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SYNOPSIS 

The peak discharge to be adoptitd for the design 
of t draulic structures and time analysis of the sequences 
important in the planning of water Resources Projects. To 
arrive at the values of the peak disehargap a study of 
the *vsilabis data bø to be conducted and analysed # to 
arrive at a desired accuracy* 

Zn this study, ' id on the available data 
situated at 1K3 the various methods for estimation ct 

peak flow iw ave been discussed bringing out their suitaa 
bi3ity and Umitationa. For this purpose frequency 
analysis has been carried out with probabiUt diet o 

bution functions. Fo'probabiUty distribution functional  
vis. Normal, lognornal at Gaziarn 2  and Gwnbe3. have 
been used to find out the beat tit dietributi,orz 

for 1K3 gauging station and the best fit arrived at. 
Determination of the flood values with x a return period 
of 100 y.$ras, has been computed using these fit distri' 
button iuncttons. 

A mathematical model has been formulated, for 
time series of monthly runeff values for the 13A  
station * In order to gsnsrats synthetic stream flow for 
use in t e analysis of water resources system. The monthly 
time series are first analysed for trend by using the 
least•square method. The poriodicitt.a are detected b ► 
constructing eorralogra* and a Fourier Series model 



(V) 

with eight parameters has been fitted to the cyclic 
component. The corrologram of the residual series#  
after removal of cyclic component Indicated that 
the first lag is signtficnt. Therefore, first order 
Morkov model is fitted on the stochastic component. 
The model so forted, considering both the deterw 
ininistlo and stochastic models#  can be used to generate 

synthetic monthly stream flows for IK3A gauging station. 



CHAPTER I 

INTHODUCTI0N 

1.1 SIGNIFICANCE OF SSC 

For the last few years, theoretical approaches 

hays been used to a great extent in solving many hydrolo• 
gical pprobl s# However# the task Is not an easy one. In 
developing countries$ like Tanzania* the problem is much 

more complicated due to non*availabiuty of hydrologic 
data of sufficient length. 

In, the hydrologic design the magnitude of peak 

flood* to of great importance to the designer. Also in l4ater 
Resources assessment, pollution, control mass curve analyses 

for )zydropowar schemes and for~u .atton cC control rule curve 

for reservoirs# it is necessary to predict the, c 	cteris 
tics and quantity of stream flown to arrive at critical 

flow sequences of their associated return Intervals. is-► 
ting stream flow records are not sufficientlyy extensive to 

provide setimate of many statistical param®ters..Tbus~ 
inveeti,ggtions aimed at obtaining the solution to these 
problems are hampered due to lack of long term *tat 
records. 

There ore# workin4 hydrologists and engineers- in 

the Ministry of water Dvelopi*snt and Power of Tanzania 

1 
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2 
are in search of workable and satisfactory procedures 
that would serve a guide in estimating the design flood 
and overcoming the problem of Inadequate historical. data. 

In this study $ a natural catebment situated In 
Tanzania has been studi+ d.. The main hydrometaarological 

features of the basin have been discussed in subsequent 
Pare. 

1.2. 	 AND ErntOMETEOB0LOGXCALPATURES 
CA`+C :1T 

The two gauging stations 1K3 and 1KM under 
consideration are situated on the eatehmnent area of 
1820O sq.ka and 18O0 sq.km respectively. 

The climate ranges from the tropical humid heat 
of the oftstal regions to terperat conditions of the 
southern Highlands and the high mountain ranges. Mean 

rainfall very widely with both location and height. In 

some places minimum rainfall Is below $0 mea per ar1n1annum 
while In some places it is over 1 O min on the higher 
parts of the southern highlands.. The rainfall in theme 
catchments is about 1700 mn. Over the whale RU 'jt E aein 
winds are generally easterly and changing to south. easterly. 
From March to October those winds change to southerly 
direction 

1.3 DATh  

The observed data, used In this study, for the 
two stations# is for the period of 12 years, from 1961.1972 



3 

Yearly maximum peak floods for 18 years have been used 
for flood frequency analysis for 1X3 and monthly stream 
flows for 12 years have been used for time series anw' 
lysis for IK3A.  Since observed stream flow for I C3A 
we" too short, s correlation between 1X3 and IK3A has 

been due to extrapolated the data as per Fig. I. 
and Tables I-3-,  I4c 2 for the period 1961-1972 only. Also 
rating curves and butt fit lines by least square method 

have been developed as per Pig. 

For the purpose of estt t ,on of design flood,, it 

is necessary to study only the peak flows. The hydrologic 
design is related to the frequency with which the flows 

of a given magnitude 411 be equalled or exceeded. Informa-
tion concerning probable extremes which propos=-d structur  
es 

 
may be required to withstand and many other hydrologic 

problems can be solved by fr*quncy an rsis#  using past 
records of flood peak. 

Having obtained the frequency of the floods the 
magnitude the economically accepted, for the greater the 

discharge, the higher the construction cost. Usually, the 
maxims recorded floods in the past are the most signify 
cant measures of estimating the design flood of rivers. 

The discharge or water level that provides the max mi 
excess benefit,. is the most preferable design flood, 
however this approach also has many disadvantages, even 

though it Is considered the most favourable one. 
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FIG. 1-I MAP SHOWING 1K3 & I K3 A GAUGING STATIONS. 



I ~ lu 



10 



;J 	 11 



12 

	

' 	z 
0 

U, 

z 
o 

3 

0 
es 

	

cp 	 o 	d 
0 
IL 

	

Q + 	o 	 U 
\ 	 z 

F- 

	

u 	 u- 
W 

U 
'o 

ro 

IL 
0 

0 
0 

o h 	O 	h 	o 	h 	o 

(d-H) 907 



0 

Z 
w 
W 

z 
0 
F- 
J 
W 

0 
U 
In 

M 

IL 

h 

(c >u/) 907 



14 

In order to overcome the problem of inadequate 
historical data g  th, approach, preferred is to investigate 

the process by which natural observed stream flow sequences 
are generated by mathematical simulation of the phenomena 

which provides a means of predicting future values. Such 
generated stream flows are extremely useful for planning 

water Resources Systems and thus a fairly balanced design 

can be evolved by subjecting the system to equally likely 

sets of inf3.Gws. 

a 

I .t ©fE.CTVES OP ` HE PRES T 	UM 

Most models i1olved for generation of data,, so far, 

evolve largo number of parameters requiring a lot of conpu• 
tation work. In the present study an attempt has been made 
to evolve a nodes, with reduced - number of parameters which 
can be us,.} d to genera to s* trsa m flow by modelling of Time 
series of monthly stream flow sequences for. IK3A gauging 
station. 

The main objectives of the present study arat.. 

(1) 	To estimate design flood by conventional methods. 

• t 	To conduct frequency analysis by probability die' 
tribution functions. 

( 3) 	To fit the best probability distribution function 
for 1K3 str`am flows. 

t4) 	To investigate the structure of the time series 

of monthly runoff for IK3A. 
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() 	To condense the Information contained in the time 

series of monthly values by formulating a matbee 
matical model, for all the components#  which can 
be used to generate the synthetic sequences. 

However„ synthesised data cannot be more precise 
than the original data. In all analysis based on statistical 
studios, there may be many inherent sbortocominge in the 
data used. The*. are mainly du s to observational error, 
sampling errors and non»homogeneities. 

I .  STATEM 1T OF TE PRt OBLZM 

In this dissertation 	attempt is made towards 

estimation of run-off for 1K3 and construction of it mathe-
matical model for generating of stream flow sequ5nc*as for 

IK3A. The specific problems treated In this dissertation can 
be therefore stated as foflo*s 
(1) Discussion of various conventional methods wwall&- 

ble for estimation of runoff and to arrive at 
a suitable methods. In this connection frequency 
analysis, using various methods, has been discussed. 

mood magnitudes of various return period have been 

estimated using Qwmbe1 Method and log-no sl 

(Chow Factor Method) method. 

(2) Flood frequency analysis by probability distribu. 

tion functions, is conducted and beat fit distribution 
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arrived at . .n this  cases  log-normal 2 diitzi ' 
butioo ha been found out to fit beat to the anti-► 

incl series for *3 gauging station, 

) 	The structure of the time aerie a of monthly run-- 

off for 1K, , gauging station is inve8tig 4tad. The 

information contained so as to be able to , a t 
late a. mathematical model, which will be used to 

generate the e 	ene sequences. 
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CSS. F ER 	:1 

FLOOD r".& U; , XY C TUDILS MMR fila RU i1- OPF DATA 

a.1 	TR 

I'rcquonc r otudiot into 	it a pant record of 

ovonto to predict the tubo probbflittoaof. occurrence 
It stream  8troeza fou rocorda are of cuffictont ion&th and rollato 

bt1it a satiorCacto ► ootii ato cc.n bo achievod. i 	tors 

in root casoov tho records aro of abort length, of Vie. 
Such records vh n nnuyaed are MoltoIcad, to tnconoin-

tont or incorrect rosulto an they are not reprosen att' o 
of .r na tom frond. In addition to thino for tbo estimation 

of flood flows of lsr return ,poi-1od.av it is a1~ay s n000noo- 
ary to ax t potato tho narnituc?oa otztoldo the observod, rrn; o. 
Ob,ioual the euruy of cstiwtec reduces with the degree 

of oa. trapol tion . 

Zn applyino n' ►tiaiocil analyaia rnothodao it 1n 

acaunod thct occurroncea are individual evonto 1.0. 1ndoo 

pondont of each othoz', the faetoro in luonctn6 the character 

of each oven remain unaltorinc and the moa rurciaont technique 
and the alto of o'boorvction ar o identical.. An a prol urinary 

atop 0 tho bnoic da t3 e12ou1d be ocrocncd. and c. d jueted to 

rouovo 9 as far ao poou .blo0 any non-con rift oo that may 

onlat, In c ucht, the follodn; aro the noro Important

conoidorationat 
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(a) l$? cc c of c~n*cdc 	+ncoa In tho rogno off' 

lou c7rnQ bo invotiat and ad3uoimcnt n ado 
ac cctirz. 

(b) roi Lr-r.0 catc iant croon a diot&nction cbot!ld 
bo r vrio boGwcan &ily aaziitwitnotantancc or 
z,,o..A«,J.:i l ri l 1cod Po 'to 

.(a) 	C ,nC^a in th : Otzo +diocbar o o].cLtton ror doz 
Ctui o cco o nonohoycoConcowl and unauitablo for 
'oos ucncy otudico, It is .crefor'o .protorublo to 

trona with d c arjoo and If OtaiO frouomctoa arc 

roq 	d oZor the rciaulto to the moot zocent 

(d) 	Any u oi+1 information contained in the data pub- 

1 . Apno and meniocrLpto ohu1d bo Waco iioo of 

after p rope ocrzttny. 

Tb annu 1 o lon (thie i to n convoniont for the 
pw'poco of Dtatiotiool t alycic) coon1y usodg 1u a 
Coloction of tho r z mt 	rcnt of a particular roar even 
though thio niay be bicizor than the cazium of cone otbar 

yams• 

2.2 FRo 2Lx'r3' DIST IEU XON! 

ski ai UI'O rnfq p'QbbiUt3T Giotributtone that 
brxo bn t'oi n 2 to be ucoi'u . for bydrologic OqtcflC' onao 
lycto. 'The rO3t COOfl3Y Ucod ora $ 



H. 	19 

2.2.1 Norval Distribution 

This is a sy+mstaricaal bslloshaped, continuous 
distribution th.orat3cally representing the distribution 
of accidental. errors about their mean or so called Gaussian 

law of errors. The probability density is 

P(z) _ 
•o'421  

where X is the variate, t In the mean value of the variate 
and o► is the standard deviation. In this dis'tribution 
the moan , mods and eedian are the earns. The total area 
under the distribution Is equal to 1.0 . The cumulative 

probability of a value being equal to or less than I is 

P(X X) * --1  
a- r2` 

x 	22 

L u(X*U 

This represents the area under the curve between the variate 

Of 	and )t . Areas for various values of X have been 

calculated by statisticians and tables for such areas 

are available in many text books and handbooks on $tati 
tics. 

2.2.2 Penson Distribution 

If Nis large and P is very small so 'teat ply 

is a positive nuosber, then 

2(X) x MX_ _ 
 



i 	20 

gives a close approximation to binomial probabilities 

when m is 	ll. A distribution with this probability 

density is called the Poisson distribution and is genera. 

ily referred to as the law of wall numbers. It Is most 
useful when neither N nor p is known but their product 

pN is given br can be estimated, The statistical par e-
tsrs are: Mean a , standard deviation a m and 
1k vness 

2.2.3 Binomial Distribution 

This in one of the most commonly used discrete 
distributions. It repres nts the distribution of probabi -' 

ties in Binomial trials#  say tossing a coin. The probability 

density Is 

P(X) a  

where P is the probability of occurrence of an *vent, for 

examples  a success in tossing a coin s CXN  is the number 
of combinations of N things taken X at a time q is the 
probability of failure or 1*p , 11 is the total number of 

trials, and. X is the variate or the number of successful 
- 	trials, 

The statistical parameters are Mean = pN, 
standard deviation 0  	Fpq N$  and skewness 
A . A3  / c,3  a (4'p) 	pqN 9, where p3 is the third 

moment about the mean. tben paq # the distribution is 
syrimetrical. 
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In binomial distribut ,osi, t . events or trials 
can be classified into only two categories. success and 
failur*p yea or no,, rainy and clear, etc. The probabilities 
P and q remain constant from one trial to another, i.e • $ 

the events are in-dependent to each other. 

24.1k „— Gam, Distribution 

The probability dsnoity of this distribution is 

b 1r a+1 

with b> 0 , a>1 for x a 0 

and p(z) a 0 	for x < 0 

where a and b are constants and rtn.") = a is a 

gamma .fitnctlon. The cizulative probability being equal to 
or less than z( ( * ) is known as the incomplete gamma 

unction *. The statistical parameters are 2 

Mean = b( +1) and variance = 

2.24 Rectsngular Distribution 

The rectangular distribution Is a uniform di*trio 
button of a continuous vary. able X between two constants a 

and b . The probability density of this distribution Is 

P(Z) 0 	for z { a 	1 
P(z) 	 for a c~ z , 'b  

and P(x) 0 	for b ( x 
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The statistical parameters are Mean = 
and variance : (b4 a 2/12. 

2.2.6 	tsesiii ')tstribution (Type I distribution) 

This distribution results from any initial distri• 

bution of exponential type which converges to an exponential 

function as X increases. Rumple of such initial 4 stri 
butions are the nor $ the chi'aguars, and the lognormsl 

distributions. The probability density of this distribution 
1~► 

P 	I •(a+x)/C ."( ►+z)/c 
C 

with " co 	s .< CO I where z is the variate, and a and o 

are parameters. Th c lative probability is 

P(X r x ) =•  

By thi mothd of moments the parameters have been evaluated 
as 

a :YC'P 	 ... t 2•'a} 
,..(2.9b)  

I 

where Y = 047721 	u ar# a constant, A is the mean, and 

tr is the standard deviation. The distribution has a 

constant coefficient of skewness equal to C5 a 1.139. 

2.2.7 Lo artt}*ieally Transformed Diatributior30 the 
Log normal distribution. 

This is transformed normal distribution in which 
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thevariate is replaced by its logantttiic 'value. This 

distribution represents the so called 'law of Galton 0 

because it was first studied. by Galton as early as 187. 

Its probability density is 

a 

a, s Jw  

wh-re y In x , * is a variats1  7 is the mean of y and 

o 	is the standard deviation of y. This is a skew distri- 

bution of unlisited range in both directions. Chow r  I 
as derived the statistical parameters for x as 

5 	3 C " + 2) C 	 • .. (?.1 Oc) 

0  . s  /2 	 ,., .1Os 

1/2 

Cs  * $ 0, 4C 	 ...(2•l ►g) 

where 0 is the mean$ ar is the standard deviation,, 

Cs  is the coefficient of skewness, M is the median and 

is the coetficl.nt of -variation. Chow has also shown 

the type I •xtreeaal distribution is essentially a special 
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ease of the log normal distribution when C ~+ 0.361. 
and Cs 1.139. 

2.2.8 Pearson tistr .bution 

Karr. Pearson has der ved a series of probability 
functions of fit virtually any distribution . These fo 
tions have been used widely In practical statistical works 
to define the shape of many distribution curves# though 
they bay* only slight theoretical basis. The general and 
bas ic, equation to define the probability density of a 
PsaVson distribution Is 

P(z) s 	(a+ 	b,4. b1X * b21 2)d& 	•..(a.11)  

s 
whore a# b0,, 1 and b2 are constants. The criteria for 
determining types of distribution are (ii ' X12 and K 
being definvid est 

4 

Pa 	 ...(a.13) 
AI 

1.t:4. R27 3 ) (2 P2 -*3~i 6) 

where 2! 143 and £' are second third and fourth moment 
about the mean. 

with P,t a 3 ,~ 02 a 3 and K = 0 the resulting Pearson 
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distribution Is identical with the normal distribution* 

Types I and III distributions era of ton used in hydrologic 
frequency analysis. .  

2.2.8.1 .` pr I Distribution • for typo I,9 K <Q . This is a 
skew distribution with Ii .ted range In both directions 
usually beli'shapsd but may be J•shaped or Vt-shaped. Its 
probability density is 

m P(X) P0(1 + - ) (1 	) 2 
al 	a2 

with *1/ 	12,X2 and the origin at the mode. The 
vaiu..s of m,and m2 	are given by 

.11 	 142 
m, or w2 	r a 2 t, r( r42) 	 ..(2.1a) 

2 L 2Ealft 

when P3 is positive, 02 Is the positive root and til 
is the negative root and vicavversa in signs. The other 
values are 9, 

s 	.w.(2.1b) 
6+3ti 28 

~It,~fa2 a 	12[1  (r a) 2 +16(r+1 	...(2.1c)  
2 

and 
N 

Al +s'2 

m m 
Ml 1622 r =1+a2+4 

r (a+1) r(a2+1) 
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vhers N is the total. frequency . The statistical parameters 
are 3 

t 	a mods • 	21') (x*2) I r'ø)] and 

standard derivation F'2 	, and Pearson' s skewness 

= ( A, /a) Cts* /(r-2) 

2.2.8.2 Type X1 Di.stribi . 	: For type 11 , K x oD or 

2 P2 a 3 Qi 4 6 . This in a *.w distribution 'with 

limited in the left d*r.ction , usually belles ped but be 
J•sb5ped,. Its probability density 4th the origin at the 
made is 

vbsre 

2 

N C°41 ...~.. 	.. 	 .. * (2.16G) 

The statistical parameters are 

Mean a mode 	/ 2 

Standard deviation * 	, and Pearson' * skIwness3 Tpl
—/2 



a.3 tETliODt3 oP CU IVE- Fg'i"~'TT;c 

The motbodcof froqucizcy cna2yata aro uU band on tho 
acompticn that obaorvod data follott tho thoorotical dic* 
tzibution t bo fitted and 411 Qhibit a straiGht 11no on 

the probability papas docicnod for the dictrib ation. In no 
ouch as mach nt turo dopa not ctvictly tabor the theoretical 
1nt►n , the logical solution 1d to plot tho observed data 

at dotozained plotting poeitiono on a auit.blo probability 
paper and fit a bout fit cue to tho plotted points, Curve 
91 thin # r be done either viatbcmatically or arapbtcz lly. 

