ALLOCATION OF WATER RESOURCES IN UPPER BRAHMANI RIVER BASIN

A DISSERTATION

Submitted in partial fulfilment of the requirements for the award of the degree of MASTER OF ENGINEERING in HYDROLOGY

> By SISIR RAO

· UNESCO SPONSORED INTERNATIONAL HYDROLOGY COURSE UNIVERSITY OF KOORKEE ROORKEE (U.P.) INDIA May, 1982

CANDIDATE'S DECLARATION

I hereby certify that the work which is being presented in the dissertation entitled '' ALLOCATION OF WATER RESOURCES IN UPPER BRAHMANI RIVER BASIN'' in partial fulfilment of the requirement for the award of the Degree of Master of Engineering in Hydrology, submitted in the School of Hydrology of the University of Roorkee is an authentic record of my work carried out during a period from 15th October,1981 to 30th April,1982 under the supvervision of Dr.Ranvir Singh Reader,School of Hydrology and Dr.D.K.Srivastava,Reader, School of Hydrology.

The matter embodied in this dissertation has not been submitted by me for the award of any other degree.

bier. Ros

(SISIR RAO) Candidate's Signature

This is to certify that the above statement made by

the candidate is correct to the best of our knowledge.

(RANVIR SINGH) READER SCHOOL OF HYDROLOGY UNIVERSITY OF ROORKEE

Dehimland

(D.K.SRIVASTAVA) READER SCHOOL OF HYDROLOGY UNIVERSITY OF ROORKEE

<u>A C K N O M L E D G E M E N T S</u>

The author wishes to express his deepest sense of gratitude to Dr.D.K.Srivastava, Reader, School of Hydrology and Dr. Ranvir Singh, Reader, School of Hydrology for their constant supervision and excellent guidance given to him at every stage of the present study.

The author is also grateful to Prof. Satish Chandra, Dr.B.S.Hathur, Coordinator, Dr.G.C.Mishra, Reader, Mr.M.D.Nautiyal, Ex-Reader, Dr.Deepak Kashyap, Reader and Mr.G.G.Dikshit, Research Associate, School of Hydrology for their help and persistant encouragement during the preparation of dissertation.

Sisi Ros

(SISIR RAO)

COTTENTS

CERCIFICLTE

ACKNOWLEDGEMENTS

SYNOPSIS

- CHAPTER 1 INTRODUCTION
 - 1.1 GuiNiRL
 - 1,2 DIFFERENT ALTERNATIVE SYSTEM APPROACHES AND REVIEW OF EARLIER WORKS
 - 1.3 THE STUDY
 - 1.4 OLGANISATION OF STUDY
- CHAPTER 2 THE BASIN SYSTEMS AND PROBLEM
 - 2.1 UPPER BRAHMANI RIVER BASIN
 - 2.2 EARLIER PROPOSAL
 - 2.3 EROBLEM AND REMEDIES
 - 2.4 BACK GROUND OF PRESENT PLANNING
 - 2.5 INPUT PARALETERS
- CHAPTER 3 EXTENSION OF RUNOFF DATA
 - 3.1 GENERAL
 - 3.2 CLT CHMENT
 - 3.3 POLICY AND METHOD OF GENERATION OF SYNTHERIC STREAM FLOW
 - 3.4 DEFIL PROCEDURE

- CHAPTER 4 THEORY OF RESERVOIR OPERATION
 - 4.1 ESTABLISHMENT OF THE OPERATING PROCEDURE
 - 4.2 OPERATION PROCEDURE
 - 4.3 SYSPEM CONFIGURATION
- CHAPTER 5 DETERMINATION OF OPTIMAL CROPPING PATTERN
 - 5.1 INTRODUCTION
 - 5.2 FACTOR AFFACTING CROP PLANNING
 - 5.3 DATA ITS SOURCES AND METHOD OF CONPUTATION
 - 5.4 HE HODS FOR OPPIMAL CROP PLANNING
- CHAPTER 6 CONPUTATION

.

- 6.1 INTROLUCTION
- 6.2 DATA USED
- 6.3 DEPAIL COMPUTATION PROCEDURE

states - providence -

- CHAPTER 7 DISCUSSION CONCLUSION AND SUGGESTIONS
 - 7.1 GENERAL
 - 7.2 DISCUSSION
 - 7.3 CONCLUSION
 - 7.4 SUGGESTION

TABLES

- 2.1 VARIOUS PROJECTS OF UPPER BRAHMANI BASIN
- 2.2 DEAD STORAGE CAPACITY AND GROSS STORAGE CAPACITY OF DIFFERENT RESERVOIRS
- 2.3 OROPPING PATTERNS OF DIFERENT PROJECTS
- 2.4 WATER REQUIREMENT OF DIFFERENT PROJECT
- 3.1 STATEMENT SHOWING CATCHAINT AREA OF DIFTERINT PROJECTS AND IT'S STAGES
- 3.2(a) STREAM FLOW DATA AP PITAMAHAL SITE
- 3.2(b) STATISTICAL PARAMETERS OF ORIGINAL AND GENERATED SERIES
- 3.3(a) STREAM FLOW DATA AT KANSBAHAL SITE
- 3.3(b) STATISTICAL PARAMETERS OF ORIGINAL AND GENERATED SEIRES
- 3.4(a) STRULI FLOW DATA AT BARSUAN SITE
- 3.4(b) STATISTICAL PARAMETERS OF ORIGINAL AND GENERATED SERIES
- 3.5(a) STREAT FLOW DATA AT MANDIRA DAM SITE
- 3.5(b) STATISTICAL PARAMETERS OF ORIGINAL AND GREERATED SERVES
- 3.6(a) INFLOW DATA AT LODANI SIFE
- 3.6(b) STATIS ICLL PARAMETERS OF ORIGINAL AND GLNERATED SERIES
- 5.1 COST AND RETURN STATEMENT OF LODANI PROJECT
- 5.1(a) MONTHLY WATER REQUIREMENT OF DIFFERENT CROPS
- 5.2 STATEMENT SHOWING PROPOSED MAXIMUM AND MINIMUM CROP AREA OF DIFFERENT CROPS

- 5.3 STATEMENT INDICATING AREA OF DIFFERENT CROPS GROWN IN ORISSA
- 5.4 CALCULATION OF 75PERCENT DEPLNDABLE YEARS RUNOF FREE CATCHMENT AT LODANI SITE
- 5.5 CALCUL TION OF 75PERCENT HYPOTHETICAL DEPENDABLE YIELD OF FREE CATCHMENT AT LOD.FI SITE
- 5.6 CALCULATION OF 75PERCENT HYPOTHETICAL DEPENDIBLE YEAR'S YIELD FOR TOTAL FLOW AT LODAMI SITE
- 5.7 CALCUL FION OF 75PERCENT DEPENDABLE YEARS YIELD FOR TOTAL FLOW AT LODANI SITE
- 5.8 CALCULATION OF ANNUAL COST OF SURFACE WATER
- 6.1 -6.2 BEHAVIOUR OF LODANT RESERVOIR
- 6.3 RESULTS OF DIFFERENT DECISION VARIABLES
- 6.4-6.7 BEHAVIOUR OF LODANI RESERVOIR
- 7.1 RESARVOIR BEHAVIOUR OF PITAMAHAL IRAI-GATIOT PROJECT
- 7.2 RESERVOIR BEHAVIOUR OF CHANDRINALLA PROJECT
- 7.3 RESERVOIR BEHAVIOUR OF BARSUAN PROJECT
- 7.4 RESERVOIR BEHAVIOUR OF MANDIRA PROJECT (AS P. R. STEP I)
- 7.5 RESERVOIR BEHAVIOUR OF MANDIRA PROJECT (AS PAR STEP II- VI)
- 7.6 STATEMENT SHOWING DIFLERENT PROPOSED CROPPING PATTERN AND THE NE! BENEFIT FROM IT
- 7.7 WATER ALMOCATION TO FOUR UP STREAM RESER-VOIRS
- 7.8 AVERAGE MONTHLY CONTRIBUTED FLOW FROM 4NOS UP STREAM RESERVOIR (AS PER STEP I)
- 7.9 AVERAGE MONTHLY CONTRIBUTED FLOW FROM 4NOS UP STREAM RESERVOIR (AS PER STEP II to VI)

APPENDIX I GENERATION OF RECTANGULARLY AND NORMALLY DISTRIBUTED RANDOM NUMBERS

APPENDIX II THOMAS FIRRING MODEL

APPENDIX III MODIFIED THOMAS FIERING MODEL

٠

APPENDIX IV OPERATIONAL MODEL

1

anderstessia ander ap

SYNOPSIS

The aim of the combined Reservoir operation to allocate available water resource to different project in Orissa namely, Fitamahal Irrigation Project, Kansbahal Irrigation Project, Mandira Dam Project, Barsuah Irrigation Project and Lodani Irrigation Project in upper Brahmani Basin keeping inview the upper and lower riparian rights of Bihar state and Rengali multipurpose project and to evolve optimal cropping pattern for Lodani Project. In the present study, the operation is **ego**ried out by using simulation technique to find out allocation of water to different reservoirs in upper Brahamani Basin in conjunction with linear programming model, which determines the different optimal cropping pattern.

For achieving above objectives Reservoir operation model was used in conjunction with linear programming model. The reservoir operation was run in six steps with different crop water requirements i.e. as per state government suggested cropping pattern and cropping pattern evolved from the linear programming model.

From the above study the cropping pattern evolved by step_ITci.e. with Khariff crops areas, vegetables 726.7 hectares, medium paddy **15938.3** hectares and with Rabi crops areas, Pulses 4470 hectares, vegetables 2423 hectares appears to the best among six alternatives.

CHAPTER 1

INTRODUCTION

1.1 GENERAL:

Comprehensive river basis planning is commonly known as watershed management. The modern concepts of considering watershed as a unit of development has been recognised by the scientist, engineers, ecologist, social scientist, and politican. The main objectives of the watershed planning are as follows.

- 1. To assess the quantity of water available and judicious distribution of water resources for various purposes such as irrigation, power, industrial water supply, urban (domestic) water supply'.
- 2. To increase the water yield during the lean period.
- 3. To provide dependable watersupply downdown stream.
- A. To improve forest, range land and small cultivation on the upstream side of watershed where slope is not permissible for cultivation.
- 5. To maintain the water quality
- 6. To reduce the flood and erosion hazard.
- 7. To chhance the recreational facilitie, pisciculture and preservation of wild life which in turn will provide return to large number of people of the watershed.

8. To maintain the ecological balance inside the waterhed and to control/prevent the pollution inside the watershed due to development activities.

The waterr resources development planning of any river basin system consists of the above mentioned four objectives i.e. points 1,2,3 and 6.

In this study the water resources planning of upper Brahmani basin has been conisered and the other points of watershed management have not been discussed due to each data

The use of systems analysis has generally now been accepted to provide an efficient way of answering various gquestions. The approach and appropirate technique will vary from problem to problem, and stage of decision making is likely to vary over a vast range. The system analysis is such a tool which can be applied suitably depending on the nature of problem, such as, there may be the case where the system has already been developed and insue is primarily of management of the system. On the other hand there may be the case where no developments have **b**aken place and the first stage of decision in . the morphology of developmental planning has to be on screaning the is system configuration. There may be mixed stage of development.

The upper Brahmani Basin consists of reserve forest, area of Orissa and Bihar, mining area of Orissa and Bihar and cultivable land below Mandira Dam site in Orissa state plus major industrial belt of Orissa consisting of Rourkella steel plant, Rourkela fertiliser plant and its ancillary industries such as Kansbahal. Kalunga, Birmitrapur and Rajgangpur cement factory.

1.2 DIFFERENT ALTERNATIVE SYSTEM APPROACHES AND REVIEW OF EARLIER WORKS:

Several studies have been carried out for the operation of reservoir(s) system and optimisation of net returns. Linear programming, Non-linear programming, Dynamic programming, Simulation Techniques have been successfully applied.

(a) Linear programming- If the objective function and all of the constraint equations can be expressed in linear, algebric form (equalities and inequalities) with known co-efficients, constant coefficients then the problem is of linear programming type. The linear programming model for water resources system planning have been successfully applied Maass et al.,((14)

(b) Non linear programming- Non linear programming problem differ from the linear programming problem in that the objective function and/or, one or more constraints equations involve nonlinear terms. General solution procedures for this category of problems do not exists, howerver special purpose solution techniques are available that are applicable to limited subsets of the general problem. These include procedures such as quadratic programing. geometric programming and a variety of controlled search techniques. A description of many of the available special purpose solution algorithms can be found in the work Himmelblau

(c) Dynamic programming- This is a solution procedure that can be used in linear or nonlinear problems in which the decision variable possess an appropriate sequential character. Situation of this type arises when the problem can be represented as a sequence of stages where one or more decisions is required at each stage and where the decision at one stage directly affects only the next ajaicunt stage. There is no standard dynamic programming algorithm as in linear programming, the algorithm must be tailored to the individual problem. Where the sequential nature of the system can be established and where the number of state and decision variables is not too large. the computational procedure the simple and practical. Dynamic programming was first develped by Bellman . 18 . For reservoir operation dynamic programming models have been used by Buras and Hall and Dracup.

(d) Simulation Technique: In general terms simultation is a process which '' duplicates the essence of a system or activity without actually attaining reality itselt''. Planners turn to simulation because it is ofternthe only method for dealing effectively with large and complex problems that defy analytical solution or that cannot be reproduced by experiment on actual systems.

Many planners ddopt simulation procedure for reservoir planning for its freedom to work and also of its great flexibility in design, construction and manipulation into a digital simulation model. In a well designed simulation programme the

designer can considered non-linearity of system response, unique characteristics of economic decisions and stochastic nature of hydrological input. There have been several notable successes i in applying simulation models in reservoir planning and its operation. Though the simulation is not directly an optimising technique. In the well known Harard water programme (15) Simulation techniques were applied to economic analysis of water resources system design. Four multi-purpose reservoir in Narmada River, system were simulated using random samplings (16).

1.3 THE STUDY:

In the prosent context as the upper Brahmani Basin system is in the mixed stage of development that is three up streams reservoirs in Orissa state are either in the existing stage or under execution stages. The simulation technique has been applied for combined operations of four reservoirs up stream of Lodani proposed reservoir. The system is in the mixed stage of development and the reservoir capacity of the Lodani reservoir has been fixed to avoid submergance of sub-urban area of Rourkella steel plant. For the optimisation of the cropping pattern at Lodani reservoir the linear programming model has been used. Different monthly water requirements are calculated by linear programming model by imposing different constraints on crop areas. The different water requirement as calculated, from the linear programming model have been used in the reservoir operation model for predicting the behaviour of Lodani reservoir.

1.4 Organisation of the Study

The study is presented in following sequences:-

- Chapter 2. '' The Basin system and Problem'' gives brief description about the system i.e. '' Upper Brahmani Basin System'' and different input data excepting inflow data to operational model in tabular form and the problem being investigated.
- Chapter 3. ' Extension of Run off data.'' Here the detail methods of generation of stream flow data for different resererir has been explained and statistical parameter of observed and generated data have been compared and given in tabular form.
- Chapter 4. '' The theory of reservoir operation'' Here the establishment of the operating procedure. The operating procedure and theory based on which the operating polices are formulated has been discussed.
- Chapter 5. '' The linear programming model'' The details for formulation of objective function, selection of decision variables and calculation of different constraints has been discussed.
- Chapter 6. '' Computation'' Reservoir capacity, monthly irrigation requarement, 40 years generated monthly inflows, monthly evaporation losses for six reservoirs are specified.

Computation of operation are being carried out by DEC 2050 computer of the Roorkee University, Regional computer Centre, Computer programme were developed for the study of the computions of monthly operational rule for five nos reservoirs combinely.

Chapter 7. deals with the analysis of result and conclusion etc.

CHAPTER 2

THE BASIN SYSTEMS AND PROBLEM

2.1 UPPER BALMA NI RIVER BASIN:

It drains (6) a total area of 21445.2 sq.Km (8280 sq. miles) at Lodani site, see Fig.2.1. It consists of two main tributories i.e. Sankh and Koel. Sankh river is an arm of the Brahmani river. It rises in the Hills of Chotangpur in Palamau District of Bihar. After flowing 160 miles it joins Koel near Panposh and then it is known as Brahmani. The most of the catchment areas of both the above mentioned tributaries are hilly and thickly covered with jungle. There is some marginal cultivation in the above mentioned two sub-catchments. But the area beyond the confluence of the two rivers Sankh and Koel upto the Lodani dam site is relatively flat and good for cultivation. Presently there are five projects in the Orissa and two major projects in Bihar portion of the watershed, in the following stages, Table 2.1.

The two main tributaries Sankh and Koel are perenial and all other small tributaries mentioned in Table 2.1 are intermittent in nature.

2.2 EARLIER PROPOSALS

The master plan for river Brahmani was prepared by Dr.A.N.Mosla in the year 1963 for integrated development of river basins of Orissa. In its plan it has been envisaged for construction of a dam near Barkot for utilisation of 8843 sq. miles of catchment. Which will give mean regulated discharge of (13,400 cusecs) 381.22 cumees of which (3775 cusecs) 107.40 cumees will be used for providing irrigation for 4.28 laksh hectare and balance will be diverted to Tikarpara reservoir of Mahandi basin. But this proposal was dropped due to construction of Kengalimultipurpose project and uncertainity in construction of Takarpara dam.

Mean while another proposal came up for construction of a Dam at Lodani on river Brahmani, Keeping in view the supplying water to the proposed Bonaigarh steel plant, in addition to supplying irrigation water in Bonaigarh sub-division plus power generation. The F.A.L. of the Dam was fixed at (623.20ft.) 190.00 meter. But from the reservoir survey it is sound that the Panposh sub-divisional head quarter and sub-urban area of of Rourkella steel plant will be submerged at full reservoir level 190.00 meter. Hence the proposal was dropped.

2.3 PROBLEM AND RELEDIES

The upper Brhamani basin lies in the Sundargarh District of Orissa, Which is mainly inhabited by tribals. Out of total area sown in thes district only 7.17 percentage is irrigated

area. Where as the irrigated area in Orissa is 19.78 percentage out of net area sown (as per 1979-80 statistics). The Sundargarh Districts is one of the main source of minerals and an industraial district of Orissa. Due to the non-availability of irrigation the crop production is very less. More over no major irrigation projects exists in the districts. Bonigarh sub-division of Sundargarh District is a relatively plain area and there is no irrigation source for this area other than the Brahmani river.

In the present proposal a low hieght dom (F.R.L.172.5 meter) has been proposed on main river Brohmani and following alternate proposals have been studied through combined operational computer model of all reservoirs in Orissa, keeping inview the upper riparian rights of Bihar state and lower riparian rights of Rongali multipurpose project in Orissa state.

The objective is to provide Kharif and Rabi irrigation in Lodani ayacut and to generate power from regulated discharge of Koel-Karo project. The requirement of Lodani irrigation project has been taken from the feasibility report of state government and from the linear programming model for different alternative trials.

The above integrated planning of upper Brahmani Basin has been done keeping inview of the Rs.50,000 crores scheme formulated by the Ministry of irrigation, Government of India for transfer of surplus river water for deficit regions through inter connected link in the country, So that in future when the

above scheme is implemented, upper Brahmani Basin projects may (be ready to recieve additional allocation of water for increasing intensity of irrigation during Kharif and Rabi seasons.

2.4 BACKGROUND OF PRESENT PLANNING

Due to construction of Rengali multipurpose project and Samal barrage accross river Brahmani down stream and construction of four nos of medium and water supply projects in Orissa portion of upper Brahmani basin and construction of two hydroelectric projects in Bihar portion compelled integrated planning of the watershed to increase crop output and power gene ration to match with industrial and agricultural growth needed for the country.

2.5 INPUT PARAMETERS

2.5.1 CAPACITIES OF DIFFERENT PROJECTS

The gross storage capacity and Dead storage capacity of six nos of reservoirs in upper Brahmani Basin have been given in Table 2.2.

2.5.2 CROPPING PATILARN AND WATLER REQUIREMENTS

The selection of cropping pattern and water requirements for different reservoirs are discussed below:

KANSBAHAL IRRIGATION PROJECT

This project (1) is under execution now, and the cropping pattern for this irrigation project has been supplied

by state agriculture department after detailed soil survey. The proposed cropping pattern is given below in Table 2.3

Mater requirement of different crops have been calculated based on the climatological data of Jharsugada station and monthly water requirement calculated are given in Table 2.4

IMNDIRA D.M

This is an existing industrial water supply project (2) to Rourkella steel plant. It's present water requirement is 300 cusecs (8.4949738 cumec) and future requirement after expansion of steel plant upto 3.5 million ton capacity is 600 cusecs (16.989948 cumec).

PITAMAHAL IRLIGATION PLOIDCT

This is an existing project (3). The cropping pattern adopted in this report is actual cropping pattern being followed now and is given in Table 2.3. The water requirements are given in Table 2.4.

CHANDRINALIA IRRIGATION PROJECT

As this is a proposed project (4) and is in the early stage of investigation. The cropping pattern and monthly water requirement for this project have been taken from the feasibility report of Chandrinalla irrigation **pr**oject. The proposed cropping pattern is given in the Table 2.3 and the water requirements in Table 2.4.

BARSUAN IR IGATION PROJECT

This project is under execution now. The cropping pattern for this inligation project has been supplied by State Agriculture Department (5) after detailed soil survey. The proposed cropping pattern is given in Table 2.3. Water requirement of different crops have been calculated based on the climatological data of Jharsugada station and monthly water requirement calculated are given in Table 2.4.

LOD.NI MULTIPURPOSE PROJECT

This project is under investigation (6). The primary purpose of this project is to generate power from the available tail race discharge (average 72.75 cumec) from the Koel-Karo hydro-electricity project of Bihar and to irrigate Bonaigarh sub-division of Sundargarh district of Orissa which is a chronically drought affected area.

