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BYNOPSBIS

The peak discharge to be adoptdd for the design
of hyaraulic structures and time analysis of the Sequences
inportant in the planning of water Resources Projects. To
arrive gt the values of the peak discharge, a study of
the availadle data h,8 to be conducted and analysed, to

arrive at a desired asccuragy.

In this s~tudy, bas-d on the gvallable data
situated et 1K3 the various methods for estimation
peak flow lave been discussed bringing out their suits~
 bility and limitationa, For this purpose freguency
analysis hes been carried out with probadility distris
tution functions. Foupprobability distribution functions,
viz., Normal, log=normal 2, Gamma 2 and Gumbel have
been umed to find out the best fit distribution
for 1K3 gauging station and the best fit arrived at.
Determination of the flood values with a return period
of 100 years, bus besn computed using these f£it aistri~
bution functions. | o

A mathematical model has been formulated, for
time sories of monthly runeff values for the 1K3i gauging
station, in order to gener.te aynthetic“utroan»tlaw for
~use in the analysis of water rescurces system. The monthly
time seriass are first analysed for trend by using the
least-aquare method. The periodicities are detacted by
ccnstructing eorrelogram and s Fourier Series model
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with eight parameters has baen fitted to the cyclic
component., The correlogram of the residual series,
after ramoval of cyclic component indicated that

the rirst lag 18 significunt. Therefore, firast order
Morkov model is fitted on the stochastic component,
The model so formulated, conli&aring both the deter~
ministic and stochsstic models, can be used to generate

synthetic monthly stream flows for 1K3A gauging station.



CHAPTER 1
INTRODUCTION

1.1 SIGNIFICANCE OF STUDY

For the last few years, theoretical approaches
have boen uszd to a great extent in solving many hydrolo=~
giocal problems, However, the task 18 not an easy one. In
developing countries, like Tanzania, the problem 1s much
' more complicated due to nonwavailability of hydrologic
data of sufficient length.

In the hydrologic design the magnitude of peak
flood, 18 of great importance to the designer. Also in water
Resources assesmment, pollution, control nass curve analyses
for hydro-power schemes and formulation of control rule curve
for reservolrs, it is neceasary to predict the characterise~
tics and quantity of stream flows to arrive at critical

flow ssquences of their associated return intervals. Exiu~
ting stream flow records are not sufficiently oextensive to
provide estinmute of many statistiocal parameters. Thuas
investigations aimed at obtaining the solution to these
problems are haﬁporod due to lack of long term dsta
records,

Therafore, working hydrologists and engineers in
the Ministry of water Development and Power of Tanzania
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are in search of workable and satisf,ctory procedures

that would serve a guide in estimating the design flood
and overcoming the problem of inadequate historical data.
In this study, a natural catchment situated 4n
Tanzania has been studied. The main hydrometeorological
features of the basin have been discussed in subsegusnt

para.

1.3. PHYSIOGRAPHICAL AND HYDROMETEOROLOGICAL FHATURES
OF_THHE CATCHMENT |

The two gauging stations 1K3 and 1K3A under
consideration are situated on theo catchment arey of
158200 ®sq.km and 15800 sq.km raspectively.

The climats ranges from the tropical bhumid heat

of the amstal regions to temperate conditions of the
southern Highlands and the high mountain ranges. Mean

raiﬁfall vary widely wvith both location and height. In

some places minimun rainfall is below 250 mm per annum
while in gsome places it is over 1750 mm on the bigher

parts of the southern highlands, The rainfall in these
catchments 18 about 1700 mm. Over the whole Ruffji Easin,
winds are generally easterly and chenging to south easterly.
From March to October these wlndﬁ change to southerly

direction.
1«3 DATA

The observed data, used in this study, for the
two stations, 1s for the period of 12 years, from 1961-1972



Yearly maximum peak floods for 18 years have been used
for flood froqusﬁcy analysis for 1K3 and monthly stream
flows for 12 years have been used for time serics ana~
lysis for 1K3A. Since observed stream flow for 1K3A
were too short, a correlation between 1K3 and 1K3A has
been due to extrapolated the data a8 per Fig. 1. )
and Tables (-3~i< 2 for the period 1961=1972 only. Also
rating curves and best fit lines by least square method

have been developed a® per Fig. .

For the purpose of estimation of design flood, it
18 necessary to study only the peak flows. The hydrologic
design is related to the frequency with which the flows
of a given magnitude will be equalled or exceeded. Informa=~
tion concerning probable extremes vhich propos-4 structur=
es may be required to withstand and many other hydrologic
problems can be solved by frequncy analysis, using past
records of flood peak.

Having obtained the freguency of the floods the
magnitude the economically accepted, for the graator.tho

discharge, the higher the construction cost. Usually, the
maximum recorded floods in the past are the most aiéniti*
cant measur<s of eatimating the design flood of rivers.
The discharge oy water level that provides the maximum
excess benefit, 18 the most preferable design flood,
however this approach also has many disadvantuges, even

though 1t i3 considered the most favourable one.
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TABLE 1=3=2

Month 1970 1971 1972 1973 1974
Roveaber (270.0 - - 270.0 =~
Dacepber 370.0  280.0 350.0 290.0 =
January 1010.0 330.0 310.0 540.0 315.0
Pembruaryz?40.0  380.0 2390.0 - 335.0
March  3100.0  450.0 §70.0  660.C 369.0
April  2940.0 640.0 699.0 - $60.0
May 12k0.0  580.0 590.0 = -
Juna 590.0 788.0 400.0 380.0 =
Juiy 460.0 770.0 631.0 = -
August  %00.0 486.0 612.0 - -
Sept. 360.0 500.0 480.0 - -
Oct. 310.0 507.0 MW85.0 - -
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FIG. I-IMAP SHOWING 1K3 & IK3A GAUGING STATIONS.
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In order to overcome the problem of inadequate
historical data, th: approach, preferred is to investigate

the process by which natural observed stream flow sequences
are generated by mathematical simulation of the phenomena
wvhich provides a means of predicting future values. Such
generated stream flows are exmmly useful for planning
vater Resources Systems and thus a fairly balanced design
can be evolved by subjecting the system to equally 1likely
sets of inflows.

