RUNOFF STUDIES OF KALLUVODDUHALLA PROJECT (KARNATAKA)

A DISSERTATION

submitted in partial fulfilment of the requirements for the award of the degree of

HYDROLOGY

178188

21-2-6

By

G. D. SHANKARAMURTHY

UNESCO SPONSORED INTERNATIONAL HYDROLOGY COURSE UNIVERSITY OF ROORKEE ROORKEE - 247 667 (INDIA)

May, 1984

GANDIDATE'S DECLARATION

I hereby certify that the work which is being presented in the dissertation entitled "RUNOFF STUDIES OF KALLUVODDUHALLA PROJECT (KARNATAKA)" in partial fulfilment of the requirement for the award of the Degree of Master of Engineering in Hydrology, submitted in the School of Hydrology of the University, is an authentic record of my work carried out during a period from 16th October, 1983 16 May, 1984 under the supervision of Dr. B.S. Mathur toReader, School of Hydrology and Dr. D.K. Srivastava, Reader, School of Hydrology, University of Roorkee, Roorkee.

The matter embodied in this dissertation has not been submitted by me for the award of any other degree.

(G. D. SH/NK/RAMURTHY) Candidate's Signature

This is to certify that Nthe above statement made by the candidate is correct to the best/be our knowledge. Blom o tamo

- Dehich

(D.K. SRIVASTAVA) RE, DER SCHOOL OF HYDROLOGY UNIVERSITY OF ROORKEE ROORKEE

(B. S. MATHUR) · · READER SCHOOL OF HYDROLOGY UNIVERSITY OF ROORKEE ROORKEE

ACKNOWLEDGEMENT

I wish to express my deep sense of gratitude to Dr. B.S.Mathur, Reader, School of Hydrology, University of Roorkee, Roorkee for his able and excellent guidance, timely suggestions and encouragement throughout this work.

I wish to express my deep gratitude to Dr. D.K. Srivastava, Reader, School of Hydrology, University of Roorkee, Roorkee for his valuable guidance, suggestions encouragement and whole hearted co-operation throughout the entire duration of the course and carrying out this work.

I am over grateful to Dr. Satish Chandra, Professor and Coordinator, School of Hydrology, University of Roorkee, Roorkee for his help and encouragement throughout the course of this study. I am also grateful to Dr. Deepak Kashyap, Reader and Dr. Ranvir ^Singh, Reader, School of Hydrology, University of Roorkee, Roorkee for their helps, encouragement and co-operation during this course.

I cannot but remain grateful to the Chief Engineer, W.R.D.O. Bangalore who have nominated me for this course.

I wish to express my whole-hearted gratitude to Sri Chandrasekharappa, I/C, Executive Engineer, Major I.I. Division, Shimoga and Sri A.Byanna, Asstt. Executive Engineer Shimoga for their help and encouragement for my deputation to this course.

I am thankful to my wife Smt. Choodamani, and my son, Vijaykumar for their tolerance and encouragement given to me throughout the period of this course.

Gottaule and nur TI (G.D. SHANKARAMURTHY)

(111)

CONTENTS

SECTION	SUBJECT	PAGE
	CERTIFICATE	(i)
	ACKNOWLEDGEMENT	(ii)
	CONTENTS	(iii)
	LIST OF FIGURES	(iv)
	LIST OF TABLES	(v)
	LIST OF APPENDIXS	(vi)
	SYNOPSIS	(vii)

CHAPTER-1

. 1.1	INTRODU	CTION	1
1.2	BRIEF D	ETAILS OF THE PROJECT	4
	1.2.1	Location	4
	1.2.2	Project	. 4
	1.2.3	Catchment Area	4
	1.2.4	Climate	4
	1.2.5	Hydrology of the project	8
	1.2.6	Runoff By Strange's Table	11
	1.2.7	Dependable Flow	16
	1.2.8	Evaporation Values	16
	1.2.9	Cropping Pattern	19
	1.2.10	Reservoir Elevation-Area- Capacity relatións)9
	1.2.11	Topography and Soil Classifi- cation of command area.	19
	1.2.12	Salient Feature of the Scheme	26
	1.2.13	Reservoir Operation for 50% Dependable Year.	27

(*i*ii)

	1,2,14	Cost of the Scheme	27
1.3	OBJECT	IVES OF THE STUDY	
	1.3.1	Generation of Monthly Flows By Regression Analysis.	29
	1.3.2	Generation of Monthly Flows By Modified Thomas Fiering Model	29
	1.3.3	Curve Fitting for Area-Capacity Relation.	30
	1.3.4	Reservoir Operation Studies.	30
CHAPTER-2			
2.0		FION OF MONTHLY FLOWS BY REGR ^E SSION IS AND COMPUTATION	.31
2.1	GENERAL		31
2.2		TION OF MONTHING FLOWS BY REGRESSION IS FOR NATURAL VALUES	.35
2.3		ATION OF MONTHLY FLOWS BY REGRESSION IS FOR NATURAL VALUES	38
2.4		ION OF MONTHLY FLOWS BY REGRESSION S FOR LOGARITHMIC VALUES	39
2.5		ATION OF MONTHLY FLOWS BY REGRESSION S FOR LOGARITHMIC VALUES	40
CHAPTER-3			
3.0		ION OF MONTHLY FLOWS BY THOMAS MODEL AND COMPUTATION	41
3.1	GENERAL	i	_41
3.2	GENERAT	ION OF RANDOM NUMBERS	43
3.3	ALGARIT	HM FOR THE THOMAS FIERING MODEL	44
3.4		ION OF MONTHLY FLOWS BY MODIFIED FIERING MODEL	46
3.5		TION OF MONTHLY FLOWS BY MODIFIED FIERING MODEL	48

CHAPTER-4

	4.0	RESERVOIR OPERATION STUDIES	50
	4.1	IRRIGATION PRACTICES IN INDIA About DEPENDABLE FLOWS	50
	4.2	OPERATION OF RESERVOIR WITH CONVENSIONAL METHOD	52,
	۰.	4.2.1 Reservoir Operation Procedure	55
	4.3	FITTING A POLYNOMIAL CURVE FOR RESERVOIR AREA-CAPACITY	-28
	4.4	PERFORMANCE OF THE PR ^O JECT FROM STANGE'S TABLE GENERATED FLOWS	60
		4.4.1 Dependable Flows From Strange's Table Values.	60
		4.4.2 Reservoir Operation For 50% Depen- dability.	61
		4.4.3 Reservoir Operation for 60% Depen- dability	62
		4.4.4 Reservoir Opefation For 75% Depen- dability	63
	4.5	RESERVOIR OPERATION FOR GENERATED FLOWS FROM MODIFIED THOMAS FIERING MODEL	. 64
	۰ ۱		
CHAPTER	-5	BENEFIT COST RATIO	65
	5.0	GENERAL	65
	5.1	BENEFIT COST RATIO OF THE PROJECT-FOR STRANGE'S TABLE COMPUTATION	66
	5.2	COST-ESTIMATE FOR 50% DEPENDEBILITY	67
	5.3	COST-ESTIMATE FOR 60% DEPENDABILITY	68
	5.4	COST-ESTIMATE FOR 75% DEPENDABILITY	69
	5.5	BENEFIT COST-RATIO FOR 50% DEPENDABILITY	70
	5.6	BENEFIT COST_RATIO FOR 60% DEPENDABILITY	71
	5.7	BENEFIT COST-RATIO FOR 75% DEPENDABILITY	71

CHAPTER-6 DISCUSSION, CONCLUSION AND SUGGESTION

.

.

	6.1	GENERAL	73
•	6.2	DISCUSSION	74
		6.2.1 Runoff from Strange's Table	74
	6.3	GENERATION OF MONTHLY VOLUME OF FLOW BY REGRESSION ANALYSIS MODEL	75
		6.3.1 General	75
		6.3.2 To extend Records of Short Duration by Regression Analysis for Natural Values.	78
		6.3.3 Assumptions	78
		6.3.4 Results	79
	6.4	TO EXTEND RECORDS OF SHORT DURATION BY REGRESSION ANALYSIS FOR LOGARITHMIC VALUES	79
		6.4.1 Results	82
	6.5	GENERATION OF MONTHLY VOLUME OF FLOWS BY MODIFIED THOMAS FIERING MODEL	82
		6.5.1 Results	83
	6.6	COMPARISION OF FLOWS GENERATED FROM STRANGE'S TABLE AND MODIFIED THOMAS FIERING MODEL	83
	6.7	RESERVOIR OPERATION STUDIES FOR CHECKING FEASIBILITY OF THE PROJECT FOR DIFFERENT DEPENDABILITIES	92,
	6.8	RESERVOIR OPERATION STUDIES FOR CHECKING FEASIBILITY OF THE PROJECT FOR THE FLOWS GENERATED FROM MODIFIED THOMAS-FIERING MODEL	96
	6.9	COMPARISION OF PROJECT FEASIBILITIES OBT- TAINED FROM STRANGE'S TABLE AND MODIFIED THOMAS FIERING MODEL FLOWS.	98
	6.10	BENEFIT COST - RATIO	101
	6.11	CONCLUSION	101
	6.12	SUGGESTIONS	104.

LIST OF FIGURES

1.1	Location Map	r
1.2	Index-Map	6
1.3	Reservoir Elevation-Area-Capacity Relation	7 DY
4.1	Flow Chart for Conventional Reservoir Operation	53
6.1	Mean-Curve-Strange's Table Flow And Historical Flow.	77
6.2	Mean Flows-Regression Analysis	81
6.3	Mean Flows-Modified Thomas Fiering Model and Thomas Fiering Model and 10 Years Flow.	87
6.4	Flow-Duration Curve,	91
6.5	(Storage/Capacity) and Percent Curve.	97

(14)

LIST OF TABLES

Catchment Rainfall Data	9
Rainfall Data of Ambligola	10
Computation of Ratio of Catchment Rainfall to Ambligola Rainfall	12
Catchment Rainfall-30 Years.	13
Historical-Flows)4
Runoff Data Based on Strange's Table	15
Daily Evapotranspiration Values	18
50% Dependable Flow-Year Working Table.	17
Existing Crop Pattern in the Command Area	20
Proposed Crop Pattern	21
Monthly Crop Water Requirement	ಷಿ
Reservoir Elevation-Area-Capacity Relation	a 3
Statement Showing the Morphological Character- istics of the Soils Coming Under the Command Area.	25
Cost Estimates (for 50% Dependability)	67
Cost Estimates (for 60% Dependabilities)	68
Cost Estimates (for 75% Dependabilities)	69
Benefit Cost-Ratio (for 50% Dependability)	70
Benefit Cost-Ratio (for 60% Dependability)	71
Benefit cost-Ratio (for 75% Dependability)	72,
Flow Statistics of Strange's Wable and Histori- cal Flow.	76
Flow_Statistics of Historical Flow and Generated By Regression Analysis.	80
Ten Years Data.	84
	<pre>Rainfall Data of Ambligola Computation of Ratio of Catchment Rainfall to Ambligola Rainfall. Catchment Rainfall-30 Years. Historical-Flows Runoff Data Based on Strange's Table Daily Evapotranspiration Values 50% Dependable Flow-Year Working Table. Existing Crop Pattern in the Command Area Proposed Crop Pattern Monthly Crop Water Requirement Reservoir Elevation-Area-Capacity Relation Statement Showing the Morphological Character- istics of the Soils Coming Under the Command Area. Cost Estimates (for 50% Dependability) Cost Estimates (for 50% Dependabilities) Cost Estimates (for 75% Dependabilities) Benefit Cost-Ratio (for 50% Dependability) Benefit cost-Ratio (for 75% Dependability) Flow Statistics of Strange's Table and Histori- cal Flow. Flow_Statistics of Historical Flow and Generated By Regression Analysis.</pre>

(v)

6.4	Generated Flow Data	85
6.5	Comparision of 10 Years Flow and Flows Generated from Modified Thomas Fiering Model.	86
6.6	30 Years Generated Flow.	88
6.7	Various Dependable Flows.	89
6.8	Inflow-Duration Curve.A-Strange's Table-Inflow B-Generated Table Flows.	90
6.9(a)	Results from 30 Years Working Table.	93
6.9(b)	Results of 30 Years Reservoir Operation from Strange's Table Flow.	94
6.10	Storage Duration Values-Strange's Table Flow	95
6.11	Results of 30 Years Reservoir Operation From Modified Thomas Fiering Model Flow.	99
6.12	Storage -Duration Values-Modified Thomas Fiering Model.	100
6.13	Comparision of Cost and Benefit Cost Ratio.	100

LIST OF APPENDIX

Particular	Page No.
Computer Program For Generation of Monthly Flows By Regression Analysis (For Natural Flows)	106
Computer Program For Generation of Monthly Flows by Regression Analysis (For Logarithmic Flows)	109
Computer Program For Generation of Monthly Flows by Modified Thomas Fiering Model.	112
Computer Program for Reservoir Operation.	117
Computer Program for Least Square Curve Fitting for Reservoir Area-Capacity Relation.	120.
	Monthly Flows By Regression Analysis (For Natural Flows) Computer Program For Generation of Monthly Flows by Regression Analysis (For Logarithmic Flows) Computer Program For Generation of Monthly Flows by Modified Thomas Fiering Model. Computer Program for Reservoir Operation. Computer Program for Least Square Curve Fitting for Reservoir Area-Capacity

SYNOPSIS

The role of runoff is one of the basic hydrologic data and plays an important role in design aspect of Hydrology and reservoir operation studies in all water resources systems. In several water resources projects it is required to predict the characteristics and quantity of stream flow sequences. Many existing irrigation projects had been designed on the basis of scanty hydrologic data. Even some of the incoming projects are also being designed with available hydrological data.

Kalluvodduhalla project is Karnataka State is a tank Irrigation project, proposed for construction under World Bank Aid Scheme. The project is proposed across Kalluvodduhalla and no stream gauging data were available at the time of finalisation of the project. The project authorities finalised the hydrology of the project based on the available rainfall data of the catchment rainfall and the adjacent catchment rainfall. Thirty years catchment rainfall was calculated and the yield of runoff was worked out based on Strange's Table. The project was designed for 50% dependability of the flows , and was tested by 5 years continious working Tables.

At present three years historical river flow data is now available at the site.

The aim of the present study is as follows:

 $(\vee \Pi)$

- (a) To generate the monthly volume of flows at the site for a period of 30 years by (i) Regression
 Analysis (ii) Modified Thomas Fiering Model.
- (b) To study the feasibility of the project by reservoir operation for a cycle of 30 years for the 50%. 60% and 75% flow dependabilities.
- (c) To work out the comparative benefit cost ratioof the project for different dependabilities.

The above study reveals that the flow generated by the regression analysis vary widely as compared to the historical flow and therefore were not considered for **pee**reservoir operation. Where as the flows generated by Strange's table and the modified Thomas-Fiering Model resemble very much with the historical flows, and hence the flows generated by these two methods were used for reservoir operation. The flows generated by Modified Thomas Fiering Model are smaller than as compared with the flows generated by Strange's Table.

The 50% dependable flow scheme is feasible on the basis of reservoir operation criteria as well as on the basis of benefit cost-ratio criteria.

CHAPTER 1

INTRODUCTION

Kalluvodduhalla Project is situated in Shikaripura Taluk, Shimoga District of Karnataka State. Karnataka State is in southern part of India. Kulluvoduhalla project is taken up for construction under Tank Irrigation projects under World Bank Assistance.

Karnataka State has a total area of 1,91,773 sq.km. The total irrigation potential available in the State is About 54% of the States Geographical about 5.5 million Hectares. a rea is drought prone as compared to 16% of the total area in India. The State has created only about 18% of area under Irrigation as against the national average of 30%. Therefore expansion of Irrigation facility is one of the highest priorities for agricultural development plan.

In the State, tank Irrigation, is the traditional form of Irrigation. The Irrigation Department of Karnataka, has 25,150 minor Irrigation Works irrigating about 0.81 million Hectares.

To increase the irrigation potential, the State Government has identified 160 tanks irrigation projects under the assistance of World Bank Aid. Kalluvodduhalla project is one among those identified under World Bank Aid. Kalluvodduhalla project envisages the construction of Earthen dam with flank spillway across the stream Kalluvodduhalla. It is proposed to irrigate 1450 Hectares of land to utilise 17.549 Mm³ of water. The cost of the project works out to Rs.484.8 lakhs.

The stream gauging data of the halla were not available at the time of finalisation of the project. Hydrology of the project is finalised by using catchment rainfall and adjacent catchment rainfall statistics.

Rainfall data in the catchment is available for 11 years. By making use of rainfall data of the adjacent catchment, 19 years rainfall data in the catchment in built: up by correlation analysis. In all 30 years rainfall data in the catchment is built up and the runoff is calculated by Stange's Table.

In case of Karnataka, hydrologist principally use the strauge's table for calculating runoff in case of the catchments having no stream flow data.

In the project report, 50% dependable flow is considered for design aspect and for reservoir operation studies, to see the feasibility of the project.

India has ultimate irrigation potential as estimated at 107 million ha.So far in the country, total area irrigated is of the order of 50 million ha, of which nearly 30 million ha. are accounted for by major and

medium projects. The scope for constructing new Irrigation projects to provide Irrigation facilities is rather limitted, since most of the sites suitable for construction of storage reservoirs have already been developed. Even in case of relatively few sites which are considered feasible of being developed with the present level of technology available, the cost of Irrigation is much higher than in the projects already constructed. In some cases, it is possible that the system had to be designed with practically no observed data, relaying purely on empirical runoff estimates based on strauge's rainfall runoff tables or other similar methods. Considerable methods are now available to provide a more realistic basis for assessing the availability and variability of river supplies. Techniques of mathematical modelling coupled with digital computer facilities available in the country to provide powerful tools for testing the adequacy of a storage volume and evolving suitable operation schedules so as, not only to regulate available river flow to match a pattern of demand, but also to optimise the results of such regulation. In this context the possibility of improving the efficiency of the existing irrigation system as well as future coming projects, so as to use the water and thereby intensity or extend irrigation under these projects calls for urgent modernisation of reservoir operation.

Tater is one of the most important natural resources on earth. All human being, animal and plant life requires water for their survival. Besides this water

is also required for domestic use, municipal water supply, business establishments, industries mining, hydro-electric projects, agriculture, production of stream, refrigirator cooling system, recreation centres, fishing ponds, forming pools, and lakes. It is generally assumed that domestic water supply has the highest priority of all types of water utilisation, possibly followed by industrial and agricultural requirement. But irrigation is necessary to meet the rising demand of food and fibre for the ever rising population of the world.

Whether or not irrigation is an alternative proposition in a certain region of which the following are the most important. First of all, the political, social and economic environment. Second, the suitability of the land form. Third, availability of water in the region.

Because of the elimination of the havoc caused by drought period, the economy of the region and is to give assured supply of water for irrigation to poor with marginal land holding farmers, construction of irrigation project is more necessary than just the benefit schemes so that the economy of the region is stabilised.