The crop pattern and water requirements given in the feasibility report have been taken into consideration along with different optimal cropping pattern evolved by the linear programming model in Table 2.3 and the water requirements in Table 2.4.

2.5.3 RESERVOIR EVAPORATION LOSSES

The reservoir evaporation losses of reservoir is given in Table 2.5.

2.6. SCOPE OF PR SENT STUDY:

Objective of the present problem is to study the available water resources of the upper Brahmani basin and its allocation to different reservoirs so that maximum irrigation

potential can be achieved in the Lodani ayacut with power generation from the tailrace discharge of Koel-Karo hydro-electric project only. In the present planning care has been taken not to interfere with the upper riparian rights of Bihar state and the lower riparian rights of Rengali-Multipurpose and Irrigation projects down stream of Lodani dam site.

The first step is to assess the water resources of the basin from the available stream flows at different sites.Stochastical approach has been applied to obtain 40 years synthetic sequences of stream flows at different sites.

Different permutation and computation of demands at Lodani sites has been tried in the combined operational model study the different alternates. The details of the above aspects has been dealt in Chapter 3.

As regards other objective of watershed planning has been disscussed in general in the conclusion part of the report due to non-availability data of other different resources of watersheds.

In the study, efforts have been made to assess the quantity of water available at different site of reservoirs and its allocation to different reservoirs so that balance water from free catchment of Orissa portion and contributed flows from up streams reservoirs can be utilised at Lodani site for irrigation and power genration while allocating water for different reservoir care have been taken to consider the

riperian rights of up streams and down streams areas.

For calculation of irrigation water requirements of Lodani irrigation project linear programming model has been used to decide different ... cropping pattern by changing different constraints. Table 2.1 Various projects of Upper Brahmani

River Basin

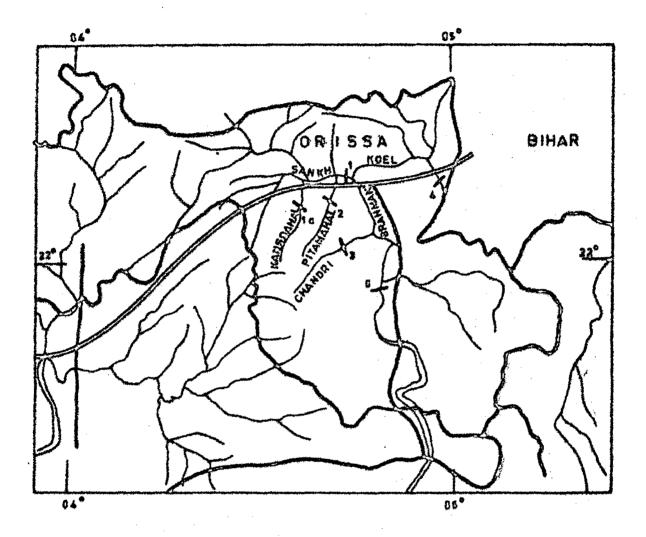
SI No.	Name of project	Sub-Basin	Name of Tributary Catchment area in sq.km.	Catchment area in sq.km.	Present stage	Purpose
*•••	Mandåra Dam	Sankh	Sankh	6129-53	Existing	Industrial water supply to R.S.P.
* • N	Kansbahal I rr- igation proje ct	Sankh	Badjorenalla	179.00	Unde r execution	Irrigation
•	Pitamahal Irr- igation project	Sankh	Pitamahanalla	103.60	Existing	Irrigation
*•	Chandrinalla Irrigation projec t	Sankh	Chandrinalla	153.00	Proposed	Irrigation
∦ • `	Barsuan Irrigat- ion project	Koel	Barsuannalla	78.00	under ex- cution	under ex- Irrigation cution
* *	South Koel	Koel	South Koel	3890.00	-op-	Hydro-power
**	North Karo	Koel	North Karo	1523.00	-qo-	-do-
* In Orissa	1. ssa					

** In Bihar.

.

	AI	ead Storage	capacity and	Dead Storage capacity and Gross storage capacity	capacity	
		of Different	Reservoirs in	Different Reservoirs in Upper Brahmani Basin	ii Basin	
			(Hectate)	(Hectaters- Meters)	1 5 1	
Capacity/ Name of the projects	MLNDIRA	KINSBAHAL	PITAMAHAL	CHANDRINALLA	BRSUAN	ГОРАНІ
Dead storage capacity	594 • 568	1169.50	345.68	400.00	236.00	5533, 19
Gross storage 32455.31 capacity	32455.31	4041.50	2364 • 20	1738.00	2106.28	12067.95

Table 2.2


	R OLECTS
e 2.3	DIFFER NT
Tabl	OF
₩ 1 8	G PATTERN
	CROPPING

As per feasibility 1225 13800 LODANT t •1 ţ ŧ I ł 1 report CHANDRINALLA BARSUAN 1910 1910 1910 1910 1910 1910 1562 656 290 310 63 224 55 1 1 1 1 Hectares 800 2800 1 1 ł ł t ł l 131.52 262.05 262.05 394**.**58 131**.**52 KANSBAHAL PITAHAL ų. 1841 36 789.15 1 1 t ł l t Area 3392 345 136 315 95 437 157 972 355 1045 1 I I Normal Limpro-ved Paddy Ground nuts Medium Paddy H.Y.V.Paddy Patato Early Paddy Vegetables Flust rd Whea**t** H.Y.V.Paddy Ground nuts Vegatable Sl.No. Name of Crops KHARIF Pulses Tharr Maize Ragi RABI 204500 0 2 5 9 ω P σ

Sl. Moi No.	Month <u>MANDI</u> Present	ura Future	KANSBAHAL	FITAMAHAL**	CHANDRINALLA**		BARSUAN**	LODANI As per Feasibility Report
1 NOV	V 2202.0	4404.00	677.35	352.97	137.16	4	424.28	0.00
2 DEC 3 JAN	2275•30 2275•30	4550.60 4550.60	707 . 60 580 . 56	368.73 302.53	219.44 192.04	цС	501.90 505.60	
	2055.00			•	109.72	N		0.00
	22.12°20							
	2275.30							
	2202.0	•	• •	• •		~	00	
Inr 6	2275.30	4550.60	1261.81		561.16	7	.43	
$\gamma \pi$	00000000	•		•	-	V	0 V 4 C	
- 01	2275.30		526.44	274.33		4	447.64	2793,00
* Indust] ** Crops	rial Wate	water reguirement	for	Rourkella Steel	. plant		and and a second of the second se	
I		1		Table	2.5			
		Monthly	y Reservoir	: evaporation	losses in	n meters	-	
HTUOM	NOV_MBER	DECEMBER	JANUARY	FEBRUARY MARCH	APRIL .	Ϋ́Μ	NU L-	JULY .
LOSSES	0.081512	•07612	•08152 •1	.10246 .15339	.19456	.23372	.18788	.1069
HTNOM	TSUGUST	SEPTEMBER						
LOSSES	.09608	•098	.10542					

Table 2.4

.

FIG. 2-1 INDEX MAP OF UPPER BRAHMANI RIVER BASIN

SCALE :- 1"0 15.78 M

ATMOOLA

RIVER	-
HIGH WAYS	
STATE AND	
DISTT. COUNDARY	

2.0

CHAPTER 3

EXTENSION OF RUNOFF DATA

3.1 GENERAL.

For deciding the future operation policy and planning of different water resources projects in a watershed the stream flow data at different points of interst are very much essential. Generally the available historical stream flow data is not sufficinet for operation study of the system. Therefore, certain generated data series for a common period is required. Many stochastical method, such as Bivirate, Multivariate and Thomas Fiering Hodels are used for generation of synthetic sequence of stream flows. In this problem Thomas Fiering and Modified Thomas Fiering models are used for generation of stream flow sequences for Perinial and Intermittant streams respectively. In this case, Bivariate and Multivariate models could not be used due to the non-availability of historical stream flow data for common period to be used for these models.

3.2 CATCHMENT:

The total catchment intercepted by river Brahmani at Lodani site is (8280 sq.Miles) 21450 sc.km. It is a interstate river, the catchments lies in the state of Orissa, Bihar and N.P. There is only one existing major project in the catchment that is Mondira Dam project. Hence the free catchment at Lodani

site at present is (5914 sq.mile) 15321.244 sq.km.

The catchment area of existing, under execution and proposed medium and major Irrigation and Water supply of up stream projects are given in Table 3.1

3.3 POLICY AND METHOD OF GENERATION OF SYNETHIC STREAM FLOW

The generation of stream flow data at different reservoir sites and at Lodani site are discussed below.

3.3.1 GENERATION OF FLOW SEQUENCE BY THOMAS FIERING MODEL APPROACH:

The most appropriate practical model is proposed by Thomas and liering Model particularly with respect to generating sequental stream flows. The Markovian concept is involved in the approach.

The algorithm for the Thomas and Fiering seasonal (monthly) model is as follows

$$Q_{i+1} = \overline{Q}_{j+1} + B_j (Q_i - \overline{Q}_j) + Z_i S_{j+1} (1 - r_j^2)^{1/2} \dots (3.4b)$$

where

- Q_{i+1}, Q_i are generated flows during the ith month reckoned from the start of the synthesized series.
- $\overline{u}_{j+1}, \overline{Q}_{j}$ are observed mean flows during $(j+1)^{th}$ and jth months with in a repetative annual cycle of seasons. $1 \le j \le 12$

- B_j is the least square regression coefficient for estimating $(j+1)^{th}$ flow from the jth flow given by B_j :: r_j $\frac{S_{j+1}}{S_j}$
- Z is the normal random variate with zero mean and unit variance.

$$S_{j+1}, S_j$$
 are standard deviations of flow during the $(j+1)^{th}$ and jth months.

It shows that 36 parameters such as monthly means. Standard deviation, and Lag one serial co-relations are required to be used in the model to generate monthly flow at a site. These are obtained from analysis of monthly distorical flows. The model is run in the following way-

Ist value i.e. (for january is calculated as follows)

The above model is restricted to normally distributed flows. More the number of years historical flow data more realistic will be genrated sequental stream flows data. The values of means and standard deviations of observed and generated series should not differ appreaciably

3.3.2 GENERATION OF FLOW SEQUENCE OF INTERMITTANT STREAM BY MODIFIED THOMAS FIERING MODEL APPROACH:

The most appropiate practical model in this case for generation of sequental stream flows is modified Thomas Fiering model.

The algorithm for the modified Thomas Fiering model is as follows:

In this case the flows are available only in the month . of June, July, August, September and October.

 $q_{j+1} = \overline{q}_{j+1} + B_{j+1}(q_j - \overline{q}_j) + Z_{j+1} S_{j+1} \sqrt{(1-r_{j+1})} \cdots (3.4a)$ q_{j+1} and q_j are generated flows during $(j+1)^{\text{th}}$ and jth month.

- \overline{q}_{j+1} and \overline{q}_{j} means for the month of $(j+1)^{\text{th}}$ and jth months of observed series.
- ^B j+1 is the least squares regression co-efficient for estimating $(j+1)^{\text{th}}$ flow from jth flow and given by B j+1 = rj+1 x $\frac{S_{j+1}}{S_j}$

In this case as there is no flow during month of May. Therefore, B₁ (i.e. regression coefficient of June on May) is taken as zero.

- Z_{j+1} is the normal random variate with zero mean and unit variance.
- $S_{j \div 1}$ and S_{j} are the standard deviations of flow during the (j+1) and jth month.
- r j*1 is the correlation coefficient between flows in th the jth and (j+1) months.

In this case as there is no flow during month of May. Therefore, r₁(i.e. correlation coefficient between June and May) is taken as zero.

It shows that 18 parameters such as monthly mean, standard deviations, regression coefficients and corelation coefficients are required to be used in this model to generate monthly flow at site.

Subscripts 1,2,3,4 and 5 stands for the months from June to October.

Then P_j value that is the fraction of years there is monthly inflow available. For example suppose out of 10 years data there is monthly flow available for September only for 9 years. Then $P_A = 0.9$ then the P_j values are compared with

25

the β_j (i.e. Rectangularly distributed random numbers). If $P_j < \beta_j$ then the flow for that month will be taken as zero.

3.3.3 GENERATION OF RANDOM NUMBERS:

In genrating the sequence of a given stream flows it is generally considered that the flows are the out come of random process. The results of the process change with time involving probability. The probability is that high flows tend to follow high flows similarly low flows tend, to follow Low flows. The sequence of past flows provides a clue to the probable future flows. Hence any model for genration of stream flows must include a random component in addition to a deterministic components, so as to reflect the sequence of future flows in the most possible way.

3.3.4 <u>GIENERATION OF RECTANGULARLY DISTRIBUTED RANDOM NUMBERS</u> (0,1);

It is only possible to generate through computer the sequence of <u>poeudo</u> random numbers, carefully constructed to maintain the important properties of truely random numbers.

The sequential algorithm for genrating Rectangularly (0,1) distributed random number

 $r_{i+1}^{i} = \langle 10^{p} c r_{i}^{i} \rangle$. . (3.4 c)

where $\langle a \rangle$ denotes fraction part of a , r_{i+1} being the number at $(i+1)^{\text{th}}$ instant and r_i at the ith instant. 'p' is the number of digits in the pseudo-random number. 'C' is constant multiplier, such that 0 < C <1. fhe choice of C is as follows.

 $C = 10^{-p} (200.1 + B) 10^{-p/2}$. (3.4d)

Where A is non-negative integer and B is one of the numbers from the sequence 3,11,13,19,21,27,37,53,59, 61,67,69, 71, 83 or 91. The starting value $r_i = r_o$ should be $10^{-p}R$, Where R is any integer not divided by 2 or 5 and such that OKK 10^{P} . For example, suppose we choose p = 5, then $10^{-p/2} = 10^{-5/2} = 0.00316$

A possible choice for C is acquired by selecting A=2, B = 69 so that

$$C = 10^{-5}(400-69) = 10^{-5} \times 311 = 0.00316$$

Similarly for selection of r'o
 $r'_{0} = 10^{-5} \times R = 10^{-5} \times 7 = 0.00007$
Thus further values of r' can be calculated sequentially
using $r' = < 10^{5} \times 10^{-5} \times 331 \times r_{1} > ... (3.4e)$

3.3.5 GEMERATION OF NORMALLY DISTRIBUTED: RANDOM NUMBER

It is simple to generate normally distributed random number from a sequence of rectangular distributed random numbers (0,1). One method for transfering rectangularly distributed random numbers into normally distributed random number is based on the use of the rectangularly distributed values (X_{1}^{i}, X_{2}^{i}) . For such transformation the following relations are based. $X'_{1} = (-2 \log_{e} X'_{1})^{1/2} \cos(2\pi X'_{2}) \dots (3.4f)$ $Y'_{2} = (-2 \log_{e} X'_{1})^{1/2} \sin(2\pi X'_{2}) \dots (3.4g)$

Where Y and Y are normally distributed random numbers sequences.

By taking two sequences four sequences can be generated by reversing X_1 and X_2 .

3.3.6 DIFFERENT SERIES GENERATION ON T.F. MODEL:

For avoding generation of negative stream flows value, square root transformation or Log transformation series have been used. In the square-root transformed series all the observed data are converted to square root and for the new series the statistical relations like mean, S.D., coefficinet of correlation established. Finally after generation of the series, the various values are squared and thus avoiding negative flow in final value. In Log transformed series all the observed data are converted to Log values and the statistical parameters are established for The generation of series new series/is completed with these statistical parameters. Finally antilogs are taken of the generated figures to give the series with all positive figure.

3.4 DETAIL PROCLDURE:

3.4.1 PITAMAHAL IRRIGATION PROJECT:

As the stream is of intermittant in nature i.e., there is flow in the river in the months from June to October and the rest of the year flow is nill. Modified Thomas Fiering model is

used for generation of data with the help of available historical stream flow records from 1975 to 1979 given in Table 3.2(a). The genration of data by modified Thomas Fiering model is discussed in section 3.3.2.

3.4.2 KAUSBAHAL IRRIGATION PROJECT:

This is also an intermittant stream Modified Thomas Fiering model has been used for generation of stream flow data by using available flow data from year <u>1965-1980</u>, refer Table 3.3(a).

3.4.3 BARSUAN IRRIGATION PROJECT:

As this is also an intermittant stream modified Thomas Fiering model has been used for generation of stream flow data by using available stream flow data from 1961 to 1979, refer Table 3.4(a).

3.4.4 CHANDRI NALLA IRRIGATION PROJECT:

No stream flow data at Chandrinall project site is available. Hence inflow data of chandrinalla project has been calculated on catchment proportion basis using Pitamahal Irrigation project generated data, as both the catchments are adjacent catchments.

3.4.5 MANDIRA DAM PROJECT:

This is a perinial stream. Therefore, for stream flow generation by Thomas Fiering Model, using square roots and Log scries have been used. Stream flow data from 1965 to 1975 given

. ,

in Table 3.5(a), were used. The mean and the standard deviations of the observed and the generated series have been compared from which Log series results appears to be more near to the observed series. The genrate: data has been multiplied by 0.9707971 to give generated flow at Mandira site due to free catchment (i.e., excluding Kansbahal Irrigation project catchment) to be used in reservoir operation model. The method of generation of data by Thomas Fiering model has been discussed in section 3.3.1

3.4.6 LODANI MULTIPURPOSE BROJECT:

The present inflow data available at Lodani site is due to the contribution of free catchment of (5914 sq.mile) 151321.2 sq.km plus the regulated discharge from Mandira dam (i.e. relese for Rourkella steel plant + spill). Therefore. for generation of stream flow for free catchment of 151321.2sq.km the outflow from Mandira dam has been deducted and the balance has been used for genration of stream flow at Lodani site by Thomas Fiering Model, using natural, square root and Log series The mean and standard deviation of observed and generated data has been compared from which the data generate by square root series appears to be more realistic. The above generated data has been multiplied by 0.6248625 to give inflow at Lodani site due to free catchment excluding all u stream catchment of Orissa project and entire catchment of Bihar state to avoid up stream riparian rights.

The comparision of means and standard deviations of observed and generated series at different site by different methods have been enclosed in table 3.2(b),3.3(b),3.4(b) and 3.5(b).

Table 3.1

Statement showing catchment area of different projects and its stages

RES. No.	Name of Project	Catchment area in sq. kn	Remarks
1.	Pitamahal Irrigattion Project	103.60	Existing
2.	Kansbahal Irrigation Project	179.00	Under ex- ecution
3.	Mandira Dam Project	6129.53	Existing
4.	Barsuan Irrigation Project	78.00	Under ex- ecution
5.	Chandrinall Irrigatio: Project	n 153.00	Proposed
б.	Koel-Kara Project (Bihar State)	54 1 3.00	Under ex- cution

٠

entale i ne uzgo uzi u zaku esti ner u jertilekti dosmokrysku rejo u jeku jeti nako morulej za

den an anna

Table 3.2 (a)

STREAM FLOW DATA AT PITAMAHAL SITE IN

HECT. METERS

YE.R	J UMB	JULY	AUG	SEPT	OCT
1975	0.0	610.00	1579.17	932.32	147.13
1976	0.0	466 .65	1343.83	1137. 04	53.68
1 9 7 7	246.68	1060.91	1461.56	855.22	149.816
1978	1 30 . 54	427.00	1705.56	669.78	145.18
1979	116.88	2 4 1 •56	603.90	121.02	0.0

Table 3.2 (b)

PITAMAHAL IRAIGATION PROJECT

MEAN AND STANDARD DIVIATION OF ORIGINAL SERIES

HONTH	J UNE	JULY	лUG	SEPT	OCT
MisaN	164.7	56 1. 224	1338.80	743.076	123.95
STAND- ALD DEVIATIO	71.32	308 .71	432.28	385.98	46.88

Contd...

Table 3.2 (b) contd...