1.4 OBJECTIVES OF THE PRESENT STUDY

Most models evolved for genex;ation of data, 80 far,
evolve large mmber of paraxeters raquiring a lot of compue
tation work. In the present atudy an attempt has been made
to svolve a model, with reduced number of parameters wvhich
can be us-d to generate s-tream flow by modelling of Time

series of monthly strear flow sequences for '1K3A gauging
station,

The main objectives of the present study arese

(1) To estimate design flood by conventional methods.

+(2) To conduct frequency analyeis by probabllity dise
tribution functions.

(3 To fit the best probability distribution function
for 1K3 stream flows.

(%) Te investigate the structure of the time series

of monthly runoff for 1K3A.
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To condense the information contained in the time
series of monthly values by formulating a mathe=

matical model, for all the components, which can

be used to generate the symthetic sequences,

Howvever, synthesised data cunnot be mors precise

than the original data., In all analysis based on statistical
studies, there may be many inherent short-comings in the

data used. These are mainly duz to observational crrbr.

sampling errors and non+homogeneities.

1.5 GSTATEMENT OF THE PROBLEM

In this dissertation , an agttempt 18 made towards

estimation of run-off for 1K3 and construction 'of a mathe~
matical model for generating of atream flow sequencées for
1K3A, The specific problems treated in thise dissertation can
be, therefore stated as follows @

(1)

(2

Discussion of various conventional methods availa~

ble for estimation of run=off and *o arrive at

x suitable mothods. In this connection frequency
analysis, using various methods, haa been discussed.
Flocd magnitudes of various return period have been
estimated using Gumdbel Method and log-nommal

(Chow Factor Method) method.

Flood frequency analysis by probability distribu=

tion functions, 1s conducted and beat fit distribution
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arrived at . In this case, log~normal 2 distri-
bution has been found out to fit best to the ann=
ual series for 1K3 gauging station.

The structure of the time seri:s of monthly rune
off for 1K3A gasuging station is investiguted, The
information contained ao a3 to be able to formu~
late a mathematical model, which will be used to
generate the synthe$ic seguences.



CHAPZER IX

FLOOD FRinUiCY OTUDILS FOR 4K3 RUle OFT DATA

2.1 GEIERAL

Froquoncy studics intorprotont a paot record of
ovonto to predict the futuro probabilitiocs.of occurrenco
If strecm flov roeords are of ocufficiont length and relins
bility, o Satiofactory ootimate con bo achievod. Howovor,
in noot ensop, tho recoxds aro of chort longth of tine.
Such racords vhen analyoed aro likely to lcad to inconsige
tont or incorrect rosults oo thay are not reprosentative
of long torm trond. In pdditlon to thig, for the estimation
of flood flove of large roturn poriodo, 1t 18 alwayo mocosse
~ary to extrapolote tho magnitudes outside the observed range.
Obviously, the accurcey of cstimates roduces with the dogreo
of ocxtrapolation.

In applying Dtatioticn) analysis methods, 1t 1s
aessuncd that ocourroneco are individual events 4.e. inde-
peondont of cach othery, tho factors influoncing the chappctor

of each eveon penain wnoltoring ond the measurement tochnique
and the 0i¢s of oboorvction agro idemtical. AS a proliminary
otop, tho basic dota chould bo cerccncd ond adjusted o
PGAOVO ; 00 far ol posoiblo, any noneconfirnities thit may
ondoty, In ouch, tho folloving arc thoe nore importont

gongidorationot
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LEgCet of trn=nado changos in thoe ropginc of
flov chnuld Lo invostipoted ond pdjuotment nodo

at pegudecd. '

Tor corll catehnient arend a . dictEncilon chould
bo rado botucon Gnlly naginun inotontancous or
mosant-py {icod poako.

Chanpno in th. otage dioeharge golation vender
Ceapoe rpocordo nonchorogencons ond unouitable for
groquency otudios. Xt 40 thorefore pyofercble to
worlkk vith diocharged and if otage froguencies aro
roquirad, Dofor tho rosults to the moot rocent
rating.

Any uooful information contained in the data pube
ligotdono and manioeripto cbhould be nmado use of
aftor propor serutdny.

Tho cnnunl oopdes (vhich 10 o convonient for tho

purpote of ototioticnl annlyoic), commonly usod, 10 o

goloction of tho monimen ovent of & particular year aven
thougn thio may be highor than the maxinua of come othor

your,.

2.2 PROBABILITY DISTRIBUTIONS

Thoro are nony probobility cliotributions <hat

hnvo beon found €0 Do ucoLul for hydrolojic L£roqueney onoe
lyois. Tho oot corconly ucod uro ¢



2.2.1 Normal Distribution

This is a symmetrical bell~shaped, continuous
distribution theoretically representing the distribution
of accidental errors sbout their mean or so called Gaussian

law of errors. The probabllity density is

1 - (x> M2/ 202

P(x) = * veel2.9)

ol

whoﬁu X 48 the vgriate, # 18 ths mean velue of the variate
and ¢ 18 the standard deviation. In this dis-tribution
the mean , mode and median are the some. The potal area
under the distribution is equal to 1.0 . The cusulative
prohnbiliﬁy of & value being equal to or less than X 18

X 2
PX X) 8 —— S 20 ax

o-JE'

eesl2:2)
-

This represents the area under the curve between the variate
of "0 and X . Areas for various values of X have beon
calculated by statisticiana, and tables for such arsas

are available in many text books and handbooks on'atatia~
tics.