In eneru1 a natk o ii Teal curve , ttLn( can be ocbivod 
by three methodos the nethod of least oquarcao the method 

of , tellhcod and the methods of momenta. 

a. 3.1 Least 	Ilctbod 

This Hotbed (LVO a bettor overall fit thQn the method 
of mn000ntc and involvac 03.ativoly less computattonc and 
Herefore to co only u1OptOd to avat8 the aubjoctivo 

errors in rcphlcc1 fitting. A brief outline of the prince 
cipic of lcuot squarco and a procedure for'ittin Gumbel' c 
distribution using tic principle are doacribod bore 

under. 
In 1' 1 mea, 3. lfo r a ei ircn v c 1uo of x; o atq zI there 

All b3 a ttftorcnce botra n the value :T, 	Q and the c©rros 

pondh)c whirl aD eot:..-v tr...J froti the curve, ¶ilio EC.fFa 	co 

27 



(indicated as ?) to the figure) or the departure may be 
positive, negative or zero. A measure of the ► goodness 

of a fit of the curve to the given data is provided by 

the sum of the squares of departures, if this is small 

the fit in good and it large it is bad. The least square 

line approximating the set of points (x1  ,Y) • ( x20  Y  

(X3,T3) , .. w . (x s  !) b ma the equation '7 x A+XB where 

the coi,st t :.:and B are determin^:d by solving adults 

flSOUS23 the equation a 

and rxr 	= AX + azxa 
which are called normal equations for the least square line. 

Prom these equations the constant A and B can be found 
out as 

10 
A 	C 	and 

B: 	 / (LX X " NJj2  

whsrw 	 y  
..» 	and 

2.3.2 Methods of  Maxim 	,keli.hoo 

This meted give's the beat estimates and by 

this method , the value of a parameter is determined to 

make the probability of obtaining the observed outcome 

as high as possible. Mathematically, slog P(X)/ $$ a ©, 
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FIG. 2-3-I SCHEMATIC REPRESENTATION OF SIMPLE REGRESSIO 

AND CORRELATION ANALYSIS. 
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FIG 2-3-2 LEAST SQUARES PRINCIPAL 



I1 	 30 

whom► p(X) is probability density and to is a statistical 

parameter. This method provides the best estimLte of the 

parameter but is usually very complicated for practical 

application Uimbai has su geated this method for fitting 

extraoral distributions and a practice procedure was later 

developed by ? nehang and Aggarwal (#) . 

2.3.3. Methods of Moments 

in this method, the statistical parameters or 

moments are computed from the data and then eubstituted 
in the probability fiction t" t the given distribution. 
This method tr1v s a theoretically o act fitting but the 

aceurz cy ccan be substantially affected by any errors 
involved in the data at the tails of the distribution 

N •ere the momenta arms are long and the errors are thea 

magnified. The method originally proposed by Gumbel to fit 

type I extremal distribution is a method of momenta. 

Liebleim modified this method by orders statistics and 
developed a procedure wbieh maintains the original time 

order of the , ztreme value series$  divides the values 
into eub,lroups, and than weights each observation accord-

ing to its ordered rank in the subgroup which In turn 

is a function of the sample size. Hershfield made a compa-

neon of the two procedures and concluded that the Gumbel 
procedure gives a better estimate beyond the range of 

data for the really independent data tests, but overestimates 

the longer recurranee'intervals in the dependent data tests. 
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2.3. ii  Graphics;  Curve 	Procedure  

In a simple graphical currewtitting procedure 
the observed floods are plotted on a probability paper 

and a be s tits t curve drawn by r syr through the points. 
Logrnorsnal probability paper and extreme value probability' 
paper are commonly used for the purpose.. In the case of 

the formtor, the plotting position* of the individual floods 

of the annual series is found by the formula P = W (fit+1) 
where P is the excesdance probability y I4 the order of uag- 

itude of a given flood in an array of observed floods 

and N the number of years. If a trsae values probability 

paper, also called Gumbel papers  Is used the plotting 

positions of the flood are found by the formula 

T a (N+1) jM 9 where T Is the return period in year** 

For determining the confidence bonds firstly the 

wrong type of the theoretical distribution may have been 

used. The ,grids to this is the fit of the observed citta. 

Secondly there may be errors due to sampling.. It to there 
tors necessary to assign limits 'between 	.ch the estimated 
calue can be said to Its with a certain probability or 
confidsnae. Tba curves joining the equal confidence 

limits are dawn to show the oontidenoe bands on both 

sides of the fitting curve. The reliability of any 

plotted point lying within the confidence band is thus 
indicated by the probability on which tb. confidence limits 

are based. 
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The pIgrIasion and correlation analysis is one 

of the oldest a tatistical tools used in hydrology. Nov 

its application has been broadened to cover the study 

of the relationship between two or more hydrologic varia-
bles and also theinvestigation of dependence between 

the successive values of a series of hydrologic data (26) • 

If two var .ables * given as a series with cone 
current values (Xi #Y1) , show a concentration around an 

imaginary curve when plotted on a graph (F1igag.13 2 ttien'"for 

a large series there will always be a distribution of 

y values for a given value of XI or more precisely a 

distribution of 7 values for a given interval AX around 
Xi. The mean value 'o of all y values of this given intsr~ 
val 4X around 	Is the expected value of y •(or 
the given x at Xe,, A curve fitted to all mean values ro9 
1s called the regression line of y versus X. On the other 

hand, the curve fitted to all expected (mean) values$ Xo' 
the given r = ►, r defines the regression line of X
versus '„ These two lines do not coincide t . but have diff" 

Brent parameters, showing the regrsastonal relationships 

between the variables. 

A pure functional relationship between variables 

ass~ass that all points would follow a curve $ without 
spread. In as much as the spread of points around the 
regression lines may IQ1uallp be great or small, the degree 
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of association of the availab e$ Involved is generally 

called correlation and is defined by the parameters of 

correlation. The correlation is greater when the points 

are closer to the 'lines. 

Briefly, a regression prob3,m considers the tre  
quency distribution of one variable when another is hold 
fixed at each of the several levels. A correlation problem  
considers the joint variation of two measurements neither 

of which is restricted by the ex riments or observer. 

2.1s fEQUI1CY ANALYSIS BY PBi II-1 ICY FACTORS FDR ESTIMATION 
t ' 

 
PgMC EUro 

These methods employ the general equation for 

•h rdrologic frequencyanalysis which may be expressed as 

X a X + K.6 where X is the magnitude of flood of 
some given paco1* i (P) or return period CT), X is the 
mean of floods of racordp d~ to stand .rd deviation and 

'. is a freque cy factor, Pa' the two distribution vis. 

logit a3. and G hol, usually proposed for the purpose 
of analrsis,,'the t,ables showing theoretical derived valula 
of tho "ac" r ' for selected values of probability or the 
recurrence interval) are furnished sea Table , .4.l and 

2.4*2 . In the case of other distributions thu value of 

(1) should be known for determining the magnitude of flood. 

It may be noted that in these methods it is not 

necessary to plat tt observed. data. Yet this may be done 
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for comparison purposes i.e. to Mee how closely the 

estimated frequency lfne fits to the observed data. 

2.ti .1 The Log Normal Method Ue.in Chow' s Frequency Factors 

This method is has d on the log•norml probabi-
lity lav and assusas that the flood are o distributed 

that their natural logs are nox'naUy distributed. 

2.4.2. The Oubs1 Metros 

Gtmtbvl wee the first to appreciate that the annual 

peak flood data (or the mizixuuni storm rainfall and similar 

types of data) are nothing but the extreme values in diff* 

erent gears observations and hence they should follow the 

extreme values distribution law. This .form of dictribut „s rs 
law with a bearing on the nature of the data Is accepted 
as best suited for the frequency analysis. 

24  B T FI  DISTRIBUTION 

2.5.1  Selection Criteria 

According to properties of observed data, the 
theoretical distribution functions of beat fit to observed 
distributions of annual precipitation and annual runoff 
should have the following oharscteristiess (1) The function 

is continuous and defined for all positive values of the 
observed variable K, (2) the lower tail in bounded by 

zero value or by a positive value Kai (3) the upper tail 

is unbounded, (4) the density curve is asymptotic to the 
sxis for large values of K , (5) the basic shape is one 



peak bell,-eh ped two tailed curve,with s large variety of 

skewness, oind (6) the number of parameters wbich describe 
theoretical functions is limited to three 

24.2 Selected functions 

Screening of the applicable functions with respect 
to th criteria #squired, their convenience for use in mass 
computation and the experience already obtained in applying 

them in hydrology leads to the selection of 

(1) Normal density# tun tion orNo,at~u 1, 

(2) Gumbel density function or Cry 

(3) Lognormal density function with two pars tars 
or log-no rxn , 

t 	Gaimna dens'tt ' function with two parameter's 
or Ga► 2 

The expressions s,nd parameters for these functions 

ares 
(1) Normaal with the classical form 

I 
t(K) 	- 	s 	2 0 •Uw ic' < +w 

with K the variable 'values#, A the population mean and 
a' the population standard deviation. 

2) 	Gumbel with the form r * _ 
(a+X) L • t(K) 0 c s 	 .4.(2.16) 
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with K the variate, a and a are parameters. 

(3) Log'torrae►l 2 with the form 

[2m,01no 1 2 
~+MMrw~_. -I 	e 

'2 
S 

♦ . . t2. y~ 

With It the population mean and ,a► the population Stan 
dart doviet ,on of the In K values. 

( 1 ) Gaiima 2 with the form 
44"" 1 	" ii 

t 	3 ~- f 	IC 	1! 7 	... t • 2 
r3 r(e) 

with t ^* the shape Parameter 
/A 10 the :scale parameter and r (co 	the g, mma funs• 

tion of .c ,• It Is skewed to the right for all 
values of parameters A and /3. 

According to R.it. Fisher, the Maximum likelihood 
method is based upon likelihood fonction L. This function 
In maximised by artting the first derivative of Luk with 
respeo t to 9 squad to zero and solving the resulting 
equation tori 

stun L) 	 In[;r(x o )] 
----W----- 	* 	 CO  

I. 	 s8 

w 1•rs K~ • ei 	d*notes the sample mean and i 
is the annual observed river flow. This yields a single 
equation for the solution of N in terms of K' a. For 
ffi 	t ft"nM"f&"1_ f 	 .f! WI ..a...... 	.. ..~a.r ..te _ 
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or known parameters. laaiasw likelihood estimators are 
consistent# asymptotically mpraal and uaymptotical3y stfi-
ciont under general conditions. The method in completely 

numerical , applicable to all selected functions and con - 
vsnisrit for mass computation. The wax:U= :likelihood method 

g1 es the follow .ng equations for paramotozr estimators. 

ftrmal a Based on 	(2441) and the concept of W(2.4) 
the maximum likelihood function produces& 

!4 i • 

 

as estimator at the population mean, and 

( ) i)2 	...(2.23) 

as estimator or population standard deviation. 

.Q.'~r 	.. 

 

According to eqn (2-2) and the concept of 
3qn (2. j'} , the maximum likelihood function produces 

A 	I 	n 

1 r i 

a s estimator of the population mean and 

000 s i 	(K M~)2 	 ry 1~ 

1~1 

a s the estimator of the population standard deviation. 

LoMnal 2 According to eqn (2.18) and using the maximum 
likelihood .qu*tion, the maximum likelihood estimator of 
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the population mean is i 

lrt ~ ~ I 
	n inx 	 ...t2«26) 

i.? 

and the estimator of the population standard deviation 

emma 2 a According to l qn (; Q) the maiimwtz likelihood 

equation gives the two mo=m likelihood partial differ.n"► 
tial equations for parameters iC and /, and from them It 
follows 

r 
In 	 '~ K 	n  w '~t 	• (  

with d the estimator of Gc and 

= I n s~ K 
n £  cc 

with j the estimator of /3 
2.6 TEST OF GOODNESS OF FIT 

ln RL 
isnl 

s * * (2+s8) 

To test the theoreticalprobability distribution 

functions for goodness cf fit to observed data is in other 

frequency analyst 3, the distribution of a exclusive and 
exhaustive categories or class intervals. Zn classifying 
the observed data, It is necessary to decide upon the 

nuzuber and t e length of class .ntervals. 

Number and class intervals to be used has no sati$u 

factory hard and-fast rule, howl ver, if too many classes 
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are used some of thorn would have few or no frequencies 

and the resulting frequency distribution would be irregular. 

Likewise q if there are too few classes# the observed data 

would be very compressed,, a large proportion of the frequ 

encies would fall in one or two classes, and match informa-

tion would be lost. 

The choice of the length of class Intervals should 
be done in such a manner that the main characteristic 

features of the observed distribution are emphasised and 

chance variations are observed. rJasica~.lyt there are two 
concepts of choice of the length of class intervalsx 

(a) equal length; and (b) equal probabilities e 

Equal probability of class intervals, which can be 

considered as special case of unequal length$ has some ad• 

vantages over the previous method. The arbitrary s-tepe for 

equal lengths, may be avoided by Wising intervals of equal 
probabilities instead of intervals of equal lengths. The 

required intervals are obtained from the probability int+ 
mel transformation. ' be probabilities are uniformly 
distributed. Thus, the comparison of the observed diatribu" 

tion with any conditions theoretical distribution is reduced 

to the coc~,parieon of an observed with a theoretical uniform 

distribution. According to this method, and with the fact 

that the total value of the probability integral is unity 

the probability of each class interval is determined by 
I 

F j 	- 	9, with ,j 	1,2,....K 	 ...(229) 
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For this value of probability# the required length of any 

class interval can be obtained from the probability intee 
gral transf'or aatton. 

The well known and frequently applied chi-square 
test is used here an a measure of goodness of fit of the 

theoretical probability d.s*ributions to observed ones. The 
basic concept of chto►square test can be summarized as follows 
The total. mange of sample observations is divided into K 

a*tuslly exclusivs and exhaustive class intervals# each 

having the obs*rvod class frequency ti, a.nd corresponding 
expected class probability 	' 	.... C using the ex 

petted value R as the norm of any class interval#, It is 

reasonable to cfoos the quantity (0 jonj) 2  as a measure 
of departure tro the norm. ,% 5Uitbl measure is expressed 
by (0 rX ) 2f K3  and the measure of total discrFepency between 

observations and expectations, 	becomes 

This statistic is distributed as sptotically as Chia 
square (fit 2) with a: K'l degrees of freed= If the populaw 
tion parameters have not been estiaated from the sample 
observations. For v par meters#  the total number of degree 
of frssdon is 

f 
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As total number of class intervals is 5 and p*obso 
bilit)► of each interval is the same, for given sample size, 
the szpscted class probability of any interval should be 
the same and Independent of the type of probability func-' 
tion i.e. # it is dependent only on ssmpis size#  n or 

a 
Pin  

K ,...,(2-32) 

Therefore the computation of expected class probabilities 
is simplified by mhoosing the constant number of class 
Intervals of the res probability. The sample observations 
should be arranged in an array in increasing order. Then 
to determine how mss observations will fa l in each of the 
firs chosen class intervals, four class intervals limits 
must be computed for each of four selected functions separa- 
test. 

Normal• In this case the class interval Limits K3  of the 
variables Ki  are 

+ 	 ...(a.33) 

In which U 	are class intervals limits of the variable 
Vi  of equation 	 U2 

Ui 	I 	W 

F(U) 	j 	• 
a 

with 3 a 1,2,...,5 and with the lower integral limit • as 
the mean ser* an' variate unity. This Is i well known prober 
bility integral,, the value of 'which is generally given in terms 



45 

of II are determined and given in Table *47. 

G~u_, b l a Similarly, the class interval limits of Gmbel 

are 
t +V3 r 	 ....(2.35) 

in which V, are class interval limit= of the variable 
vi. 

Log - norwa 	*a Similar to the previous cases the class 

interval .tar ,ts of log nor ai 2 are computed by using 

Rqn (a.19) hicb Is fist transformed into a normal proba-
bility intsgraL tori.. The class is terval limits are than 
computed from the expression 

A 
K3 =ezp [ln1 Cu 3 !?] 

in which K3 are class intef,ai limits for the variable IKlr 
in k to the mean of in Ki and cr is the standard deviation 
of In Kl r lta US are class interval limits of the varta* 

ble Ui from Nqo (2.38) • 

2 • The class Interval limits of Gamma 2 are • 
U 

K* 

with selected for given value of d from Table '+'7. 

243 Computation of Station Sample Chi"Sip araa 

The computational procedure is identical for the 
station samples. To ouch of theme tour selected probability 
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functions are fitted. Since five class intervals are already 

Chosen four class interval limits for each function and 

station sample are determined according to following 

equations for Normal function by eqn (2.33) , log"nonnal 2 

sq (2.36) and Gama 2 by Eq (2.38) • 

Knowing the class interval limits, the corresponding 

observed class frequencies are determined, squared and 
summed and then station sample chi-square computed by 

equation, 

ri 	3=1 
01 • n 	... t • 38) 

with n sample size, Since four functions are fitted to 
annual observations*  the station sample is represented by 

four Chi-square values. These two computed values normal 

and Gumbal are distributed an chi square ( 1(2 ) with two 

degrees of freedom (f a 2«d.f) 9 while lornormsi 2 and Gamma 
2 distributed as cbiwsquare (1(2) with one degree of free-
dos (f = 1.d.f) . These four chi* -square values for the ata-
tions,, one of each of the four probability density funnctionep 

give automatically the measure of goodness Cf fit of a part-

icular theoretical function to observed data. Class interval 
liritrif  observed class interval frequencies and chi square 

for all four functions and the station samples  are been 

computed, in the next section. For this purpose the 

chi-squares with one and two degrees of freedom and diff-

erent level of significance are given in Table j-7. 

