0.225	0.364	0.636
2	0.6	0.1	0.2	18.3	0.009	0.234	0.364	0.636
3	-0.1	-0.9	0.4	18.3	0.023	0.257	0.364	0.636
4	0.8	-0.5	0.4	18.3	0.024	0.281	0.364	0.636
5	0.2	-0.5	0.1	18.3	0.008	0.289	0.364	0.636
6	-0.4	0.3	0.1	18.3	0.008	0.297	0.364	0.636
7	-0.1	0.9	0.4	18.3	0.020	0.317	0.364	0.636
8	0.1	0.4	0.1	18.3	0.004	0.322	0.364	0.636
9	-0.7	0.2	0.2	18.3	0.013	0.334	0.364	0.636
10	0.2	0.3	0.1	. 18.3	0.005	0.339	0.364	0.636
11	-0.1	0.5	0.1	18.3	0.006	0.345	0.364	0.636
12	0.0	0.0	0.0	18.3	0.000	0.345	0.364	0.636
13	-0.2	-0.6	0.2	18.3	0.011	0.357	0.364	0.636
14	-1.0	0.0	0.5	18.3	0.025	0.382	0.364	0.636
15	0.2	0.2	0.0	18.3	0.002	0.384	0.364	0.636
16	-0.1	-0.4	0.1	18.3	0.006	0.390	0.364	0.636
17	0.0	0.0	0.0	18.3	0.000	0.390	0.364	0.636
18	-0.8	-0.1	0.3	18.3	0.018	0.408	0.364	0.636
19	-0.5	0.4	0.2	18.3	0.010	0.419	0.364	0.636
20	-0.4	-0.4	0.2	18.3	0.010	0.429	0.364	0.636

21	0.2	-0.1	0.0	18.3	0.001	0.430	0.364	0.636
22	-0.2	0.3	0.1	18.3	0.003	0.433	0.364	0.636
23	0.0	0.5	0.1	18.3	0.008	0.441	0.364	0.636
24	-0.3	0.4	0.1	18.3	0.007	0.448	0.364	0.636
25	0.0	0.2	0.0	18.3	0.001	0.449	0.364	0.636
26	0.4	0.1	0.1	18.3	0.005	0.454	0.364	0.636
27	0.1	-0.1	0.0	18.3	0.000	0.454	0.364	0.636
28	0.1	-0.1	0.0	18.3	0.001	0.455	0.364	0.636
29	-0.2	-0.2	0.0.	18.3	0.003	0.458	0.364	0.636
30	0.0	0.5 .	0.1	18.3	0.007	0.465	0.364	0.636
31	0.2	-0.3	0.1	18.3	0.003	0.468	0.364	0.636
32	0.1	0.0	0.0	18.3	0.000	0.468	0.364	0.636
33	0.2	-0.1	0.0	18.3	0.002	0.470	0.364	0.636
34	0.0	0.4	0.1	18.3	0.005	0.475	0.364	0.636
35	0.1	0.0	0.0	18.3	0.000	0.476	0.364	0.636
36	-0.5	0.2	0.2	18.3	0.008	0.484	0.364	0.636
37	0.0	0.0	0.0	18.3	0.000	0.484	0.364	0.636
38	0.3	0.0	0.1	18.3	0.003	0.487	0.364	0.636
39	0.3	-0.2	0.1	18.3	0.003	0.490	0.364	0.636
40	0.0	0.4	0.1	18.3	0.004	0.494	0.364	0.636
41	0.1	-0.1	0.0	18.3	0.001	0.494	0.364	0.636
42	-0.3	-0.1	0.1	18.3	0.004	0.498	0.364	0.636
43	-0.1	-0.9	0.4	18.3	0.021	0.519	0.364	0.636
44	-0.2	-0.2	0.0	18.3	0.002	0.521	0.364	0.636
45	0.2	-0.1	0.0	18.3	0.001	0.522	0,364	0.636
46	0.0	-0.4	0.1	18.3	0.004	0.526	0.364	0.636
47	0.4	-0.1	0.1	18.3	0.004	0.530	0.364	0.636
48	0.1	0.2	0.0	18.3	0.001	0.532	0.364	0.636
49	-0.3	0.6	0.2	18.3	0.010	0.542	0.364	0.636
50	0.1	-0.3	0.0	18.3	0.002	0.544	0.364	0.636
51	0.0	-0.6	0.2	18.3	0.010	0.555	0.364	0.636
52	0.5	-0.3	0.2	18.3	0.008	0.563	0.364	0.636
53	0.0	-0.2	0.0	18.3	0.001	0.564	0.364	0.636
54	0.4	-0.3	0.1	18.3	0.006	0.570	0.364	0.636
55	-0.3	-0.2	0.1	18.3	0.004	0.574	0.364	0.636
56	0.0	0.0	0.0	18.3	0.000	0.574	0.364	0.636

