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SYNOPSIS 

Hydraulic characteristics of aquifers are essential to 

the understanding and solution of aquifer problems and the 

proper utilization of ground water resources. 

For a reliable determination of these parameters the 

necessary data is obtained through field tests. Analysis of 

systematic observation of water level changes and of other 

test data yield values of the aquifer characteristics. The 

reliability of these analyses are dependent on several factors 

amongst the importants, one is the method of analysis. The 

most widely used method of analysis has been that of type curves 

which has certain limitations and also inherent subjective bias. 

To include the effect of delayed yield (the slow drain-

ing behaviour of unconfined aquifers) as well as the effect of 

partial penetration which is the most encountered case in prac-

tice, because of the large number of dimensionless parameters 

which wi-'l come up in the drawdown expression, it would be 
0 

impossible are at least greatelydifficult to prepare a set of 

type curves for the entire range of field application. 

In the present work, based on one of the powerful theories 

of unconfined aquifers, a computer routine is prepared. For 

the calculation of aquifer parameters a non linear optimization 

scheme is proposed. The proposed scheme calculates the optimal 

values of the aquifer parameters based on the minimization of 

the sum of squares of the differences between the observed and 

calculated drawdowns. 
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NOTATIONS 

b 	initial saturated thicliess of the aquifer, L - 
bD 	L v.rse dimensionless radius equal to b/r. 
d 	vertical distance between top of perfor~.tions_and 

initial position of water table in pumping well, L.  

dD 	dimensionless d, equal to d/b 

h 	average head of the vertical section, L 

ho 	height of free surface above the horizontal bed rock,L 

I 	net vertical specific rate of recharge, LT"1 
Jo Bessel's function of the first kind and zeroth order 

kD ratio of the vertical to horizontal permeability, 

equal to kz/kr 

kh horizontal permeability, Lfl 
kr radial permeability, LT 1 

kz vertical permeability, LT-1 
K vertical distance between bottom of perforations and 

in wtial position of w& ter table in pumping well, L 
~D dimensionless f, equal to f/b 
nr component of unit outer normal in r direction 
nz component of unit outer normal, in z direction 
q recharge per unit area 
Q pumping rate, L3T 1 
r 	radial distance from pumping well, L 
rD 	dimensionless r, equal to r/b 

s 	drawdown, L 

Sc 	storage coefficient (= Ssb) 
Ss 	specific (elastic) storage L.l1 



Sco  instanteneous yield from storage per unit drawdown 

per unit horizontal area 

Scl  short term delayed yield from storage per unit draw-
down per unit horizontal area 

Sc2  long term delayed yield per unit drawdomn per unit 
horizontal area 

SD 	dimensionless drawdown, equal to, 4iT`s/Q 

Sn 	corrected dradown, L 

So 	free surface drawdown, L 

ST 	total effective storage coefficient (=Sco + Sc1 + Se2)  

Sy 	specific yield 

t 	time from start of pumping 

T 	transmissibility, L2   1  

is  dimensionless time with respect to Sc(= Tt/r2S0) 

ty  dimensionless time with respect to Sy(= Tt/r2Sy) 
u excess pore water pressure 
V(J) equavalent vertical hydraulic resistance (=3b/8r2kZ) 

"VI 	well function ( =S/ (Q/4T) ) 

X 	variable of integration 
z 	vertical distance above bottom of aquifer, L 
.zD 	dimensionless elevation, equal to z/b 
a 	reciprocal of Boulton's delay index, T-1  
al 	reciprocal of short term delay index 

a2 	reciprocal of long term delay index 

P 	kD r2/b2  

Rl 	al Scb/kv  
b/k "2 	a2 Sc  



"l 	(Sc  + Sy )/Sc  

+ Sco)  /Sco 

X12 	(Sco  + Scl + Sc2) / (Sco + Scl)  
11T 111 712 
µ 	k2/kh 
P 

cs 	ratio of the storage coefficient to t. - specific 
yield (=Sc/Sy ) 

al 	j;1 S  cl/S  T 

02 	 2 Sc2/ST 

It 	 kzt/STb 



CHAPTER 1 

IN TROW CT ION 

1.1 GENERAL 

It has long been observed, that, when a well is pumped 

at steady rate in a homogeneous unconfined aquifer, the water 

bearing material during the early stages of pumping does not 

immediately yields up its water. The actual time drawdown 

curve takes the form of an elongated S, and violates markedly 

from Theis curve, specially during the intermediate times. 

In 1955,Boulton for the first time gave a possible 

reason and the name of delayed yield from storage to this 

phenomenon. He presented a semiempirical mathematical model 

which was capable of reproducing all the three segments of 

the elongated S-shaped time drawdown curve. According to 

Boulton, this is the flow from the unsaturated zone above 

the falling water table which causes the delayed yield pheno-

menon. To take account of it,he introduced an empirical 

constant, a (reciprocal of the delay index), the physical 

meaning of which remained unknown. 

As comment on the theory of Boulton, Brutsaert (1970) 

and Brutsaert et al. (1971) clearly indicated that the ' nsa-

turated cone of depression is insignificant and can not explain 

the phenomenon of delayed yield. Neuman (1972) , wrote that 

Boulton' s approach may lead to difficulties in practice, 

because his coefficient, a, being devoid of any apparent 

physical meaning and can not be guaranteed to remain constant. 
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He showed that in the absence of infiltration at the ground 

surface the entire delay process can be simulated merely by 

treating the water table as a moving material boundary (or 

free surface) and at the same time giving due consideration 

to the effect of elastic storage in the aquifer. 

Streltsova (1972), basis her concept on the assumption 

of leakage when the vertical flow in an unconfined aquifer is 

taken into account. She notes that in her works, the problem 

of flow to the well is examined by transforming the two dimen-

sional axisymmetric flow, dependent on the redial distance 

from the well and the vertical coordinate to a one dimensional 

statement. Therefore, the reduction to the form of one dimen-

sional axisymmetric flow with the consideration of two heads 

(free surface and average) leads to the occurrence of a 

discontinuity of head on the surface of the well. 

The water in the vicinity of the well moves downward 

and causes vertical transfer or leakage at a variable rate 

that is proportional to the difference between the water 

table which gradually drops and the average head of the verti-

cal section under consideration. This leakage will there-

fore be the cause of the diminishing rate of drainage, and 

the result will be a delay in the transient process of 

reestablishing equilibrium when a relatively uniform distri-
bution of the head is approached, and the steady Theis 

theory can be applied with sufficient accuracy. 

Boulton (1972) sees more practicability in the 

Streltsova's theory than in his own. Neuman (1976) , on the 
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theory of Streltsova stated that : 

' e Streltsoua (1972) partly with the collaboration of 

Rushton (Streltsova and Rushton, 1973), was able to 

develop approximate solutions for the fall of water 

tables, as well as for the average drawdown over the 

entire aquifer thickness, in response to a fully 

penetrating well discharging at a constant rate•It 

Then he tries to make a connection between his own way and 

that of Steltsov' s: 

" Her model has some conceptual simitiarities to ours 

because the unsaturated zone is neglected (however 

she included this effect in her model later*) , and 

water is released from storage by compaction of the 

aquifer material, expansion of water, and gravity 

drainage at phreatic surface" 

A survey of the models presented by Streltsov a and 

Neuman shows that they are following nearly the same path in 

that, they both include the effect of the vertical gradients 

and neglect the effect of the unsaturated flow above the 

falling water table. 

However, along with the presentation of models, the 

possible cause of delayed aquifer response is also stated by 

each proposer, still Bowuer and Rice (1978) feel that : 

" The physical basis for delayed yield or delayed 

water table response has received less attention than 

the mathematics of producing inflection type draw-

down curves••• •" 

They see: a. possible reason for the delayed aquifer 

yield in the phenomenon of delayed air entry. They state, 

that because of the presence of the fine textured layers, 

* Author 



which will have higher water content than the surroundings 

or the presence of other saturated to nearly saturated layers 

in the vedose zone the downward movement of the air is 

subjected to restrictions. While withdrawing water through a 

well, the water table drops, but the atmospheric air can not 

enter the vedose zone to replace water that has drained from 

the pores at or above the water table, hence the air in the 

vedose zone will expand and as a result will cause a reduct-

ion in the air pressure. This means that the water table 

(as plane of atmospheric pressure) will drop more than the 

advance of .the dewatered zone. Yielding a lower value of 

storage coefficient than its full value obtained when the 

lower boundary of the dewatered zone drops as fast as the 

water table. The initial storage coefficient continues to be 

small until the water table has dropped so much that the pre-

ssure head of the water in the saturated top layer reached 

air entry value*  of the layer. 

As another possible explanation to the phenomenon of 

delayed yield, Bouwer (1979), presented the theory of soil 

water hysteresis which is the relation between' soil water 

content and negative pressure head of the soil water. Accord-

ing to him, this produces a lag in the release of pore water 

from a rowetted soil when the pressure heads are lowered. For 

an unconfined aquifer this means that the water table must 

# This is the negative value to which the water pressure head 
in a saturated material must drop before atmospheric air 
enters the material and displaces the water. 
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drop some distance in response to pumping a well before pore 

water is fully released if the water table prior to the pumping 

has been rising. 

With all the above explanations and reasonings still 

I am feeling to accept Streitsova's statement that the slow 

draining phenomenon is of complex nature and only the physical 

properties of the aquifer and the particular conditions of 

the flow will determine which factor is predominent. 

1.2 ON THE TOPIC 

Quantitative data on hydraulic characteristics of 

aquifers are essential to the understanding and solution of 

aquifer problems and the proper evaluation and utilization of 

ground water resources. Field tests provide the most reliable 

method of obtaining these data. Such tests include the 

removal of water from a well and subsequent observation of the 

reaction of the aquifer to the change. Analysis of systematic 

observations of water level changes and of other test data 

yield values of the aquifer characteristics. The extent and 

reliability of these analysis are dependent on features of the 

test including duration of the test, number of observation 

wells and method of analysis. The most widely used method of 

the determination of aquifer parameters has been the use of 

type curves. 