The co: putation s covered are as follows. 
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THELE 206"1 

NORMAL AND GI IL 4 T8ITT PUNCXION FOR CaMPU i,TION OF 

C IAS3 INTERVAL LIMIT VALUES 

lo. of class 
Lnt.rval limit 1 2 ,3 4 

Probability P(u) 	0.20 	0.140 	0.60 	0.80 
Abscissa U j 	 .00.8140 	00,0255 	0*255 	0.843 
Abscissa V j 	0.39 	0.517 	4.524 	1.620 

TABLE 2•64*3 

CORK TION FACTOR 64P01 +COMPUTATI01 OF AAXI W U LII !M OD 8S"IMAT 

OF TIL; SHAPE PABAMIITERS OF GAMMA 'Q dt TIO T WITH 2 and. 3 PA31AME'1I 8 

0,200 0.03*i 1.400 0.006 
0.300 0.029 1.500 0.005 
0.400 0.425 1.600 0.005 
0.500 0.021 1.700 0.004 
Q.60© 0.017 10000 0 .00 14 
0.700 O.01i 1.900 0.003 
0.800 0.012 2.200 0 #003 
0.900 0.011 2.300 O.Ooa 
1.000 0.009 3.100 0.002 
1.100 0.008 3.200 0.001 
1.200 0.00? 5.500 0,001 
1.300 0.006 5.600 0.000 



TABU 242 
INCOMPLETE GAMMA 1 CTIDP3 FOR COMPUTATION C ` CLASS TztwAL W XT 

VALUES 
I 

nt*r,a1 • 5 6 
-----~-- 0.200 0. 	l0 0.600 0.800 NOT CAI.0 in this 

LATED 
moo 

1 U4  U5 V6 
i 	2 3 1. 5 6 7 8 

00.8 0.2 0.007. 0.,015 w.035 0.092 0.303 0.932 
*0.6 0.1. 0.021 0.060 0.117 0.335 0.675 1.381 
X0.4 C 6 0.043 0.140 0.a99 0.51.0 0.919 1.630 

.2, 0.8 0,091. 0.240 0.434 0,708 1.103 1.806 
0.0 1.0 C'.153 0338 0.559 0.850 1.254 1.91.7 

0.5 .1..5 0.313 0i57 0.819 1.131 1.516 2.218 
1.0 2.0 0.'68 0.748 1.033 1.357 1.774 a+30 
1.5 1.5 2.5 0.611. 0,914 1.21? 1.349 1.967 2.610 
2.0 3 0.71.9 1.071. 1.382 1.786 2.136 2.770 
goo . ► 1,00 1.49 1.670 2.013 ,2, • 1.,9 3+049 
4,0 5 1.221* 1.591 1.921 2.26? 2.682 3.291 
5 6 1.0a9 1.810 2.145 2.494 2.901 3.5015 
6 7 1.620 2.90 a.350 2.70 3.112 3.70? 
7 8 1.799 2.196 2,51.O a.891 3.302 3.891 
8 9 1..996 2.370 2.717 3.70 3.460 4-065 
9 10 2,126 2.535 2.881. 3.238 3.61+7 
10 11 2.278 2.692 3.043 3.39? 3.809 4.383 
11 12 2.1,0 2.838 3.191 3J68 3.983 1.J28 
12 13 a.583 2.985 3,339 3.6' 4.101 1+.671. 
13. 11! 2.690 3.120 3.1.76 3.831 4.238 1•1 
14 15 2..829 3.215 3.61. 3.986 4.37 4.942. 
15 16 2.952 3.38k 3.740 1.096 4.502 5.067 
16 17 3.076 3.508 3.867 4.223 4.624 5.192 
17 18 3.194 3.6z7 3.987 4.3 4.748 5.310 
le 19 3.311 3,744 1e.107 4.441. 4.868 5.429 
19 20 .1.a2 3.859 4.220 1. 4.981 5.51+1 
20 21 3.532 3.072 4.33+ 4.661 5.091* 5.65'3 



,. 	49 

(1) The main values of sample is converted into series 
of dimensionless quay tities i.e. 

Ki 	and arranging the series into desc~► 
ending order.., 

(2) .he class .interval, limits for such distributed one 

calculated as follows 

(a) Normal Dtet 	tion 

i) ate 	w (4)  

(11) Standard deviation 

(iii) Class interval limits -0 
A K3 a0 +U~ & 	 .«.;. 

(b) Gumbel Dt stribut4on 
n 

U) 	Yeas (12 ) 	 K , 	 ~► ,► • (2•' , 

(it) Standard deviation 
{ 	 A 

O" 	(K « ji) 2 	... (a.'3) 

( iii) Class interval 

(a) Lo norn al 2 
(1) MeanofInK~=Ini+ 	 In 	 .f.G..4) 

131 
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(ii) Standard deviation 

a, Ji 

4 
(lnK.3n2&)2 

(iii) Class interval limits 

• K 3 z 	( A + U cr)  

• (d), 

I + JI + (:Ln 	~ 3nK,) 

• 4 (lnK 

(iii) Class interval limits 

• g 	r ~ 	 ... (2•5C) 
1 ' 

3,.7 RSTL 1AIXON OF PG PLOW ON T}fl A8I8 OF COMFUT1► RESULTS 

for 
After getting the best fit dietributtonAthe station 

(1K3) the peak flow can be deteminad as following w 

3.7.1 Nortel Diatrib ztion 

1+IO' 
or 

+Ka')  

where t T is the expected discharge in (T) years. 
/t 8o 1s- 

1AL iT!PA!!r U4f11►r*slit OF ROORKF, 
ROORKEE 
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is the mean discharge 

K is factor coefficient 

a 1r the standard deviation of the diatribztion. 

3.7.a Oux bei Distribution 

3.7.3I Normal Distribution 

;fix 	 .ogl »Kiog+P 

r 	Antog [ 
	a,3 	

4---- 

j 

3.7.4 Gaj Distribution 

QT  at 	(f3, i )  



C RAPT RR 	III 

STRUM FLOW 8 t TIAL MODEL FOR IK3A, GAUGING STATION 

~.► .:moi. ~.. 

l xisting strew flow records are not slly not 
sufficiently extensive provide reliable estimates of many 

important statistics. This result* in reduced precision of 
estimated future stream flows as it does not give indication 
of the long term ssquencai of flows to which the system 

would be subjected. Besides this the existing data is being 

subjected to changes resulting from continuous natural or 

manmade causes that are taking place. To overcome this 

difficulty modelling of stream 'lows process is done to 

generate data which preserves the statistical properties 

of post records. 

Rydzologic processes being stochastic In nature, 
their modelling is based on the concepts of statistics and 

probability. Thes hydrologic processes can be essentially 

classified into the following types of stochastic processes 
(12) (Kissiel 196), , 

(1) 	Processes 'characterised by first gynd second moment 
function Time series i odel) . 

(ii) Counting processes 

(iii) Probabilistic processes 

(iv) Transition type of processes. 

52 
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The first process is based on emperical investiga" 

tion of the first and second moment of actual time series. 

Time a ties Involve the estimation and reconstruction of 

the properties of the underlying process from the sample. 
The larger the bi+storical time series the better the esti-m 
mates of its parameters,, assuming stations „ty (12,Kissi.l,, 
196). 

The techniques for analysis of time aeries can be 
divided into two broad categories, first catoog1 In in fre* 

qu3ncy domain* Power spectrum and cross spectrum are 

Specific techniques of interest for analysis of time series 

in frequency domain. Practical applications of these 

techniques are given in studies of Box and Jenkins (1970) 
Tsvd3evich (2J) (19710  1972) . The second category , is 
suitable for Rnalyais of time aeries in the time domain, 

Analysis by surplus, deficit, range#, and auto-correlation 
$nelycis come under this category. Details of these tech► 

niques are given in studies by Box and Jenkins (1970) 
Tend j.rich (4)(i9,  1971, 19772,) Quimpo (18) (1967, 1973) 
and IU asiei (12) (1962). 

Har' hydrologists have devised models of flow genera-

tion but there is not yet a conclusive model of stream flows 

genert tion $ let alone one that is capable of predicting 

future stream flows. 

The second process is the one that counts the 

occurrences of simple events of a specified type. The methods 
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of analysis of these processes include the application of 
qusneing theory and Maztovchains. Queueing theory was first 

applied to reservoir by Moran (195 t) . He developed a 

model of predicting probability distribution function of 

water In a reservoir. This was later extended by Langbsin(13) 

The third process to to which the chances of occu-

rrc ce of purely random variable is assumed to follow 
definite probability distributio . are .tied probabilistic 
processes such processes are time Invariant i.e. * the future 
of the process is indepeid.nt of the past and present. Study 
of flow duration curves, frequency ,graphs#  probability of 

exceedence,, recurrence interval etc. f  are all exarnpls of 
probabilistic processes. 

The fourth. process, includes processes that develope 
In time as a series of transitions of a system froi state 
to State. The process is specified by the probabilities 
of transition from one state to Uu0th" r and by the degreo 
of dependence upon Its past history. Application to hydro 
logy includes extension of rainfall records by Cow and 

Raizasec n (6) (196), augmentation of stream flow 
records by Tulian (10) (1960) 9 Bnittan (3) (1961), 
Tboxass and F'*ering, ( 	(1960) • 

3.2  MATHSIIATICAL D] .LAB FOR STR M FLAWS 8 NTH88IS 

Many investigators have analysed the time series 
structure of daily, weekly, sorer and annual runoff series 
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and they have incorporated the corresponding mathematical 

models for generating equally likely stream flow sequences 
into the use of water resources system. The concept of stream 

flow synthesis has been used by several hydraulic engineers 

by simulation of models based on historical record a or 
generation of esthetic data by means of stochastic models. 

Subsequently numerous types of math tical models 
have been used for stream flow synthesis. The#* depending 

upon the nature of mathematical formulation Can be broadly 
classified as under t 

(1) 	The auto"regressive model. 

(ii) 	Multiple Regression Models . 

(UI) Time Series Model. 

3.2.1  The Auto*regressive Model 

Models c " these typo represent a regression between 
recent values of s.tr+ 	flow and its past occurrences. 

The 	general form of this model may be expressed as 

(X 	i O 	., .. 	w a ` +'w 	f it  ... 

where#  

K is an integer 

4,t  is a tender variable. 

(a)  High Order Auto"regresstve Model 

In this model the value of an event is asswned to 
depend on the value of several past events. The express-
Ion given by Prassad (1967) is .t 
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m 
xt = 	' Xtak +  

~ 1 

whore,, 
L, 	is the magnitude of the even under consideration 
rk 	serial correlation between Ct and Xt, ik 

Magnitude cf the event at time (talc) 

M 	ti.mit to erica dependence is significant 

tt 	Independent normal variable. 
(b) First order Autoregressive I c del 

This model sasumes that the value of an event at 

certain time t is only dependent on the value of the event 
im ediateiy proceeding it i.e., at (tt1) time. When K = I # 
the equation (3.2) becomes first order euto sgreaeive model,, 
or also called first order Morkov Mode.. The above equation 
them becomes 

Xt = r1 X1 •  
The drawb*ck in this model, Is that the means and variance 
of the recorded sequences are not preserved. 

Britten (3) (1961) us d a model for generating ate 

tioner, sequence of annual stream flown which is of the 

M 
r Qt 1+(i.r) +8(1 	l/2It 

M 
Sere j and 8 are mean and standard deviation respectively 

F 	of the recorded sequences of annual stream flows. However 
this model. cannot be used for generation of seasonal 
stream flows. 
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The above equations was latter modified by 

Thomas and Piex g (,,a) (1962) and developed a model for 

generation of monthly stream flows by seriaai correlation 

of monthly flows. 

Q1+1 * +9 +b (tai-) + 8 	t' r / 	ti 	.. , (3• 

where Q. and Qij  • are the discharges during the ith and 

(i+1) th month. 

and 	are the nean monthly discharges during the 

th and (j+1) th month#  within a repetitive 

Dual cycle of 12 months. 

b 	is the regression coefficient for estimating 
volume of discharge in (1+i) th month from the 
,nth month. 

S j*1 	is than standard de piation of discharge in the (J+1) 

month. 
r 	is the correlation coefficient between flows in the 

Jth and (J+1) th month. 

is the random norms. deviate with zero mean and 

unit variance. 

3.2.2• ffit?jrsaion Mode. 

A model for stochastic stream flow simulation 
by 'multiple regression analysis Utilising precipitation data, 
was developed by Bonne(4 (1971) . The genirat1ng equation 

is basically a Maztovian model as it Includes the former 

state of the watershed in terms of the proceeding flow 

and precipitation. The model is in the form of r 
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t~1 
xt 	a A + A Xt"I + Cit + D k't"1+R : P1+B* 

titj 

Where, 	 • • -'•') 

t 	Current monthly Slow 

xtool 	Previous month flow 

Pt 	Current month precipitation 

j 	= 1,,3,...1a, water year month counter. 
Pl 	acctraulat1v. precipitation Lince the beginning of 

snow peak. 
A B,C,t),& Multiple regression coefficient 
g~  Standard error of estimates of the flows. 

I 	Random d viate with zero mean and unit variance. 

3.a.3 'mss Series Model 

Most of the hydrologic record constitutes a time 
series denoted by X, , t, f an T f where Xt to the ;h rdroo- 

ser variable attributed to the time interval t 9 and T is 
the length of hydrological record. The general modal is 

described as# 
xt a T,t + Ct + 8t + R,t 

where# 
xt 	observed monthly rivor flow sequence 
Tt 	Trend component 

Ct 	cyclic component 
gt 	Stsehastic component 
Rt 	Rangy component. 
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As it h1es been mentioned in the earlier chapter# 
that the objective of this study is to analyse the struc-

ture of the time a ri.s of monthly runoff for IK3A gauging 
station# and formulate a mat watical model, which will 

be used to ,generate the synthetic eequences the detailed 

analysis of time series is discussed in the following sot 
tion. 

3.3 T1t4. SWA ANALYSZS 

Time Series of river flows# Is a sequence of values 

arranged In order of their occurrence and can be character-
toed by statistical properties, a sequence of a variable 
as a function of another independent variable# usually, 
time, represented by % 

X(tf).x(t , X(t3) ..0. where t~(t2<t3 

In the typical  time s rtes there aa'e discernible three main 
features which seem to be Independent of one another and 
attributable to distinct eausesz 
(a) a broad longterm mo*ementy called the 
(b) an oscillation about the trend which may be a asonal 

effect 4th fairly regular period or rather long- 

period# irregular oscil ation# often called a cam. 
(c) A-n irregular, unsystls atie or rndom component, 

soffiStuiee called the Residual. 
However, not all time series exhibit all three of these 
features. 

The hydrologic time series of runoff is a continuous 
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record of flows and for analytical purposes should be 
transformed into a dsscrete time aeries. The choice of 

a suitable time interval is a necessary first step. 

It is# neral.l7, possible to claasi 'r time series 

ai being either of two type-as stationery or non stationery. 

In stat;onory time series, the general structure and the 

statistical parameters ropresanting the same, like the 
nean, do not vary from one segment of series to another. 
Non stationer r time series, tb,3 different segments are dis-

eim.ilar in one or more aspects. however, in nonstationery 

time series , it in neeessar7 to consider absolute time 
since the series cannot be assumed to have bei prior 
to the tine of the initial observation (Chow).  

3.3.1 Osner . t odel 

It has been assumed that a time series x,t of mont*y 

flow oequences of River Ramji at Pangani Falls ( K3  can 
be adequately represented by a linear additive model 

•..(3.8 ) X,t a T,, + C,t + at + Rt 

where, 

Observed monthly river flow sequences. 

Tt Trend component 

at Cyclic component 

at Stochastic component 

R* Random component. 

IMI L(t~M°.Y if"f"URSIiY of OORKEE 
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3.3.2  Trend Ane y sis 

Trend represents a smooth motion of the series 

over a long period of time. It always reveala the general 
tendency of increase or decrease of the hydrological 

variable with time. Analysis of trend + .,.n be done by 

either the moving average method,, which eliminates the 

minor fluctuation to nhow up the long tens trends, it any 

more ulearly, or by fitting a mathematical trend to the 

data#  the advantage of which lies in extrapolation and 

Interpol ation. The draw back in moving over-age method 
to thLt though it tend# to smooth out the data it may 

introduce on oscillatory movement into the random element 

which may not b€j present in the original data and this 

does not pressrUe the main feature of the time aeries. 

So as to remove the tend, it is neoessaz to 

moth out irregularities in the time series. Assume that 

the observt4tions X, $ *2 .. , .XN 	are taken at equal interop 
vale of time the methods of moving average consists of 

determining overlapping snapne of m succosiive weighted 

values#  for m = 3 . 
Y * (b1z1+ b 2+ b, 3) / 3  

Y3  a (b1x2+ h2C b .,) / 3 	 ...(3.1O) 

= (b1XNw  j b2 XN_j + b3  XN  )/3 	...(3.11) 

The weights of the moving leverage •b1  ,, btn b3  err such 
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that that am equal to 3. In genera., for moving 
eweragea of m 

1,03 
	 .. (3.3 a) 

The weights aay be either positive or positive and n.gaa 

In the present cae•, the beast square method has 
been adopted to a mathematical model. The only advantages 
being that :-- 

(a) the method expresses trend in the form of a 
mathematical  formula which way be easily interpreted. 

(b) Results obtai►ed under the method are definite and 
independent of any subjective estimate on the 
part of the statistician. 

Cc) rhe resulting equation is in convenient form for 
extrapolation (extension into future or past) . 

The only ° disadvantages are that the technique used is 
mathematical and the method is based on the assumption 
that the data foUovs a trend that can be expressed 

by a mathematical equation. 

if a straight line trend is aasumed t  the line of 
the trend will have a formula of the type I  

T* a+ bX. 	 *.(3.13) 
In this formula the values ©f a and b must be determined 

The formula, however, will describe any one of an infinite 
number of lines.. It is necessary, therefor. to decide 
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which line best describes the data. 

The principle of least sgi4rss aids in dstsrmin-

ing the line that best describes the trend of the data. The 

principle *»taus that a line of best fit to a series of 
values is a .line the sum of the squares of the deviations 
(the differences between the line and the actual value) about 

which will be a mine. There can be only one line having 
this qualification •. (12) . 