57	-0.2	0.5	0.1	18.3	0.007	0.581	0.364	0.636
58	-0.2	0.6	0.2	18.3	0.010	0.591	0.364	0.636
59	-0.7	0.4	0.3	18.3	0.019	0.609	0.364	0.636
60	-0.6	0.0	0.2	18.3	0.008	0.618	0.364	0.636
61	0.1	-0.1	0.0	18.3	0.000	0.618	0.364	0.636
62	0.7	0.2	0.3	18.3	0.015	0.633	0.364	0.636
63	0.1	0.3	0.0	18.3	0.003	0.636	0.364	0.636
64	0.3	-0.4	0.1	18.3	0.006	0.642	0.364	0.636
65	0.3	0.2	0.1	18.3	0.004	0.645	0.364	0.636
66	0.4	-0.6	0.2	18.3	0.012	0.658	0.364	0.636
67	0.1	-0.7	0.2	18.3	0.013	0.670	0.364	0.636
68	0.0	-0.3	0.0	18.3	0.002	0.672	0.364	0.636
69	-0.1	0.0	0.0	18.3	0.000	0.672	0.364	0.636
70	-0.2	0.2	0.0	18.3	0.002	0.674	0.364	0.636
71	0.0	0.1	0.0	18.3	0.000	0.674	0.364	0.636
72	-0.1	-0.3	0.0	18.3	0.002	0.676	0.364	0.636
73	0.0	0.5	0.1	18.3	0.006	0.682	0.364	. 0.636
74	0.1	-0.5	0.1	18.3	0.008	0.690	0.364	0.636
75	0.1	-0.2	0.0	18.3	0.001	0.690	0.364	0.636
76	0.4	-0.4	0.2	18.3	0.008	0.699	0.364	0.636
77	-0.1	0.0	0.0	18.3	0.000	0.699	0.364	0.636
78	0.2	0.1	0.0	18.3	0.001	0.701	0.364	0.636
79	-0.2	-0.5	0.2	18.3	0.009	0.709	0.364	0.636
80	-0.3	0.2	0.1	18.3	0.003	0.712	0.364	0.636
81	-0.4	-0.1	0.1	18.3	0.004	0.717	0.364	0.636
82	-0.3	-0.2	0.1	18.3	0.004	0.720	0.364	0.636
83	0.0	0.0	0.0	18.3	0.000	0.720	0.364	0.636
84	0.3	0.5	0.2	18.3	0.009	0.729	0.364	0.636
85	0.3	0.3	0.1	18.3	0.005	0.734	0.364	0.636
86	0.5	0.2	0.1	18.3	0.007	0.741	0.364	0.636
87	0.4	-0.2	0.1	18.3	0.005	0.746	0.364	0.636
88	0.0	0.2	0.0	18.3	0.001	0.747	0.364	0.636
89	-0.1	-0.2	0.0	18.3	0.002	0.748	0.364	0.636
90	-0.2	-0.1	0.0	18.3	0.002	0.750	0.364	0.636
91	0.1	-0.4	0.1	18.3	0.005	0.755	0.364	0.636
92	-0.1	-0.3	0.1	18.3	0.003	0.758	0.364	0.636