2+.2.2 Pelisson Distribution

If N is large and P 18 very saall so that pN =m

18 a positive number, then,
nx o'8
P‘x) = ———— .'.(2.3)
x}
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gives a close approximation to binomizl probabilities
when m 43 saall. A distribution with thll'prohability
dcnaitylis called the Poisaon distridbution and 18 genera-
lly referred to as the law of malll numbers, It is most
uaaru; when neither N nor p 13 known but their product
PN 48 glven or can be estimated, The statistical parame=
ters are: Mean = m , Standard deviation = m and
skewness = 1/ /8

2+2.3 Binomial D‘us”&mnOH

This i3 one of the most commonly used discrete
distributions, It repres nts the distribution of probabili=
ties in Binomial trials,.aay tossing a coin. The probability
density is | |

P(X) o NPT N ERN

where P is the probabllity of occurrence of an event, for
example, a success in toasiﬁg a coin, cxN is the numbep
of combinutions of N things taken X at a time q 19 the
probability 6!’ failure or i»p , W 18 the total number of

trials, and X 18 the variate or the number of successful
trials.

The statistical parameters are Mean = PN,
#tundard deviation 4 o= lpq Ny, and skewness

4=u3/o3 = (q=p) / [paoN .whereﬂsiatbﬁ third

moment about the mean.yhen p=q , the diatribution 1is
symmetrical. |
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In binomial distribution, the eventa or trials
can be classified into only two catagories: success and
failure, yes or no, rainy and clear, etc. The probabdbilities
P and q remain constant from one trigl to another, i.e.,
the events are in-dependent to each other.

2¢2+4__Gamma Distribution

The p.r:‘;agbiuty denoity of this diatribution 4s

M) = X o 7

p** 1 (aet)

3 bua(3‘§)
vith >0, a>1 for x=0

and plx) = 0 u for x£0

P

vhere n and b are constants and [(a+?) = a 15 a
gamma function. The cumulative probablility being equal to
or less than x( ¢ ®) 185 known a8 the incomplete gzmma

.function. The statistical parameters are :

Mean = bla*1) and variance = bz(aﬂ)#

2+2+% Rectangular Distribution

 The rectangular distribution is a uniform distrie

bution of & continuous vari able X between two consiants &
and b . The probabllity density of this aistribution is

P(x) » O for x ¢a

P(x) = b%f for & ¢x £b v+2(26)

and P(x) = 0 ' for b<x
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The statistical parameters are Mean = (b+2)/2
and variance = (bta)?712.

2+2.6 Extssmal Distribution (Type I distribution)

This distribution results from any initial distrie
bution of exponential type wihich converges to an exponential
function as X increases. Lxample of such initial distri~
btutions are the normal, the chi=square, and the log=normal

distributions. The probabdbility density of this distribution

is
lon olavn)/c
P(:) = ”l . (‘*x),c ¢ ' ) 0(2‘7)
¢

with » @ ¢ x ¢ @ , where x 1s the variate, and a and ¢

are pargneters. The cumulative probability is
g (at+X)/C
PXLx ) = o | | «v+(2.8)

By thé wmethod of moments, the parameters have been evaluated

a8
a = YC o 4 veo{2.92)
c = £‘6_ o -.-(2.91!)
v

whera ¥ = 0,57721 = Eularts constant, # is the mean, and
o 18 the standard deviation. The distribution has a
constant coefficient of skewneas equal to G. = 1.139.

2.2.7 Logarithmically Transformed Distribution, the
Log normal distribution.

This is transformed normal distribution in which
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the variate is replaced by its logarithmic value. This
distribution represents the so called tlaw of Galton ¢
because it w.aa first studied by Galton as early aa 187%.
Its probability density 1s

P(x) = ! :'(y.“i) % 2%
| 59 = ;
vhire y = ln x 5 X 18 & variate, u’ is the mean of y and
°'y 18 the standard deviagtion of y. Thia is a Ilkcw dittn'-_
bution of unlimited range in both directions. Chow[ ]
es derived the statistical pa'ramst,ars for x as

X} t(2010)

i e “y * (g /2 6.;(20103)
Q“ = M (,‘ b £ " 1) 1,3 0;0(2010h)
o = (akg - 3 y +» 2) 03 0.&(2.100)
M = ‘“y »om(Zo?Oﬁ)
“i = .é ,a ; 001(2010‘)
M
a

Gy = ‘ﬁ -n" v+ +(2.100)
c' » acv * 03 , .oa‘Zo‘lQB}

where # 1is the mean, o 18 the standard deviation,
Cq 18 the coefficient of skewness, M 18 the median and
Cy 13 the coefficient of variation. Chov has also shown
the type I extremal distribution is essentially a special



cass of the log nommal distribution when C, = 0.364
and c‘ = 101390

2.2.8 Pearson Distribution

Karl Pearson has derived a ssries of probability
functions of fit virtually any distribution . These func~
tions have been used widsly in practical atétintical works
to define the shape of many distribution curyes, though |
they have only slight theoretical. basis. The genseral and
bas ic esquation to define the probubility density of a
Peapson distribution is

‘ ' X
P(x) = [RCIR A XS » T ST SN R L)

\ P
where a, by b., and ba are constants. The criteria for

determining types of distribution are By Bb and K
being defined ast )

“
p1 = --;- ese2.12)
*2

P2 * M“);t | eeef2.13)
ﬁa ' ,
(B+3) ,
1
K = P 2 seaf2.1Y)
W Be 3By (2 B, =33,°6)

Khere “é’ ﬂ3 and‘uh are second third and fourth moment

about the mean.

With B, =0, B, = 3 and K = O the resulting Pearson
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, distribution 4s identical with the normal distribution.

Types I and 1III distributions are often used in hydrologic
frequency analysis., .