By taking the sup of squares of the residuals 
as minimum, the normal equation, obtained are 

XT a nA+BX 

+ 

These are solved as simultaneous equations and the values of 

constants A and B can be found out by - 

nEx2 ~ Z 

This su tton ,T denotes the sum of discharges for n number 

of months of observation. 

After the values of the constants A and B are 
calculated, the relation trend curve can be fitted. 
Deducting this trend values from the stochastic hydrologic 
process# the time series will be left with# the period and 
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residual compo rents which may be taken as measure of d*via• 
tions from the trend line of the time series. 

3.3.3 Periodic Com on+~nt 

When significant long term fluctuations in the 
series of recorded river flows are removed, then removal 

of periodicities is a pre"requisite to thu analysis of 
stochastic coaponent. The periodic component represents 

a regular or oscillatory form of variations such as diurnal, 
seasonal and secular changes# that exist frequently in the 
bydrologic3, phenomenon. Such variations are of nearly y 
constant length and may, be reasonably be assumed sinuosidal 
with varying frequencies. 

The monthly time series X10 X2, X3, ...X~l 
vith a fundamental period of length T w n , t , where 
n is the total number of observations equal spaced by 
t in the period T from t and (t+T) , may be expanded into 
a Fourier Series according to the following formula ► 

Xt 	,A 2 + 	( 	cos ''çz 
	+ 	s 

where, 	 ..(3.18) 
Xt a flow at month to 

moan of s, ries Xt 

a 	number of significant harmonics. 
A1 B 	Fourier coefficient 

T 	Basic period of series for monthly data equal 

to 12. 
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It 	* Stocrhsstic component for months t represented 

by an suto jresstve scheme tnd an Independent 

uncorrslat.d random number. 

The harmonic coafficimi t are defined as 

	

cos (2w' ft/T) 	•.(3.19) 

B 	(21 N) 	
1 	

'~ x,t an ( 	T)  
tM 

wbsrs 

N 	is the number of the «.ata poin ts 
n 	Is number r of gears 

T 	the "basic period of s.r'i es 
Also Squation(3.19) can be . gassed in a different form as 
xt 	o/2 + 	,+ Cos (air nt f 	** ► 	.,.. (3.ai) 

liere 
M 

and  
tan ~"' ( -)  

AXn 
is ' dst$nsd as the phase ane 

I quation (3.421) states that com1ez periodic data 
consist of a stationary nean value component, 1 I, 
and an infinite number of sjnuso.idx . component (harmonics) 
that have amplitude CXn and phase eXn .N 

is the total variance of the tinis series 
xt# 

 
the part of the variance accounted for by the Kth 

harmonic is 

C.x 128 	or (AX. + 	/ 32 
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If ;•; , w M..Y 	be the magnit ids , of n wahsraontc 

and if n bar z ics are present in the series, then the 
value of the periodic component is given by s 

a (YY1 + 	• T' + .. *.+  

3.3.3*'  COrr 	 In and Aut ►correlation Analysis 

'he auto*corrtlattan analysis is usttd to tind the 
inter-dependence of successive values of a time series. 
A measuro of this dependence is given by the auto*corz'e3ation 

cosffiCi& to 

'+ r a discrete time series, it is defined as 
t  .Xt+tt * 11 °t  

Pk  x  

vhers0  K = 1,2,3,,... «,ne and e 4 N 

is plotted as ordinates agajnst their 
respective lag values K as abscissa and the plotted 

pointed are joined each to the next by a straight line, 
the resulting plot is a correlogram. the autocorz'elntion 

coetftciunt of the continuous series is comeoniy known 

as sertl correlation coefficient. It the correlation 
between the two Is referred to as the kth order aerial 

correlation and is 4ven by 

GPS! (xt  

1/2 rvar (Xt) Vaz'  (Xt+k) J 
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COT (X, #X*,►k) is the arils autocovax`t+snen and 
Var(Xt) and Vas (Xt„k) 0 the aaspis variance. 

Further, 
N"X 	 t-X 

Cov(Xt.X ++1) r "'_"` 	X 	
(~ 	L Z) 

N-X# R 2 

NC 
X) 

Yar(X) s 	,_ ' 	it  4..-  ( Sax X ) 2 

Var(Xk) - NK 	
Xk 	 ( ;; Xt+k)2 

Then, 
NK 	 NOK 	1 

r 	

'NuK) 	X +K 	( Xt4 k) 
r 

N•K NIX 
(N'K) X2 a( X) 

11 

1/2_ 	 1/2 

j NK 	Z2t+k w 

where N, a Xan ;6tb of aanptas . For atricktiy mean 
random $squencies the co vslogram will have a value of 

I at K = 0 and an preseed value of sero at all other 
points. 

Confidence Bands 

The correlograa can be tested with confidence 

limits at a given legal of significance. Anderson (194?) has 

torulated the for ula for confidence its L,, for 



the corz"slo, am on: 
,.1 t ni  ii.L2 

N L"1 

where 

N 	is the number of observed values in the time 

series X 

L 	Lags used 

nil 	Normal stindard deviate from the standard normal 

distribution for two tail teat at a significance 
level. 

Common value of 4c and the correspondingvalues of the 

are 

80% 1.28 
90% 1.64 

95% 1.96 

3.3.5  Power Spectrum Analysis 

A power spectrum to the distribution of the 
variance of Xt  on a frequency scale. The mathematical. 
development Of spectrum Indicates the lation between 

the auto correlation function and the spectrum. `bus the 
ordinate of the spectrum represents the variance density 

as a function of the angular frequency (w 2V) , given 
by S() , then we girt, ; f  P  y  s 	r► 	...(3.29) 

0 

S(w)2a 	I  Pp • 
	

di 	...(3.30) 
r=o 
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Al Io P ~I► s IOX(1~It) i*" `f' i di 	1,1(3.31) 

Pr -; 	(w) a  

when T i.e the tim. lag in caae of continuous time aeries. 

The one aided power spectrum is given by 

c(9)* aa t t 0<r, 	 0..x•33) 

Gx(f) is a continuous power spectra over the +ve 
frequency ;age (Ooo) 

For real value process# the above equations ax. 
Simplified » The real -valued two aided power spectrum 

to obtained from equation (3.$) by making the imaginary 
part equal to euro 

CO • , 	8(t) 	P 1t Cos fir` F , + 	... C3• +) 

	

 4)'r Cos LN f'7 	;►.(3*3? 
taO 

and for discrete ae t'ise 

"° 	rk cos air rt  

(f is known as norialiae~d spectral density 
functio° . Since it is the P uri.ir transform of the auto 

correlation (unction, and 0 also if G (f) to Fourier 
transform of auto eovar ,aance action 9 ten 

8stf) a c(f)  
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where Ca(f) and Q2(A are the co*spectrum and quadrature 
sp.otrtaa respectively. 

The. station (3.3) i.e used for the calculation 
of spectral density function at various fr.~uencies, giving 

the noasmilised power spectrwt. 

The peaks in the spectral density functionsuggesta 

a possible periodicity in the stochastic process. The spec* 
tral analysis gives a powerful tool. to recognise not only 
the prasencv► of periodic oscillations but also the relative 

import ace between the several lc rmonies and also in 

identifying mathematical models and to Sim .ate hy&tvo2ogtc 
tine series. Limitations In applying the spectral density 

of theory to hydrologic series are 
1. The series for analysis is always a finite in sise. 
2. Time sl 1! is discrete rather than continuous, 

owing either to the Instantaneous observations or to 
averaging of natu*al processes over time tntsr' al. 

Therefore in an actual case the fundamental asisum► 
ption of a continuous spectrum corresponding to all fraq,► 
uenmias from 0 to CD is watt able. 

The normaljssd power spectrum 8Z 	is calculated 
by assuming some vtlue of time lag interval and the values 
of correlation coefficient with the sacro time lag interval  

are found out by the help of computer programs (No.2) 
Appendix. (For) the n►ontnly river Xie s date, K has been 
taken as 6 a ant s, 	and K 	has been taken as 6 and 
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120 and the value of $ ( I) is found out corresponding. 
to the different values of fracuenctes. 

3.3, 6 The Sth@baaticcDon.nt 

The residual series0 Z 1, after the removal of 

trend and periodic component from the original time series,, 

consists of stochastic component B, , xxd an uncorralated 

random component*  Rt. 

zt aXt wTt • Pt  = (St +Rt) 	,.(3.39) 

The residua`, series belongs to a class of non** 
deterministic processes which include auto-regressive 

moving averages and other schemes of linear rre ression. 

Th. type of model to be fitted to the stochastic 

component' can be ascertained from the correlogram at rsis 

of the residual series , First or second order auto.ragress* 

Lye model can be fitted depending upon the shape of the 

correlogran. 

The measure of best of fit of the autowreg r.ssive 

model Is simplified by the determinationof coefficient,# 

a certain criteria can be developed as vhen a .mods, of 

a given order should be selectsd .• The determination of 

the coefficient for the first#  second or third auto-
regressive model in terms of rk are given by 

1 
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R2 = tri + ark . arf 	, 1 r  a 1 2 

Ha 	1 a 3 	3 	 a3 	a 	3 
3 

The first order model is selected it 

R ►R2 ~< 0.01 and R23 -0 eta K 0.02  2 1 	3 

• The second order model is Selected# if 

R2 R3 > 0.01 and 

0.01 

The third order model is selected, it 

R "' R~ , , o.01 and 

2 
...(3.1s20) 

R •RR > 0.01 

Once the order of the model is ascertained according 

to the above critoria,, the auto*regxeesive coefficient 

can be calculated for the lot 0 2nd and 3rd order as 

follows: 
let Order 	 and order 

3rd order 

a= 3 
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(1"r) t 1 r «► t1 	r (r,1r2 r3) 
ai m 	

(1r ci:a4+ ,: 

a 	
(1• ` 	(r + ' 	.r " r. r" 

(1 r2) 
t 1,- 	+ 

(4.r e (1r) (r' r2 r3) 
3 

So as to decide► upon the order of the model 
to be used the values of R 	E2 and 	have to be 

calculated. 

Those values have b*erg found out to be 

0.371 

Hlg 	a 0.372 

3 t' 	= 0.386, 

Therefore re the .first order Maztov 	del was j ittsd 
to the stochastic components ua equation (.3.&e2c) is 

satisfied, 

1*,~ Z01 cw t 	 .. « t 3• ) 

3.3.7 Random Com onent 

The Random component is obtained by removing 

from the river run off series, the trend, periodicity 

and the stochastic component 
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The random function may be defined simply as 

one wbich cannot be tar*ulated in a manner to provide 

precise prediction of values of function. Although the 

function is concerned as being the wet effect of certain 

physical causes the number of caul,  s is viewed as being 

very large#  with each cause producing a ama11 effect. 

The random component in the absence of any 

-trend. is obtained by removing the cyclic and stochastic 

component from the original time series as given in the 

above equation. 

3• ! 	ATXPN OF IUN1)OM NUMBERS 

The most acceptable methods for generating 
random number's are s 

(a) Unifomaly distributed. 

(b) Statistically independent 

(c) Reproducible. cible 

(d) Nonftrepeating for any desired length. 

(e) C*pabls of generating random numbers at 

high rates of speed. 

Cf 	Require minimum computor memory. 

One of the simplest methods of generating random 

numbers is the method of sampling cards. The cards are 

first numbered, one for each value . The cards are then 

shuffled and a card is drain at random, its value is 

taken as tint generated random numbed. 
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Bouvet, this method have been simplified by 
the use of random number tables which have been consto- 
zucted by more efficient methods. Thu. tables have been 

subject to the standard statistical tests of randomness 
and are considered accpptzble for , sneral sampling us*. 
Ger~.rally, standard programs and subroutines$ for genera" 
tin& normally distributed random nummber# and rsctangular2r 
distributed random numbers# respectively# are available 
in IBM and in most mathematics Libraries , s tatistics 

Laboratories and offices. The 1*tandard Computer program 

for this purpose,, is furnished as per appendix C 	) 



CBAPT*R XV 

A 1ALYSIS OF 	TJLTB MID CONCLUSIONS 

4.1  ANALYSIS OF RESULTS 

4.1.1 A,pUf*tion of Curve Fittings to Rufi i River at 
suis, er $ Oorgf (1K3)  • 

A simple procedure meting use of the lane lined 
frequency equation by the application of Gumbel me d 
curve fitting to given below for the above mentioned 

river gauging Stations 

i. List the annual (or sea +nal) floods 

ii. Compute X and ax by using equations 

x 	and 

ax 	fr (x X) iN 1  
	

(x j2) 

iii. Prepare a coaiutatton form with column beading 
from left to right, as folloves 

T 0  X 0  aX ,0 K$X j 	.K8X . The table is 
convenient method of computing X«vuluee from 
given (T) values by formula X a X+K8X 

iv. 8 	From Table ao ►1 showing (K) factors for the 
G m'bei. method, list in the List () column of 

the computation form a representative selection 

76 



77 

of return periods for which there are columns in Table 

V « 	.' ntr the computed values for O and C 	on 
the computation form in the appropriate oolugns. 
The cam. values appy ! 	Twvaloes. 

. 	For each of tie *elaetad T valuess extract the 
K ctor from Table ,;41 •i and the$s in the 
computation form. Note that the ,val,uss ' of (N), 
tiich is the number of floods of records$  is used 

to extra,  ting the K"factors and that interpolation 
may be necessary. 

vii. Compute values for (Ksx' and (X) for each T4* 

value an enter these values in the computation 

form . The X alues ar. the flood ma itudes for the return 
period ( M. They aro used for constructing 
the frequency curve. 

viii. Using the extreme probability paper plot the 
X'values (or ordinates) from the computation 
form and join then with a straight line to obtain 

the required frequency curve. 
ix, 	Note that It is necessary to plot the antire 

frequency curve If the CT) value for a given 
(X} value # or the CX) value for a given ('i) value 
is required. After carxytng out stop (i) , Ui) 
from Table 241, formula X x x + KBXcan be 
used in conjunction with (1) factors to derive 
the required value of either CT) or (x), as the 
case may be. 



Z,. 	To judge the goodness of fit the observed data 
are also plotted on the extreme value probability 
paper depending on Table 4+1'•4. 

The constructed troquncy curve computations for 
K3, by the Gambol method is shown in Table 1-2 Table 

4-1-5 shows the computations for fitting Gumbel' $ law 

(as adopted by Ven Teohow) by least square method. 
The law Is expressed as 

T 
A + B 10910 10814 	. 

where t'!) Is the flood with a return period T. The 

step by step procedure is as given bellows 

flank the observed floc 's ( of the _ annual series 

in decreasing order. 
(ii) Compute ¶values for each of fit-►values by using 

T= 
T 

(tit) Computo X-values where X = log1  ioj T 	for 

all the Items. 
(iv) Compute the product ( 	and ' for all the items. 
(v) Find out summations jX, Y, X2.  and 	XX , 

and s bstitute these values In the noxi, equations 
to obtain parameters (A) and (B) of the least square 
line. 

(vi) Plot of the fitted equation df line on extreme 
,value probability paper after computing a few values 
of (y) for selected (T) valuers. This is the required 

frequency line. 



.1 	79 

♦3,1. To udg. the goodness of fit# the observed data 
are also plotted on the same paper depending on 

Table i"5• 

pie( 4_i,{) shows the best fit line and the observed 
flood plotted on an extreme value probability paper for 

1K3• Table 4a1,*5 shows the comput tions for fitting Gumbel 
law by method of least squares. 

For determining the confidence bands , a simple 

procedure to compute the confidence limits for the Gumbel 
frequ0r07 curve for 11.3 station is as followst 

(i) Compute Sx / J H 

(ii) For the givens return period CT) and (N) compute 
-(a factor derived from dumbel K.factors) using 

relation a 1+1.~+K + 1.1K2 ,. The values of (i) 

are given in Table 49•;. for the appropriate 
values of (N) and CT) 

(iii) Compute the factor c = t 8z / IT 

(iv) Select the desired confidence limit and the corr.s» 

ponding value of t from Table 4►#•l. 

{v) 	Compute product t. o. 

(vi) 	Compute values for X- t c% and X+t ok . Those 

values represent the upper and lower limits of 
the X- values for the selectedconfidence limit 

at the given return period T. Plot the results at 

the appropriate ( abscissa on the frequency 
curve. 



vii. 	Repeat the operation for one or more other values 

of T. 

A straight line joining the plotted limiting points will 
provide the Acquired bands for selected confidence limits. 

The procedure is illustrated in an example in T*ble 4 1.6 

and the confidence. bands are shown in Figure (k-/-I) , 

In the case of curare fitting by log normal method 
and using chow's frequency factors, the frequency ire 
is derived for the station In question. The computation 
procedure Is as follovas 
Ci) 	Compute X and 	from the annual series of 

floods ss shown in the Table 
t) 	Compute c 1  i.e.  8z/X where (CV) is the co,tf 

ioient of variation. 
114.E 	Compute Cs from Cs = 30v +(4 where Cs is the 

coefficient of skewnesa, or extract (Cs) from 
the subsidiary oolume in Table 24 1 3  the Chow 
Table for (K) factors for the computed value of 
Cv 9 using interpolation if necessary. 

(iv) set u a computation form as shown In Table 4m.1*3 
(v) Enter representative (P) value from columns 

In Table 	. Enter I and Ss values In the 
computation fors. 

(vi) From Table ;x•4.1 of Chow Frequency factor select 
(K) factor for selected (1) value entering jnthh  
table on the line for the computed (Cv) end. (Cs) . 
Enterpolation may be necessary. Enter the {K) 
factors in the computation form. 
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TABLE 4-1-1 VALUT S OF STANDARD }!0 tMAL VARIATE FOR VARIOUS 
PR0BABILITITS 

Probability 0.500 0.683 0.800 0.900 0.950 0.980 0.990 
t 	0.674 1.000 1.282 1.645 1.960 2.326 2.576 

TABLE OF I. 	for use 	IN CO PUTT C COUFIOFIUCE 

LIMITS FOR GTJMB L CURVE 

T 10 	20 	S 	30 	50 	' 5 	100 

15 2.476 3.233 3.1!09 3.604 4.113 J25 4*818 
20 2.100 3.075 3.92 3. 	3 3.968 4.62 4.843 
25 2.350 3.007 3.228 3.391 3.8?4 4.259 4.533 
30 2.137 2.960 3.166 3.356 3.811 4.187 4.455 
go 2.272 2.898 3.099 3.264 .3.725 4.093 4.353 
50 2.24' 2.857 3.056 3.21? 3.671 4.031 4«288 
60 2.bii 2.830 3.025 3.1835 3.633 3•1489 4.242 
75 2.201 9.800 2.976 3.150 3.592 3.943 4i 194 

100 2.181 2.769 20959 3.114 3#549 3.896 4.14,2 
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TABLE 1 "1M2 

CONBTRQCTION OF ?REQU NCY CURVE FOR 1K3 BZ GUMBEL METHOD 

R.SX Flood flow 
Return from TSbls Col. ;~r4 In c 	$SC$ 
poriod(T) X ax XIS XiX+KSz 

001.2+5 

5 36.1+2 12,68 0.950 12.05 48.x+7 
10 36.42 12#68 1•.672 21.20  
20 36.40 12.68 a.66 30.00 66.a 
50 12.68 ,36, 42 

 
3.a& 41.39  77.81 

100 36.42 12.68 3+91* 50.0.' 86.7 

TABL1 4401 ~*3 
CONSTRUCTION 0? F1EQU ICT CURV1 FOR 1K3 BY LOG NORMAL ME UOD 

Co a Coefficient of Variation 8x/X - 1 	* 0. 

