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(iii)
SYNOPSIS

Hydraulic characteristics of aquifers are essential to
the understanding and solution of aquifer problems and the
proper utilization of ground water resources.

For a reliable determination of these parameters the
necessary data is obtained through field tests. Analysis of
systematic observation of water level changes and of other
test data yield values of the aquifer characteristics. The
reliability of these analysés are dependent on several factors
amongst the importants, one is the method of analysis. AThe
most widely used method of enalysis has been that of type curves
which has certsin limitations and also inherent subjective bias.

To include the effect of delayed yield (the slow drain-
ing behaviour of unconfined aquifers) as well as the effect of
partial penetration which is the most encountered case in proc-
tice, becaﬁse of the large number of dimensionless paramcters
which wi’l come up in the drawdown expression, it would be
impossible are at least grectdydifficult to prepare a set ;f
type curves for the entire range of field application.

In the present work, based on one of the powerful theories
of unconfined aquifers, a computer routine is prepared. For
the calculation of aquifer parameters sz non linear optimization
scheme 1s proposed. The proposed scheme calculates the optimal

values of the aquifer parameters based on the minimization of
the sum of squares of the differences between the observed and

calculated drawdowns-
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NOTATIONS

initial saturated thickness of the aquifer, L- y
T.verse dimensionless radius equal to b/r.

vertical distance between top of perforations.and
initial position of water table in pumping well, L.

dimensionless d, equal to d/b
average head of the vertical section, L
height of free surface above the horizontal bed rock,L
net vertical épeoific rate of recharge, Lot

Bessel's funetion of the first kind and zeroth order

ratio of the vertical to horizontal permeability,
equal to kz/kr

horizontal permeability, LTt

radial permeability, LT T

vertical permeability, LT+

vertical distance between bottom of pérforafions and
initial position of wcter table in pumping well, L

dimensionless f, equal to f/b
component of unit outer normal in r direction
component of unit outer nofmal,in z direction

recharge per unit area

pumping rate, p3r-1

vrédial distance from pumping well, L

dimensionless r, equal to r/b
drawdown, 1.
storage coefficient (= ssb)

specific (elastic) storage L™+
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(viii)

instanteneous yield from storage per unit drawdown
per unit horizontal area

short term delayed yield from storage per unit draw-
down per unit horizontal area

long term delayed yield per unit drawdown per unit
horizontal area

dimensionless drawdown, equal to, 4nTs/Q

corrected dradown, L

free surface drawdown, L

total effective storage coefficient (=SCo + 8, *+ Sc2)
specific yield

time from start of pumping

trensmissibility, L2T T

dimensionless time with respect to Sc(= Tt/rQSc)
dimensionless time with respect to Sy(;Tt/r2Sy)

excess pore water pressure _
equavalent vertical hydraulic resistance (=3b/8r2kz)

well function (=S8/(Q/4nT))

variable of integration

vertical distance above bottom of aquifer, L
dimensionless elevation, equal to z/b
reciprocal of Boulton's delay index, o1
reciprocal of short term delay index
reciprocal of long term delay index

kp r2/b2

oy Scb/kv

) Scb/kv
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CHAPTER 1

INTRODUCTION

le1 GENERAL

It has long been observed, that, when a well is pumped
at steady rate in a homogeneous unconfined aquifer, the water
bearing material during the early stages of pumping does not
immediately yields up its water. The actual time drawdown'
curve takes the form of an elongated S, and violates markedly

from Iheis curve, specially during the intermediate times.

Tn 1955,Boulton for the first time gave a possible
reason and the name of delayed yield from storage to this
phenomenon. He presented a semiempirical mathematical model
which was capable of reprodﬁcing all the three segments of
the elongated S-shaped time drawdown curve. According to
Boulton, this is the flow from the unsaturated zone above
the falling water table whiéh causes the delayed’yield pheno~
menon. To také account of it,he introduced an empirical

constant, o (reciprocal of the delay index), the physical

meaning of which remained unknowne

As comment on the theofy of Boulton, Brutsaert (1970)
and Brutsaert et al. (1971) clearly ihdicated that the wnsa-
turated cone of depression is insignificant and can not explain
the phenomenon of delayed yielde Neuman (1972), wrote that
Boulton's approach may lead to difficulties in practice,
because his coefficient, o, being devoid of any apparent

physical meaning and can not be guaranteed to remain constant.
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He showed tha% in the absence of infiltration at the ground
surface the entire delay process can be simulated merely by
treating the water table as a moving matefial boundary (of
free surface) and at the same time giving due consideration

to the effect of elastic storage in the aquifer.

Streltsova (1972), basis her concept on the assumption
- of leakage when the vertical flow in an unconfined aquifer is
taken into account. She notes that in her works, the problem
of flow to the well is examined by transforming the two dimen-
sional axisymmetric flow, dependent on the redial distance
from the well and the vertical coordinate to a one dimensional
sta%ement. Therefore, the reduction to the form of one dimen-
sional axisymmetric flow with the consideration of two heads
(free surface and average) leads to the occurrence of a |

discontinuity of head on the surface of the well.

The water in the vicinity of the well moves downward
and causes vertical transfer or leakage at a variable rate
that is proportional to the difference between the water
table which gradually drops and the average head of the verti-
cal scction under considerétiono .This leakage will fhere—
fore be the cause of the diminishing rate of drainage, and
the result will be a delay in the transient process of
reestablishing equilibrium when & relatively uniform distri-
bution of the head is approached, and the steady Theis

theory can be applied with sufficient accuracy.

Boulton (1972) sees more practicability in the

Streltsova's theory than in his own. Neuman (1976), on the



theory of Streltsoya stated that :

't gtreltsoua (1972) partly with the collaboration of
Rushton (Streltsova and Rushton, 1973), was able to
develop approximate solutions for the fall of water
tables, as well as for the average drawdown over the
entire aquifer thickness, in response to a fully
penetrating well discharging at a constant rate.'f

Then he tries to make a connection between his own way and
that of Steltsove's:

'' Her model has some conceptual simitiarities to ours
because the unsaturated zone is neglected (however
she included this effect in her model later*), and
water is released from storage by compaction of the
aquifer materizl, expansion of water, snd gravity
drainage at phreatic surface'!

A survey of the models presented by Streltsova and
Neuman shows that they are following nearly the same path in
that, they both include the effect of the vertical gredients
and neglect the effect of the unsaturated flow above the
falling water table.

However, along with the presentation of models, the
possible cause of delayed aquifer response is also stated by
each proposer, still Bowuer and Rice (1978) feel that :

'" The physical basis for delayed yield or delayed
water table response has received less attention than
the mathematics of producing inflection type draw-
down curvesSess of!

They see a possible reason for the delayed aquifer
‘yield in the phenomenon of delayed air entrye. They state,

that becausc of the presence of the fine'textured layers,

* Author
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which will have higher water content than the surroundings
or the presence of other saturated to nearly saturated layers
in the vedose zone the downward movement of the air is
subjected to restrictions. While withdrawing water through =
well, the water table drops, but the atmospheric air can not
en?er the vedose zone to replace water that has drained from
the pores at or above the water table, hence the air in the
vedose zone will expand and as a result will cause a reduct-
ion in the air pressure. This means that the water table
(as plane of atmospheric pressure) will drop more than the
advance of .the dewatered zoﬁe. Yielding a lower value of
storage coefficient than its full value obtained when the
lower boundary of the dewatered zone drops as fast as the
water tables The initial storage coefficieht continues to be
small until the water table has dropped so much that the pre-
ssure head of the water in the saturated top layer reached

air entry Valué*of the layer.

As another possible explanation to the phenomenon of
delayed yield, Bouwer (1979), presented the theory of soil
water hysteresis which is the relation between soil water
content and negative pressure head of the soil waters. Accord-
ing to him, this produces a lag in the release of pore water
from a rcwetted soil when the pressufe heads are lowered. For

an unconfined aquifer this means that the water table must

* This is the negative value to which the water pressure head
in a saturated material must drop before atmospheric air
enters the material and displaces the water.



drop some distance in response to pumping a well before pore
water is fully released if the water table prior to the pumping

has been rising.

With all fhe above explanations and reasonings still
I am feeling to accept Streltsova's statement that the slow
draining phenomenon is of complex nature and only the physical
properties of the aquifer and the particular conditions of

the flow will determine which facfor is predominent.

le2 ON THE TOPIC

Quantitative data on hydraulic_characterisfics of
aquifers are essential to the understanding and solution of
aquifer problems and the proper evaluation and utilization of
ground water resourcess Field tests provide the most reliable
method of obtaining these data. Such tests include the
removal of water from a well and sﬁbsequent observation of the
reaction of the aquifer to the change. Analysis of systematic
observations of water level changes and of other test data
yield values of the aquifer characteristics. The extent and
reliability of these analysis are dependent on features of the
test including duration of the test, number of observation
wells and method of analysis. The most widely used method of
the determination of aquifer parameters has been the use of
type curves.

In the recent decades, cxtensive theoretical work has

been done in the areas of unconfined aquiferss Various



theories have been proposed and based on some of these theorics
type curves have been prepared. Unfortunately, uptill now in
practice, for the analysis of test data of unconfined agquifers
the type curves which were prepared by Boulton (1966) only for
the fully penetrating wells 2re in use. However, he himself

included in his theory the effect of partial penetration later.