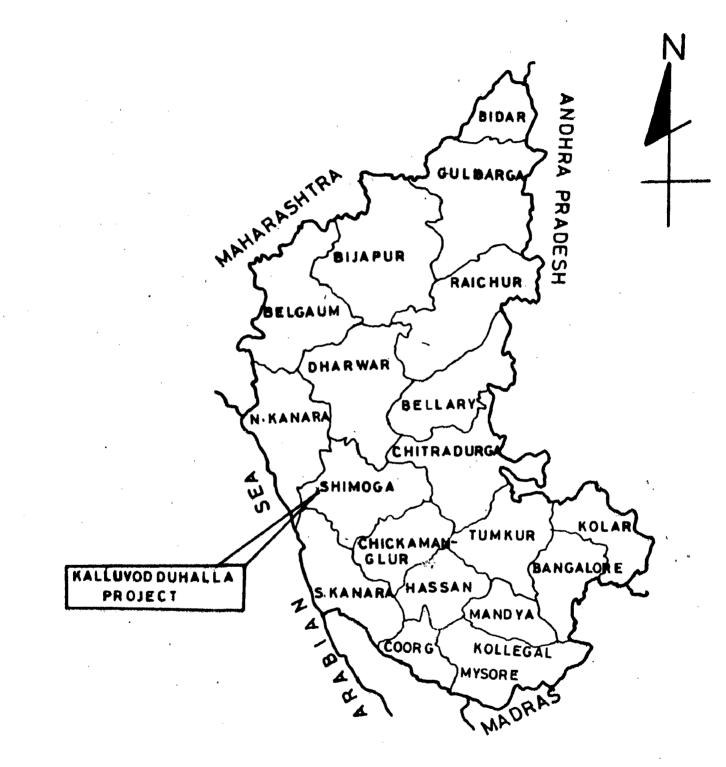
1.2 BRIEF DETAILS OF THE PROJECT

1.2.1 Location

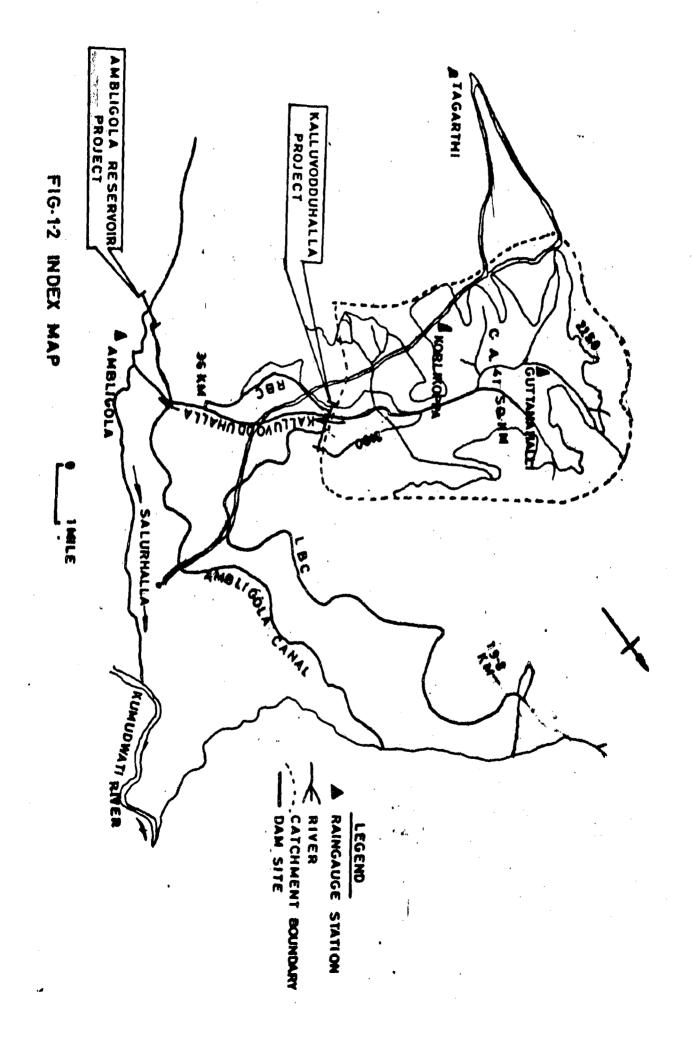
Kalluvodduhalla is a tank project situated in Shikaripura Taluk, Shimoga District of Karnata State. It is

located at Latitude 14⁰13' O'' and Longitude 75⁰14' 30''. It lies in the western part of Karnataka State in Shimoga District shown in Fig. 1.1.

1.2.2 Project


The project envisages construction of earthen dam with flank spillway across Kalluvodduhalla. It is a storage reservoir to irrigate 1450 Hectare of lands in Shikaripura Taluk, served by two canals. Shown in Fig.1.2.

1.2.3 Catchment Area


Catchment Area of the project is 41 sq.kms. This rises from halla Balundur State forest at an altitude of about 700 M. The lowest river bed level at the site is about 614 m. Upper most catchment area is hilly and thickly forested and lower reaches are in moderate country. Kalluvodduhalla stream is one of the tributary in sub-basin of Kumudvati river, which in turn is a tributory to Tungabhadra: river. Catchment area shown in Fig.1.2.

1.2.4 Climate

The climate of the area is described as fairly moderate and tropical. The temperature varies from $14^{\circ}C$ minimum to $35.9^{\circ}C$ maximum. This area receives maximum rainfall during the south-west monsoon (Jun. to September) and minimum rainfall during north-east monsoon (Oct.to Dec.) The average rainfall in the area is about 1305 mm per year.

FIG.1.1 LOCATION MAP

1.2.5 HYDROLOGY of the Project

Two rain gauge stations are available in side the catchment, namely Guttanahalli, and Korlikoppa stations. Shown in Fig. 1.2. Rainfall data for 9 years are available as shown in Table 1.1.

Runoff series of the project is finalised by using long term rainfall series based on strauge's table value.

Hydrological data available:

1. Catchment Area map 1'' = 1 mile

- 2. Rainfall data of Guttanahalli 1971-1979
- 3. Rainfall data of Korlikoppa 1971-1979
- 4. Rainfall data of Ambligola 1950-1969 and 1971-1979.

5. Area capacity Table and curve.

6. Existing and Proposed cropping pattern

7. Monthwise crop water demand.

8. Evaporation values

9. Historical stream flow data for 3 year from 1981-1984.

19 years rainfall data of the catchment is built up by using the rainfall data of adjacent catchment.

Ambligola raingauge station shown in Fig.1.2, is situated in the adjacent eatchment and fairly long term rainfall record is available shown in Table 1.2.

"Ratio of 1.196 is calculated by using the concurrent period rainfall data of catchment rainfall to that Table 1.1 : Catchment Rainfall Data (All figures are in inches)

Year	May	June.	July	Months August	sseptember	October	Novemb er	Total
		•		GUTT/	GUTTANAHALLI STA	STATION	ł	
~		ŵ	2	•	3.07	1	1	39 • 03
~	4.48		2.0		1.20	1.06	0.16	55.65
- 07	0.63	o	6	N,	0,33	0.35		58.30
CD 1	I	m	N	11.3	4.66	3.51	t	40.89
- CD	1. 39	•	4.4	15.1	8.75	6.45	6 . 00	68.59
5	1	2	ີ ພູ	6.6	2.32	0.48		34.91
- ED	ູ	-	0.1	5.7	6.87	2.38	•	50.82
1978	6.23	6	17.05	\circ	3,89	3.15	2.25	67.87
1979		13.31	8	ц,	0.78	0•40		37.96
				KARLIN	ARLIKOPPA STATION	Z		
<u></u>	°		പ്		2.71		0.36	
δ	6.57	•	ė		5,13		0.67	. 🔶
QV	00	4	-	4	1. 39	•	0.12	
5	<u>o</u>	è. The second sec	ŵ	e m	5.28		1	•
σ	4	26.07	ŝ	15.43	10,62	6.48	7.23	83.45
9		ີ	4	u)	2,97		7.93	٠
9	2.86	-	4	÷	7.40		3.65	
1978			22.95	ດ	3.58	•	2.00	•
<u>о</u> ~	ŧ	I	ຕ	t	I.79	1	ł	

Table:1.2 : Rainfall Data of Ambligola(Figures are in Inches)

.

•

	May	June	Jul.	Aug.	Sept.	Oct.	Nov.	Total
							1.27	
1951	5 .7 0	7.19	14.86	3.92	4.55	8.95	5-8	45.17
1952	et		8.13	6.20	5-00	6-62		25.95
1953	· 3	16.70	6.60	16.9	1048	-	-	40.20
1954	1.61	10.85	19.90	9.21	2.71	4.60	**	48.88
1955	8,55	8.36	4.32	10,19	7.36	8.40		47.24
1956	2,46	14,85	20.23	11.07	6,22	7.09	3.14	65.06
1957	7.66	10 9 38	14.53	7.47	3.29	10.94	5.05	59.25
1958	3.22	9.53	25.16	9.87	4.86	5.69	0.32	58.65
1959	4.87	15.76	34.66	7.75	10.41	1.10	3.25	71.80
1960	1.95	5.81	16.09	9.81	8.97	6.13	1.91	50 . 67
1961	18.35	13.87	32.12	9.24	3.73	2.09	**	79.40
1962	4.32	3.13	21.33	22.14	8,06	7.06	0.33	66 -37
	5,58							
1964		6.20						
	2.30							
	6.35							
1967				10,80				
	0.30						1.30	44.30
1971	1.27	12.89	10.79	3.74	4.60	1.73		35.02
1972		8.35						37.60
1973	0.51	10.31	16.77	9.93	0.55	2.59	0.48	41.14
1974	2.60	3.74	16.26	1 0 . 51	6.02	5.52	-	44.65
1975	2.98	15.02	12.24	12.92	7.24	5.63	4.66	60.69
1976		3.88	13.04	5.73	3.69	0.63	6.24	33.20
1977	2.50	8.00	12.00	2.96	8.26	7.36	1.68	42.76
1978	3.90	8.07	23.36	11.09	2.70	4.09	3.16	56.37
19 7 9		10.95	8.99	14.34	1.04	-	1.24	36.90

of Ambligola rainfall, shown in Table 1.3.

By using the ratio of 1.196, the catchment rainfall data is built up for 19 years. In addition to the 11 years available catchment rainfall total 30 years catchment rainfall is shown in Table 1.4. 3 Years historical flow data is shown in Table 1.5.

1. Runoff by Strange's Table

Stream gauging data of the stream was not available. The project authorities have finalised the runoff yield by using strange's table is a strange in the stream was not available.

Into most parts of Karnataka, except in coastal areas, the use of Strange's Table for ungauged streams, is generally accepted. In Strange's Table, the yield of runoff is given for good, average and bad catchments. Use of StrangeSS Table requires careful classifications of catchment. The project authorities have considered the catchment as ''average'' by studying the available data of rainfall and runoff data of the adjacent catchment. 30 years runoff yield is calculated by considering the catchment as ''average'' . Monthwise runoff yield calculated by Strange's Table is shown in Table 1.6.

Table	1.3: Comput	Table 1.3: Computation of Matio of Ca	10 01 Laton	tchment Kalniall to Ampligota Nallall.	etobitouw on	•TTPIUTEN
Year	Guttanahally 9.60 Sg.Miles Rainfall Preci inches tion	ally Miles Precipita- tion in	Karlikoppa 6.23 Sq.Mil Rainfall Pi inches ta	likoppa 3 Sq.Miles fall Precipita- hes tation Sq.	Weighted average inches	Rainfall of Ambligola Raingauge Station
		Sq.Miles inches		Miles inches		ى بى تىكى بىلەن بىلەن بىلەن بىلەن بىلە
1971	39,03	374.69	47.72	297.30	42.45	35.02
1972	55 - 65	534.24	51.20	318,98	53.90	37.60
1973	58.30	559.68	58.20	362.59	58.26	41.14
1974	40.89	392.54	49.47	308,20	44.27	44.65
1975	68.59	657.60	83.45	519.14	74.38	60•69
1976	34.91	535.14	39,499	249.14	36.91	33 . 21
1977	50.82	487.87	47.59	296.49	49.55	42.76
1978	67.87	651.55	65.89	410.49	67.09	56.37
1979	37.96	364.42	1	i	37.96	36.96
			464.77/3	464.77/388.40 = 1.196	464.77	388.40

Table 1.3: Computation of Ratio of Catchment Rainfall to Ambliaola Rainfall.

12

.

.

Table 1.4 : Catchment Rainfall-30 years

SI No.	Year	Rainfall Data of Ambligola	Catchment Rainfall (Built up 1950-1968) Col.3 * 1.196	Catchment Rainfall in Decending Order
1	2	s name and the construction of the second	ant and the field of the field	e ne valenciare cancerare ana angle cancera cancerar and valenciar cancera cancerar cancerar and and an and an 5 meno menor cancerar an esti ano ana anterior a cancerar cancerar cancera ano an esti cancera ante ano anterior a
1 2. 3. 4. 5. 6. 7. 8. 9. 10.	1950 1951 1952 1953 1954 1955 1956 1957 1958 1959	61.80 45.17 25.95 40.20 48.88 47.24 65.06 59.25 58.65 77.80	73,93 54,02 31.04 48.08 58.46 56.50 77.81 70.86 70.15 93.05	94.96 93.05 79.38 77.81 74.38 73.98 70.86 70.15 67.09 61.48
12. 13. 14. 15. 16. 17. 18. 19.	1960 1961 1962 1963 1964 1965 1966 1967 1968 1969	50.67 79.40 66.37 40.14 46.99 38.14 42.97 46.05 44.30	60.60 94.96 79.38 48.01 56.20 45.62 51.39 55.68 54.95 53.86	60.60 58.46 58.26 56.50 56.20 50% dependa- 55.68 bility 54.02 53.90 53.86 52.98
22. 23. 24. 25. 26. 27. 28. 29.	1970 1971 1972 1973 1974 1975 1976 1977 1978 1978		61.48 42.45 53.90 58.26 44.27 74.38 36,91 49.55 67.09 37.96	51.39 49.55 48.08 48.01 45.62 44.27 42.45 37.96 36.91 31.04

= 862.67 Mcft. = 24.42 Mm³

					,
Sl. No.	Month	1981	1982	1983	e carrola conservation de carrola como en concomponantas
1.	Janua <i>r</i> y	0.0	0.0	0.0	
2.	February	0.0	0.0	0.0	
3.	March	0.0	0.0	0.0	
4.	April	0,0	0.0	0.0	
5.	May	0.12	0.0	0.0	
6.	June	0.10	0.37	0.154	
7.	July	0.376	1.163	6.551	· · · · · · · · · · · · · · · · · · ·
8.	August	13.053	13.041	11.288	
9.	September	1.196	1.012	1.188	
10.	October	0.438	0,600	3.210	
11.	November	0.0	0,425	1.707	
12.	December	0.0	0.0	0.0	
9729-08 107720 177986 17	Total	15,783	16.611	24.098	u prishnanga dense uniterentite pertentit i di titologi

Table 1.5 : Historical Flows (All figures in Mm³)

.

.

Table 1.6: Runoff Data Based on Strange's Table (All figures in ... in Mm³)

S1. No.	Year	Jun.	Jul.	Aug•	Sept.	Cct.	Nove.	May	Total
1.	1950-51	0.28	17.11	8.20	1.60	1.54	0.71	0.11	29.55
2.	1951 - 52	1.08	6.54	2.67	3.56	8.54		-	22.39
3.	195 2- 53	-	0.31	1.27	1.77	3.30	-		6.65
4∙	1953-84	2.33	2.86	12.31		-		-	17.50
5.	1 954-55	1.08	9.83	7.91	2.71	5.09		0.36	26.98
6.	1955 - 56	2.05	1.78	6.05	6.00	8.50			24.38
7.	1956-57	2.55	12.53	11.24	1.29	1.89	1.77	0•26	31. 53
8.	1957-58	2.56	8.21	6•27	3.20	4.68	2 •82		27.74
9.	1958-59	1.15	14.25	9.93	0.86	1.30	0.18	0.06	27.73
10.	1959-60	3.83	21.88	4.35	5.85	0.62	1.83		38.36
11.	1960-61	0.27	5.20	6.40	7.98	6.63	0.05	2.96	29.49
12.	1961-62	7.77	20.14	5.19	2.09	1.17	-	0.04	36,40
13.	1962-63	0.20	8.17	18.14	1.30	3:96	0.19	0.10	32:06
14.	1963-64	0.34	2.92	7.12	0.70	4.07	2.16		17.31
15.	1964-65	0.18	2.22	12.05	3:03	4.22	2.76	0.01	24.47
16.	1965-66	0.41	6.97	4.97	1.61	1.65	-	0• 5 5	15.76
17.	1966-67	0.16	5.64	0.76	3.73	5.84	3.92	0.02	20.07
18.	1967-68	0•59	10.51	9.57	1.68	1.07	-		23.42
19.	1968-69	0.42	13.36	2.54	3.92		1.31	-	21.55
20.	1969-70	0.04	6.12	4.62	4.46	5.98	1.13	0.10	22.45
21.	1970-71	1.07	5.03	14.14	7.21	0•48			27.93
22•	1971 -7 2	2.43	5.64	2.76	1.88	0.55	0.10	0•05	13,41
23.	1972-73	2.11	9.81	5.97	2.27	1,51	0•34	-	22.01
24.	1973-74	2.32	9.59	12.30	0•69	1.48	0.05	-	26.43
25.	1974-75	0.09	3.12	5.91	3.00	2.51			14.63
26.	1975-76	2.97	6.74	10.98	5.85	1.55	1.57		29.66
27.	1976-77	1.48	2.69	1.06	0•64 ·	3.93	-		9.80
28.	1977-78	0•57	5.18	2.73	4.33	2.34	3.53	0.05	18.73
29•	1978 7 9	3.00	9.73	13.06	1.14	1.08	0.71		28.72
30•	19 79- 80	0•75	2.01	6.44	0.46	0.22	0•44	-	10.32

1.2.7 Dependable Flow

The project is designed for 50% dependability. Usual practice of dependable flow is 75% for major projects. It is a tank irrigation project and hence the 50% dependable flow is considered for design purposes as per staff apprisal report of Karnataka State. Yield of runoff for 30 years are arranged in decending order. The 50% dependable yield works out to 24.42 km³ shown in Table 1.6. 50% dependable flow year working table enclosed in Table 1.7.

1.2.8 Evaporation Values

Daily evaporation values of the project area is enclosed in Table 1.8. Total evaporation for the 50% dependable flow year works out to 1.881 Mm^3 . Shown in Table 1.7.

		Total		24.470	•	17.549					1.881		4.553		
	Nm ³	May T	6.183	0.01 2	6.193	0.050 1	6.143	6.163	124	144.7	0.179 1	5.964	ч		
	= 1.222	Apr. M	6.675 6	0 I	6.675 6	0.298 0	6.377 6	6.526 6	127 1	152.8 1	0.194 C	6.183 5			549 Mm ³ 881 11 553 11 964 11 947 Mm ³
	storage	Mar.	8.916	ł	8.916	2.032	6.884	7.900	137	152.9	0.200	6.675		.•	= 176549 = 1.881 = 4.553 = 5.964 29.947
	drawdown st	Feb.	10.796	I	10.796	1.701	9 °C 95	9*946	1.52	117.8	0.179	8.916			on Issues Losses S Balance
		Jan.	11.674	I	11.674	0.700	10.974	11.324	164	108.5	0.178	10.796			I.H 5
Table	Mininum	Dec.	12.176	I	12.176	0.347	11.829	12,003	92.1	168	0.155	11.674	ł		Irrigat Evap. Surpl. Closing
Working T		Nov.	12.176	2.760	14.936	0.929	14.007	12.176	98 . 6	171.25	0.169	12.176	1.662		
		Oct.	1	4.220	16.396	2.600	13,796	12.176	101.1	171.25	0.173 (12.176	1.447		
FIOW		Sep. (12.176 12.176	3.030	15,206	2.498	12.708	12.176	100.8	171.25	0.173 (12,176	0.359		7 Mm ³ 70 • • 47 Mm ³
endable	6 0	Aug.		2.050		1.318	13.396]	8,030	97.50	138					= 5.477) = 24.470 29.947
50% Dep	rage = 12.176 Mm ³ age = 0.874 Mm ³	Jul. A	1.290 2.664	2.220 12.050	3.510 14.714	0.796	2.714 1	2,002		52	0, 35 C. 135	31.290 2.664 12.176			Balance
1.7 :	= 12. 0.8	Jun.	5.477	0.180	5.657	4.280	1.377	3.427	110.4 95.4	80	0.087	31.290	ì		Opening B Inflow
Table	Gross Storage Dead Storage		. Opening	Balance 3 . Inflow Mm ³	. Total "	Cropwater3	Jemand Mm 5. Balance	6. Mean Capa-	city Evap.Values	Nm 8. Water Spr-	g Leau na. 9. Evap.Losses	10. Closing	Balance Mm 11. Surplus	12. Shortages	đ

.'

- 17

a

Table 1. 3: Daily Evapotranspiration Values(Modified Penman Method)

2,97 Dec. Unit mm 3.29 Nov. 3.26 Oct. 3.36 Sep. 3, 15 Aug. 3.07 Jul. 5.09 4.67 3.68 Jun. May Apr. 4.93 Feb. Lar. 3.50 4.21 Jan. Station : Shimoga. Daily Eva-potranspira-tion Values in mm/day Nonth ł

1.2.9 Cropping Pattern

The existing crop pattern is enclosed in Table 1.9. The proposed cropping pattern is enclosed in Table 1.10. Monthly crop water requirement of the project is enclosed in Table 1.11. Crop water demand works out to 17.549 Mm³. 1.2.10 Reservoir Elevation-Area Capacity Relations

The relation between Elevation-Area-Capacity Table is enclosed in Table 1.12. The Area capacity curve is enclosed in Fig. 1.3.

1.2.11 Topography and Soil Classification of the Command Area

Topography of the command area is plain in most part of the project area, but undulating in few places. General slope of the area varies from O to 3%. I command area survey is done by the State Agricultural Department and has identified two soil series, shown in Table 1.13.

Amptekoppa Soil series are moderately fine to fine textured soils with medium depth and are under-laid by gravelly murrum and the land is quite suitable for irrigation.

Hagaravalli soil series are deep fine textured soils with moderately slow to slow permeability and the land is suitable for irrigation with care.