							•	
93	-0.3	-0.1	0.0	18.	3 0.00	0.760	0.364	0.636
94	-0.1	0.1	0.0	18.	3 0.00	0.761	0.364	0.636
95	-0.4	-0.2	0.1	18.	3 0.00	0.766	0.364	0.636
96	-0.1	-0.1	0.0	18.	3 0.00	0.766	0.364	0.636
97	-0.1	-0.5	0.1	18.	3 0.00	0.772	0.364	0.636
98	-0.2	-0.1	0.0	18.	3 0.00	0.774	0.364	0.636
99	-0.2	-0.2	0.0	18.	3 0.00	0.776	0.364	0.636
100	-0.1	-0.2	0.0	18.	3 0.00	0.777	0.364	0.636
SEI	LECTED HAT	RMONICS A	RE 63,				,	
	A(J)	B(J) C(J)**2/2	VAR	VARH(J)	CUM. SUM		
	2.1	0.7	2.5	18.3	0.1385	0.1385		
	0.4	0.0	0.1	18.3	0.0055	0.1440		
	-0.1	-0.7	0.3	18.3	0.0144	0.1585		
	0.6	-0,+4	0.3	18.3	0.0145	0.1729		
	0.2	-0.4	0.1	18.3	0.0049	0.1778		
	-0.3	0.3	0.1	18.3	0.0049	0.1828		
	-0.1	0.7	0.2	18.3	0.0126	0.1954		
	0.1	0.3	0.0	18.3	0.0027	0.1980		
	-0.5	0.1	0.1	18.3	• 0.0079	0.2059		
	0.2	0.3	0.1	18.3	0.0028	0.2087		
	-0.1	0.4	0.1	18.3	0.0040	0.2127		
	0.0	0.0	0.0	18.3	0.0000	0.2127		
	-0.2	-0.5	0.1	18.3	0.0068	0.2196		
	-0.8	0.0	0.3	18.3	0.0157	0.2352		•
	0.1	0.2	0.0	18.3	0.0013	0.2365		
	-0.1	-0.4	0.1	18.3	0.0035	0.2401		
	0.0	0.0	0.0	18.3	0.0000	0.2401		
	-0.6	-0.1	0.2	18.3	0.0114	0.2514		
	-0.4 '	0.3	0.1	18.3	0.0064	0.2579		
	-0.3	-0.3	0.1	18.3	0.0061	0.2640		
	0.2	-0.1	0.0	18.3	0.0009	0.2648		
	-0.1	0.2	0.0	18.3	0.0020	0.2668		
	0.0	0.4	0.1	18.3	0.0050	0.2718		
	-0.2	0.3	0.1	18.3	0.0043	0.2761		
	0.0	0.1	0.0	18.3	0.0004	0.2765		

•					
0.3	0.1	0.1	18.3	0.0030	0.2796
0.1	-0.1	0.0	18.3	0.0002	0.2797
0.1	-0.1	0.0	18.3	0.0007	0.2804
-0.2	-0.2	0.0	18.3	0.0016	0.2820
0.0	0.4	0.1	18.3	0.0045	0.2866
0.1	-0.2	0.0	18.3	0.0018	0.2884
0.1	0.0	0.0	18.3	0.0001	0.2884
0.2	-0.1	0.0	18.3	0.0012	0.2896
0.0	0.3	0.1	18.3	0.0030	0.2927
0.1	0.0	0.0	18.3	0.0002	0.2929
-0.4	0.1	0.1	18.3	0.0051	0.2980
0.0	0.0	0.0	18.3	0.0001	0.2981
0.3	0.0	0.0	18.3	0.0018	0.2998
0.2	-0.2	0.0	18.3	0.0021	0.3020
0.0	0.3	0.0	18.3	0.0022	0.3041
0.1	-0.1	0.0	18.3	0.0003	0.3045
-0.3	-0.1	0.0	18.3	0.0022	0.3066
-0.1	-0.7	0.2	18.3	0.0127	0.3193
-0.1	-0.2	0.0	18.3	0.0014	0.3207
0.1	0.0	0.0	18.3	0.0006	0.3213
0.0	-0.3	0.0	18.3	0.0026	0.3240
0.3	-0.1	0.0	18.3	0.0026	0.3266
0.1	0.2	0.0	18.3	0.0009	0.3275
-0.2	0.4	0.1	18.3	0.0065	0.3340
0.0	-0.2	0.0	18.3	0.0013	0.3353
0.0	-0.5	0.1	18.3	0.0064	0.3417
0.4	-0.2	0.1	18.3	0.0052	0.3469
0.0	-0.1	0.0	18.3	0.0006	0.3475
0.3	-0.2	0.1	18.3	0.0037	0.3512
-0.2	-0.2	0.0	18.3	0.0022	0.3534
0.0	0.0	0.0	18.3	0.0000	0.3534
-0.2	0.4	0.1	18.3	0.0044	0.3578
-0.1	0.4	0.1	18.3	0.0059	0.3637
-0.6	0.3	0.2	18.3	0.0116	0.3753
-0.4	0.0	0.1	18.3	0.0051	0.3804
0.1	0.0	0.0	18.3	0.0003	0.3807

•

.

.

.

.

,

.