In addition to the fact, that there is a large éap
between the theory and practice, the method of analysis
through the use of type curves, because¢ of its graphical na-

ture, has inherent subjective bias.

After a deep review, Neuman's theory was chosen as the
basis of the work presented hereafter. His model which is
based on the physically well defined parameters, accounts for

the cffect of partial penetration. As per the topic because

of the following reasons a digital method of anslysis of the
test pumping data has been proposede.

1. The relatively large number of dimensionless parameters,
in the Neuman's model, which makes it practically |
impossible to construct a sufficient number of type
curves to cover the entire range of values necessary
for field applicatione

2 To take care of the subjectivity which is inherent
in the type curve method.

3. The fast growth of the usc of digital computers in
the area of ground water resources evaluatione

4. The ability of the computer to do the job which is
impossible or at least laborious otherwise faster
and economical.



Hence in the forth coming pages after the review of
literature (Chapter 2) and Neuman's theory (Chapter 3), an
algorithm is presented which orients Neuman's model for the

computer assisted analysis of test pumping data.



CHAPTER 2
REVIEW OF LITERATURE

2.1 GENERAL VIEW

As early as 1935, Theis derived an equation for
drawdown based on its similarity to the heat conduction equa-

tion. This eguation which had the form :

24
o r s .
s = Z%T (e™*/x)dx 3 u = 4th ees(2.1)

u
was used for the analysis of unconfined aquifers; however, he
himself pointed out that in the heat conduction equation a
specific amount of heat is lost concommitantly and instanta-
neously with fall in temperature, but in nonartisian aquifers
the water from the sediments through which the Water table
has fallen drains comparatively slowly. He in his derivation
neglected this time lag which always caused some error in the
analysis.

In 1954, Boulton deriﬁed an eqguation for drawdown in
an unconfined aquifer. He started with the bontinuity egua=-
© tion for incompressible fluids and ended up with the follow-

ing equation

Q .
S = ‘é‘%’?f‘" V(p,’v) . 010(2.2)
where

co Jo(mp)
V(ipyt) = f i [1~exp(-T Atanh 2)] d A

0
N = Bb 3 Tt = ‘-IS{-;tasandp = r/b

c .

He made the following assumptions for the above derivation :
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(1) The aquifer is homogeneous, isotropic, infinite in
extent and underlain by a horizontal impermeable bed.

1(2) The well is unlined and fully penetrating.

(3) The coefficient of storage is constant.

(4) The flow obeys Darcy's law (K = const.)

(5) The water table is initially horizontal.

(6) The well is pumped at constant rate.

In 1955 for the first time Boulton introduced the term
delayed yield as the cause of delayed water release from
storage in an unconfined aquifer. Based on his 1955 paper,
in 1966, he developed type curve procedure for the analysis
of test pumping data with the consideration of the.delayed
yield.

In 1966, Kriz derived a rclationship between the para-
meters of an unconfined aquifer by dimensional analysise He
stated that, when the ratio of drawdown to total hydraulic
head in an unconfined aquifer is small, confined aquifer rela-
tion may be applied to unconfined aquifer transient flow
problems. If this ratio is large, use.of the method which does
not count for the change in flow thickness about a well in
an unconfined aquifer causes inaccuracies in the values deter-
mined for aquifer parameters. Hence, he claims that based
upon the flow equation of an unconfined homogeneous, isotropic,
infinite aquifer, he obtained a more general and less approxi-~
mate method of the aquifer paramecter detérminrtion- He started
with the equations

S
1o edhy _Spon
o (0T 5P = £5E +(2:3)

ir
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and ended up with the following new equation:

2 .
d"w 1 1 dw
et + + - p—ad O . s o0 204
dwg" ( W W ) d | ( )
where:?
9‘- h/b ;'w = }?; w = r2/4Yt and Y = %p

y

The newly obtained equation has the following transformed

boundary conditions:

1im \«,j—w (lb) = l . 000(205)
m—4§m
. dw Q : _
lim w = oao(2c6)
W~ run?
¥— 0

Based on his model, he developed a type curve procedure for

the test pumping analysis.

In 1969, Taylor and Luthin proposed a computer method
for the transient analysis of water table aquifers. They
stated that in analyzing drawdown for an unconfined aq@ifer,
some imported parameters which are to be incorporated in the
study are the relationships among water content (8); the
aquifer hydraulic conductivity (k), and the capiliary pressure
head (H) of the unsaturated portion of the aguifere. The method
they have presented takes into account the properties of the
unsaturated portion of the aguifer and the contribution of

vertical flow. Based on the following equations:

k 0@ o
o d o) :
T 3¢t 37 (ko 5?) + 53'(ko 3%) = 0 [saturated portion]

000(207)
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ﬁiw
°K§
ory

=(k %20 + 5= (k QQ) = %% [unsaturated portion]

vee(2.8)

They prepared the finite difference schemes for the above
equations, which could be solved with the help of the digitsl

computers. The parameters of the above equatiions are defined

as ¢

it

P/Y + z (the hydraulic head)
H

]

P/Y (the capiliary head)

© is the water content which is related to the capiliary

head by the relation :

]

"

0,/(4E%1) ; & = Constant C eee(249)
k = ko/(AH3+1) 000(2-10)

and k  and k represents the permeabilities of the saturated

and unsaturated zones respectively.

In 1971, Boﬁlton exfended his theory of delayed Vield.
In the extension, allowance for delayed yield invelves four
parameters as compared with two in the original theory. The
pump and obscrvations wellsmay penetrate the aquifer to any
depthe The theory assumes that the aquifef and water are
incompressible and that the drawdown of the water table is
smalle In the revised theory, he included the vertical compo-

nent of the velocity of pore water approaching the well.

In 1972, Streltsova based her analysis of delayed water
table responge on the leakage owing to vertical hydraulic’
gradient, contrary to Boulton's analysis which was based on
the allowance for delayed yield from storage. She assumed

the aquifer to be compressiblce
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In the same year (1972), Neuman proposed an analytical
model for the delayed yield process. He claimed that his
approach differs from that of Boulton (1954, 1963, 1970) and
Boulton and Pontin(1971)in that itis based only on well defin=
ed physical parameters of the aquifer systems Therefore, it
provides a possible physical explanation for the mechanism
of delayed water table response and eliminates the conceptual
difficulties encountered with Boulton's theory of delayed

yield from storage above the water table.

In 1973, Boulton published a paper in which he derived
equations for the flow to a pumped well in an aguifer having
uniform anisotropy and overlain by a low permeability‘aquitardg
The water table is assumed to be located in the aquatard.
Drainage from the capiliary zone above the water table is
taken into accounts Cooley and Case and many others claimed
that the drainage from the unsaturated zone above a falling
water table has only a minor effect on the flow in the aquifer.
But, Boulton showed that the unsaturated and nearly saturated
zones above a falling water table may be an important factor.
The necessary condition is the existance of a stratum in the
vicinity of the water table having much smaller permeability
then the main aquifere. For the derivétion of the relations
the following assumptions were made

(1) Aquitard is homogeneous and isotropice

(2) Aquitard and the water contained in it are incompressible.

(3) The main aquifer is compressible and in general aniso-
tropics ‘ '

(4) The flow in the aquitard is verticals



13
(5) The pumped well completely penetrates the aguifer which
is underlain by a horizontal impermeable layers
(6) The well is pumped at constant rate.
(7) Radius of the well is small.

Starting with :

A2 ‘ : dg. .
9-s . L 98y _ oS —k
T(arz + T ar) = SC ‘a“% ku Sz 000(2011)

he ended up with the same equation as that of his 1955 paper,
which is ~ '

2 t
87s L1 9sy _ ds ds ~a(t~7)
T(er +330) =S, 3¢+ @ sy(f) 5= e o dTess(212)

He has derived relations for the determination of the thick-
nesses of the unsaturated and nearly saturated zones above
the water table.

In 1975, Neuman published é paper to show how his new
theory (1972, 1973, 1974) can be applied for the determina-
tion of the hydraulic characteristics»of unisotropic, uncon-
fined aquifers from pumping test datae. A distinction is made
between the case in which the pumping well and the observa-
tion well are perforated throughout the saturated thickness
of the aguifer and the case in which at least one of these
wells is partially penetrating. A4 mathematical relationship
between Boulton's delay index (1/a) and other measurable
physical parameters was derivede. This relationship showed
that contrary to the assumption of Boulton, a is not a
characteristic constant of the aquifer, but decreases linearly
with the logarithm of r, the radial distance from the
pumped welle
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In 1976, a numerical procedure for the test pumping
analysis was proposed by Rushton-.and Chan. They started wifh
the derivation of the model for confined aquifer and then
modified their model to take care of unconfined aquifer, with
the inclusion of the delayed yield. Their medel which is a
discrete space/discfete time model is based upon the following

relstion:

(0%

3) 4+

(0%
62]

k

ds
r or ~ Sc

!
3

(bk,

sic

‘g“‘f -+ q 000(2-13)

%
s

e¥
ct

Assuming bkr to be constant and ihtroducing the vafiable

a = In(r), they prepared the discrete space/discrete time
finite difference scheme for the above equations In' the ini-
tial part of derivation, the vertical component of flow was
neglectedes " To orient the model for unconfined aguifer and
include the vertical component of flow, proposals are made to
add |

Qv S, =8
zZ _ b "a . _ - \
maz = TN ; m=b -00(2¢l4/

which is based on the assumption that the vertical velocity of
flow reduces linearly from a maximum at the free surface to
zero at the base of the aquifer, to the left side of equation
(2+13), and replace its right sidevby (SC + Sy) %% 4+ q. These
changes will take care of the vertical velocity as well as the
delayed yield.