S1. No.	Crop	Session	Present Crop in Percent
1.	Paddy	Khariff	83.60
2.	Maize	Khariff	0.90
3.	Ragi	Khariff	6.10
4.	Pulses	Khariff	0.10
5.	Chillies	Khariff	3.80
5.	Groundnut	Khariff	0.60
7.	Seasamum	Khariff	0.60
3.	Niger	Khariff	0.60
,		a and an and a sub-contract of the sub-contract of the sub-contract of the sub-contract of the sub-contract of t	95.30
9.	Pulses	Rabi	7.60
10.	Cotton	Two Seaso- nal	2.20
11.	Sugarcane	Perennial	0.60
Reffe and		андаринары ары, арылары арынарын арынарынаны, кары карыктары арынары .	106.70

1

ě- ,

Table 1.9 : Existing Crop Pattern in the Command Area

Table 1.10 : Proposed Crop Pattern

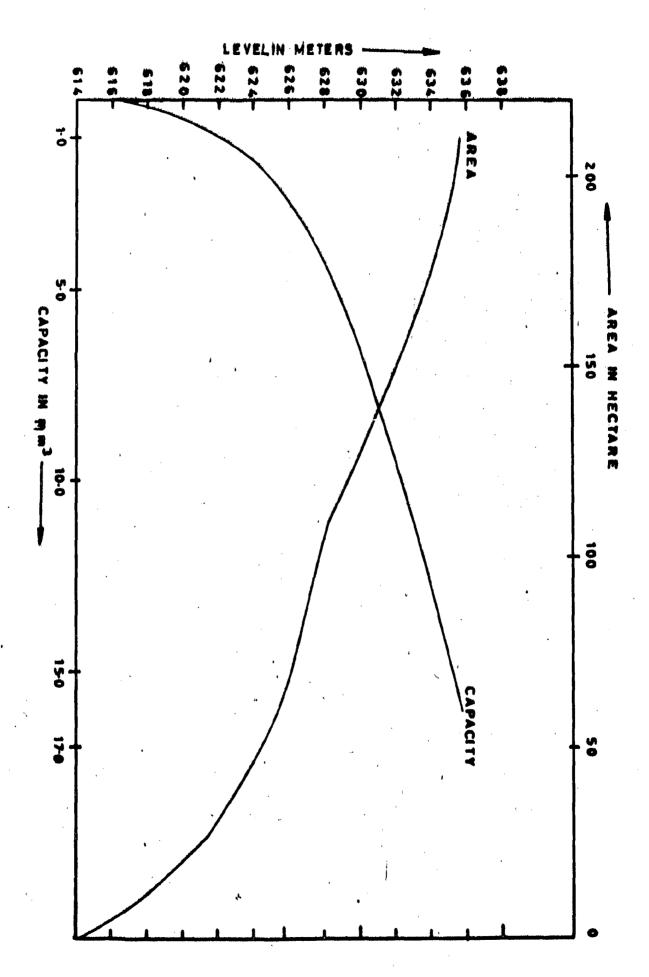
	Crop	Percen- tage	Crop Duration	Yield in Tonnes per Hectare
	KHARIFF			
1.	Paddy	90	June II to Nov. I	5
	RABI	90		
2.	Paddy	5	Oct. I to Feb. I	6
3.	Pulses	50	Nov. I to April II	1.5
4.	Wheat	4	Nov. I to April II	1.8
5.	Groundnu	t 9	Nov. I to April II	2.5
		63		
	PERENNIA	LS		
6.	Sugarcan	e 2	Oct. I to Sept. II	100.0

Pe riod	X Irri- gation	Area in Hactare	Jun.	Jul.	Aug.	Sep.	Oct.	Nov.	Dec.	Jan.	Jan. Feb. Mar. Apr. May	. Apr. N	ay Total	La La
1. Kharif Paddv	% 06	1305	4.280	4.280 0.79 8 1.318 2.498	l.318		2.271 0.666	0.666					11.829	829
2. Rabi Paddy	5%	72					0.329	0.239	0.202	0.20	0.208 0.057	1	I .	1.035
3. Rabi Semi- dry	63%	914							0.110	0.44	0.110 0.448 1.590 1.964		0.236 -	4.348
4. Pere- nnial Sugar- cane	2%	29						0.024 0.035	•	0.044	0.044 0.054 0.068 0.062	068 0.0	62 0.050	0,337
Total	160X	2320	4.280 C	4.280 0.796 1.318 2.498	318 2	498 2	. 600 0	. 929 (0.347	0.700	2.600 0.929 0.347 0.700 1.701 2.032 0.298 0.050 17.549	.032 0.2	98 0.050	0 17.54

;

.

22


•

,

S1. No.	Elevation in m.	Reservoir Capacity in Mm ³	Reservoir Area in Hectare	n sanan saksan na na 1900
1.	614.17	annos nanoaesentiann eine jasoas prize ae ae cenus cas	na sena na sena nanariana na sena sena sena sena sena sena sen	o ola oline oleen ole oleensagaraadjaada
2.	615.361	0.008	2.02	
3.	617.495	0.114	8.90	
4.	619.623	0.393	17.81	
5,	621.760	0.873	27.52	
6.	622,865	1.222	36.18	
7.	623.985	1.638	45.32	
8.	624.810	2.007	52.61	
9.	626.029	2.773	62 .73	
10.	628.162	4.592	110.48	
11.	630.296	7.155	131.52	
12.	631.515	8,826	144.47	
13.	6 3 2.429	10,193	154.99	
14.	632.734	10.661	159.44	
15.	633,495	12 .17 6	171.18	
16.	634.563	13.804	182.51	
17.	635.325	15.255	198.29	
18.	635.782	16.197	210.43	

Table 1.12: Reservoir-Elevation Area-Capacity Relations

Sept. 24 BML Compassion accurate

25

Table 1.13 : Statement Showing the Morphological Characteristics of the Soils Coming Under the Command Area.

SI No		Amtekoppa Series.	Haraga valli Series.		
a)	Physiography	Plain	Plain		
b)	Slope	1 to 3%	0 to 1%		
c)	Parent material	Schist and Quartzite	Schist and Quartisties.		
d)	Colour	Yellowish brown to reddish brown	Yellowish brown to reddish brown		
e)	Texture				
	i) Surface	Silty loam			
	ii) Sub-surface	Silty clay loam to gravelly clay loam			
f)	Soil depth	Deep	Very deep		
g)	Lime status	~	-		
	i) Surface	-			
	ii) Sub-surface	-	43 8		
h)	Su b soil drainage	Well drained	Well drained		
i)	i) Land irrigabil: Class	ity Class-I.	Class-II		
j)	Mapping Unit	Amk-s=1-d4 B-e2	Hgv-cl-d5 A-el		

.

1.2.12 Salient Feature of the Scheme

. .

,

.

1.	Name of the Project	Kalluvodduhalla Project
2.	Name of the Stream	Kalluvodduhalla
3.	Location	Latitude 14 ⁰ -13'-0''
		Longitude 75 ⁰ -14(-30''
4.	Purpose	Irrigation
5.	Catchment Area	41 Sq.Km.
6.	Rainfall	1305 mm (Mean Annual)
7.	Yield at 50% Dependability	24.46 Mm ³
8.	Lowest River bed level	614.17 m
9.	Dead Storage level	621.76 m
10.	Full Reservoir level	633.495 m
11.	Top of Dam	637.155 m
12.	Dead Storage capacity	0.874 Mm ³
13.	Minimum drawdown capacity	y 1.222 Mm ³
14.	Gross storage capacity	12.176 Mm ³
15.	Submersion Area	198.29 Hectares
16.	Type of Dam	Earthen Dam with flank spillway
17.	Height of dam(Maximum)	22.985 m
18.	Gross command area	1882 Hectares
19.	Culturable command area	1450 Hectares
20.	Crop water requirement	17.549 Mm ³
21.	Length of left bank canal	19.80 Kms.
22.	Length of right bank canal	3.60 Kms
23.	Total cost of the Scheme	Rs.484.8 Lakhs
	Cost per Hectare	Rs.33,359
25.	Cost per M ³ of water utilised.	Rs.2.76

.

1.2.13 Reservoir Operation for 50% Dependable Year

In the report reservoir operation for 5 years have been done which includes 50% dependable year. Out of 5 years, 3 years are successful and 2 years are failure years.

for Reservoir operation table/50% dependable flow is enclosed in Table 1.8

Dead storage capacity is fixed at 0.874 Mm^3 and the Gross storage capacity works out to be 12.176 Mm^3 to irrigate 1450 Hectares.

1.2.14 Cost of the Scheme

The scheme is proposed to irrigate 1450 Hectares of cultivable command area of Shikaripura Taluk of Shimoga District. After the advent of irrigation about 886 farming families will be benefitted. 17.549 MM³ of water will be utilised to irrigate 1450 Hectares. The cost of the scheme works out to Rs.484.8 Lakhs.

The cost per m³ of water utilised works out to Rs.2.76.

 $Cost per m^{3} of water = \frac{4848\ 0000}{17549\ 000} = 2.76$

This is well within the critical limit of Rs.4.03 prescribed in the staff apprisal Report, Karnataka Government

1.2.15 Socio-economic Condition of the Project Area

The cultivators of the area are poor, backword and marginal land holdings. At present most of the area is under rainfed. After the advent of this project, Socio-economic conditions of this area will be improved by the assured water supply to farmers.

1.3 OBJECTIVES OF THE STUDY

Historical flows for Kalluvodduhalla were not available at the time of preparation of the project. As per staff apprisal report of Karnataka Government, for ungauged streams, the yield series are calculated from Strange's table. In Strange's Table, runoff 'yield is given for the catchment as 'good', Average' or 'bad'. The relationship between **t** those classifications of catchment runoff is given by ratio of 2 : 1.5 : 1 respectively. Thus the estimates of runoff will vary significantly depending on catchment classification. It requires careful and realistic classification of the catchment. The estimated value of yields based on Strange's tables depends primarily on the duration and accuracy of the rainfall data used in deriving the average annual rainfall for each catchment. Hence further study on the monthly volume is necessary to have realistic approaches by using available mathematical models. Number of mathematical models are available. In the present problem, the following mathematical models are used to generate the short term monthly sequences to long term monthly sequences of flow. These generated monthly sequences of flow are further used in the reservoir operation studies to check the feasibility of the report.

1.3.1 Generating Monthly Flows by Regression Analysis

In the present problem, short term historical record of 3 years are available. 3 Years historical record is generated to study the feasibility of the project. Computer programme is developed to generate flows.

1.3.2 Generation of Monthly Flows by Modified Thomas-Fiering Model.

In the present problem, zero discharges are observed during dry season. Hence modified Thomas-Fiering model is used to generate monthly flows to study the feasibility of the project.

In this study 10 years (3 years of historical record + 7 years generated flows by Strange's table) are further generated to 30 years by Modified Thomas-Fiering Model. A computer program is developed to generate flows.

These 30 years generated flows are further used in reservoir operation studies.

1.3.3 Curve Fitting for Area-Capacity Relation

In the reservoir operation table, the relation between Area and capacity is required. A third degree polynomial for

- a) Area Capacity
- b) Elevation Capacity are worked out by a computer program.

1.3.4 Reservoir Operation Studies

The reservoir operation studies are to be done for the following cases to check the feasibility of the project for different dependable flows.

- (a) Yield of Runoff from Strange's Table
 - Reservoir operation for reservoir capacity obtained from 50% dependable flow year.
 - Reservoir operation for reservoir capacity obtained from 60% dependable flow year.
 - Reservoir operation for reservoir capacity obtained from 75% dependable flow year.
- (b) Reservoir operation study for the flows generated from Modified Thomas Fiering Model.
 Steps 1 to 3 as in (a) above.

CHAPTER 2

GENERATION OF MONTHLY VOLUMES BY REGRESSION ANALYSIS

2.1 GENERAL

Hydrologic data are the only source of information upon which quantitative hydrologic investigations are generally based, their measurements have been continiously expanding. Further more, natural hydrologic phenomena are highly erratic and commonly stochastic in nature one of the important problems in hydrology deals with interpreting a past record of hydrologic events interms of future probabilities of occurrance. This problem arises in the estimates of frequencies of floods, droughts, storages, rainfalls, and runoffs etc.

Hydrologic data can be treated as statistical variables. In statistics the whole collection of objective under consideration is called a population. Their characteristic are called variables. In Hydrologic phenomena, for example the variable may be the depth of rainfall is known as variate.

The characteristics statistical parameters are many but only the important once are defined below

The Mean:- There are three kinds of means, arithmatic, geometric and harmonic.

The arithamatic mean is usually referred to simply the mean is given by

$$\overline{\mathbf{X}} = \sum_{\mathbf{N}} \mathbf{X}$$

where, X is the variate and N is the total number of observations.

The Geometric mean is the N^{th} root of the product of N terms and is given by

$$\bar{x}_{g} = (x_{1} * x_{2} * x_{3} \dots x_{N})^{1/N}$$

The Harmonic mean is the reciprocal of the mean value of the reciprocal of individual values. It can be expressed as

$$\overline{X}_{h} = \frac{N}{\Sigma(1/X)}$$

The Median:- It is the middle value of or the variates which devides the frequencies in a distribution into two equal portions.

Mean Deviation: - It is the mean of the absolute deviations of values from their mean is called mean deviation

$$M.D. = \frac{\Sigma |X - \overline{X}|}{N}$$

Standard Deviation:- It is the square root of the meansquared deviation of indivisual measurements from their mean is designated by

$$\sigma = \sqrt{\frac{\Sigma(X-\bar{X})^2}{N}}$$

It represents for population.

An unbiased estimate of this parameter is denoted by

$$\sigma = \sqrt{\frac{\Sigma(X - \bar{X})^2}{N-1}}^2$$

The Variance:- It is the square of the standard deviation which is denoted by σ^2 .

The Range:- It is the difference between the largest and the smallest values is range.

The Coefficient of Variation:- The standard deviation devided by the mean is called the coefficient of variation and is denoted by

$$C_v = \frac{\sigma}{\mu}$$

Measures of Skewness:-- The lack of Symmetry of a distribution is called Skewness and is denoted by

$$\alpha = \frac{1}{N} \sum_{X \to \mu} (X - \mu)^3$$

This is for Population.

An unbiased estimate of this parameter is denoted by

$$\alpha = \frac{1}{(N-1)(N-2)} \Sigma (X - \overline{X})^3$$

Hydrologic models are mathematical formulations to simulate natural hydrologic phenomena which are considered as processes or as systems. Practically all hydrologic phenomena change with time.

Runoff phenomena is that part of the precipitation, as well as any other flow contributions which appears in surface streams of either Perennial or intermittent form. This is the flow collected from a drainage basin or watershed and it appears at an outlet of the basin. Specially it is the VIRGIN FLOW which is the stream flow unaffected by artificial diversions, storage, or any other works of man made. For example, a virgin flow conditions for the period of record is considered as a stationary time series. If it is affected by man's activity in the river basin or nature's large accidental or slow modifications or historical flow is a non stationary time series. Since a nonstationary processes is very complicated mathematically, hydraulic processes are generally treated as stationary.

2.2 GENERATION OF MONTHLY FLOWS BY REGRESSION ANALYSIS FOR NATURAL VALUES

The methodology for development of monthly fore- . casting models when the historic record is short and is described with following stages.

- (a) Provisional model is postulated, accompanied bya clear statement of the assumptions made there in.
- (b) Model parameters are estimated using an efficient estimation procedure. The need for such efficiency is paramount where records are short, since an inefficient estimation procedure is equivalent to throwing away some of the available data.
- (c) The goodness of fit of the model is investigated, for example by close examination of the residuals \$\$ for evidance of departure from the assumption made when formulating the provisional model. If there is evidance that any assumption is invalid, the model must be modified, and stage (a) recommended.
- (d) If no evidance of invalidity in the assumption isfound. the model is adopted and used for forecasting.
- (e) Forecasts given by the model are compared with observations.

If the deviations between forecasts and observations are satisfactorily small, then the usefulness of the model is confirmed, and it is retained.

We now consider model for forecasting monthly volume of discharge, together with some procedures for estimating model parameters and for deriving confidence limits for forecasts by regression Analysis.

A simple regression model of the form

$$Y_t = \alpha + \beta_1$$
, $\cos \frac{2\pi t}{12} + \gamma_1 \sin \frac{2\pi t}{12} + \varepsilon$ t

Where, Y_t is the volume of flow in month t. α , β_1 and γ_1 are constants to be estimated \mathcal{E}_t is a random variable about which the following assumptions are made.

- (i) It is distributed with zero mean, and constant variance $\sigma_{\mathbf{g}}^2$
- (ii) $\boldsymbol{\mathcal{E}}_{t}$ is uncorrelated with $\boldsymbol{\mathcal{E}}_{t-k}$ (for all k except zero)

Four parameters must therefore be estimated in the model. (α , β_1 , γ_1 and $\sigma_{\mathcal{E}}^2$) $\alpha = \overline{Y}$ (the mean of all N observations of monthly

volume of discharge)

$$\beta_{1} = \frac{2}{N} \sum_{t=1}^{N} Y_{t} \cos(2\pi t/12)$$

$$\gamma_{1} = \frac{2}{N} \sum_{t=1}^{N} \gamma_{t} \sin(2\pi t/12)$$

$$\sigma_{\xi}^{2} = \left[\sum_{t=1}^{N} (\gamma_{t} - \overline{\gamma})^{2} - (\beta_{1}^{2} - \gamma_{1}^{2})/N/2\right]/(N-3)$$

It can then be shown that the variance of the forecast of `volume of discharge at time T is

$$\sigma^2 \epsilon (1 + 5/N)$$

So that if a third assumption is possible.

- (iii) that the random variables & are normally distributed then confidence limits for the forecast given by
 - $= \overline{Y} + \beta_1 \cos(2\pi t/12) + \gamma_1 \sin 2\pi t/12$ $+ t_{N-3} \sigma_{\varepsilon} \sqrt{(1 + 5/N)}$

Where, t_{N-3} is the value, read from table of the t - statistics for the appropriate probability level, and with N-3 degree of freedom.

If the 95% confidence interval is very wide. The reason is partly the wide variation in volume of flow in the same month for different years, with the result that the variance amongst the residuals \mathcal{E}_+ is large.

One means of circumventing this difficulty is to work with the logorithm of volume of flow, instead of the volume of flow.

Three years Historical data is to be generated to 30 years.

2.3 COMPUTATION OF MONTHLY FLOWS BY REGRESSION ANALYSIS FOR NATURAL VALUES

Step 1:- Calculate the over all mean Y and $\sum_{t=1}^{N} (Y_t - Y)^2$

Step 2:- Calculate
$$\beta_1 = -\frac{2}{N} \sum_{t=1}^{N} Y_t \cos(t2\pi t/12)$$

and
$$\gamma_1 = \frac{2}{N} \sum_{t=1}^{N} Y_t \operatorname{Sin}(2\pi t/12)$$

$$\sigma_{\mathbf{\epsilon}}^{2} = \left[\Sigma \left(Y_{t} - \bar{Y} \right)^{2} - \left(\beta_{1}^{2} - \gamma_{1}^{2} \right) N/12 \right] / (N-3)$$

and find σ_{ϵ}

Step 3 :- Read the value of t_{N-3} from t-statistics table
 for the appropriate probability level with N-3
 degrees of freedom, calculate

 $t_{N-3} \sigma_{\varepsilon} \gamma(1 + 5/N)$

Step 4 :- Calculate Y_t in the regression equation for each
 month, with + random component and
 with - random component.

Computer program is developed to generate monthly flows as described above. Computer program is enclosed in Appendix -I

In this study, 3 years Historical data are used and generated to 30 years.

2.4 GENERATION OF MONTHLY VOLUMES BY REGRESSION ANALYSIS - LOGORITHMIC VALUES

The reason is partly the wide variation in volume of flow in the same month for different years, with the result that the variance amongst the residuals $\boldsymbol{\varepsilon}_{t}$ is large. One means of circumventing this difficulty is to work with the logarithm of volume of flow, instead of volume of flow. Values are to transformed to logarithms to base 10. Then the model becomes

Log $Y_t = \alpha + \beta_1 \cos(2\pi t/12) + \gamma_1 \sin(2\pi t/12) + \varepsilon_t$ The method of calculation are same as 2.2 and 2.3 for final values, Antilogariths are to be taken and evaluated.

Computer program is developed and the following data are to be generated. Computer programme is enclosed in Appendix-II.

 3 Years Historical data ame to be generated to 30 years.

2.5 COMPUTATION OF MONTHLY FLOWS BY REGRESSION ANALYSIS FOR LOGARITHMIC VALUES

Here the Logcrithmic values of flows are used to generate the monthly flows.

In the present problem, some months are having zero flows. Log of zero becomes indeterminent. Hence for zero flows, it is assumed as 1 unit flows and all monthly inflows are covemted into Log values.

Steps (1) to (4) same as (2.3)

Step (5) :- Take antilog for all the generated
 values.

Here also 3 years data is generated to 30 years.