In the recent decades., extensive theoretical work has 

been done in the areas of unconfined aquifers. Various 
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theories have been proposed and based on some of these theoric.,s 

type curves have been prepared. Unfortunately, uptill now in 

practice, for the analysis of test data of unconfined aquifers 

the type curves which were prepared by Boulton (1966) only for 

the fully penetrating wells are in use. However, he himself 

included in his theory the effect of partial penetration later. 

In addition to the fact, that there is a large gap 

between the theory and practice, the method of analysis 

through the use of type curves, because of its graphical na-

ture, has inherent subjective bias. 

After a deep review, Neuman's theory was chosen as the 

basis of the work presented hereafter. His model which is 

based on the physically well defined parameters, accounts for 

the effect of partial penetration. As per the topic because 

of the following reasons a digital method of analysis of the 

test pumping data has been proposed. 

1• 	The relatively large number of dimensionless parameters, 

in the Neuman's model, which makes it practically 

impossible to construct a sufficient number of typo 

curves to cover the entire range of values necessary 

for field application. 

2 • 	To take care of the subjectivity which is inherent 

in the type curve method. 

3• 	The fast growth of the use of digital computers in 

the area of ground water resources evaluation. 

4• 	The ability of the computer to do the job which is 

impossible or at least laborious otherwise faster 

and economical. 
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Hence in the forth coming pages after the review of 

literature (Chapter 2) and Neuman's theory (Chapter 3) , an 

algorithm is presented which orients Neuman's model for the 

computer assisted analysis of test pumping data. 



CHAPTER 2 

REVIEW OF LITERATURE 

2.1 GENERAL VIEW 

As early as 1935, Theis derived an equation for 

drawdown based on its similarity to the heat conduction equa-

tion. This equation which had the form : 

00 	r2S 
s= 4QT f(e-X/x)dx ; u-4Ttc  u 

was used for the analysis of unconfined aquifers; however, he 

himself pointed out that in the heat conduction equation a 

specific amount of heat is lost concommitantly and instanta-

neously with fall in temperature, but in nonartisian aquifers 

the water from the sediments through which the water table 

has fallen drains comparatively slowly. He in his derivation 

neglected this time lag which always caused some error in the 

analysis. 

In 1954, Boulton derived an equation for drawdown in 

an unconfined aquifer. He started with the continuity equa-

tion for incompressible fluids and ended up with the follow-
ing equation : 

Q 
s = 2)%T V(P,) 	 ...(2.2) 

where 

V(p Pi) = f~ ?°(•> 	[l-exp(-ti "Atanh ),) ] d 
0 

kt '_ ~3b;ti= 	andp = r/b 
c 

He made the following assumptions for the above derivation : 
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(1) The aquifer is homogeneous, isotropic, infinite in 

extent and underlain by a horizontal impermeable bed. 

(2) The well is unlined and fully penetrating. 

(3) The coefficient of storage is constant. 

(4) The flow obeys Darcy' s law (K = const. ) 

(5) The water table is initially horizontal. 

(6) The well is pumped at constant rate. 

In 1955 for the first time Boulton introduced the term 

delayed yield as the cause of delayed water release from 

storage in an unconfined aquifer. Based on his 1955 paper, 

in 1966, he developed type curve procedure for the analysis 

of test pumping data with the consideration of the delayed 

yield. 

In 1966, hriz derived a relationship between the para-

meters of an unconfined aquifer by dimensional analysis. He 

stated that, when the ratio of drawdown to total hydraulic 

head in an unconfined aquifer is small, confined aquifer rela-

tion may be applied to unconfined aquifer transient flow 

problems. If this ratio is large, use of the method which does 

not 	count for the change in flow thickness about a well in 

an unconfined aquifer causes inaccuracies in the values deter-

mined for aquifer parameters. Hence, he claims that based 

upon the flow equation of an unconfined homogeneous, isotropic, 

infinite aquifer, he obtained a more general and less approxi-

mate method of the aquifer parameter determination. He started 

with the equation: 

ror( 	) Or -k. 	 ...(2.3) 
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and ended up with the following new equation: 

d2w  

where: 

= h/b ; w = )Z; = r2/4Yt and Y = 
~Y 

The newly obtained equation has the following transformed 

boundary conditions: 

lim )Vrw (iJ) = 1 	 ...(2.5)  

lim dw __  
dT 21t kb2 

Based on his model, he developed a type curve procedure for 

the test pumping analysis. 

In 1969, Taylor and Luthin proposed a computer method 

for the transient analysis of water table aquifers. They 

stated that in analyzing drawdown for an unconfined aquifer, 

some imported parameters which are to be incorporated in the 

study are the relationships among water content (A), the 

aquifer hydraulic conductivity (k) , and the capiliary pressure 

head (H) of the unsaturated portion of the aquifer. The method 

they have presented takes into account the properties of the 

unsaturated portion of the aquifer and the contribution of 

vertical flow. Based on the following equations: 

ko oØ a  
r d + d r (ko d r) + a z (ko )= 0 [saturated portion] 

...(2.7) 
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k 

r or + dr(k 0-) + z (k a~z) [unsaturated portion] 

•••(2.8) 

They prepared the finite difference schemes for the above 

equations, which could be solved with the help of the digital 

computers. The parameters of the above equa'~ions are defined 
as : 

0 = P/Y + z (the hydraulic head) 
H = P/y 	(the capiliary head) 

8 is the water content which is related to the capiliary 

head by the relation : 

A = 60/(AH3+1) 	; A = Constant 	 ...(2.9) 

k = k0/(AH3+1) 	 •••(2.10) 

and ko and k represents the permeabilities of the saturated 

and unsaturated zones respectively. 

In 1971, Boulton extended his theory of delayed Yield-

In the extension, allowance for delayed yield involves four 

parameters as compared with two in the original theory. The 

pump and observations weJ.]smay penetrate the aquifer to any 

depth. The theory assumes that the aquifer and water are 

incompressible and that the drawdown of the water table is 

small. In the revised theory, he included the vertical compo-

nent of the velocity of pore water approaching the well. 

In 1972, Streltsova based her analysis of delayed water 

table response on the leakage owing to vertical hydraulic' 

gradient, contrary to Boulton's analysis which was based on 

the allowance for delayed yield from storage. She assumed 

the aquifer to be compressible. 
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In the same year (1972), Neuman proposed an analytical 

model for the delayed yield process. He claimed that his 

approach differs from that of Boulton (1954, 1963, 1970) and 

Boulton and Pontin(107l) in that it is based only on well defin-

ed physical parameters of the aquifer system. Therefore, it 

provides a possible physical explanation for the mechanism 

of delayed water table response and eliminates the conceptual 

difficulties encountered with Boulton's theory of delayed 

yield from storage above the water table. 

In 1973, Boulton published a paper in which •he derived 

equations for the flow to a pumped well in an aquifer having 

uniform anisotropy and overlain by a low permeability aquitard. 

The water table is assumed to be located in the aquatard. 

Drainage from the capillary zone above the water table is 

taken into account. Cooley aind Case and many others claimed 

that the drainage from the unsaturated zone above a falling 

water table has only a minor effect on the flow in the aquifer. 

But, Boulton showed that the unsaturated and nearly saturated 

zones above a falling water table may be an important factor. 

The necessary condition is the existance of a stratum in the 

vicinity of the water table having much smaller permeability 

than the main aquifer. For the derivation of the relations 

the following assumptions were made 

(1) Aquitard is homogeneous and isotropic. 

(2) Aquitard and the water contained in it are incompressible. 

(3) The main aquifer is compressible and in general aniso -

tropic. 

(4) The flow in the aquitard is vertical. 
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(5) The pumped well completely penetrates the aquifer which 
is underlain by a horizontal impermeable layer. 

(6) The well is pumped at constant rate. 

(7) Radius of the well is small. 

Starting with 

T~a?s l as) S as _ k ~'S1 	 ...(2.11) dr2 r 0r 	cat 	u az 
he ended up with the same equation as that of his 1955 paper, 

which is 

02s 	1 as 	as 	t as -a(t-'c) e 	di. •.(2.12) 

He has derived relations for the determination of the thick-

nesses of the unsaturated and nearly saturated zones above 

the water table. 

In 1975, Neuman published a paper to show how his new 

theory (1972, 1973, 1974) can be applied for the determina-

tion of the hydraulic characteristics of unisotropic, uncon-

fined aquifers from pumping test data.- A distinction is made 

between the case in which the pumping well and the observa-

tion well are perforated throughout the saturated thiclaiess 

of the aquifer and the case in which at least one of these 

wells is partially penetrating. A mathematical relationship 

between Boulton's delay index (1/a) and other measurable 

physical parameters was derived. This relationship showed 

that contrary to the assumption of Boulton, a is not a 

characteristic constant of the aquifer, but decreases linearly 

with the logarithm of r, the radial distance from the 

pumped well. 



14 

In 1976, a numerical, procedure for the test pumping 

analysis was proposed by Rushton .and Chan. They started with 

the derivation of the model for confined aquifer and then 

modified their model to take care of unconfined aquifer, with 

the inclusion of the delayed yield. Their model which is a 

discrete space/discrete time model is based upon the following 

relation: 

bk  as) + b k  ds = S  as 
dr ( r ar 	r r ar 	c at q . .(2.13) 

Assuming bkr  to be constant and introducing the variable 

a = ln(r), they prepared the discrete space/discrete time 

finite difference scheme for the above equation. In the ini-

tial part of derivation, the vertical component of flow was 

neglected. ' To orient the model for unconfined aquifer and 

include the vertical component of flow, proposals are made to 

add 
avz  sb-sa 

 ^^_b 	 •••(2.14) 

which is based on the assumption that the vertical velocity of 

flow reduces linearly from a maximum at the free surface to 

zero at the base of the aquifer, to the left side of equation 

(2.13) , and replace its right side by (Sc  + Sy) oz + q. These 

changes will take care of the vertical velocity as well as the 

delayed yield. 