In the same year (1976), Streltsova published a commen-
tary paper on the role of the flow. from unsaturated zone and
vertical flow components in draining unconfined formations.

She stated, that it has been possible to show that the charac-

teristic delayed drainage term in the general unconfined flow
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ecuation may be obtained on the basis of only the considera-

tion of the vertical flow components, i.c., with an assump-

tion that there is no delayed yield. Here she wrote that the

slow draining phenomenon is of complex nature.

In 1978, Walton made a comprehensivce analysis of

water table aquifer test pumping data. After surveying all

the work done in the area of unconfined aquifer, he reached

the following conclusions:

(1)
(2)

(3)

(4)

Specific yield is constant.

Flow above the water table in the capiliary zone
plays a negligible role in the response of a water
table aguifer to pumpinge

Flow of water to a water table aguifer is intimately
related to the anisotropy of the aquifer.

Under water table conditions, ground water level
initially declines with pumping an accordance with
non-leaky artisien aquifer oquations, the effective
storage coefficient being equal to So' At large
times, non-leaky artisian aquifer equations again
apply, the effective storage coefficient now being
equal to (SC + Sy)5 In both cases flow is subs-

tantially radial. During intermediate times ground

water level decline are controlled by vertical com-
ponent of flow. He accepted the following relations
for the practical purpose of the test pumping data

analysis:
S = Z'Y%T W(UA’UB”S) 0'00(2015)
where:rzsc | |
Uy = 775 (applicable for small values of time)
2

S,
Ug = ZT?L (applicable for large values of time)
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In same year (1978), Lakshminarayan and Rajagopalan
published a paper on the digitél model studies of unsteady
state radiel flow to partially penetrating wells in unconfined,
unisotropic aquifers. They ¢laims that their work is an improve-
ment on an earlier numerical solution reported by Streltsova
end Rushton (1973) and in which compressibility and anisotropy
of the aquifer as wéll as partial penetration, have also been
taken into accounts They further claim that attention has been
focused on the utility of the digital model for aquifer test

data analysis. The basic equation on which they have based

their analysis is:

2 2
¢h  12dh gh _ gh ves(De
kr( arz +_r br) + kz 622 - Ss ot (2.16)

They are characterizing different aquifer conditions by parti-

cular combinations of:

_ 2, =
¢y = kr/kz (b/r) | and ¢, = Sy/SSb

which are reciprocal of the Neuman's ; &nd oc.As far as the
analysis of test pumping data is concerned, they are computing
values of the head for the different trial values of Ss, S., k

y i
and kr' Their termination criteria is the least difference

Z

between the observed head at a specific time and calculated
head at that time.
In 1980, L. Rolfes presented a numerical method for

the calculation of the average drawdown in a fully penetrating
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observation well in an unconfined aquifer. His numerical
‘method is based on the Neuman's equation for the average

drawdown in an observation well.

According to the literatures, there are three powerful
theories on the transient unconfined flow with delayed yield:
Boulton's, Streltsova's and Neuman'se. The first two of these
theories are presented in a bit of detail in the remainder
~ portion of this chapter, but Neuman's ~theory which is the basis

of our work is presented as 2 separate chapter.

2.2 BOULTON'S THEORY

As it was pointed out earlier also, Boulton (1953) for
the first time introduced to the technical literature the
term !'delayed yield', to explain the slow draining behaviour of
water table aquifers. To take account of this phenomenon,
he assumed that the drainage to the water table due to a.lower—
ing 6s of water table between the times T and ( 7T+ 8T ) since

pumping started consists of:

]

(1) a volume S, s of water instantaneously released from

storage per unit horizontal area; and

(ii) a delayed yield from storage per unit horizontal area
at any time t,(t > ) from the start of pumping

&8 « Sy e"“(t‘c)

where o is an empirical constant. It follows that the total

volume of delayed yield per unit drawdown and per unit horizontal
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o ;-oc('t-‘b') B :
aSYi[ e . d'r:-sy eee(2.17)

and thus the total coefficient of storage is Se * Sy = U-SC-

He concluded that the appropriate cqurtion for drawdown in
an unconfined aquifer is

2 g
o8, Losy_ 4 05 35 ~a(t~7)

t= 7 000(2018)

where the last term on the right side denotes the rate of
delayed yield per unit horizontal area at time t. For the
special case when N—> « , he found the following solution for

 the above équation

oo

' 2
Q r 1 atx dx
s =g 2 H(r/B)x] [1- —5— exp(- )-e] =
Ty e x“+1 x%+1 x
cee(2.10)
where: ‘
x2 2
£ = ~5— exp [~ 1t (x%+1)] eee(2.20)
x+1

and 3 B = }TVasy

According to Boulton, a, is an empirical constant, the
reverse of which (1/a) he called the delay index. Since he
seés the reason for the delay in yield, in the flow of unsatu-
rated zone above the falling water table; hence, there must be
o specific time at which this delayed yield should cease to be
effective. For the calculation of this\time (to), he prepared
2 curve of r/B Vs. values of at, (Fig. (2+1). For the known

or assumed values of r/B, one enters the curve reads the
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corresponding value of ato, knowing the wvalue of «, to is

calculeted.
Boulton noted that the determination of formation

constants through his procedure (type curve prepared on the

N}

(.
O

(4]

VALUES OF a tg

e

a4

2 r"rm;‘"».z’ﬁ. 1 ’"‘"!Qy ga!?ﬁgm @’ Eeg;‘..... -
CJ S N : !

0 3

1 2
, VALUES OF y/B
Fig. (2+1): Curve for Estimation Time, t,» when Delayed
Yield Ceases to Influence Drawdown

basis of equation (2.19))allows for the apparent variation in
the coefficient of storage with time during the early part

of a pumping test at constant discharge, but does not predict
the variation in the coefficient of storage with distance from

the well which was observed by wWalton and others.

The formarly presented theory which is identical with
the Theis nonequilibrium theory, when the effect of delayed
yield is negligible, ignores the vertical velocity component
of the pore water approaching the welle This limitation may

be important particularly in anisotropic aquifers having much
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greater horizontal than vertical permeability. Later (1971),

he exteuaded his theory of delayed yield to overcome the above
limitation. His newly developed equation contains four para-
meters instead of two in the original theory. From laboratory
tests carried at the University of Sheffield, U.K,, he inferred
that in the anisotropic beds of low vertical permeability imme-~
diately above the declining water table, the rate of drainage
would be much smaller and would occur for a much longer time.
Moreover in his extended work, he takes care of pnrtisl penetra-
tion also. Starting again with the equation of continuicy of

incompressible fluids

2 2
A =LL 182,30 o e (2020)
20%  p dy

where: ,

g = 327- -1 3 andy is the depth of any point
below undiSturbgd water table divided by b, which must be
satisfied for o

0 <P , 0Ly &1l and the following initial

and boundary conditions :

; By Q . /
p —> 0
%% = 03 y=1
¢-$ 0 asP — « 0LvyX 1
g= 0 when t =0 and v =0 0 ¢ P < oo

»

he continues as under.
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If V denotes the rate of drainage accorss unit héri—
zontal area of fhe water table at time t, v 1is assumed to
consist of two parts:

(i) a drainage rate at time t, Vy = -b S_, d@/dt due

to water instantaneously released from storage; and

(ii) s drainage rate v, due to delayed yield of water
from storages The part of V, only due to lowering -hé@ of water
table between time t' and t'+6t' is:

~ary (t=t") ~a(t=t")
00.(2421)
where aq and o, are empirical constantse Assemblage of the

above relations, will result in the following time dependent

boundary equation 3

o T ! - - |) .
o0 _ 1 of T g pylt=t?) T g Bo(7-7 e
8y ~ Tip 97 T 9 { ot © AT+ oy A 8t % et
‘ T :T! T = 'U' 000(2022>
when y =0

For the detailed derivation and solution of equation (2.20),
under the above explained boundary and initial conditions,
which results in an equation for the drawdown to account for
partial penetration as well as the effect of the vertical

velocity, the reader is referred to Boulton, 1971.
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2.3 STRELTSOVA'S THEORY :

Streltsova is trying to present another possible explana-
tion for the phenomenon df delayed aquifer drainage. This !
explenation is based on the allowance for leakage owing
to vertical hydraulic gradients. These vertical gradients
are assumed to be at a rate proportional to the difference
of the mean and the free surface heads (drawdowns) of the
aquifer. The duration of the existance of such leakage in
unconfined aquifer since pumping began represents the transient
process of reestablishing the equilibrium, i.e. the process
of setting up a relatively uniform distribution of the head
in the vertical directione. The isopiezometric surface appro-
ximates to vertical cylinderical surfaces and the Theis
solution can be applied.

To explain the physical nature of delayed drainage, she
states that when a well starts discharging, the elevation of
water in the well.suddenly drops and at the initial instants
results in a discontinuity in head between the falling water
table and the level of the water in the welle The water in the
vicinity of the well having become suspended, starts moving
downward due to gravity gradientse. Therefore the flow to a
a well, perticularly during the early stages of pumping will
be strictly three dimensional due to the considerable influence
of the vertical gradients. This water moviﬂg downward causes
leakage at a variable rate, proportional to the difference
vbetween the water table which gradually drops and the mean head

of considered vertical surface. The leakage will therecefore



23

be the.cause of the diminishing rate of drainage or the slow
draini: g of the soil around the well. Sho concludes that the
vertically moving water adds to the horizontal flow and thus

decrcases the lowering rate of the water tablee.