Computer program is developed to generate monthly flows as detailed above.

Computer program is enclosed in Appendix.II.

Statement showing mean, standard deviation for observed values and for generated values are to be calculated.

CHAPTER 3

GENERATION OF MONTHLY FLOWS BY THOUAS-FIERING MODEL

3.1 GENERAL

When water resources project is planned, it is usually not possible to determine the exact sequence of hydrologic events for which the project must be designed. Correct and reliable hydrologic data of a longer record are very much useful for water resource planners.

Historical data of this project is very short. Further the recorded values of high flow, low flow and other characteristics of the record are not likely to occur during the future system. The exact pattern of flows during this historical period is extremely unlikely to occur during that period in which the proposed reservoir system will in operative.

The worst flood or drought in historical records is not the worst possibel flood or drought.

The sequencial-generation approach makes it possible to produce as many combinations of hydrologic sequences as designed for use in hydrologic analysis. This is particularly useful in the study of reservoir operation and in design of complex water resources system.

The method of generation of monthly volume of discharges depends on the type of data available. In the present during dry season. Hence study, zero flows of discharges have been observed Modified is used Thomas Fiering Model in this study to generate the monthly volumes.

.1

Where, A is any non-negative integer and B is one of the numbers from the sequence 3, 11, 13, 19, 21, 27, 37, 53, 59, 67, 69, 77, 83, 91. The starting value of γ_0 should be 10^{-P} R, where R is any integer not divisible by 2 or 5 and such that 0 < R < 10^{P} .

For example, if we select P = 5, then $10^{-P/2} = 10^{-5/2}$ = 0.00316 and a possible choice for C is aquired by selecting A = 2, B = 69 so that C = $10^{-5}(400 - 69) = 10^{-5}*331$ = 0.00331. Similarly for Selection of γ_0 ,

 $\gamma_{o} = 10^{-5} * 9 = 0.00009 \text{ (say R = 9)} \text{ and starting}$ with $\gamma_{o} = 0.00009 \text{ further values of } \gamma_{i} \text{ can be calculated.}$ Further values can be calculated sequencially using $\gamma_{i+1} = \langle 10^{5} * 10^{-5} * 331 * \gamma_{i} \rangle$

Generation of Normally Distributed Random Numbers

It is simple to generate normal random numbers from zero mean and unit variance. If X_1 and X_2 (two sets of sequences) are variates, rectangularly distributed over the interval O and 1 then these can be transformed to values Y_1 and Y_2 by the following equations.

$$Y_{1} = (-2 \log_{e} X_{1})^{1/2} * \cos(2\pi X_{2})$$
$$Y_{2} = (-2 \log_{e} X_{1})^{1/2} * \operatorname{Sing}(2\pi X_{2})$$

Where, Y_1 and Y_2 are normally and independently distributed with zero mean and unit variance.

.12

3.2 GENERATION OF RANDOW NUMBERS

In generation of monthly stream flow, of any model, addition of random component is a must. This random component will take care the probability of high flow tend to follow high flow and low flows tend to follow low flows. The sequence of past historic flow give clue to the probable future flows.

Two types of generation of random number are discussed below (i) Generation (0,1) Rectangularly distributed number (if) Generation of normally distributed random numbers.

Generation of (0,1) Rectangularly Distributed Numbers:-

The sequencial algorithm for generating the uniformly distributed pseudo-Random numbers in the interval (0,1) is given by

 $\gamma_{i+1} = \langle 10^{P} C \gamma_{i} \rangle$

where, <a> denotes the fractional part of a

 γ_{i+1} , γ_i being the number at ith and (i+1)th instants respectively.

P is the number of digits in the Pseudo-Random number.

C is the Constant multiplier such that 0 < C < 1The choice of C is as follows:

 $C = 10^{-P}(200 + B) \simeq 10^{-P/2}$

3.3 ALGORITHM FOR THE THOMAS FIERING MODEL IS AS FOLLOUS

$$Q_{i+1} = \bar{Q}_{j+1} + b_j(Q_i - \bar{Q}_j) + Z_i S_{j+1} \sqrt{(1-\gamma_j^2)}$$

where, Q_i , Q_{i+1} are the generated volume of discharge during ith and (i+1)th month respectively.

- $\mathbf{Q}_{\mathbf{i}}$ and $\mathbf{Q}_{\mathbf{i}+\mathbf{l}}$ are the observed mean monthly discharges during the jth and (j+1)th months respectively with in a annual cycle of 12 months.
- b, is the regression coefficient for estimating volume of discharge in the (j+1)th month from the jth month

 $b_j = \gamma_j S_{j+1}/S_j$

- Z; is a random normal deviate with zero mean and unit variance.
- S_{i+1} is the standard deviation of discharge in the (j+1) th month.
- γ_i is the correlation coefficient between flows in the jth and (j+1)th months.

Given N years of data, the calculation for the Thomas-Fiering Model is as follows

For each month $j = 1, 2, \dots, 12$ (i) (a) the mean flow $Q_j = \Sigma Q_{ji}/N$ (i = j, 12 + j, 24 + j, ...,) (b) Standard deviation

۱

.

$$S_{j} = \sqrt{\left[\Sigma(Q_{ji} - \bar{Q}_{j})^{2}/(N-1)\right]}$$

(c) The Correlation Coefficient with flow in the preceeding month.

$$\gamma_{j} = \frac{\sum_{i}^{\Sigma} (Q_{ji} - \bar{Q}_{j})(Q_{j+1,i} - \bar{Q}_{j+1})}{\sqrt{\sum_{i}^{\Sigma} (Q_{ji} - \bar{Q}_{j})^{2} \sum_{i}^{\Sigma} (Q_{j+1,i} - \bar{Q}_{j+1})^{2}}}$$

•

(d) The slope of the regression equation is

$$b_j = \gamma_j S_{j+1}/S_j$$

3,4 GENERATION OF MONTHLY FLOWS BY MODIFIED THOMAS FIERING MODEL

In the present problem the modified Thomas-Fiering Model is used to generate monthly flow sequences is as follows.

Suppose we have N years of data

- (i) Record, for each month j(j = 1.... 12) of the year, the number of years n_j out of N for which flow was recorded let $P_j = n_j/N$
- (ii) Calculate the Mean Monthly flow, and the variance of flows for each month j.
- (iii) Fit a Thomas-Fiering Model.
- (iv) Generation of synthetic sequences of monthly flow as follows:
 - (a) For month j, choose a pseudo-random number, rectangularly distributed over (0,1) if this number is less than P_j(but greater than zero) then flow to occur in month j, otherwise no flow is to occur.
 - (b) If no flow is to occur in month, j, repeat for month j+1

- (c) If flow is to occur in month j, and it is the first month of the year for which flow is to occur, select a Pseudo random normal deviate for a distribution with mean and variance equal to the mean monthly flow and variance of flows for month j.
- (d) If flow is to occur in month, j, and flow also occured in month j-l, use the regression equation of the Thomas-Fiering Model to obtain the flow for month j.

3.5 COMPUTATION OF MONTHLY FLOWS BY MODIFIED THOMAS FIERING MODEL

The most modern model is proposed by Modified Thomas-Fiering model particularly with respect to the zero flows observed in some months.

In this study, 10 years data (3 years Historical flows + 7 years strange's table flows) are to be generated to 30 years to study the reservoir operation.

- Step 1:- Calculate Mean, Standard Deviation of the flows.
- Step 2:- In generating the sequence of a given stream flows, it is generally considered that the flows are the out come of random process. Generate (0,1) Directangulary distributed numbers. It is possible to generate through computer the sequence of Pseudo random numbers, carefully constructed to mountain the important properties of truely random numbers
- Step 3 :- Generation of stream flow by using Modified Thomas Fiering Model is applied to the problem.

Using the 10 years data and calculating the statistical parameters like mean, standard deviation correlation coefficient of the data used.

- 8

Generate rectangularly distributed pseudo random numbers and transform then into normally distributed random numbers in the interval(0,1)

Step 4:- The model may generate negative flows. When this occurs, the negative value is to calculate the next flow after which it is set to zero.

Generate 30 years data using the Model in natural series computer program is prepared to generate random numbers, to calculate the mean, standard deviation, correlation coefficient and to generate the monthly flows.

Computer program is prepared to generate monthly flows is enclosed in Appendix-III.

The statistical properties such as mean, standard deviation of the data used, and for the generated flows are to be calculated.

CHAPTER 4

RESERVOIR OPERATION STUDIES

4.1 IRRIGATION PRACTICES IN INDIA ABOUT DEPENDABLE FLOWS

India is one of the major Irrigating countries in the world. The ultimate irrigation potential in the country has been estimated at 107 million ha., the scope for constructing new irrigation projects to provide irrigation facilities is rather limited, since most of the suitable **sites**. have already been developed. In view of this, the modern technology in planning and designing the irrigation projects is highly required.

Hydrologic phenomenon are highly erratic. Not only the inflow pattern of a river varies very widely from year to year, but distribution of flows in a year also is very uneven.

As the annual inflows of all rivers fluctuate very widely from year to year, 75% dependable flows are at present considered in the planning, design and operation of river valley schemes for harnessing the water resources. This means in a cycle of four years, water deficit is not allowed by more than one year. But there are two short comings in this way of adopting 75% dependable flows both for harnessing and for utilising the river water through storage reservoir.

ITEIES

One is, great portion of surplus flows released in all the good water years, which are great many in number, go unutilised and there is the full utility value of the schemes get reduced proportionately in the bad water years. In other words, not only the harnessing of waters gets restricted to 75% dependable flows, but the contemplated utilization of these 75% dependable flows harnessed in turn, also gets reduced to 75% dependability.

At present the scope of various types of projects is generally designed in relation to the available yield over a course of years, such that they operate at following dependabilities

(i)	Water supply projects	100% dependability
(ii)	Hydel project	•••••• 90% dependability
(iii)	Irrigation projects	75% to 50% dependability

The project authorities of Kalluvodduhalla reservoir have designed the project at 50% dependability and tested the feasibility of the reservoir with 5 years continious working Tables and have found it feasible.

4.2 OPERATION OF RESERVOIR WITH CONVENTIONAL METHOD

The feasibility of a project depends upon the extent to which it can serve the required purpose of the project. The performance of the project can be tested by preparing working Tables using conventional operations as discussed below:

In the present study reservoir operation studies are made based on the principles of conventional operation.

The basic concept for conventional reservoir operation are shown in Fig.4.1.

 The basic operation criteria with conventional method may be expressed in terms of simple continuity equation

 $S_t + I_t - E_t - R_t = S_{t+1}$

Where, S_t is the reservoir storage at the begining of the month t

 S_{t+1} is the storage at the begining of the month t+1

or

the reservoir storage at the end of month t I_t is the inflow into the reservoir during the month

E_t is the Evaporation from reservoir during the month

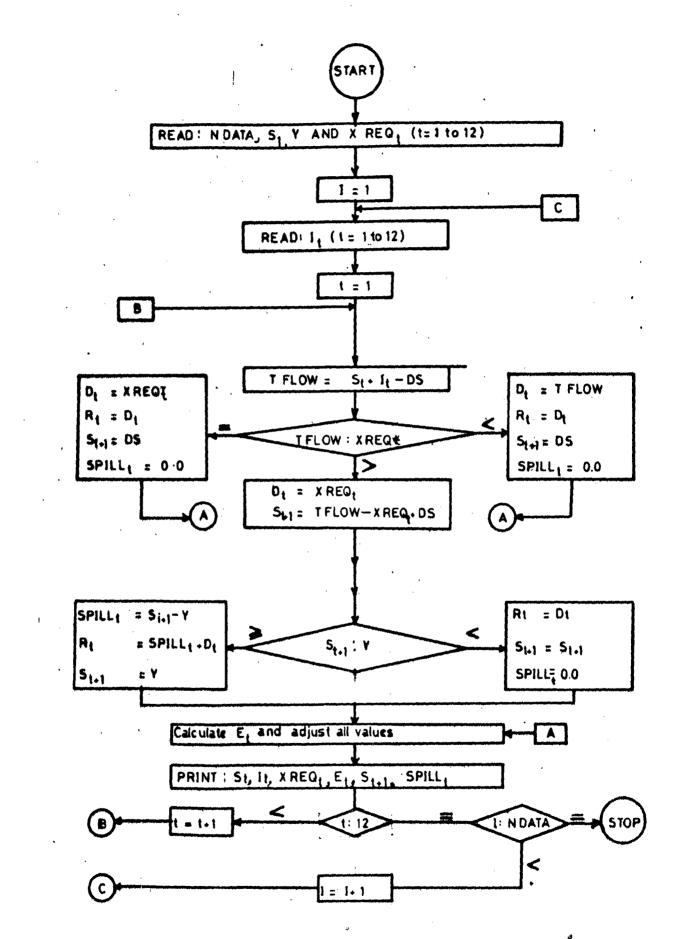


FIG.41 FLOW CHART FOR CONVENTIONAL RESERVOIR OPERATION

ు

.

(ii) Constraint of the minimum storage and the reservoir capacity Y are as follows $DS \leq S_{+} \leq Y$

Where, DS is the Dead storage capacity of reservoir, Y is the Reservoir Capacity.

(iii) With the help of above stated operation equation, the simplest operating rule is to supply all the water demand, if available. This is expressed as $R_{+} \leq S_{+} + I_{+} - E_{+}$

The reservoir will be operated in such a manner that the amount of water released is equal to the irrigation requirement.

A computer programme is prepared and reservoir operation for different alternatives are carried out. Computer programme is given in Appendix-IV.

Data used in Reservoir Operation.

The reservoir operation starts from June month.

1) Monthly Inflow into the Reservoir

2) Monthly Crop water demand

3) Monthly Evaporation Values.

4) Reservoir Area - Capacity curve

5) Maximum Reservoir Capacity

6) Minimum Drawdown Capacity.

4.2.1 Reservoir Operation Procedure

Thirty years rainfall ______are available in the report. The reservoir operation starts from June month and ends in May. The reservoir operation is done for 30 years. The operation procedure is shown in Fig. 4.1 for different dependabilities considered if or the study. Computer program based on the flow chart shown in Fig. is prepared and appended in Appendix \underline{iv} . The operation steps is as follows:

- (i) Inflow data for 30 years, Irrigation^{requirement}are available in the project report, are used in the operation.
- (ii) Minimum drawdown capacity is fixed at 1.222 Mm³ and used in operation.
- (iii) Gross storage capacities for different dependabilities are fixed by trial and error for dependable flow years and these values are used in operation.
- iv) Initial storage for the first month, for first year is so assumed, that, the final storage at the end of the first month should not go below minimum drawdown capacity,

after fulfilling the irrigation demand and evaporation loss of that month.

(v) Compute the total flow for the month considered as the sum of inflow during that month flow (I,J) and the initial reservoir S(J) content minus Dead Storage DS

TFLOW = S(J) + FLOW(I,J) - DS

(vi) If the total flow (T FLOW) more than the monthly irrigation requirement XREQ(J) release thefull irrigation requirement and compute new reservoir content S(J+1)

S(J+1) = FLOW - XREQ(J) + DS

If the new reservoir content S(J+1) is more than the Gross storage capacity Y compute spill

SPILL = S(J+1) - Y

- A counter is provided to count the number of times the reservoir spilled.
- (vii) If the total inflow TFLOW, is less than the monthly irrigation XREQ(J) requirement, then release will be made upto the dead storage capacity DS, and set the new initial storage S_{t+1} equal to DS and deficit is accounted. S(J+1) = DS

A couster is provided to count the number of times the deficit is accounted

- (viii) If the total inflow TELOW is equal to monthly irrigation requirement XREQ(J) then release full irrigation requirement S(J+1) = T FLOW - XREQ(J) + DS
- (ix) Now compute Average storage X which is required for computation of monthly Evaporation, Values EVAPO(J). Average Storage X is the average of initial storage S(J) and new storage S(J+1).

- (x) Compute area AREA(x) with reference to the storage X with the polynomial Equation.
- (xi) Monthly evaporation values are EV(J) given in the booket. Comput monthly Evaporation losses EVAPO(J) EVAPO(J) = EV(J) * AREA(X)
- ((xii) The final storage S(J+1) is calculated as follows S(J+1) = S(J+1) - EVAPO(J)
- (xiii) Print the following data and results Number of years of data available NDATA 1. Initial Reservoir Storage 2. S(1) Gross Storage Capacity З. Y 4. Dead Storage Capacity DS Inflow into the Reservoir FDOW(I,J)5. 6. Irrigation Release D(J)7. Evaporation Losses EVAPO(J) 8. Reservoir Release Including Spill R(J)9. Final Storage SF(J) Spill about the Crest Spill(J) 10. Number of Times the Reservoir Deficit IDEF(J) 11. 12. Number of times the Reservoir Spilled over ISPILL(J) . ' the Crest. 13. Number of time the Reservoir capacity goes

below dead storage capacity. IEMPTY(J)

4.3 FITTING A POLYNOMIAL CURVE FOR RESERVOIR AREA-CAPACITY

A polynomial curve for two variables (Area-Capacity) is fitted by Least Square Method. The method of curve fitting may be graphical or analytical. The currently analysed analytical method of fitting curve to scattered points is to minimise the sum of squares of departures

 $Y_i = Y_i - Y$ where for a given X_i , the value of Y is determined from the fitted curve, and Y_i is the observed point. This is called Least Square Method.

For example, the fitting of a quadratic parabola of the form

 $Y = a + bx + c x^2$

Normal Equations for the above

 $\Sigma Y_{i} = a N + b \Sigma X_{i} + c \Sigma x_{i}^{2}$ $\Sigma X_{i} Y_{i} = a \Sigma x_{i} + b \Sigma x_{i}^{2} + c \Sigma x_{i}^{3}$ $\Sigma X_{i}^{2} Y_{i} = a \Sigma X_{i}^{2} + b \Sigma X_{i}^{3} + c \Sigma X_{i}^{4}$

With the summations taken from i = 1 to N. The solution of these three equations gives a, b, c

Computer programm for solving the above equation by Least Square Method is developed and the equation obtained for Relationship between Area-Capacity, is used in Reservoir operation program. A third degree polynomial curve is fitted with maximum correlation coefficient as 0.9989.

Area = 0.2532318 E + 01 + 0.2978964 E + 02 X - 0.2116531 E + 01 X^2 + 0.6622052 E - 01 X^3

Where Area is area of submersion of the Reservoir in million square meters, corresponding to the reservoir capacity X in million cubic meters.

The water spread Area is calculated with reference to the capacity of the Reservoir. This water spread area is multiplied by the monthly evaporation values to arrive at the evaporation losses.

Monthly evaporation values during the operation period of 30 years are calculated. The computer program is given given in Appendix - V \cdot .

- 4.4 PERFORMANCE OF THE PROJECT FROM STRANGE'S TABLE GENERATED FLOWS
- 4.4.1 Dependable Flows From Strange's Table Values

Thirty years yield of Runoff is calculated from Strange's Table vide Table . These flows are arranged in descending order and different dependable flows are calculated as described below

Dependability = m/n+1
Dependability = Dependability under - consideration
m = S1.No. of the order
n = total no. of years considered.

i) For 50% dependability 50% = m/30+1 = 1/2 $= \frac{30+1}{2} = 15.5$ m say 16th year (1967) 50% dependable yield is 23.42 Mm³ . . ii) For 60% dependability 60% = m/30+1= (30+1) * 60% = (30+1) * 0.6 m = 18.6 . say 19th year (1969) m 60% dependable yield is 22.45 Mm³ iii) For 75% dependability m/30+175% = (30+1) * 75% = (30+1) * 0.75 m = 23.25, say 24th year (1963) m 75% dependable yield is 17.31 ${\rm Mm}^3$

4.4.2 Reservoir Operation for 50% Dependability

Fifty percent dependable flow works out to 23.42 Mm^3 minimum drawdown capacity is kept at 1.222 Mm^3 . Irrigation requirement is taken as 17.549 Mm^3 to irrigate 1450 Hectares.

Gross storage capacity is worked out by trial and error for period of five years which includes the 50% dependable year by the project authority. Gross storage capacity works out to 12.176 Mm³.

Reservoir operation is doen by computer program for a period of 30 years as per 4.2 and 4.2.1. 4.4.3 Reservoir Operation for 60% Dependability

Sixty Percent dependablety flow works out to 22.45 Mm^3 minimum drawdown capacity is kept at 1.222 Mm^3 . Irrigation requirement is considered as 17.549 Mm^3 to irrigate 1450 Hectares.

Gross storage capacity of 14.963 Mm^3 is fixed by trial and error for the 60% dependable year.

Reservoir operation is done by computer program (Appendix - IV) for a period of 30 years as per 4.2 and 4.2.1. 4.4.4 Reservoir Operation for 75% Dependability

Yield of 17.31 Mm³ is worked out for seventy five percent dependability. 1.222 Mm³ is kept as minimum draw down capacity 17.549 Mm³ is the irrigation requirement considered to irrigate 1450 Hectares.