In the same year (1976) , Streltsova published a commen-

tary paper on the role of the flow, from unsaturated zone and 

vertical flow components in draining unconfined formations. 

She stated, that it has been possible to show that the charac-

teristic delayed drainage term in the general unconfined flow 
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equation may be obtained on the basis of only the considera-

tion of the vertical flow components, i.e., with an assump-

tion that there is no delayed yield. Here she wrote that the 

slow draining phenomenon is of complex nature. 

In 1978,   Walton made a comprehensiv;: analysis of 

water table aquifer test pumping data. After surveying all 

the work done in the area of unconfined aquifer, he reached 

the following conclusions: 

(1) Specific yield is constant. 

(2) Flow above the water table in the capillary zone 

plays a negligible role in the response of a water 

table aquifer to pumping. 

(3) Flow of water to a water table aquifer is intimately 

related to the anisotropy of the aquifer. 

(4) Under water table conditions, ground water level 

initially declines with pumping an accordance with 

non-1e< 	artisian aquifer oquutions, the 'effective 

storage coefficient being equal to S. At large 

times, non-leaky artisian aquifer equations again 

apply, the effective storage coefficient now being 

equal to (Sc  + Sy) • In both cases. flow is subs-

tantially radial. During intermediate times ground 

water level decline are controlled by vertical com-

ponent of flow. He accepted the following relations 

for the practical purpose of the test pumping data 

analysis: 

s = a  w(UA  ,UB ,N) 	 ...(2.15) 
4  

where: 
r2S 

UA = 4,I,tc  (applicable for small values of time) 

fLUB = 4I, 
 (applicable for large values of time) 
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and 	r2k  
v  

= 2 b kh  

In same year (1978), Lakshminarayan and Rajagopalan 

published a paper on the digital model studies of unsteady 

state radial flow to partially penetrating wells in unconfined, 

unisotropic aquifers. They claims that their work is an improve-

ment on an earlier numerical solution reported by Streltsova 

and Rushton (1973) and in which compressibility and anisotropy 

of the aquifer as well as partial penetration, have also been 

taken into account. They further claim that attention has been 

focused on the utility of the digital model for aquifer test 

data analysis. The basic equation on which they have based 

their analysis is: 

kr( Lh  + r ar) + kz à
h 
 = Ss cat 	 ...(2.16)    

or2 	 oz 

They are characterizing different aquifer conditions by parti-

cular combinations of: 

cl  = k r/kz  (b/r)2  and c2  = Sy/Ssb 

which are r:--ciprocal of the Neuman's 	and Q.AS far as the 

analysis of test pumping data is concerned, they are computing 

values of the head for the different trial values of Ss, Sy, kz
•  

and kr. Their termination criteria is the least difference 

between the observed head at a specific time and calculated 

head at that time. 

In 1980, L. Rolfes presented a numerical method for 

the calculation of the average drawdown in a fully penetrating 
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observation well in an unconfined aquifer. His numerical 

method is based on the Neuman' s equation for the average 

drawdown in an observation well. 

According to the literatures, there are three powerful' 

theories on the transient unconfined flow with delayed yield: 

Boulton' s, Streltsova' s and Neuman' s. The first two of these 

theories are presented in a bit of detail in the remainder 

portion of this chapter, but Neumcn's theory which is the basis 

of our work is presented as a separate chapter. 

2.2 BOUL TON'S TI EO RY 

As it was pointed out earlier also, Boulton (1955) for 

the first time introduced to the technical literature the 

term 'delayed yield', to explain the slow draining behaviour of 

water table aquifers. To take account of this phenomenon, 

he assumed that the drainaga to the water table due to a lower-

ing Ss of water table between the times 'c and ('r+ &r) since 

pumping started consists of: 	, 

(i) a volume Sc  as of water instantaneously released from 

storage per unit horizontal area; and 

(ii) a delayed yield from storage per unit horizontal area 

at any time t, (t >T ) from the start of pumping 

Ss a 5 e-a(t't ) 
y 

where a is an empirical constant. 'Tt follows that the total 

volume of delayed yield per unit drawdown and per unit horizontal 



area is : 

a sf e 	 y 	 ...(2.17) 

and thus the total coefficient of storage is Sc + Sy = n• Sc• 
He concluded that the appropriate ,ug: pion for dra.w,adown in 
an unconfined aquifer is : 

T( a22 + r ar ) - Sc S+ a S ~ t at e t) .d i 
6r. 	 y o 

t= ti 	•••(2.18) 

where the last term on the right side denotes the rate of 

delayed yield per unit horizontal area at time t. For the 

special case when 	oo , he found the following solution for 
the above equation 

2 
s - 	f 2 J(r/B)x] [1- --- exp(- 	_)e] Xx 

o 	 x +1 	x +l 
...(2.19) 

where: 
2 

e = 	exp [-a 1 t (x2+1)] 	 .••(2.20) 
x +l 

and ; 	B = J T/a Sy 

According to Boulton, a, is an empirical constant, the 

reverse of which (1/a) he called the delay index. Since he 
sees the reason for the delay in yield, in the flow of unsatu-

rated zone above the falling water table; hence, there must be 

a specific time at which this delayed yield should cease to be 

effective. For the calculation of this time (t0), he prepared 

curve of r/B Vs. values of at0 (Fig. (2.1) . For the known 

or assumed values of r/B, one enters the curve reads the 
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corresponding value of at0, knowing the value of a, to is 

calculated. 

Boulton noted that the determination of formation 

constants through his procedure (type curve prepared on the 

10 
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0 	1 	 2 	3 VALUES OFy/B  
Fig. (2.1): Curve for Estimation Time, to, when Delayed 

Yield Ceases to Influence Drawdown 

basis of equation (2.19) allows for the apparent variation in 

the coefficient of storage with time during the early part 

of a pumping test at constant discharge, but does not predict 

the. variation in the coefficient of storage with distance from 

the well which was observed by Walton and others. 

The formarly presented theory which is identical with 

the Theis nonequilibrium theory, when the effect of delayed 

yield is negligible, ignores the vertical velocity component 

of the pore water approaching the well. This limitation may 

be important particularly in anisotropic aquifers having much 
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greater horizontal than vertical permeability. Later (1971), 

he exte~ided his theory of delayed yield to overcome the above 

limitation. His newly developed equation contains four para- 

meters instead of two in the original theory. From laboratory 

tests carried at the University of Sheffield, U.K, he inferred 

that in the anisotropic beds of low vertical permeability imme- 

diately above the declining water table, the rate of drainage 

would be much smaller and would occur for a much longer time. 

Moreover in his extended work, he takes care of pn..rtinl pcnetra-
tion also. Starting again with the equation of continuicy of 
incompressible fluids 

where: 

2(0) = 	+ g + 	= 0 
op 	A 	oy 

.••(2.20) 

0 = u - 1 ; and y is the depth of any point = 
 

below undisturbed water table divided by b, which must be 

satisfied for 

0 < P < ° , 0 < y < 1 ; and the following initial 

and boundary conditions : 

lim () 	Q d P =  Tb - ) ; . d < y < D 

P —4 0 

P = 0; y = 1 
ay 

0 —y 0 as P --~ oo 	0< y< 1 

0= 0 when t=0 and y=0 	0< P<CO 

he continues as under. 
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If V denotes the rate of drainage accorss unit hori-

zontal area of the water table at time t, V is assumed to 

consist of two parts: 

(i) a drainage rate at time t, V1 = -b S dO/ot due 

to water instantaneously released from storage; and 

(ii) a drainage rate VZ due to delayed yield of water 

from storage. The part of V only due to lowering -h6o of water 

table between time t' and t'+St is: 

-al(t-t') 	-a2(t-t')) 
VZ = -bS 0 (a1 Scl e 	+ a2 Sc2 e 

..•(2.21) 
where al and a2 are empirical constants. Assemblage of the 

above relations, will result in the following time dependent 

boundary equation : 

_~
T 
	+ al f Y

_c(t_rt) 
 e 	.d~ + C2 o 

	atiLe 	:ac
0

ti = ti1 	ti = T' 	...(2.22) 

when y = 0 

For the detailed derivation and solution of equation (2.20), 

under the above explained boundary and initial conditions, 

which results in an equation for the drawdown to account for 

partial penetration as well as the effect of the vertical 

velocity, the reader is referred to Boulton, 1971. 
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2.3 STRELTSOVA' S THEORY : 

$treltsova is trying to present another possible explana-

tion for the phenomenon of delayed aquifer drainage. This 
explanation is based 	on the allowance for leakage owing 
to vertical hydraulic gradients. These vertical gradients 
are assumed to be at a rate proportional to the difference 

of the mean and the free surface heads (drawdowns) of the 

aquifer. The duration of the existence of such leakage in 
unconfined aquifer since pumping began represents the transient 
process of reestablishing the equilibrium, i.e. the process 

of setting up a relatively uniform distribution of the head 

in the vertical direction. The isopiezometric surface appro-

ximates to vertical cylinderical surfaces and the Theis 

solution can be applied. 

To explain the physical nature of delayed drainage, she 

states that when a well starts discharging, the elevation of 

water in the well suddenly drops and at the initial instants 
results in a discontinuit -  in head between the falling water 

table and the level of the water in the well. The water in the 

vicinity of the well having become suspended, starts moving 

downward due to gravity gradients. Therefore the flow to a 

a well, particularly during the early stages of pumping will 

be strictly three dimensional due to the considerable influence 

of the vertical gradients. This water moving downward causes 

leakage at a variable rate, proportional to the difference 

between the water table which gradually drops and the mean head 

of considered vertical surface. The leakage will therefore 
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be the cause of the diminishing rate of drainage or the slow 

draini: g of the soil around the well. She concludes that the 

vertically moving water adds to the horizontal flow and thus 

decreases the lowering rate of the water table. 