The vertical gradients which causes the vertical flow
is maximum in the vicinity of the well and as the distance
from the well increases and also as the times keeps going on,
these gradients and consequenfly the wvertical flow keeps on
decreasing and at some time becomes negligible. After that
~the ocontribution of the véftical flow ceased to be effective,
the flow can essentially be considered horizontal and hence

of the nearly uniform distribution of head.

She states that the problem of unsteady radial flow
towards a discharging well tapping an unconfined aquifer of
infinite extent and finite thickness, requires the solution

of the following systém of partial differcntial equations:

2 ds
(9.8 . L 9sy _ oS ] ces(24

R 57 = Sc Tt Sy 3% (2.23)

650

ST = - kz/sy. aso/az ses(2.24)
with the initial conditions of :

s(r,0) = SO(I‘,O) , ~ ees(2.25)
and boundary condition of :

Q@ = 2nkbr %% 3 (r = rw—f>0) eoe(2426)

Thrmough the use of finite differencce approximation and the
Laplace transform, the following generalized form of equation

(2+23) was obtained =
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t
% , 138 g 35, “a(t=t) 38 ..

where, a which is named as the vertical diffisivity of the
aquifer and is the ratio of the specific vertical conductivity
(kz/bz) and the specific yield (Sy) of the aquifer, charactcri-

zes the rate of free surface change.

Bquation (2.27) is completely of the same form as the
one obtained by Boulton (1955) for the unconfined flow with
delayed yield. But it is to be noted that the meaning of the
coefficients and parameters is completely different. The
parameters is completely different. The parameter @ is no

more the constant reciprocsl of the delay index.

In the above derivation the effect of the unsaturated
flow is neglccted and the whole delayed drainage process is
explained only through the consideration of vertical compbnent
of flow. Later (1976), she started giving credit to the un-
saturated flow alsoe She stated that the genceral differential
equation for anisotropic water table aquifers, whose radial

flow is éugmented from cbove by an amount Vz per unit .area 1is

, 2
aS = “"""b 2 l""""bs oo .
S, 55 =T (ar2 +E39 TV, . (2+28)
She found the general equation'for v, as i
' t -y(t~T) s
AT PR on(229)
t="1
where
« By » ,
Y = - 3 and B is the vertical diffisuvity of the
atB,, v

capiliary leyer ( = Sk;.z)'

y

The general equation of the
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unconfined flow with a capiliary surface taken into account

is ¢
T(é..z_%+l§,§ ;s 9 . v s It e~V(t=), 25 4, (2.30)
arz rar = Ca-t yo L at. LK L]

t=7

To be able to make a concluding comment on the above
gquation, lets consider the following relation :

1 _ 1, 1.
Y"a+BV

eee(2.31)
The above relation reveals a simple interpretation of the
physicalAmechanism of the contribution of flow of the. two
zones to the main flows Equation (2431) actually rebresents
the sum of the seepage resistances overcome by the flow in
the vertical direction to augment the horizontal flows For
the solution of equation (2.30), one can consult Boulton

(1971).



CHAPTER 3
NEUMAN'S THEORY

3+1 GENERAL

Walton (1960) observed that

''* Three distinct segments of the time drawdown curve
may be recognized under water table conditions. Unconfined
stratified sediments oftcn react to pumping for a short time
after pumping begins, as would an artisian aquifere. Gravity
drainage is not immediate but water is released instantaneous-
ly from storage by the compaction of the aquifer and its
associated beds and by the expansion of the water itself. The
second segment of the time dfawdown curve represents the
intermediate stage in the decline of water levels when the
cone of depression slows in its rate of expansion as it is
replanished by gravity drainage of sedimentse. The slope of
time drawdown curve decreases as it reflects the presence of
recharge in the form of interstitial sforage in the vicinity
of the pumped welle Test data deviates markedly from the
nonequilibrium theory during the sebond segment which may
start from several minutes to several days after pumping
starts, depending largely upon aguifer conditions, represents
the period during which the time drawdown curves conform clo-

sely to the nonequilibrium type curves'' .

Accepting the above findings of Walton, Neuman comments
on thc theory proposed by Boulton to explain the unusual

behaviour of unconfined aquifers as follows :
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Boulton's (1955) semiempirical model which is capable
to reproduce all three segments of the time drawdown curve may
lead to difficulties in practice, because his coefficient ¢,
being devoid of any physical meaning, can not be guaranteed
to remain constant. He (1963) himself conceeded, that although
his method allows for the apparent variation in the coeffi~
cient of storage with time during the early part of a pumping
test, does not predict the variation in the coefficient of
storage which has been noted by Walton and other investiga-
torse Neuman explains such inconsistancies between the model
and the actual field data by the variable nature of «, which

was assumed to be constant by Boultone

Many investigators seek the reason for delay in yield
in the unsaturated flow above the water table. Some of these
investigators are : Youngs and Smiles, 1963; Vochand, 19633
Vauchad and Thony, 19693 dos Santos and Youngs, 19693 Youngs,
1969 and Cooley, 1971. These investigators are stressing on
the importance of the unsaturated flow and hence claiming thct
the unsaturated flow plays a predominant role in the phenomenon
of delayed yielde In 1971, Bacster et ale wrote that many of
these models. give distorted picture which tends to exaggerate

greatly the importance of the unsaturated flowe

- Neuman (1972) introduced an enalytical approach to
flow in unconfined aquifers. This new approach is capable
of reproducing all the three segments of the time drawdown
curve without recourse to the unsaturated zone. Neuman's

\

appfoach makes allowance for the vertical gradient and aquifer
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anisotropy. Since his approach applies to both rise and fall
of water table; therefore, he replaced the term'delayed yield'

by the broader term of 'delayed'water table response'.

3.2 THEORETICAL DEVELOPMENT

3¢2¢1 Full Penetration
The following assumptions are male in the theoretical
development :

(1) The aguifer is infinite in lateral extent and lies on
an impermeable horizontal layer. |

(2) The aquifer material is homogeneous but anisotropice

(3) The principal permeabilities are oriented parallel‘to
the coordinate axes.

(4) Well is fully penetrating and is discharging at a
constant rate.

(5) Well is taken as a 1line sink, which means neglecting
the presence of a seepage face and the well storage.

| Based on the stated assunptions, Neuman and Witherspooﬁ

(1970) , found the following governing equation for the flow in

an unconfined aquifer :

2 2 N
kr-Z-f k%924 kz-Z-;-g--,- sy % eee(3.1)
0<z<s
The boundary and initial conditions are :
s(r,z,0) =0 | eee(3:2)
((r,0) =D | eoe(3:3)
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S(ew,z,t) = 0O 'f'(3'4)

22 (r,0,t)=0 cee(305)

k. §8nk, §8 0, = (5, 82 1) n_ at(r,2,t) +ee(346)

(r,t) = b-s({r,z,t) | ' - " eee(3e7)

]Jmafgr Q% oGz = - 5%?““ cee(3:8)
(o]

r— 0

Some of the parameters of the above equations are shown
in Fig. (3.1).

Observation o Q
well ;f’
i

03]
vify
B
%
—

—-.—‘.-..-—--_r—;’--—-_..—-—‘_—
i lal.

y -

Lo O i i i e v i (v e e GV A A D Y A > I

Figs (3.1) : Schematic diagram of unconfined aquifer
with fully penetrating pumped well

Equations ((3+1) = (3.8)) are approximately linearized
by.simply shifting the boundary c¢ondition from the free sur-
face to the horizontal plane, z=b, which causes the elimina-
tion of g from the above mentioned equationse. In this pro-

cess it is assumed that the aquifer is thick enough and also
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the drawdown remains much smaller in cdmparison tog e« In the
absence of infiltration from equations ((3.1)-(3.8)), the

followingvequations are obtained :

2 2

07s 1l 0s 0°s _ 1 J8

s L9s oy o8 . L 98 0 ¢ z2<Db eee(3.9)
ar2 r or D az2 Qg ot
s(r,z’,O) =0 0~¢(3010)
S(w,z,t) = 000(3011)
2(r,0,t)= 0 eee(3.12)
0S 1 S, - o
8;(r,b,t)=-§; 93(r,b,t) | vee(3.13)

b .