2+2.8.1 Typs I Distribﬁt.ton - Yor type I, K{0 . This {8 o
skev distribution with limited range in both directions
usually belleshaped but may be J=shaped or V=shaped. Its
probability density is ‘

X n X
PO = Po( 1+ .......)‘1 (1« o= ,“a ves(2.15)
: a, ﬂa

with n,/ 41 = ma/xa and the origin at the mode. The
valuss of m, and m,, are given by
-4 l “2 P’
mjorm, = ®|F*2% r(red ++(2.158)
. < ,
' ' 2‘(&1*&3}

wvhen “3 is positive, B, i3 the positive root and By
18 the negative root and vice-versa in signs. The other
values are , B

6(B, = By = 1 .
= 2 1 oco(Zu"sb)

6+3p,-28,

aea, = i ]aa[a., (r+2)2 +16(r+1)] vee{2.150)
and . N ll:1 .:2 r(n“‘m ’a)
P, = . *.2 — 2 ‘
; (nyrmp T2 My [M2pen

LR R J (2'15”



vhers N is the total frequency . The statistical parameters

are s
Mean = mode = ( ﬁS/ZI‘z) [(xwz)/ r-a)] and

standard derivation = F‘a s &and Pearsonts s-kewness

= ( By s2) [(m2 7 (2]

2.2.8.2 Type 1X m.ntrimtion ¢t For tyre II , K= @ or

2B, =3Py + 6. This 1o a skow distridution with

linited in the left dhrection, usunlly bell~shaped but be
Jeshaped. Its probabllity density with the origin at the

node is

_ % .
P(x) = ?0( 1+ - )ﬂ - cz/a, Qiu(at"é)
™
Vhﬂ”'
N
C =2 weey ces(2.168)
B‘!
¢ & '
B T o _.2_. .u(2~16b)
2 i '
2
2 N ¢
= ese(2.16¢C)
b o[ (ee))

The statistical parameters are

Mean = mode = sy / 2"2 ’

Standard deviation = ru; » and Pearsont's skewnessa lp.' ...,a



2.3 METHODE OF CUAVE FITTI'G

The nethodsof froguoincy cnalysio arc all baood on tho
aosunption that oboorvod dato follow tho theoroticol dioe
tpibution t bo fittod and will exbibit o otraight 1ino on
tho probability papor dooignod for the distribution. In oo
guch as rach naturo doed not otrictly obay the theorcticol
lavo, the logical solution 1o to plot tho obsorvod dnta
at dotormined ploﬁting positions on a suituble probobdility
Paper and £it a bost £it curve ¢o tho plottod points, Curve
fitting may bo dono oithor mathcmatically or graphicilly.
In general a nathomutical curve fitting can bo achieved
by threc methodas the wethod of lozst oquares, the method
of likelihcod and the methods of moments,

2.3.1 Locast Bguero lethod

This nmothod glves o belltar overall fit thon the nothod
of momonte and involvos polotively less computotions and
thorefore 10 comnonly adopted to avoid the oubjociive
errors in grophicol £itting. A brilef outline cf the prine
ciplc of leadt squared and o procodure for £itting Gumbello
distribution using th&s principle ore cescribod hore
undor.

In Mpuroz.3.4for o piven  viluo of xn, ouy ze thoro
will bo n difforxonce botwcon the vuluo Ty o0 cnd tho corpoe=

ponéing vuluo o dotormin.d feon the curvo. Thio difforenco



(indicated as D in the figure) or the departurs may be
pouitivc, negative or zero. A measure of the tgoodness

of a fit of the curve to the given data 18 provided hy
the sum of the squares of departures, if this is small
the £it 18 good and 4f large it 18 bad. The least Equare
line approximating the set of points (X,s¥,) .(xa, Y)

(x3,Y3) ’ ....(xn, Y, hus the oquation ¥ = MXB where
the constant A and B are determinsd by Bsolving simulta~
neously the equation 8 (2.14)

z:’ u&.ﬁ.*BzX
ané JTXY = ALY X +BY X2

which are called normal eguations for the least aquare line.
From these equations the constant A an@ B can be found
out as

el R

A =Y¥~EK  gnd

Be (SXY ~NEXD) / (L X = NYX%)

where ‘):" ' v
£ = % and ¥ = &5

2+3.2 Methods of Maximum Likelihood

rhis nethcd gives the best eatimates and by
this method , the value of a paramoter 1s determined to
make the probability of obtaining the obssrved outcome
a8 high as possidle. Mathematically, ‘0105 P(X)/ st = 0,
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‘ b oys £ %)

FIG. 2-3-1 SCHEMATIC REPRESENTATION OF SIMPLE REGRESSIO
AND CORRELATION ANALYSIS.

FIG 2-3-2 LEAST SQUARES PRINCIPAL
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vhere p(X) 18 probability density and # is a statistical
parsmster. This method provides the best sstimute of the
parameter but 1s ususlly very complicated for practical
application Kimball has suggested this method for fitting
extremal distributions and a practice procedure was later
developed by Penchang and Aggarwal (&) .

2¢3.3. Methods of Mnmenta

In thiz rpethod, the statistical parameters or

moments ara computed from the data and then substituted

in the probabllity function £t the given distribution,
This method giv 8 a hheoret&callyﬁexact fitting but the
accuruey c¢an be subStantially affected by any errors
involved in the data at the te.ilé of the distribution
viere the moments arms arc long and the errers are thus
magnified. The method originally proposed by Gumbel to fit
type I extremal distribution is a method of moments.
Licbleinm modificd this method by orders statistics and
developed g procedure which maintains the original time
order of the vxtreme value series, divides the values

i1t0 subgroups, and then weights each observation accord~
ing to its ordered rank in the subgroup vhich in turn

18 a function of the sample size. Herahfield made a compa=>
risen of the two procedures and concluded that the Gumbel
procedure gives a better astimate beyond the range of

data for the peally independent data tests, but ovaerestimates

the longer recurrance~intervals in the dependent data tests,
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2.3.4 Graphical Curve = Fitting Procedurs

In a simple graphical curve=fitting procedure

the obssrved floods are plotted on a probability paper
and a best=fit curve drawn by sye through the points.
Logenormal probadility paper and extreme value probability
paper are commonly used for the purpose, In the case of
the former, the plotting position2 of the individual floods
of the annual series is found by the formula P = M/ (F+1)
where P 18 the excesdance probablility M the order of mag»
itude of & glven flood in an array of observed floods
and N the number of years., If extreme values probabllit~y
paper, alio cglled Guabel paper, 15 used, the plotting
positions of the flood are found by the formula |
T = (Ne1)/M , where T i8 the return periocd in years,.