The vertical gradients which causes the vertical flow 

is maximum in the vicinity of the well and as the distance 

from the well increases and also as the times keeps going on, 
these gradients and consequently the vertical flow keeps on 

decreasing and at some time becomes negligible. After that 

the contribution of the vertical flow ceased to be effective, 

the flow can essentially be considered horizontal and hence 

of the nearly uniform distribution of head. 

She states that the problem of unsteady radial flow 
towards a discharging well tapping an unconfined aquifer of 

infinite extent and finite thickness, requires the solution 

of the following system of partial differential equations: 

T(a2s + l as) = S as  + Sy  aso 	...(2.23) 
art r ar 	c dt 	at 

aso  
at = " kz/Sy. asp/az 	 ....(2.24) 

with the initial conditions of : 

s(r,0) = s0(r,0) 	 •••(2.25) 
and boundary condition of 

Q = 2nkbr Pr ; (r = r -0) 	•••(2.26) 

Through the use of finite difference approximation and the 

Laplace transform, the following generalized form of equation 

(2.23) was obtained 
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a2s 	1 as 	as t  -a(t--c) as 
T(ar2 + r ar) = sc  at + a' Sy j' 	 ...(2.27) 

where, a which is named as the vertical diffisivity of the 

aquifer and is the ratio of the specific vertical conductivity 

(kz/bZ) and the specific yield (Sy) of the aquifer, charactcri--

zes the rate of free surface change. 

Equation (2.27) is completely of the same form as the 

one obtained by Boulton (1955) for the unconfined flow with 
delayed yield. But it is to be noted that the meaning of the 

coefficients and parameters is completely different. The 
parameters is completely different. The parameter a is no 

more the constant reciprocal of the delay index. 

In the above derivation the effect of the unsaturated 

flow is neglected and the whole delayed drainage process is 

explained only through the consideration of vertical component 

of flow. Later (1976) , she started giving credit to the i.n-

saturated flow also. She stated that the general differential 

equation for anisotropic water table aquifers, whose radial 

flow is augmented from above by an amount V per unit .area is 

2 

Scat =T(a  2{rar) +vZ 	 .•.(2.28) 
ar 

She found the general equation for v as : 

t  
vz =Y Sy 	ef 	at. dc 	.•.(2.29) 

t= c 

where 
a 

Y = + 	; and p v  is the vertical diffisuvity of the 
v 

capiliary layer ( = Sk  o Z) • The general equation of the 



25 

unconfined flow with a capillary surface taken into account 
is ; 

d 2 s 	1 a_s 	a s 	-y (t-~ ) a s 
T( a r2 + rOr ) -scat' Y Sy f e 	. at.dt 	...(2.30) 

t=ti 

To be able to make a concluding comment on the above 

equation, lets consider the following relation : 

1 1 1 
y - a + çv . ..(2.31) 

The above relation reveals a simple interpretation of the 

physical mechanism of the contribution of flow of the. two 

zones to the main flow. Equation (2.31) actually represents 

the sum of the seepage resistances overcome by the flow in 

the vertical direction to augment the horizontal flow. For 

the solution of equation (2.30), one can consult Boulton 

(1971). 

I 



CHAPTER 3 

NEUMAN'S THEORY 

3.1 GENERAL 

Walton (1960) observed that 

" Three distinct segments of the time drawdown curve 

may be recognized under water table conditions. Unconfined 

stratified sediments often react to pumping for a short time 

after pumping begins, as would an artisian aquifer. Gravity 

drainage is not immediate but water is released instantaneous-

ly from storage by the compaction o'f the aquifer and its 

associated beds and by the expansion of the water itself • The 

second segment of the time drawdown curve represents the 

intermediate stage in the decline of water levels when the 
cone of depression slows in its rate of expansion as it is 

replanished by gravity drainage of sediments. The slope of 

time drawdown curve decreases as it reflects the presence: of 

recharge in the form of interstitial storage in the vicinity 

of the .pumped well. Test data deviates markedly from the 

nonequilibrium theory during the second segment which may 

start from several minutes to several days after pumping 

starts, depending largely upon aquifer conditions, represents 

the period during which the time drawdown curves conform clo-

sely to the nonequilibrium type curves" • 

Accepting the above findings of Walton, Neuman comments 

on the theory proposed by Boulton to explain the unusual 

behaviour of unconfined aquifers as follows 
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Boulton' s (1955) semiempirical model which is capable 

to reproduce all three segments of the time drawdown curve may 

lead to difficulties in practice, because his coefficient c, 

being devoid of any physical meaning, can not be guaranteed 

to remain constant. He (1963) himself conceeded, that although 

his method allows for the apparent variation in the coeffi-

cient of storage with time during the early part of a pumping 

test, does not predict the variation in the coefficient of 

storage which has been noted by Walton and other investiga-

tors. Neuman explains such inconsistancies between the model 

and the actual field data by the variable nature of a, which 

was assumed to be constant by Boulton. 

Many investigators seek the reason for delay in yield 

in the unsaturated flow above the water table. Some of these 

investigators are : Youngs and Smiles, 1963; Vochand, 1963; 

Vauchad and Thony, 1969; dos Santos and Youngs, 1969; Youngs, 

1969 and Cooley, 1971. These investigators are stressing on 

the importance of the unsaturated flow and hence claiming tint 

the unsaturated flow plays a predominant role in the phenomenon 

of delayed yield. In 1971, Baester et al. wrote that many of 

these models, give distorted picture which tends to exaggerate. 

greatly the importance of the unsaturated flow. 

Neuman (1972) introduced an analytical approach to 

flow in unconfined aquifers. This new approach is capable 

of reproducing all the three segments of the time drawdown 

curve without recourse to the unsaturated zone. Neuman's 

approach makes allowance for the vertical gradient and aquifer 
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anisotropy. Since his approach applies to both rise and fall 

of water table; therefore, he replaced the term' delayed yield' 

by the broader term of 'delayed water table response'. 

3.2 THEORETICAL DEVEJOPP NT 

3.2.1 Full Penetration 

The following assumptions are ma'e in the theoretical 

development : 

(1) The aquifer is infinite in lateral extent and lies on 

an impermeable horizontal layer. 

(2) The aquifer material is homogeneous but anisotropic. 

(3) The principal permeabilities are oriented parallel to 

the coordinate axes. 

(4) Well is fully penetrating and is discharging at a 

constant rate. 
(5) Well is taken as a line sink, which means neglecting 

the presence of a seepage face and the well storage. 

Based on the stated assumptions, Neuman and Witherspoon 

(1970), found the following governing equation for the flow in 

an unconfined aquifer : 

k  2 + kr 
 + kz a 2 = Ss cjt  •~•(3•J) 

dr  3z 

0< z< 

The boundary and initial conditions are : 

s(r,z,0) = 0  ..•(3.2) 

(r,0) 	= b 	 ..•(3.3) 
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s(co,z,t) = 0 	 .•.(3.4) 

aZ (r ,O,t)=O  

kr as nr+kzdz nz = (Sy nz at(r,g,t) ...(3.6) 

9 (r,t) = b--s(r,2,t) 	 .•.(3.7) 

limf r as •dz=- Z 	 •.•(3.8) 
0 	 r 

r-- 0 

Some of the parameters of the above equations are shown 

in Fig. (3.1)• 

(1}i~Pi-iYq inn 	z 

r 

Fig. (3.1) : Schematic diagram of unconfined aquifer 
with fully penetrating pumped well 

Equations ((3.1)- = (3.8)) are approximately linearized 

by simply shifting the boundary condition from the free sur-

face to the horizontal .plane, z=b, which causes the elimina- 

tion of 	from the above mentioned equations. In this pro- 

cess it is assumed that the aquifer is thick enough and also 
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the drawdown remains much smaller in comparison to g • In the 

absence of infiltration from equations ((3.l)-(3.8)), the 
following equations are obtained : 

a2s 	1 as 	a2s _ 1 	as 
dr2 + r 8r + k  az2 - as at 0 < z < b ...(3.9) 

s(r,i3O) = 0 

s(oo,z,t) = 0 

0 

az(r,b,t)= a at(r,b,t) 
Y 

b 
urn f rar.dz= -  

r---) 0 

where 

as = kr/Sc ; 
kz 

and aY = S Y 
After the application of Laplace and Hankel transforms 

to equations ((3.9)-(3.14)) and carrying on the mathematical Simp-
l.ifica tions,Neuman obtained the following first order approxima- 

tion to the original initial boundary value problem in terms 

of five dimensionless parameters a zD, bD, kD and ts. The 

obtained solution is : 

Co 

s(r,z,t) = 4~T f 4V J0(Vk1/2) [wo(V)+ E w (V)] dV 	•.•(3.15) 
o 	n=l 

where 

W 	
= {1-exp[-tskD( v2-po)]1 cosh(RobDzD) 	

,,.(3.16) ( ) °V 
	{V2+(l+cs)j3o-[(V2-{3o) 2b~cs]}cosh(pobD) 

tl-exp [-tskD( V2+I~ 2) ] } cos ( pnbDzD) 
Wn(V) 	 ..•(3.17) 

cos(PnbD) 
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and po, Pn are the roots of the following equations : 

CD Ri o sinh(pobD)-(V2_p 2)cosh(~3 obD]=0 ; 	►Po < V2 	•..(3.13) 

bD N n sin(pnbD) + (V2+~3n) cos(pnbD)-0 ; 

(n - 2) it < pn bD < me 	 ...(3.19) 

Average drawdown in an observation well whose perfora- 

tion extends from elevation zl to z2 (Fig. (3.1)) is simply the 

average over that vertical distance and is given by 
z2 

s 	(r,t) = 	1 f s(r,z,t) dz 	•••(3.20) zl , z2 	z2-zl zl 

This drawdown could be calculated by the use of (3.15) 
and making use of the new expressions for V10 and stn , which 
are obtained after the averaging process. For a fully penetra-

ting observation well these expressions are : 

s(r,z,t) = 4r. ,f~4y Jo(YN1/2) LUo(Y)+ E Un(Y)]dY 	...(3.15x) 
o .  n=1 

~1-exp [ -tsp (y 2_y )]} tanh(Y0) 
U (Y) _ 	 ...(3.21) 0 	fy2+(1+6) 12[(y2 Y2)/]y 

U ( ) - l-exp [-tsp (Y2+Yn) ] } tan (Yn) 	 ...(3.22) 
Y -  

n 	l{y2 -(l+a') Yn-[ (Y2+ 'yn) /6] Yn 

where: 

2 Yo =R obb 	Yn =Pn bD ; p = k~bD 

U0(Y) = 1/b Flo (V) ; U(y) = 1/bD Wl (V) 

w(  v) and !u (V) are the new forms of W0 (V) and wn(V) . 