111

0.6	5	0.1	0.2	18.3	0.009	93 0.1	3900		
0.1	L	0.2	0.0	18.3	0.001	16 0.1	3916		
KMAX =	9kdel	= 1							
NEGATIVE VOLUME=		OLUME=	0.378%						
MEAN	N VALUE	S OF AV	ERAGE RA	INFALL	AMR				
4.70	2.00	8.02	9.23	7.01	13.39	6.97	12.84	7.39	11.21
11.09	6.26	11.22	18.99	6.73	11.56	6.63	6.62	5.72	3.65
12.61	8.59	6.77	1.16	6.45	4.30	3.90	5.86	2.89	1.73
2.66	6.21	5.78	11.18	1.64	1.17	1.08	2.60	10.61	7.45
1.04	4.30	2.30	1.72	1.38	8.52	16.37	10.24	6.67	0.70
0.37	8.70	11.08	2.51	9.28	7.92	4.12	7.11	2.49	3.97
0.84	1.76	9.79	14.13	9.53	12.48	13.23	4.19	8.46	17.10
6.40	8.36	4.34	1.38	9.98	4.28	16.68	2.03	4.03	4.21
2.01	3.39	14.60	11.02	6.22	8.24	5.87	6.81	1.98	4.63
10.47	3.89	0.01	5.07	2.52	2.20	7.77	2.23	4.22	6.94
13.70	4.57	0.71	4.80	1.90	10.30	4.03	8.22	3.54	4.00
1.23	4.82	4.93	5.58	4.02	2.57	3.05	1.45	4.06	0.01
1.07	0.78	1.40	4.92	2.57	1.75	2.20	0,47	1.11	0.74
2.77	1.18	0.01	1.50	4.01	2.14	5.02	2.00	0.40	2.90
5.87	6.23	2.74	0.46	1.04	2.06	4.10	2.63	0.95	1.60
0.12	4.40	1.63	0.00	2.62	4.15	0.73	2.73	0.97	0.71
0.74	0.03	0.00	0.00	0.00	0.00	0.00	2.16	2.57	2.10
5.56	0.70	2.80	4.35	6.27	13.87	3.42	1.63	0.00	0.02
0.02	0.00	6.22	0.43	0.57	0.47	12.03	1.46	1.63	1.09
0.01	1.87	6.13	4.36	3.03	14.05	7.00	1.47	0.42	0.01
1.78	1.00	0.01	0.00	0.00	0.00	0.00	0.00	0.03	6.56
8.96	1.90	0.60	0.71	2.27	3.67	5.86	3.77	4.27	2.93
16.72	2.03	0.26	0.00	8.27	0.99	1.64	0.00	0.00	0.68
0.68	0.00	0.05	0.03	0.00	0.94	0.28	0.00	0.96	0.02
0.56	0.01	0.68	0.51	0.02	0.00	1.52	3.52	4.00	0.69
0.65	1.59	0.98	0.02	0.66	0.00	1.83	3.11	0.36	2.33
3.35	1.23	0.21	0.45	0.32	1.94	5.46	4.03	7.98	10.82
9.68	11.77	0.72	2.28	6.18	5.95	13.35	2.22	3.86	1.79
2.63	1.04	2.46	1.85	0.01	0.03	0.03	1.18	0.01	0.54
0.00	4.42	5.81	7.58	3.60	2.56	10.95	1.76	0.87	7.77
2.85	0.81	0.69	4.06	2.74	0.83	3.13	4.53	5.64	6.19