	OF GENE	RATED SERIE	2	
JUNE	JULY	AUG	SEPT	OCT
159.86	561.24	1345.07	783.02	121.85
88.73	312.82	4 78. 69	398 . 4 1	51.61
	PERCENTA	GE OF ERMOR	<u>S</u>	
JUNE	JULY	AUG	SEPP	OCT
2.9	(-)0.003	(-) 0.468	(-)5.37	1.69
(-)24.41	(-)1.331	(-)10.736	(-) 3 .2 2	(-)10.26
	159.86 88.73 JUNE 2.9	JUNE JULY 159.86 561.24 88.73 312.82 <u>PERCENT A</u> JUNE JULY 2.9 (-)0.003	JUNE JULY AUG 159.86 561.24 1345.07 88.73 312.82 478.69 PERCENTAGE OF EROR JUNE JULY AUG 2.9 (-)0.003	159.86 561.24 1345.07 783.02 88.73 312.82 478.69 398.41 PERCENT AGE OF ERLORS

,

MEAN AND STANDARD DEVIATION

33

<u>Table 3.3(a)</u>

ST REAM	FLOW	DATA	\mathbf{AT}	KANSBAHAL	SITE	IN	HECTARE	METERS

					•	
YEAR	JUNE	D UTA	AUG	SEPT	OCT	
1 965	191.18	818.81	295.02	1040.05	138.05	
1 966	1243.46	3111.09	4095.58	5 1 8.09	11 91 . 94	
1967	686.84	2273.44	3432.20	2612.48	0.0	
1 968	688,60	1 436.40	3272.24	392.65	554.65	
1 969	26 6.85	1315.07	1578.65	1 190.94	135.48	
1 970	1 359 . 85	2938.99	3206.54	1807.76	655.50	
1971	934.25	3080 .1 4	4935.45	1307.98	530.85	
1972	417.46	16 64.41	3848.4 7	1142.74	593.50	
1 973	0.0	0.0	48 75.2 5	340 1.12	1 349 .79	
1 974	0.0	521.19	503 1.1 9	786.60	359.48	
1975	0.0	247.50	4 11 0.48	1595.32	227.15	
1 976	0.0	225.60	3589.53	36 51.22	4.92	
1977	649.69	2728.95	3854 .81	1671.88	409.05	
1 978	64.0 1	787.59	2250.67	96.74	606 .76	
1979	19.87	93 .6 6	600.04	27. 48	76 .9 0	
1 980	1112.95	1 954.96	609.30	606.97	51.68	
			•			

Table 3.3 (b)

MEAN AND STANDARD DEVIATION OF ORIGINAL SERIES

монтн	JUNE	JULY	ΛŪG	SEPT	OCT
MEAN	636,25	1546.52	3099.08	1365.62	459.04
STANDARD DEVI T TION	457.62	1089.29	1573.53	1077.95	397.80
E : Storage - An - An Angelen and Angelen and Angelen	MEAN AND	STAND.RD DI	CVIATION O	F GENERATEI) SERIES
HONTH	JUNE	JULY	AUG	SEPT	OCT
MEAN	765.19	1518.79	3167.63	1661.61	545.68
STANDARD DEVIATION	468.33	842.67	1702.61	969 .1 0	311.06
		PERCENT	GE OF ERR	ORS	
MONTH	JUNE	JULY	ΛUG	SEPI	CT
ITEAN	(-)20.26	1.793	(-)2.21	(-)21.67	(-) 18.87
STANDARD DEVIATION	(-) 2.34	22,640	(-)8.20	10.09	21.80
		a second di Chi alla a sila activatione prove sila di la	and an a state of the state of	THE OWNER AND ADDRESS OF A DESCRIPTION OF A	

Table 3.4 (a)

STREAM FLOW AT BARSUAN SITE IN MEDEBARE METERS FROM 1961 to 1979

YEAR	JUNE	JULY	AUG	SEPT	OCT
1 96 1	622,60	1 489.43	1263.82	2030.84	959.785
1962	177. 764	723:987	992.073	767.64	250.916
1 963	160.687	712.703	2112.385	698 . 36 1	522 . 84 9
1 964	536 .1 08	1529.208	1739.523	99 1. 645	95.204
1 965	90.598	412.020	261.732	545.675	122.572
1966	833.028	1842.158	1 203 . 49 2	292.433	430 . 4 19
1967	178.529	829.717	1352.295	1 3 1 9 .7 45	23.494
1 968	3 1 4.627	714.061	1 98 7 . 1 40	1 94.536	389.311
1 969	260.817	1138.782	2074.446	802.169	3 1.169
1970	384.992	1265.129	1 345 .2 69	1568.517	235.146
1971	602.912	1642.082	3859 .179	1048.638	472 . 767
1972	72.692	550 . 307	1830.920	21 5.435	1 48,3 27
1 973	0.00	409.858	2236.796	1568.517	736.133
1974	0.00	45 1.189	2434 .1 35	396.045	375 .57 6
1975	47.236	343.03 7	1408.250	527.346	206.359
1 976	0.00	259 . 5 55	660 . 3 19	850.060	16.326
1977	179.855	831.916	1869.548	654.488	105.442
1978	167. 438	644.072	1058.917	582.643	128.731
1979	0.00	0.00	120.644	319.211	0.00

Table 3.4 (b)

BARSUAN IRRIGATION PROJECT

MEAN AND STANDARD DEVILITION OF ORIGINAL SERIES

MONTH	JUNE	JULY	лUG	מירוהד י	
		1 UTT	41UG	SEPI	OCT
MEAN	308.659	877.178	1568.994	809.155	291.691
STANDARD DEVI.TION		488.744	847.477	507.985	259.262
alanger, again the constance constance oper	n na seanna an thair ann an t-airte an t-airt	u synalisen senergi sige angeriken kensken se	a della conficti anciente della contro anti i con i constanti	a mananangan kananga yang kang baranga Jang Kang Kang Kang Kang Kang Kang Kang K	n yn dy'r - Yn Ardy syngen og feinigly'r ygynnyfe Maller gyfei
	MEAND AN	D ST.IND.IRD	DEVIATION	OF GENERAT	ED SERIES
MONTH	<u>MEAND AN</u> JUNE	D STANDARD JULY	DEVIATION AUG	OF GENERAT SEPT	ED SERIES
MONTH MEAN	in an		AUG	andi ana pangangan kana kana pangan kana pangan kana kana pangan kana kana pangan kana pangan kana pangan kana Mana pangan pangan kana kana pangan kana	

PERCENTAGE OF ERRORS

and the second	andreasty in surger management of the surger of the surger surgers of the surgers of the surgers of the surgers	an a	na na manana ang kana na manana na manang kana na kana	nan manana an ann an an an an an an an an an	and the second secon	
MONTH	J UNE	JULY	.`LUG	SEPT	OCT	.
MEAN STAEDAI DEVIAT	(-)23.488 RD 0.134	1.491	(-)4.717 (-)5.003	(-)6.869 4.474	(-)22.969 25.6 7 3	

Table 3.5(a)

STELM FLOW DATA AT MANDIRA DAM SITE IN HECTARE MEDER

YEAR JAN	JAN	FEB	MAR	йРR	MAY	J UNE	JU	JULY AUG	d SEPT	r oct		NOV	DEC
1968	1968 6066.00	1925.86	1925.86 1672.70 1192.70	1192.7		1068.17 15598. 33	8	108722. 94	248943. 96	38085 . 69 2	13704. 634	3724.	225 6. 8952
1969	1969 1184.138	745.468	745.468 672.805 337.626	5 337.6		352•305	5336 . 449	9 4 015. 414	243611. 67		20216. 708	5564. 7143	1921. 2882
1970	1970 1700.853	927.248	927.248 1258.758 386.55	3 386.5	~	239.76	6311 . 89	114832 . 51	77609. 721	182264 .271 40. 51 00		3999 . 16	1758 . 35
1971	1971 1043.70	1169.95	401.23	968.10		535.79 13	; 2784 . 67	•	383917. 58	341842.29603. 51 94		7439.	2984 . 56
1972	1972 1799.69	1718.22	340.80	185.94		181.05 54	5 5447 • 8	82245. 23		79344. 83		6999. 87	4168. 70
1973	1973 1100 .2 2	919.17	623 . 87	182.27		113.76 17	1737.		123627. 67	23 1871. 58		35151.	35151.74,13.83 77
1974	2731.10	982.05	245.63	201.84		836.48 27			206170.	357 22. 55		9302 . 82	2141.96
1975	r.81.97	819.35	306.06	162.69		151.69 79			199286. 74	102405.47907. 66 92		9165.	2947.86

			NEAN AN	T DALAN T	TADLE 2.2101 MANDIRA DAM PROJECT MEAN AND STANDARD DEVIATION OF ORIGINAL SERIES	22 ROJECT ON OF ORI	GIMAL SEF	SEIT	
NAL HTWOH	N FUB	MAR	AP RI L	М.Л	J UNE	YLU U	ŪĢ	Sapr Sapr	- т.,
ILLAN 1760.82 SPLAD-1139.06 ARD DEVIA- FION	1760.82 1150.09 1139.06 435.776	9 690.23 76 513.259	452 .21 400.38	434.87 351.55	22245.0	118,129 . 7 74,228 . 99	203779 • 1 93855 • 28	135995.4 107725.3	34926.93 28020.32
HUNOM	N O V	DEC							nonen une des anti-
	10168.48	3 3196.677							
STANDARD STANDARD	10310.82	32 1873.312							
				MLLIN	UN STAND.	STANDARD DEVISION OF GENERATED	ION OF GE	NERATED ;	SIRIES
HOMTH	NYſ	FEB	M/ARCH		APRID	MAY	JUNE		JULY
MEAN	1895.944	1189.817	863 • 212		451,904	417.725	W 24656.68		132440.8
Standard Deviation	14.23.56	332.72	618.56	38	388,84	341.20	46524.03		112008.7
HIT NOI I	AUG.	SEPT	OCT		NOV	DEC			
MEAN	202118.5	135131.5	35275.70		9972.65	3025.82			
Standard	101682.4	120849.2	22422.42		7407.39	1213.69			

39

•

Table 3.5(b) contd..

.

PERCENTAGE OF ERRORS

.

					1	
HT-NOIM	JAN	FEB	MARCH	JPRI L	MAY	JUNE
NTTEM	(-)7.674	() 3•38	(-) 25 . 06	0-0683	3.944	(-)10.841
STANDARD DAVIATION	(-) 24.977	(-) 2 3.64	(-) 20.51	2.38	2.945	(-)5.702
HTMOH	, JULY	AUG	SEPT	OC'I	NOV	DEC
NTEM	(-)12.45	0.8149	, 0.6352	ć. (−)0.9986	1.926	5.3448
STANDARD DIVIATION	(-)50.89		(-)12.1827	19.978	28 • 16	35.2112
in an a francisco a marca	1999 - Martin Martin Care - Martin - 1999	and the supportant property and assessment of the support		receiption of the second of the second s	四十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二	· · · · · · · · · · · · · · · · · · ·

4.0

	A REAL PROPERTY OF A REAL PROPER							
J. Inflow at Bcnki site		NULRY O _u tflow Balance from Mandira	FZF Inflow at Banki site	FEBRUARY w outflow B nki from Mandira	Balance	MARCH Inflow O at f Banki M site	CH Outflow fron Mandira	Balance
7215.07	170Å . 76	5510.31	1301.1.40	4914.66	8096.1.	5376.08	2129.49	3246.59
4972.18	1542.56	3429.62	4805.50	890.55	3914.95	3245.41	959.05	2286.36
9688.57	2047.7%	7640.80	5965.74	149.60	4116.14	4817.10	2047.77	2769.33
43490	576.41	3968.4 <u>9</u>	5032.17	617.02	4415.15	3188.60	1585.13	1603 - 50
Inflow at Banki Site	åPRIL Outflow Balance fron Mandira		Inflow at Banki site	outflow form Mandira	Balance	JUNE Inflow at Ban ki site	outflow from Mandira	Balance
3320.10	1202.48	2117.62	1847.56	1213.49	634.07	6371.136	1114.41	5256.726
1859.54	1050.06	789.48	2713.75	1401.63	1312.12	11467.27	1027.55	10439.72
5086.54	2386.62	2699.92	7662.90	2366.31	5296.59	5659.37	2217.08	3442.29
2218.75	1854.25	364.50	2 068 . 26	1935.23	133.03	19005.06	9623,08	9381.98

-

Contá Tablo 3.6(a) Suprama al anco ratio Early and the second ratio Balanco Tarlow Outtho Balanco Early and the second ratio Early	
Т972 1974 1974 1974 1976 1976 1976 1976	1

LODANI IRLIGATION PROJECT MEAN AND SPANDARD DEVIATION OF ORIGINAL SERVES	FEB MARCH APRIL MAY JUNE	5135.74 2476.44 1492.88 1843.95 7130.179	1984.66 701.68 1097.76 2351.92 3323.33	AUE SEPT! OCT NOV DEC	175763.5 136761.4 71489.92 22921.13 14764.78 24834.77 129035.2 73329.33 18499.71 14728.70	MEAN AND STANDARD DEVIATION OF GENERATED SERIES	FEB MARCH APRIL MAY JUNE	5500.63 2738.386 1834.24 2234.84 7148.85	1751.11 788.9 1408.33 2361.37 3512.64	AUG SEPT OCT NOV DEC	172013.2 13448.5 74292.67 23283.5 3512.64	24465.55 114971.5 64574.56 18344.88 9989.49
MEA		5135.74	1984.66	AUE	173763 • 5 24834 • 77	MBA	FEB	5500.63	1751.11	AUG	172013.2	24465.55
	NOÙTH J'AN	MEAN 5087.30	STANDARD 1931.01 DEVIATION	HINOH JULY	MEAN 97923.03 STANDARD 52586.10 DEVIATION		MOWTH JAN	NEAN 5178.40	STINDARD 2166.12 DEVISION	MONTH JULY	MEAN 98588.35	STANDARD 50364.43 DEVIATION

Table 3.6(b)

Contd....

			Table 3.6 PERCENTAGE	Table 3.6(b) Contd PERCENTAGE OF EEROFS		
MONTH	J AN	FigB	MARCH	APRIL	MAY	J UNE
TEAN	(-)1.79	(-)7.10	(-) 10.57	(-) 22.86	(-) 21.20	(-)0.26
STANDARD DEVIATION	(-)12.17	11.76	()12.43	(-) 29.29	(-)9.405	(-)5,695
HTNOM	J ULY	AUG	S识型	00T	NOV	DEC
Maud	(-)0.68	1.007	1.66	(-)3.92	(-)1.60	12.44
STANDARD DEVIATION	֥22	1. ⁴ 86	10.90	11.94	0.836	32.17
	ne obranika na serie na serie na serie da serie	An Color - Multiplication of the and the Theorem on the				
					ı	
					·	·
		·				
,						

44

CHAPTER 4

THEORY OF RESERVOIR OPERATION

4.1 ESTABLISHMENT OF THE OPERATING PROCEDURE

The operating procedure for upper Brahmani Basin is established based upon the following system characteristics (a) Hydrologic properties of the basin shows the storage reservoir generally filled during June to October and starts depelating from November to the following May. (b) Regulation in the reservoir inflows depends upon the up stream reservoir contribution(s). In the case of Mandira dam, it is effected by Kansbahal Irrigation Project and Lodani Multipurpose project, has contributions from Mandira Dam project, Pitamahal Irrigation project, chandrinalla Irrigation project, Barsuan Irrigation Project.

With the above mentioned characteristics, the operating procedure is based on the following reasonings.

As for as practicable, the requirements of all the up stream projects above Lodani reservoir are met individually if water is available.

Out of the two main purposes of the Lodani Project i.e. power and irrigation, priority is given to power. That is the average regulated discharge coming from Bihar portion (i.e. Koel Karo Hydroelectric projects) has been fully used for power generation with a constant head of 30.48 M. The contribution of Bihar up stream projects has not been considered for assessing yield at Lodani site. Therefore release from for power from Lodani reservoir has not been incorporated in the operation of the reservoir.

4.2 <u>OPERATION PROCEDURE:</u>

1.

2.

The operation starts from the month of November i.e. the Ist year of study. The initial reservoir is considered upto the full capacity at the starting.

The release from the reservoir at any time is made from the total water available, i.e. the sum of initial reservoir content in the period plus the inflow during the period plus contribution from the up stream reservoirs if any (which consists regeneration from irrigation release(s), release for industrial requirement plus the unutilised spill), Minus the evaporation from the reservoir.

3.

The continuity equation given below holds good in each period.

A. For reservoirs (Kansbahal, Pitamahal, Chardrinalla, and Barsuan).

$$S_{i,t+1} = S_{i,t} + f_{i,t} - a_{i,t}$$

Where

S_i, t(like reservoir content in the begining of time 't' for ith reservoir.

S i,t+1 like reservoir content at the end of time 't' for ith reservoir

4.3 <u>SYSTEM CONFIGURATION:</u>

The system configuration of different reservoir projects shown in the figure 4.1. The inflow to the Mandira reservoir is dependant on the release from Kansbahal reservoir i.e. both the reservoir are in series. The inflow to Pitamahal, Chandrinalla and Barsuan reservoirs are independent of all other reservoirs, in the Upper Brahamani Basin, i.e. the reservoirs Pitamahal, Mandira, Chandirnall, Barsuan are parallel to each other. The inflow to the Lodani reservoir is depandent on the release from the above mentioned four reservoirs of Orissa plus Koel Karo hydroelectric project in Bihar state.

4.4 The reservoir capacity vrs. area and capacity vrs. elevation curves were calculated by using computer programme (i.e. fitting of polynomials).

The reservoir area vrs. capacity and elevation vrs. capacity equation are given below.

X - denotes reservoir capacity, in hectare meter Y_1 - denotes reservoir area, in hectares Y_2 - denotes reservoir elevation, in meters <u>KANSBAHAL IR IGATION PROJECT</u> $Y_1 = 1.8925385 + 0.2504289X - 0.00005048048 * X² + 0.00000000479681 * X³$ Degree of Ploynomial = 3.Correlation indix = 0.99867735

- f total unregulated inflow into the reservoir in time 't' for ith reservoir.
- a release from the reservoir in time 't' for ith reservoir. I=) f Nor
- B. For reservoirs (Mandira, Lodani)
- $S_{i,t+1} = S_{i,t} + f_{i,t} + (\sum_{i=1}^{I} K_{i,t}^{i} * R_{i,t}^{i} +$

 $SP_{i,t} + P_{i,t}) - a_{i,t}$

Irrigation or industrial releases from up stream R' i,t project(s) in time 't' for ith reservoir K: Co-efficient for ith up stream reservoir for return flow (or regeneration) In time 't' Spi spill from ith up stream reservoir in time 't' P_{i.t} Release for power for ith up stream reservoir in time 't' reservoir content

- The live reservoir content of ith reservoir S at any time cannot be more than reservoir capacity (Y,) i.e., $S_{i,t} < Y_i$
- The live reservoir content of ith reservoir S_{it} at any time should be more than the dead storage capacity (Di)

i.e. S_{i,t} >/D_i

4.

5.

4.3 <u>SYSTEM CONFIGURATION:</u>

The system configuration of different reservoir projects shown in the figure 4.1. The inflow to the Mandira reservoir is dependant on the release from Kansbahal reservoir i.e. both the reservoir are in series. The inflow to Pitamahal, Chandrinalla and Barsuan reservoirs are independent of all other reservoirs, in the Upper Brahamani Basin, i.e. the reservoirs Pitamahal, Mandira, Chandirnall, Barsuan are parallel to each other. The inflow to the Lodani reservoir is depandent on the release from the above mentioned four reservoirs of Orissa plus Koel Karo hydroelectric project in Bihar state.

4.4 The reservoir capacity vrs. area and capacity vrs. elevation curves were calculated by using computer programme (i.e. fitting of polynomials).

The reservoir area vrs. capacity and elevation vrs. capacity equation are given below.

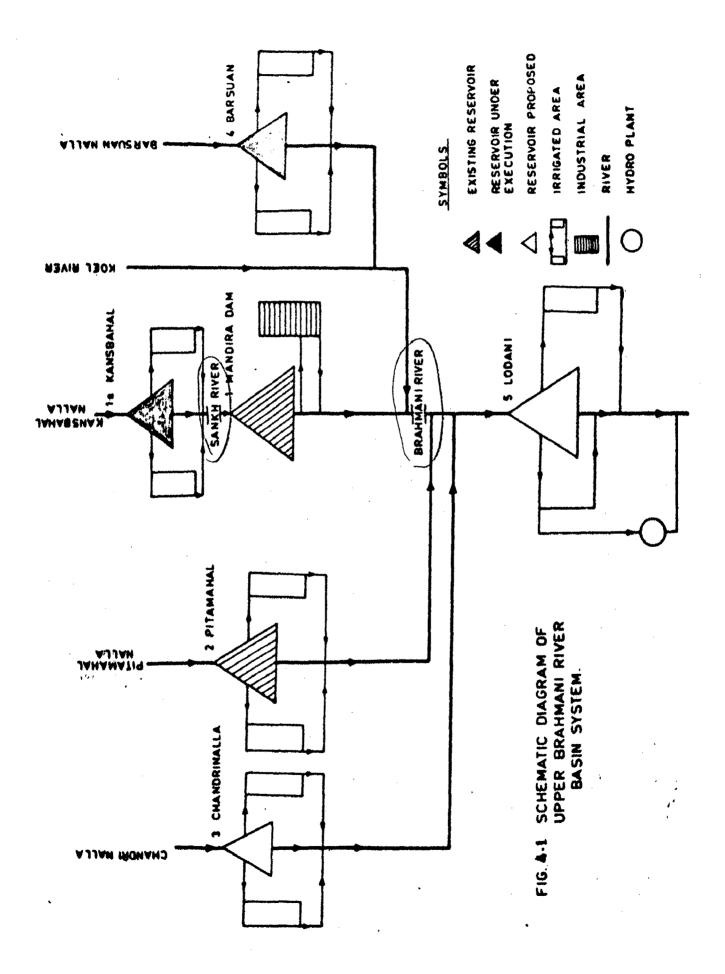
X - denotes reservoir capacity, in hectare meter Y_1 - denotes reservoir area, in mectares Y_2 - denotes reservoir elevation, in meters <u>KANSBAHAL IR IGATION PROJECT</u> Y_1 = 1.8925385 + 0.2504289X - 0.00005048048 * X^2 + 0.00000000479681 * X^3 Degree of Ploynomial = 3. Correlation indix = 0.99867735 $Y_2 = 208.4803 + 0.01618397 * X - 0.000005630776*X^2 + 0.0000000007053274 * X^3$

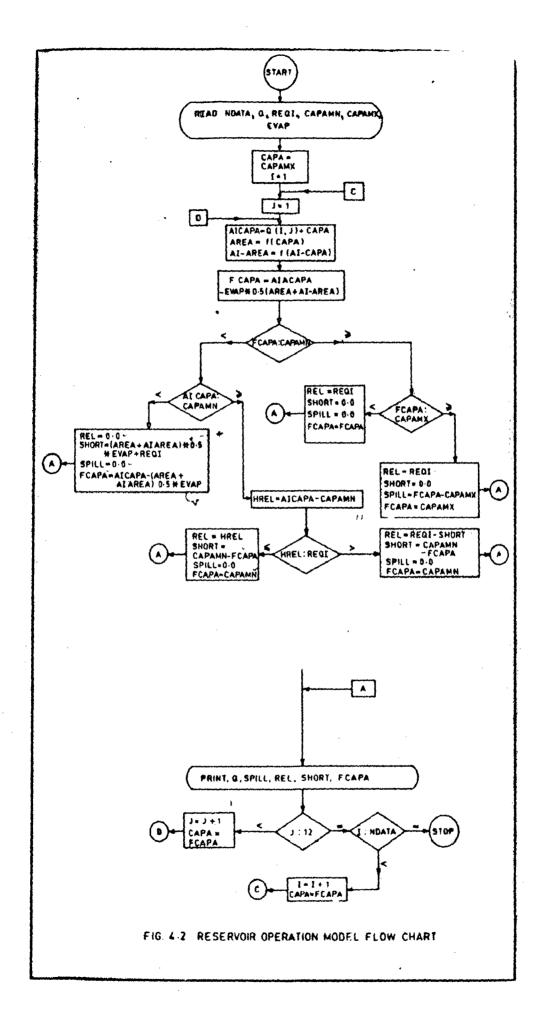
Degree of Pllynomial = 3

Correlation index = 0.97918765

MANDIRA DAM PROJECT

 $X_1 = 92.48315 + 0.2467659 * X - 0.000005788723 * X^2$ + 0,000000007108314* X³ Degree of Polynomial = 3Correlation index = 0.99980571 $Y_2 = 191.3259 + 0.002699852 * X - 0.0000001977241 * X^2$ +.000000000621192 * X³ - 0.000000000000006536 723 ¥ x4 Degree of Polynomial = 4 Correlation index = 0.99104903PITAMAHAL IR. IGATION PROJECT $Y_1 = 8.582886 + 0.3444347 \times X - 0.0003360733 \times X^2 +$ $0.000002126289 \times x^{3}$ $0.0000000004482414 \times x^{4}$ Degree of polynomial = 4 Correlation index = 0.99767618 $Y_2 = 226.8461 + 0.03093433 \times X - 0.00003276765 \times X^2 +$ 0.00000001687658*x³-0.000000000003072653*x⁴ Degree of Polynomial = 4