For determining the confidence bends firstly the
wrong type of the theoretical distribution may have been
used. The gulds to this is the f£it of ths observed data.
Secondly thare may be errors due to lnmpi&ng. It 18 there-
fore necessary to aidsign limits Zatween khich the estimated
calue can ba ssid to lie with & certain probability or
confidence, Tho cwves joining the equal confidence
limits are drawn to show the gonfid&nce bands on both
sides of the fitting curve, Tha reliability of any
plotted point lying within the confidence band is thus
indicated by the probabdility on which the sonfidence limits

ars b‘"do
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The pegression and correlation analysis is one
of the oldest s tatistical tools used in hydrology. Now
ite application has been broadensd €0 cover the study

of the relatiocnship between two or more hydrologlic varia=
bles and also the investigation of dependence between

the successive valuss of a series of hydrologic data (26).

If two variables, given as s series with con~
current values (xi,Yi), show a concentration around an
imaginary curve when plotted on a graph (Fig.2.3.2) thén-for
A large series there will always be a distribution of

y values for a given value of xil or more precisely a

distribution of y wvalues for a given interval AX areund
Xy» The mean value Vo of all y values of this given inter~
vel &X around X, 48 the expected value of y .for

the given X = X4« A curve fitted to all mean values Yoo
13 called the raegression line of y versus X. On the other
hand, the curve fitted to all expecied (mean) values, Xy
the given y = Yy ! defines the rogression line of X
versus ¥, These two 1lines do not coincide, but have diff-
erent parameters, showing the regressional relationships
between the variables.

A pure functional relationship between variabdbles
assumes thst all points would follow a curve, without |
spread. In as much as the spread of points around the
regression lines may hctually be great or small, the degree
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of association of the availables involved is generally

called correlation and is defined by the parameters of
correlation. The correlation 18 greater when the points
are closer to the lines,

Briefly, a regreasion problom considers the fre=-
guency distribution of one variable when agnother is held
fixed at each of the saveral levels. A correlation problem
considers the joint variation of two measurements, neither
of vhich {8 restricted by the experimental or obssrver.

2., FREQUENCY ANALYSIS BY PREOULICY FACTORS FOR ESTIMATION
OF _PBAK RUNCFP |

These mathods imploy the general equation for
hydrologic frequency analysis vhich may be expresssd as
X = X+ K8, where X 4is the magnitude of flood of

some given probobllity (P) or veturn period (T), X is the
mean of floods of racord, 8, 16 standerd deviation and

X 18 5 frogque ¢y factor, Foo the twvo distridbution viz.
log=normal and Gumbel, usually proposed for the purpose

of analysis, the tables shoving theorstical dewived values
of the {zctor K for sslected waluss of probability or the
recurrance interval) are furnished sec Tadble 2.4.1 and
2:442 o In the case of other distributions the value of

(K) should be known for determining thke magnitudse of flood.

It may be noted thut in these methods it is not
necessary to plot ths observed data. Yet this may de done
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for comparison purpos:s 1,¢. to ase how cloaely the
estimated frequency line fits to the odserved data.

2.%4.1 The Log Normal Method Us~ing Chow!s Fragquency Factors

This method 18 bas:d on the log~nomal probabi-
11ty lav and assunes that tho flood are g0 distridbuted
that their natural logs are norymally distributed.

2¢4¢2« The Gunbdal Method

Gumbel was the first to appreciate that the annual
peak flood duta (or the maximum storm rainfall and aimilar
types of daty) are nothing but tho extreme values in 41ff=
erant ycars observationsd and hbnee they should follow the
extrome values distribtution law. This fbrm of distribution
law with a bLearing on the nature of the data 138 accepted
as best sutted for the frequency analysia,

2.5 BEST PFIT DISTRIBUTION

2.5+1 Selection Criteria

According to proparties of observed data, the
theoretical distribution functions of baat fit to observed
distributions of annual precipitation end annual runoff
should have the following characteristicss (1)The function
i3 continuous and defined for all positive values cf the
observed vatiablekx,(a) the lower tail is Ddounded by

Z8x0 value or by & pesitive value K (3) the upper tail
is wmbounded, {(}) the density curve is asymptotic to the
axis for large values of K , (5) the basic shape 18 one
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peck bell~shaped two tailed curve,with a large variety of

skewness, and (§) the number of parameters which describe
theoretical functions 18 limited to three .

2.5.2 Selected functions

Sereening of the applicadble functions with respect

to the criteria gpequired, their convenience for use in mass
computation and the experiencs alreudy obtained in applying
them 4in hydrology leads to the sszlection of

(1)

(2
(3)

(u)

ares

lormal density, funstion, or Normal

Gumbel density function or Cumbel
Log=normal density function with two parameters
or logenormal 2

Gamna dens~ity function with two parsmeters
or Gamna 2

’ The sxpressions znd parameters for these functions

(1) Normal witb the classical form

£(K) =

1 - (K"‘"z
¢ W2 L p¢K <+
o7

070(20179

with K the variable values, # the population mean and
¢ = the population standard deviation.

(2

f(muéo.c

Gunbel with the form
as [ - f22K) J |
- S c

ess{2:18)
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with K the variate, a and ¢ are parameters,

(3) Log*normal 2 with the form

R

Ko [2¢

0{Kgm™ ess(2.19)

£(K) =

wWith & the popﬁlati.en mean and o the population stane
daid deviation of the In K wvalues.

(4) Gamma 2 with the form
! xc#’ a.WB - vee{2.20)
B« [ ()
with & = ths shype pargmoter
/3 = the scale parameter and [ («) the gamma fune~
tion of « , It is skewed to the right for all

(k) =

values of parameters « gnd A,

According to R.A. FPisher, the Maximum likelihood
method 15 bassd upon likelihood fumction L. This function
18 maximised by setting the first derivative of luk with
respec t to & squal to kero and solving the resulting
equation for ¢

*{ln L) {);n;‘ n [P(K, ,0 )n S
| e - ; e s 0 oeo(2081)

where K:L - al y Q denotes the sample mean and Qi

is the annual observed river flow. This yields a single
squation for the solution of ® 4in terms of K's. For

m Nnaramatars. m anstnPltnne A€ andam N MW wdesonm wo wmded e AS . -



or known parameters. Maximum likelihood estimators are

consistent, asymptotically mormal and usymptotically effi-

ctent under general conditions. The method 1s completely

numerical , applicable to all selected functions and con=
venient for naes computation., The maximum likelibood method

gives the following equations for parameter estimators.