Cv = O.34 	 36.42 
Ca a Coefficient of Skew a 3C C - 1.044+0.O . 1 *086 

P robabt K K .5* Plow in euma 
Utq(P) j as From Tgble 

f 2 3 6 
95 36.4a 12.68 •i. '15.47 20.95 
50 , 36.422 12.68 00.20 "2.5k 33.88 
20 36.1+2 12.66 +0.688 8.62 45.0 r 
5 35.42 12.68 +1.89 23.96 60.38 
1 362+0 12.068 +3.29 41.7a ?8.14 
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TABLE l4f1*04 

FLOOD FRB1?0  1C! ANALYSIS BY U8I'TO FREQU C! FACTOR FOR RD JI RIVER 
AT BT'I GL1 R8 GORGE (1K3 FOR 'IRE P1RXOfl 1955*,I9?a 

Annw l P..kCX) 
discharges in 
(i 4th ) 

QrdexA 

Sear 
 

D rder' 

Potting Positions 

. X ~  e twrz Period . F ~bi 	 ~ descending 
N+

1 
 ~ 

	H 

14 in 	rro) 1441 
in 	ercent 

3 1 $ 

1956 54.20 1 19.00 5.26 2937'w6l+. 
1960 .8o 2 9.50 6.13 2007,OL4 
1962 .00 3 6,33 4.69 1936600 
1968 43.00 L 4.75 10,25 189.0O 
1963 a.80 S 12.82 18 1.81. 
1961 41.90 6 .1? 15.38 1655.61  
1961. 1.1.0 7 2.71 aO.05 1681.00 
19' .80 8 2*45 20.50 1664-664 
1955 40.0o 9 2.11 23.09 1600.00 
19% 36rLi0 10. logo 25,63 13aL.96 
1972 36.60 11 1.73 28.19 1267.36 
1971 3e.6O 12 1.458 30.71. 1197.16 
195? 32060 13 1,1.6 32.32 1062.76 
1965 27.80 11+ 1.36 35,88 772081. 
1967 z7.$O 15 1.27  38.45 772.81. 
1966 6.00 00 16 1.19 41.00 676.00 
1969 2.Li0 17 1.12 45.67 595.36 
1959 18.00 18.00 186 46.13 324.00 

Ictal 	6 5 *70 	 Z 23616.05 



Table 1*4 (Contd..) 

i s 36.42 emcee 

ax • 12.68 Cuaac$ 
655.7O 

Mean X  
N 

84 

Squar ud Mean ) 2 a (3b, ) 2  1326.42 

Mean of squares 2  

23616•O . 
18 

Standard Deviation S* -. 	(x2  .► 2  ). 

I (11403.11) • 1326.12 1? 

'a 12.68, 



TABLE 	"  .* 
T 

F"IT"TING OF OUNBEL' S LAW  ' ̀ a A + B log 	10 10 	0 T 'i 

TO AUNTJAL ?LOOUS or fUFIJI fl }8 AT 8TXBGLER+ 8 GORGE(1K3 

Annusl 
Diaciarge 

Order N#1 
'" 

fo  
° 10' 

2  
Thar M 	* 1 N 

() in 100 (UPS) 
T- 

1956 51..20 1 19.00 1.00 -1.63z6 "1 722 2.965 
1960 1.1..80 9,950 1.11 -*1.1 _1.260 1.58? 
1962 44.00 3 6.33 1.19 1.1 221 -1.335 1.78a 
1963 43.00 4 4.75 1,27 .9839 *1.250 1.563 
1963 42*80 5 3.80 1.39 *0.8 •1.1 1,378 
1961 141.93 6 3.17 1. 1.6 '0.781. •1.115 1.311 
1961 1.1.00 7 2.71 1.58  *0.700? •1.00? 1.225  
1970  40 «80 .8 2.35 1.740 0.6189 *1.077 1.160 
1955 40.00 9 2.11. 1.90  "0,0547 4'1.05+ 1.111 
195 36+40 10 1.90  2.111 -0.1890 *1.032 1.065 
1972 35.60 11 1.73 2.369 "0.4264 #+1.010 1.020 
1971  34, l 0 12 1.58 . 2.721+ -0 _.3581 "0.975 0.950 
1957 32.60 13 1.46 3.173 *0 *2999 400.951 0.P.0 
1965 a7.80 14 1 36 3.711 .0.2393 «00.901. 0.817 
19 67 27.80 15 1 • ? 4*703 -0.1721+ *811 0.658 
1956 26.00 16 1118 6.555 ' 0.0980 "'0M6 09412 
1969 21+.140 1? 1,012 9.333 •0.0132 %0*123 0.015 
1959 18.00 18 1.06 17.666 00.0969 1.712 2,931 

Zy  =! 5070  
a.10,3750 -"15.8+ =22»8 



Table 4r1w5 (Centd..) 

? a ~- 	• 4a 

X 	_ 	is '0p. j?6 
N 

x XZ • N ' 

a , w X2 

: 0.321 	 ss C  24.i8 

T 
Lino of boat Fite ! - A + B'g10 3os10 -T-1 

~4 

T 
* 2.18" 21i25 

10 	Ufa 1-I 

l ebv rte eat' .t 	 go : mated Flood 

~~ ~.~'t ~'e~~~ • ~~~~1t3~~~1+~ ~ 	~",~.~+~►~" iia '1~£~ 
acs 

• 10 	• 	 -*1.,, 	' 
•

.,2 
	 •11.x696 ° 	61.78 

	

.100 	.02.3665' 	4,4 
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TABLE 4 4* 1 '1 6 

COMPUTATION OF CONPID NCB LIMX 8 PSR G' IL BBQUNCY CURVE 

FOR RUPIJI RIVER AT STIOaLEItIB GORSE 

(1) The standard normal variat+o for 9% probability 

t - 1.96 from Table (lv»1 ' ) 
8x 	8* 	12.68 	12.68 

(Li). —. 	....,... o. 	--~---. = 2.99 
N 	fi 

(iii) ! - a factor derived from Gumbel (K) factor using. 

relation,ta 1+ 1# + 1.1 K2 

Intimated 
T r► N' t CrH 

inc~  ~r 
+ 	ice 	,,._ Return flood flow tab Pe iod X) in 100 ' Upper 	I1vsr 

CT) cmecs trqm ~+*' 	""s ?12.99 .' X. to* 	xO in yo t$ Tabls4.1«~$ ,,  

10 59.+63 2.445 7.31 14.33 73.96 455. 
20 70.38 3.1% ' 	# 18.0 88.88 51.88 
`0 84,50 400 '5 17.12 23.75 107.80 60.30 

100 9".6 4.fi+ 8 1*.20 27#83 122.48 66.82 
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('vii) 	compute values for (K ) . Compute (X) values 
for each of the (P) values by the forauls I +KSz 

(viii) Plot the (x) values at the appropriate (2) value 
abscissa on log probability paper. Draw a straight 

line through the plotted points to produce the 

required frequency curve. 

(it) 	To judge the goodness of fit the observed data are 
also plotted on the same probability paper 

depi)nding on the Table ►1,*5. 	gure (~-I-L) slows 

the best fit line and the observed flood plotted 

on any lognormal probability paper. Also table 
(..1"3) shows the computations for the construction 

of frequency curve for the station#, by the log noz l 

method. 

4.1. 	Maximum Likelihood Estimates 

Before the maximusa Likelihood estimates are celo .a• 
ted, the observed data for 1K3i gauging station is tabulated 
as given in Table 4.I"9. Using the sum in column 3 the 

sample mean of the actual observed data is carted, wbicb 

e* out to be 36)i20 cumSaa. With this th*t observed 

annual flows are transformed into dimensionless fOrvI, in 
terms of sample mean by Eqn Iii 	and given in column (14.).  

where Ki is the modular ooefficie t,,rF. is the sample 
meant 01 Is the annum, observed river flow. The 
modular coefficients are arranged in an array, in order to 

simplify or facilitate the further computation. 

After this% procedure the malum likelihood 

estimates ar4 computed as follow$$ 
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(1) Norval Function • Equation (2.39) and 
data in colter (i) Table 1+.1.90 

= 1 x18 	1.0 
18 

numerical 

and Equation (2.4+0) with column (6) Table 1'.9 

A 	II 
18 

x 1.0314 0.075 

(2) Log Normal 2 Function • Applying I9gn. (2. 5) and 
.rr rr...rr~ ww~w.rrR 

 

column (7), Table 4'.1 *'9 

In A = (00.,5086) 
1~I 

with qn (2.45) and I-ol1 ri (9) 

18 aK 1.149 

a 

(3) Gu ab.1 Function '.The procedure is the earns as Normal 
Function. 

(14.) Gamma 2 Function • Using Eqn (3.113) and Column (7),  
Table 1..1e9 

I + 1 + µ [0- 1 (-0.5086) 
3 118 	 A  

4 0 	
18 

(-x.5086) 

* 
* 5.05'r 0.001 * 5.019. 
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Since the correction factor Q i is 0.001 for At . 

according to Table 11»*' 3 and Table 2x6.2 

4 	z18 a - --- * 1 .1 18 
18 	5.049 	18 

a 0.200 

4.1.3 Class Interval Limits and observed Class Frequencies 

(1) Normal For five class intervals, four class interval 

limits one computed by equation ('4+"i) and Table ( 1*9) and 

observed class frequencies, 0 are determined and squared 

as follows 

K1 a 1.000 - 0.8440 z 0.075 % 0.949 

K2 a 1.000 O.255 z 4.475 1 0.960 

	

6 	36 

	

.2 	1► 

K3 a 1 .000 + 0.255 z 0.075a~! .02. 

a 1..00O+O $4dhO.47~' w 1,06 

	

I 	,1 

8 

	

18 	106 

() LogNormal 2 According to Eqn (2.'7) and parameter 

estimates# computed previously, the class intervals limits 
are 	 2 

5+' 
K1 a zp(' 0.029 0.840zO.248) ss0.819 	

1 	1 
Ka a p( 0.00.255XO.218)a0..90S 	

7 	1+9 
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K3 a sip (-0.028 +O•253s0.248) * 1,152 

	

2 	14 

X4 s sip (•0.O28+O.840z0.2 8) * 1,197 
I 

	

18 	88 

(3) 4 	" Iquation (.50) with corresponding values 

of 0j from table 2-6-2 gives. 

K - 0.45 a 1.613 	0.725 

	

3 	9 

K3 * 0.45 x 1.943 = 0.8744 
3. 	9 

K1+ *0.1+5x2.289.  * 1.030 

	

9 	8'~ 

	

18 	104 

4.1.4 Conputati on of Staple Chi-squares 

The sample Chi-squares are computed by an (a.38) 
for each selected function separately and thea converted 

Into corresponding probability br the help of table 4-1.7. 

(1) Norma. s for f * 2 degrees of freedom. 

2 = I 1s zc 106 -18 * Ia and p( 2) * >0,999 

(a) Los Normal 2 • For f * I degree of freedom 

7R► a a x 88 • 18 * 6.4 and PDX2) * 0:940 
I® 

0 
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TABLE 4 -► W 

CM - SQUARE t)ISTRIBUTIO 

2  for 

Ft 2) I i•i d.f 

0.001 0.000 

4.005 0.001 
0.010 0.004 

0.020 0.016 

0.025 0.0611 
0.050 0.102 
4.100 0.1118 
0.200 x.4455 
0.25'0 1.074 
0.300 1.320 
00500 1.612 

f2 d.f 

0.020 0.704 
0.040 0.750 
0.103 t+ 	0,800 

0.211 O. 

o. 
 

0.9O 

0J7  uses® 
0.713 0.990 

y  
1.396 
2.1108 
2.770 
3.219 ! 

s1d.f 	# t*2d.t 

2.706  
3.8i4 4 	i1 

7.380 

6.63 94210 
7.800 10060? 

,10.827 13,81 
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TABLE 4 • I " 9 

IATA FOR 1K3 GAUGI G- STATION 

Annual, 
River 

4 , 
Kj*r K i K .4)i 

c, in K,  iflKC 3. • 
No. 

7t 	A tlovtR '1 (ins 1u 01.000 - ~1r " 	) 2 
cumec• 

00.028 
1 2 3 1 5 6 7 .89 

1 1956 51..o 1.4881 o..88 0.238 0.3927 0.3617 04133 
2 1960 . 1.480.0 1.2300 0,23)  0.053 0.x.852 0.1 	'2 0.066 
3 1962 4400.0 1.2081 0408 0,043 0.1887 0.17 	00.026 
. 1969 '.300.0 1.1806 0.181 0.033 0.166k. 0.138' 0.019 
5 1963 1+230.0 1.1751 0.175 0.031  0.1614 0.133' 0.018 
6 1961 4190.0 1.1504 0.1,50 0.023 0,13" 0.1118 0.013 
7 1964 ..100.0 1.1257 0.126 0.0161 0.1185 0.0905 0.008 
8 1970 x80.0 1.1202 0.120 0.014 0.1133 0.0853 0.007 
9 1955 .4000.0 1.0982 0,098 0.010 0.0938 0.06% 0,001 

10 1958 3610.0 0.9991+ "0.001 0.000001 *0.0006 ".027. 0.00073 
11 1972 3560.0 0.9776 "0.023 0.0005a9 "0.0z9 0.0051 0.00026 
12 1971 31+6D !o 0.9500 0.050 0,00, 500 "0.0513 ".0233 0.0005 
13 19+7 3a60.0 0.8951 0.105 0*0110aS "0.1108 ".0828 0,0069 
1s 1965 2780.0 0.7633 -0.237 0.056169 "0,2701 •,.2521 0.0586 
15 1967 080-0 0.7633 "0437 0.056169 x"0.2701 40.2,21 0.0586 
16 1966 2600.0 0.7138 '20486 0.081796 00.3372 ".3092 0,0456 
17 1969 a W.O 0.6694 "0.33 0 0.108900 "0.1.006 ".37z6 0.1368 
18 1959 1800.0 0.16912 -10.506 0.Q56036 "0.701.8 ".6768 0.580 

TOTAL 65570.1 18.0 1,031+ 70.5086 1.109 

ft 15570.0 
Q 	: --- 3&2,o caeca 
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TABLE 4 a I ► 10 

ZBTIMiMO OF FLOOD FOR H UFTJZ RIVJ11 iT 8TXBGLBR+S GORG1 

1K3 Hi NOR14ALoO tEL AND LOG NORM 2 

Station 	5 	Kproma► 	(1.K ') Q 

	

ChovDo 	 100 

Rufiji River NORM DIB UTIO 

at B egley"' s 
Gorge (1K3) 	36 	2.33 	1. 	.17 

Remarks 

QTR, DX8TRIHLXON 

1K3) 	36 2 	3.31s9 	0.075 	i.21 	8190 

log K log tw 
LOG NORMAL D18TRIWUT II Q '?' 0 	, . 

•3 

tiog 
Station 	 33o d► 	. ► 	g 	

100 Remarks 
ec  

.3 mer 

Rt t, t R g.r 
113 	36 	2.33 	,*028 , 0.248 O.8 1.173 	79003 
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(3) Gssms 2 *& for S a I degree of freedom 

A 	18 x 104 z18 a 10.8 and FQ 	0.991 

It can be observed from the results, that logo 
Normal 2 distribution is applicable to this wtv.r gauging 
station (1k3) , since it has the probability of Cbi-
square less than the c omwnly used level of significance 
(0.95). Hence the statistical test of this distribution Is 
non"signittc nt, but for Normal and Gama; 2 distributions„ 
they are significant . lso, the smaller probability of 
Ctii-*square, the better Pitting to observed data. 

4. # . j Statistical Analysis 

The various statistical terms used in this study 
are as follows* 

Mean {X 	* 	Xt~► ' 

Variance (82) 	(xt N xt2 ) * N/N' 1 

Standard of Variation .08n ► Va 
a 

Coefficient of Variation (Cv) 	---- 
Xt 

First serial auto correlation coefficient 

xtit+.I 
'~~ 	 1/2 	 J I/2 
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Skewness coefficient 

£_ *  it Lot + «' Xt 

t 	t) 

Range 'B' *  

where 

8sa c ' Max (Xt .' It ) 

min a an (xt • X, ) 
9 

Where 
Xt Is the observed time series 

l~ is the length of the time aeries. 
The above statistical properti s have been computed by 

running the computer program given in Appendix (Viii ) . 

.1 .6 Analyais of Historical Data 

For the analysts of time series of the available 

bydvologtc data, all computations have been don* by computor„ 

IBM 1620 Model. The mathematical treatment for the required 

analysis has been discussed earlier, First, the trend compo-

nent Is removed from they composite time series, and than 

periodic components are r.movedr thus leaving the random 

component alone. For the detedt .on and isolation of periodic 

component oorr.logran analysis, periodogram analysis and 

spectral analysis lave been used. The procedure for the 

detection of each component from oiie another is analysed 

as below. 
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I+.1 .6 Trend. Component Analysis 
r ~wr~r~ rFM~ w~~~r~P~raiA ~r 

The method of least squares already discussed 

in Chapter III is used for development of trend. The trend 

is represented by a straight line. The equation for the 

trend line is assumed as given by Y a MBX where the trend 

constant# A and 8 are given by equations 3.16 and 3.17 

respect .vely. The computation method has been given in 

the computer program a as per Appendix i UI ) the trend 

line has been shown in Figure l*►3. 