Correlation index = 0.99537021


CHANDRINALL IRRIGATION PROJECT

 $Y_1 = 6.782104 + 0.3762341*X-0.0001757862*X^2 + 0.00000004582489*X^3$ Degree of Polynomial = 3 Correlation index = 0.99965855

 $Y_2 = 197.3731 + 0.02685928 \times - 0.00002117502 \times X^2 +$ 0.00000006265964*X³ Degree of P.lynomial = 3 $Cor_clation index = 0.98159695$ BARSUAN IRRIGATION PROJECT $Y_1 = 3.519531 + 0.2321491 * -0.0001816377 * X^2$ $+0.000001107655 \times X^{3} - 0.000000002448264 \times X^{4}$ Degree of Polynomial = 4 Correlation index = 0.99973750 $Y_2 = 231.158+0.01857424*X -0.00001106714*X^2$ + 0.00000002622755*X³ Degree of Polynomial = 3Correlation index = 0.99649668LODANI MULTIPURPOSE PROJECT $Y_1 = 31.71973 + 0.5295906 \times -0.00008834898 \times 2+$ $0.0000001140666 \times x^3 - 0.00000000004727191 \times x^4$ Degree of Polynomial = 4 Correlation index = 0.99962422 $Y_2 = 147.1501+0.01477748*X-0.000004258527*X^2+$ $0.000000005171117 \times x^3 - 0.000000000002245101 \times x^4$ + 0.00000000000000001345724*X⁵ A simple flow chart of reservoir operation model has been given in Fig.4.2. The details of variables names are given in Appendix -

177152 TENTAL LIBRARY UNITERITY OF SOCRAF-

CHAPTER 5

DEPERMINATION OF OPTIMAL CROPPING PATTERN

5.1 INTRODUCTION:

Crop planning has gained significance due to growing social needs and increasing demand for food grain while availabe resources have remained limited and scarce and land to man ration reduces due to increase in population. Moreover optimal cropping pattern and its water requirement in important for efficient reservoir operation.

It is desirable that the objectives of optimal allocation of irrigated area to different feasible alternate crops utilising both the surface and ground waters conjuctively along with land resources are full filled and benifit from the system of are maximised. The ayacut map/Lodani Project is enclosed as Figure 5.1

5.2 FACTORS AFFECTING CROP PLANNING:

(a) Selection of crops:- The crops to be grown and the extent of area available are determined by considering climatic conditions of the region, soil characteristics, marketability, water requirement, net return. Therefore, the cropping pattern is to take all the above factors into consideration and is to be adjusted according to availability of utilisable water resources overtime.

(b) Cost of input and price of output of crop-

Relative prices of various crops vary from time to time. Hence any assessment of optimum cropping pattern based on current or projected price is bound to change over time. In this model by changing the co-efficient of decision variables in objective function the above fluctuation in price over time can be taken into consideration to determine the optimal cropping pattern at any time. Generally it is assumed that the relative price structure remain unchanged for a plan period therefore the results of the model holds good, for a plan period.

(c) Water requirement of crops-

A number of methods are developed for computing water requirement on the basis of climatological parameters. Timing of irrigation is fixed as per the physological growth stage of plant, moisture depelation etc. Both the timing of irrigation differ from different crops. Therefore irrigation scheduling should meet crop water requirement. The crop water requirement for different months have been given in table 5.1(a) (d) Cropping intensity-

Cropping intersity depends upon the area that is to be irrigated in a particular crop season and the peak water requirements that are to be met from the available water resourcos.

(c) Availability of water-

An acceptable level of supply of irrigation based on probability study, should meet the water needs of various crops for each growing season. Accordingly cropping inte: ity is selected.

5.3 DATA ITS SOURCES AND METHOD OF COMPUTATION:

The study is based on the following data:

5.3.1. Net Benifit from different crops

The net value of produce of different crops has been calculated on the basic of latest report of Kansbahal Irrigation Project and have been given in Table 5.1

5.3.2 Cropping intensity:

In this study the crops selected for Lodani project are same as that of Karsbahal Irrigation project since both ayacut lic in the same agro-climatic zone.

In order to protect the reparian rights of Rengali Multipurpose project only 40 percent of the Rabi area is proposed to be brought under irrigation and crops considered are vegetable and pulses. The pulses have been selected as its water requirement is compar atively less than many of the Rabi crops and vegetable have been selected to cater the growing demand of Rourkella steel city. Maximum and minimum area constrainsts for various crops were i posed to keep the area of various crops with in reasonable limit. These limits are imposed with the help of past data on individual crops areas and future prospects of crop area development due to irrigation development. The prosposed maximum and minimum crop area for differents crops is given in Table 5.2, and calculation of these limits for different crops have been appended give in Table 5.3.

5.3.3 MOMPHLY UTILISABLE SURFACE WATER

In this case monthly availability of surface water at Lodani site for irrigation has been considered based in the upper and lower riparian rights of Bihar state and Rengali Multipurpose project respectively. For assessment of monthly utilisable surface water to different alternatives were considered.

CASE I The monthly 75 percent dependable yield (inflow) of 40 years generated flow from free catchment of Lodani project has been taken into consideration. Here free catchment has been considered excluding the catchment areas of four upstream project of Orissa namely Mandira Dam, Pitamahal Irrigation Project, Chandrinalla Irrigation Project, Barsuan Irrigation Project and the entire catchment of Bihar portion. Free catchment considered has an area of 9573.64 sq.km .The calculation of 75 percent dependable years yield and 75 percent dependable hypothetical year monthly yield are given in Table 5.4 and 5.5.

CASE II The 40 years yield at Lodani site has been computed by adding contributed flows from 4 nos of up stream reservoir to the yield due to free catchment. From the above yield monthly 75 percent dependable yield has been computed. The monthly utilisable water in the Lodani ayacut has been on the following percentage basis.

> January to May 10 percent- Non-monsoon months June 20 percent - Ist month of monsoon season July, September and Oxtober-40 percent monsoon months

56

August - 50 percent monsoon month

November and December - 10 percent Non-monsoon months.

The above percentage distribution has been assumed on the following basis. 10 percent withdrawl during non-monsoon periond less that least amount of flow during lean period will be tapped, and 50 percent during month of August has been assumed because the flow during. August is maximum and during other monsoon months flow has been distributed as per the percentage of Quantity of flow. The total quantity of utilisable water at Lodani site should not exceed 50 percent flood storage provided at R. ngali Multipurpose project. The above mentioned calculation has been given in Table 5.6 and 5.7.

5.3.4 <u>THE Utilisable Quantities of Ground Water:</u> The total annual quantities of utilisable ground water the Bonaigar subnorms of Division (area 254 sq.km) is 3936 H.M. as per/Agricultural Refinancing Development Corporation. The available ground water potential for Lodani ayacut (areas 172.5 sq.km) is 2673 hectere meters.

Monthly average available ground water = 222.75 H.M. The entire year has been divided in three seasons (i) Rainy season from July to October.(ii) Winter season-from November to February (iii) Summer season- from March to June.

During rainy season draw down permissible in the region is 6 meters. Hence ground water potential that can be exploited during rainy season is 334.125 hectare meter/month. During winter season draw down permissible is 4 meter. Ground water potential that can be exploited is 222.75 hectaremeter/month.

During summer season draw down permissible is 2 meter. Ground water potential that can be exploited is 111.375 hectate meter/month.

5.3.5 Cost of Surface water:

The cost of surface water was classified into two heads namely (i) operation and maintainace cost which is $R_{5.50/-}$ per hectate of C.C.A.(as per the Central Water Commission Norms) and (ii) capital cost.of The calculation of annual capital cost of surface water has been calculated and appended as Table 5.8

3.6 Cost of Ground Water:

Cost of ground pumping in this region from dugwell with electric pump set varies from Rs.1300/- to Rs.1500 per hectmeter. This also includes the operation and maintainance cost. 5.4 METHODS FOR OPTIMAL CROP PLANNING:

5.4.1 General

Modern technology and advance-ment in computer enable us to use powerful mathematical models for obtaining solutions in optimal allocation of land and water resources. The linear programming model adopted in this case over Non-linear programming model and dynamic programming model assuming linearity of the different equation and more over it is easy to frame the computer programming.

5.4.2 PROGRAMME PLANNING

5.4.2.1 Objective Function:

The objective function was to maximise the total returns of crops. The objective function includes four cateogries of development variables namely (a) crop-process, (b) surface water activities (c) Grounds water development activities (d) Input activity

5.4.2.2 <u>Constraints</u>: Following constraints were included in the model

(I) <u>Rabi and Kharif land constraint</u>: Total area of Rabi crops in the command area of Lodani ayacut **a**annot exceed 40 percent of C.C.A. at any time. Similarly total area of Kharif crops in the command area of Lodani ayacut cannot exceed 91.383 percent of C.G.A. at any time.

(II) <u>Crop area flexibility constraint</u>: Maximum and minimum area constraints for various crop, were impase keep the area of various various crops with in reasonable limits. These limits were imposed with help of past data on individual crop area and further prospects of crop area development due to irrigation development (III) <u>Monthly surface water utilization bounds</u>: The monthly surface water bound for different months has been taken as monthly 75 percent dependable years yields as explained in chapter 5.3.3.

(IV) <u>Monthly ground water utilisation bounds</u>: Maximum ground water utilisation bounds were also imposed for any particular month as explained in chapter 5.3.4

(V) Monthly of water requirement of different crops bounds:

The water requirement of various crops in each month cannot exceed the total surface and ground water resources available in that month.

5.4.3 THE MODEL:

Gin, tu

Following linear programming models were used for the crop planning in Lodani ayacut.

Maximize
$$Z = \begin{bmatrix} j & I \\ \Sigma & X & C_j - \Sigma \\ j=1 & j & j & i=1 \end{bmatrix} \begin{pmatrix} C_{J}X_{i} + C_{g}G_{i} - C_{M}C_{A} \\ \vdots & \vdots & i=1 \end{pmatrix}$$

In the above expression,

X_j = Irrigated area of jth crop in hectares
C_j = Net return from jth crop in Rupee/hecatre
C_s = Annual cost of surface water development in Rupes/
Hectare Meter.

C_M = Annual maintainace cost for surface water irrigation in Rupeus/Hoct of C.C.Λ. Ch = C.'S.A in hectaire Constraints:

1. Crop area flexibility constraints

 $X_1 \leq maximum area of Ragi$ $X_2 \leq maximum area of vegetable (khariff)$ $X_3 \leq maximum area of early paddy$ $X_4 \leq maximum area of Medium paddy$ $X_5 \leq maximum area of Normal paddy$

	$X_{6} \leq maximum$ area of pulses
	X ₇ < maximum area of vegetable (Rabi)
	X > minimum area of Ragi
	X_{2} > minimum area of Vegetable (Kharif)
	$X_{3} \gg$ minimum area of early paddy
	$X_{4} \ge$ minimum area of Medium paddy
	$X_{5} \ge$ minimum area of Normal paddy
	$X_{6} \ge$ minimum area of pulses
	$\frac{X}{7} \ge \text{minimum are} a$ of vegetable (Rabi)
2.	Kharif crop area constraint
	5 $\Sigma X \leq k(area of available Kharif land)$ j=1
3.	Rabi crop area constraint
	7 ∑ X ≤ R (area of available Rabi land) j=6
Δ.	Surface water (monthly) bounds utilisable
	$S_t \leq available utilisable surface water at level of ??$
	water resources, in tth month.
5.	Utilisable ground water (monthly) bounds
	Gt \leq permissible ground water resources, in tth month.
6.	Water requirement of crop (monthly) bound.
	7 $\Sigma X W \langle \text{Available developed surface and ground} \rangle$ j=1 j jt
	water, in tth month.
	Z denotes total crop net return (Rupees) t denotes period(month)
	X denotes the area of jth crop

K total available Khariff area

R total available Rabi area

- St denotes quantity of utilisable developed surface water in the tth time period.
- Gt denotes quantity of developed utilisable ground water in the tth time period.
- Wjt denoted water requirement of jth crop in the tth time period.

5.4.4 SOLUTION OF L.P.FOR OPTIMAL CMOPPING PATTERN:

The development of mathematical model in general and linear programming model in particular enable us to arrive at optimal solution for the problem. In the present case the problem was colved with the help of linear programming technique.

Various alternatives were considered by changing different constraints as discussed earlier in this chapter. The computations were carried out in conjunction with the operation model as discussed in chapter 6.

S 1. No.	Nane of Crop	Bullock labour	Human Labour	Seeds	Marusus'	Fort- liser	Postic. des	Irr. Othe char-char ges ges	Irr. Other char-char ges ges	Total
-	Ragi	180	6 00	52	125	$\Lambda_{\rm r}$ 00	125	18.52	15	1515.52
\sim	Vegetabls	200	1000	70	100	600	200	29.60	20	2219.60
•	Early paddy	² ,00	700	90	100	484	100	19.76	ß	1898.76
•	Medium paddy	₫00	700	06	100	648	100	19.76	ſ	2062.76
ۍ •	Paddy(inpro-	400	600	06	100	2.2	50	18.76	ഹ	1506.76
•	Pulso ved)	1 4.A.	280	100	50	285	60	3.74	17	939.74
•	7. Vegetabls	200	11 40	140	00	721	250	29.64	20	2600.64

* Source Barsuan Irrigation project report.

ť

Contd
-
5
Table

, * ******

.

NO	Interest at the rate 12 % for 3 months	Total	Yicld in quintals	Rate/ quin- tal	Recipt fron grain	Reci- pt Iron bi-pro duct.	n Potal rece- pt Rs.	Net rec ê p u Rs
	45.47	1561	35	80	2800	1	2800	1239
	66 . 59	2286	100	70	2 000	· 1	7000	471.*
	56.76	1956	30	114	3420	250	3670	171.*
	61.88	2124	35	14	3990	300	4290	2166*
	·	1552	22	114	2508	244	2752	1200 *
	28 • 18	968	7.5	260	1950	O ^L	1990	1022*
	78.00	2678	120	70	8 ⁴ r00	1	8400	5722 *

BER HECT.RE OF CROP AREA Mano Jan Feb March April May June July Aug. Sept. Oot. Nov. Dco. Of Or Or July Aug. Sept. Oot. Nov. Dco. KHARIF Crops July July Aug. Sept. Oot. Nov. Dco. KHARIF O.20833 - O.20833 - O.20833 - O.20833 O.007105 O.07528 O.07528 O.07528 O.07528 O.07528 O.069971 K.P.Addy O.02863 O.34282 O.0278 O.22385 O.069971 O.22547 O.069971 Rabi N.P.Conblo O.20863 O.34282 O.0278 O.22385 O.077564 O.22547 Vegeto O.22863 O.34282 O.0278 O.22385 O.069971 Inclusion O.20833 O.17564 O.22547 Vegeto O.21689 O.21689 O.22893 O.17564 O.22591 O.23591 O.23291 O.22591 O.23291 O.22591 O.23291 O.22991	·	THINOM	Tab K WATER I	Table 5.1(a) MONTHLY WATER REQUIREMENT	TA NI LNI		
Jan Fei March April May June July Aug. Sept. Oot. Nov. E D D D D D D D D D D D D D		PER HE(TLAR OF	CROP AR	BA		÷
LE able (able (able) (able	Feb March April May		Aug.	Sept.	Oct.	Nov.	Dcc.
able 0.20833 - able 0.20833 Idv 0.03703 0.30403 0.05253 0.07528 0.03682 0.2996 0.05163 0.18846 0.02863 0.34282 0.0278 0.22385 0.5087 0.069971 0.02863 0.34282 0.0278 0.22385 0.5087 0.059971 able 0.21689	THARF		n de la factoria de la compañía de l				
able 0.20835 Idy 0.03703 0.30403 0.05253 0.07528 Idv 0.03682 0.2996 0.05163 0.18846 0.02863 0.34282 0.0278 0.22385 0.5087 0.069971 ¹³ 0.02863 0.34282 0.0278 0.22385 0.5087 0.059971 ¹³ 0.20833 0.17564 able - 0.21689	Rapi 0.						
lðy låy låy 0.03682 0.3996 0.05163 0.18846 0.03682 0.34282 0.0278 0.22385 0.5087 0.069971 0.002863 0.34282 0.0278 0.22385 0.5087 0.069971 0.20833 0.17564 able - 0.21689	Vegetable 0.	20833					
ldy ldy 0.03682 0.2996 0.05163 0.18846 0.02863 0.34282 0.0278 0.22385 0.5087 0.069971 0.20833 0.17564 able - 0.21689 0.32991 0.32991	E. Paddy 0.						
láy 0.02863 0.34282 0.0278 0.22385 0.5087 0.069971 ¹³ 0.20833 0.17564 able - 0.21689 0.3285 0.5087 0.05091	M.Paddy 0.						
s able - 0.21689 0.17564 0.32991	N.Paddy 0.			0.22385		0.069971	
0.20833 0.17564	Rabi					- - - - 	
0.32991	ulses				0.20833		0.22547
0.32991	legetable				k 1 1 1		
	reget- 0.21689 tblo					0.32991	0.222

STATAANT SHOWING THE PROPOSED MAXIMUM AND MINIMUM CROPPED AREA (H.A.)

Sl. No.	Name of crop	Maxinum Area	minimum area	
Mar	rif			nage-rough states a state of the state
1.	Ragi	1525	835	
2.	Vegetable	726.7	133.3	
3.	Early paddy	1787	36 3	
/r •	Medium paddy	19268	39 12	
5.	Normal paddy (Improved)	1630	13 49•5	
Rabi	-			
6.	Pulses	7710.75	2639.25	Pa 1
7.	Vegetable	24 , 23	1027	1 a . -

C.C.A.= 17250 Hect.

Total khrif area < 15765 hect.(91.39 percent CCA) Total Rabi area < 6900 hect. (40 percent CCA) ?

Statement Indicating Area of Different crops Grown in Orissa from 1970-71 to

1979-80 for Calculation upper and Lower

irera	Arera in Hact				BC	Bound of	crop area					
Year	Ragi		Vegetable(k)	(X)olc	E.Padd and M.	л)	Normal im ved paddy	impro- ddy	Pusle(R)	(R)	Vegetable(R)	Le(R)
	Area	ć/	Area	%	Area	%	Area	%	Атеа	%	Area	%
1970-71	1970-71 140965 1.90	1.90	138217	9•51	82248	10.66	4253752	3.27	671731	1.21	258128	40.47
1971-72	1971-72 138282	1.59	125068	24 •83	91022	66.25	4392978	5.72	679878	14.24	153643	23 • 53
1972-73	1:0:88	2.81	155121	233.02	151330	48.37	4.14,1670	4.92	776636	1.84	189794	6.84
1973-74	1973-74 14465	11.31	516594	0•69	224529	10.51	4345471	6.22	790960	6.44	176808	2,78
1974-75	1974-75 160787	29.22	29.22 159322 15.23	15.23	200932	61.04	4.075068	2.58	841923	10.45	181729	17.55
1975-76	207711	9•29	183597	7.75	3 23 587	24.35	4180413	8.99	929905	16.16	213625	15.47
1976-77	227082	6 63	197834	10.64	4,02383	17.02	3804617	1.56	779626	00•6∻	180578	37.36
1977-78	1977–78 242130	0.07	0.073218876	0 • ćr6	470870	50.75	374,5130	6.62	1161713	13.43	248042	10.13
1978–79	2 7,2308	1.557	219882 12.71	12.71	709832	13.62	3497168	9.43	1317775	4.796	273177	5.51
1979-80	1979-80 238535	-19 j	247843		806517		1367483	1. 通过以来要求回找不过多,可能们不能能们回来?	1380977		258127	
iccepted u and lower of cron ar	Locepted upper and lower Bound of eron area	29 . 22		69•0		66.25		9.43		60. 60		40•47
in perc	percentage		SOUR(SOURCES: Table		ssa Agr	12 Orissa Agricultural	Statistics		(1979–80)		

Calculation of 75 percent dependable years runoff

and the second s

actuality and the strain of the state of the	anan an	radu da manazaru mendarakan kana manazar mendar mendar kanada kanada kanada kana da pana kana kana kanada kanad
<u>Sl.No.</u>	Year	Inflow in H.M.
1	2001	704202.55
2	1981	619007.22
3	1982	605026.44
4	1989	497666.51
5	1992	491115.51
6	2012	4534 78.15
7	1 993	453048 •79
8	1987	428848.60
9	2010	4282 17.83
1 0	2005	A2490 7.09
11	1986	393 1 58 .87
12	2011	3 7 0495•58
13	20 1 4	3640 7 5 .73
14	1 99 7	363071.24
15	2017	357315.56
2 6	1988	3545 27.7 8
17	2007	348136.39
18	1 994	344399 •31
19	1995	341115.05
20	1990	339295 . 3 1
21	2004	330944 .12
22	2003	328037.57
23	1 985	3 187 84.41
24	1996	297788.39
25	1 983	289710.50
26	1998	288100 <u>.</u> 09

Contd....