According to the above substitutions Yo and Yn are the 

roots of the equations: 
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6 Yo  sinh(Y0) - (y2-Yo) cosh(Y0) = 0 

Y2  < y2 	•..(3.18a) 0 
Q Yn  sin(Yn) + (y2-Yn) cos(Y) = 0 > 

(n- )it < Yn  < nn 	...(319a) 

3.2.2 Partial Penetration 

Neuman (1974) extended his formulation of unconfined 

flow to take into account the effect of partial penetration 

also. For the theoretical derivation, he started with equations 

(( 3.1) -(3.8)) , just with the addition of one more constraint 

and introducing a slight change in (3.8). If we take into con-

sideration equations ((3.1)-(3.8)) and just rename them as 

((3.11) -(3-8') , the new (3-8') and the one extra conztraints 

are as follows: 

^min (b-d , ) 
1im ,; 

b -f 
as  • r. 	

dz  =  ar ...(3.8') 

r ---- , 0 

= 0 	0 < z < b-f ; b-d < z< ; 	•.•(3.9' ) 

It is to be noted that the assumptions made for the 

case of full penetration are considered in the case of partial 

penetration also. By simply shifting the boundary conditions 

from the free surface to the horizontal plane, z=b(Fig. (3.2)) , 

equations((3-1')-(3.9')) could be approximated as 

a2s + 1 as + k  a2s __ 1 cis 	0 < z < b 	..•(3.10') 
br2 r 3r 	D az2 (xs  aZ 
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Fig. (3.2) : Schematic diagram of unconfined aquifer 
with partially penetrating wells 

33 

s(r,z,0) = 0 

s(oe,z,,t) = 0 

az (r'o't)-0
1 Os 

'z(r,b,t) `~ ` a at(r,b,t) y 
6s(0,z,t) =0 at 0< z<b-f ; b-d<z<b 

...(3.12_') 

...(3.13') 

...(3.14-') 

...(3.15') 

a further approximation is introduced by assuming that flux 

along the perforated section of the well is uniform, and this 

changes (3.8') to the form : 

lim rar = - z k - _d -- at, b-4 < z < b-d 	• • • (3.16) 
r ---> o 

After the application of Laplace and hankel' s transforms 
to ((3.10')-(3.16')) and carrying on the necessary mathematical 
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operations and simplifications, the following solution in 
terms of six dimensionless parameters : o, (~ , zD' '~ D' dD' is 
or t was obtained as : 

Oo 

s(r,z,t) - 4T f 4 Y Jo(Yf 1/2)[Uo(Y)+ E Un(Y)]dy ...(3.17) 
o 	n=1 . 

where: 	r
2 

2 
~l-exp[-t3N (y_y0)]} cosh(YozD) 

U0(y) = CY 2 	- 2 2 2 2 +(1+a)Ya-(Y -Yo) /Q] cosh(Y0) 

Is,inh[Yo(1-dD) ]-sinh[Yo(1-f D) ]J 
( f(- dD ) sinh(Y0) 

<El-exp[-tsp (Y2-Yn) ] cos(Yz) 
r Un y) - [y2-(l+Q)Yn -(y2+12) 2/c] cos(Y ) n 

{.sin[Yn(1-dD) ]-sin[Yn(1-f D) ]} 
( KD - dD ) sin (Yn) 

...(3.18') 

...(3.19') 

The terms Yo and Yn are the roots of the equations (3.18a) 

and (3.19a)• 

Average Drawdown in Observation Well 

The same as in the case of full penetration, the avera-
ge drawdown is obtained by simple averaging on the vertical 

distance of perforation between zl and 22 (Fig•(3.2))• Szls z2 

(equation (3.20)) can be calculated from (3.17') , just by 

redefining (3.18'.) and (3.19') in the following manner: 

U0(Y) = 
1-exp[-t3j(y2-Yo)] i [sinh(Yoz2D) -sinh(Yoz1D)] 

CY2+(1+a)Y2_(y2-Yo) 2/a] cosh (Yo) 

~sinh[y 0 (1-dD) ] -sinh[Yo (l-f D) ] } 

• (z2D z1D) Yo (K - d) sirnh(Yo) 
) 



11-exp [-tsp (Y2+Yn)]} [sin( Y 
u(y) = 
n 	[ y2_(1+a) Y2-(y2+Y2) 2/a] 
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-sin (Y, z, „) ] 

cos.n (Yn) 

~sin(-Yn(1-dD) ]-sin[Yn(1-f(D) ] f 	 ...(3.24) 

(z2.D7'lD) Yn (f_ d) sin (Yn) 

In 1964, Hantush derived the governing equation for 
flow to a partially penetrating well in a nonleaky artisian nquifer, 
This equation was later solved by Andrin Viscosky of the 
Illinois Stat Water Supply Department. 

In 1967, Dagan presented a solution for the flow to a 
partially penetrating well in an incompressible unconfined 
aquifer. Through a numerical example Neuman compares his oTan 

solution in which the effect of delayed water table 

response is taken into the consideration, with that of 

Hantush (1964) for a confined elastic aquifer and Dagan (1967a,b) 

for an unconfined rigid aquifer. The result of this comparison 

in shown in Fig. (3.3). 

The time drawdown curve in Fig. (3.3) suggests that 

water is released from storage in three stages, as discussed by 

Walton (1960) . At the early values of time, the curve approached 

Hantush's solution and thus indicates that water is released 

from storage primarily by compaction of the aquifer material 

and expansion of the water. During the second stage, gravity 

drainage becomes important and its effect is similar to that 

of leakage from a nearby source. Neuman in 1972 showed that 

the smaller the a, the larger the effect.of gravity drainage 

is and therefor: the more pronounced this leakage, is. 
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From Fig. (3.3) it can be concluded, that at early 

stages of time the delayed response solution approaches the 

Hantush' s solution and as the time increases, the effect of 

elastic storage at a point under consideration dissipates 

completely, hence, at later times, the delayed response solu-

tion approaches that of Dagan's solution. In other words, 

Hantush' s solution becomes envelop at early times and Dagan's 

solution becomes envelp at later times. 

3.3 RELATION BETIEENT F30ULTON'S DELAY INDEX (1/a) 

MTD AQUIFER CHARACTERISTICS 

Neuman (1975) has developed the following relation 

between the Boulton' s a, and aquifer' parameters : 

k r2  

	

a = SY 	[3.063 - 0.567 log ( D2  )] 	•••(3.25) 

	

y 	 b 

He claims that the above relation has a very high correlation 

coefficient 	(p2  = 0.99) . 

3.4 ADJUSTI'rr - T FOR THE DECREASED 'SATURATED 
THICKNESS OF THE AQUIFER 

Derivation of (3.15) is based on the assumption that the 

decline of the water table remains small in comparison to the 

unsaturated thickness of the aquifer. For cases where this 

is not so, Jacob (1944) recommended that prior to analysis of 

pumping test data the drawdowns be corrected according to : 
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sn  = S - (s2/2b) 	 ...(3.26 ) 

Equation (3.26 ) was recommended to be used for such c 

purpose by V1alton(1978) also. But Neuman (1975) is making 

the following comment on it : 

Equation (3.26) was derived by adopting the •Dupit 

assumptions and in particular by assuming that the drawdowns 

long any vertical are always equal to the drawdown of the 

water table SVJT.  Tt is evident that the Dupit assumptions 

do not hold in an unconfined aquifer with delayed gravity 

response as long as the drawdown data do not fall on the, late 

This curve. This means that Jacob's correction scheme is 

strictly applicable only to the late drawdown data and is not 

applicable to the early and intermediate data. It is there-

fore recommended that (3.26) be used only in the determination 

of T and S from the late drawdown data and not in the deter- 

mination of p, 	T and S from the early and intermediate data. 



CHAPTER 4 

MODEL'S NUMERICAL ORIENTATION 

4.1 GENERAL 

As it has been presented in the previous .;hapter, 

Neuman (1972) proposed an analytical model for the flow to 

completely penetrating wells and later (1974) , he modified his 

previous model for the flow to partially penetrating wells in 

an unconfined aquifer with the consideration of the delayed 

aquifer response. He derived for both of the cases express-

ions for the average drawdown in the observation wells. Since 

full penetration is a special case of partial penetration; 

hence, the work which will be presented here is based upon his 

expression for drawdown in the case of partially penetrating 

wells. 

Although the expression for the average drawdown is g> ?n 

in a closed form, but still some difficulties like those stat 

below arises in its numerical evaluation: 	a. 

(1) The calculation of an infinite integral 

(2) The summation of an infinite series 

(3) The instability in some of the expressions; 

(4) The difficulty with the machine because of the much 

higher values of some of the terms for some critical 

values of the parameters. 

In present chapter, step by step, it is shown that how 

these difficulties are partially or fully removed. 