(a) Correl~ationAnsl.y sts 

the eerie'], dependence of the hydrologic data 

is found out with the help of this analysis. The serial 

correlation coefficients are calculated from Eqn 3'28. 

The procedure for calculating serial correlation 
coefficient (r') values has been given in the computer 

programmes appendix ( V ) . The correlograms are const' 
rusted by plotting rk values against ti iie lag. The correlo-

gram for Euti ji river at Fengain Falls , bas been drawn 
as per Fig. 1" to 8. 

The brief procedure for this analysis is as 
follows 
1. Remove the trend component and got !R programme 

Appendix ()iii) ) . 

2. Find out correlogram with !R with the help of 

program Appendix (iV ) . 
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3. 	Remove the cycl»a indicated by the corr.logrsa 

and than find new values of TB with the help of 
computer programme appendix t '/ ) . 

Repeat the operations 2 and 3 for various other 
harmonies which are required to be removed, till 

no cycle is Indicated by the coir lograa. 

The results of the above analysis is shown in 

Fig. i.1 j  to 8 . The values of TR after removing D*2 
months, 6 month, 4 month, 3 month and 2 month periods 
are given in Appendix (w La), 

(b)  Periodogram Analysis 

The Schustsr's periodogram is developed by using 

the baraonic analysis and magnitude of the squared ampli-

tudes is calculated with the equation 3.,22 . These values 

are plotted against the frequencies for which the ampli- 

tuds values h&ve been calculated. The psriodo 	will 

indicate the period$ present in the t 'drologic data and 

the reactive magnitude of various harmonics will be shown 
by the periodogram as per Fig. 4.1.9. 

Cc) Power pstrt 

The vari no, spectrum is developed by calculating 
the normalis=d spectral density function. This will give 

two aided normalised power spectrum. The power spectrum 

will shay peaks with different frequencies and it will 
give the possible psriodf.cities precisely at its frequency. 
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The norssi.isod spectral density is given by Equation 3.36. 

This is 	calculated by assuming some values of 

time lag intervaland values of corrslstian coefficients 
with the same time lag Interval as shown in Appendix ( vii ) 
Here the velus values of K have been taken as 6 and 

124 months . Thus by knowing all the terms, values of 

8X(f) is found out corresponding to the different -rs,3ues 
of frequencies. The computor prom, for this purpose 

has been developed an per appendix ( Vi'  ) . Fig. 4. t.11 
shows the power spectrum, which shows clearly the presence 

of 1a, 6, 3 months periods. 

i.1.6. a Stochastic Component 

The residual series Z, is subject corrslo, am and 

variance spectrum analysis is ascertained that it is free 

from the presence of any significant sub"harmonics. First 
otter  Ma*ov Model has been fitted as earlier discussed,, 

the value r1  for lag on• being significant (r1-0.6(69),, 
the model then fitted bs +zea 

zt  w a«6089 zt,.i  + Rt  

Bas.d on this equation the stochastic component has been 
computed by the help of computor programs  appendix (I K). 

4.1.6.3 

 

RandeaCoaponent  

The random In the absence of any trend, is obtained, 
by removing the cyclic and stochastic component from th • 

original time series as given in 1quetion. The random 
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component is obtained (Appendix W%) t the help of 
Computer program . Couputor programme Appendix (IX ) 
has been developed to compute the mean, variance and stand- 

and deviation . The series was broken into 8 samples 
of O values and was plotted as given in Fig. 4.1.12 . This 
shown that the random eonpon±.nt is po2mally distributed. 

Mathematical Madel Adopted for Data Generation 

The ganernl model adopted for the generation of 
monthly g$rsan flow sequences for 13At gauging station 

as discussed a lier is as follows$ 
X f 156041 i&t+ A l Cos 	t+ 	airy 

+41N2. 00* 
12 12 

+ A 	coo 
xli3 

t + fl sin  
12 12 

+ AXXj+ Cos 8vt + NN4 s ►n 	8vt 

+O .W89xt,1 + Rt 

V$1u s of A ,1 • • •An4 and ~,~ .. .$ 	are given in 
Appendix ( yr d) and Iandom numbers (as) Can be generated 
by programs Appendix ( x ) . 

.2 CONCLUSION 

In Chapter Ii various methods 7 of estimating peak 

run-off have been discussed, based ont a available data. Ji. 
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In this connection 1103 gauging sett tion has been considered 
to arrive at the best fit distribution to the observed 
annual series. In Chapter 3* time series analysis for 
1X3A monthly flows has been discussed. As whole, based 
on this conclusion, the following inferences can be stated% 

(1) 	Nornal distribution is not fitting to the observed 
annual flows as the deviation of the observed 

series Is too short. 
(2)Also $amma 2 distribution does not fit well close 

to too short annual series. 
Log normal a and Gumbel distributions are fitting 
well . to the observed annual. series. This is verified 
as In Figures -Z•1 and 2.2•. 

w) 	The trend, periodic stochastic and random components # 
all constituting the composite time series have been 
Isolated. 

(5) 	The trend indicated In the bydrologic series is 
decreasing at a rate of 5.9 cumecs/aonth from  
1961"197 9 Fig. l•1,&3. 

C 	The Periodic component in monthly nrn oft series . 
has been described by Fourier series with 12 months 
f1anda*entml cycle and its harmonics as 6,1,3 end2 

mohths. The 3 anti 2 months are lens predominant 
comparatively to 12 and 6 months rig. -1-1O. 

() 	The correlogran for monthaly run-off has been cons- 
tructed which tends to reach ttV mazimum values 
at laps, rigs. i.1.4 to 8. 

r.~ 
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(8) Power spectrum shows clear peaks at 1296# 4 and 3 

mobths at its frequencies. Pig. 4.1.19 . The 
canoe of peaks at 6x,4,3 asontas periods are more 
easily seen in the spectrum*  than on the correlo-
g . The presence of these sub-harmonics is 

Indicative of the affects of oscillatory seasonal 

effects in the record. 

(9) Both the norreloiram and power spectrum are useful 

and should be used simulatneously for analysis of 

hydrologic data. The spectral analy$ia complements 
the correlogra m analysis La detecting periodicity 
In the b rdrologic tine series. 

1,3   6COFt Or P1JRTU1 STUDY 

(1) The flood frequency analysis of annual sodas can be 

conducted using other probability distribution function f  

like logrnoxaal 3 and Gamna 3. The study also can be 
conducted to other rivers, In different weather rues. 

(3) The model # and its efficiency can be tested by comparing 
its performanc o with results obtained by other time 

series mode.*. 

(3) The model has been developed for monthly river flows. 

This also can be applied to time series of 10 daily 

weekly and yearly cancel. 
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C C LV IUMb I KA r HYDROL0(Y DESSERTAT I ON WORK  APPENDIX 1 
C  CC EFF I C I .N T OF CORRELATION 3 ANG A.8 

DIMENSION U(150).M(15G).QL(15OI.ML(150) 
100 kEAD 10sN#A$ 
10 FCRMAT1I4#F2.i.4) 

AA'aN 
D(r 20 IsI.N 	 • • 
READ 3).Q(I),H(Il 

20 CCNTINUE 
SUMO=;J.0 
SUMHsto.Q 
DQ 40 Ia1pN 
4TaQ(I) 
Hi •H(I )AS 
QL(I)"LOGF(QT) 
HL(I)OLOGF(MT) 
SU'4 m5UMQ+LL (I) 
SUAHSSUMH+HL (I ) 

40 CONTINUE 
03ARsSUMO/Ate 
rlEAR•SURRFi/AN 
PUNCH 5 °r • QBAR.HBAR 

55 FORMAT t 14HVALUE OF .JDAR=, F13.4.4X,14HVALUE OF H£-,ARs sF lO.4 
$UMXY-O.0 
StJ 4XXU•0 
wt"MYY.U.0 
DU 50 Is1.N 
X*HL (I) —NEAR 
Y*Cit (I) —QDAR 
SUMXYaSUMXY+X*Y 
SUMXX# SUMXX+X*X 
SUMYY*SUMYY+Y*Y 

50 CCMTINUE 
AsSUMXY/SUMXX 
Df IGAR—A*HaAR 
R* SART P ( SUMXX*SUMYI ) 
R* SUMAXY/R 
PL CH 60,A,B,R 

60 FCRMAT(12HVALUE OF A a,Fl0.4,4X,12HVALUE OF b •,F1O.4*4Xr 
1 12MVALUE OF R =.F1O.4) 
PUNCH 70,,A.G,R 

70 PCRMAT (3 20.8 ) 
PUNCH 80 

80 FC RMAT ( 7HVALUE OF L©G (H--A) ) 
Pt4CH 10#(HL(I),I•IoN) 

-0 FCRMAT(0Fl004) 
PUNCH 90 

90 FORMAT (1 SHVALUE OF LOG (0) ) 
PUNCH 30r(QL(I)•I*1.N) 
60 TO 100 
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C Lt'HUMf3IKA. HYDROLOC Y DESSLRTATION WORK 	 APPENDIX iI 
CQEFFZCIENT OF CQRFIELATION Ft AtW Arb,1K3AbAR At4L IK AR 
DIMENSION IK3A(300).QIK3(300)•QALC300)#QL(3C0f 

00 ROAD 10,N 
10 FORMAT U 14r2FI0.4) 

AN•N 
DO 20 I*l,N 

20 READ 1O,J.QIK3A(J),GIK3(J) 
SUMQA~+ U. 
SUMQmO.0 
00 40 I■1,N 
Q,.TwQIK3At I ) 
0T*~Q1K3( I 
QAC.I I )OLOGF{DAT) 
Qt.t l)sLOGF(OT) 
SUb4QAE $Ut,QA+QAL ( 1) 

40 

30 mllvig?l?k ARO~►,F10.4,5X#9Hfl3 
s&,Mxxm0rtk 
s1.MYY-O.0 
GAO 50 11.N 
Y* AL (I) —QAAAR 
X*QL(I)—QbAR 
SUMAYr$UMXY+X*Y 
SUMXXw$UN;Xx+X*X 

50 St!MYY*SUMYY+Y*Y 
AUSUMXY/SUMXX 
B*,QABAR—A*Qt3AR 
R•SORTF( SUMYY*SUMX) I 
R•SUMXY/R 
PUNCH 60,Ar8sR 

60 FORMAT(3HA •,F1Q.4i3H8 
PUNCH 70,A.B,R 

70 FORMAT(3E20.8) 
PL - NCH so 

+t,F10.4v3HR *,FlO•4) 

80 F(tRMAT t3Ht40.2X9HLO(( IK3A)2XBHLQ6(IK3) ) 
00 90 I"1,N 

90 PUNCH 1O,I,QAL(I)rCL(I) 
C0 TO 100 
END 

hAR •,Fi0.4I 
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C C LUH4JM'31 K A E) I S$. LRT A i' I ON WORK HYDRCLOC Y 
C 	PR36RAMME FflR SEPCRAT!O OF TREND COMPONENT 

DIFMSION X(4")►Y(41f!),VT(4D()*YR( )O) 
RFAD 50►N 

5') 	FORMAT (I 5 
READ 60#( (I)+Ia1sN) 

60 	F 7RIAT t 12"b.2' ) 
REF\) 6O t'(I )+I=1.M) 
SU 4X0. 
SUMYa O • 
SUMXX■' • 
SUMMXY : • 
DO 25 1*1.h 
SU.4XaSU "X+X(1) 
SUIYaSUP, Y.Y (1 ) 
XX*X(I)*X(I) 
SUMXX-...tUY,.X+XX 
XY*X(I 	I ) 
StY4XYoSUl' V+XY 

25 	CONTINUE 
A P4' N 
DCMD:AmAt!*f U'XX-SU?iX*SUPX 
A* ( U*t)U?'XX-$UM.(*5U"#XY) /DENOtI 
P=(A%I*SU? Y-4UI.1X*i tJ 1Y)/DFMC'1 
Xl=0,*  
DO 29 Im1,N 
X1aXi+1w 
YT( I) A+ 4X1 
YR(I)*Y(I)—YT(I) 

21) 	CONTINUO 
PUNCH 11 

11 	FORS AT (15X r5rHREwwwLTS GF VALUES TREND COMPONENT YT AND YR VALUES) 
PUNCH 12 

12 	F©RMAT(219:►3E'HVALUES OF TREND COFPONENT YT SEPERATED) 
PUNCrt 1C ►(YTtI h+I*l►N) 

10 	FOR1ATt6F1,2.4) 
PUNCH 14 

14 	FOR "FIAT (2X,5 HVALUFS YR AFTER REt-'OVI 4G TREND COMPONENT YT FROM Y(I)  
1) 
PUCH 1O.tYR(I),I*1.1ii 
PUNCH 3001 

30 	FORMAT t 1 DX * 11HVAL JF OF An ►F15.5 I 
PUNCH 31..i 

31. 	FOR'4A1(1ny►11HVALUE OF C ►F15,5i) 
STOP 
END 
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C C LUHUM1IKA /HYf3ROLOGY/OO'SSrRTAIION WORK 	() 	APPI 
C 	PROARAM "F FC? CORRELOGrAM 
C 	CALCULATION OF K AND R K) 

nIMFNSIOM Xt4^0).a(400)*KP(4OD) 

READ 3.N,K1,K2 
5 	FORMAT(1415) 

RFA) 300s(XtL)•Lwl#N) 
900 	FORMA r (6F12.4) 

IK•© 
00 10 K■K1 •K?sKl 
xZ■ !). 
X1.). 
X2=0. 
x1=o. 
X4*0, 
NX a 14—K 
na 20 I-1.NK 

XZ'XZ+X( 1) 
X1=X1+X( J) 
X2*X24X( I)*Xtl) 
X3sxl+X(J)*X(J) 
X4sX4 NX( t)*X(J) 

20 	CO 4T1 4 UE 
ANK 
A■SQRTFf ANV*X2.XZ*XZ) 
RsSQRK F(ANK*X3^~X1*X1! 
R (K) * t ANK*X4—X2*X fl / A*fl ) 
IKaIK+I 
KR( I K) "K 

10  CONT14UF 
PUNCH 5~►(KRtI),I 1,IK) 
PUNCH 900:(R(K)9K.K1,K; ,K1) 
END 
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LLMUMIKA /HYDRLLUGY/OL.,D1 TATt 	rhUkK 
~"f 7G A iv,c 

 
FR I$ LATIGh. CF PEk1O 1C CUNP Nio4T 

THAT I S P 2UGhAMML FOR z.ST it SAT IQU OF S I 	 U1 C.AL 
DNIEIS1OM YR(4uu) 

Ac 5O *N 
FORMMAT 1 15 ) 
KFAU 11,(1'k(1)sl1.N) 
FURAtAT i bF 12.4 ) 
f%EAi) 12.M 
FORA0(13) 
Pt) iCH29,? 
FORiAT(6Xv1c!VALUES OF M;. . ) 
~t +~3• 1416 
Aft* ~1 

tO 13 Ia1,s1 
AI*I  . 
Xm i J*P I E*A I /A(. 

APPENDIX Lvi:; 

CO 4PG SENT 

f RF RL) LULU'W I5 SMALL I. IN 2*P:E0 (St ALL)N(SMALL)TIT 
FOII TIE PER IOD T•12 
fi~+1 Fu,~t F J.OVI+`4G 12 t. ;..THS PEktOD 
psi*2 FUR FEv0VI ;iG 6 i•.O 1HS 1 LRIOD 
N=3 F )R t CVING 4 ki0.111THS PERIOD 
Nw4 FORS RE".1OVIi4G 3 4W4THS PERIOD 
53 HEAL Pok TW 18 U.Fta 15, $$O.45 ►6O RE.+PECT I VELY 
HENCE 	T/ t ALL) Nm 12 %6 *4 ,!+ RESPECTIVELY 

Ct *►ir /2. 
AXN *AXN+Y; ( I )'COSF (X) /Cf'~ 
LXN•JXl +'T It 1 )'SI- (X) /C4 
CONT INUL 
CXfi*5u TF IAXl AX4+t;XN*b,XN I 
Tllt;TA*ATA.IFIAX+-N/tiE ) 
PUNCH 21 
~'ORMAT(°5X o3 AXNv-IUX.3HUXtl.*~ X#3HCXlJ#9X*5HTHCTA) 
PUNCH 20*AXte.E;XN.CXN. THETA 
FJR'AT(4FL3,2t 
DO 1i. i.i.f 
AI*I 
X•2.0*PIL4AI/AN 
YRlI)•YR(11—('XN*CUw'(X)*L!-,N*5IN (X)) 

iu 	cOH,iTIr4UE 
PUNCH 61 
F0W AT 11 ax.43HYH VALUE:, AF i:i: RCN•ZO 'AL OF 	I ONTH5 PO.f IGC ) 
PUNCH 6t..(YR(I)Is1.N) 
FQgMAT (bF 12.4 ) 
(Ø TO 1'.5 
Lint) 



G 
C 
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50 
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C LUMUMt3IKA /NYDROLO Y/0I5SERTATION WORK 	 APPEN©iX (V1~)) 
PROGRAMME FOR PERODOGRAfl ANALYSIS 
CALCULATION3 OF AXNs3XN,CXS,,FREQUENCY(F) 	 N< 
DIMENSION Yet(2QU) 
READ 509N 
FORMAT(15) 
Rt'At 11•(YR(I )sIw1.1) 
FOR 4AT (6F12.4) 
REA012PM 
FORMAT( IS) 
PIEu3.1416 
AN'4 
AXNtO. 	 '. 