; 985 4z = - .8 _. .
]Jﬂl{ r ar-dz = ST | cee(3e14)
r-30
where

k,
ag = kr/sc s and Oy = §;

After the application of Laplace and Hankel transforms

to equations ((3¢9)-(3¢14)) and carrying on thc mathematical simp-
lifications,Neuman obtained the following first order approxima-

tion to the original initial boundary value problem in terns

of five dimensionless parameters o k. and tS- The

, Zp? Ppr ¥p
obtained solution is '

s(ryz,t) = Egﬁ‘F 4v JO(Vk%/Q)[wO(V)+ T w (V)] av .ee(3.15)
O —

n=1

where ( , 0
V) = 11~exp[—tSkD(V2~Bo)]j cosh(BoszD) L (3416)
° [v3+ (1+0) 8 2~ [ (v*~p2) *b5/0]} cosn(p bp)
2 .2 )
Wh(V) _ {1-exp[—tSkD(V'+Bn)]} cos (panzD) cen(3017)

{VQ-(1+c)ﬁ§-[(v2+s§)2b%/c]} cos(g,bp)
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and Fo? ﬁn are the roots of the following equations :

O‘!Q
»

8, sinh(BObD)-(VQ-Bg)cosh(BObD]=O ;B2 < V2 ..u(3.18)

Q

]

b= B sin(p,bpy) + (V2+§2) cos(f,bp)=0 ;

(n - -) T < B, by < nm " ees(3.19)

Average drawdown in an observation well whose perfora-
tion extends from elevation z, to z, (Fig. (3.1)) is simply the

average over that vertical distance and is given by

2

2 .
J s(r,z,t) dz eee!3420)
2q '

This drawdown could be calculated by the use of (3.15)
and making use of the new expressions for Wb and uh, which
arc obtained after the averaging processe. For a fully penetra-

ting observation well these expressions are @
s(r,2,t) = g% [ 4y 3 (YD [U ()4 T U (y)1dy  +ee(3.152)
i 4uT o 7 YoP oY nop D

{l—exp[Qtsﬁ(Y2-Yg2]} tanh(Yo)

Yoly) = {y2+(l+c) 'Y2-['(y2- Y2)/0]} (302
1 —(1+0) Yn—[(y + ’Yn)/G]f n
where:

o
T
it

>
kp/by,

U, (¥) = 1/62 W (V) 5 U (y) = 1/63 W(V)

Yo = BoPp 3 Ty = By Py

w(')(v) and w;l(v) are the new forms of wo(v) and wn(v).

According to the above substitutions Yo and Y, are the

roots of the equations:
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oY, sinh(Yo) - (y2—Y§) cosh(Yo) =0 3

Yg < y2 ees(3.18a)

. 2 .2 P

T Y, 51n(Yn) + (y vYn) oos(Yn) =0 3
(n-— %)n £ ‘Yn { N1 ...(3.’19&)

3+2+2 Partial Penetration

Newnsn (1974) extended his formulation of unconfined
flow to take into account the effect of pértial penetration
also. For the theoretical derivation, he started with equations
((.3-1)=(38)), just with the addition of one more constraint
and introducing a slight change in (3+8) If we take into con-
sideration equations ((3.,1)=(3.8)) and just rename them as _
((3.1~(3-8'), the new (3-8') and the one extra conztraints
are as follows: |

min(b-d,?%)

Do ds Q
1lm ‘ Te women o dz = = ) ...(3.8')
‘ib_/( , or Eﬂ:kr . :
r—>0
%-;(O,z,t) =0 0<zXg b=f{ 3 b-d £z £ ¢ ees(3.91)

It is to be noted that the assumptions made for the
case of full penetration are considered in the case of partial
penetration also. By simply shifting the boundary oonditions
from the free surface to the horizontal plancz, z=b(Fige(3.2)),

equations((3-1')-(3.9')) could be approximated as

2 2
d7s 1l ds d7s 1l 9Js
—r st + crm esmamem + k T T Rawe ¢ obwast ; O < Z < b . 00.(3010')
ar2 ror D 622 aslaz
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Fige (3+2) ¢ Schematic diagram of unconfined aquifer
" with partially penetrating wells

s(r,z,0) = 0O | | eee(3.111)
S(w,z,t) = O | cee(3.121)
%% (ry0,t)=0 ees(3.13")
%%(r,b,t) = - %; %%(r,b,t) eee(3.14)
%%(O,z,t) =0 at 0<z<{b=-f{ ;3 b-dgzgD ..;(3.15')

a further approximation is introduced by assuming that flux
along the perforated section of the well is uniform, and this

changes (3.8') to the form :

. Q‘s___ .,WQ P - — e ne .
lim r $= = - SRR (Y= aty, b=f < z < b-d (3.16)
r—>0

After the application of Laplace and Hankel's transforms

to ((3¢10')=(316')) and carrying on the necessary mathematical



34

operations and simplifications, the following solution in
terms of six dimensionless parameters : o, 8, zD,k’D, Gy by

or ty was obtained as :

) [s=] 1 ,
s(r,z,t) = go7 f 4y J,(yp /2

~where:

)[Uo(y)+n§1 Un(y)]dy ...(3.1{)

{l-exp[~t ply —Y } cosh(Y zp)
[Y2+(l+d)Yg"(y2~Y§)2/c] cosh(Y )
{Sinh[Yo(l-dD)]—sinh[YO(1~iD)]}

( {p=dy ) sinh(Y)

U ly) =

see(3.18")

{i-exp[—t P(y =Y )}LCOQ(Y n%p
[y?-(1+0) Y2 ~(y% Yy) Y2)2/6] cos(Y,)
{einl1,(1-ap) J-sinlY, (1-{ ) 1}

U (y) =

ees(3419")

The terms Y, and Y, are the roots of the equations (3.182a)
E 2
and (3.19a).

Average Drawdown in QObservation Well

The same as in the case of full penetration, the avera-
ge drawdown is obtained by simple averaging on the vertical
distance of perforation between z; and z, (Figs+(3+2)). 821,22
(equation (3.20)) can be calculated from (3.17'), just by
redefiningv(é 18') and (3.19') in the following manners:

2 .
{i-exo[ t (y =Y )] [51nh(Yoz2D) -sinh(Y le)]
[y +<1+o—)v§~<y —v§> /6] eoun (V)

U (y) =

{sinh[Yo(l-dD)J-sinh[Yo(l-ID)]}
(22D-21D) L (ID—dD) sinh(YO)
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{l~exp[-’csﬁ (y%+Y2)] ]r [sin(Y,z,p) -sin(vyz )]
[ y2~(1+0)Y2=~(y%72)%/0] cosn (1,)

U, (y) =

{Sm[yn(l_dD)]-sin[Yn(l-{(D) ]} eee(3.24)

(zzD-le) n ((D-dD) sin (Yn)'

In 1964, Hantush derived the governing equation for
flow to a partially penetrating well in a nonleaky artisian fquifers
This equation was later solved by Andrin Viscosky of the

Illinois Stat Water Supply Department.

In 1967, Dagan presented a solution for the flow to 2
partially penetrating well in an inccompressible unconfined
aguifers. Through a numerical example Neuman compares his own.
solution in which the effect of delayed water table
response is taken into the consideration, with that of
Hantush (1964) for a confined elastic aquifer and Dagan (1967a,b)
for an unconfined rigid aquifer. The result of this comparison

in shown in Fige (3.3).

. The time drawdown curve in Fig. (3.3) suggests that

water is released from storage in three stages, as discusscd by
Walton (1960). At the early values of time, the curve approached
Hentush's solution and thus indicates that water is released
from storage primarily by éompaction of the aquifer material

and expansion of the'water- During the second stage, gravity
drainage becomes important ond its effect is similar to that

of leakage from a neerby source. Neuman in 1972 showed that

the smaller the o, the larger the effect of gravity drainage

is and thereforc the more promounced this leakage, is.
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Froimm Fig. (3.3) it can be concluded, that at early
stages of time the delayed response solution approaches the
Hantush's solution and as the time increases, the effect of
elastic storége at a point under consideration dissipates
completely, hence, at 1atér times; the delayed response solu-
tion approaches that of Dagan's solution. In other words,
Hantush's solution becomes envelop at early times and Dagon's

solution becomes envelp at later times.

3.3 RELATION BETWEEN BOULTON'S DELAY INDEX (1/a)
AND AQUIFER CHARACTERISTICS
Neuman (1975) has developed the following relation

between the Boulton's o, and aquifer parameters :

-

K, ' kDr2
o = §;“B [3.063 = 0.567 log ( “;5- )] s+e(3.25)

He claims that the above relation has a very high correlation

coefficient « (p2 = 0.99).

3.4 ADJUSTMENT FOR THE DECREASED SATURATED
THICKNESS OF THE AQUIFER

Derivation of (3;15)15 based on the assumption that the

decline of the water table remains small in comparison to the
unsaturated thickness of the aguifere. For cases where this
is not sc, Jacob (1944) recommended that prior to cnalysis of

pumping test data the drawdowns be corrected according to :
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2 e
Sn = S - (S /2b) 000(\)026 )
Sguation (3.26 ) was recommended +to be used for such =
purpose by Walton(1978) also. But Neumsn (1975) is meking
the following comment on it
Bouation (3.26 ) was derived by adopting the Dupit
assumptions and in particular by assuming that the drawdowns
nlong any vertical are always egual to the drawdown of the

water teble S Tt is evident that the Dupit assumptions

WT*
do not hold in an unconfined aquifer with delayed gravity
response as long as the drawdown data do not fall on the late
Theis curves This means that Jacob's correction scheme is
strictly applicable only to the late drawdown data and is not
applicable tg the early and intermediate déta. It is there-
fore recommended that (3.26) be used onlf in the determination

of T and Sy from the late drawdown data and not in the deter—

minetion of §, T and S from the early and intermediate data.



CHAPTER 4
MODEL'S NUMERICAL ORIENTATION

4.1 GENERAL

As it has been presented in the previous chapter,
Neuman (1972) proposed an analytical model for the flow to
completely penetrating wells and later (1974), he modified his
previou; model for <the flow to partially penetrating wells in
an unconfined aquifer with the consideration of the delayed
aquifer response; He derived for both of the cases express-
ions for ‘the average drawdown in the observation wells. Since
full penetration is a special case of partial penetration;
hence, the work which will be presented here is based upon his
expression for drawdown in the case of partially penetrating
wellse.