Table 5.4 Contd..

Sl.No.	Year	Inflow in H.M.
27	2000	286110.87
28	1991	284.120.75
29	2016	279977.58
30	2002	273857.84
31	2009	257289.09 75percent dependable
32	2015	24,1584.67 years
3 3	2006	234516.60
34	2013	231172.39
35	1999	228725.85
36	2008	2 26304 .63
37	1984	2226辱3。92
38	1980	211977.96
39 _r	20 1 9	203177.33
40	2018	188694.94

 $\frac{m}{n+1} = 3/4$

m= sl. no of 75 percent dependable year n= total nos of years considered

.

 $m = \frac{3x(40+1)}{4} = \frac{123}{4} = 30.75$

or say 31st years.

TABLE 5.5

MONTHLY GENERATED INFLOW OF LODANI FREE CATCHMENT ARAANGED IN DESCENDING ORDAR OF MAGNITUDE FOR CALCULATION OF HYPORHERICLI 75% DEPENDABLE YEARS YIELD (FROM 40 YEARS DATA) CATCHMENT AREA 9573.64 SQ.KM.

			m.	 	2		2		¢	~	0		e-+-	10	~					
Dec.	L3	24981	23053	616319	T7397	1712 J	17037	TOTST	15069	15038	13860		11284	10836	10343	10141	9615	9470	9154	853 5
Nov.	12	43900	43836	34364	109480 86 32460	30264	27545	25789	25-122	24620	24490		22582	21974	21265	19082	17935	15802	15787	15150
Oc t	11	2-20000	138042	121085	109480	100938	924:08	75354	70548	58577	58398		56658	56221	55585	52100	50321	49606	49314	49166
Sept.	10	257625	251298	2503.06	232044	190584	T78718	L42335	141883	139785	128717		127961	125401	119182	111259	1072 <i>6</i> 6	100177	98612	88211
Aug.	6	135788	132603	130669	130364	126972	125922	125768	1 25308	123253	12333		122064	117657	115037	1,13049	110843	110111	109328	108871
Jul.	ω	165969	144793	134740	98053	90215	87550	87353	82522	13218	76551		72387	71785	66169	€₽ Т69	65806	63401	62561	59704
Jun	7	11707	8796	4022	737 <u>1</u>	7073	6551	5845	5824	5738 .	5578	3 1	5493	5490	5490	5030	4977	4901	4698	4624
May	9	7285	4922	3555	2879	2800	2491	2469	2392	2350	2341		2248	2165	1911	1604	1592	T271	1258	1092
Apr.	5	4637	2782	2153	2066	1984	1934	1848	1724	1686	1630	•	1463	1423	1369	1 344	1197	1184	6911	1148
Mar.	4	2933	2541	2488	2333	2294	2289.	2249	2191	2098	2075		1818	1081	1797	T793	T770	1737	1720	1674
Feb.	ю	6850	5578	4934	4868	4514	4487	4294	4120	4057	375L	`	3691	3663	3600	3484	3473	3463	343 1	3364
Jan•	2	6792	0609	5386	4842	4814	4776	4410	4338	4282	4234		4220	4213	4139	3947	3946	3937	3708	3582
S1. No.	-1	-	2	ო	4	വ	9	7	ω	6	10	۰ ،	-1	27	6T	1 4	ST	9T	Т7	18

70

Contd.../-

																		,	71
	13	7367	6972	6751	6305	5: 59	5043	. 38	7,204	3826	3583	3495	3445	3335	3096	26 22	1811	1571	Contd
	12	12863	12766	10212	10109	9992	9520	9106	73.43	6848	6619	6073	5585	5508	5022	4683	3439	3333	Cont
		46316	4.5213	4.481	13151	38712	36950	36708	34959	30025	28492	27524	26115	2/,768	21995	17287	12009	117/9	
	10	73 298	63794	63516	62933	624.21	58630	52444	² 7096	Ar030	38688	35634	3 29.48	31.99	29222	27806	26925	21065	1
	6	108227	106769	104819	10491	103132	102708	102395	102131	101850	99699	97588	97166	96715	94,248	93799	92815	91706	
Ĭ	ω	55857	53814	53509	53491	47686	47409	1337	<i>i</i> r7105	£5050	1,2794	42721	42489	36745	36451	36176	35871	35912	
:	2	4514	4400	4,328	4,202	4181	4121	3959	3914	3638	3524	3 h 40	3371	3094	3061	2800	2683	2600	
• • •	9	1034	1008	2 66	368	777	683	580	521	510	445	444	417	211	159	126	124	108	
5.5 Contd.	5	1100	1084	1050	975	957	868	821	815	738	65 2	646	561	⁴ 56	387	3∆r7	.244	233	
Table 5.	4	1650	1639	1622	1617	1594	1587	1579	1576	1493	1482	1:,04	1380	1366	1352	1305	1279	1192	
E	3	3558	3239	3 183	3150	3078	3042	3033	5013	2863	27.6	274.1	2725	2702	2613	2612	2384	2380	
	2	3672	3092	3059	2973	2778	2735	2640	2564	24.34	2521	2301	2032	2028	1878	1823	1719	1626	
	-	19.	20.	21	22.	23.	.24 •	25.	26.	27.	<u>୍</u> କ୍ଷ	29.	30.	31	32	33.+	34.	35.	

,

SL.No	0. 2	3	4	Б	9	7	ω	6	10	11 1	12:	13
36.	1618	2249	1171	192	81	2440	31496	90385	19019	9458	3004	1513
37.	1525	2160	1048	11	LL	2326	26155	88729	15335	7570	2671	1136
38.	1516	2038	1039	69	30	1272	2306 7	87943	6475	1861	252 7	984
39.	1139	2012	839	53	23	1159	20076	82728	1938	381	1810	214
4°0.	666	1946	LLL	21	9	677	12844	66847	128	0	864	0
	n M To		Der OI	Therefore,		$M = \frac{(40+1)*3}{(40+1)*3}$	It	30.75 pr 31st year	31st y	ear		
	4 U				75 perc	ent Hyr	4 percent Hypotetical years monthly yield	l years	monthly		.ih H.M.	
	2028	2702	1366	436	CUP	3094	36745	-16715	31499	24768	5508	3335
	Calcu	lction (of frac	_	part of	13	onthIy yield that of	that of	annual	yield		
Jan =	= 9.734	: 9.7342 x 10 ⁻³ , F	5, Feb-	1 (3)			6.5588x10 ⁻³ ,	, April=	2.094.37×10 ⁻³ ,	7x10 ⁻³ ,Ma	,May= 1.01705x10 ⁻³	5x10-3
J une=	= 0.0148	0.0148501,July=	ly= 0.1	0.1763109,	aug.=	0	522,Sept	=0.1511	373, Oct:	= 0.11884	4640522,Sept =0.1511373,Oct= 0.1188413,Nov.=0.0264296	•0264296
Dec= dist:	Dec= 0.0160054 distributed mo	054 monthwise	no	75 the bas	75 percent basis of ab	t depenl sbove f1	tt depenbæe years above fractional	s yield 1 part	calcula	ted viãe	yield calculated vide table 5.4 are part	are
	2504		1687	538	261	3820	45362	119395	38885	30576	6800	4118

AFTER COM- BIHAR CATC- FOR CAICUL-	OCT NOV DEC	11 12 13	332872 82858 30882	206776 66165 27654	176149 55056 22910	167449 50953 22688	166241 46923 21831	1524,83 4,6879 20906	120706 43784 19704	112749 38604 19270	106114 37860 19072	1 02770 36425 1 7798	100940 34631 16292	98157 34532 15621	96380 32414 14688	د 1
S	SEPT	10	712138	1 701085	649195	643935	568040	413408	346182	341900	338773	330003	318878	298057	278181	
	JULY AUG	8	774957 682216	480293 54371	392672 476 1 20	33 6 193 464.017	331573 463223	311865 438888	309992 425923	253965 383991	238648 368431	235795 366282	221529 349836	206700 337261	194059 327987	
Table 5.6 LODANI SITE (i.e M RESERVOIR EXCLU IN DESCENDING CR. DEPENDABLE YEAR'S	J UNE	4	241869	119879	68539	66297	47901	47756	43630	4.2703	11483	10018	9774	8525	8439	
A A A A A A A A A A A A A A A A A A A	MAY	9	10016	7652	6285	5617	5610	5530	5221	5199	5122	5081	5071	A7978	4896	
AVAI NOS VER 75	APRIL	5	7 280	5425	4795	4708	4,627	4576	4491	4., 20	4367	4328	4273	4105	ćr065	
Y TOTAL INFLOW AVAI OPERATION OF 4 NOS OF KORA-KOEL RIVER OF HYPOTHETICAL 75	MAR	4	5673	5283	5229	5063	5025	5019	4990	4928	4828	4.805	4660	4559	4542	
MONTHLY T BINED OF HMENT OF ATION OF	F.E.B	2	9385	8116	7472	7334	6980	6953	6831	6653	6594	6370	6284	6157	6129	
	MAL U	2	11692	10131	8623	8424	8201	7883	7758	7514	7375	7312	7165	7143	7056	
	S. No		-	N.	۰ ۳	4.	5	•	٦.	œ	• •	10.		12.	13.	

				1 9 9 1		•							
	2	к	4	5	9	7	ω	6	10	11	12	13	
14.	6868	6106	4528	4012	4641	8278	187831	3 2599 2	269387	89225	3 2057	14666	
15.	6787	6021	4523	3987	4334	8193	181728	3 1683 2	259846	84705	31231.3	5313683	
16.	6529	6006	4500	3840	4322	8190	179672	306476	256998	83525	27213	13222	
17.	6494	5934	4779	3826	4203	8132	172071	302452	242930	81611	23733	12971	
18.	6312	5897	4451	3812	3988	7731	166537	302251	200142	78782	23255	12011	
19.	6232	5891	4415	3790	3822	7619	158173	299779	171902	78555	19988	11520	
20.	6092	5830	4380	3742	3764	7373	156231	296333	159633	77584	19848	11289	
21.	5990	5777	A777	3726	3738	7299	143180	283781	158524	76358	19014	11269	
22 •	5904	5670	4348	3692	3723	7214	139986	285767	146237	69588	18651	10140	
53	5709	5580	4335	3617	3598	7083	136951	283316	138435	06 ^{.,} 90	17234	9254	
24.	5665	5570	4317	3600	3 507	6789	134725	278682	128622	63413	18156	8287	
25.	5481	5551	4.310	3464	3414	6659	129321	265539	128588	59012	16035	8265	
26.	54.63	5548	4306	3457	3311	6588	128132	258491	122578	58071	14736	7404	
27.	5431	5329	4225	3381	3251	6313	126050	257031	119739	57990	12400	7246	
28.	5301	5240	4224	3 295	324.0	6235	119222	253872	115827	57603	11057	7120	,
29.	5251	5237	4135	3 289	3175	6090	105526	251835	91798	56848	10662	7037	
30.	504r7	5212	4121	5 203	3175	6046	99212	241199	87065	53481	10308 Cc	6924 Contd	

Table 5.6 Contd....

74

		The take
	13	6870 6374 6271 5576 5475 7721 7576 3415 3415 3415 3337 5337 5337
	12	10062 6870 9882 637 9382 637 9305 627 9305 627 1714 512 19 10062 19 10062 19 10062 19 1005103 0.1005103 562222210
	11	29 83577 219055 85704 4.8219 10062 500 77121 212241 81467 43222 9883 563 67121 212241 81467 43222 9883 583 67127 203765 79897 42820 950 548 60744 196394 783555 29522 833 548 60744 196394 783555 229522 8338 503 60195 190031 62056 22431 716 026 58970 186226 58719 22701 716 027 55326 1844180 57455 14245 694 072 55482 170865 42055 14245 694 072 55482 170865 42055 14245 694 072 55482 170865 42055 9292 634 072 55482 170865 42055 9292 634 072 55482 170865 42055 9292 634 072 35593 17366 4243 634 072 355402 17366 8164 48 072 35593 17266 87164 48219 1005 072 835777 219055 85704 48219 1005 $0.454057x10^{-5}$ 895704 0.178644 $0ct=0.1005105$ $0.454057x10^{-5}$ $8ept=0.178644$ $0ct=0.1005105$ $0.454057x10^{-5}$ $8ept=0.178644$ $0ct$
	10	5729 83577 219055 85704 48219 5500 77121 212241 81467 43222 5500 77121 212241 81467 43222 5383 67127 203765 79897 42820 5383 67127 205765 79897 42820 5745 60195 196031 62036 22701 5103 60195 190031 62036 22701 5103 60195 190031 62056 23731 5103 50031 62056 58719 22701 7037 56326 $184,180$ 57455 14243 7037 56326 $184,180$ 57455 14243 7037 56326 $184,180$ 57455 14243 7037 56326 $184,180$ 57455 14243 7037 56326 $184,180$ 57455 14243 7037 56326 $184,180$ 57455 14243 7037 56326 125912 17366 8164 63447 39509 125912 17366 8164 775 $0r$ $31(8ay)$ 17366 8164 775 $0r$ $31(8ay)$ 177360 8164 78 5729 83577 219055 85704 48214 48 5729 83577 219055 85704 48214 48 5729 83577 219055 85704 6417737 $0c^{2}$ 48 57
	6	219055 E 212241 E 212241 E 203765 196394 196394 190031 186226 184180 186226 184180 170865 170865 170865 170865 170865 170865 170865 170865 129119 125912 125912 125912 125912 125912 125912 125912 125912 125912 125912 125912 125912 125912 125913 125915 125
	α	 29 83577 2 500 77121 2 585 67127 2 585 67127 2 585 60195 1 103 60195 1 5972 55482 5972 55482 5972 55482 5972 55482 5447 39509 5447 39509 5447 39509 5447 39509 5729 83577
	E	• of general 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
	•	A Ma
5440 V	• • nation of c	5078 51/ 5078 51/ 5050 29 2989 28 2986 28 28866 28 2866 28 2713 28 2713 28 2713 28 2855 28 28566 28 2713 28 28566 28 28713 28 2866 28 2713 28 2866 28 28713 28 2866 28 2713 28 2773 2773 28 2773 28 2775 2775 28 2775 28 2775 28 2775 28 2775 28 2775 28 277
	Table 0.0	4097 4097 4082 4036 4010 5936 5936 5936 5936 5936 578 578 578 578 578 578 578 578 578 556 551 551 1 251 1 251 1 251 1 251 1 251 1 251 1 251 1 251 1 251 1 252 1 2552 255 255
	Та	2 3 12 5191 54 5078 550 4920 556 4918 573 4782 575 4918 575 4918 575 4918 575 4918 575 4918 575 4918 576 4918 576 4918 576 4918 576 4576 930 4576 930 4576 930 25191 5012 5191
		2 5012 4809 4754 4650 4555 4575 4575 4070 3930 7930 7930 7930 7930 7930
		1 31. 50 32. 53 33. 53 35. 53 35. 53 35. 53 35. 53 35. 53 35. 54 37. 50 37. 50 50 50 50 50 50 50 50 50 50 50 50 50 5

Nov = 0.0209748, Dec.= 0.0143213

31 No	Vield	сı		Sl.No.	Tield	S	Sl.No.	Yicld	S1.No	Yiel.	D L	
	1669301	01			1005114			880350	31	5	36 *	
¢J	1643419	19		12	1002627	7	22	878883	32	579892	92	
M	1548482	82		13	988762		23 8	837477	33	577454	54	
~; }-	14,15576	76		-	950942		24	763996	34	549056	56	
2	1570985	35		15	940249		25	736196	<u>5</u> 2.	547976	76	
9	12955,0	, ⁻ O		16	936715		26	713667	36	516015	15	
7	120:028	28		17	936308		27 6	696264	27	486039	39	
හ	1152537	37		18	930963		28 6	682665	38	r7371	71	
6	11376.45	15		19	917097		29	675914	39	464550	50	
10	1064179	79		20	908718		30 6	6734.1	40	411923	23	
*	75 percent 75 percent fractional		dab] dab] ce]	e years e years lculated	yield yield dist vide Table	distributed Pable 5.6	X	nonthwise on	the	basis of		
Jan.	Feb. Mar		רות		June	و مسر یا	Aug	Sept	Oct.	Nov.	Dec.	IEF
6230 (6452 5(5092 38	3826	3912	7121	103879	272260	272266 106522	59932	12506	8539	
- 			IJ	Utilisable	le nonths	1	surface water	r available	able		建学生 長 计算机引导计算机 化基丁基基丁基丁基	
10	10	10 1	0	10	20	Ź _r O	50	4.0	4°0	10	10	<u>}</u>
623	645	509	382	391	1224	41551	136133	\$ 42609	23973	1250	854	

Č.

Table 5.7

76

-

Calculation of Annual capital cost of surface water.

Capital cost of Project Rs.67500000/- (Irrigation share)

Life of Reservoir project is 100 years

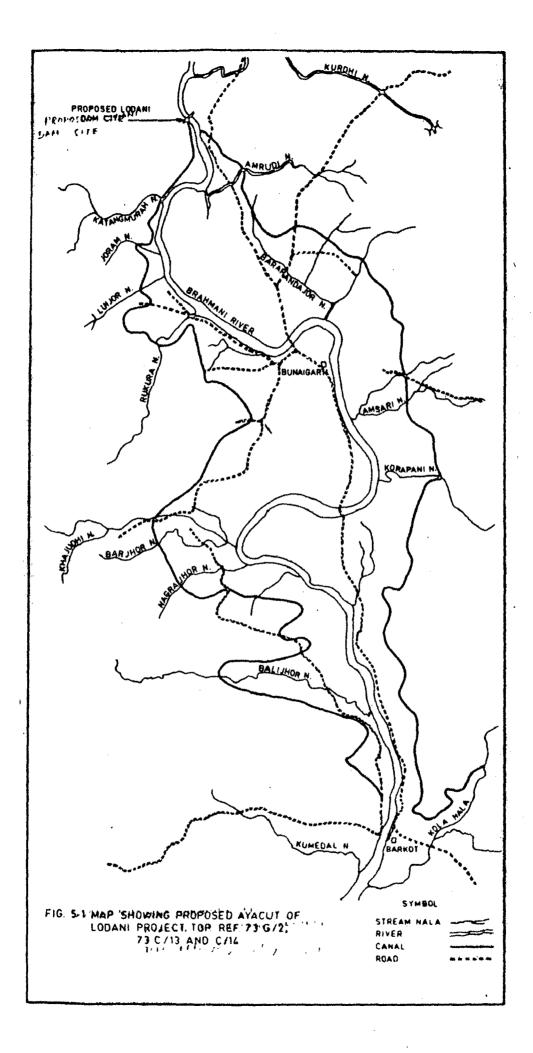
Annual capital cost at 10 percent interest rare

$$A = P \left[\frac{i (1+i)^{n}}{(1+i)^{n}-1} \right]$$

A = Annual cost

P = present co-value

i = interst rate


n = nos of years

$$\frac{0.1 (1.1)^{100}}{(1.1)^{100} - 1}$$

= Rs.6750486/-

Annual cost por = $\frac{6750486}{6534.76}$ = Rs 1033/-Hect meter of storage

= Rs.1035/-(say)

CHAPTER 6

COMPUTATION

6.1 INTRODUCTION:

The operational procedure as disscussed in section 4.2 has been followed for the operation.

Computer programme (Appendix -IV) were devoloped for the study and are used for computation.

First the Kansbahal reservoir was operated individually to assess its contribution (i.e, part of irrigation release and spill) to Mandira Reservoir. Then the five reservoirs, i.e. Pitamahal, Mandira, Chandrinall, Barsuan and Lodani operated simultenously. The different runs have been made by changing the requirements of Mandira and Lodani reservoirs, which have been disscussed in section 6.3.

6.2 DATA USED:

The following data have been used for operational computation.

1. Reservoir Gross storage capacity and dead storage capacity are given table 2.2

2. 40 years generated monthly inflows for six reservoirs. These have not been appended here.

- 3. Monthly irrigation and industrial requirements for five reservoirs are given in table 2.3
- 4. Monthly evaporation losses from reservoir are given in table 2.5.

6.3 Detail Computation Procedure:

The computational procedures of operational and linear programming models are interdependent on each other. The comput-

tation of different steps was done as given below.

STEP I: The operational model runs with the data of four upstream reservoirs, i.e. Pitamahal, Chandrinall, Barsuan and Mandira. The data consists of

- (1) Forty years of inflow, and
- (2) Irrigation requirement for reservoirs Pitamahal, Chandrinall and Barsuan taken from table 2.4. Industrial water requirement for Rourkella steel plant, as 300 cubic feet/ second is also taken from table 2.4. The contributed flows from different reservoirs after the above operation to Lodani reservoir is taken on the following basis.
 (a) Spill from each reservoir

(b) 20 percent of the irrigation releases made from reservoirs namely Pitamahal, Chandrinalla and Barsuan as return flow or regeneration.

(c) 60 percent of the industrial releases from. Mandira reservoir as return flow.

After calculating the contributed flows, the inflow due to the free catchment of Lodani Project were added to it and were taken as total inflows to Lodani reservoir. The requirements for Lodani reservoir has been considered as per the feasibility report of state government and is taken from table 2.4. Then the Lodani reservoir has been operated. The reservoir behaviour has been given in table 6.1

STEP II: The procedure for computing flow contribution to Lodani reservoir from up stream reservoir is same here as that of step I, except that the monthly industrial water requirements from Mandira dam has been changed from 300 cusecs to 600 cusecs, Which is the future demand of Rourkella steel plant. The Lodani reservoir behavour has been given in table 6.2

In the following steps lower and upper bounds were imposed on the cropping areas as discussed in section 5.5.