D013 I'1•N 
Al 'I 
X*Z*U*PIE*AI/AN 

CN•aN/Z• 
AX l AXN+YR(I)*CQ F(X)/CN  
F~3~ NuSXN+YR (I)*SINF (X) /CM 	 1 
CONTINUE  
F1aM 
F+i1./F'1 
Ca S*AXN*AXN+BXN*bXP4 
Pt,NCM7 
FGRMAT (6X7 3MAXN r 12~t ,3M8XN,12X s3HCX5,14X N 1HF ) 
Pt NCH6 * AXN,8XN,CX5,F 
FGRMAT(4F15•4)  1. 
GOTO 15  
END 

ll 
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C LUHUMuIKA• F YOROLOGY D .S$EHTAT1ON WORK 	 APPENDIX VU 
PROGRAMME FGR ANALYSIS OF POWER SPECTRUM 
DIMENSION R 30),VD(3')).Ft3O) 
READ 1ofdfK1rt 
FORMAT t315) 
READ2.(R(I)♦I*IiN) 
i EAD29(F(K)*Kul 04) 
D019K=1,M 
VD(K)wno 
Ilea 
DO2O1' 1 tt 
11* t I+K1 
ASC= I I 
Xx=RI I)*COSF(2.*3.I~'•i64IF(K)*AK)/3.I416 
VD(K)cVD(K)+X1 
CONTINUE 
CONT IIiUE 
PUNCH 6 
FORMAT (39X.) 1HVALUES OF F) 
PUNCHZt(F(K. sK«1tM) 
PU 4CH 7 
FOth4AT (39X,2 2HVALUEZ OF VD) 
00 5Q Iw1,M 

50 VD(I)*V0(I)/1U.0**8 
PUt4CH3 9 I VD P ) *Kz , Ml 
FORMAT t6F10.5) 

3 FORMAT(4F20M8) 
END 
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C C LUNU;;11[CA /W:YUR0L0GYID45SERTAT1ON t,ORK 	 APP( ttDIX(')lI) 
C 	Pt%UGilA.:'.:L: FL;. FINS?INV (AUT STATISTICAL PARA~1ETCRS 
C 	;,EAre.;TAt:0Arw GIVIATICt.+,VARIA1 CE AND AND Cove 
C 	DATA J52L Y(I)DYRhl),Yl.I2)Yflt),YR(4),YRI)DYR(6) 

o I 0510 v YR(40u) 

10 	FOA7(I!) 
100 	READ 11e1YittIloIa1*N) 
11 	FO:*;'JAT(OF12 6) 

X30 44 IQ1s1 

44 	CQw31IaauE 
AiJa;~ 	 - 
Aa1CAN=SU ;l/Ar 

C 	THAT 15 Ar EA14 M EAfde S1G~4A (X) /N 
PW CH 13,At+;rA d 

13 	FORMAT(1 LAX * 17H~ lEA N OF THE ©ATAr w C16a 8 ) 

00 14 tal.N 
ZoUi32=.IUM2+IYR(I)—At4CANJ**2 

C 	THAT IS 	5UM2= l SJGMA tip--GAR (X))) **2 
14 	C0 TI,!UC 

a 0050ATF(SW42/(AN' 1,O)) 
C 	THAT £5 	SDcSTANDARD !'CVIATIONOtSIGtrAIX-1 ARtX)))**2/N-1 

PUNCH Z9ASD 
25 	FO AA + t 1UX,31MSTANDAR1 DEVIAT I0 OF THE DATA#,F12o4) 
C 	VASIA~4CC a SQUARE OF SIANDARA DEVIATION 

VARwS1 *2 
PUNCH 15.VAR 

15 	F©R:*#Al (10Xo 17HVARIANCE OF UATAc,E16.0 ) 
C 	C0VwOEFFICICNT OF VAt IATION 

CVa10J Q 'SD/Ac EAN 
PUNCH 16 iCV 

10 	FORMATt14Xs14HC0Ve OF L.'ATA a,I~16.O3 
00 TO 100 
t;4D 
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C C LUAUMB I KA—HYDR(ILOGY -D I SSERT AT iON WORK 

C  SE ERATIUN OF STOCHASTIC AND RANDOM COMPONENTS 
GI 4ENSION YR(400),ST(400) ,)t400) 
READ 1 Q s N 

10 FGRMAT(15) 
READ 12iA1 

12 FCRFiAT(3FLU.4) 
READ 11s(YR(1),ial, f) 

11 FCRMAT (6F12.4) 
00 22 I■2,N 
Kol -2 
ST(K)uAl*YR(K) 
RD(K)"YRC )—ST(K) 

22 CONTINUE 
Pt CH 13 

13 FC RF4AT (25X,3OHVALUE s OF STOCHASTIC COMPONENT 
Li•N—t 
PUNCH 1+s($1UM)sM*1,L1) 

14 FGRMAT (6F12«4 ) 
PUNCH 15 

15 FORMAT(27X,26HVALUES OR RANDOM COMPONENT) 
PUNCH 14:(RDIM),Msl,L1J 
STOP 
END 

0 
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C LUHUMC I KA s HYDROL 3GY CCS- -'R T AT I ON WORK 	 APPENDIX~X ) 
DIMENSICH 2412D5+),T(12i#D) 
READ IU,X 

0 	FOR'4AT ( F l2.4 ) 
READ 48,t 

6 	FORI4AT (I 5 ) 
DO lU0 I*1,,N 
CALL RANi)014(X) 
NANDOA (X 1 $UJROU1 LHe AVAI LAt~LE WITH CUMPUTEk CENTRe 18 PACK (41 
Z(I)mX 

00 CONTINUE 
UNCH 11 

1 	FORMATi22X,36HUPIIFORMLY DISTRIBUTED RANDOM NUMt1ER$.///) 
PUNCH itU,l.Z!Ii♦I*rt i 

0  FORMAT(4E16.8) 
READ 5U.(ZII)sI+~1,N) 

0 	F0 4AT (4 (F 1,2.8.4X 1) 
PIZ*3.1415 
00 30 101,N*2 
ARGMT= 2.O*PIE*Z ( 1+1)  
XI*2.( I ) 
AAa-~2.O*LOGF(XI ) 
8t3■ ((AA) **U.5 ) 
TCI)*88*C05F(ARGMT) 
IC I+1)*b8*SINF(AP5MT) 

0 	C014TINUE 
PUNCH 22 

2 	FORMAT t 25Xr31HGEN :RATE() NORMAL RANDOM NUMSL R$P/// ) 
PUNCH 21,(T(I),Ist,N) 

1 	FORMAT (4E16.8 ) 
END 
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III r° 

nESULTS OF VR1Ot1bT$RL N0 C0F4P0t WP4T VT Af D YR VALUES 

1480.81713 1474.6507 
1443.0610 '1 637.7030 
1406„9001 M400.7490 
1369.9533 1 ..363.7941 
1132.9904 1326.0397. 
1296.0436 .289.0844 
1259.0007 1252.9293 
1222.1339 4215.9747 
1105.1700 1.179.0199 
1148.2242 1.142.0650 
1111.2693 ".105.1102 
1074,3145 '06A,1553 
101703996 4031.2005 
1(00.4048 99492456 
963.4499 95702900 
926* 4951 920.3359 
009.5402 683.3011 
1522.5654 04694262 
9159,6305 009.4714 
77046757 772.516 
741.7200 735.5617 

VALUES Yit NAMELY VALU :S 
-1114.7275 31.4315 
-857,7727 -O71,61 
2989,1822 2295.3413 
-1313.0630 -987,7031 
1193,0019 2204.2519 
-1360.9533 --943.7941 
1147.0016 *A673.1607 
-766,0436 -020.8044 
-579.03J7 -93269296 
-f22.13 9 --835.9747 
-205.1740 15.V001 
-745*2242 -00740659 
-551*2693 -425.1102 
-634,3145 -688.1555 
1002„6404 1700.7991 
--39094040 --904.2456 
116.55J1 662.7092 

-396..4951 -620.3359 
2210.4590 1056.6109 
-49249854 .536.4262 
-175.6505 -22904714 
-25196757 -422.516': 
-1'3107200 -•335:5617 

VALU4 OF A' 
VALUE OF 0c 

COVPOI ENT YT 
1536.2501 
1499.2952 

	

1468.4995 	it ►2.3404 

	

1431.:447 	14 15.3855 

	

1394.51190 	13 18.4307 

	

135796350 	1351.4758 

	

1320.6001 	1314.5210 

	

1283.7253 	1277.5661 

	

1246.7704 	12'0.6113 

	

1209.0156 	12 13.6564 

	

1172.0607 	1.1 16.7016 

	

1135.9059 	1129.7467 

	

1008k0510 	109207919 

	

1061.9962 	105500370 

	

1025.041'a 	1010.0022 

	

90800065 	981.92 73 

	

951.1316 	944#9725 

	

916.1768 	900.0176 

	

877.2219 	871,0628 

	

040.2.671 	034.1079 

	

003.3122 	797*1531 

	

766.3574 	760.1982 

	

729.4025 	723.2434 
OF Y;1) AFTER REt4OV I NG 

	

»942.4092 	-996.2501 
-2140.4544 -  1199.2952 

	

2901.5005 	2317,6596 

	

-1046.5447 	-9253855 

	

3575,4102 	1211.5693 
-97726350 -  1011.4750 

	

2459.3199 	72544790 

	

-693.7253 	-977,5661 

	

1534.2296 	339.3887 

	

-809.0156 	-093.6564 

	

1627.1303 	1)3.2984 

	

-025.9059 	-719.7467 

	

561.0490 	747.2001 

	

-741.9962 	«615#6370 

	

4569.9587 	2781#1178 

	

'-570.0865 	-681.9273 

	

1188.6684 	-254.9725 

	

-644.1768 	-! 18.0176 

	

362.7 781 	-1 11.0620 

	

-560.2671 	- 14.1079 

	

-19.3122 	-27.1531 

	

-456.3574 	'-'70.1902 

	

-90,44025 	-111.2434 
1360.00660 

-6,15914 

SEPERATED 
1530.0909 1523.9310 
1493.1361 1406.9769 
1456.1012 1450.0221 
1419.2264 1413.0672 
130202715 1376.1124 
1345.3167 1.339.1575 
1308.3618 1302.2027 
1271.4070 1265.2478 
1234.4521 1228.2930 
1197#4973 1191.3381 
1160,5424 1154.3033 
1123.5276 1117.4264 
1066.6327 1000.4736 
1049.6779 1043.5167 
1012.7230 1006.5639 

97507682 969.6090 
930.8133 932.6542 
901,8565 89596993 
864*9036 056.7445 
927.9468 821.7096 
790.9939 784.6340 
754.0391 747.0799 
717.0042 710.9251 

TREND 	COMPONENT VT FROf 
-650.0909 -103#9318 

-1200.1361 -1166.9769 
743.8108 -575.0221 

-634#2264 -03,0672 
-502.2715 -716.1124 

-1015.3167. 1140.8425 
-490.3610 -702.2027 
-721.4070 -565.2478 
-634.4521 -700.2930 
-78764973 -53193301 
-550*5424 --674.3033 
1356.4124 -567.4204 
-1.36.6327 -540.4736 
-569.6779 3306.4013 

317*2770 -506,0 5639 
-655,7602 30.3910 
-490.8133 -552.6542 
108.1415 1844.3007 

'-404.9036 -458.7445 
-447.9400 -371.7096 
-304.9939 -304.8348 
-184,0391 -57,8799 
-231.0042 -225#9251 

VALUES OF TRC ;© 
1554.7275 ;.548.5604 1542.4002 
1517.7727 1511.6135 1505.4544 
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'w .6 

CALCULAT IC OF #C At 0 Rt .t FOR k1a1 A4 K22s SO 

1 2 3 4 	5 6 	7 a 9 	10 11 	12 13 14 
is 16 17 18 	IV 20 	21 22 23 	24 25 	26 27 2 
29 30 31 32 	33 34 	35 36 37 	36 39 	40 41 42 
43 44 45 46 	47 48 	49 50 51 	52 • 53 	54 55 5 i 
57 58 59 60 

.6338 .3741 .0468 -.2Q7 --.3543 ,".3924 
-.3415 ".212 -.0414 01393 #3463 #3869 

*30855 .0755 -.1035 -.262 -.3403 -+.3171 
.U512 .z1aa . BoO3 .4207 

.3139 #0463 -.1599 -.2839 -.3594 -.3650 
03157 -.1963 -.0617 --.035 + #0612 .1583 
,1.)61 #4313 -.1134 -.,2416 -.3208 -.3358 
-.2152 -.1320 .0421 .2183 03210 ..4239 
.33224 .1592 -.0643 -,.2282 -.3258 ..3247 

-.265Q -.1068 .1215 .2912 .3b40 .4643 

REWL 
CALCUL.' Ic4+ OF K AhD R() FOR K1•1 AND 	.2*120 

6 12 16 24 	30 36 	42 40 54 	60 66 	72 78 64 
90 96 102 108 	114 120 

-.3524 .Sffi  -.3771 .4207 -.3650 .1583 
--.3358 .4239 -.3247 *4643 -.3457 .6636 
-.3423 .15 -.3406 .3255 -.2682 .0236 
+.2402 .1842 
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VA6UES OF As 	12 

AXN ( 	N C; .N THE to 
336.33 952.16 1tu .by .~►3 

YK VALQiL:o AFT~.ts 	ULAQVAi. GF' 	MQ,1ThS PLKI J 
-4b1.439a) -lbyw.',' b4 -1~.5Z. 	7S~7 -b: 4,711+1 32.4124 
-7b*7411 -ibna; ~iyi -542#9713 -1'►Q3ab4~t1 

2221*631 i 1302.467 2r 61.4I3 559a0. 1 -23t .4634 
,••4!ba.~137 5a1113 -94."650 -169x0728 -449+6110 -41916.324 
41bob37b 1291.3 `4b 2b23.t a3Q 953«dbz: -6d6.ó1J ti -379.'?401 

-1:•2.3943 49..)837 -2SO41, 0i •*335.1744 -6k4012..~0 804«263;.3 
379,137? 46t u•+~al:► 1!007ae;o7b !(9•1b12 68~.94i3 -365.6164 
-1.80 477¼d 6.1tL4b - 21.47x9 -536.6296 -901.b410 

-,1346.#6661 -1,o..5*ol15 6.43 957 - 819.0220 .451.6927 
-:~4*$156 1560906b b 	.~'t9:~ -i5lS 775 0.9346  -867.9453 

-972.762( -b41.S'O4!' b7v.h?Sib9 - z5 .974b 7,09I7 " -317*7690 
1993636 IV0002lu Libao' : 40 -123.4791 154099644 -904.0496 

- .314od619 -141799971 -J91.14834 9Qs946; -321.1734 -203+8453 
110„213; t► W4.7: a4 21u*;14Jbd 44+4193 -36.1464 3049* 461 

1040 3481 471509095 .a.17.4 le6.e 2124x#672 132,75ob '1b9.917 
37714023 4ö.645 #66222 -471.2493 -306.2582 

-6)1.)618 -3.16 436.7409 -091*2116 -6C ,324d -2155.9980 
171* 1217 li72.555EZ .47a1.:.403 11602161 292,6457 1507.6376 

144,40034, 1063.72:34 -'89..j44 1*2909 -589*4005 -1222.0743 
275.+141U 4.6.47b 91.w' r 	ii •152*1145 -263.4591 -700.4667 

-943,1617 -IL22.369x -967.4t98 -463#3499 -409.4762 -4601506 
51#.96t.)3 +7v.33ti3v 49 	a' 	r?tl 4G6.0129 .4359 -394•:x730 
-919.i.17 .462t 10.f'a -767.4489 -415»5519 110.7730 

VALUES OF Ms 	6 
AXN bxN CKN THETA 
-237.18 11 t . 	7 269.51 ma96 

YN VALUES AFT :d 	KMOVA1. OF 	; 0;1t*i 	PERIOD 
-1897*2790 -1223.7363 1.353 -1627.5609 574*42'14 469043903 
-11.2539 '.s41.0397 -4,75a664 -1-+17.9482 -761921! 7 -1266.2528 
219b.tti147 14j.1671 1792.64 1666.J666 821,50'44 *"191908 
-71.3432 -227.1366 -:331.1.67 '+244.0412 r-x37.3168 -182.3619 
4O,41 l.  070a d4 	.! ►36 500.2960 -424.5656 .442.2720 

' 1,27,4 	24 - .11.3.222221 «.'62.9 !711 "330.1343 -560.4102 1041«tzt09 
354,3957 '1417ay739 1+~69.0W 4 94.2274 -424.6377 -12b.3534 
-4$.5214 ..,5.3132 ?b, t74 "'296.2274 -274,5194 -684«5602 

-1371*7117 -11J.127 4V,3*0a 7 -291,6430 -5$.70)8 -21494344 
-79,6105 -103.444 -174.! 107 -12,3205 -140,6207 -630x6894 

-991.8211 -01124.&194 437.7422 -»52709136 -472x7019 -100.5156 
'.71.49b -111#0161, »5.6' Sib 

 
.-96,4138 1803.2779 -666.7966 

-1,34,494 -166U* U1 9 -620x'# .132 #16.0158 -58.8541 33.4031 
60021111 42.4131 -270l:Uu5 65,4932 -122,823.3 3287.0922 

1Qs~9.9t22 '1453a567:v 3.'b0. b13 24499*9453 3'95«07' `I6 67.3219 
354.122u 226.3220 13601010 -.5998 -206092 65 -691.0169 

-676,1464 -592*5094 -00191 -06601254 -44.99I1 21*240,6 
146oO 321) 110.2308 7U.107 1430070 4.91•.1 1744.2739 

141707453 601.3942 -b26.:4797 -912.1957 -5 !7,.G7'1a 115.1596 
249.9438 194.131+6 184969.'03 " 7,139 --1,1271 -471,2352 

-966a,36ai -1464.7044 d 14Q4.u46Q1 -63+1.2663 .227»1423 189.0784 
49U,tl346 368.0484 11.1iO8 264.77155 -157.3444 

-944.4116 -1590.7990 -1.67.74O6 -744..3b8 -13.216 3.4709972 



VA UC Ori :: 	4 130 	~! c 
AXI TMC TA 

46.u( -1 	"x•71] lC,200 -x.29 
YR VALUCS AFT LI 	EUEf-:OVAL OF 	.:0 JTH$ PL fl1OD 

-1741.49t34 .4176.3C,4 -2207.1 	6:j -1 7' . 	97 -416*0400 516.6079 
-271.O.7 f343 -471.1540 -910*9901 -131i.0470 
23:34.j9 4 lQi"6.9002 10--ot u14 1639*5767 977.299 4.)99 
- ct7a1U6G *9205 ~►Me",?ao -197• 5d7 r-,i43.X~CT1 J -Ud9.1493 
X66.2669 075*0567 ►260.70 )1 -9504 01 

-20D.2160 r4( 	.0(J40 -1000! 343 -20x.3527 - 724.2047 994.74414 
91i3.1Ua6 2464.7532 1114.11O►O 47.4492 -'2 4.0002 -016~J761 

-Y99.:~O~a 446.0af~1 04i)1 -11.49.4926 -4:)0.30410 .711.339 
'121.923J 141.02 t'3 --X30#6144 -400x9202 -167x6642 