. N

1.01	1.72	1.29	2.02	4.91	0.00	2.31	4.27	8.13	6.12
5.09	11.57	3.73	8.51	6.65	3.50	12.01	3.39	4.70	12.58
15.37	3.45	3.70	1.66	14.48	23.46	14.70	7.80	4.91	12.55
5.42	11.98	4.83	10.80	1.26	2.52	4.57	11.30	11.93	6.03
1.38	8.08	17.54	6.37	14.52	13.55	7.01	4.56	7.96	8.04
0.00	2.92	9.58	6.11	6.24					
	SMOOT	HENED M	EAN VAL	UES OF	AVERAGE	RAINFA	LL HMR		
5.36	5.49	5.72	6.44	7.75	9.17	9.89	9.48	8.36	7.55
7.89	9.29	10.81	11.29	10.25	8.19	6.25	5.41	5.85	6.91
7.60	7.27	6.09	4.81	4.17	4.28	4.56	4.33	3.56	2.99
3.47	5.01	6.49	6.52	4.75	2.47	1.65	3.22	5.99	7.52
6.19	2.84	0.31	1.04	4.94	9.31	11.02	9.09	5.38	2.87
3.15	5.34	7.29	7.60	6.67	5.80	5.59	5.40	4.34	2.69
1.98	3.62	7.22	10.63	11.68	10.17	8.00	7.36	8.62	10.01
9.45	6.74	3.92	3.40	5.63	8.50	9.24	6.93	3.41	1.63
3.09	6.61	9.47	9.82	7.99	5.84	4.92	5.26	5.77	5.56
4.75	4.07	3.90	3.92	3.62	3.12	3.20	4.43	6.36	7.64
7.24	5.40	3.58	3.19	4.42	6.07	6.69	5.84	4.29	3.29
3.39	4.17	4.75	4.69	4.17	3.64	3.27	2.87	2.28	1.71
1.58	2.07	2.85	3.33	3.20	2.65	2.14	1.96	1.97	1.89
1.70	1.67	2.05	2.74	3.28	3.33	2.97	2.73	3.03	3.78
4.40	4.34	3.59	2.66	2.15	2.27	2.69	2.94	2.79	2.39
2.06	2.02	2.24	2.58	2.86	2.96	2.79	2.38	1.86	1.45
1.30	1.30	1.20	0.87	0.53	0.64	1.43	2.58	3.39	3.36
2.75	2.50	3.39	5.29	7.06	7.37	5,78	3.13	0.94	0.27
0.99	2.12	2.76	2.82	2.87	3.38	4.13	4.38	3.60	2.13
1.08	1.47	3.42	5.94	7.62	7.55	5.87	3.57	1.75	1.02
1.20	1.67	1.79	1.34	0.60	0.14	0.48	1.69	3.33	4.62
4.93	4.18	2.90	1.94	1.89	2.81	4.21	5.43	6.07	6.06
5.58	4.86	4.08	3.34	2.75	2.36	2.13	1.90	1.55	1.12
0.81	0.80	1.06	1.35	1.42	1.23	0.99	0.98	1.24	1.54
1.58	1.27	0.86	0.74	1.13	1.87	2.58	2.93		2.54
2.14	1.75	1.39	1.14	1.16	1.52	2.11	2.61	2.77	2.59
2.27	2.01	1.81	1.60	1.50	1.93	3.37	5.72	8.12	9.33
8.64	6.54	4.47	3.83	4.86	6.49	7.21	6.25	4.19	2.36
1.70	2.11	2.66	2.56	1.76	0.91	0.59	0.86	1.36	1.81

,

2.36	3.30	4.61	5.73	6.04	5.42	4.44	3.85	3.90	4.13
3.89	3.02	2.05	1.75	2.37	3.45	4.27	4.46	4.21	3.90
3.63	3.20	2.50	1.86	1.85	2.71	4.01	5.04	5.45	5.62
6.13	7.02	7.60	7.0 9	5.67	4.55	5.01	7.06	9.13	9.39
7.45	5.01	4.53	7.05	11.09	13.79	13.27	10.18	7.09	6.12
7.24	8.49	8.01	5.81	3.72	3.57	5.45	7.66	8.37	7.32
6.02	6.25	8.35	10.90	11.94	10.65	7.93	5.50	4.46	4.68
5.24	5.43	5.25	5.09	5.17					
MEN	10RY LEN	NGTH=	3 DAYS						
	REGRES	SSION CO	DEFFICI	ENTS					
0.34880	0.538	326 0.4	40646						
	STAND	ARD ERR	OR OF F	EGRESSI	ON COEF	FICIENT	'S		
0.0663	7 0.06	789 0.	06638						
	T VAL	UES OF	COEFFIC	CIENTS					
5.25	6 7.9	928	6.124						
LEAD	TIME U	SED IN	UPDATIN	IG- 1DA	YS				
	REGRE	SSION C	OEFFICI	ENTS IN	UPDATI	NG EQUA	TION		
0.4662	9 0.13	256							
	OBSER	VED AND	COMPUT	TED DISC	HARGE C	ORDINATE	ES		
1979	1								
1	18.9	0	18.90						
2	38.8	0	38.80						
3	15.8	0	12.71						
4	11.5	0	18.03						
5	13.7	0	16.48						
6	30.2	0	9.01					t -	
7	11.8	0	12.27						
8	16.6	0	9.45						
9	8.9	0	15.11						
10	10.1	.0	18.82						
11	11.8	0	19.38						
12	11.5	0	13.91						
13	7.6	0	10.87						
14	0.0	10	22.22						
15	0.0	0	20.82						
16	36.9	90	13.97						

.