Normal = Based on Rqn (2.21) and the concept of EqQn(2.25)

the maximum likelihood function producess

‘? « z - K ~ no.(anaa)
n E; i )

&8 estimator of the population mean, and

n A
& = ‘l% E (Ki) ot )2 os¢(2.23)
as estimator of population standard deviation.

Gvabel: . socording to eqn (2.22) and the concept of
Bqn (2.25) , the maximum likelihood function produces

A
b =

St

é_ K’_ ' 0e0{2.29)

as citmwr of the population mean and

ol N
o = jn 1;' (xt R) eve(2:25)

a8 the estimetor of the population standard deviation.

log*norwal 2  According to egn (2.18) and using the maximm

likelihood equaticn, the maximun likelihood aestimator of
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the population mean is 3
A 1 n
Insg = = 12:‘_; n K, | ose(2.26)

and the estimator of the population standard deviation

A 1 & 2 )
-} & ey et

Gamma 2 ~ According to Eqn (z.20) the maximum likelibood

squation gfvea the two maximum likelihood partial differen-
tial equations for parameters & and‘ﬁa, and from them it
follows "

1n [ (< . ,
m&-.[ FA(-O] =1nK";1.;§:1“Kx
» _- i=1

vith & the estimator of « and

A 1 1 n 1 = |
Aol Iome= ez

vith /3 the estimator of /3
2.6 TRST OF GOODNESS OF FIT

To test the theoreticalprobability distribution

functions for goodness of fit to observed data, 48 in other
frequency analysis, the distribution of a exclusive and
exhaustive categories or clags intervals. In classifying
the observed data, it is necessary to decide upon the

nuuber and the length of class intervals.

Nunmber and class intervals to be used has no satis-
factory hard-and-=fast rule, however, if too many classes
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are used some of thom would have few or no frequencies
and the rosulting frequency distridbution would be irregular.

Likewiso, if there are too few classes, the observed data
would be very compressed, a large proportion of the fregu~

encies wvould fall in one or two classes, and much informae
tion would be lost.

The choice of the length of class intervals should
be done in such a manner that the main cheracteristic
features of the observed distridution are emphasised and
chance variations are observed. DNasically, there are two
'concepts of cholee of the length of class intervalss
(a) equal length, and (b) equal probabilities

Equal probability of class intervals, which can be
considercd as special case of unequal length, has some ad-
vantages over the previous mothod. The arbitrary s-teps for
equal lengths may be avoided Ly choosing intervuls of equal
probabilities inatead of intervals of equal lengths, The
required intervals are obtained from the probability inte=~
gral transformation. The probabilities are uniformly
distributed. Thus, the comparison of the observed diltfihuﬁ
tion with any conditions theoretical distribution 1s reduced
to the couparison of an observed with a theorstical miform
distribution, chorﬁing to this method, and with the fact
that the total value 02 the probability integral is unity
the probability of each class interval is determined by

1
Pd = i g With J = 132,44¢.K oo (2.29)



For this value of probability, the required length of any
class interval can be obtained from the probability inte~
gral transformation.

The ﬂill'known and frequently applied chi-square
test 18 used here a® a measure of goodness of fit of the
theoretical probability distributions to observed ones. The

]

basic concspt of chivsquare test can be summayrized as follows
The total mangs of sample observations 18 divided into K

omtually exclusive and exhsustive clgss intervals, esch
having the obsarved clags fregquency 03 and corresponding
expscted class probability EJ(y=1,2.....K) using the ex=
pected valua‘ga as the norm of any claga interval, it 1s
reasonable to choos the gquantity (03'33)2 a8 & measure

of depgrture fyrom the nora. X suitzble measure 1s sxpressed
by (04=E)%E, end the measure of total discrepency betwaen
observations and axpoctationa,'x?‘ becomes '

2
K (0, ~B)
2 = ; J ‘ J ’ non(anm)
= By

' This statistic 1S distrdibutod asymptotically as Chie
square ( ¥ 9 with K=7 degroes of freedom, 1f the popula~
tion parameters have not been estimated from the sample

observations. For v parstaters, the total number of degree
of freedonm i3

I mKk*1ev 600(2631)
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As total number of class intervals is § and proba=
bility of sach interval is the ssme, for given sample size,
the expscted class probability of any interval should be
the same and independsnt of the type of probability func-

tion 1.e., 1t 18 dependent only on samples size, n or
n \
EJ = Pjn = m eesf2:32)

Therefore the computation of expected ‘clasa probabilities
is simplified Ly shoosing tho congtant number of class
intervals of the same probabllity., The sample observations
should bs arranged in an arragy in increasing order. then

to determine how many cbfervations will fsll 1n each of the
| five chosen class intarvals, four class intervals limits
must dbe computed for esch of four seiactan functiona separa=
tely. |

RNormal = In this case the class interval limits Kd of the i

\
variables Ki _are \
Ka ® l? L FJ 8 uob(2033)
in ub:.ch UJ are class intervals 1imits of the variadble

,Ul of equation . u2
1 1 " oz
F{m - 3 PJ - S ] 2 du 000(2.3‘*)

w =
with § = 1,2,...5 and vith the lover integral limit = co

the mean zero an: variate unity. This is 2 well known proba=~
bility integral, the value of which 18 generzlly given in terms

T .
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of Uy are deternined and given in Tgble ~{+2.