Gross storage capacity of 16.197 Mm^3 is worked out by trial and error for the 75% dependable year.

Reservoir operation is done by computer programme for a period of 30 years as per 4.2 and 4.2.1.

4.5 RESERVOIR OPERATION FOR GENERATED FLOWS FROM MODIFIED THOMAS FIERING MODEL

From 10 years data, 30 years data are generated from Modified Thomas Fiering Model.

These inflows are used to operate the Reservoir for 30 years. The Dead Storage, Irrigation requirement and Evaporation values are used as per project report.

The operation is same as described in 4.2 and 4.2.1 The same computer program enclosed in Appendix - IV is used for reservoir operation.

CHAPTER 5

BENEFIT COST RATIO

5.0 GENERAL

The benefit cost-ratio analysis plays an important role in project evaluation. Benefit of water resources project may be divided into direct benefit and indirect benefits. Direct benefits are the immediate results of project, such as assured water supply system, production of Agricultural products, power supply, prevention of flood damage and navigation benefits. Indirect benefits are the production of loss of life as a result of flood control measures, the enhancement of scenic values due to stabilising the lake levels, recreation centre and improve the socio-economic condition of the region.

The benefit cost ratios of 1 indicates feasibility of the project. The higher the benefit cost ratio, the more the feasibility of project. But this can be relaxed in case of projects taken up in the area such as drought affected areas, backward and most needy areas.

5.1 BENEFIT-COST RATIO OF THE PROJECT

Cost of the project for 50% dependable flow was calculated by project Authority. In the present problem the project has been tested for 50%, 60% and 75% dependability for 30 years. The costs estimates for 60% and 75% dependability have been now worked based on the cost estimate of 50% dependability. After working out cost estimates, benefit cost have been worked out and the results obtained are as follows:

	Dependability	Benefit Cost Ratio at 10% interest
1.	50% dependability	1.087
2.	60% dependability	1.013
3.	75% dependability	0.992

The benefit cost ratio for 50% and 60% dependability are more than 1. But 75% dependability works out to 0.992 which is below one.

Benefit cost ratio of 50% dependability works out 1.087 and it is feasible.

5.2 COST ESTIMATE (FOR 50% DEPENDABILITY)

Sa a sugar as gen sport a 17 ser in statement	gagaabhaangin gereele finituur op eel mood vanatio frag, et op officiend vermenter frager af ook officiele verm	na an ann an ann ann ann ann ann ann an
Sl. No.		Cost in Rs.Lakhs
1.	Land Acquisition	23.40
2.	Earth Dam and Appertinent Works	117.20
3. 4.	Spillway Approach Channel	57.00
5.	Energy Dicipating Arrangements	
6.	Buildings	2.50
7.	Canals (Earth work + Structures)	62.70
8.	Canal lining	30.00
9.	Special Tools and Plant	20.50
10.	a) Field Channel(60 M/Hectare) at Rs.200/- Hectare	2.90
11.	b) Outlets 180 Number at Rs.1000/-each	1.80
12.	a) Physical Contingencies at 10% of Dam Works	19.40
	b) Physical Contingencies at 20% of Canal Works	19.20
	c) Engineering Supervision charges at 15%	58,00
	d) Add for Escalation of Rates at 10%	59.70
13.	Add catchment area protection works and rounding	10.50
Bux girungiri Shrijdhi, adi t	namenaria in mananan in ananan anan anan anan a	8.84.80

Total

484.80

5.3 COST ESTIMATE (60% DEPENDABILITY)

S1. No.	Items	Cost in Lakhs
1.	Land Acquisition	27.40
2.	Earth D _{am} and Appertinent Works	124.90
3.	Spillway	
4.	Approach Channel	57.00
5.	Energy Discipating Arrangements	
6.	Buildings	2.50
7.	Canals (Earth Work + Structures)	62.70
8.	Canal lining	30.00
9.	Special Tools and Plants	20.50
10.	a) Field Channel(60 M/Hectare) at Rs.200/- Hectare	2.90
11.	Outlets 180 Number at Rs.1000/- Each	1.80
12.	a) Physical ^C ontingencies at 10% of Dam Works	20.93
	b) Physical Contingencies at 20% of canal works	19.02
	c) Engineering Supervision Charges at 15%	58.00
	d) Add for Escalation of rates at 10%	59.90
13.	Add Catchment Area Protection Works and rounding	10.45

498.00

		analaan, ang ating a sint fayo ang	1994 - 1958 - 1984 - 19
Sl. No.	Items	Cost in Rs. Lakhs	
1.	Land Acquisition	27,90	
2.	Earth Dam and Appertinent Works	134.90	
з.	Spillway		
4.	Approach Channel	57.00	
5.	Energy Dicipating Arrangements		
6.	Buildings	2.50	
7.	Canals (Earth Works + Structures)	62.70	
8.	Canals (Ear Lining	30.00	
9.	Special Tools and Plant	20.50	
10.	Field Channel(60 M/Hectare) at Rs.2000/- Hectare	2.90	
11.	Outlets 180 Number at Rs.1000/- Each	1.80	
12.	a) Physical Contingencies at 10% of Dam Works	21.38	
	b) Physical Contingencies at 20% of Canal works	19.02	
	c) Engineering Supervision Charges at 15%	58.10	
	d) Add for Escalation of Rates at 10%	60.00	
13.	Add Catchment area protection works and rounding.	10.30	

5.4 COST ESTIMATE (75% DEPENDABILITY)

Total

509.00

5.5	B	BENEFIT COST-RATIO (AT 50% DEPENDABILITY)						
	. A	- B	enefits (Direct)					
I.	(á		Value of Total Agr before advent of 1		4079979			
	(1	b)	Cost of Cultivatio	n	2983429			
	(c)	Net produce before	e Irrigation	1114550			
II.	(a	a)	Value of Agricultu after Irrigation	ural production	16416243			
	(1	b)	Cost of Cultivatio	nc	8886688			
	(.	c)	Net production at	fter Irrigation	7529555			
III	• Ne	et E	Benefits (II - I)		6415005			
	В	-	Annual Costs	At 5%	At 10%			
_a)	Inter Rs.4		on Capital on 1000	2424000	4848000			
b)	Depre	ciat	ion at 2%	696600	696600			
c)	at Rs	.24.	ative Expenses 71/- Hectare	358830	358830			
	on 149	50		3479430	5903430			
	С	- E	Benefit Cost Ratio	<u>6415005</u> 3479430	<u>6415005</u> 5903430			
				1.844	1.087			
	t Per (er Util		.c Meters of d	48480000 17548000	2.76			

.

.

70

.

5.6	BENEFIT COST-RATIO (AT	60% DEPENDABILITY)	
	A - Benefits (Direct)		
I.	(a) Value of Total Agr Produce before ad	vicultural lvent of Irrigation	4097979
	(b) Cost of Cultivatio	n	2983429
	(c) Net produce before	Irrigation	1114550
II	(a) Value of Agricultur after Irrigation	al Production	16416243
	(b) Cost of cultivation	n	8886688
· .	(c) Net production aft	er Irrigation	7529555
III	Net Benefits (II - I)		6415005
	B - Annual Costs	At 5%	At 10%
a)	Interest on Capital on Rs.49800000	2490000	4980000
ъ)	Depreciation at 2%	996000	996000
c)	Administrative expenses at Rs.24.71/- Hectare	358830	258830
	on_1450	3844830	6334830
	C - Benefit Cost Ratio	<u>6415005</u> 3844830	<u>6415005</u> 6 3 34830
		1.668	1.013

5.7	BENEFIT COST-RATIO(AT 75	% DEPENDABILITY)	
	A - Benefits (Direct)		
I	(a) Value of Total Agri Produce before adve Irrigation		40 79 9 7 9
	(b) Cost of Cultivation		2983429
	(c) Net Production befo	re Irrigation	114550
T T			16416243
II.	(a) Value of Agricultur after Irrigation	al Production	10410243
	(b) Cost of Cultivation		8886688
	(c) Net Production afte	r Irrigation	7529555
			Bacharda - Hother (An Links (Mr. 1994) - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1
III	Net Benefits(IL-I)		6415005
	B - Annual Costs A	vt 5%	At 10%
a)	Interest on Capital 2 on Rs.50900000	2545000	5090000
b)	Depreciation at 2%	.018000	1018000
c)	Administrative expen- ses at Rs.24.71/	358830	358830
	Hectare on 1450	8921830	6466830
	C - Benefit Cost-Ratio	6415005	6415005
		3921830	6466830
		1.636	0•992

CHAPTER 6

DISCUSSION, CONCLUSION AND SUGGESTION

6.1 GENERAL:

Runoff studies were carried out for Kalluvodduhalla Irrigation project in Karnataka to find the water availability at the site. This was done by asing various methods of river flow generation and then comparing the water availability for different dependabilities. For flow generation, strauge's table, Regression analysis and Modified Thomas Fiering Model were used. Water availabilities were compared for 50%, 60% and 75% dependabilities. Reservoir operation using conventional operation rule was also carried out to see the feasibility of the project. Reservoir capacities obtained from Strauge's table were used for reservoir operation with the Modified Thomas Fiering Model generated flows.

Yield of runoff is generated by Strauge's table vide chapter 1.2.6 .

Monthly volume of flow is generated by Regression analysis in chapter 2.0

Synthetic sequences of monthly volume is generated by Modified Thomas Fiering Model vide chapter 3.0 .

Reservoir operation for different dependabities for the flows generated by Strange's table and by Modified Thomas Fiering Model vide chapter 4.0 . The Benefit cost ratio of the scheme for different dependabilities of the Strauge's table flow is worked out in chapter 5 .

6.2 DISCUSSION: For the design of Water Resources Project, the accuracy and reliability of results depend upon the availability of fairly long term period historical flows at the site and the reliability of input data. The results of computation given in tables 6.1 to 6.13.

6.2.1 Runoff from Strauge's Table:

Thirty years runoff series is built by Strauge's Table vide Table 1.4 .

In the absence of Runoff data at the site, the yield of runoff is generated by Strauge's table. It has got following limitations.

- Binnie developed his curves in 1880 by observing a number of small catchments in Madha Pradesh. Some two years later Strauge's developed his curves using data observed in Irrigation tanks in South India.
- 2. The critical Weakness of Strauge's Table approach is that the rainfall runoff curve do not reflect different incidences of rainfall. The total rainfall is considered for monsoon period only.
- 3. Strauge's Table gives yield of Runoff up to 60" rainfall for the catchment classification of

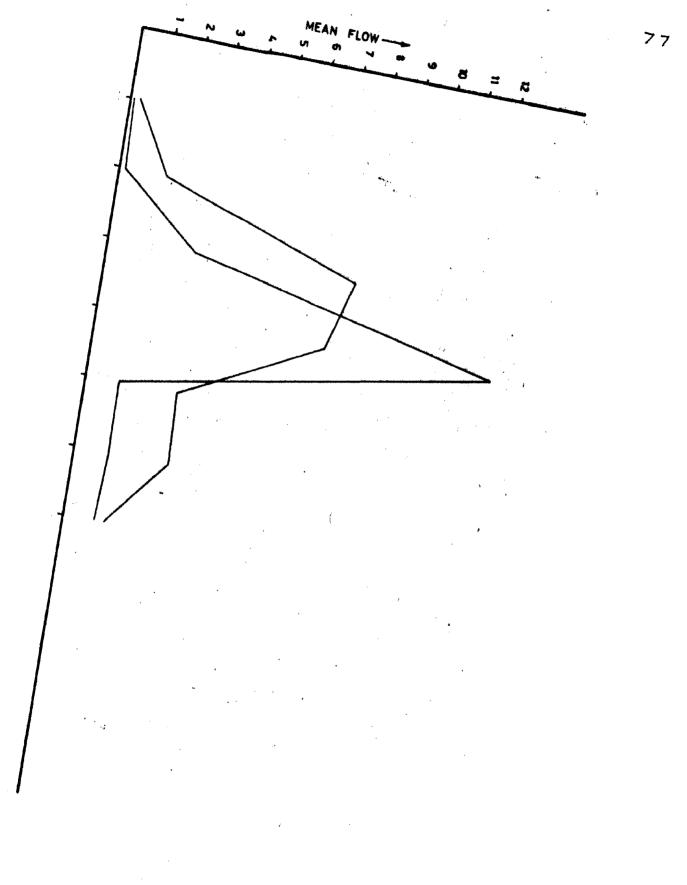
Good, Average and bad. The relationship between these conditions is given by a ratio of 2:1.5:1 respectively. Hence classification of catchment requires careful study and reliable judgement of catchment classification. The catchment under consideration is classified as "average".

- 4. Accuracy of yield of Runoff depends on the reliability and availability of longer period catchment rainfall data. In the present problem the catchment rainfall data available are only for 9 years.
- 5. Only monsoon Rainfall is considered. The period of monsoon differs from catchment to catchment. In this problem monsoon period is from May to November.

The Mean, standard deviation of the 30 years Runoff data is given in Table 6.1 and fig 6.1. It shows that the generated flows do not vary much as compared to the historical flows.

6.3 GENERATION OF MONTHLY VOLUME OF FLOW BY REGRESSION ANALYSIS MODEL:

6.3.1 General:


Mathematical models are no replacement for field observations. Their value lies in their ability, when correctly chosen and adjusted, to extract the maximum amount of information from the available data.

FLOW - STATISTICS OF STRANGE'S TABLE AND HISTBRICAL FLOW

Sl. No.	Months	STRAN FLOW*	GE'S TABLE	HISTORIC	HISTORICAL FLOW**		
		Mean in Standard Mm deviation		Mean in Mm ³	Standard Deviation		
1	Мау	0.3984	0.7969	0.12	0		
2	Jun	1.5200	1,6172	0.208	0.1428		
3	Jul	7.8696	5,3972	2.8633	3.1968		
4	Aug	7.2303	4.3535	12.4606	1.0155		
5	Sep	2.9244	2.0666	2.132	0.1040		
6	Oct	3.0607	2.3925	1.146	1.5557		
7	Nov	1.3457	1.2245	1.066	0,9065		

* 30 years generated data

** 3 years historical data.

6.3.2 To Extend Records of Short Duration By Regression Analysis for Natural Values:

Where the variance amongst the total volumes of flow recorded in a particular omonthedces not appear to bear any significant relation to the mean volume of flow (or in other words, where the variance amongst total flow volume in a particular month does not appear to vary significantly with time) then it may be satisfactory in certain circumstances to assume a simple regression model.

6.3.3 Assumptions:

The regression model is as below:

$$Y_{t} = Y + \beta_{1} \cos(2\pi t/12) + \gamma_{1} \sin(2\pi t/12) + \varepsilon_{t}$$

It is explained in chapter.2.

Here \hat{e}_t is a random variable about which the following assumptions are made.

- (i) It is distributed with zero mean and constant variance.
- (ii) \mathcal{E}_{t} is uncorrelated with \mathcal{E}_{t-k} (for all K except zero).
- (iii) That the random variables \mathcal{E}_t are normally distributed.

This model has particular adyantage as a by-product of the produce for estimating model parameters, one less than the forecast and one greater, such that there is a given

probability that these values will bracket the observed value of the variable at time (t + k). Confidence limits therefore express the uncertainity, the wider apart the confidence limits the less reliable. Further the greater the lead-time k, the greater will be the width of confidence interval since the distant future is more uncertain than the immediate.

6.3.4 Results:

Three years Historical flows are generated to thirty years

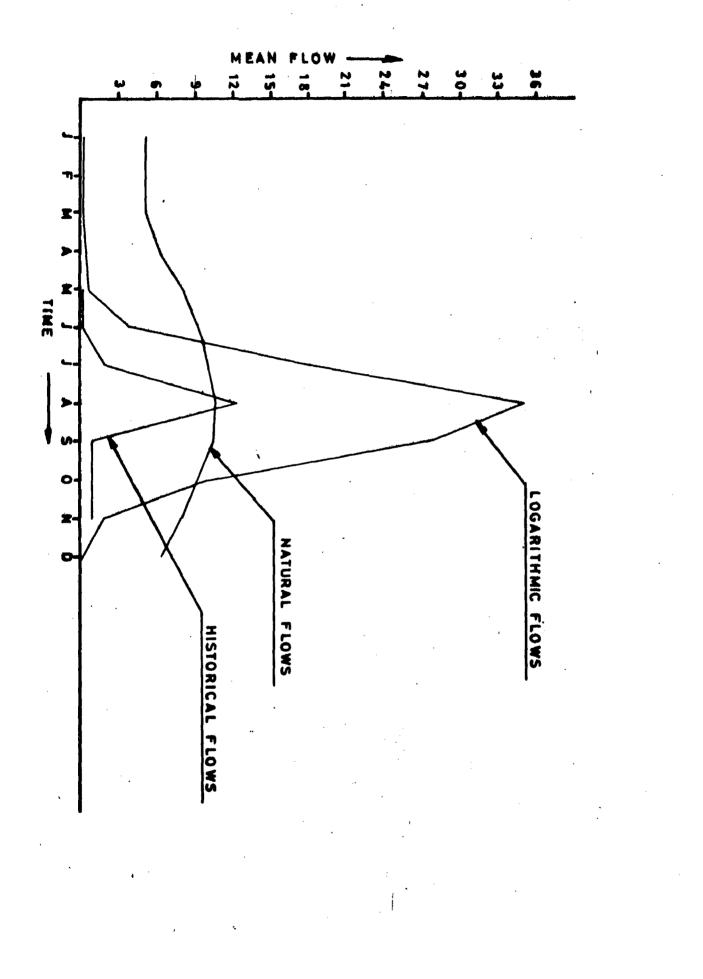
The results of Mean, standard deviation of Historical flows and the generated flows are given in Table 6.2 and fig.

It reveals that the results of Mean, and Standard deviations of the values used and generated values vary widely The standard deviations of the generated flows are very small in many months.

The 95% confidence interval for the generated flows is more and hence these values are not considered for further study. For July in Ist year it is from 10.4616 to -2.6444.It reveals the higher 95% confidence limit.

6.4 TO EXTEND RECORDS OF SHORT DECRATION BY REGRESSION ANALYSIS FOR LOGARITHMIC VALUES:

If the value of variance amongst residuals \mathcal{E}_t is large, One means of circumventing this difficulty is to work


FLOW-STATISTICS OF HISTORICAL FLOW AND GENERATED BY REGRESION

ANALYSIS

sı.	Months	HISTOR	ICAL FLOW	I* GENERA	GENERATED FLOWS**				
NO.			·	Natura	Natural values Logarithmic Values.				
		Mean3 in M m	Standard Deviatio	l Mean ₃ on inMm ³	Standaro Deviatio	d Mean on in Mm ³	Standard Deviation		
1.	Jan	0	0	5.7312	0.0389	0.1008	0.0045		
2.	Feb.	0	0	5.3313	0.0012	0.0520	0.0005		
3.	Mar.	0	0	5.6799	0.0299	0.064 3	0.0017		
4.	Apr.	0	0	6.6834	0.0529	0.1805	0.0103		
5.	May.	0.12	0	8.0472	0.0617	0.8686	0.0626		
6.	June	0.2080	0.1428	9.4753	0.0540	4.7049	0.3169		
7.	July 2	2.8633	3.1968	10.5150	0.0318	18.2374	0.8125		
8.	Aug 12	2.4606	1.0155	10.9131	0.0012	35.2120	0.3463		
9.	Sep 1	132	0.1040	10.5628	0.0299	28.4057	0.7831		
10.	Oct 1	146	1.5557	9.558	0.1529	10.1396	0.5835		
11.	Nov. 1	066	0,9065	8.1682	0.0617	2.1091	0.1521		
12.	Dec.	0	0	6.7660	0.0540	0.3892	0.0262		

* 3 years Data

** 30 years Generated data.

with the logarithmic of volume of flow, instead of volume of flow.

Here three years Historical record is generated to thirty years.

6.4.1 Results:

Statement showing Mean and Standard deviation of the generated data are enclosed in table 6.2 and Fig. 6.2

It indicates wide variation between observed and generated flows.

The 95% confidance interval is more for the generated flows. For July Ist year it is 16.9109 to 0.1035 Lm^3 . It reveals the higher 95% confidence limit.

Hence the flows are not considered for reservoir operation.

6.5 GENERATION OF MONTHLY VOLUME OF FLOWS BY MODIFIED THOMAS FIERING MODEL:

The Generation of stream flow data by this model have following limitations.

- It assumes that the flow sequences are normally distributed.
- 2. The accuracy of results of generated series depends upon the number of historical input flow sequence.

6.5.1 Results:

Ten years data are used and thirty years generated flows are given in Tables 6.3 and 6.4.