Although the expression for the average drawdown is gi =

in a closed form, but still some difficulties like those stat

below arises in its numerical evaluation: _%
(1) The ealculation of an infinite integral e
(2)  The summation of an infinite series - L
(3) The instability in some of the expressions; w.u ~%

(4) The difficulty with the machine because of the much
higher values of some of the +terms for some critical
values of the parameterse.

In present chepter, step by step, it is shown that how

these difficulties are partially or fully removed.
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4.2 NUMERICAL METHOD

Let's once again bring to view the expression for the

average drawdown in a partially penetrating observation well:

s(rvt) = g8 4y 3,050, « Eoumlar )
o) n=

¢ (7)o {lfexp[ntsg(yQ—Yg)]} [sinh(Y z, ) sinh(Y le)]
[v2 + (1+0) ¥2 - (y2~v2)%/c] CO“h(YO)
{sinh[v (1~d )] - sinh[Y (1-f )}}

.(z2b -2y D Y (( dD) 81nh(Y )

cee(4.2)

{1—exp[ -t (y +Y2)]1r [sin(vr’l 2pp)-sin(Y 2y )]
[ 2 - (1+0) v2 - (y2¥2)?/0 ] cos(yy)

U (y) =

r .
- ol (1-a)] - sim (v, (1-() 1} o (83)
(ZQD-le) Yy (ID_ dD) sin Y,

and, YO and Y, are the roots of the equastions :

. 2 .2
oY, Slnh(Yo)—(y —YO)'cosh(Yo)

]
(@]
-9
-

< y .90(4.4-}

o v, sin (Y )+(y +Y2) cos (v,) = 03 (2n-1)m/2 < ¥, < nx
) eoe(445)
To obtain s, (4.1.) has to be evaluated. Evaluation of
(441) for given values of o, 3, tgs Zypr Zopy ID and dp

implies the numerical integration of the integrand :

a4y J U 5 U ' eve(4e6)
y I (y) U (¥) * I L(¥) |

over the interval (0, ], which in turn implies the evaluation

of (4+6) for meny values of y , theoretically ranging from
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zero to infinity. To evaluate (4.6) for specific values of

(y) we proceed as follows.

4¢2¢1 Calculation of Yo and Yn :

For 2 particular vzlue of (y), the values of Y, end Y,
are to be determined through Newton~Raphson iteration method.

Eqﬁations to be solved are (4.4) and (4.5).

Iteration schemes are :

(ke1) _ 0 205 (0) |
v = v - ~w«9TET~;with v =y coe(4e7)
'2(vy)
and (k)
(erl) (k) F00RT) 1
Yn =Yy - W,Wlth Ylgo). = (n- §)n eee(4.8)
OR =according to Rolfes (1980) :
(k) k
(k1) o Y/ tenh(Yy) o (0)
Y =y - swith v =Yy ‘ "‘(4'9)
0 v + ngj o
and ' (%)
k
Yék+1) = (n- %)n + arctan ( = «ee(4.10)

7 )
y2+(Y£k))2

with Yéo) = (n- %) =

where k=0, 1, 2, 3 eeees
As far as the determination'of Yn is concermed both of
the methods could safely be used, but in the case of YO, there

is some difficulty with Newton-Raphson scheme, because for

lgher vailues o Y wnica are unavolda e in e cCalculations
high 1 £ Y, (whicl idable in the calculations)
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the terms sinh(Y_) and coh(Y ) will blow up beyond the ability
of the machine. Hence, in the case of Yo’ Rolfes procedure

is recommended. Moreover it was noted that Newton-Raphson
method is efficient for larger values of o(21l) and Rolfes

method is efficient for smaller values of o.

4+.2.2 New Forms of U0 and Un :

Application of the transformetior x = 31/2 » to equa~
tions (4.2) and (4.3) results in :

Uy(y) = 8 U (x) 5 end

U (y) = B Uy ()
where : . .
ﬁo(x) _ {l—exp[-ts(xz—ﬁyg)}} [Sinh(Yoz2D)~Sinh(Yole)]

[x°+(1+0) g Yc2> - (x*-g 12)%/0p] cosh(¥,)

{Sinh[yo(l_dD)] -~ sinh [Yo(l~{D)]} (4.11)
(zpp-21p) Yoesinn(Y ). (£-dp)

o (1ol (Pev2) ] } [sin(y 2,0)-sin(Y 2, )]
n [Xz—(l't-d) B Y%-—(x2+BY§) 2/63] cQs(Yn)
. {Sin[: ‘Yn(ludD),]—Sin[\“n( l—fD) ]} coe (4' 12)
(ZQD-le) Yn'Sin(Yn) '(XD"dD) ’

The above transformation ,changes (4.4) and (4.5) into

the forms:
2
] 2 2 _ . 2 X
B oy, sinh(Y )=(x“-§ YI) cosh(Y ) =0 ; Y7 < 5 ee0(4.13)

and
g o ¥ sin(Y.) + (x2+ﬁv2) cos(Y.) = 03 (n- l)n < Y. <nn 3 ndl
n n n n ’ 2 n ? L
000(4014)
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4.2.3 Evaluation of Uo(x) :

In relation (4.11), for smsll values of t_, the expre-

SP
ssion exp[—ts(x2-ﬁY§)], will have a value near to 1, hence
upon subtraction from 1 computer will commit error. This
instability will be removed as follows :
From (4.13) we have :

%2 - B Yg =0B Y, tanh(YO)
‘substituting the value of (XQ-BYg) in ecuation (4.11), we will

obtain the expression :

' 1
{1—exp[-ts(cs Y, tanh‘YO)]j[sinh(YOZZD)-sinh(Yole)]
{x2+(l+c) B Yg-[cs Y, tanh(Yg)]z/d ﬁ} cosh(Yo)

GO(X) =

‘ {[sinh[vo(l—dD)]-sinh[Yo(l“fD)]} cee(4.110)
(zyp721p) ¥, (Up=dp) sinh (Y,)

Now (4.11'), could be written in the following numeri-

cally stable form :

GO(X) = A(X)+Ay-4,-44 ceo(4e11)
where
a(x) = ssinh [ t, o B Zo tenh(Y ) I expl ~t,0 B ;O tanh(Y )
/U %%+ (1+0) £ Y2 = 0 ¥2 tanb®(y,)] C eee(4.1112)
i - sinh(YOz2D) - sinh(Yole) | e (401117D)
cosh(YO) :

| sinh[v,(1-ap) J-sinnly (1-f )]
sinh(Y ) |

eee(de11ttc)
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1
(25p721p) Yo p-dp)

A3 = o--(4011” d)
‘As far as machine is concerned, there are still some
difficulties with the evaluation of Uo(k). To remove these

difficulties, we follow like under :
1. Approximation of A(x)

Let's consider the old form of A(x)

l-expl-t. o g Y_ tanh(Y
A(x) = expl-t, o g ¥, tanh(V )]

eee{4.11' a)
x2+(1+c)5 Yg - 0B Yg-tanhQ(Yo)

and let

X =15 0p Y, tanh(Yo)

for smsller values of CX (approx. < 80), relation (4.11''a) ean
be used, but for larger values of CX, machine is having diffi-
culty with the evaluation of the exp term containing this ex-
pression. To remove this problem, for CX > 80, the exponen-
tial term could safely be dropped from (4.11''a) and its

following form could be used :

A(x) = ! | oo (4.15)

x%(1+0) £ Y2 - 0 B Y2 tanh®(Y,)

2. Approximation of Ay Ay and Aj

As far as Ag is concerned, there is no difficulty with
its numerical evaluation, but with A4 and Ay we have the prob-
lem that for higher values of YO(>80), computer can't handle

the values of sinh(YO) and oosh(Yo)- To meke these parts

in the line of calculation for the computer, the following
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procedure is accepted.

Y 2 =Y z Y.z Y z
(eOQD_eOQD)_(eO]-D_e lD)

Al =

for YO > 80, e Yo could safely be dropped from the denominator

~ hence :

Yolzog ) =Yo(zopl)  +Y (29571) =Y (2y5+1)

Ay = ¢ - e - e + e
~Y_(z,5#1) =Y (zl +1)
Again the terms e -and e , could be dropped
and hence A, will become :
-Y,(1-z,p) =Y, (L=z; )
Al = @ o 2D - e o 1D 000(4.16)

Considering the exponential form of A2 )

Joll-dp) o1y (évo(liID) _ Yoy,

Ay =

and following the same procedure as for Al’ for higher values

~of Yo s Ay could be reduced to

Y. dn. =Y [ B
A2 =e o°D - e o"D 000(4017)

Multiplication ofA:L and As will result :

v (1+f )
. =Y (1l+f =2
+ e o D “1D 000(4018)
Since z,p > zpp and ID > dD’ hence Yo(l+[D-le), will

have the largest and Y (1+d )} will have the smallest

D %2D
values among the four powers. If we let :
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| Cy = Yo(l + IO - le) 3 and C, = Yo(l + dD-z2D)
then : '

(i) For cy < 80, (4¢15) could be used.
(ii)  For Cy > 80 and C, < 80, the following approximate form
of A4, is good enough.
172
-Y (1+d =z~.)
A1A2=e 0 D2D , ...(4.19)

(iii) EbrCy > 80 and C, > 80, A1h, could safely be taken

as zero.
Since in the evaluation of Go(x), the product of Ahss
A, and A(x) is involved; hence, to keep some margin for the
negative powered values of A3 and A(x), 60 or even smaller
number is to be used instead of 80 as a limit in the approxi-

mation of AjAye Moreover, the upper limit, 80, .is to be

adjusted according to the capacity of the machine available.