Gumbel = Similarly, the class interval limits of Gumbel

are

KJ -] a + VJ 6 -Q..(2035)
in which V$ pYe clasas interval limitz of the variable
vi.

log = normal 2 « Similar to the previocus case, the class
interval limits of log*normal 2 are couzputed by using
Eqn (2.19) which is fist transformed into a normal proba-
bility integral form. The class interval limits are then
computed from the expression

Ka = exp ‘-1!1 ;"\ » UJ é‘ ] ...(2.36)

in which K“J are class intefyval limits for the variable Ki'

in # 48 the mean of 1n K, and & 18 the gtandard deviation

of In Kz while 03 are class interval limits of the varia~

ble U, from Hqn {(2.38).
Camna 2 = The clases interval limits of Gamna 2 are =

K: - %— 000(2037)
. o

wvith selectod for given valus of & from Table Aste=2,

2+5+3 Computation of Station Sample Chi-Squares

The computational procedure i3 4dentical for the
station samples. To such of then, four selected probability
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functions are fitted. 8ince five class intervals arc already
chosen, four class interval limits for each function and
station sample are determined according to following
equations for Normal function by eqn (2.33), logenormal 2
by Bq (2.36) and Gamma 2 by Eq (2.38).

Knowing the class interval limits, the corresponding
observed class frequencies are determined, squared and
sumned and then stution sample chi=square computed by

aquation,

S
K 2

N 2 0T *n ver(2.38)
n 3=1 J . i

with n sample sige., 8ince four functione are fitted to
annual observations, the station sumple 18 represcnted by
four Chi=~square values, These two computed values normal

and Guobal are distributed ss chi-square { {2 ) with two
degrees of fresdon (£ = 2.d.f) , while log=normal 2 and Gamma
2 distributed as chi=square { 125 vith one degree of freo~
dom (£ = 1.4.f). These four chi~square values for the sta~
tion, one of cach of the four probability density functions,
give automatically the measure of goodness of fit of a parte
icular theoretical function toloblerved data. Class interval
limits, observed class interval frequencies and chi-square
for all four functions and the station sample, are been
computed, in the next section., For this purpose the
chi=squares with one and two degrees of freedom and Aiff~
erent level of significance gre given in Table §=1-7,

The couputytions covered are as follows,
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TABLE 2%6~1

NORMAL AND GUMBRL DENSITY FUNCTION FOR COMPUTATION OF
CLASG_INTERVAL LIMIT VALUES

No. of class
interval 1imit § | 1 2 3 b
Probability F(w) 0420 0.40 0.60 0.80
Abscissa 03 =0 8450 0 255 0.255 0.840
Abacissa Vé 003’09 0.517 0‘520 v 1.620
TABLE =63

CORRECTION FACTOR A% FOR COMPUTATION OF 'LiXIMUM LIKEKTHOOD ESTIMATES

OF TH: SHAPE PARAMETERS OF GAMMA FUNCTION WITH 2 and 3 PARAMETERS

& Py % ok
0,200 0.08% 1.400 0.008
0.300 : 0.029 1.500 . 0.005
0.4%0 0.025 1.600 0.005
0.500 0.021 1.200 0.004
0.600 0.017 1.000 0.00%
0.700 0.01% 1.900 0.003
0.800 0.012 2.200 0,003
1.000 0.009 3.160 0.002
1.100 0.008 3.200 0.001
1.200 0.007 5.500 0,001

1.300 0,006 5.600 0.000




48

TABLE 2+6%2

INCOMPLRTE GAMMA FUNCTION FOR COMPUTATION ° CLASS INTERVAL RIMIT

| VALUBS
Intsrval J 1 2 3 L 5 6

Tulp+1

I(O,p)= [[.6: :»)” 0.200 | 0.400 | 0,600 |0.800 |KOT &Agcqﬁﬁm
> S 2 U, | Uy Ui, Us Us

1 2 3 b 5 6 7 8
«0.8 0.2 0.007 0.015 w.036 0,092 0.303 0.93%
0.6 0.4 0.021 0.060 0.147  0.335 0.675  1.381
R 0.6 0.048 0,140 0,299 O0.5H0 0.919  1.63

0.0 1.0 0,153 01338  0.559  0.8350 1.25% 1.9%)
0.5 1.5 7 0,313 0,557 0.819 1.131 1.5%  2.218
1.0 2.0 Q.68 0,748 1.033 10357 1.77% 2.1930
1.9 2.5 0.61% 0.9 1.217 1.349  1.$67  2.610
2.0 3 0.7%9  1.07% .32 1.786 2.136 2.770
$.0 . b 1.00  1.3u9 1.670  2.013 2.429  3.049
4,0 5 1.22% 1.59 1.921 2.267 24682 3.291
5 3 1.029 1.810 2.145 2.9 2,907 3.508
6 7 1.62¢ 2. 2.350 2.70 3.112 3.707
4 8 1,799 24196 2.540 2.8917  3.X2 3.891
8 9 1.996 2.370 2.717 3,070 3.480  L.065
9 10 2126 2.535 2.88%  3.238  3.647 h.228
10 11 2278  2.692 3.043  3.397 3.809  b4.383
11 12 2,420 2.838 10191 3.568 3.983 b.528
12 13 2.563 2.985 3,339 3.69% h.101 ho67h
13. 1h 2.6 3120 3.476 3.831 W.238 L.808
1% 15 2.88 3.215 3.61: 3.986 H.374 b,k
15 16 2.952 3.382 3.740 ».096 M.502  5.067
16 17 3.076 3.508 3.867 .223  h.624 5.192
17 18 3190 3.627 3.987 b3k L7 5.310
18 19 3311 3740 h,107  L.i8h  h.868 5.429
19 20 B.haz2 3.859 he220 4,578 4,981 5541
20 21 3.532 3.072 b.33  h.681 S5.098  5.653
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(1 The main values of sample is converted into series
of dimensionless quantities i.e,
0.
K1 = Sﬁgﬁu s and arranging the series into desce

ending order,

(2 %he clasg interval limits for each distributed one
calculated a8 follows o

(a) Normsl Distyribution
- n
1) Mean = () = ¥ T K, .e-{2.39)
L Bogo9 ‘ 4

(11) Btandard deviation

A 1 | A »
= - - - 2 ees{2e

(114) Class Interval limits =

A » |
| Kaﬂ“ 4 UJQ aon(ac‘q)
(b) Gumbel Eiatrabutabn
1 b

(1) 2»1eanv(ﬁ) =z g1 Ky eel2.42)
(11) Standard deviation

A 1 " . '

v = n Jé‘ (Ki - “ )2 010(2‘“3)
(111) Class Interval

KJ = ‘} + vd g .»oq(ao‘“’)