4.2 NUMERICAL METHOD 

Let's once again bring to view the expression for the 

average drawdown in a partially penetrating observation well: 

s(r,t) = 4qT f 4 y J( 1/2) r() + L u(y)3 dV 	...(4.l) 
o  n=1 

where 

f 
{1-exp[~-tSG (y 2-Yo) J [sinh(Yo z2D)-sinh(Yo z1D) U (Y) _ 	 --  U0(y) 

	[y2 + (1+a) Yo - (Y2-Y2) 2/a] co "h(Y0) 

Isinh[Y 0 (1-dD) ] - sinh[Y0 (1 JK D) ] } 

(z2D - zlD) Yo (k D-°dD) sinh(Yo ) 

l-e cp[-tsp (Y2+Y2) ] 1 [sin(Yn z2D)-sin(Inz1D) ] 
U11(y)  _ 
 [ y2 - (1+6) Yn - (y2-?) 2/ ] cos(y) 

~sin[Yn(1-dD)] - sin [Yn(1-(D)]}  
...(43) 

(Z2D zlD) Yn (1D dD) sin Yn 

and, Yo and Yn are the roots of the equations : 

a Yo sinh(Y0)-(y2-Yo) cosh(Y0) = 0 ; 	Yo < y2 	...(4•Q) 

a Yn sin (Yn)+(y2+Yn) cos (Yn) = 0 ; (2n-l)n/2 < i < nn 
...(4.5) 

To obtain s, (4.1_) has to be evaluated. Evaluation of 

(4.1) for given values of a, , ts , z1D, z2D, 'D and dD 

implies the numerical integration of the integrand 

4y J0(Y) Uo(y) + E Un(y) 	...(4.6) 
n=l 

over the interval (0, col, which in turn implies the evaluation 

of (4.6) for many values of y , theoretically ranging from 



zero to infinity. To evaluate (4.6) for specific values of 
(y) we proceed as follows. 

4.2• 1 Calculation of Yo and Yn : 

For a particular value of (y) , the values of Yo and Yn 

are to be determined through Newton-Raphson iteration method. 

Equations to be solved are (4.4) and (4.5) . 

Iteration schemes are : 

Y (k+l)(k) - f(Yok) ) o 	(o) = 	 ... 4. 0 	Yo 	I f(Y 	,with Yo 	y 	 (r 7) 

and 

(k+i) = (k) 	f (1(k)) ;with 	W Yn 	Yn 	- 	k ;with Yn 	(n- 2)~c 	...(4.8) 

OR according to Rolfes (1980) 

(k+l) _ 	_ 	 , c Y (k) tanh(Yo) e 	(°) _ Yo 	- y 	k~---- with Yo - y 	...(4.9) 
Y + 

 
To 

and 
a Y(k) Ynk+l) _ (n- 2)n + arctan ( 2 	2 ) 	 ... (4.10) 

Y+(Yn ) 

with Y(o) 	(n•- 2) n 

where 	k - 0, 1, 2, 3 .•.•• 

As far as the determination of Yn is concerned both of 

the methods could safely be used, but in the case of Yo , there 

is some difficulty with Newton-Raphson scheme, because for 

higher values of y (which are unavoidable in the calculations) 
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the terms sinh(Y0) and coh(Y0) will blow up beyond the ability 

of the machine. Hence, in the case of Yo, Rolfes procedure 

is recommended. Moreover it was noted that Newton-Raph.son 

method is efficient for larger values of c(>1) and Rolfes 

method is efficient for smaller values of a. 

4.2.2 New Forms of U° and Un : 

Application of the transformatior x = 1/2y, to eaua.- 

tion s (4.2) and (4.3) results in : 

U°(y) = p U0(x) ; and 

Un(y) = N U(x) 

where : 

1-exp[_ts(x2-pYo) ] } Csinh(Yoz2D)-sinh(Yo z1D) ]. 

p Yo - (x2-p Yo) 2/cs~3 j cosh(Y0) 

sinh[Y (1-d ) J -- sinh [Y (1-f( ) ] J o D 	o D a 	 ...(4.11) 
(z2D zlD) Yo . sinh(10) • (kD dD) 

1 	{1-exp[-ts(x2+RYn) ] Csin(Ynz2D)--sin(Yn21D) J 
U (x) 
n 	{x2-(l+) P Yn-(x2+pY2) 2/ap] cos(Y) 

• tsin[ Yn(l_dD)I-sin[n(l-(D)]1 	 ..(4.l2)  
(z2D-z1D) Yn • sin(Yn) • (ID-dD) 

The above transformation ,changes (4.4) and (4.5) into 

the forms: 

P a Yo sinh(10)-(x2-p Yo) cosh(Y0) = 0 ; Yo < --- 	...(4.13) 

and 

p a Yn sin(Yn) + (x2+py1) cos(Y) = 0; (n- 2)% < Yn < nit ; n>1 

..•(4.14) 
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4.2.3 Evaluation of U0(x) : 

In relation (4.11) , for small values of ts , the expre-
ssion exp[--ts(x2-pYo) ] , will have a value near to 1, hence 
upon subtraction from 1 computer will commit error. This 

instability will be removed as follows : 

From (4.13) we have : 

x2 - p Yo = a R Yo tanh(Yo ) 

substituting the value of (x2-pYo) in ec'uation (4.11) , we will 
obtain the expression : 

l 

U (x) 
	1-exp[-ts(6R Y° tanh. Yo) ]I [sinh(Yoz2D)-sinh(Y°z1D) ] 

° 	kx2+(,+cr) p Yo-[6p Yo tanh(Yo) ]2/a G 'j cosh(Yo) 

~[sinh[Yo(l-d D) ]-sinh[Yo(1-f D) ]  ...(4.1.1 ~ 
(z2D zlD) Yo (f D dD) sinh (Yo ) 

Now (4.11'), could be written in the following numeri-

cally stable form : 

U0(x) = A(x) .A1.A2.p3 	 ... (x..11" 

where 
t 	 3 Y

2 
. t anh(Y 

°) 
	

-t 6 3 Y2 ° tanh( Y ) 
A(x) = 2sinh [ -------------------- ] exp[ —s 	 °- ] 

/[ x2 + (l+a) 	o - 6 	Y2 tanh2(Y0 ) ] 	 ... (4. li'a ) 

sinh(Yoz2D) - sinh(Yoz1D) 
A = __ 	- 	 ...(4.111 'b ) A1 
	cosh(Y0) 

sinh[Yo (l_dD)]-sinh[Yo(l-KD) ] 
A2 = 	 .•.(4.11

' 
c) 

2 	 sinh(Y0) 



1 
A3  = 

(z2D ZlD) YO (KD dD) 
•..(4.11" d) 

IAs far as machine is concerned, there are still some 

difficulties with the evaluation of U0(x). 
difficulties, we follow like under : 

1. 	Approximation of A(x) 

Let's consider the old form of A(x) 

1-exp[-ts  a p Y tanh(Yo) ] 
A(x) = 

x2+(1+6)P, Yo - cs p Yo tanh2(10 ) 

and le t 

CX = is  cs P  Yo  tanh(Y0 ) 

To remove these 

...(4.11" a) 

for smaller values of CX (approx. < 30) , relation (4.11" a) an 

be used, but for larger values of CX, machine is having diffi-

culty with the evaluation of the exp term containing this ex-

pression. To remove this problem, for CX > 80, the exponen-

tial term could safely be dropped from (4.11" a) and its 

following form could be used : 

A(x) = 
1 

x2+ (1+6) p Yo - 	3 Y tanh2(Yo  ) 

...(4.15) 

2. 	Approximation of Al, A2  and A3  

As far as A3  is concerned, there is no difficulty with 

its numerical evaluation, but with Al  and A2  we have the prob-

lem that for higher values of Y(>80), computer can't handle 

the values of sinh(Y0) and cosh(Y0 )• To make these parts 

in the line of calculation for the computer, the following 
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procedure is accepted. 

(0Yoz2D - e-Yoz2D)- (eYOz1D - e-Yoz1D) 
Al 

eYo 	e-Yo 

for Yo > 80, e-Yo could safely be dropped from the denominator 

hence : 

Yo (z2D 1) 	-Yo (z2D+l) 	+Yo (z1D-1) 	-Yo (z1D+l) Al=e 	_e 	-e 	+e 

_ (  Again the terms eYoz2D+l) _ and eYoZ1D could be dropped 

and hence Al will become : 

_Yo (1-z2D) 
Al = e 	- e 	 •.•(4.16) 

Considering the exponential form of A2 : 

(eYo (l-dD) - e-Yo (1-dD)) 
- (eYo (l-f D) - e-Yo (i-,D) A2 

= 
	 -  

• YO - e-Yo e  

and following the same procedure as for Al, for higher values 

of Yo , A2 could be reduced to : 

	

A2 . e-YodD _ e-YokD 	 ...(4.17) 

Multiplication of Al and A2 will result 

-Yo(1+dD z 2D) 	-Yo(1+dD z1D) 	-Yo(l+kI)7z2D) 
6~1A2 =e 	-e 	-  ~e 

-yo(l+f D-z1D) 
+' e 	 .••(4.18) 

Since z2D > z1D and f D > dD, hence Yo(l+f D z1D) , will 

have the largest and Yo(1+dD z2D) will have the smallest 

values among the four powers. If we let : 
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Cy = Yo (l + ;~0 - z1D) ; and Cz = Yo (1 + dD z2D) 
then : 

(i) For Cy < 80, (4.15) could be used. 

(ii) For Cy > 80 and Cx < 80, the following approximate form 
of A1A2 is good enough. 

-y (1+ d -z D 	) AlA2 = e 	 ... 