3.4U4 -152.173x -19.?:~74 -14 ►.5$26 -496.4liD --677x4942 
-342.D101 1UD7.45~O 1.4 O *-:374.67(1 316.99'l2 -►D~3a7'522 
-161.4910 -110.2570 44.'742 - 51.6!x26 1647,41 oat -713.500 
•11JL.1b4 7©4.' 	 1 i 69#2502 96.93l6 80.1596 

--67.5t0Zii -40D4i1 X2'€~.tt;;;~9 112.2474 -27$.61J0 3 40. 392' 
1165.7:►72 2104i.]V46 010696 114.0716 
19003259 179.7Z 292.f975 46.1474 -364#7214 -115.7631 

-52 .34.99 -4.7C4 -1.4c'GO 9,0691 #265,2044 67.9035 
-9.7052 c 	.4G'ti4 4z6.092 190.0474 399.111+ 1690.1346 

1.5173.;144 r 040.1323 W2,792 --950.9320 -171.27.15 141.b55 
94.1435 1'7.6048 :;10.+'220V 2Z.9474 -156.921.t -917.9677 

-012..►G19 47,'712 -1. 	0,L 41+7 -704#9965 '71.3405 235.0074 
261.205 414.,-r3Z4 B.~~►•432J 

 
37,8475 104.9665 -204.0100 

-7C.6632 -444,Q746 -.1445x! 442 -70900601 2.5893 394.7199 
VALULtO OF :;a 	3 

AX{'J CM cxN "THETA 
1:34.94 7006 135.1.2 1,51 

YR VALUES APT LR RCt.0VA4 OF 	M.0 Th5 PERIOD 
-1600.14+4 -1103.3519 -2422.795 -1612.9999 -343.0572 361.7446 
-209.6741 -4.230 -404.7277 -609.7194 -643.41134 -1447,9905 
241 D.7605 11.5380 1501.'*R. 74 1100.9430 1050.0660 -49.3437 
-165.7.1u -23u.3460 -410.11o4 -135.9U4a -269.5264 -364.0932 
617„6611 114<3.4270 094.0069 -195.2106 -230.4322 

-221.U42 -16(.4370 -41,9U50 -441.9732 -4 Q.6D05 059.0040 
571a afi~ly 9330.:1177 t79. L716 lot .630) .2879 -216.0207 

-17.9d64 -72x52279 •157.1"930 -10f3,0000 -356.7460 -846.2906 
14.37 -2067.7924 103.0000 --r77,2262 -327.; 6 i0 -2.6092 

-174.0105 -70.916V -1.O32 i -.0,04.1609 422.05F5 -012.401D 
-700.6367 -903,x 9026 167,0094 -913.2029 -2243,4417 -18004976 
-lilti.i 947 -44#7099 -90.'712 9,7461 1721.0314 -040#5041 

--11t60 7.3;r►9 -1560.01227 -019,L773 130.6619 170040255 -94,7061 
*0.1700 0901990 6.P.599 i73.632 -205,0706 3105.3933 

1227.1647 ': 7 	.6771 3009 ,,9 .216496039 624.4056 -20.8745 
257.7370 ,1000 1~i7.CA514 10795603 -2914065 -250,7095 
-U,4 -472,2sDo #x91.2431 -091.45o -191.61)0 -66,9630 

51065215 1370,0170 91.!625 251,4614 472.7014 156341070 
1634.966.d 1~21.6569 -1117.:1261 -097,509) --97.7476 26.9404 
15505600 22ox9261 17,4730 35.749 -03.4065 -652.9149 

-731.13.i1 -1~64.49B4 r-143a*4.090 -u43.5659 201756 10000600 
3'6,4341 4,3351 419,2C16 180.4013 -339.6116 

-79T.L) ;4 -1470.5634 '-1:+7d,(,919 -127,421 5 7600919 259.7715 
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PIMIODOGRAM ANALYSIS 

CALM ATTON OF AXN 	CIB AND FREOUf CT (F) 

BXN cxs 

-0  !8.1 -300.8739 x33533.1700 0.0416 

96.4439 * 74.1824 1i4226.9990 0.066 

336.5373 9$2.1683 1019 	1.9000 0.0833 

"2Q2.8917 -343.8619 094064900 0.1000 

24.37 •1.069 2163.882 0 0.91111 

so 38.1687 *317.0871 102001 «340 0,120 
10261.0107 177.L4185 99603.911sO 0.1666  

46.0787 •162.66  , 	5$0.1200 0.2500 

128.802 11.3237 16730+6040 0.3333 

• 11, Is6140 0.0013 131•,4,242 0.5000 
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RL 817L28 OF POWER 8PICTW J)4 ANALYSIS 

`alue8 of 
YD 

O.5000 	3.O.62 	O.12.00 	0.413801 

0.4500 1.821043 0,1000 t 6 i7" 	4 

O. 	Q0 ' 0. a°?'l699 0.08300 3# 37$4 

0.300 0.278171 0.0? •1.0388?? 

0.33300 3.389 0.07000 O. 	5346 

0.30900 #►1.822218 0.06'0O 0.' 

0.0500 3.405599 0.06000 8 1.93168 

0.20000 •1.8a1.'9 4.0 "1.821816 

0.16700 3.383297 0,042O0 4.411021 

o * 1 	0 2.28881 0.03500  
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RESULTS 
RECOVAL OF 12 r-,O THS 

ALAN OF THE DATA —Oo2331G400E+Q2 
STANDARD DEVIATION OF THE DATA O  96207433 
VARIANCE OF DATAC O.12679766E+Ob 
C.V, OF DATA 0 —O412 )9290C+04 

RECOVAL OF 6 . ONTHS 

t1EAt OF THE DATA —O. 331OO9 "I;+O2 
STANDARD DEVIATIOI OF THE DATA*  94095226 
VARIANCE OF DATA* 0.,78458232E+O6 
C.V. OF DATA 0 —O.603t 8262E+O4 

REMOVAL OF 4 MONTHS 

MCAN OF THE DATA Q "Qo 4'184Z31C$ +02 
STANc)ARD DEVIATION OF THE DPTM 	933.4476 
VARIANCE OF DATAO 0.17132436E+06 
C,Ve OF DATA 	O.42735741E+D4 

RE OVAL OF 3 MONTHS 

MEAN OF THE DATA+ —n.21642A2GE+D2 
STANDARD DEVIATION OF THE DAT = 	92805085 
VARIANCE OF DATA O Oo J6212b01C+46 
CoV. OF DATA a -•Uo425 92b4E+D4 

STOCK SIIC 	MAR N 

MEAN OF THE DATA P —a. &444611LF+02 
STANDARD DEVIATION OF THE DATA 	565.1790 
VARIANCE OF DATA 	O.31942730C+0b 
C.V. OF DATA 0 -'U.3912 263E+0 

RAND0~ I t3 t , ti2 r►r 

MEAN OF THE DATA 	C.4T709115C+G1 
STANDARD DEVIATION CF THE DATM 	72700126 
VARI %NCE OF DATAc 0.129712190+06 
C, V, OF DATA 0 0.192 30944E+0f 



-1-14"JeD174 
140997337 
-1x'.9302 

=~7L.0 tsa 

'3400240 
..0 #9834 
•' )?,979 
-19 
-e r .397 
•.L!~.c477 

• M7.2236 
1 #o.t'3t,1 
27.64i2  
31.415 

2 094115 

-'3c,S14J 

-1 t•41 o 
7,3340 

11.4  
-11;04#7'746 

27„3161 
-510.5729 

16.2378 
-573.94" 

72,9611 
1"126*655 ► 

06.1720 
-•1 •To78 

?.'J¶.56 6 
-r.374) 
1' 6,2a^s 

,)7i »089.1 
930 x! 56 

-1',27.7516 

14' •?.fir t7 

-44.16 w:2 
C7 47 

- 'e•7•" 1. 0 

-27.221'c 
-94.G,;.i9 

42. i ri 
1567*2337 
114.117 + 

O!.4fl 

1?4.sv19 
-830.81 M7 

2 .00 11 
-'99`.4.2-.1 

-175'.*74.1 
-213.5778 
'7')4.341 

-17o.; 37 

-120.3CAli 
-gib'«41 k0 
-11 `x.03 .6 
1^62.10 7* 
-106.2140 
746,10 9 
-2.94 '13 
50.0144 

-40.92 
1 ►:2•6Cr 2 

- .7094 
-1670. 229 

4".051'1 
»664. c J4 

75.`5040 
19 

AT r.• 	 11 

(X34 

C C LU:lt1"1'.;IKA HYN CL)GY-D1 	r-TATC t;OliZ 
Pt''~ GI A'" r CCrPT,.*,Z 	JSa'4lo x0;.10 

VM.UEc OF STOCHASTIC CC'.PCt3C1 T 
-147''iw1OCG 	*902.13G 	-2QB.C(7~5 
-26.4O7 	-249#9200 	- 1 i. 	76 
914.1645 	1035•704r$  

-109.2561 	-02.7.3"7 	-164.11 	f3 
127 r.O0OD 	362,224t 	-1.18.0637 
-1.6 t•2V60 	-135.1607 	-906o173 
r 6021,76 	66.2661 	-116.4740 
-96.2024 	-11405146 	-21797.242 
62,776 	-168.3030 	-199.3D19 

-c3.C2'30 	-c,3.426 	-257947CD 
C 	.fir 117 	-512.300 	-148.2310 

-54*9052 	5.9!4,0 	1047.0340 
-15,1 „C Z62 	?.92 	103.8040 

-3.L1117 	105.7374 	-124.8723  
1G61.40149 	1310.0273 	230*2007 

0519,038 	65« 0930 	-177.3047 
-177r3T*79 	-510.440 	-116.7004 

5.7i24 	153.1105 	2870279 
-63.399 	-546•49 .4  
104,0660 	113.7448, 	«-50.7074 
-010.454' 	-7ic'1.067'1 	1.'4247 
17).1176 	25.3o06 	109.0911 

-$6,167 	-443#049 	46*3366 
VALVES OF RA100»t CO''. "Of1 T 
-►1 	'x. 	' 	1 

 
639.0934 	590*6~?1 

-1M  ,t)7 , 	t)7 	-993.0970 	-934,4330 
7(6.77V 2 	15.161: 	-720.2160 

.3730 	-156.7097 	-1 i9. c77i 4 
-557.4372  -111.3 0 

-74.67'  -51`.~#2774  125500777 
-437.7l 	-297.)t41 	-100.0699 
- 1.0( 0 	-2429213> 	-629.0744 

- ice 0056n 	-1 D0. 	10 	-103.2773 
-10,36j 	*-3 0,4349 	-4.920 

-602.7948 	69.0978 	-40.46 
.6L3 	1715#0970 	-1096.4401 

6 •1.2967 	90.9233 	-1'58.`1129 
177.4649 	-310.0159 	3230.20 
28,20G4 	-60 06215 	401.0752 
11.5665 	-306.c ego 	-73,404) 

-674.1147 	326.7787 	49,7494 
• 19.710 	319.!.320 	1279.3600 
-217.1014 	460.7498  
i7 3.2C 	2i,173. 	-602.1275 

90.8353 
249.1540 	-74. C 1' 3 	-446.9.127 
2.12 	519.14022 	213.4 49 

+02L. 	2 5 

232.4443 
-CC1.(M14 
-54«4014 

-22 1. ~i G 
140.3102 
823. ç147 

-13100395 
-515931.12 
-104.2567 
-494.6712 
-114.8960 
-914.0941 
-33.393 

1090.0730 
-12.7109 

-192.63 70  
-40.7736 
951.6251 
16.4000 

-391.53 
61.4137 

-206+4270 

-442.1104 
3295*4419 
-U1.68 

J374 
-01.5321 

40*0273 
-6.0870 

-639.2269 
10.2402 

14.0095 
-610.0010 

27.1005 
--663.7092 

270«4475 
-306. 27 

92.4207 
603.1412 
139. 1V 

335.0711 
-520#0040 
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R98ULT 8 

1 16 	1~ 	1 	1 	6 	71 	8 	'9 
'~  
~t 47 38'~ 	11 52 13 14 

56 8"9 64 
B5150yal of 12 months 

.085 	►..0109 	*.0301 	.00 

	

p.0003 	-0.0190 	-.0665 	• 

	

".0821 	.O 6. ".0056 

	

*0.04 4 	0.1881 	..ISZ.6 	".0879 	.0130 *0254 

	

.0303 	.0602 	.0688 	..0249 	,.0614d 	.0546 
M ".1025 ,02L 6 	.0160 

• 1 	 41003 

	

} 186 	~;~ 	~.16~ 	~►.~?~3 	~•  

	

"0287 ".1626 00.07 4*.0 	.0305 .0385 

	

.01'x` 	.0114 	".00 	W:# ~ 	".018 3 	.1002 

	

.0718 	•04? 	".0094 	".0074 	.00 	.0 

	

40.0079 •.00? 	6051 .0664 00613 .1f~ 

Removal of 6 months 

	

-.0336 	.098 	".061 	".0 	".00 	".06~ 

	

336 	.40 	.0061 	~»0 	4001 	'0 

	

40.0845 ".1787 0.1102 00.0661 	00.0180 ".036 

	

".0006 	•0926 	.131s8 	00605 	•0386 ".0010 

	

IM .052.6 	".1962 	*0.1720 	40.0859 	".0550 ".0315 

	

".0378 	 "*0416 	 ".1197 	•J090 	10.4655 ".3 W 

x.93 .039 00366 -*0~ 0~3 ;0667 'r~` • 	+e 

	

.l 48 	.0873 	.0362 	.0089 	00.0121 	.00449 
00.0106 .0305 .1000 .072? .0a93 •1547 
Removal of 4 months 
.6000  .3~6~ .146 -.00 	".0669 -.044 •: 4 	.197"109'."90x:1 	0 9 

	

 c 	"5 	; 	 ..06 	 02? ".11 

	

.0012 	.0912 	.1357 	.0854 	.0417 00,02 

	

".0559 	-.1763 	".1727 	10.1117 	".0 	"►.0060 

	

"00337 	40.0681 	.0.1278 	-•393 	-*47 	►.4303 
"•3306 ".1166 -.0346 •.028 ".0057 .0221 

	

00101 	-.0142 	.0310 	•0393 	*060391 	.0415 

	

.0685 	.1149 	.0462 "•0096 ".0158 *:02?8 

	

.0012 	.0082 	.0902 	.097? 	.04' 9 	.1 3i0 
Removal of 3 months 

	

.6089 	•3844 	•1367 	.0016 	".0595 ".0606 

	

",0093 	•.0008 	1000197 0.0315 	.0042 ".0978 
-.0819 -.1545 •.1233 -.0820 -.0138 ".029'. 

	

.0096 	.0790 	.1216 	00918 	.0499 -.0416 -.04?5 -.1704 -.1895 -.1040 -.0552.8 -.0245 

	

-.0257 	-.0622 	-•1466 "•3915 	-•4744 •.4510 -.3260 •.1089 •.050 ".0208 .0020 .0073 .018 	.0„ 1 	.016'- .0L.69 	".0326 6 	.02602 
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PERIODOGRAM ANALYSIS 
RESULTS AFTER REMOVAL OF 12,69493 MONTHS 

AXN ©XN CXS F 
-403.9401 -252.4641 232055.0400 .0416 
AXN BX CXS F 
-101.7903 -25.0191 10967.2320 .0625 
AXN BX,µ CXS F 

-.0018 .0020 0.0000 .0633 
AXN 9XN CXS F 
-144.3958 -436.6507 211514.0400 .1000 
AX€4 8X1 CXS F 

56.4277 -) ao.199V 1780008860 .1111 
AXN 81 CX5 F 

-3.1716 3)3.78D5 92297.5660 01250 
4XN 8X1 CX5 F 
-237.2842 165.6798 83318.0130 .1666 
AXN BX'4 Cx6 F 

46.0763 --162.6576 28560.5340 02500 
kXN 8XM CXS F 
135.7806 8.2342 19327.6590 .3333 

AXN RDS d CXS F 
-2.8580 .0057 6.3406 .5004 

AXN SX 4 CXS F 
-406.9304 -7.3737 , 237007.5204 •0416 
AXN BN V Cx5 F 
-107.8205 -30.6220 125620050 .0625 
AXN DX'1 CXS F 
-9.1293 -4.6957 105.3941 .0833 

AXN 8XA CHCS F 
-144.8047 -~►~3.75Q1 217681#4200 .1000 
AXH 8x i CX 6 F 

44.3611 -312.2533 161915.5690 .1111 
AXN Rx 4 C X$ F 
45.7661 -3 J2.9127 92005.4130 *1250 

AXN BX F 
-.0002 .0008 000000 .1666 

AXN $X14 CX$ F 
46.8011 -15597605 26457.9140 .2500 

AXN 1,3X90 CXS F 
138.7806 8*2350 19327.8860 .3333 

AXN 0Xl1 CXS F 
'-2.8687 .0067 6.3450 .9000 
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1Xi4 sxA CXS F 
-405.3399 -266.7900 236546.5000 .4416 
AXN 8X,4 CX$ F 
-107.1638 -31.6844 12509.4300 00625 
AXE BXN CXS F 
-9.1289 -4.6956 105.3868 #0833 

AXN 9X, F 
-142.2961 -445.0768 118341.5700 01000 
AXN dX a CXS F 
45.0413 -120.5415 16558.9860 .1111 

AXN 5x i CX$ F 
-14.1916 -►330.6384 90584.85 30 .1250 

AXN BX ~4 CX$ F 
5.1929 1.1755 28.3489 .1666 

AXN 8xi Cxs F 
,UU06 -0000 0.0000 *2500 

AXN i$xi ccs F 
134.9431 7.0599 18259.4840 .3333 

AXi4 8X4 CXS F 
-4.4689 .0059 19.9717 .5000 

AXN Ox,t CXS P 
-404.3650 -257.6693 295319.7400 .0416 
AXN exii CX F 
-105.8333 -90.5669 12134.9620 .0625 
AXN 8XI~1 CXS F 

-7.2377 -.3.9796 68.2223 .0833 
AXN 6L4 CXS F 
-142.0616 -4+3.675, 17206.8200 .1040 
AX 8X. CXS F 
46.6860 -120.6134 16745.9030 .1111 

AXN BX, V CX a F 
-12.6774 -301.0071 90766.4100 .1250 
AXN BXN CXS F 

5.1926 1.1751 26.3448 .1666 
AXN 8X?4 CXS F 

1.7792 3.9116 18.4667 02500 
AXN S?c 4 CX$ F 

.0403 -.0406 0.0000 .3333 
XN 8X1 CX$ F 
-4.4678 .0048 19.9617 .5000 
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