The statement showing the mean, standard deviation of the data used and generated flows are given in table 6.5.

These generated data are further used in reservoir operation studies.

Graph showing Time verses Mean of 10 years data and generated data is shown in fig. 6.3 .

Table showing 50%, 60% and 75% dependable flows are shown in table 6.6

6.6 COMPARISION OF FLOWS GENERATED FROM STRAUGE'S TABLE AND MODIFIED THOMAS FIERING MODEL:

The 50%,60% and 75% dependable flows from the Strauge's Table and Modified Thomas Fiering Model are given in Table 6.7.

It reveals that the flows generated from modified Thomas Fiering Model are of the Smaller values as compared to the Strauge's Table flows.

Flow-Duration Computations are shown in Table 6.8 for both the methods flow ... curves are also shown in fig. 6.4

It reveals that the probability of that particular flow will be equalled or exceeded is less in case of Modified Thomas Fiering Model.

TEN YEARS DATA

(3	YEARS	HISTORICAL	+	7	YEARS	STRANGEIS	TABLE	FLOW)	IN Mm ³
and the second s		ويتكادهم متراد بالأحور بالأكامينية الجاران وراحيه والمستكرية والتحوير		-					

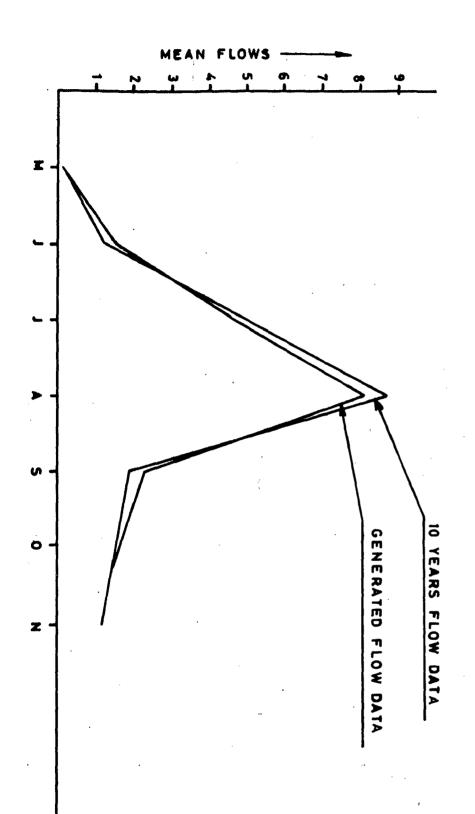
Years	May	Jun	Jul	Aug	Sep	Oct	Nov
1	0.0	0.09	3.12	5.91	3.0	2 1.1	0.0
2	0.0	2.97	6.74	10.98	5.85	1.55	1.57
3	0.0	1.48	2.69	1.06	0.64	3.93	0.0
4	0.0	0.59	5.18	2.73	4.33	2.34	3.53
5	0.5	3.0	9.73	13.06	1.14	1.08	0.71
6	0.0	0.75	2.01	6,44	0.46	0.22	0.44
7	0.02	3.37	15.10	9.76	0.45	0.46	0.67
8	0.12	0.10	0 .87 6	13.053	1.196	0.438	0.0
9	0.0	0.37	1.163	13.041	1.012	0.600	0 .42
10	0.0	0.154	6.551	11.288	1.188	3.210	1.70

.

.

GENERATED FLON DATA IN MM

19.0270 13.0005 20.0482 17.8725 20.4012 26.9306 8.4839 9.7484 5.7995 5.9722 27.4413 28.8363 9.2136 12.4629 8.4630 9.3246 22.3104 24.8670 32.3174 31.7126 .5,0479 14.9507 22.0282 15.0289 12.9842 12.4734 29.510 4.8228 Total 0.5898 1.7524 2.2536 0.3176 1.2464 1.5401 0.9378 2.9270 .3689 0.9832 1.2507 0.8265 1.0510 0.6966 2.5874 2.2172 1.7482 0.8546 0.9422 0.9103 0.8127 0.9091 Nov 0.0 0.0 0 0.0 0.0 0.0 0.0 0 <u>.</u> 1.5560 0.9892 **1.3943** 3.5352 1.5128 1.7938 1.9464 1.1214 2.2025 2.0524 4.4640 0.9392 1.0793 2.1666 2.6584 0.6627 0.1217 1.0415 L.5364 1,7977 0.6330 1.0487 1.0486 0.8876 .1305 Oct 0.0 0.0 0.0 0.0 0.0 3.8186 2.0249 3.1048 3.0966 2.6576 3.4209 0.4860 .1543 2.8244 2,8585 0.1895 0.0305 0.9969 2.6263 3.1279 .2349 1.9154 4.2070 4.6189 ..9627 1.1401 3.4401 3.8441 2.2031 0.3407 0.7331 2.358 Sep 0*0 0.0 0.0 14.8122 9.6538 9.4174 9.5749 0.5749 7.5194 7.5194 5.557 6.5008 6.5952 6.7572 13.0666 15.2047 6.8087 9.7955 7.3609 1, 7955 9.9752 8.0932 8.9307 3.1429 8.9074 6.3136 4.6060 5.3135 5,1050 6.1117 6.3852 5073 22340 Aug 0 9855 6.0390 0.6668 1.9816 3.7870 4.1850 6.0120 0.5698 2.1405 5.1640 7.6844 10.2014 0.2943 1,2892 1.5268 1.9869 4.6994 4.8568 8.8366 7.4829 7.4442 2.0773 0.7888 11.3005 6.6616 8.9111 1.9591 7.8981 Jul 0.0 0.0 2 N 1.31322 2.2103 0.2816 0.2069 1.8250 1.0015 2.5885 0.2912 1.1164 1.5317 0.4005 2.1707 0.5190 1.2465 1.8217 2.2771 1.0466 3.3241 2.9391 .7271 3.7941 0.0589 0.1423 0.9817 2.8441 Jun 0.0 0.0 0.0 0.0 0 0.1994 0.0063 0.1043 0.0871 0,1981 May 0.0 0.0 0.0 0.0 000 0.0 0 0.0 0 0.0 0.0 0.0 0.0 S1. 308 o No -004506700 220 ഗ 50 4 0 NN σ


COMPARISION OF 10 YEARS FLOW AND FLOWS GENERATED FROM MODIFED

THOMAS FIERING MODEL '

.

• · · ,

S1.	Months	10 <u>Y</u> e	ears Flow	Generated Flow		
No.		Mean in Mm ³	Standard Deviation	Mean in Mm	Standard Diviation	
1.	Jan		-	-		
2.	Feb.	-			-	
3.	Mar.	-	-		-	
4.	Apr.		. –	-	-	
5.	May.	0.0633	0.0513	0.1228	0.0736	
6.	Jun.	1.2874	1.3285	1.5063	1.0636	
7.	Jul.	5.3160	4.4521	4.6225	3.2202	
8.	Aug.	8.7322	4.4311	8.1576	3.6099	
9.	Sep.	1.9266	1.8512	2.2376	1.3005	
10.	Oct.	1.6338	1.3001	1.6271	0.9340	
11.	Nov.	1.2931	1.1151	1.2965	0.6692	
12.	Dec.	-	-	-	~	

30 YEARS GENERATED FLOW

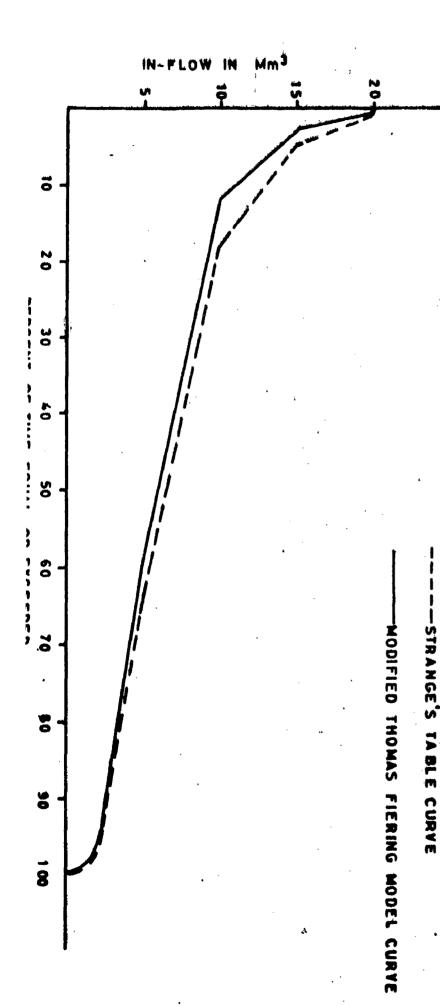
All figures in Mm³

S1. No.	Inflow	Inflow in decending order
1	12.4629	32.3174
2	8.4630	31.7126
3	12.4734	29.5102
4	9.3246	28.8363
5	22.0282	27.4413
6	22.3104	26.9306
7	24.8670	24.8670
8	20.0482	22.3104
9	17.8725	22.0282
10	20.4012	20.4012
11	26.9306	20.0482
12	32.3174	19.0270
13	31.7126	18.4839 ,
14	15.0479	17.9892
15	19,0270	17.8725
16	13.0168	15.9722 50%dependable
17	5.7995	15.0479 flow
18	15.9722	15.0285
19	27.4413	14.9507 60%dependable
20	1 8,4839	14.8228 flow
21	14.9507	13.0168
22	13.0005	13.0005
23	17.9892	12.9842 75%dependable flow
24	9.7484	12.4734
25	28.8363	12.4629
26	15.0285	9.7484
27	12.9842	9.3246
28	29.5102	9.2136
29	14.8228	8.4630
30	9.2136	5.7995

Various Dependable Flows

All figures in Mm^3

Sl. No.	Particulars	Strange's Flow.	Modified Thomas Fiering Model Flow.
1.	50% dependable flow.	23.42	15.9722
2.	60% dependable flow.	22.45	14.9507
3.	75% dependabæe flow.	17.31	12.9842


INFLOW - DURATION CURVE

A- STRANGE'S TABLE-INFLOW

Class No.	Class Inter- vals	Nos.	Cumulative nos	Prabability P(x)
I	Above 15	4	4	0.02
II	10.1-15	11	15	0.07
III	5.1-10	39	54	0.26
IV	0-5	156	210	1.00

B.-GENERATED_FLOWS

Class No.	Class Inte rv al	Nos	Cumulative nos	Probability P(x)
I	Above 15	2	2	0.01
II	10.1-15	6	8	0.04
III	5.1-10	31	39	0.19
IV	0-5	171	210	1.00

6.7 RESERVOIR OPERATION STUDIES FOR CHECKING FEASIBI-LITY OF THE PROJECT FOR DIFFERENT DEPENDABILITIES:

Strauge's Table Flows

Reservoir operation for a cycle of 30 years with 50%, 60% and 75% dependabilities are done for finding the feasibility of the project. The results obtained are shown in Table 6.9(a) and (b). In calculating successful years, the marginal deficit is considered as successful years. 10% deficit is considered as marginal deficit.

Gross storage required for 50%,60% and 75% dependable flow are 12.176 Mm³, 14.963 Mm³ and 16.197 Mm³ respectively for an annual irrigation requirement of 17.549 Mm³. The percentage of Gross-Storage capacity for different dependabilities works out to 28%, $^{34.5\%}$ and 37.5% The increase in capacity between 50% to 75% dependability is $^{9.5\%}$ which is considerably large. Increase in dependability, will result in increased, storage capacity, Area of Submergence and evaporation losses. Percentage of crop water deficit with total crop water demand $c_{1.5\%}$ for 50% to 75% dependability /are 9.8% to 4%. These are within 10% limit. Hence percentage of crop water deficit for 50% and 75% dependability are with in marginal limit.

(Storage/Capacity) verses probability _2 equalled or exceeded is enclosed in Table No.6.10. It reveals that probability of a particular (Storage/Capacity) will be equalled or exceeded also increases as the dependability TABLE 6.9(2) RESULES FROM 30 YEARS WORKING TABLE

	Tetal int	CROP	WATER R.	CROP WATER REQUIREMENT		CAPAC	CAPACITIES	EVAPORA.	EVAPORATION LUCSES		3	DEFICIT		>1000
lity	flew avai- lable fer	As per design	%tage with	Water relea-	1	As per	%tage	Tetal fer 30	%tage %ith tetal flew		%tage with	Total for 38	%tage with	deficit víth crop
	30 vegra	fer 30 t Years in f	tetal n flew	see fer t 30 yegra i	tetal flew	ო :		years		years	flow	years	total f low	enane.
in percentage.	toe.	L EN		un Mu		In Man		EIN UI						
						STRANCE'S TABLE FLOW	ABLE FLOW	1		,		ī		•
	697.43	526.47 75.5	75.5	475.67	68.1	12.176	28.0	47.5		174.9		1.10	•••	5
	697.43	526.47 75.5	75.5	500.27	7.17	14.963	34.5	56.3	. 8.1	141.2	20.2	26.2	3 ° 8	5.0
	697.43	526.47 75.5	75.5	585.87	72.5	16.197	37.5	60.0	8.6	133.3	19.1	20.6	3.0	• •
						THOMAS FIER	THOMAS FIERING MODEL FLOW	Low						
	542.09	526.5	9.76	429.1	79.0	12.176	28.0	40.0	. 7.4	72.9	13.0 ,		17.7	18.5
	542.09	526.5	97.0	449.3	82.8	14.963	34.5	46.4	8.6	48.9	0,6	79.2	14.6	15.0
	542.09	526.5	97.0	450.5	83.0	16.197	37.5	49.2	0*6	42.9	8.0	76,0	14.0	14.0

43

•

· •

(

,

.

•

. , TABLE 6.9(b)

RESULTS-30 YEARS RESERVOIR OPERATION FROM STRAUGE'S TABLE FLOW (All Figures in Mm³)

Sl. No.	Particulars	50% dèpen- dability	60% dep en- dability	75% depen- dability
1	Gross Storage Capacity	12.176	14.9 3	16.197
2	Percentage of Storage	28	34.5	37.5
 	capacity			
3	No.of Successful years	15	19	22
4	No.of Deficit years	15	11	8
5.	No of years Spill over	2 0	19	18
6.	No of Months Spill over	42	36	33
7.	No.of Deficit Months	41	23	1 9
8.	Percentage of crop water	75.5 .	75.5	75.5
	requirement with inflow			
9.	Percentage of water re-	68.1	71.7	72.5
	leased for crop require-			
	ment with inflow.	·		
10.	Percentage of water loss	6.8	8.1	8.6
	as evaporation.			
11.	Percentage of water	25.1	20.2	19.1
	Spilled over the crest.			
12.	Percentage of crop water	7.4	3.8	3.0
	deficit with total flow.			
13.	Percentage of crop water	9.8	5	4
	deficit with total crop			
	water demand.			
14.	Irrigation Shortage	0.031	0.008	0.004
	Index.			

TABLE 6-10

STORAGE DURATION VALUES_ STRAUGE'S TABLE FLOW.

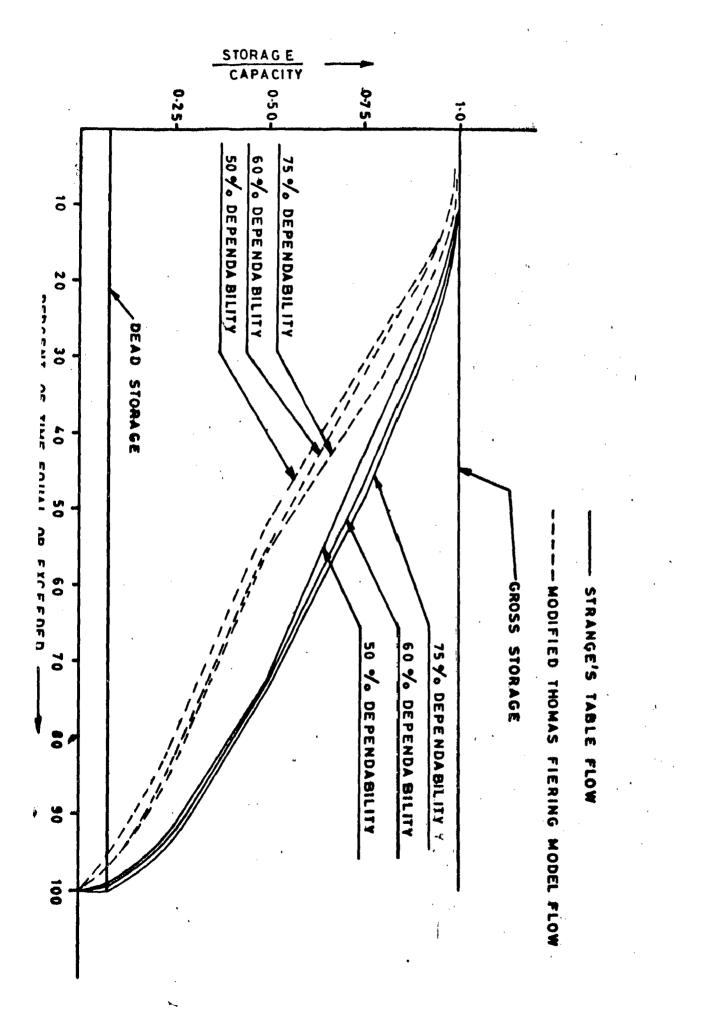
Capac <u>1ty</u>		Cumulativ,e Nos	Probability P(x)
	50% Dep	endability	
0-0.25	90	360	1.0
0.26-0.5	73	270	0.75
.5175	82	197	0.55
▶.75	115	115	0.32
	60% Dep	endability	
0-0.25	58	360	1.0
0.26-0.5	82	302	0.84
0.51-0.75	98	220	0.61
Above 0.75	122	122	0.34
	75% Dep	endability	
0-0.25	54	360	1.00
0.26-0.5	81	3 06	0.85
0.51-0.75	103	225	0 .63
Above 0.75	122	122	0.34
	0.26-0.5 $.5175$ 2.75 $0-0.25$ $0.26-0.5$ $0.51-0.75$ Above 0.75 0-0.25 $0.26-0.5$ $0.51-0.75$ Above 0.75	0-0.2590 $0.26-0.5$ 73 $.5175$ 82>.75115 $0.0.25$ 58 $0.26-0.5$ 82 $0.51-0.75$ 98Above 0.75122 $75%$ Dep $0-0.25$ 54 $0.26-0.5$ 81 $0.51-0.75$ 103	0.26-0.5 .5175 82 197 .75 115 115 60% Dependability 0-0.25 58 360 0.26-0.5 82 302 0.51-0.75 98 220 Above 0.75 122 122 75% Dependability 0-0.25 54 360 0.26-0.5 81 306 0.51-0.75 103 225

.

of flow increases vide fig.6.5

Shortage Index: It is a measure of the number and magnitude of annual shortages. Lower shortage index indicates more adequately meeting the target requirement.

Shortage Index= $\frac{100}{N} \sum_{1}^{N} (\frac{\text{Annual Shortage}}{\text{Annual requirement}})^2$


where,

N = Period of analysis

The difference in shortage index for the three alternatives are marginal vide Table 6.9(b).

On the basis of the above following criteria 50% dependable flow scheme is feasible.

- Generally 60% dependability for irrigation projects is not the design creteria.
- The increase in reservoir capacity between 50% to 75% dependability is .9.5%.
- 3. Successful years for 50% and 75% dependability are as per requirement of feasibility.
- 4. Evaporation losses for 50% dependability are less compared to 75% dependability.
- 5. Percentage of crop water deficit for 50% dependability is with in the marginal deficit of 10%.
- 6.8 RESERVOIR OPERATION STUDIES FOR CHECKING FEASIBILITY OF PROJECT FOR THE FLOWS GENERATED FROM MODIFIED THOMAS-FIERING MODEL:

The reservoir capacities for different dependable flows were taken here as obtained from the Strange's Table computations and were also given in sec. 6.7. The results of operation are given in Table 6.11. Storage-duration computations are given in Table 6.12. Here also it reveals that probability that a particular (storage/capacity) will be equalled or exceeded also increases as the dependability of flows increases, fig. 6.5

On the basis of successful years none of the dependable flow schemes are feasible.

6.9 COMPARISION OF PROJECT FEASIBILITIES OBTAINED FROM STRANGE'S TABLE AND MODIFIED THOMAS FIERING MODEL FLOWS:

From the tables 6.9 and 6.11 it reveals that the number of failure years, number of deficit months, percentage of water deficit for crop demand, irrigation shortage index are more for the Modified Thomas Fiering Model from operation as compared with the Strauge's Table flow operation.

From Fig. 6.5 it also shows that probability that a particular (storage/capacity) will be equalled or exceeded is less in case of Modified Thomas Fiering Model flows as compared to Strauge's Table flows.