SEEP III: The flow contribution to Lodani reservoir from up stream reservoir is same as in step II. The water requirements at Lodani reservoir were changed using the Linear programming model. The model was run with monthly inflows taken as 75 percent dependable years yield values calculated from inflow due to free catchment and by imposing upper and Lower bound on cropping areas along with all other constraints mentioned in chapter 5 remain unchanged. From this model the monthly surface water requirements have been calculated and given in table 6.3 With the new values of erop water requirements for different

months the Lodani reservoir was again operated by taking total inflow data to Lodani reservoir as explained in step II. The reservoir behaviour has been given in table 6.4.

STEP IV: The flow congribution to Lodani reservoir from up stream reservoirs is same as in step II. The water requirements of Lodani were again changed using Linear programming model. The model was run with monthly inflows taken as 75 percent dependable years yield values and by imposing only upper bounds on cropping areas along with all other constraints mentioned in chapter 5. remain unchanged. From this model the gonthly surface water requirements have been calculated and are given in table 6.3, With the new values of crop water requirements for different months the Lodani reservoir was again operated by taking total inflow data to Lodani reservoir as explained in step II. The reservoir behaviour has been given in table 6.5.

STEP V: The flow contribution to Lodani reservoir from up stream reservoirs is again same as in step II. The water requirements at Lodani were changed using Linear programming model The model was run with monthly inflows taken as different percentage for different months from 75 percent dependable years yield value calculated from total inflow at Lodani site (i.e. contributed flows from up stream reservoir plus inflow due to free catchment) as explained in section 5.3.3 of chapter 5 and by imposing upper and lower bounds on cropping areas along with all other constraints montioned in chapter 5 remain unchanged. From this model the monthly surface water requirements have been

calculated and given in table 6.3. With the new values of crop water requirements for different months the Lodani reservoir was again operated by taking total inflow data to Lodani reservoir as explained in step II. The reservoir behaviour has been given in table 6.6.

STEP VI: The flow contribution to Lodani reservoir from up stream reservoirs is same as in step II. The water requirements at Lodani were changed using Linear programming model. The model was run with monthly inflows taken as different percentage for different months of 75 percent dependable years value calculated from total inflows Lodani site as explained in section 5.3.3 of chapter 5. and by imposing upper bounds on cropping areas along with all other constraints mentioned in chapter 5 remain unchanged. From the model the monthly surface water requirements have been calculated and given in table 6.3. With the new values of crop water requirements for different months the Lodani reservoir was again sperated by taking total inflow data to Lodani reservoir as explained in step II. The reservoir behaviour has been given in table 6.7.

No further computations were carried out due to the storage of time and also the above step nos from III to VI, where the bounds were changed on the cropping areas, seemed to be sufficient for analyzing different cropping pattern from the point of view that the system is almost under the investigation stages.

Table 6.1 BEHAVIOUR OF LODANI RESERVOIR

In Hect. Meters

No. Nonths- Nov	•				•	•		•		. 1	•
	Dec	Jan	Feb	Mar	irpri.	l May	April May June	Yuly.	Lug	Sept	.0ct.
Monthly 24774	11182 5118		420	2534	1774	2002	2002 23839	191172	191172 304375: 1228396	1228396	81652
Monthly 82554 maximum		30610 12726	7786	3759	5263	7814	253483	7814 253483 771593 679185	679185	707092	329702
spill Monthly 3637 minimum	1785	2273	2950	1605	647	535	1865	50365	122881	12321	4994
spill Monthly Av Real-	0	0	0	0	0	0	0	2981	2687	4695	2793
se. Monthly Maximum	0`	0	0	0	0	0	0	2981	2687	4695	2793
Rea k ease Monthly nininum réalease	0	0	0	0	0	0	0	2981	2687	4695	2793

Nos of short months = 0, Nos of yours reservoir was successful = 40, nos of year reservoir failed = 0. •

.

,

.

BEHAVIOUR of LODANI R.SERVOIR

in Hect.Meters

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Dec Jan Feb Mar April May June July Aug. Sept. 33 12060 6005 5539 3885 3095 3367 21729 180669 304193 228396 34 30610 11600 9019 5125 6584 9180 241198 771593 679185 707092 3 3 3065 3638 4183 2970 1968 1900 2775 36146 122881 12321 0 0 0 0 0 0 0 3691 2687 4695 0 0 0 0 0 0 0 2981 2687 4695 0 0 0 0 0 0 2981 2687 4695 368, Maximum spill= 771595, Minimum spill = 71900, Mos of Spilled months successfull = 40, nos of Years reservoir was successfull = 40, nos of Years reservoir spill = 71905 3694 3694 3694 3694 3694 3695					and the second secon	-1	IN Hect.Meters	eters					
12060 6005 5539 3885 3095 3367 21729 180669 304193 228396 2 <th2< th=""> <th2< th=""></th2<></th2<>	57 21729 180669 304193 228396 30 241198 771593 679185 707092 3 00 2775 36146 122881 12321 0 2775 36146 122881 12321 0 0 2981 2687 4695 0 0 2981 2687 4695 0 0 2981 2687 4695 0 0 2981 2687 4695 0 0 2981 2687 4695 0 0 2981 2687 4695 585ful= 40, nos of spilled nonths = 585ful= 40, nos of spilled nonths =	No. Month Nov		Dec	Jan	Feb	Mar	April	May	June	July	Aug.	Sept.	Oct.
30610 11600 9019 5125 6584 9180 241198 771593 679185 707092 3 3065 3638 4183 2970 1968 1900 2775 36146 122881 12321 0 0 0 0 0 0 2981 2687 4695 0 0 0 0 0 0 2681 2687 4695 0 0 0 0 0 0 2681 2687 4695	30 241198 771593 679185 707092 3 0 2775 36146 122881 12321 0 2775 36146 122881 12321 0 0 2981 2687 4695 0 0 2981 2687 4695 0 0 2981 2687 4695 0 0 2981 2687 4695 0 0 2981 2687 4695 0 0 2981 2687 4695 = 1900, Nos of spilled nonths = = =	249	303		6005	5539	3885	3095	3367	21729	180669	301 103	202000	
3065 3638 4183 2970 1968 1900 2775 36146 12381 12321 0 0 0 0 0 0 0 4695 , 0 0 0 0 0 0 2681 2687 4695 , 0 0 0 0 0 0 2681 2687 4695 ,	00 2775 36146 12381 12321 0 0 0 2981 2687 4695 0 0 2981 2687 4695 0 0 2981 2687 4695 0 0 2981 2687 4695 100 0 2981 2687 4695	825	54	30610	11600	9019	5125	6584	9180	241198	771593	679185	707092	329702 329702
0 0 0 0 2681 2687 4695 0 0 0 0 0 2681 2687 4695 0 0 0 0 0 2881 2687 4695	0 0 2981 2687 4695 0 0 2 991 2687 4695 0 0 2981 2687 4695 = 1900, Nos of spilled nonths = 4	C P	5	3065	3638	4183	2970	1968	1900	2775	36146		12321	499 <i>4</i>
0 0 0 0 0 0 0 2991 2687 4695 0 0 0 0 2981 2687 4695	0 0 2 991 2687 4695 0 0 2981 2687 4695 = 1900. Nos of spilled months = 1 essful= 40, nos of years reservoi		0	0	0	Ö	0	0	0	0	2981	2687	4695	2793
0 0 0 0 0 0 0 2981 2687 4695	0 0 2981 2687 4695 = 1900, Nos of spilled nonths = 40, nos of years reservoi		0	0	0	0	0	0	0	0	2991	2687	4695	2703
	= 1900, Nos of spilled nonths sssful= 40, nos of years reserv		0	0	0	0	0	0	0	0	2981	2687	4695	2793

•

Results of different decision variable from

binear programming mode

A- CROP AREAS

crops STTP I Ragi 835.00 Vegetab- 726.70	STEP III			
Ragi Vegetab- 72		AT delte	STEP V	STEP VI
Vegetab- 7	835,00	0•0	835.00	0.0
lekhrif	26.70	726.70	726.70	726.70
	363.00	0•0	363.00	0•0
Medium 1249 paddy	12490.80	15938.30	12490.80	15038.30
Nornal 134 paddy	1349.50	0•0	1349.50	•
Pulss 447	4470.00	4470.00	2639.25	2389.87
vegata- 242 bleRabi	2425•00	2423 . 00	2169.72	2423,00

Contd...

Monthly surface water constraints same as that of step V and imposing only cropping area upper bounds. Step VI

BEHAVIOUR OF LODANI RESERVOIR

١

in Hect. Meters

Step Month + No.	Nov	Dec	Jan	Feb	Mar	Lirgà.	May	June	July	-gny	Sept.	Oct.
III Monthly	23 22 3	23223 10512 5479	5479	5539	3884	3095	3367	20892	179433	306179	230162	82826
AV.Spilly Monthly maximun	80874	80874 29063 11075	11075	9019	5125	6584	9180	240360	770357	681171	708858	330876
spill Monthly minimur	2863	1517 3112	3112	4183	2970	1968	1900	1938	34910	34910 124867	14086	6167
spill Monthly av.releas	1679 3e	1547	525	0	0	°O	0	837	4217	701	2929	1619
Monthly naximun	1679	1547	525	0	0	0	0	837	4217	701	2929	1619
reluase Monthly mininun relegse	1679	1547	525	0	0	0	0	837	4217	701	2929	1619
AV.spill= 72883, Maximum spill=770357 Nos of short month= mil, Nos of years years reservoir operation were failur	383, Ma nonth-	uximun - nil, ration	spill=' Nos of		, Minimun reservoi e= Nil.	Minimum spill= 1517, Nos reservoir operation were = Nil.	1517, tion w	1	spilled cussful	of spilled months=480 succussful= 40, Nos of	s=4,80 Ios of	

BEHAVIOUR OF LODANI RESERVOIR

in Hect. Meters

Oct.	83512	331562	6854	932	932	932	and the second se
ŏ	835	33.	66	6	01	01	CONTRACTOR OF THE OWNER
Sept.	230248	708944	14,172	2843	2843	2643	FUEL STREET AND DESCRIPTION OF STREET
• Bny	299116	674 ₁₀₈	34622 117804 14172	7764	7764	7976 <i>4</i> ,	
ענטנ	20934 179144 299116	2404 0 2 770069 674108		4505	4505	4505	
June	20934	24040 2	1980	795	795	795	
May	3367	9180	1900	0	0	0	
April	3095	6584	1968	0	0	0	A CONTRACTOR OF
Mar	3884	5125	2970	0	0	0	Contraction in a statement of the second
Feb	55 3 9	9019	4183	0	0	0	
Jan	5479	29063 11075	3112	525	525	525	
Dec	23317 10512		1517	1547	1547	1547	
Nov		80968	2957	1585	1585	1585	
Step Month-	Monthly	averinum Monthly Maximum	spill Monthly Minijun	Monthly	Monthly maximum	relcase Monthly minimun relcase	
Step No.	TΛ						Party of the second second

Nos of short month= 0, Nos of reservoir was successful= 40, nos of year reservoir failed = 0. AV. spill= 72346, Maximum spill= 770069, Minimum spill= 1517, Nos of spilled month = 480

BEHAVIOUR OF LODANI RESERVOIR

in Hect.Meters

Oct.	83209	331259	6550	1236	1236	1236	0
							= 480 ir
Sept.	230162	708858	14086	2929	2929	2929	months = 4 reservoir
Aug.	306179	681179	34 910 12 486 7	701	701	101	spilled r of years
y Lu L	179433	770357	34910	4217	4217	4217	R.
June	20892	240360	1938	837	837	837	ill= 1900, Nos of successful=40,nos
May	3367	9180	1900	0	0	0	spill= 19
April	3095	6584	1968	0	0	0	un sp was
Mar	3884	5125	2970	0	0	0	U O
Feb.	5539	9019	4813	0	0	0	1= 770357, years res
Jan	5534	11129	2167	470	470	470	un spil Nos of
Dec.	11206		2211	854	854	854	= 73015, Maximum spill= .ort month = 0, Nos of y
Nov	23653	81304 29756	3 29 3	1250 в	1250	1250	= 73013 ort non
Step Month- No.	Monthly Av.Spill	Monthly Maximun spill	Monthly Minimum spill	Monthly Av.release	Monthly Maximum	rerease Monthly Minimun release	Av.spill = 73013, Maximum spill= Nos of short month = 0, Nos of ye
Step No.	οm ν	Mo Ma Sp	Mo Ni S D	No	Mo Ma	HEEN	No C

90

,

BEHAVIOUR OF LODANI RESERVOIR

in Hect. Meters

新,14-11,18-11年,12-14年前月1日年,18-11日年11日年11月,19-11年11日年 19-11日												
Step Month- No.	Nov	Dec	Jan	Feb	Mar	Åр ті І	May	June	July	guy	Sept.	Oct.
VI Monthly Av.Spill		23684 11206	5479	5539	3884	3095	3367	21024	21024 179144 306104 230257	306104	230257	83947
Monthly Maximun	81335	81335 29756	11075	9019	5125	6584	9180	24049 2-77 0069		681096 708953	708953	331997
spill Monthly Mininun	3323	2211	3112	4183	2970	1968	1900	2070	34622	34622 124792 141819	17,1819	7289
spill Monthly Av.rel-	1219	854	525	0	0	0	0	705	4505.	776	2834	4.98
ease Monthly Maxirun	1219	854	525	0	0	0	0	705	4,505	776	2834	498
release Monthly Mininun release	1219	854	525	0	0	0	0	705	4505	776	2834	86÷
Av.spill = 73061, Maximum spill= 7700 Nos of short month= 0, Nos of years r	5061, N nonth-	lunixch o No	spill= s of yec		0069, Minimum reservoir was	5 60	1900 . ssful-	pill= 1900, Nos of successful= 40,nos	1	spilled nonths = 4 of years reservoir	s = 480 rvoir	
failod - O								•		ł		

91

failed = 0

CHAPTER 7

DISCUSSION, CONCLUSION AND SUGGESTIONS:

7.1 GENLRAL:

The system of upper Brhhmani basin was defined in Chapter 2. The synthetic flows at various sites were generated in chapter 3. Two models i.e. operational model and linear programming model, were applied in conjunction with each other to the basin. The results of computations are given in table 6.1 to 6.7.

7.2 DISCUSSION:

For the study of reservoir operational model and linear programming model, the accuracy and reliability of results depend upon the reliability of input data.

7.2.1 Generation of Stream flow data-

The generation of stream flow data by Thomas Fiering model and Modified Thomas Fiering model have the following limitations.

1. If assumes that the flow sequences are normally distributed.

2. The accuracy of results of generated series depends upon the number of historical input flow sequence

From the comparison of mean and standard deviation of observed and generated series given in table 3.2(b), 3.3(b), 3.4(b), the variation of mean and standard devations is not much. except in the case of standard deviation for Pitamahal Irrigation Project and Barsuan Irrigation Project for the month of June and October respectively. This may be due to lack of inflow data and the assumption that regression co-efficient and co-relation co-efficient for the month of June are zero.

From the comparision of mean and standard deviation of observed and generated series given table 3.5(b) and 3.6(b) the deviation in the case of mean is maximum in the month of March in case of Mandira Project and in April in case of Lodani Project. The maximum standard deviation in case of both above mentioned projects in the month of December. This may be due to nonavailability of long series of observed inflow data (i.e.,inflow data is for 9 years and 4 years only available in case of Mandira and Lodani Projects respectively). More over other statistical methods such as Bivariate and Multivariate method, could't be used due to non-availability of observed inflow data for common period to check the accuracy of results.

The free catchment inflows at Mandira and Lodani sites have been calculated on catchment proportion basis assuming that topographical, geohydrological, hydrometeorological, land cover characteristics of the basin are uniform through out.

7.2.2 Behavaiour of Four up-stream Reservoirs-

The reservoir behaviour of four nos of upstream reservoirs and its contribution to Lodani reservoir computed by reservoir operational model have been given in table 7.1 to 7.5.f For this purpose the irrigation requirements for Pitamahal, chandrinalla

and Barsuan are kept constant and taken from table 2.4, only in the case of Mandira two different requirements have been considered i.e. present and future industrial demand of Rourkella steel plant. Table 7.1 to 7.5 shows the average monthly inflow average monthly spill, Maximum monthly spill, Minimum monthly spill, average monthly release, maximum monthly release and minimum monthly release from the four numbers of upstream reservoirs.

7.2.3 Lodani Reservoir Behaviour:

From the reservoir behaviour table 6.1, 6.2 and 6.4 to 6.7 it is seen that through out the years the proposed Lodani reservoir spills. The spills from Lodani reservoir would have still more as the yield at Lodani site has been done on rather conservative side. The contribution of yield from the catchment of Bihar portion has been eliminated from the total yield at Lodani. But actually the yield from Bihar catchment is also availableat Lodani site. These spills will take care of the supplies of water from Lodani for Rengali Multipurpose project which is under construction down stream of Lodani.

The water requirements at Rengali Multipurpose reservoir site has been calculated considering the yield from entire catchment of Brahmani basin at Rengali site. Due to non-availability of water requirement data of Rengali Multipurpose project the same could not be incorporated in the models. Inclusion of this would have justified the values of spills from the Lodani, obtained in the present study.

7.2.4 Selection of cropping pattern:

The utilisable surface water constraint in each month has been calculated from generated data from two alternate basis for the Lodani reservoir as discussed in sub-section 5.3.3 of chapter 5. This also has the same defficiences as that of generation of data.

The types of crops to be grown in the ayacut of Lodani Project have been selected on the basis of Kansbahal Irrigation Project which lies in the same agro-climatic zone since soil survey report of Lodani ayacut is not available.

In the linear programming computations in step III and V section 6.3 both upper and lower bounds have been imposed. The lower bounds have been imposed with an aim to minimise transportation of food grains from other regions. In the linear programming computation in steps IV and VI section 6.3 upper bounds for crop area have been imposed but lower bounds have been released with an aim to maximise the net benifitt. The crop area and benifits are given in table 7.6.

7.3 CONCLUSION:

7.3.1 General:

The study was done on the two following aspects, these are, (i) allocation of water resources of Brahmani river among different reservoirs in upper Brahmani Basin and (ii) to evolve the optimal cropping pattern for Lodani Project.

The Thomas Fiering and Modified Thomas Fiering models

were used to generate sequential stream flow data at different sites for perennial and intermittant streams respectively.

7.3.2 Optimal Cropping Pattern

For this two different cases have been studied as follcws case I- In this case it is considered that 75 percent dependable years monthly inflow from free catchment of Orissa portion will be the available utilisable surface water bounds for different months for linear programming model. (i.e. step III and step IV of combined operational and linear programming model) with two different crop area bounds have been studies i.e. step III and IV. In step III both upper and lower bound of crop areas have been imposed but in the step IV. Only upper bounds have been imposed. The results are given in Table 7.6. In step III utilisation of total surface water is 14057 hectare meters, Khariff intensity achived is 91.4 percent and Rabi intensity achieved 40 percent and net benifit derived. is Rs.367.85 lakhs.

In step VI utilisation of total surface water 13412 hectare-meter which is comparatively less than step III though the same Khariff and Rabi intensity of 91.4 percent and 40 percent are achieved but following crops Ragi, early Paddy, Normal paddy have been eliminated due to relaxation of lower bound and increase in net benifit from Rs.367.85 lakhs to Rs.396.94 lakhs between step's IIIand IV was observed.

From the reservoir Behaviour table 6.4 and 6.5 it is seen that there is marginal increase in Av.spill, maximum spill

and minimum spill in the month of June, Sept and October and marginal decrease in Av.spill, maximum spill and minimum spill in the month of July and appreciable decrease in Av.spill = 7063 H.M., in the month of August. But for all other months, Av.spills maximum spills and minimum spill remain unchanged.asAs the fluctuation of spill happens to be in monsoon months and maximum different of Av.spill i.e. month of August is the peak flow month of monsoon period, hence the effect of both the steps III and IV will be almost same on Rengali Multipurpose Project.

Case II- Monthly available 75 percent dependable years at Lodani i.e. inflow due to free catchment of Lodani (Orisša portion) plus contributed flows from four up stream projects well first calculated. The up stream contribution of reservoirs was obtained from the combined operation of four reservoirs. The sur face we er utilisation for each month was taken as a certain per centage of the above available monthly yield such that the total yearly utilisable surface water should not exceed the 50 percent of flood storage provided in Regngali Multipurpose project. That is with above utilisable surface water constraints for linear programming model (i.e., step V and VI of combined operational and Linear programming model) with two different crop areas bounds have been studied i.e step V and VI. In step V upper and lower bounds of crop areas have been imposed but in case step VI only upper bounds have been imposed.

In step V utilisation of total surface water is 12497.C hect.meter along with 245.49 hect.meter of ground water, Khariff

intensity achieved 91.4 percent and Rabi intensity achieved 37.7 percent and net benifit derived Rs.347.04 lakhs.

In step VI utilisation of surface water 11917.64 hect. meter and ground water is 222.75 hect.meter which less in comintensity parission to step V. though the same khariff/achieved but crops eliminate like Ragi,early paddy, and normal paddy were/and Rabi intensity remain almost 37.7 percent same but Rabi crops area changed from step V and increase in net benifit from Rs.347.04 lakhs to Rs.387.74 lakhs was observed between step V and VI.

From the reservoir behaviour table 6.6 and 6.7 there is no appreaciable change in monthly Av.spill for the month of Nov, Jan, June, July, Aug, Sept and Oct and no chnages/averago for the months of December, February, March, April and May. Similarly in the case of monthly Maximum and minimum spill, hence the effect on down stream Rengali Multipurpose project due to step V and VI will be almost same.

From the above study it may be concluded that optimal cropping pattern evolved by step IV operation is best among all other steps.

It is seen from table 6.5 that entire ground water potential remain unused. which indicates that Rabi area constraints and type of Rabi crops in Linear programming model can be further relaxed from 40 percent and more Rabi crops suitable for region can be incorporated.