114

106317.5016.8110648.7013.58198112106523.0013.5510660.0022.7410670.008.1310680.000.0010690.000.0010700.002.6410710.009.3810720.008.3710730.001.5210740.004.2110750.005.8110760.005.6710780.0015.43107976.4021.86108045.3051.41108138.8033.66108220.7026.32108312.6033.391084127.0030.34108559.4069.94108629.6042.60108712.6023.3610885.7016.74108915.3018.60109041.7029.45109130.8037.11109226.3023.79109386.1020.23109429.3051.66	1)	1
1064 8.70 13.58 1981 12 1065 23.00 13.55 1066 0.00 22.74 1067 0.00 8.13 1068 0.00 0.00 1069 0.00 0.00 1070 0.00 2.64 1071 0.00 2.64 1071 0.00 2.64 1071 0.00 9.38 1072 0.00 8.37 1073 0.00 1.52 1074 0.00 4.21 1075 0.00 5.81 1076 0.00 5.67 1078 0.00 15.43 1079 76.40 21.86 1080 45.30 51.41 1081 38.80 33.66 1082 20.70 26.32 1083 12.60 33.39 1084 127.00 30.34 1085 59.40 69.94 1086 29.60 42.60 1087 12.60 23.36 1088 5.70 16.74 1089 15.30 18.60 1091 30.80 37.11 1092 26.30 23.79 1093 86.10 20.23	1	1	1 1
1981 12 1065 23.00 13.55 1066 0.00 22.74 1067 0.00 8.13 1068 0.00 0.00 1069 0.00 0.00 1070 0.00 2.64 1071 0.00 9.38 1072 0.00 8.37 1073 0.00 1.52 1074 0.00 4.21 1075 0.00 5.81 1076 0.00 5.67 1078 0.00 15.43 1079 76.40 21.86 1080 45.30 51.41 1081 38.80 33.66 1082 20.70 26.32 1083 12.60 33.39 1084 127.00 30.34 1085 59.40 69.94 1086 29.60 42.60 1087 12.60 23.36 1088 5.70 16.74 1089 15.30 18.60 1090 41.70 29.45 1091 30.80 37.11 1092 26.30 23.79 1093 86.10 20.23		17.50	16.81
106523.0013.5510660.0022.7410670.008.1310680.000.0010690.000.0010700.002.6410710.009.3810720.008.3710730.001.5210740.004.2110750.005.8110760.006.3210770.005.6710780.0015.43107976.4021.86108045.3051.41108138.8033.66108220.7026.32108312.6033.391084127.0030.34108559.4069.94108629.6042.60108712.6023.3610885.7016.74108915.3018.60109041.7029.45109130.8037.11109226.3023.79109386.1020.23	1064	8.70	13.58
1066 0.00 22.74 1067 0.00 8.13 1068 0.00 0.00 1069 0.00 0.00 1070 0.00 2.64 1071 0.00 2.64 1071 0.00 2.64 1071 0.00 9.38 1072 0.00 8.37 1073 0.00 1.52 1074 0.00 4.21 1075 0.00 5.81 1076 0.00 5.67 1078 0.00 15.43 1079 76.40 21.86 1080 45.30 51.41 1081 38.80 33.66 1082 20.70 26.32 1083 12.60 33.39 1084 127.00 30.34 1085 59.40 69.94 1086 29.60 42.60 1087 12.60 23.36 1088 5.70 16.74 1089 15.30 18.60 1090 41.70 29.45 1091 30.80 37.11 1092 26.30 23.79 1093 86.10 20.23	1981	12	
1067 0.00 8.13 1068 0.00 0.00 1069 0.00 0.00 1070 0.00 2.64 1071 0.00 9.38 1072 0.00 8.37 1073 0.00 1.52 1074 0.00 4.21 1075 0.00 5.81 1076 0.00 5.67 1078 0.00 5.67 1078 0.00 15.43 1079 76.40 21.86 1080 45.30 51.41 1081 38.80 33.66 1082 20.70 26.32 1083 12.60 33.39 1084 127.00 30.34 1085 59.40 69.94 1086 29.60 42.60 1087 12.60 23.36 1088 5.70 16.74 1089 15.30 18.60 1090 41.70 29.45 1091 30.80 37.11 1092 26.30 23.79 1093 86.10 20.23	1065	23.00	13.55
1068 0.00 0.00 1069 0.00 0.00 1070 0.00 2.64 1071 0.00 2.64 1071 0.00 9.38 1072 0.00 8.37 1073 0.00 1.52 1074 0.00 4.21 1075 0.00 5.81 1076 0.00 6.32 1077 0.00 5.67 1078 0.00 15.43 1079 76.40 21.86 1080 45.30 51.41 1081 38.80 33.66 1082 20.70 26.32 1083 12.60 33.39 1084 127.00 30.34 1085 59.40 69.94 1086 29.60 42.60 1087 12.60 23.36 1088 5.70 16.74 1089 15.30 18.60 1090 41.70 29.45 1091 30.80 37.11 1092 26.30 23.79 1093 86.10 20.23	1066	0.00	22.74