(iii) Fbr Cy > 80 and Cx > 80, AlA2 could safely be taken 

as zero. 
h 

Since in the evaluation of U0(x), the product of AlA2, 

A3 and A(x) is involved; hence, to keep some margin for the 

negative powered values of A3 and A(x), 60 or even smaller 

number is to be used instead of 80 as a limit in the approxi-

nation of AlA2. Moreover, the upper limit, 80,-is to be 

adjusted according to the capacity of the machine available. 

A 

4.2.4 Evaluation of Un(x) : 

There are two difficulties in the numerical evaluation 

of (4.12) . 

1. In the expression l-exp[-ts(x2+P y) ] , whenever the 
value of ts(x2+p Yn) gets larger (>80) , creates problem with 

the machine. To remove this problem, the term exp[-ts(x2+pY2)] 

could safely be dropped whenever ts(x2+p'Y 2) gets targer than 
even 20. 

2. The term, cos Yn , where Yn ~-- (n- 2)'n will cause the 

difficulty of near zero denominator. To avoid this, we proceed 
as follows : 
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From (4.14) we have 

sin(Yn) 
cos(i) - n) 	2 .~__. __2_~, 	 ...(4.2o) 

x +Y ) 
(- P Cr 

substitution of (4.20) in (4.12) will ensure numerical stabi-

lity. 

0 
4.2.5 Approximation of E Un(x) : 

n=1 

For the approximation of this sries, th,: method of str:fight 

forward addition as was recommended by Neuman (1972) is accepted. 

The number of terms which are to be used in the process of 

approximation of this converging series, depends upon the 

required degree of accuracy. 

In our work, we made an attempt to reproduce Neuman' s 

(1975) tabulated values of drawdown which he had calculated for 

the preparation of type curves, with his given values of a and 

N (Chapter 5). 

To cut down the computer time, after several trials, with 

the acceptance of some tolerable error between ours and that of 

the Neuman's values, we accepted the following truncation cri-

teric.. 

U(x) 
< 0.1 	 ... (4.21) 

E U (x) 
n=1 



4.2.6 Approximation of J0 (x) : 

For the numerical calculation of J0(x) its following 

polynomial approximation is used. 

1. J0(x) = 1-2.2499997(X/3)2  + 1.2656208(X/3) 4-0.3163866(X/3)6  

+0.0444479(X/3)8  - 0.0039444(X/3)10  

'++0.0002100(X/3)'2  + ;(c ( < 5x10-8  

For -3 < x < 3 

2. Jo(x) = x-1/2  Fo  cos() for 3 < x < - 

where 

fo  = 0.79788456 - 0.00000077(3/x) - 0.00552740(3/x)2  

- 0.00009512(3/x) 3  + 0.00137237(3/x)4  

- 0.00072805(3/x) 5  + 0.00014476(3/x) 6  +c 

le, < 1.6x10-8  ; and 

Ao  = X - 0.78539816 - 0.04166397(3/x) - 0.00003954(3/x)2  

+ 0.00262573(3/x)3  - 0.00054125(3/x)4  

- 0.00029333(3/x) 5  + 0.00013558 (3/x) 6  + E 

•
1E I < 7x10-8  

4...7 Partial Sum of the Drawdown Integral : 

Let x be the value of x corresponding to the nth zero 

of J0 (x), and let sN  be the partial sum, then 

N o 	 n 	 «o. n 

= --g- F, f 4x J0(x)  [ U (x) + E U (x)] dx ; x0=0 ...(4.22) sN 4% T n=1 o  	o 	n=1 n 	 o 

From which it is clear that : 



lim sN = s 
N --~ co 

The above integral could easily be evaluated with the 

help of Simpson' s Rule. The number of the zeros of the 

Bessel' s function which are to be used in the above approxi-

mation depends upon the required accuracy. As per Neuman (1972) 

the use of 20 zeros are accurate enough.. For smaller values of 

a (<10-1) and larger values of t5(>1), 3<N<l0 gives reasonable 

accuracy. 

4.4 DETERMINATION OF AQUIFER PARAMETERS 

For the determination of the aquifer parameters through 

a digital computer, an algorithm is accepted in which the sum 

of the square of residues of the difference of observed and 

calculated drawdowns in observation wells is minimized. 

The formulated objective function and the constraints 

to which- it is subjected are as follows: 

NOB ND 
MinF= Z E 

i=1 j=1 (scij - sOij
)2 

V 
...(4.23) 

subjected to 

6c < Sc max 
T 	< 

Tmax 

Sy < Sy max 

Sc > Sc min 
T 	>T  min 
Sy 7 Sy min 

•••(4.24) 

•.•(4.25) 

•••(4.26) 

•..(4.27) 

...(4.28) 

•.•(4.29) 
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where 

sCij  are the calculated, s01jare the observed drawdowns 

in ith well at jth time, and Sc max' Tmax'. Sy max are the 

maximum and Sc min,  Tmin  and S 	are the minimum values of y iilin 

Sc, T and Sy  respectively. To be able to carry on with this 

minimization two things have been done 

1. Based on the algorithm presented in the previous parts 
of this chapter, a subroutine has been prepared which 
is able to calculate values of drawdown at any time and 
at any radial distance from the pumped well for a known 
set of values of aquifer parameters. 

2. Since the objective function is nonlinear; therefore, 
for the minimization a nonlinear scheme is used. The 

scheme chosen here is the Sequential Unconstrained Mini-
mization Technique (SUPT), which is based on the interior 

penalty function. The prepared subroutine for drawdown 
calculation, and the subroutine for the above mentioned 
minimization have been connected by a short main program 
which provides data to the subroutines, and also calls 
for the print out of the required results. A flow chart 
of the drawdown subroutine is presented in Fig. (4.1). A 
brief explanation of the components of the flow chart 

are given in Appendix (A)• 

/76/73  ntt c'Y  

tIA 
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SUOROUTINE MARSAL (A,SE8, BET, TS, ZZD,ZID,ALD,D01,J, L,BZ, UZ,UN,QD,T, DRD) 

11. 1  
II s  2 

ORDD s 0.0 

SUM  

X1 * A (I) 
X2 * A (1,1) 
ti s A (X2 — X1) / L 
XA s X1 + H 

K s I /2 

EXTERNAL GMZ  
EXTERNAL 	GMN 

022 s 8Z (X A ) 
UZZ o UZ(XA.SEG.BET,TS.Z2.D.ZID.ALD,D01,GMZ ) 
UNN s UN (XA .SEG.BET,TS,Z20,ZID,ALD,001.GMN ) 

SUM s SUM,4 * XA * 8Z Z * (UZZ * UNN ) ISUMI SUM 2 i4 XA i4 BZZ*UZZ+UNN ) 

IS II. EC.L 
	No 	

I XAs XA+H 

YES 
NO 

IS X1. E0.0 

YES  

FSUM :SUM 

DRDD20RDO • H /3. fit• ( SUM ) 

( SUM /F5UM -CONY 

0 

1os (aD/PIET}4c.DRDó1  

i*I,1,II.2 

RE 

FIG(4.1): FLOW CHART OF THE SUBROUTINE OF THE CALCULATION OF 

DRAWDOWN 



CHAPTER 5 

MOD' S APPLICATION AND RESULTS 

5.1 CHECKING OF TI-ll MODEL 

It was the intension to check the developed routine 

with the help of the real life data. Unfortunately, we didn't 

find the proper data with which the model could be checked. 

To show that the routine is working, properly, we made an 

attempt to reproduce the drawdowns calculated by Neuman in 

1975, for the preparation of type curves. We fed to the 

routine whatever values of the dimensionless parameters he 

had used for the calculations. Those calculations were made 

for the fully penetrating wells; hence, in our calculations 

we also assumed th;: 	wells to be fully penetrating. From 

the obtained results which are partly presented in Table (5.1), 

we came . to know, that the Neuman's values could be reproduced 

if appropriate convergence criterias are used. 

By convergence criteria we mean where to terminate the 
N 	Xi+l 	,. 

partial sum of the drawdown integral ( E f 	4xJ0(x)[U0(x) 
i=1 x 

~ n 
i 

+ E Un(x)] dx ) and when to truncate the infinite series 
n=1 

co 	IN 

I Un(x). The convergence criteria for the partial sum was 
n=l 
named as CON and that for the infinite series as CCNV• The 

smaller the values of CON and CONV, the longer the computer 

time it takes for the calculation of drawdown. 

To find a combination of CON and CONV, which will give 

reasonably accurate values with the least possible time of 
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the computer, several of their combination were tried. The 

results of these trials are shown in Table (5.1). Finally 

with the acceptance of some reasonable difference between 

our values and that of Neuman's we accepted CON to be 0.01 and 

CONV to be 0.1. These values could be changed according to 

degree of accuracy required. 

5.2 APPLICATION OF THE MODEL 

For an illustration of model's application, because 

of the lack of real life data, with the help of an arbitrarily 

assumed set of aquifer parameters a series of drawdowns were 

generated for an arbitrarily chosen series of times. These 

drawdowns were generated with the help of the prepared computer 

routine. The values of the parameters used in this process 

were : Sc  = 0.003, T = 1400.0 m2/day and Sy  = 0.12. The dis-v 

charge was assumed to be 6000.0 m3/day and the drawdowns were 

calculated at a radial distance of 30m from the pumping well. 

The various characteristics of the wells (observation and 

pumping) were assumed as zl  = 50m, z2  = 80m, d = 20m, 

I = 69.29m, and b = 109.29m. 

The generated data was analysed by the commonly used 

Boulton' s method as well as through the proposed nonlinear 

optimization scheme with the help of the digital computer. 

From these analysis the following results were obtained : 
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TABLE 5.1 : COMPARISON OF NEUMAN1 S VALUES OF SD  WITH THOSE 
CALCULATED BY THE PROPOSED METHOD FOR p = 0.01 
AND o = 10-9  . 