The optimal cropping pattern evolved from this studmay not be accepted in total due to the following reasons.

- (1) Non-availability of historical stream flows data for longer period to be used in the Thomas Fiering and Modified Thomas Fiering Models.
- (2) Non-availability of soil survey report to decide types of crops suitable for Lodani ayacut, and
- Non-availability of the water requirements of Rengali
 Multipurpose project.
- 7.3.3 Water Allocation

The allocation of water to the four up stream reserveir are in Table 7.7

Table 7.8 and 7.9 shows the average monthly contributed flow to Lodani reservoir from four nos of up streams reservoirs computed by reservoir operational model as per step I a Step II to VI respectively. The allocation of water to Lodani is such that it fulfills the water demand without any deficits, on is 100 percent successful. Hence the allocation of water to Lodan' is sufficient with assumption that the contribution from Lodani reservoir will meet the share of demand of down streams Rengali Multipurpose Project

7.4 SUGGESTION

As explained in conclusion section 7.3 the optimal cropping pattern evolved in this study may most be accepted in toto. For deciding optimal allocation of water resources in upper Brahmani Basin and deciding optimal corpping pattern for Lodani ayacut the following points are to be attended.

- (a) The longer observed inflow data at different sits to be acquired for generating more realistic sequential stream flows data. For assessing yield at Lodani site at the proposed and existing project in Bihar state have to be considered along with 5 numbers of up str projects in Bihar.
- (b) For deciding water requirements for Rengali-Multipur, project, i.e. the water to be drawn from Lodani ayar for down stream project a policy has to be decided by the state government such that

(I) Contribution from Lodani reservoir to Rengali multipurpose project may be on catchment proporation basis, and/or

(II) Wheather to create an extra storage facilites at Mandira dam by increasing its full reservoir level from (690ft) to (698ft) by only replacing spillway gates. The stored amount of water can be used in Lodani ayacut.

(III) wheather to increase present power cari.e. 20 M.W to higher values of Lodani Project.

- (iv) Conjuctive use of ground and surface water potential should be planned.
- (c) Objective function/linear programming model can be modified by incorporating following multiple objective benefits. Benefits such as from unirrigated areas, and from development of other water-shed resources such as forest, wild life preservation and recreation etc.

In the present study the multilevel aspect of irrigation was not considered due to leck of data. Additional constraints for different levels of irrigation may be imposed in order to establish the optimum number of irrigations for various crops.

Table 7.1

,

.

RESERVOIR BEHAVIOUR OF FITAMAHAL IRRIGATION PROJECT

Month-	Nov	Dec	Jan	Feb		Apri-	l May	Mar April May June	July	Aug.	Sept.	Oct.
Av.Monthly	0•0	0•0	0.0	0.0		0•0	0•0	0.0 0.0 0.0 105.8 525.7	525.7	1336.4	763.3	0 • 96
LTLLOW Av.Monthly spill	0.0	0•0	0•0	0•0	0•0	0.0	0•0	0•0	0•0	57.94	57.94 213.5	•0•0
Maxinuri Maxinuri Wonthlv	0•0	0	0.0	0•0	0•0	0•0	0•0	0.0	0.0	886.6	886.6 1284.2	0
spill Mininum Monthly	0.0	0 •0	0.0	0.0	0•0	0•0	0•0	0.0	0•0	0•0	0•0	0
spill Av.Monthly	332.8	294.6	211.7	125	1.7 125.6 0.0 0.0	0•0	0•0	98 . 7	518.0	106.2	330.0	272.5
relcase Maximum	352.9	368.7	302.5	224.	5 0.0	2.5 224.5 0.0.0.0.0 0.0 128.8	0•0	128 8	657.5	106.2	396.5	274.3
Montaly rąascs Mininum	0•0	0•0	0.0	Ŏ	0.0	0•0 0•0 0•0	0•0	0•0	0•0	106.2	257.1	200.0
Monthly release												

C I
-
ې ۲
lab
6-1

•

RESERVOIR BEHAVIOUR OF CHANDRINALLA IR JGATION PROJECT

Month →	Nov	Dcc.	Jan	Feb	March	April	May	June	July	hug	Sept.	Oct.
Av.Month-	0.0	0•0	0•0	0•0	0•0	0•0	0•0	156.35	776.41	1973.63	1973.63 1127.56	141.
Av.Month-	0•0	0•0	0.0	0.0	0•0	0•0	0•0	0.0	19.81	633 .86	347.00	o. O
Monthly Monthly	0.0	0•0	0.0	0•0	0•0		0.0	0•0	263,0	2564.0	1597.00	Ō
spiil Mininun Monthly	,0 ,0		0	. • •	. 0	0 •		0.0	0	· 0 . · 0	0.0	, 0.
Av.Month- Jy relea-	106.3	162.4	135.2	63 . 6	21.8	, 0 • 0	0	0.0	 480 - 3	610.5	ê70 . 7	356.6
so Mexin u n monthlv	137.2	219.4	219.4 192.0	109.7	55% 0	0.0	0•0	0•0	561.2	612.0	0.006	607.•(
releases Mininum Monthly	0•0	0•0	0•0	0•0	0•0	0.0	0.0	0 0	0	553 . 94	0•0	0
rclease	8-18-18-18-18-18-18-18-18-18-18-18-18-18											

Table 7.3

RESERVOIR BEHAVIOUR OF BARSUAN IRAIGATION PROJECT

中,此之中,此此此此此,则此则则则则,则之此;此,也也也也也不可, 则之则之则,也也可以有"之"。""""""""""""""""""""""""""""""""""""""						a ya yake wasa shi u ku ƙaƙaran		a barran an anna anna an an an				
lïonths →	Nov	Dec.	Jan	Jan Feb.	March	April	May	June	July	Aug.	Sept	Oct
Av.Wonthly inflow	0•0	0.0	0•0	0.0	0.0	0•0	0•0	2 43.5	746.9	1591.3	853.0	5 28 ~ 9
Åv.Monthly spill	0•0	0•0	0•0 0•0	0.0	0.0	0•0	0•0	0•0	4.5	509.9	308 . 7	18.9
Maximum Nonthly spill	0•0	0.0	0.00	0.0	0.0	0•0	0 0	0.0	181.8	1790.7	1258.7 431.6	431.6
Minimum Honthly spill	0•0	0.0	0.0	0.0	0.0	0.0	•	0	0.0	0.0	0.0	0.0
Av.Monthly392.6 release	<u> 3</u> 92•6	421.7	357.4	15.9	0.0	0.0	0.0	119.81	571.67	36 .5 0	435.60	36.50 435.60 436.10
Haximum nonthly release	424.3	501.9	505.6	23.9	0.0	0.0	0.0	160.0	700-4	37.4		447 . 6
Minimum monthly release	0.0	0.0	0•0	0.0	0.0	0.0	0.0	0	0 0	0.0	306.1	152.0

104

Table 7.4

RESERVOIR BEHAVIOUR OF MANDIRA PROJECT CONSIDERING

PRESENT DEMAND OF ROURKELLA SPERE DIANT

	●11日1日日 ●11日日日日 ●11日日日日日 ●11日日日日日 ●11日日日日日 ●11日日日日日 ●11日日日日日 ●11日日日日日 ●11日日日日日 ●11日日日日日 ●11日日日日 ●11日日日日 ●11日日日日 ●11日日日日 ●11日日日日 ●11日日日 ●11日日日 ●11日日日 ●11日日日 ●11日日日 ●11日日日 ●11日日日 ●111日 ●111 ●111日 ●1111 ●			a x ana	NUL DER	PRESENT DEMAND OF ROURKELLA STREI PLANT	ROURKEL	LA STEE	L PLANT	•		
lionths +	Nov	Dec	Jan	Feb	March	April	May	June	July		Sept.	Oct.
Av.Wonth- Ly in- flow		10232 3137	1917 - 1198	1198	838	456	432	26364	136574	196661		35541
LV spill	9855	2799	1345	302	40	0	0		19167 131436	199535	199535 140815 35074	35074
Maximum nonthly spill	38775	5881	6031	1581	1581 855	0	0	246076	639833	551701	551701 461485 132607	132607
Minimum monthly spill	2193	1092	0	0	0	0	0	0	11625	58914	155441	7817
Av.Month- ly release	0	233	1164		1752 2235	2202	2275	1324	0	0	0	0
Maximum monthly release	6	1183	2275	2055	2275	2202	2275	2202	0	0	0	0
Minimum monthly release	0	0	0	474	474 1420	2202	2275	0	0	0	0	0
	9 年,2月14日前,4月14日前,1月2日日前,1月1日,1月1日,1月1日,1月1日,1月1日,1月1日,1月1日,1		、 乡米 音話時 手		1 Martinette - Martinette - 1							

105

,

Table Ø.5

•

RESERVOIR BEHAVIOUR OF MANDIRA PROJECT)

CONSTDERING FIFURE DEMAND OF ROURKELLA SPEE PLANT

· · · ·		CC	DNSIDERI	NG FUT	CONSIDERING FUTURE DEMAND OF ROURKELLA STEE PLANT	IND OF F	LOURKE	ILA SPEE	PLANT			
Monts +	N•V	Dec	Jan	Feb.	March	April	May	June	July	Suĝ	Sept.	Oct
Av.Month ly in- flow	10232	3 138	1917	1198	835	456	432	26564	136574	199961 141249		3554.1
∆v.Month Ly \$pill	9855	2613	485	18	0	0	0	15737	120865	199353	140815 35073	35073
llaximum lionthly svill	38774	5881	4905	754	0	0	• •	233789	639832	551701	551701 461484	132606
Minimum Nonthly	2192	0	0	0	0	0	0	0	0	58913	15440	7816
Ly release	215	2007	4073	4091	4550	44.04	4550	3523	113	0	0	0
Maximum monthly release	2211	4550	4550	4310	455•	4404	4550	404	45 90	0	0	0
Minimum monthly release	0	0	0	3355	4550	4404	4550	0	0	0	0	0
			an ain a na ann ann ann ann ann ann									

106

PARTERNS AND THE NET BENIFIT PARTERNS AND THE NET BENIFIT Ding patterns evaluated from Step v For Step v For Step v Step vI Step v 726.70 726.70 726.70 563.00 0.0 7290.80 15038.30 59.25 2389.87 59.25 2389.87 69.72 2423.00 77.04 387.74 n Project 1979.
TERRANT PROPOSED CROPING PALITERNS AND TH $\frac{1}{6}$ PROM TT PROM TT PALITERNS AND TH $\frac{1}{8}$ Proposed Optimal cropping patterns events Propertion of the partner and events Propertion of the partner and events $\frac{1}{8}$ Port Po
EXTENT SHOWING DIFFERENCE Existing Proposed Pa Cropping cropping Pa Cropping cropping Pa Cropping Partern Fo State Govt S for step I and II 125 4477. 104 220.96 367.8 Foll feasibility report
STAN ST. Name of No. Crops of Rharif) Ragi Rharif) Serly Paddy Kharif) Serly Paddy Kharif) Serly Paddy F Medium paddy Improved paddy Improved paddy F Vegetables Net benifit 22 Rupces Rupces * Values taken f

Table 7.7

WATER ALLOCATION TO FOUR UP STREAMS RESERVOIR

Sl.N	lo. Name of reservoir	Annual av. water yield in H.M.	Annual water requirement in H.M.	Reservoir depen- dability
1.	Mandira	557904?	Present- 26790 Future -53580	100 percent
2.	Pitahamahal	2353	2813	
3.	Chandrinalla	2992	3394	75 percent or more
4.	Barsu an	2787	3240	
promptions the s	178 at 17 at an an an an an an an an an a	n 1981 - Marin		Sin annan haraksian an sarakinan in an ananasian

.

Table 7.8

AVERAGE MONTHLY CONTRIBUTED FLOW FROM 4NOS OF UPSTREAUS

	ay June July Aug Sept Oct.	55 19961 131436 199535 140815 35073	0 19 103 79 297 54	0 0 115 755 521 107	0 23 118 517 395 106	UPSTRE.M RESERVOIR (as per step II to VI)	30 17851 120933 199353 140815 35073	0 20 104 79 297 54	0 0 116 756 521 107	0 24 119 517 396 106
	June	19961				RE. M. RESERVO	17851			
RESERVOIR PROJECT	ver vep 1/ April May	1321 1365	0	0	0	Table 7.9 FROM ANOS UPSI	2642 2730	0	0	0
RESERV	eb March	54 1381	25 0	13 4	3 0	T_DOWS	2730	25 0	14 4	3
	Jan Feb	2043 1354	42	27	11	LY CONFRIBUTION	2929 2473	42	27	71
	Nov Dec	55 2940	66 58	21 32	78 84	HUMON EDITI	34 3817	66 59	21 32	79 84
	Honth - No	Landira 9355 Project	Pitamah- al Irr. Projuet	Chandri- nalla Project	Barguan Project		Mandira 9984	Froject Pitamah- al Irr.		project Darsuan Project

109

REFERENCES

• • • • •

- 1. Government of Orissa, I and P Department. '' Kansbahal Irrigation Project Report'' 1981.
- Government of India, Ministry of Irrigation and Power
 ' Mandira Dam Project Final Report' 1959.
- 3. Government of Orissa, I and P Department, '' Revised estimate of Pitamahal Irrigation Project '' Sept.1976.
- 4. Government of Orissa, I and P Department ,'' Feasibility Report of of Chandrinalla Irrigation Project'' 1980.
- 5. Government of Orissa, I and P Department, '' Barsuhan Irrigation Project keport''-1980
- 6. Government of Orissa, I and P Department, '' Feasibility Report Lodani Multipurpose Project''-1979.
- 7. Central Mater and Power Commission, ' Project Report of Koel-Karo H.E.Project (First stage), July 1973.
- 8. Government of Orissa, Agriculture Department, '' Orissa Agricultural Stastics - 1971 -80!'
- 9. Revised feasibility Report of Lodani Hydel Project (vol.I) Nov.1979.
- 10. Sharma, Anup., '' Operation study of Multipurpose Navagam Reservoir.M.E.Dissertation, 1981.
- 11. Uddihal V.P., '' Use of screening simulation model in Kalanja Project Planning''M.E.Dissertation.
- 12. Charyula P.G., " Crop planning for Gomti Kalyani Doab". M.E.Dissertation, 1980.

- 13. Water Resources Development Training Centre, '' Cropping pattern studies system studies of Gomti Kalyani Doab '' Dec.1981.
- Maass et al., Design of Water Resources Systems, Macmillan, 1962.
- 15. Hufschmidt, M.M., and Fiering, M.B., Simulation Techniques for Design of Water Resources Systems, Harvard University Press, Cambridge, Mass., 1966.
- Srivastava, D.K., Optimization of Complex Water Resources
 Systems by Screening-Simulation Model, Ph.L., Thesis, Indian
 Institute of Tech., Delhi., 1976.
- 17. Phomas, H.A., Jr., and M.B., Fiering Mathematical Synthesis of Streamflow sequences for the Analysis of River Basin by imulation, Chap.12 in Arthur Maass and others, Design of Water-Resources Systems, Harvard University Press, Cambridge, Mass, 1962, pp 459-493.
- Major D.C. and Lenton, R.L. 'Applied water Resources System Planning 1979.

OPEN(UNIT=1, DEVICE= 'DSK', FILE= 'RI.DAT') OPEN(UNIT=2, DEVICE= 'DSK', FILE= 'TF22.DAT') OPEN(UNIT=3, DEVICE= 'DSK', FILE= 'TF33.DAT') OPEN(UNIT=4, DEVICE= 'DSK', FILE= 'TF34.DAT') OPEN(UNIT=5, DEVICE= 'DSK', FILE= 'TF35.DAT') OPEN(UNIT=5, DEVICE= 'DSK', FILE= 'TF35.DAT') READ(1,*)R, K1, P PAI=3.1415926 C=10.0**(-P/2.0) PRINT 4 FURMAT(//// 112 ٩ PRINT 4 FORMAT(//10X,41HRESULTS OF RECT. DIST. RANDOM NOS.306,510//) DU 112 IR=1,2 RI(IR,1)=10.0**(-P)*R DU 111 I=2,1000 AI=10.**P*(C*RI(IR,I-1)) TATAT 4 IA=AI AII=IA $\frac{111}{112}$ RI(IR, I) = AI - AIIR=R1 R=R1 DO 115 I=1,2 PRINT65,(RI(I,J),J=306,510) FURMAT(1X,5E16.7/) CONTINUE 65 115 DU 55 J=306,510 WRITE(2,60)(RI(1,J)) WRITE(3,60)(RI(2,J)) FURMAT(1X,E16.7) 60 CONTINUE PRINT 5 55 PRINT 5 FORMAT(//20X,41HRESULTS OF NORM. DIST. RANDOM NOS.306,510//) DD 70 I=306,510 ANR(I-305)=(-2.0*ALUG(RI(1,I)))**0.5*COS(2.0*PAI*RI(2,I)) ANRD(I-305)=(-2.0*ALUG(RI(2,I)))**0.5*SIN(2.0*PAI*RI(1,I)) CONTINUE DBIN DE (A DD(I)) =1 2000) 5 70 CONTINUE PRINT 86, (ANR(J), J=1,205) PRINT 86, (ANRD(J), J=1,205) WRITE(4,85) (ANR(J), J=1,205) WRITE(5,85) (ANRD(J), J=1,205) FORMAT(1X,5E20.7/) FORMAT(1X,E19.7) CLOSE(UNIT=1) CLOSE(UNIT=2) CLOSE(UNIT=3) CLOSE(UNIT=5) 86 85 CLOSE (UNIT=5) STOP END

.*

1

C

Ç С

THOMAS LITERING MODEL

:	DIMENSION 0(12,60), UNEAN(24), SD(24), DX(600), DY(600), COR(24) 1, B(24), QGEN(12,50), RA(12,50), RQ(12,50), SUMA(50) OPEN(UNIT=1, DEVICE= 'DSK', FILE= "HODA.DAT") OPEN(UNIT=4, DEVICE= 'DSK', FILE= 'TFM4.DAT')
6	FORMAT(/1X, ***LODAWI CATCHMENT****/)
,	L=4 AL=L READ(1,*)((4(1,IY),4=1,12),IY=1,L) DO 33 I=1,L
33	DU 33 $J=1,12$ Q(J,I)=SQRT(Q(J,I)) DU 200 $J=1,12$
	SUM=0.0 DU 200 I=1.L SUM=SUM+Q(J.I)
	QNEAN(J)=SUN/AL PRINT 29,(OMEAN(J),J=1,12) TYPE *,(OMEAN(J),J=1,12)
. 29	FURMAT($/1X$, $HEAD=7, 6E15.7/$) DU 300 J=1,12 SUM=0.0 DU 100 I=1,L
100	SUM=SUH+(Q(J,1)-QHEAN(J))**2 CUNTINUE SD(J)=SQRT(SUH/(AL-1.0))
300 30	CONTINUE PRINT 30,(SD(J),J=1,12) FORMAT(/1X, SD=,6E15.7/)
	DO 25 J=1,12 SUM=0.0 SUMDX=0.0 SUMDY=0.0
	M=J+1 IF(J.E0.12):=1 DU 20 I=1,J
	DX(J)=Q(J,I)=QMEAN(J) DY(J)=Q(M,I)=OMEAN(N) SUM=SUM+DX(J)*DY(J)
. 20	ANM=SUM SUMDX=SUMDX+DX(J)*DX(J) SUMDY=SUMDY+DY(J)*DY(J) CONTINUE
	COR(M)=ANM/(SURT(SUMDX*SUMDY)) CONTINUE PRINT 31,(COR(J),J=1,12)
31	FORMAT(/1X, COR=*,6E15.7/) DO 111 J=1,12 M=J+1
222	<pre>lF(M.EQ.13)GU TO 222 B(M)=COR(M)*SD(M)/SD(J) B(1)=COR(1)*SD(1)/SD(12)</pre>

,

.

•

.

111	CONTINUE PRINT 32, $(B(J), J=1, 12)$
32	FURMAT(/IXTREG=7.6015.//)
1002	PRINT 1002 FURMAT(/1X, ************************************
	L=45 AL=45.
	DU 35 I=1,L READ(4,85)(RA(1,T),4=1,12)
85	FURMAT(1X,E19.7) CUNTINUE
25	QGEN(1,1)=QAEAN(1)+RA(1,1)*SD(1)*SQRT(1.0-COR(1)**2)
	DU 40 I=1,L DU 45 M=1,12 K=I
	J = M + 1 IF (J-12)202,202,203
203	
202	QGEN(J,K) = QMEAN(J) + B(J) * (QGEN(M,I) - QMEAN(M)) + RA(J,K) * SD(J) * SQRT(1.0-COR(J) * * 2)
45	CONTINUE
10	$\begin{array}{c} DU & 44 \\ DU & 44 \\ D0 & 44 \\ J=1, 12 \end{array}$
44	$\begin{array}{l} QGEN(J,1) = QGEN(J,1) * QGEN(J,1) \\ DU 50 M = 1,12 \end{array}$
	DO 50 I=1, L IF(QGEN(M, T).LE.0.0)QGEN(M, I)=0.0
	CUNTINUÈ PRINT 1000
1000	FORMAT(/48X,23HGENERATED INFLOW SERIES/) DO 3 T=1.L
5	PRINT 5, (QGEN(M,I), M=1,12) FORMAT(1X,6F20,2/)
3	CONTINUE PRINT 1003
1003	FORMAT(/1X, ************************************
	DU = 60 M=1, 12 Q(M, IY) = QGEN(M, IY)
	CUNTINUE GU_TO_19
333	DO 70 I=1,L DO 70 J=1,12
70	RQ(J,I)=0.6248625*QGEN(J,I) , CONTINUE ,
1	DO 1 $I=1, L$ PRINT 5, (RQ(J,I), J=1, 12) CONTINUE
1	DO 80 I=1,L

80

•

SUMA(I)=0.0 DU 80 J=1,12 SUMA(I)=SUMA(I)+RQ(J,I) PRIMT 5,(SUMA(I),I=1,L) CLOSE(UMIT=1) CLOSE(UMIT=4) STOP END

GRAMS CALLED

S	AND ARE	RAYS ["*"	NO EXPLICIT	DEFINITION	≖ "%" NL	T REFER	ENCED]	
0	1 1164 2510	SD • S0035 • S0031	2 RQ 2504 S0 2511 S0	32 034 2505 030 2512	.S0037 .S0033 B	1162 2506 2513	.\$0036 .\$0032 *\$UMDY	1163 2507 2543
2	2544 3700	.SU041 COR	2545 .50 3701 *J	040 2546 3731	DY Qgen	2547 3732	*SUMDX .S0007	3677 5062
6	5063 5151	.\$0005	5064 SU4		*SUM .S0000	5147 5154	Š0004 DX	5150 5155
	6305	S0017	6335 S0	016 6336	\$50015	6337	*IY	6340
4	6341 6346	.\$0013 ≭L	6342 S0 6347 *I	012 6343 6350	*AL .S0027	6344 6351	\$0011 \$0026	6345 6352
2	6353	\$0025 \$0021	7503 .S0 7510	024 7504	\$0023	7505	* Â N M	7506

1

.