1069 0.00 0.00 1070 0.00 2.64 1071 0.00 9.38 1072 0.00 8.37 1073 0.00 1.52 1074 0.00 4.21 1075 0.00 5.81 1076 0.00 6.32 1077 0.00 5.67 1078 0.00 15.43 1079 76.40 21.86 1080 45.30 51.41 1081 38.80 33.66 1082 20.70 26.32 1083 12.60 33.39 1084 127.00 30.34 1085 59.40 69.94 1086 29.60 42.60 1087 12.60 23.36 1088 5.70 16.74 1089 15.30 18.60 1090 41.70 29.45 1091 30.80 37.11 1092 26.30 23.79 1093 86.10 20.23	1067	0.00	8.13
1070 0.00 2.64 1071 0.00 9.38 1072 0.00 8.37 1073 0.00 1.52 1074 0.00 4.21 1075 0.00 5.81 1076 0.00 6.32 1077 0.00 5.67 1078 0.00 15.43 1079 76.40 21.86 1080 45.30 51.41 1081 38.80 33.66 1082 20.70 26.32 1083 12.60 33.39 1084 127.00 30.34 1085 59.40 69.94 1086 29.60 42.60 1087 12.60 23.36 1088 5.70 16.74 1089 15.30 18.60 1090 41.70 29.45 1091 30.80 37.11 1092 26.30 23.79 1093 86.10 20.23	1068	0.00	0.00
1071 0.00 9.38 1072 0.00 8.37 1073 0.00 1.52 1074 0.00 4.21 1075 0.00 5.81 1076 0.00 6.32 1077 0.00 5.67 1078 0.00 15.43 1079 76.40 21.86 1080 45.30 51.41 1081 38.80 33.66 1082 20.70 26.32 1083 12.60 33.39 1084 127.00 30.34 1085 59.40 69.94 1086 29.60 42.60 1087 12.60 23.36 1088 5.70 16.74 1089 15.30 18.60 1090 41.70 29.45 1091 30.80 37.11 1092 26.30 23.79 1093 86.10 20.23	1069	0.00	0.00
1072 0.00 8.37 1073 0.00 1.52 1074 0.00 4.21 1075 0.00 5.81 1076 0.00 6.32 1077 0.00 5.67 1078 0.00 15.43 1079 76.40 21.86 1080 45.30 51.41 1081 38.80 33.66 1082 20.70 26.32 1083 12.60 33.39 1084 127.00 30.34 1085 59.40 69.94 1086 29.60 42.60 1087 12.60 23.36 1088 5.70 16.74 1089 15.30 18.60 1090 41.70 29.45 1091 30.80 37.11 1092 26.30 23.79 1093 86.10 20.23	1070	0.00	2.64
1073 0.00 1.52 1074 0.00 4.21 1075 0.00 5.81 1076 0.00 6.32 1077 0.00 5.67 1078 0.00 15.43 1079 76.40 21.86 1080 45.30 51.41 1081 38.80 33.66 1082 20.70 26.32 1083 12.60 33.39 1084 127.00 30.34 1085 59.40 69.94 1086 29.60 42.60 1087 12.60 23.36 1088 5.70 16.74 1089 15.30 18.60 1090 41.70 29.45 1091 30.80 37.11 1092 26.30 23.79 1093 86.10 20.23	1071	0.00	9.38
1074 0.00 4.21 1075 0.00 5.81 1076 0.00 6.32 1077 0.00 5.67 1078 0.00 15.43 1079 76.40 21.86 1080 45.30 51.41 1081 38.80 33.66 1082 20.70 26.32 1083 12.60 33.39 1084 127.00 30.34 1085 59.40 69.94 1086 29.60 42.60 1087 12.60 23.36 1088 5.70 16.74 1089 15.30 18.60 1090 41.70 29.45 1091 30.80 37.11 1092 26.30 23.79 1093 86.10 20.23	1072	0.00	8.37
1075 0.00 5.81 1076 0.00 6.32 1077 0.00 5.67 1078 0.00 15.43 1079 76.40 21.86 1080 45.30 51.41 1081 38.80 33.66 1082 20.70 26.32 1083 12.60 33.39 1084 127.00 30.34 1085 59.40 69.94 1086 29.60 42.60 1087 12.60 23.36 1088 5.70 16.74 1089 15.30 18.60 1090 41.70 29.45 1091 30.80 37.11 1092 26.30 23.79 1093 86.10 20.23	1073	0.00	1.52
1076 0.00 6.32 1077 0.00 5.67 1078 0.00 15.43 1079 76.40 21.86 1080 45.30 51.41 1081 38.80 33.66 1082 20.70 26.32 1083 12.60 33.39 1084 127.00 30.34 1085 59.40 69.94 1086 29.60 42.60 1087 12.60 23.36 1088 5.70 16.74 1089 15.30 18.60 1090 41.70 29.45 1091 30.80 37.11 1092 26.30 23.79 1093 86.10 20.23	1074	0.00	4.21