Trial CON CONV 	t 	Values of SD Neuman's CPU 
values 	time by proposed  (sec.)  method   

6xlO-1  5.65xlO-1  6.33x10-1  

3.5xlO0  1.88x100  1.88x100  

1 	0.1 	0.1 	1.0x101  2.61x100  2.61x10°  

2.0x102  3.23x100  3.45x100  

1.0x103  3.23x100  3.46x100  

6x10-1  5.92x10 6.33x10-1  

3.5x10°  1.93x10°  1.88x100  

2  0.1  0.01  1.0x101  2.66x100  2.61x100  

2.0x102  3.27x100  3.45x100  

1.0x103  3.27x100  3.46x10°  

6x10+1  5.94x10-1  6.33x10-1  

3.5x10°  1.94x100  1.88x100  

3  0.1  0.001  1.OxlO 1  2.67x100  2'.61x100  

2.0x102  3.28x100  3.45x100  

1.0x103  3.28x100  3.46x100  

6x10-1  5.94x10-1  6.33x10+1  

3.5x100  1.94x10°  1.88x100  

4 	0.1 	0.0001 1.Ox10 1  2.67x100  2.61x100  

2.0x102  3.28x100  3.45x100  

1.0x103  3.28x100  3.46x10°  

0.91 

1.12 

1.82 

2.92 
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Table 5.1 (Contd. 

Trial CON CONV 	t 	Values of SD Neuman' s CPU 
by proposed  values.  time 

method 
	 (sec.) 

5  0.01 0.01 

6  0.01 0.001 

7  0.01 0.0001 

8  0.01 0.1 

S _ Lau S 
D ~0 

6x10 1̀  6.24xl0-1  6.33xl0-1 

3.5x100  1.88x100  1.88x100 

1.0x101  2.62x100  2.61x10° 3.03 

2.0x102  3.36x100  3.45x100 

1.0x103  3.36x100  3.46x100 

6xl0-1  6.26x10-1  6.33x10_l 

3.5x100  1.89x100  1.88x100 

1.0x101  2.62x100  2.61x100 5.35 

2.0x102  3.37x100  3.45x100 

1.0x103  3.37x100  3.46x100 

6x101  6.27x10-1  6.33x10-1 

3.5x100  1.89x100  1.88x10° 

1.0x101  2.63x100  2.61x100 10.71 

2.0x102  337x100  3.45x100 

1.0x103  3.37x100  3.46x100 

6x10-1  5.95x10-1  6.33x10-1 

3.5xl00  1.81x100  1.88x100 

1.0x10  2.57 xl00  2.61x100 1.80 

2.0x102  3.31x100  3.45x100 

1.0x103  3.31x100  3.46x100 
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(1) 	The values of the parameters obtained through the 

proposed scheme are : 

T = i31e 	5= o. 123, arc 5~=0.00a6 

(2) 	The values of the parameter obtained through Boulton's 

method are : Sc =-0.0018, T = 1075 m2/day and 

S = 0.069• 

(3) 	According to Boulton, the reciprocal of the delay 

index (a) remains constant. Neuman showed that a is 

not constant, instead, it is linearly related to the 

logarithm of the redial distance from the pumping 

well. Applying the Neuman' s concept, with the assumed 
set of parameters: 
T = 1400 m2/day , Sy = 0.12 and b = 109.29m 

we tried to find the sensitivity of a to the changes 

in radial distance. 

For the above set of parameters we found, that a will 

have a value of ao = 6.0761 x 10 S at a radial distance 

of lm from the pumping well, and will decrease to 75% of 70 

at a radial distance of 15.3 m to 50/ of ao at a radial 

distance of 234.30 m, to 25/. of ao at radial distance of 

3585.93 m, and to zero at a radial distance of 54896.87 m from 

the pumping well. Boulton's value of a .(=5.70 x 10-55-1} 

corresponds to a radial distance of 1.96 m from the pumping 

well (Fig. (5.1)). 

Drawdown were also generated for the case of fully 

penetrating observation and pumping wells for the same series 

of time as used in the case of partially penetrating wells. 

The used discharge was 6000.0 m3/day and the calculations were 
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made at a radial distance of 30.Om from the pumping well. 

For a comparison, these drawdowns and those for the case of 

partially penetrating wells are given in Table (5.2). From 

this table it could clearly be seen that for the same dischar--

ge, partial penetration causes greater values of drawdowns. 

TABLE 5.2 : GENERATED DR.AWDOWNS 

Serial 
No. 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

Fully Penetrating 
case 

(m) 

0.109 

0.293 

0.389 

0.446 

0.500 

0.523 

0.548 

0.575 

0.591 

0.601 

0.609 

0.615 

0.624 

0.631 

0.638 

0.644 

0.649 

Partially Penetra-
ting case 

(m) 

0.209 

0.468 

0.573 

0.616 

0.662 

0.682 

0.704 

0.727 

0.752 

0.761 

0.768 

0.774 

0.782 

0.789 

0.796 

0.802 

0.808 

Time 

(mm) 

1 

3 

5 

7 

10 

12 

15 

20 

25 

left] 

35 

40 

50 

60 

70 
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Table 5.2 (Contd.) 

Serial 	Time 	Fully Penetrating Partially Pene-- 
No• 	case 	trating case 

(min) 	(m) 	(m) 

18 100 0.656 0.814 

19 140 0.679 0.838 

20 160 0.690 0.850 

21 200 0.714 0.872 

22 240 0.737 0.895 

23 300 0.770 0.930 

24 340 0.792 0.952 

25 400 0.825 0.985 

26 440 0.846 1.007 

27 500 0.868 1.039 

28 600 0.919 1.092 

29 700 0.969 1.143 

30 800 1.018 1.193 

31 900 1.065 1.225 

32 1000 1.111 1.290 



CHAPTER 6 

CONCLUSIONS AND SUGGESTIONS 

1. In spite of a lot of theoretical work which has been done 

in the area of unconfined aquifers, still there is a 

large gap between theory and practice. In the early 

times, Theis type curves which are basically for the 

analysis of artisian aquifers were also used for the 

analysis of the test pumping data of unconfined aquifers. 

It was 1955, that Boulton included the slow draining 

behaviour of unconfined aquifers in the formulation of 

unconfined aquifers radial flow equations, based on 

which in 1966 he prepared the type curves for the analy-

sis of the test pumping data of unconfined aquifers. 

From 1966 onward, whatever development has been made in 

this area, has not come up to the usual practice. And, 

unfortunately still Boulton's curves are used without 

taking care of what limitations they have. 

2. From the values of the parameters obtained by Boulton's 

method, it can clearly be seen that analysing field 

data of partially penetrating wells with the help of 

Boulton's type curvGS w'nich are for fully penetrating 

wells, leads to the under estimation of aquifer para-

meters. 

3. The amount of underestimation will be much more, if the 

observed data will be collected at small distances from 

pumping well. 



m 
4. From Fig. (5.1), it can be concluded that Boulton's 

vp,lue for a is only one value in the range of variation 

of a, from maximum in the vicinity of the well to zero 

at a considerably large distance from the pumping well. 

according to the above mentioned figure, Boulton's value 

is not even an average value. 

5. The proposed method of the determination of aquifer para-

meters, takes care of the partial penetration, delayed 

aquifer response, aquifer anisotropy and the subjectivi-

ty which is inherent in the type curve procedure. The 

results which were obtained for an example through the 

proposed method, are quite satisfactory. 

SUGGESTIONS 

1. 	Partial penetration is a common field practice, because 

drillers when striking a satisfactory aquifer frequently 

make no effort to extend well down to the formation' 

On the belief, that partial penetration has negligible 

role, often no effort is made to measure the character-

istics of observation and pumping ,cells which are : 

d, /(, b, z1  and z2  (Fig. (3.2)) . Contrary to the above 

belief it was shown that partial penetration is an 

important factor which must be considered in the deter-

mination of the unconfined aquifer parameters. Therefore 

it is strictly emphasized that during a test pumping 

.process, the previously mentioned wells characteristics, 

d, K, b, zl  and z2, are to be measured and clearly 
recorded. 
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2. The various formulae and procedures for the analysis 
of pumping test data should be used with caution, 

considering the various assumptions underlying each 

formula and procedure. 

3. According to Neuman (1974) , the effect of partial 

penetration on drawdown in an unconfined aquifer 

decreases with radial distance from pumping well, and 

with ratio k2/kr• Hence, if still one intend to use 

Boulton's method of type curves; it is recommended 

that the observations are to be.. taken at a larger .is-

tance ( > b/k1/2) from the pumping well. However, the 

time factor may still affect the values of the para-

meters . 
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APPENDIX (A) 

Description of the Flow Chart 

The MARSAL subroutine contains 5 function subprograms. 

The function subprograms are : PZ, for the calculation of the 

Bessel' s function of the zeroth order end first kind; UZ , for 

the calculation of the component U0(x) of the drawdown 

integral; GMZ, for the calculation of Yo, a parameter of 
T 	 0  A 

U (x) ; UN, for the approximation of the component Z U(  x) 
n=l 

of the drawdown integrals and GM 'J, for the calculation of Yn 

a parameter of Un(x) . 

Data Requirements 

(1) A set of initial feasible values of the aquifer 

parameters. This could be any feasible set, but 

better if approximated on the basis of the governing 
physical conditions. 

(2) Upper and lower bounds of the parameters as per the 
governing physical conditions. 

(3) Characteristics of the pumped and observation wells, 
which are d, f(, b, zl  and z2  (Fig • (3.2)) . 

(4) Observed drawdowns and their corresponding times. 

(5) Zeros of the Bessel' s function. 

Operational Details 

In the program, the following things could be changed: 

(1) 	The limits of convergence, as per the required degree 

of accuracy. 
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The relation for p used in the program does not account 
for the aquifer's anisotropy. In case, it is desired 
to include anisotropy, the following relation for is 
to be used 

= kZ
/
kr.r

2/
b2 

The number of uniform strips in the Simpson's Rule, 
which, is used here to calculate the partial sum of the 
drawdown integral. 
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