4.2+4 Evaluation of Un(x) :

There are two difficulties in the numerical evaluation
of (4.12).
1. In the expression 1~exp[-ts(x2+§ Yg)] , whenever the
value of ts(x2+5 Yﬁ) gets larger (>80), creates problem with
the machiné. To remove this problem, the term exp[-ts(x2+aY§)]

could safely be dropped whenever ts(x2+BY§) gets targer than

even 20.

2e The term, cos Yn, where Yn?z(n- %)n will cause the
difficulty of near zero denominator. To avoid this, we proceed

as follows :
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From (4.14) we have

sin(Y,)
X2+ Y2

. E—— o T AR

FE,

cos(Yn) = oo (4620)

substitution of (4.20) in (4.12) will ensure numerical stabi-

lity.

4+2+.5 Approximation of £ U_(x) :
n=1

For the approximation of this scrics, thoe method of striight
forward addition as was recommended by Neuman (1972) is accepted.
The number of terms which are to be used in the process of
approximation of this converging series, depends upon the

required degree of accuracys

In our work, we made an attempt to reproduce Neuman's
(1975) tabulated values of drawdown which he had calculated for
the preparation of type curves, with his given values of ¢ and
5 (Chapter 5).

To cut down the computer time, after several trials, with
the acceptance of some tolerable error between ours and that of

the Neumen's values, we accepted the following truncation cri-

teric.
U_(x)
g‘ﬁn,ﬂ..n.,.mm ..S. O.1 : eee (40 21)
T U (%)

n=1 =



48

4.2 6 Approximation of Jo(x) :

For the numerical calculation of Jo(x) its following

polynomial approximation is used.

1. Jo(x) = 1-2.2499997(x/3)2 + 1.2656208(x/3Y4—0-3163866(X/3)6
+0.0444479(%/3)8 ~ 0.0039444(x/3)*0
+0.0002100(%/3)2 +¢;le| < 5x1078
For -3 < x £ 3
2. I (x) =xH2F_ cos(8) for 3¢ x & =
where

£ = 0.79788456 - 0.00000077(3/x) - 0.00552740(3/x)2 -
~ 0.00009512(3/x)° + 0.00137237(3/x)%
- 0.00072805(3/x)° + 0.00014476(3/x)® +¢

lel < 1.6x107% ; and

6 =X - 0.78539816 - 0+04166397(3/x) ~ 0.00003954(3/x)%
+ 0.00262573(3/x)° - 0.00054125(3/x)% -

~ 0.00029333(3/x)° + 0.00013558 (3/x)° +¢

le| < 7%107°

4e%+7 Partial Sum of the Drawdown Integral :
Let X, be the value of x corresponding to the nth zerc

of Jo(x), and let sy be the partial sum, then

o : e \
SN = nT n§ {; 4x JO(X) [ UO(X) +n£1 Un(X)}'dX H XO=O 000(4-22)

From which it is clear that :
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lim Sy = S

N-- o

The above integral could easily be evaluated with the
help of'S8Simpson's Rule. The number of the zerosof the
Bessel's function which are to be_used.in the above approxi-
mation depends upon the required accuracy. As per Neuman (1972)
the use of 20 zerosare accurate enough. For smaller values of
o (510-1) and larger values of t_(3»1), 3<NK10 gives reasonable

accuracys

4.4 DETERMINATION OF AQUIFER PARAMETERS

For the determination of the zquifer parameters through
a digital computer, an algorithm is accepted in which the sum
of the square of residues of the difference of observed and

calculated drawdowns in observation wells is minimized.

The formulated objective function and the constraints

to which it is subjected are as follows:

. NOB ND 5

Min F= £ I (s8C;. - s0..) cee(4423)
i=1 g=1 1
subjected to
Sc & 5¢ max voe(4024)
T < s | eee(4e25)
S, £ 8y nax e oo (4026)
S 2 56 min cee(4e27)
T 2 Tin eee(4e28)
Sy 2S¢ nin eee(4.29)



where

sCij are the calculated, soijare the observed drawdowns

in ith well at jth time, and S S are the

¢ max’ Tmax?’ v max

maximum and S T and S .. are the minimum values of

min y min

Se» T and Sy respectively. To be able to carry on with this

minimization two things have been done @

¢ min’?

Lo Based on the algorithm presented in the previous parts
of this chapter, a subroutine has been prepared which
is able to calculate values of drawdown at any time and
at any radial distance from the pumped well for a known
set of values of aquifer parameters.

2 Since the objective function is nohlinear; thereforec,
for the minimization a nonlinear scheme is used. The
scheme chosen here is the Sequential Unconstrained Mini-
mization Technique (SUMT), which is based on the interior
penalty functione The prepared subroutine for drawdown
calculation, and the subroutine for the above mentioned
minimization have been connected by a short main program
which provides data to the subroutines, and also calls
for the print out of the required results. 4 flow chart
of the drawdown subroutine is presented in Fige. (4.1)« A
brief explenation of the components of the flow chart
are given in Appendix (A).

| 7T
sy 1o o0 TIPSV G BOU LS
te A S



: ) §
—->< SUBROUTINE MARSAL ( A,SES, BET, TS, 220,210,ALD,D01, 3, L, BZ, UZ,UN,QD,T, DRD ) >

y

1 » 1

Il « 2
DRDD = 0°0
1

[ sum -!o-o ]
1

X1 « A (1)

X2 « A (Ie1)

H ¢« A(X2-X1)71¢
XA ¢+ Xte¢+H

' 3

KX xzfz ]
Y

EXTERNAL GMZ
EXTERNAL  GMN

B2Z = BZ (XA):

UZZ s UZ(XA.SEG,BET,TS,220,Z1D0.ALD.001,6M2Z )
UNN = UN (XA, LSEG,BET,VS,Z20,2I0,ALD.DDLGMN )

i

[suMeSUMes % XA % BZZ % (UzZ+ UNN) |  [sumisum 2% xa % B2Z*UZZEUNN)
I o I3 T1ed i

XAz XA+ H

| FSUM = SUM ]

o |

h 4
DRDO:DRDD+ H /3. % { SUM )

.

F .
(| sum /F%um |-CONV [Iv el , 1102

0
[ oRO« (@D /PIE % 7)%0ROD |

( retben )

FIG(4-0: FLOW CHART OF THE SUBRO'UTINE OF THE CALCULATION OF
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CHAPTER 5
MODEL'S APPLICATION AND RESULTS

5.1 CHECKING OF THE MODEL

It was the intension to check the developed routine
with the help of the real life data. Unfortunately, we didn‘t
find the proper data with which the model could be checked.
To show that the routine is working properly, we made an
attempt to reproduce the drawdowns calculated by Neuman in
1975, for the preparation of type curves. Wwe fed to the
routine whatever values of the dimensionless parameters he
had used for the calculations. Those calculations were made
for the fully penetrating wellsj hence, in our calculations
we also assumed  the wells to be fully penetrating. From
the obtained results which are partly presented in Table (5.1),
we came . to know, that the Neuman's values could be reproduced

if appropriate convergence criterias are used.

By convergence criteria we mean where to terminate the

N Xi+l ~
partial sum of the drawdown integral ( £ [ 4xJo(x)[Uo(x)
' - i=1 X5
+ I Un(x)] dx ) and when to truncate the infinite series

n=1

(2}

X Gn(x). The convergence criteria for the partial sum wes
EZ%ed as CON and that for the infinite series as CONV. The
smaller the values of CON and CONV, the longer the computer
time it takes for the calculation of drawdown.

To find a combination of CON and CONV, which will give

reasonably accurate values with the least possible time of
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the computer, several of their combinatiog were tried. The
results of these frials are shown in Table (5¢1). Finally
with the acceptanée of some reasonable difference between
our values and that of Neuman's we accepted CON to be 0.01 an
CONV to be O.l. These values could be changed according to

degree of accuracy required.

5.2 APPLICATION OF THE MODEL

For an illustration of model's application, because
of the lack of real 1life data, with the help of an arbitrarily
assumed set of aquifer parameters a series of drawdowns were
generated for an arbitrarily chosen series of times. The se
drawdowns were generated with the help of the prepared computer
routine. The values of the parameters used in this process
were : S_ = 0.003, T = 1400.0 m?/day and S, = 0.12. The dis-
charge was assumed to be 6000.0 m3/day and the drawdowns were
calculated at a radial distance of 30m from the pdmping welle
The various characteristics of the wells (observation and

pumping) were assumed 2s zy = 50m, z, = 80m, d = 20m,

2
{ = 69.29m, and b = 109.29m.