.

ARIES.

0 7601

[NO ERRORS DETECTED]

٩

APPENDIX III

MODIFIED THOMAS FIERING MODEL

	DIMENSION Q(5,80), DIEAM(10), SD(10), PJ(10), COR(10), B(10), QGEN(5 1,60), RA(5,60), DX(400), DY(400), PK(5,60)
с	DIMENSION Q(5,80), Q EAP(10), SD(10), PJ(10), COR(10), B(10), QGEN(5 1,60), RA(5,60), DX(400), DY(400), PK(5,60) OPEN(UNIT=1, DEVICE='DSK', FILE='TFP1.DAT') OPEN(UNIT=2, DEVICE='DSK', FILE='TFM3.DAT') OPEN(UNIT=3, DEVICE='DSK', FILE='TFM4.DAT') OPEN(UNIT=4, DEVICE='DSK', FILE='TFM5.DAT') OPEN(UNIT=5, DEVICE='DSK', FILE='TFM5.DAT') READ(1,*)((Q(M,1Y), A=1,5), IY=1,4)
C	<pre>OPEN(UNIT=5,DEVICE='DSK',FILE='TFM5.DAT') READ(1,*)((Q(M,1Y),4=1,5),IY=1,4) MM=5 L=4</pre>
19	AL=L DO 200 J=1,MM SUM=0.0
0	AN=0.0 DU 100 I=1,L SUM=SUM+Q(J,I) IF(Q(J,I))9,9,110 Ad=AN+1.0
$9 \\ 110 \\ 100 \\ 200$	QMEAN(J)=SUM/(AL-AN) Continue Cuntinue
	PRINT 29, (QMEAN(J), J=1, MM) DU 11 M=1, MM SUM=0.0 AK=1.0 DU 12 IY=1, L TF(U(M IY), FO.0.0) CD TO 91
-	SUM=SUM+(Q(M, IY)-QMEAN(M))**2 GU TO 12
91 12 11	AK=AK+1.0 CUNTINUE SD(M)=SQRT(SUM/(AL-AK)) CUNTINUE
• 1	PRINT 29,(SD(M),M=1,MM) CUR(1)=0.0 JJ=MM-1
	DU 25 J=1,JJ SUM=0.0 SUMDX=0.0 SUMDX=0.0
	DU 20 $I=1, I_1$ IF(Q(J,I) EQ.0.0) GU TU 20 IF(Q(J+1,I) EQ.0.0) GUTU 20 DX(J)=Q(J,I)-QMEAN(J)
	DY(J)=Q(J+1,I)-QMEAN(J+1) SUM=SUM+DX(J)*DY(J) ANM=SUM SUMDX=SUMDX+DX(J)*DX(J)
20	SUMDY=SUMDY+DY(J)*DY(J) CUNTINUE CUR(J+1)=ANM/(SQRT(SUMDX*SUMDY))
	$\boldsymbol{\prime}$

•

. .

.

. .

,

•	A (13) (1) (1) (1)
25	CONTINUE PRINT 29,(COR(J),J=1, wa)
29	FURMAT(//1X,5E20,7//)
	IF(L.EQ.3)GO TO 333 DU 22 J=1,MM
	ZERU=0.0
	$\begin{array}{c} DU & 21 i=1, L \\ IF(Q(J, I) \cdot EQ \cdot 0 \cdot 0) GU TU 18 \end{array}$
	GU TO 21
18 21	ZERO=ZERO+1.0 CONTINUE
	PJ(J) = (AL - ZERU) / AL
22	CUNTINUE PRINT 29,(PJ(J),J=1,MA)
	B(1)=0.0
	DO 33 I=1,JJ B(I+1)=COR(I+1)*SD(I+1)/SD(I)
33	CONTINUE
	$\begin{array}{c} PRINT 29, (B(I), I=1, 4M) \\ L=3 \end{array}$
	AL=3.0
	DD 35 I=1,L READ(4,85)(RA(M,I),M=1,MM)
85	FORMAT(1X,E19.7)
35	CONTINÚE DO 123 I=1,L
	DQ_124 M=1,MM
	IF(M.EQ.1)GO TO 99 QGEN(M,I+15)=QMEAN(M)+B(M)*(QGEN(M-1,I+15)-QMEAN(M-1))+
	/1RA(M,1)*SD(M)*SQRT(1.0-CUR(M)**2)
99	GO_TO_124 QGEN(M,15+1)=QMEAN(A)+RA(M,1)*SD(M)
124	CONTINÚE
123	CONTINUE DO 44 IY=1,L
	READ(2,60)(PK(M,IY),M=1,MM)
60 44	FURMAT(1X,E16.7) CONTINUE
* 7	DU = 102 M = 1, MM
	DO 103 J=1,L IF(PK(M,J).GT.PJ(A))GU TO 51
	GU TO 103
51 103	QGEN(M,J+15)=0.0 Continue
ĩŏź	CONTINUÉ
	$\begin{array}{c} DO & 400 & M=1, MM \\ DU & 444 & J=1, L \end{array}$
	$IF(QGEN(M, I+15) \cdot LE \cdot 0 \cdot 0) GD TO 2$
2	GO TO 444 QGEN(M,I+15)=0.0
2 444	CONTINUE

1

.

.

.

,

1

.

400 1	3	CUNTINUE PRINT 1 FURMAT(//16X,84HJUNE SEPTEMBER	JULY OCTOBER)	AUGUST
53	5	DO 3 I=1,L PRINT 5,(QGEN(J,I+15),J=1,MM) FURMAT(1X,5F20.3) CONTINUE DO 16 IY=1,L DO 16 M=1,MM	JCIUBER)	
16		Q(M, IY) = QGEN(M, IY+15) CONTINUE DU_17 IY=1,L		
17		PRINT 5,(Q(M,IY),n=1,MM) CONTINUE GU TO 19 CLOSE(UNIT=1)		
С		CLOSE(UNIT=2) CLOSE(UNIT=3) CLOSE(UNIT=4)		
C 333		CLOSE(UNIT=5) STOP END		
RAMS	CAL	LED		

GRAMS CALLED

S AND ARRAYS L "*" NO EXPLICIT DEFINITION - "%" NOT REFERENCED]

062 6273	1 30 654 672 12207 22214 30556 3063 3543	PJ Q \$\$0031 *AN *J \$\$0005 \$\$0001 \$\$0016 \$\$0012 PK \$\$0025	2 31 655 6753 12210 22052 30057 3064 4217	SD •S0035 •S0030 DY *MM •S0004 •S0000 •S0015 *AL *I •S0024	14 651 656 674 1531 2216 3053 3060 3540 4220	*JJ .S0034 B *SUMDX GGEN *SUM DX *1Y .S0011 .S0027 .S0023	26 652 657 1512 2217 3061 3541 4221	.\$0037 .\$0033 *ZERU *M .\$0007 .\$0003 QMEAN .\$0014 .\$0010 .\$0026 *ANM	27 653 671 1515 2213 3055 3062 3062 3542 4222
	3543 4223	.S0025 .S0022	4217 4224	.SU024 .SU021	4220 4225	•2005 •2005	4221	*ANM	4222

ARIES

0 4263

I NO ERKORS DETECTED 1

.

١

 C_{i}

VARIABLE NAMES USED IN COMPUTER PROGRAMMING FOR RESERVOIR(S) OPERATIONAL MODEL

AREA		Reservoir area corresponding to initial reservoir
		capacity at the beginning of the month.
AICAPA	-	Intermediate reservoir capacity
AIAREA	-	Intermediate reservoir area corresponding to
		intermediate capacity.
AMS		Average monthly spill
AMR		Average monthly release
CAPAMX	-	Maximum capacity of reservoir
CAPAMIN	I _	Minimum capacity of reservoir
CAPA	_	Initial reservoir capacity at the beginning of
		the month.
CFLON		Contributed flow from reservoir .
EVAP		Evaporation losses from reservoir.
FCAPA	-	Final capacity of reservoir at the end of the month.
FLEVEL	-	Final elevation of reservoir at the end of the
		month
Q .		Monthly inflow to reservoir
REL		Monthly release from reservoir.
REQI		Monthly requirements
SPILL	-	Monthly spill from reservoir
SPMAX1	-	Maximum monthly spill
SPMIN1		Minimum monthly spill
RELMAX	-	Maximum monthly release
RELMIN		Minimum monthly release

9:55 PAGE 1

120

APPENDIX IV

OPERATIONAL MODEL

COMBINE RESERVOIR OPERATION OF 5RESERVOIRS COMMENT STATEMENT MAY BE REMOVED TO GET PRINT OUT REGIRED PARAMETERS TYPE STATEMENT TO CHECK INTERMEDIATE PARAMETERS 0000 17 C C 2 2 C 6 C . ç 1---******** 11 DO 90 IR=1,4 CAPA(IR)=CAPAMX(IR) FORMAT(1X, RES.NO',1X, YEAR',1X, MONTH',6X, INFLOW',7X, SPILL' 1,7X, SHORT',5X, RELEASE',2X, F.CAPACITY',5X, F.LEVEL'//) DO 100 IR=1,4 90 10 С IR=1 PRINT 10 DO 101 I=1,40 DO 102 J=1,12 IF(I.EO.1.AND.J.EQ.1)AREA=SAREA(CAPAMX(IR),IR) AICAPA=CAPA(IR)+Q(IR,I,J) TYPE *,AICAPA AIAREA=SAREA(AICAPA,IR) IF(AICAPA.GE.CAPAMX(IR)) AIAREA=SAREA(CAPAMX(IR),IR) TYPE *,AIAREA FCAPA(IR,I,J)=AICAPA-((AREA+AIAREA)/2.0)*EVAP(IR,J) ĪR=Ī 15 C C

```
FURTRAN V.5A(621) /K1 2/-APK-82 9;55

1-REOI(IR,J)

IF (AICAPA.GE.CAPAMN(IR))22,23,23

IF (AICAPA.GE.CAPAMN(IR))GO TO 24

324 SHORT(IR,I,J)=CAPAMN(IR)=FCAPA(IR,I,J)

REL(IR,I,J)=CACAPAMN(IR)=FCAPA(IR,I,J)=

2REOI(IR,J)=CACAPAMN(IR))GO TO 24

324 SHORT(IR,I,J)=CAPAMN(IR)=FCAPA(IR,I,J)=

2REOI(IR,J)=CAPAMN(IR)]SEL(IR,I,J)=

2REOI(IR,J)=SHORT(IR,I,J)=

F(REQUIR,I,J)=CAPAMN(IR))GO TO 32

GO TO 29

IF (AICAPA.LT.CAPANN(IR))GO TO 32

GO TO 29

SHORT(IR,I,J)=(AREA+AIAREA)/2.0)*EVAP(IR,J)+REQI(IR,J)

REL(IR,I,J)=0.0

GO TO 29

SHORT(IR,I,J)=0.0

GO TO 29

23 SHORT(IR,I,J)=0.0

REL(IR,I,J)=CAPA(IR,I,J)=FCAPA(1,I,J)+REQI(1,J)

IF (IR,E0,1)FCAPA(IR,I,J)=FCAPA(1,I,J)+REQI(1,J)

IF (IR,E0,1)FCAPA(IR,I,J)=FCAPA(1,I,J)+REQI(1,J)

IF (SPILL(IR,I,J)=CAPAMX(IR))

25 SPILL(IR,I,J)=CAPAMX(IR)

GO TO 29

REL(1,I,J)=CAPAMX(I)-REL(1,I,J)

REL(1,I,J)=CAPAMX(I)-REL(1,I,J)

FCAPA(I,I,J)=CAPAMX(I)-REL(1,I,J)

FCAPA(I,I,J)=CAPAMX(I)-REL(1,I,J)

CO TO 29

REL(1,I,J)=CAPAMX(I)-REL(1,I,J)

REL(1,I,J)=CAPAMX(IR)

25 SPILL(IR,I,J)=CAPAMX(IR)

25 SPILL(IR,I,J)=CAPAMX(IR)

26 CAPA(IR)=FCAPA(IR,I,J)

FCAPA(IR,I,J)=SELEV(CAPA(IR),IR)

AREA=SAREA(CAPA(IR),IR)

AREA

AREA=SAREA(CAPA(IR)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       121
  22
   31
  32
  18
 21
27
 Ċ
                           102
                                                                       CONTINUE
CONTINUE
IF(IR.LT.4)GO TO 12
IF(IR.EQ.5)GO TO 16
GO TO 14
C1001
                                                                    GO TO 14

IR=IR+1

GO TO 15

DO 103 IR=1,4

PRINT 11

DO 103 I=1,40

PRINT 9

PRINT 105,IR,I

FORMAT(1X,2I5)

PRINT 104,(J,Q(IR,I,J),SPILL(IR,I,J),SHORT(IR,I,J),REL(IR,I,J),

1 FCAPA(IR,I,J),FLEVEL(IR,I,J),J=1,12)

FORMAT(11X,I5,2X,6F12,2//)

CONTINUE
  12
14
C
103 CONTINUÊ
```

AIN.	SIMA,FOR	FORTRAN V.5A(621) /KI 27-APR-82 9:55 PA	GE 1-
11300 11400 11500 11600 11700 11700 11800	DO CFL DO IF(106 J=1,12 106 I=1,40 UW(5,I,J)=0.0 106 IR=1,4 IR.EQ.1) X=0.6*REL(IR,I,J) IR.GT.1) X=0.2*REL(IR,I,J)	122
11900 12000 12100 12200	106 CFL PRT	OW(5,1,J)=CFLOW(5,1,J)+SPILL(1R,I,J)+X TINUE NT 17	
12300 12400 12500	107 CUN IR=	107 I=1,40 NT 2,(CFLOw(5,I,J),J=1,12) TINUE 5	
12600 12700 12800 12900 13000 13100	REA REA DO DO	$\tilde{D}(4,*)((Q(5,1,J),J=1,12),I=1,40)$ NT 2,((Q(5,1,J),J=1,12),I=1,40) D(4,*)(REQI(5,J),J=1,12) D(4,*)(EVAP(5,J),J=1,12) 109 J=1,12 109 I=1,40	
13200 13300 13400 13500	109 Q(5	,I,J)=CFLOW(5,I,J)+Q(5,I,J) TINUE NT 17	
13600 13700 13800 13900 14000 14100 14200	ARE	NT 2,((Q(5,I,J),J=1,12),I=1,40) LF(5)=172.50 DL(5)=167.50 AMX(5)=12067.95 AMN(5)=5533.19 A(5)=CAPAMX(5) A=SAREA(CAPA(IR),IR) TO 15	
14300 14400 14500 14600 14700	16 PRI C DO C PRI CC PRI C 1FCAP	NT 10 108 I=1,40 NT 105,IR,I NT 104,(J,Q(5,I,J),SPILL(5,I,J),SHORT(5,I,J),REL(5,I,J) A(5,I,J),FLEVEL(5,I,J),J=1,12)	,
14800 14900 15000 15100 15200	CIUB CUN C CAL C FRO DO	TINÚE CULATION OF AVERAGE CONTRIBUTED FLOW M FOUR NUMBER OF RESERVOIR 110 IR=1,4 110 J=1,12 (IR,J)=0.0 110 I=1,40	·
15300 15400 15500 15600 15700 15800 15800	IF(1F(110 SUM C CAL	IR.EQ.1)X=0.6*REL(IR,I,J) IR.GT.1)X=0.2*REL(IR,I,J) (IR,J)=SUM(IR,J)+((SPILL(IR,I,J)+X)/40.0) CULATION OF RESERVOIR BEHAVIOR PARAMETERS	
16000 16100 16200 16300 16400	AVS DO AMS	NT 11 NT 2,((SUM(IR,J),J=1,12),IR=1,4) NT 11 P=0.0 111 J=1,12 (J)=0.0	
16500 16600 16700 16800	AMR DO AMS	(J)=0.0 210 I=1,40 (J)=AMS(J)+SPILL(5,I,J)/40.0 (J)=AMR(J)+REL(5,I,J)/40.0	

.

•

MAIN.	SIMA,FOR	FORTRAN V.5A(621) /KI 27-APR-82
16900 17000 17100 17200 17300 17400	111 CONTINU SPMAX=S SPMIN=S	SP+AMS(J)/12.0
17500 17600 17700 17800 17900 18000 18100	IF(SPM) 30 SPMAX=S 40 CONTINU 1F(SPM) 60 SPMIN=S 50 CONTINU	DO 113 J=1,12 X-SPILL(5,I,J))30,30,40 PILL(5,I,J) E N-SPILL(5,I,J))50,50,60 PTLL(5,I,J) E
18200 18300 18400 18500 18600 18700 18800	SPMIN1= RELMAX= RELMIN=	CONTINUE J=1,12 :SPILL(5,1,J) :SPILL(5,1,J) :REL(5,1,J) :REL(5,1,J)
18900 19000 19100 19200 19200 19300 19400	70 SPMAX1 80 CONTINU IF(SPM)	X1-SPILL(5,I,J))70,70,80 SPILL(5,I,J)
19500 19600 19700 19800 19900	97 CONTIN IF(RELN 71 RELMAX 81 CONTIN IF(REL)	IE NAX-REL(5,I,J))71,71,81 REL(5,I,J)
20000 20100 20200 20300 20400	93 RELMIN 92 CONTIN 213 CONTIN PRINT TYPE 7	REG(5,1,J) IE
20500 20600 20700 20800 20900 21000 21100 21200 21300 21400 21500	212 CONTINU PRINT PRINT PRINT PRINT PRINT	JE 1 2,(AMS(J),J=1,12) 9RINT 2,(AMR(J),J=1,12) 1 2,AVSP,SPMAX,SPMIN
21400 21500 21600 21700	CLOSE (1 STOP END	(n1f=5)

SUBPROGRAMS CALLED

SELEV SAREA PAGE 1-3

9:55

123

.

SIMA.FOR	FORTRAN	V.5A(621) /KI	27-APR-82	9:55 PAGE 1
FUNCTION GD TO	SAREA(CA	PA,IR) 5).IR		× 124 PA**2+0.0000000000
1 SAREA=92 17108314* GO TO 6	.48315+0. CAPA**3	2467659*CAPA=0.0	00005788723*CA	PA**2+0,0000000000
	582886+0. 26289*CAP	3444347*CAPA-0.0 A**3-0.000000000	003360733*CAPA 04482414*CAPA*	**2+0。 *4
	782104+0. CAPA**3	3762341*CAPA-0.0	001757862*CAPA	**2+0 _* 0000000
	519531+0. A**3-0.00	2321491*CAPA-0.0 0000000002448264*	001816377*CAPA CAPA**4	**2+0.000000110
5 SAREA=31 1*CAPA**3 6 RETURN	71973+0. -0.472719	5295906*CAPA-0.8 1E-12*CAPA**4	834898E=04*CAF	A**2+0.1140666E=07

END

OGRAMS CALLED

.

RS AND ARRAYS ["*" NO EXPLICIT DEFINITION - "%" NOT REFERENCED] 1 *SAREA 2 *IR 3 RARIES 02 4 .A0003 5

L NO ERRORS DETECTED 1

. -

SELEV	SIMA, FOR	FORTRAN	V.5A(621)	/KI	27-APR-82	9:55	page 1 125
$\begin{array}{c} 23600\\ 23700\\ 23800\\ 23800\\ 24900\\ 244100\\ 244200\\ 244200\\ 244300\\ 244500\\ 244500\\ 244500\\ 244500\\ 244500\\ 25100\\ 255200\\ 255200\\ 255200\\ 255300 \end{array}$	GO TO (1 SELEV=1 10.00000 GO TO 8 2 SELEV=2 11687658 GO TO 8 3 SELEV=1 16265964 GO TO 8 4 SELEV=2 10.00000 GO TO 5 SELEV=1	00000062119 26.8461+0.0 *CAPA**3-0. 97.3731+0.0 *CAPA**3 31.5832+0.0 0002622755 8 47.1501+0.1	1R 02699852*(02*CAPA**3 3093433*C) 0000000000 2685928*C) 2685928*C) 1857424*C) (CAPA**3 477748E=0)	-0.000(APA-0.(D03072(APA-0.(APA-0.(1*CAPA-	.0000001977241 0000000000000000 553*CAPA**4 00002117502*CA 00001106714*CA -0.4258527E-05 4+0.1345724E-10	536723*CA PA**2+0.0 PA**2+0.0 PA**2+ PA**2+ *CAPA**2+	PA**4 000000 0000000

.

UBPROGRAMS CALLED

•

l

ALARS AND ARRAYS ["*" NO EXPLICIT DEFINITION - "%" NOT REFERENCED] ELEV 1 *CAPA 2 *IR 3 MPORARIES A0002 4 .A0003 5 LEV [NO ERRORS DETECTED]