These may be due to the fact that the flows generated from the Modified Thomas Fiering Model are on the lowest side as compared with Strauge's Table flows. Secondly

TABLE 6.11

RESULTS OF 30 YEARS RESERVOIR OPERATION FROM MODIFIED THOMAS

FIERING MODEL FLOW

ł

			1	
Sl. No.	Particulars	50% dependa bility	60% depen- dability	75% depen- dab ld i- ty
1.	Gross storage capacity	12.176	14.963	16.197
2.	No.of Successfull years	11	17	17
3.	No.of deficit years	19	. 13	Ì 3
4.	No.of years spill over	16	14	13 '
5.	No.of Months Spill over	24	21	0
6.	No.of Deficit Months	65	48	47
7.	Percentage of crop water requirement with inflow	97	97	97
8.	Percentage of water rel- eased for crop requirement with inflow.	79	82.8	83
9.	Percentage of water loss as evaporation	7.4	8.6	9
10.	Percentage of water Spill- ed over the crest.	13	9	8
11.	Percentage of crop water deficit with total flow	17.4	14.6	14
12.	Percentage of crop water deficit with crop water demand.	18.5	15	14
13.	Irrigation shortage index	0.114	0.075	0.069

99

1

TABLE 6.12

STORAGE-DURATION VALUES-MODIFIED THOMAS FIERING MODEL

		50% 20		
Sl.No.	Storage Capa city	Nos	Cumulative Nos	Probability P(x)
I	0-0.25	134	360	1
II	0.26-0.50	73	226	0.63
III	0.51-0.75	78	153	0.43
IV	▶ 0.75	75	76	0.20
		60% De	ependability	
I	0-0.25	121	360	1
II	0.26-0.50	78	239	0.66
III	0.51-0.75	85	161	0.45
IV	> 0.75	76	76	0.21
		75% De	ependability	
I.	0-0.25	118	360	1
II	0.26-0.50	87	240	0.67
III	0.51-0.75	76	153	0.43
IV	▶0.75	7 9	7 9	0.22

50% Dependability

:

TABLE 6.13

COMPARISION OF COST AND BENEFIT COST RATIO

60% dependability	Cost in Rs.Lakhs	Benefit cost Ratio
50% dependability	484.80	1.087
60% dependability	498.00	1.013
75% dependability	509.00	0 .992
	50% dependability 60% dependability	Rs.Lakhs50% dependability484.8060% dependability498.00

the reservoir capacities for operation for the Thomas Fiering Model were taken same as obtained from Strauge's table flow for different dependabilities. To check the feasibility of the project with dependable flows of generated from Thomas Fiering Model requires further study.

6.10 BENEFIT COST-RATIO:

Benefit Cost-Ratio for 50%,60% and 75% dependable flow generated from Strauge's Table is worked out and shown in Table 6.13.

It reveals that the cost of the project increases as the dependability increases. As the dependability increases, benefit cost ratio decreases. Benefit cost ratio of 50% dependable flow is more than 1 and that of 75% dependable flow is less than 1. Hence 50% dependable flow scheme is feasible based on benefit-cost ratio.

6.11 CONCLUSION:

Runoff-Studies were carried out for Kalluvodduhalla irrigation project.

Genration of flow done by (a) Strauge's Table (b) Regression Analysis and (c) Thomas Fiering Model. The following conclusions may be drawn.

> 1. Flow generated by Regression analysis vary widely compared to 3 years historical flows. Comparative graph showing mean versus time of three years flow, generated flow with natural values and

generated flows with logarithmic values are shown in fig. 6.2 . It reveals, that there is a wide variation between historical flows and generated flows. It is due to the reason that there is no consideration in the regression equation for the zero flows observed in any of the months, Hence these flows are not considered for further study.

- 2. Flow generated by the Modified Thomas_Fiering Model are of the smaller values as compared to that of the generated flow by Strauge's Table.It is due to fact that the historical flows are available only for 3 years. Thomas Fiering Model generally requires at least 10 years historical flow data.
- 3. From flow duration curve it is found that the probability of a particular flow will be equalled or exceeded is less in case of the flows generated by Modified Thomas Fiering Model as compared to that of Strauge's Table generated flow.
- 4. From Strauge's Table generated flows, gross reservoir capacity required for 50%,60% and 75% dependable flows are 12.176 Mm³, 14.963 Mm³ and 16.197 Mm³ respectively, for an annual irrigation requirement of 17.549 Mm³. The increase in capacity between 50% and 75% dependability is ^{9.5%} which considerably large. Increase in dependability will result in increased, storage capacity, area of Submergence and evaporation losses.

- 5. From reservoir operation _______ results for the capacities of 12.176 Mm³, 14.963 Mm³ and 16.197 Mm³, the number of failure years number of deficit months, percentage of water deficit for crop index are more for the Modified Thomas Fiering Model flow operation as compared with Strauge's flow operation.
- 6(a) From Storage-duration curve it reveals that the probability of a particular (Storage/Capacity) will be equalled or exceeded increases as the dependability of flow increases. This is due to the increase in reservoir capacity with the increase of dependable flow with the same annual irrigation requirement.
 - (b) The storage duration curve also depicts that the probability of a particular (Storage/Capacity) will be equalled or exceeded is less in case of operation with modified Thomas-Fiering Model flows as compared to Strauge's Table flow. This may be firstly due to the fact that the flows generated from the Modified Thomas Fiering Model are Smaller than the flows generated from the flow. Secondly, the reservoir capacities for operation for the Thomas Fiering Model were taken same as obtained from Strauge's Table for different dependabilities.

7. The 50% dependable flow scheme is feasible on the basis of reservoir operation creteria as well as on the basis of benefit cost ratio creteria.

6.12 SUGGESTION:

As a result of present work the following are the suggestions:

- (a) The generation of monthly volume and reservoir operation should be carried out for longer period.
- (b) A longer period historical flow data should be available for runoff studies.

REFERENCES:

- Kalluvodduhalla Tanh Project. Model Report Estimated Cost Rs.484.8 Lakhs.
- 2. Staff Appraisal Report Irrigation Department Karnataka

· ~ U

- 3. Modernisation of Irrigation Systems. Central Water Commission New Delhi March, 1978.
- 4. Report On the Irrigation Commission 1972. Volume III (Part 2)
- 5. Vente Chow, Hand Book of Applied Hydrology. McGraw-Hill Book Company.
- Ray K. Linsley, JR., Maxa. Kohiler, Joseph. L.H.
 Paulhus.Applied Hydrology.
- 7. Edword Kuiper, Water Resources Development-Dlanning, Engineering and Economics.
- 8. R.T.Clarke, Mathematical Models in Hydrology, Irrigation and Drainage Paper -19.
- 9. Nemec. Engineering Hydrology McGraw Hill Publishing Company Limited.
- 10. International Association for Hydraulic Research Proceedings Subject-C volume IV New Delhi 1-7 Febraury 1981.
- 11. S.K.Battacharya. Operation of Uduthorehalla Irrigation Reservoir April, 1981.
- 12. Sisir Rao Allocation of Water Resources in Upper Brahmani River Basin May 1982.
- 13. Houshang Afshari. Operation Study of Karaj Reservoir in Iran September, 1983.

```
DIMENSION Y(1500),G(1500),CGP(1500),CGM(1500)
  OPEN(UNIT=1, DEVICE='DSK', FILE='K3.DAT')
  Y=MONTHLY FLOW DATA
  G=GENERATED MONTHLY FLOW DATA
   CGP=GENERATED MONTHLY FLOW UPPER CONFI LIMIT
   CGM=GENERATED MONTHLY FLOW LOWER CONFI LIMIT
   N=TOTAL NO OF DATA IN Y-SERIES
   NN=TOTAL NO OF GENERATED DATA
   TN=FACTOR FROM T-TEST TABLE FOR N-3 DEGREE OF FREEDOM
   SUM1=SIGMA(AY-AYBAR)**2.0
   GM1=GAMMA1
   BM1=BETA1
   VASQ=CONSTANT VARIANCE (SIGMA E SQUARE)
  RADV=RANDOM COMPONENT
   READ (1,2) N,NN
   READ (1,4) TN
   READ(1,4) (Y(J), J=1, N)
  PRINT 20
   PRINT 21
     PRINT*, N, NN
     PRINT*, TN
     PRINT*, (Y(J), J=1, N)
   CALL STA1(N,Y,YBAR,SUM1,STD)
   PRINT 22
   PRINT 23, YBAR, SUM1, STD
   SUM 3=0.0
   SUM4=0.0
   D030 J=1,N
   X1=J
   X2=(2.0*3.14285*X1)/12.0
   X3=SIN(X2)
   XX1 = COS(X2)
   X4=X(J)*X3
   XX2=Y(J)*XX1
   SUM3=SUM3+X4
   SUM4=SUM4+XX2
30 CONTINUE
   X5=N
   GM1=(2.0/X5) #SUM3
   BM1 = (2.0/X5) \neq SUM4
   PRINT 31, GM1, BM1
  X6 = (BM1 * BM1) + (GM1 * GM1)
   X7=(X6*X5)/2.0
```

```
VASQ=(SUM1-X7)/X8
  PRINT 32,VASO
  X9=SQRT(VASQ)
  A1=1.0+(5.0/X5)
  A2=SQRT(A1)
  A3=X9*A2
  RADV=TN*A3
  PRINT 33, RADY
  DO 40 J=1,NN
  B1≈J
  B2=(2.0*3.14285*B1)/12.0
   B3=COS(B2)
   B4=SIN(B2)
  G(J) = YBAR + BM1 * B3 + GM1 * B4
   CGP(J) = G(J) + RADV
   CGM(J) = G(J) = RADV
40 CONTINUE
  PRINT 42
   PRINT 44, ((J,G(J),CGP(J),CGM(J)), J=1,NN)
2 FORMAT(214)
4 FORMAT (8F10.3)
20 FORMAT(15X, 'GENERATION OF FLOW')
21 FORMAT(5X, 'DATA USED')
22 FORMAT(15X, 'STATISTICAL PARAMETERS')
23 FORMAT(10X, 'MEAN=', E16.7, 10X, 'SUM1=', E16.7, STANDARD DEVIATION
     1=',E16.7)
31 FORMAT(10X, 'GAMA1=', E16.7, 10X 'BETA1=',
  1E16.7)
32 FORMAT(10X, 'VARIANCE SQARE=', E16.7)
33 FORMAT(10X, 'RANDOM COMPONENT=', E16.7)
42 FORMAT(15X, 'GENERATED DATA')
44 FORMAT(5X, I3, 10X, E16.7, E16.7, 10X, E16.7)
   STOP
   END
   SUBROUTINE STA1(K, AY, YBAR, SUM1, STD)
   FOR COMPUTING MEAN AND STD-DEVIATION
   DIMENSION AY(500)
   SUM=0.0
   DO 10 J=1,K
   SUM=SUM+AY(J)
10 CONTINUE
   AN=K
   YBAR=SUM/AN
```

08800		SUM1=0.0
08900		DO 15 J=1,K
09000		CX=AY(J)-YBAR
09100		CX1=CX*CX
09200		SUM1=SUM1+CX1
09300	15	CONTINUE
09400		BN=K-1
09500		CX2=SUM/BN
09600		STD=SQRT(CX2)
09700		RETURN
09800		END

.

.

.

.

			•
002		DIFESION Y(1500),G(1500),CGP(1500),CGM(1500)	
003		UPE: (ULT=1,DEVICE='DSK',FILE='K2.DAT')	
004	C	Y=MORTHLY FLOT DATA	
005.	С	G=GEDERAYED DONTHLY FLOW DATA	
006	C	CGF=GENERATED NONTHLY FLOD UPPER CONFI LIMIT	
007	С	CG.=GEGERATED MUNTHLY FLOW LOWER CONFI LIMIT	
008	C	NETOTAL OF DATA IN Y-SERIES	•
009-	С	NN=TOTAL FO OF GENERATED DATA	
010	С	TM=FACTOR FROM T-TEST TABLE FOR N-3 DEGREE OF FREEDOM	
011	C	SUM1=SIGMA(AY-AYBAR)**2.0	1
012	C	Gh1=GANAA1	
013	С	BA1=BETA1	·
014.	С	VASQ=CUNSTANT VARIANCE (SIGMA E SQUARE)	а - 4
015	C	RADV=RAHDUN COMPONENT	
016		READ (1,2) 1., 10	
017		READ (1,4) TN	
018		READ(1,4) $(X(J), J=1, N)$	
019		PRINT*,Y(J)	
020		DO 60 J=1,1	
021.		Y(J) = Y(J) = 100	•
022-	.60	CONTINUE	
023	. *	PRIPT*,(Y(J),J=1,N)	
024		DO 50 J=1,7	
025		1F(Y(J)) 52,52,50	· .
026	52	X(J)=1.	
027	. 50	CONTINU	•
028.		DO 55 J=1, Y	
279		A = X (J)	· · ·
030		¥(J)=ALOG19(A)	
031.	55	CONTLUCT	
032		PRINT*, X(J)	
033		PEIPT 20	
034		PRINT 21	
035		PRI/F*, N, db	
036		PRI/C*, TO	
037		$PRI_{J} = \{Y(J), J=1, h\}$	
038		CALL STA1(M,Y,YBAR,SUM1,STD)	. *
039		PRT 7 22 Prt V 22 Vian Sulta Sun	
040		PRINT 23, YBAR, SUM1, STD	
041		SUA 3=0,0 SU 1=0 (
042		SU. 4=',' D.13'-J=1, :	
044		X t=J	•

10'

v ** J		スピロリン - マゴ・ビーン (5年メトリノルビーン	110
046		$\lambda 3 = \ldots (\lambda^2)$	•
047		XX1=C (S(X2)	
048		X = Y(x) + X = Y(x)	
049		XX2=Y(J) *XX1	
050		SU 3=511.13+X4	
051		SU ==SU \+XX?	
052	30	CONTINI	
053		X5=/	
054		G21=(2.0/X5)*SU23	
055	·	B11=(2.v/X5)*SU-4	
056		PR1-97 31, G91, 1941	
057	•	X6=(P-1*B.1)+(G/1*G/1)	
058		X7=(X6*X5)/2.0	• •
059		X8=X5-3.)	
050 .		VASO=(SH-1-X7)/X8	
061		PRIME 32, VASO	
062	•	X9=SQRT(VASQ)	
063		A1=1.0+(5.0/X5)	
064.		A2=50RT(A1)	
065		A3=X9*A2	
966		RADV=TI+A3	
067		PRI/T 33, KADV	
068		00 40 J=1, No	
069		B1=J	
070		B2=(2.0*3.14285*B1)/12.0	
071		B3=C05(H2)	
072.		84=SJn(82)	
07/3		G(J)=YBAR+D 11*B3+GM1*B4	
074-		CGP(J) = G(J) + RADV	
075		$CG_{i}(J) = G(J) - RADV$	
076	40	CONTINE	
077		PR1+T 42	
078	C ·	PRIHT 44, ((J,G(J),CGP(J),CGM(J)), J=1,NN)	
079		DO 65 J=1, NH	
080		G(J)=(1/),**G(J))/100	
081		CGP(J) = (1), **CGP(J))/100	
082		CG/(J)=(1^.**CGN(J))/100	
083	٥5	CONTINT	
084		PrT = ++, ((J,G (J), CGP(J), CGM(J)), J=1, NN)	
085		FOR / (214)	
086 •		FOR	•
087		FOR AT(15X, 'GENERATION OF FLOW')	
088	21	FOR AT(5X, 'DATA USED')	

089	22 FUR ATTONA (STATISTICAL PARAMETERS!)	
090	23 FOR ATCLUS, "TIAH=", E16.7, 10X, 'SUH1=", E16.7, 'STANDARD DEVIATION	
091	$1=1, E_{1}6, 7$	
092	31 FORDAT(10x,'GAMA1=',E15.7,10X 'BETA1=',	
093	1E16.7)	
094	32 FURMAT(15X, 'VARIANCE SQARE=', E16.7)	
095	33 FOR AT(LEX, 'RANDON COMPONENT=', £16,7)	
096	42 FORMAT(15X, 'GENERATED DATA')	
097	44 FOR AT(5X,13,10X,816.7,816.7,10X,816.7)	
098	STOP	
099	END	
∂ 00∿	SUBPOUTINE STA1(K, AY, YBAR, SUM1, STD)	
.01 C	FOR COPPUTING MEAN AND STO-DEVIATION	
: 02	DIMENSTUN AY(500)	
03	SUm=6.0	
4	DO 10 J=1,K	
.05	$SUN=SU_{i}+AY(J)$	
.06	10 CONTINUE	
ty 07 ⊴	А <i>N</i> =К	
08	XBAR=SUK/A4	
₃ 09.	$SU_{2}(1=0.0)$	
210	DO 15 J=1,K	
_11	CX = AY (J) - Y - AR	
9 12	CX1=CX*CX	
<u>_</u> 13	SUM1=SUU1+CX1	
14	15 CONTINUE	
15.	Bn = K - 1	
16	CX2=SU!//B'I	
17	STD=SORT(CX2)	
.18	RETUR	
19	END	

,

002	c	PISSERIU - CRR OF G.D.SHAMKARATURTHY, M.H.HYDRUG PROGRA FOR GENERATION OF MONTHUY FLOW	IGY APPENDIX M
003)	c s	BY THUTHS FLERING FODEL (MODIFIED)	ł
004	c		
005		COMPUTATION OF MONTHLY STATISTICAL 1PARADEDES	
006	c .	UT=10 A G OF ADATHS DISCHARGES	
	C i		
008 1	C	TARE AVAILABLE IN A YEAR KENNERE DE VERRE AVAILABLE	
009		K=NUPBER OF YEARS OF DATA AVAILABLE	
010		DIMENSION EPSL(1400),91(100,13)	
011.		DIMEASTOR Q(50,12),QBAR(12),STD(12),R(12),B(12) CO220 //BLK1/EPSL	
012		COAdou/aLK2/QBAR, SID, R, B, Q	
013		СОмоллык2/авак, это, к, в, ч	
014			•
015		OPEN (UHIT=1, DEVICE='DSK', FILE='TM, DAT')	
		READ(1,2) NT,K,NDATA	
017 ·		PRINT2, NT, K, NDATA	
		DO LU $T=1,K$	
018		READ(1, *)(Q(I, J), J=1, NT)	•
019	10	PRI = T - 4, (Q(I,J), J=1, NT)	
0207.		CONTINUE	•
021 · · ·		FORMAT(315)	
022	4	FORMAT(7F10,4)	
023 -		CALL STAN(K, AT)	
024		DO 11 $J=1, aT$	
025		PRITT 5, GBAR(J), STD(J), R(J), B(J)	
026	11.	CONTINUE:	
027 .	5	FORMAC(SFLC.4)	
028. 076		CALL RAID(HT, IDATA)	
Q 2 (9 ; ; ; ; ; ;		CALL FF(HDATA, NT, K)	
030		PRIMTA , (QI(I,J), J=1, NT), I=1, NDATA)	
031	·	DU 53 L=1, HDATA	
032 -	гò	DO 53 J=1, NT	
033 +	53	$\Theta(\mathbf{I},\mathbf{J})=\Theta(\mathbf{I},\mathbf{J})$	
034		CALL STAN (HDATA, NT)	
035		DO 60 J=1,47	
036 ·		PRLAT*, GBAR(J), STD(J), R(J), B(J)	
037	60	CONTINE	
038		STOP	
039		EAD	
040		SUBROUTT & STAR (K, NT)	
041		DIMCHSIGA Z(54,12),ZBAR(12),STD(12),R(12),NN(12),	8(12)
042		COMMON BER2/ ZBAR, STD, R, B , Z	
043		DO LU KK=L, HI	

045		[] { i=1 , +		113
046		J. (.2(.1,).GT.J.)WN(KK)=NN(KK)+1		
047	10	CORTING		
Q48		DO 5 GG=1, GT		
049		SU/(J=).		
050		41=0		
051		D0 n1=1,K		
052		IF(Z(T, N().GT.0.) SUM1=SU (1+Z(I,KK)		
053	6	CO:: (I)	· · ·	
054		A1=d.(KK)		·
055	5	ZBAR(KK)=SUMI/A1	· · ·	
056	С	FOLLOWING STATEMENTS FORMCOMPUTING		.•
057	C	STANDARD DEVIATION OF DIFFRENT MONTHS		
058		DC 1 KK=1, hT		
059		SU≤2=0.		
0)60 (1)		DO 81=1,K		
061		IF(Z(I,KK).20.0.) GO TO 8		
0.62		IF(Z(I,KK).GT.0.) A2=Z(I,KK)-ZBAR(KK)		
063		A3=A2*A2		
0640	C	PRIAT*, A3	· · · · · · · · · · · · · · · · · · ·	
065 -1		SUM2=SU 2+A3		
066.	8	CONTIAUE	•	
067		AK=**N(KK)-1		<i>.</i>
068.	C	PRINT*, AK		•
069		SUM2=5U12/AK	· ·	
070	1	STD(KK)=SQRT(SUH2)		
071	C	COMPUTATION OF CORRELATION COEFFICIENT		
072		DO 15 KK=2, MT		
9/3.		SU63=0.)		
074		SUM4=).		
075		SU25=0.		
076		D012I=1,K		
077		IF(Z(1,KK).EQ.J.)GO TO 12		
078 -		AN1=Z(I,KX)-ZBAR(KK)	·	
079		A: 2=Z(I,KK-1)=ZBAR(KK-1)		
080	C	PRI (T*, A (1, A) 2		
081		AN3=A 1*4 1	· · · · ·	
082	C	PRI'1*, 6.3		
083		A114=A 12+A 12	· ·	
084		SU63=SU/3+A (1*AL2	•	
085		SU1 4=SU 4+A13		
086		SU5=SU. 5+ANA		
087	12	COVELIUS		
088		ANS=SUH4*SU1.5		