The generated data was anslysed by the commonly used
Boulton's method as well as through'the proposed nonlinear
optimization scheme with the help of the digital computers

From these analysis the following results were obtained :
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TABLE 5.1 : COMPARISON OF NEUMAN'S VALUES OF S, WITH THOSE
CALCULATED BY THE PROPOSED METHOD FOR § = 0.01
AND ¢ = 1072
Trial CON CONV t, Values of Sy Neunan's  CEU N
e =
6x10™1 5.65x107%  6.33x107%
3.5x10° 1.88x10° 1.88x10°
1 0.1 0.1  1.0x10% 2.61x10°  2.61x10° 0.91
2.0x102 3.23x10° 3.45x10°
1.0x10° 3.23x10° 3.46x10°
6x107T 5.92x107  6.33x107
3.5x10° 1.93x10° 1.88x10°
2 0.1 0.01 1.0x10% 2.66x10° 2.61x10°  1.12
2.0x10° | 3-27x10° 3.45%10°
1.0x10° 3.27x10°  3.46x10°
6x10™% 5.94x10™F  6.33x107%
3.5x10° 1.94x10° 1.88x10°
3 0.1 0.001 1.0x10 1 2.67x10° 2.61x10°  1.82
2.0x10° 3.28x10° 3.45%10°
1.0x10° 3.28x10° 3.46x10°
6x107t 5.94x1071  6.33x107T
3.5x10° . 1.94x10° 1.88x10°
4 0.1 0.0001 1.0x10 *  2.67x10°  2.61x10° 2.92
2.0x10° 3.28x10° 3.45%10°
1.0x10° 3.28x10° 3.46x10°
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Table 5.1 (Contd.)

Trial CON CONV tg Values of Sj ﬁi?ﬁi@’s Gy
by proposed (2o
6x10™% 6.24x107" 6.33x10™t
3.5x10° 1.88x10° 1.88x10°
5 0.0l 0.01  1.0x10% 2.62x10° 2.61x10° 3.03
2.0x102 3.36x10° 3.45x10°
1.0x10° 3.36x10° 3.46x%10°
6x10™ 1 6.26x107% 6.33x107+
3.5x10°  1.89x10° 1.88x10°
6 0.0l 0.001 1.0x10% 2.62x10° © 2.61x10° 5.35
2.0x102 3.37x10° 3.45x10°
1.0x10° 3.37x10° 3.46x10°
6x10% 6.27x10™" 6.33x107T
3.5x10° 1.89x10° 1.88x10°
7 0.01 0.0001 1.0x10% 2.63x10° 2.61x10° 10.71
2.0x10° 3.37x10° 3.45x10°
1.0x10° 3.37x10° 3.46x10°
6x10™+ 5.95%10™% 6.33x107+
3.5x10° 1.81x10° 1.88x10°
8 0.0l 0.1 1.0x10% 2.57x10° 2.61x10° 1.80
2.0x10° 3.31x10° 3.45x10°
1.0x10° 3.31x10° 3.46x10°
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(1) The values of the parameters obtained through the
proposed scheme are :

T=1398 ""2/531 1 S, = C’-l-zf’a,amc.3 S,_=0v00264

3
(2) The values of the parameter obtained through Boulton's
method are : SC =-0.0018, T = 1075 mz/day and
Sy = 0.089.

(3) According to Boulton, the reciprocal of the delay
index (a) remains constant. Neuman showed that a is
not constant, instead, it is linearly related to the
logarithm of the redial distance from the pumping

welle Applying the Neuman's concept, with the assumed
set of parameters? ‘

T = 1400 m?/dey 5, = 0.12 and b= 109.29m
we tried to find the sensitivity of a to the changes
in radial distance.

For the above set of parameters we found, that o will

have a value of a = 6.0761 x 102 s at a radial distance

of 1m from the pumping well, and will decrease to 75% of a,

at a radial distance of 15.3 m to 504 of g at a radial
distance of 234.30 m, to 25#% of a, at radial distance of
3585.93 m; and to zero at a radial distence of 54896.87 m from
the pumping well. Boulton's value of a (=5.70 x 10"58_1)
corresponds to a radial distance of 1.96 m from the pumping

well (Fig. (5.1)).

Drawdown were also generated for the case of fully
penetrating observation and pumping wells for the same serics
of time as used in the case of partially penetrating wells.

The used discharge was 6000.0 m3/day and the calculations werc
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made at a radial distance of 30.0m from the pumping well.

For a comparison, these drawdowns and those for the czse of

partially penetrating wells are given in Table (5.2)+ From

this table it could clearly be seen that for the same dischar-

ge, partial penetration causes greater values of drawdowns.

TABLE 5.2 ¢ GENERATED DRAWDOWNS
Serial Time Fully Penetrating‘ Partially Penetra-~
Noe case ting case
(min) (m) (m) B
1. 1 0.109 0209
2 3 0.293 0.468
3 5 0.389 0.573
4 7 0.446 0.616
5 10 0.500 0.662-
6 12 0.523 .0.682
7 15 0.543 0.704
8 20 0.575 0.727
9 25 0.591 0752
10 30 0.601 0.761
11 35 0609 0.768
12 40 0.615 0.774
13 50 0624 0.782
14 60 0631 0789
15 70 0.638 0796
16 80 0.644 0.802
17 90 0.649 0.808



Table 542 (Contd.)

Serial Time Fully Penetrating Partially Pene-
Noe case trating case
(min) (m) (m)

18 100 0.656 0.814
19 140 0679 0.838
20 160 0+690 | 0.850
21 200 0.714 | 0.872
22 240 0.737 0.895
23 300 0770 0+930
24 340 04792 . 0.952
25 400 0.825 0.985
26 440 0.846 1.007
27 500 0.868 1.039
28 - 600 | 0.919 1.092
29 700 0.969 1.143
30 | 800 1.018 1.193
31 900 1.065 1.225

32 1000 1.111 1.290
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CHAPTER 6
CONCLUSIONS AND SUGGESTIONS

In spite of a lot of theoretical work which has been done
in the area of unconfined aquifers, still there is &
large gap between theory and practice. In the early
times, Theis type curves which are basically for the
analysis of artisian aquifers were also used for the
analysis of the test pumping data of unconfined aquifers.
It was 1955, that Boulton included the slow draining
behaviour of unconfined aguifers in the formulation of
unconfined aguifers radial flow equafions, based on
which in 1966 he prepared the type curves for the analy-
sis of the test pumping data of uncohfined aquifers.
From 1966 onward, whatever development has been made in
this area, has not come up to the usual practice. 4nd,
unfortunately still Boulton's curves are uséd without

taking care of what limitations they have.

From the values of the parameters obtained by Boulton's

_method, it can clearly be secen that analysing field

data of partially penetrating wells with the help of
Boulton's type curves which are for fully penetrating
wells, leads to the under estimction of aquifer para-

meters.

The amount of underestimation will be much more, if the
observed data will be collected at small distances from

pumping well.
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From Fig. (5.1), it can be concluded that Boulton's
velue for o is only one value in the range of variation
of a,'from maximum in the vicinity of the well to zero
at a considerably large distance from the pumping well.
According to the above mentioned figure, Boulton's value

is not even an average value.

The proposed method of the determination of aquifer pera-
meters, takes care of the partial penetration, delayed
aquifer response, aquifer anisotropy and the subjectivi-~
ty which is inherent in fhe type curve procedures The_l
results which were obtained for an e xample through the

proposed method, are quite satisfactorye

SUGGESTIONS

1. .

Partial penetration is a common field practice, because
drillers when striking a satisfactory aquifer frequently
make no effort to extend well down to the formatione

On the belief, that partisl penetration has negligible
role, often no effort is made to measure the character-
istics of observation and pumping wells which are :

d, £, b, zy and z, (Fig. (3.2)). Contrary to the above
belief it was shown that partial penetration is an
importent factor whiéh must be considered in the deter-
mination of the unconfined aquifer parameters. Therefore,

it is strictly emphasized that during a test pumping

process, the previously mentioned wells characteristics,

d, {, b, zy and z,, are to be measured and clearly

recordede.
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The various formulae and procedures for the analysis
of pumping test data should be used with caution,
considering the various assumptions underlying cach

formula and procedure.

According to Neuman (1974), the effcct of partial
penetration on drawdown in an unconfined aquifer
decreases with radial distance from pumping well, and
with ratio kz/kr- Hence, if still one intend to use
Boulton's method of type curves§ it is recommended
that the observations are to be taken at a largér dis~
tance ( > b/ké/z) from the pumping well. However, the
time facfor may still affect the values of the para-

meters.
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APPENDIX (A)

Description of the Flow Chart

The MARSAL subroutine contains 5 function subprograms.
The function subprograms are : BZ, for the calculation of the
Beésel‘s function of the zeroth order and first kindj; UZ, for
the calculation of the component Go(x) of the drawdown
integraly GMZ, for the calculation of Yo, a parametef of
Go(x); UN, for the approximation of the compdnentngl 6n(x)
of the drawdown integrals and GMV, for the calculation of Yy

a parameter of Un(x).

Data Reguirements

(1) A set of initial fcasible values of the aquifer
| parameters. This could be any feasible set, but
better if approximated on the basis of the governing
physical conditions.

(2) Upper and lower bounds of the parameters as per the
governing physical conditions. '

(3) Charascteristics of the pumped and observation wells,
which are d, {, b, z, and z, (Fige (3.2))-

(4) Observed drawdowns and their coirresponding times.

(5) Zeros of the Bessel's function.

Operational Details

In the program, the following things could be changed:

(1) The limits of convergence, as per the required degree
- of accuracye



67

The relation for g used in the program does not account
for the aquifer's anisotropy. In case, it is desired
to include anisotropy, the following relation for § is
to be used :

P 252
p = k,/k,.rv%/b
The number of uniform strips in the Simpson's Rule,

which is used here to calculate the partial sum of the
drawdown integrale.
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