1077 0.00 5.67 1078 0.00 15.43 1079 76.40 21.86 1080 45.30 51.41 1081 38.80 33.66 1082 20.70 26.32 1083 12.60 33.39 1084 127.00 30.34 1085 59.40 69.94 1086 29.60 42.60 1087 12.60 23.36 1088 5.70 16.74 1089 15.30 18.60 1090 41.70 29.45 1091 30.80 37.11 1092 26.30 23.79 1093 86.10 20.23	1075	0.00	5.81
10780.0015.43107976.4021.86108045.3051.41108138.8033.66108220.7026.32108312.6033.391084127.0030.34108559.4069.94108629.6042.60108712.6023.3610885.7016.74108915.3018.60109041.7029.45109130.8037.11109226.3023.79109386.1020.23	1076	0.00	6.32
107976.4021.86108045.3051.41108138.8033.66108220.7026.32108312.6033.391084127.0030.34108559.4069.94108629.6042.60108712.6023.3610885.7016.74108915.3018.60109041.7029.45109130.8037.11109226.3023.79109386.1020.23	1077	0.00	5.67
108045.3051.41108138.8033.66108220.7026.32108312.6033.391084127.0030.34108559.4069.94108629.6042.60108712.6023.3610885.7016.74108915.3018.60109041.7029.45109130.8037.11109226.3023.79109386.1020.23	1078	0.00	15.43
108138.8033.66108220.7026.32108312.6033.391084127.0030.34108559.4069.94108629.6042.60108712.6023.3610885.7016.74108915.3018.60109041.7029.45109130.8037.11109226.3023.79109386.1020.23	1079	76.40	21.86
108220.7026.32108312.6033.391084127.0030.34108559.4069.94108629.6042.60108712.6023.3610885.7016.74108915.3018.60109041.7029.45109130.8037.11109226.3023.79109386.1020.23	1080	45.30	51.41
108312.6033.391084127.0030.34108559.4069.94108629.6042.60108712.6023.3610885.7016.74108915.3018.60109041.7029.45109130.8037.11109226.3023.79109386.1020.23	1081	38.80	33.66
1084127.0030.34108559.4069.94108629.6042.60108712.6023.3610885.7016.74108915.3018.60109041.7029.45109130.8037.11109226.3023.79109386.1020.23	1082	20.70	26.32
108559.4069.94108629.6042.60108712.6023.3610885.7016.74108915.3018.60109041.7029.45109130.8037.11109226.3023.79109386.1020.23	1083	12.60	33.39
108629.6042.60108712.6023.3610885.7016.74108915.3018.60109041.7029.45109130.8037.11109226.3023.79109386.1020.23	1084	127.00	30.34
108712.6023.3610885.7016.74108915.3018.60109041.7029.45109130.8037.11109226.3023.79109386.1020.23	1085	59.40	69.94
10885.7016.74108915.3018.60109041.7029.45109130.8037.11109226.3023.79109386.1020.23	1086	29.60	42.60
108915.3018.60109041.7029.45109130.8037.11109226.3023.79109386.1020.23	1087	12.60	23.36
109041.7029.45109130.8037.11109226.3023.79109386.1020.23	1088	5.70	16.74
109130.8037.11109226.3023.79109386.1020.23	1089	15.30	18.60
109226.3023.79109386.1020.23	1090	41.70	29.45
1093 86.10 20.23	1091	30.80	37.11
	1092	26.30	23.79
1094 29.30 51.66	1093	86.10	20.23
	1094	29.30	51.66
1095 44.00 30.68	1095	44.00	30.68

MONTHLY VARIANCES 6753.0 2115.4 19662.2 5033.1 8910.1 5651.1 130.3 496.5 297.7 1124.7 282.5 2785.9 ANNUAL VARIANCE 53242.6 YEAR: -- 1980 MONTHLY VARIANCES 2359.8 4891.4 768.4 411.5 107.3 162.1 380.7 249.9 12.8 8315.7 686.4 3281.0 ANNUAL VARIANCE 21627.2 YEAR:--1981 MONTHLY VARIANCES 15101.3 8389.4 1654.8 1960.1 503.7 633.4 745.3 10.4 322.3 113.8 1104.2 19787.1 ANNUAL VARIANCE 50325.8 OVERALL EFFICIENCY (%)= 54.582