089		A26=8-R-(X.5)	114
990		R(KK)=51:31A116	· · · ·
091	C	PRIAT*, ZBAR(NK), STD(KK), R(KK)	
092	15	CCTTING	
693		$D \cup J = KK = 2$, HT	
0.94		B(KK)=F(KK)*STD(KK)/STD(KK-1)	
095	с	PKI TA, (KK)	
096	13	CC TI Jr.	
097		RETUR	
098		E (D	•
099.		SUBROLTL'E RAMP(NU,")	
00	С	PPOGRAN FOR GENERATION OFRANDOM NUMBERS	
.01	С	THE DUSER OF CONTHS	
. 02	с ,	REALGOR OF YEARS OF DATA TO BE GENERATED	
÷ 03	Ç	AUSTAU HER OF SETS OF RANDOM NUMBERS	
704	C	PO-INITIAL VALUE	
05	C	RI AUD R2=NEW VALUES OF RO	
06	С	T(I)=RAHDON NUMBERS	
07.	с	N.R.NOS.(0,1) BY BOX AULLER	
∦08		DINEASION T(1400), EPSL(1400), X(1400), Y(1400)	
<u>्</u> 09		CONTON/ALK1/EPSL	
10		READ(1,10)NOS	
211		PRI.T 104,NOS	
12	10	FOR AT(314)	
<u>≥</u> 13 ···		DO 99 K=1,NDS	
14:		$L_{I} = i$	
15		PJ=3,1415936	
£16		READ(1,12)R1,R2	
47		PRI 3 12,R1,R2	
18	. 12	FUR AT(2F10.8)	
.19			
20		001:00K=1,M	· · · ·
21		$D(1, \sqrt{7}, 1=1, 6)$	
		No. malital	
J23		CALL HPAND(R1,R)	
24			
		CALL URAMP (R2,R)	. ·
26			
_27 28		X(,,:)=U1	
28 /			
. 29		ARG $T=2.6*PI*U2$	
.30	407	1(I)=(-2.*ALOG(U1))**0.5*COS(ARGNT)	
:32	107	CONTLUE DRT TAGE C TOTA THAN AND	
36	C	PRI T106, (T(I), I=1,8%)	

34 Lis=i,L+1 35 EPSL(LL)=T(J) 36 C PRI.T*,EPSL(LL) 37 50 Coloring 38 100 COLORIng 39 C PRI.TTUS,(X(I),I=1,40) 40 C PRI.TTUS,(X(I),I=1,40) 41 LO3 Further(off12,7) 42 99 COLTCUL 43 L04 FOR AF(314)	· · ·
36 C PRI.T*, EPSL(LL) 37 50 COLDINE 38 100 COLDINE -39 C PRIATION, (X(I), I=1, AN) 40 C PRIATION, (Y(I), I=1, AN) 41 103 FUR (AT(OF12.7)) 42 99 COUTTONE	· · · · · · · · · · · · · · · · · · ·
38 100 CONTINE -39 C PRIATION,(X(I),I=1,AH) 40 C PRIATION,(Y(I),I=1,AH) 41 103 FURAR(OF12.7) 42 99 CONTINE	
38 100 CONTINE -39 C PRIATION,(X(I),I=1,AH) 40 C PRIATION,(Y(I),I=1,AH) 41 103 FURAR(OF12.7) 42 99 CONTINE	
-39 C PRI(T103,(X(I),I=1,4H)) 40 C PRI(T103,(Y(I),I=1,4H)) 41 103 FUR(A)(6F12.7) 42 99 COUTTOE	
40 C PRINTIU3,(Y(I),I=1,NN) 41 103 FUR (AP(6F12.7)) 42 99 COUTTONS	
41 103 FUR AT (6F12.7) 42 99 COUTTOL	• •
42 99 CONTTOL	• • •
43 104 FOR'AT(314)	
44 C 105 FORMAT(2F10.5)	
-45 106 FOR (AT(SF10.4)	
.46 RETUR	
47 ED	. •
JAS SUBROUTINE URAND(RU,R)	
_49. R=331,*R€	
51 XI=I	
852, R=R-XI	
≥53< R×=R	
54 RETUR	
2 55., £ (D	
56. SUBPOUNTER TECHDATA, NT, K)	
57. C GENERATION OF MUNTHLY FLUM BY MODIFIED	
S58 C THUEAS FISRING HODEL	•
2,59% C O(I,J)=UBSERVED FLOW DATA IN I TH	
60 C YEAK AND J TH GONTH	•
61. C Q1(1,J)=GENERATED FLOW IN I TH	
62 C YEAR AUD J TH HOATH	
63. C QBAR(U)=AVARAGE FLOW IN J TH	·
164 С HOINTH	
65. C B(J)=REGRESSION COEFFICIENT	
66 C EPSh(1)=RANDON (UMBERS	
67. C NDATA= UNDER OF YEARS OF DATA	
68- C TO PE GE -SPARAD	
69: C NT=40"AAR OF TO THS DISCHARGES	
70, C AVATLABLE	
71 C R(J)=CORNALATIO: COEFFICIENT	
72 C STD(J)=STANUARD DEVIATION	
73 DIFERSION 0(50,12), QBAR(12), STD(12), B(12), R(12)	
74 DILENSIUS EPSL (1400)	
75 DIRENSION OF (190, 13), P(12)	
.76 CO. (0./BLK1/EPSL	

77		C 1. C / GK2/UPAR, 51D, R, 8, 0	ιų
78		Сот 10 / ББКЗ/01 (
79	101	FORLAT(314)	
80.	С	PRINT 101, HT, K, MDATA	
81	102	FOR AT (7F10.4)	
82	C .	PRINT 107, ((Q(I,J),J=1,NT), I=1,K)	
83		READ(1,1J3)RC	
84	103	FUR AT (SF10.8)	
85	C	PR1-T*, (49AR(J), J=1, 4)T)	
	С	PRI. T*, (STD(J), J=1, HT)	
, 87 [,]	C	PRI T*, (c(J), J=1, 4T)	
	С	PRI T*, (R(J), J=1, 4T)	
. 89	C	PRIGT*, (SPSL(J), J=1, dT)	
90 .		Х К = К	
91		-D0 S1 J≂1,8T	x.
2		P(J)=0	
. 93		DO 51 I=1,K	
94		IF(U(T,J),GT,U,)P(J) = P(J)+(1, /XK)	
;95÷	51	CONTINUE	
96 1		FRI.T*, (P(J), J=1, NT)	
		PPF=0	
98.		00 Sv1=1, VDATA	
299 6		DO 50J=1,(T	
200	a .	Gl(I,J)=0	
201	·	CALL URADD (RO, RAEDA)	
202	Ç -	PRINT*, (R0, RAHDM)	
203		IF(RAUPH.LT.P(J).AND.RANDH.GT.0)GD TO 52	
204		GO TO 50	
265	52	LLL=LLL+1	
206	i.	IF(J.=G.1)q1(I,J)=QBAR(J)+STD(J)*EPSL(LLL)	
207		$IF(J,GT,J)QI(I,J)=Q_{D}AR(J)+B(J)*(QI(I,J-1)-QBAR(J-1))+STD(J)$	
208:		1 + SQRT(1-R(J) + R(J)) + EPSL(LLL)	
209		IF(01(I,J),hT,0,)01(I,J)=0.	·
210	5,0	COLVI US	
211	C	PRITT*, ((QI(I,J), J=1, NT), L=1, NDATA)	
212		RETUR	
213		ENE	

001	с	G PER DREEDER HYDROLOGY DISSERTION WORK APPENDIX IV
002	C	RESERVOIR OPERATION OF K.HALLA
003	С	NDATA= UNLER OF YEARS OF DATA AVAILABLE
0.04	С	S=1 IVIAL LIV_ STORAGE
005	С	FLG = T FLO TO RESERVOIR
006	С	XREGELERIGATION REQUIREMENT
007	С	D=UERIGATION RELEASE
008	С	SPILLESPILL FRUI RESERVOIR
009	Ç	R=13736 REDGASE INCLUDING SPILL
010	¢	Y=GRUSS KESCRVUIR CAPACITY
011	С	EV=EVOFORATION COEFFICIENT FROM RESERVOIR
012	C	EVAPU=_VOPORATIO& FRO% RESERVOIR
013		DITENSION S(13), FLO. (50, 12), XREQ(12), D(12),
014		1SPILL(12),R(12),EV(12),EVAPO(12),SF(12)
0145.		DITENSION DUF(12), IDEF(12), ISPILL(12), IEMPIX(12)
5.		OPE: (U 1T=1, DEVICE='DSK', FILE='TOP.DAT')
016.		READCI,1000 HDATA
017	10	9 FORMAT(1815)
018		READ(1,101) S(1),Y,DS
019	10	1 FORMAT(6F10.3)
020		DO 12 I=1,NDATA
021		READ(1,*) (FLOW(1,J),J=1,12)
022	1	2 CONTINUE
023		READ(1,101)(XREQ(J),J=1,12)
024		READ(1,102)(EV(J),J=1,12)
025.	10	2 FOR AT (6F10,8)
0251		DU 16 J=1,12
0252		02F (J)=0.
8253		IDEF(J)=>.
02535		TSPILL(J) = 0 ,
0254		IESPTY(J)=0.
0255	16	COULTINE
026		DO1 I=1, 'DATA
027	•	DD11 J=1,12
028.		TFLOVES(J)+FLOW(I,J)-DS
029		IF(TFLO (.LT.XREQ(J)) GO TO 2
030		IF(TFLO, LA.XREQ(J)) GO TO 3
031		IF(TFAD#.GT.XREQ(J)) GO TO 4
032		2 D(J) = 1FLO
033		SPILL(J)='
034		R(J)=D(J)
0,35		S(J+1)=DS
V24 **		
036		GC TO 5

038	SF(IA,(a)=)	118
639	R(J) = p(J)	
040	S(J+1)=0S	
041	GO TO 5	
42	4 D(J)=XR20(J)	
043	S(J+1) = TFUOR = XREQ(J) + US	
044	IF(S(J+C),G2,(Y)) GU TO 5	
045	$SPIhi_{i}(J) = J$	
046	R(J) = O(J)	
047	S(J+1)=S(J+1)	
048	GU 30 5	
049	6 $SP1LI_{1}(J)=S(J+1)-(Y)$	
050	R(J) = SP(LL(J) + D(J))	
051	S(J+1)=Y	
052	5 X = (S(J) + S(J+1))/2.	
3 54	EVAPU(J)=EV(J)*AREA(X)	
055	IF(SP1LL(J).GT.A) GO TU 7	
0555	x = s(u+1) - bs	
05575	IF(X,GE,EVAPO(J))GO TO 19	
056	D(J)=D(J)-(EVAPU(J)-X)	
057	IF(D(J),GT,O) GO TO 13	
059	$\mathcal{D}(\mathbf{J}) = 0$	
060	13 $R(J) = D(J)$	
0605	S(J+1)=(DS-(EVAPO(J)-X))	
061 .	GD 70 9	
0612	19 S(J+1) = DS+(X-EVAPO(J))	
0614	60 76 9	
062	7 IF(SPILL(J),GT,EVAPO(J)) GO TO 8	
963	X = EVAPO(J) - SPILL(J)	
064	D(J) = D(J) - X	
066	S(J+1)=S(J+1)-X	
068	SPILL(J)=0	
069	R(J)=D(J)	
070	GO TO 9	
071	8 SPILL(J)=SPILL(J)=EVAPO(J)	
072	R(J)=D(J)+SPILL(J)	
073	9 IF(J.E0.12)SI=S(J+1)	
074	11 CONTINUE	
075	DO 10 JJ=1,12	
076	SF(JJ) = S(JJ+1)	
077	10 COATI JON	
0771	DO 17 J=1,12	
0772	DSF(J)=XRLO(J)-D(J)	
¥ E I Z	IF(D2F(J),GT,*)ID2F(J)=1DEF(J)+1	

0774		(a) (a) (d) (d) (d) (a) (a)	Plun(d)=ISPTLL(d)+1	119
Q775		UP(or(J).LE.US)IE/P	(X(J)=IEHPTY(J)+	1	
0776	17	COURTINS			
078		DO 15 J=1,12			
078 079		PRINT 200, S(J), FLOW(I	,J),D(J),EVAPO(J), R(J), SF(J), SF	ATT (1)
080	206	FOR A" (7F12.4)			1
081	15	CUATI U.:			
082		S(1)=8I			· .
083	1	COLCT (Uz.			
0832		DO 18 J=1,12		·.	
083+		PRI T 201, IDEF(J), I	SPILL(J), IEMPTY(3)	· · · ·
0836	261	FOR.A7(316)			
0838	18	CONTINUE			
084	· ·	STOP		•	
085	i.	$E \ge 0$			
9 16		FUNCTION AREA(X)			•
087		AREA=0.2532318E+01+	0.2978964E+02*X-	0.2116531E+01	
0875		1*X*X+0.6622052E=01*X*	X*X		· · · · · · · · · · · · · · · · · · ·
088		RETURI			

```
APPENDIX Y
                                                                           120
14
                                                         シュアート いっち おけやらも ようま ほう ふけち たけぶんな 見ていた ほ
C
      ARCHIVEROTE OF OPAY OF LL
C
      CTHOIR BORNMED COOR
C
      1= IT DE SANS DE CHRME TA HE ETCONT
С
       = ... TE POLY JUTAL
C
       = . . . . . POLY J IGES TO BE FIFTED
C
       = . . JP OBSERVATIONS
C
        SERVER DE POLY ADDIALS TO DE FITTED
С
      X(I)=: PRODEMT VARIABLES
C
      Y(T)=> COR DERT VARIABLES
C
      01 - τ · X(25), Y(25), B(25, 27), C(25, 27), D(26, 27), CU ST(26), A(26)
      PT() 01 / V1(25), *1(5), 11(2)
         WHY (HAIT=1, DEVICH="OSK", FILE="LS.DAT")
       (t,tun)6
      100 1 J=1, G .
        R1 (1,1")) +
  1 + FOR ... (2)14).
        Selvel,tul)(X(l),I=1,4)
      PRI 1 1102
 1.12 FOR ST (1X,10HX ORDINATE,/)
      PKT ["201, (X(I), 1=1, ')
 111 F.R. (3F1.3)
 201 FUR A (5715.7)
        x (1,11)(Y(T),T=1, 1)
      P (1 2 1 3
 10 3 FUL A (AA, 10HYURPTATE ACTUAL, /)
      PRI = 2 ., (Y(I), J=1, \cdot)
      P 1 1 4
 (11 FUR (1X,3 (1d+))
      SI := .
      S' != .
      , i=1 S 50
      S: 1=5 + 1+Y(T)*I(T)
      SU 7=00 7+7(1)
  2
      X =
      X #1 =3 17/3
      70=20-30((Sr N=X & #SU 2)/(X*=1.1))
       = - \left( \left( \left( \left( \left( 1 \right) \right) \right) \right) \left( \left( \left( 1 \right) \right) \right) \right)
       1= (4)
        R = (C, i = )( - (T), I=1,...i)
      C1 3 ( ["=!)
٢
       7= (1)
      . Pr . 1=1,17
```

н., ^н						124
+ 5		- CCCS				
-						
u 6 ⋫5.7	2 -	P (' 2', ,				
<i>r∃ (1</i> 		(1), (1), (1), 22 (DESRUE)	UF FULY I	0.175=,(3,1)	(,1934)0.0F OHS	ERVATIONS#,
		1(37)				
949 053						
	<u>t</u>	··(`);`)=!;				
051		i = +.				
052		0 2.4				
253		- 1.21∓0y 111 - 1 				
J51.	· .	J 1=a-				
055	2	$\mu(I_{1}, I) = (J) + + J' + 1$				·
056		1925 +2				
257		A.1. 1= ε _μ				•
058 159	3	3(), ()=-Y(I)				
		D.5.=1, PJ				•
060		Plot Inc. St.				
961 Dec			•		•	
062 063	, *	C(I,v)=3(I,J)*3(I,K)				
		100 000, 02			· ·	
064 055		2((,))= .)				
965	. ,	1995 (=1,) D(1))= ((1)))((1)))				
006 067	. b	D(f,v) = (K,J) + C(T,J)	÷.,			:
967 062	5	C) 1 5 49				
068 664		P + J=1, (P1				
004 070	H	2) (1)=-D(1, P2)				
		CASS (0,191).				
ζ_{72}^{71}		· 7 J=1, P1				
173		- 4 (ω) π				
074	7	7 (=), Pr A(J)=.(J)+9(J,K)*C0; ST(· • •			
.175	1	F-1 - 7 5		۰		
376	215	FUE CIX;27H COMPETCIE	ርሳምሮ (ነው የ			
ידנ	لا ، مکر	Pr 7 7 3, (\(J), J=1, .PI		rugi oschujy	J	·.
178	2 2	$F_{1} = (s^{1}, 5, 7)$				
:74,	<i>1</i>	G (?= .				
030		· · · ·		•		
311		Y (()= ()	•			
132		· (·)→ (·)				
403	•					
		Y (「)→V ())+ (J)*(X(L)*	5. C. C. M. 2. 2. 2.		· · · ·	
€ <u>.</u>	21	6. 1 (⇒ ⁿ = (2+(3(τ)+(x(τ)))				
80	<i>ć ,</i>	(and	() (()	•		
; 7						
·		r ·		· · ·		

	;)	$(1, 2^{n}, 2^{n}, 2^{n})$	
49		50 (,-1) - , , 5	
1ª u	5	(·, →G)	
7.1	12.5	p [*]	
112	1 4	E - C. C. BATALIZZARO CARCINATED, /D	
з 13		P/1 1,(((1),1=1,)	
2 K		ITC - 111,51,1 25	
3.45	5 1	Provide the second s	• ••
141,	23	F. S. (, 194COFRELATION INDEX=,F10,0,/)	
.÷47		G 7	· · ·
, ७५	1 6	Plan a state of the second sec	
្នុងឲ្	1 - 3	F (17,32) CORRELATION LIDEX 1 (DETER 1) ATE,/)	
Ú.	1 - 7	$\mathbf{P}^{(n)} = \{1, \dots, n\}$	
	<u>1</u> 1	F = -(1X, 0.(1E-))	
12 •	24	$\mathbf{C} = \mathbf{U} \cdot \mathbf{U} \cdot \mathbf{U}$	·
5 /3			
· /	1, v	<pre>F <(IX,79(1H+))</pre>	
v 5	1		
v b		S'	
57			•
. 8		S of HARING ARIAN (A,)	
9	. •	21 - 31 + A(20, 27), B(31), C(31)	•
1. se			
11		A(1,1)=1./h(1,1)	
12		□ 1 = 1, 1	· .
1.1			
:15		De Britzer, son de la companya de la	
د ب _ع ع ا		(本(工)=1 (1) 3 第三日)、(二)	-
17	3	3(I) = 3(I) + 4(I, J) + 4(J, k)	•
1.8			
19		long − − − Di kalantyn	
ົ່ງ	4	P=0+ ((1,1)*E(I)	
<u>د ۱</u>		z = -1 + z(z, z)	
<u>2</u>		$A(1, 1) = 1 \cdot 10$	•
23	•	- 5)=*;	
۰. <u>۱</u>	5	((,,)) = -i(() + i((,,))	•
5		3 m	
ίu		<pre>(() = .</pre>	•
7 י			
_:A	Ó	Cu)= (c)+/(K, [)*A(T, 4)	
ب '			
3.1	7	$\lambda(f_{i}, f_{i}) = + \langle f_{i}(f_{i}) + \langle f_{i}(f_{i}, f_{i}) \rangle$	
۲,			
	•		

ŕ

2		· - ,		,	123
23 31		N(1,0)= (I, RE™ 3	J)-3(T)= (
·*** 35		$\mathcal{L} = \mathcal{I}_{\mathrm{eff}}$			
•				· · ·	
	. · · ·				

.