(¢) Lognormal 2
(i)Heanofanialnﬁ = 1 & In K, oso{ceh5)




(11) Standard deviation
1 n A |
6 'J; g‘ (ln Kl '1!1“)2 vcc(Zv%)

(141) Cless interval limits

Ky = P (n & + v, &) 2o
(d) Gamma 2
1*};4-3(1113“%%1&1) |
(1) a = 1 - 6& 0-(2“‘3)
b (Ink = n & l.nK
A 1 1 n ] -
11 - -~ K - K weslgde
(11) A = :on E;‘ 4 @ 2 | {2.49)
(114) Class interval limits
U .
Ka 3 ““&' pp--(EQSO)

3.7 BSTIMAIION OF PRAK FLOW ON THE BASIS OF COMFUTED RESULTS

for
After getting the best f£it distribution,the station

(1K3) the peak flow c¢an be determined as following

3.7.1 Normmal Distribution

Qg—: = 1+Kor
Q or
QT - 6(1 + Xo) ,. 000(2051)
where Qp 18 the expscted discharge in (T) years.
/0825

CENTRAL LIZRAYY UNIYIRSITY OF ROORKEE
ROORKEE



¢ 4s the mean discharge
K s factor coefficient

o ia the standard deviation of the distribution.

3»?02 Gunbe) Distribution
Q! = a_ ‘1 + K Q') ...(A-SZ)

3.7.3 Log Formal gn Distribution

Qp | log# #+Klogor
Eﬂ— 2 Antilog "‘2‘53)

243

3.7.4 Gomma__2 Distridution

QT = Q (1A3. UJ ) w0(2-5‘*)



CEHAPTER  IIT

STREAM FLOW BBQUBNTIAL MODEL FOR 1K3A GAUGING STATION

3.1 GENERAL

Existing stream flow records are normally not
sufficiently extensive provide reliable estimates of many

important statistics. This results in reduced precision of
estimated future strcam flows #s it does not give indication
of the long term sequencss of flows to which the system
would be subjected. Besides this the existing data 18 being
subjected to chanéea rasuiting froan continuous natursl or
man*made causes that aie taking place. To overcome this
difficulty modelling of stream flows process is done to
generate data which preserves the statistical properties

of past records.

Hydrologlc procéssas being stochaatic in nature,
their modelling 18 bssed on tho concepts of statistics and
probability. Thes hydrologic processes can be essentially
classified into the following types of stochastic processes
(12) (Kissiel 1965).

(1 Processes characterised by first gnd second moment
funetion &Time series Model).

(13) Counting processes

(111) Probabilistic processes

(1v) Transition type of processes.
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The first procesa is bnsed on emperical investiga=
tion of the first and second moment of actual time series,
Tine 8 ries involve the estimation and reconstruction of
the properties of the underlying process from the sample.
The larger the Bistorical time series the better the esti-
mates of its parameters, assuming stationarity (12,Kisstel,

1965) »

The tachniques for analysis of time aeries can be
divided into two broad catsgories, first catcogiyy 18 in fre-
quancy domain., Power spectrum gnd cross spectrum are
specific techniques of interest for analysis of time sories
in frequency domain. Practical spplications of these |
techniques are given in studies of Box and Jenkins (1970)
Yevdjevich (25) (1971, 1972). The second category , is
suitable for anulysis oflg;me series in the time domain,
Analysis by surplus, deficit, range, and auto-correlation
analycis come under this category. Details of these tech=
nigues are given in studies uy Box and Jenkins (1970)
Yevdjewich (25) (1965, 1971, 1972,)Quinpo (18) (1967, 1973)
and Kissiel (12) (1962).

Many hydrologists have devised models of flow genera~
tion but there is not yet z conclusive model of stream flous
genervtion, let alone one that is capable of predicting
future stream flows.

The second process is the one that counts the

occurrences of simple svents of a spacified type. The methods
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of analysis of these processes include the application of
queneing theory and Markovechains. Queueing theory was first
applied to reservoir by Moran (1954) . He developed a

model of predicting prodability distridbution function of
water in a yeservoir. This wans later extended dy Langbein(13)

(1956) .

The third process is in which the chances of occu-
rroges of purely random variable 18 assumed to follow
definite prodbability distridtution sre themed probabilistic
processss such processes are time invariant 1l.e.y the future
of the process i3 indepenident of the past and present. Study
of flow duration curves, frequency graphs, probabiiiny of
exceedence, racurience 1nterval etc., are all examplag of
probabilistic processes. |

The fourth process, includes processes that develope
in time as g’aniaa of transitions of a systen from atati
to state., The process is specified by the probabilities
of transition from one State to another and Ly the degrec
of dependence upon its past history. Application to hydro=-
logy includes extension of rainfall records by Chow and
Rapasechan (G6) (1965), sugumentation of stream flow
records by Julian (10) (1960), Brittan (3) (1961),

Thoma®s and FRering (22) (1962) .

‘3.2 MATHBMATICAL MODELS FOR STREAM FLOWS SYNTHESIS

 Many investigators have analysed the time series
structure of daily, weekly, monthly and annual yunoff series
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and they have incorporated the corresponding mathematical
models for generating equally likely stream flow sequences
into the use of vater resources system, The concept of stream
flov synthesis has been used by several hydrgqulic engineers
by simulation of models based on historicael recordn or
genaration of synthetic data Wy means of stochaustic models.

Subsequently nunoerous types of mathematical modals
have been used for stream flow synthesis. Thess depending
upon thse naturs of mathematical formulation can be broadly

clasgsified as under s
)] The auto=regressive model.

(11) Multiple Regression Models »
(111) Time Series Model.

3.2.1 The Auto-regressive Model

Models of these type repraseht a regreesion between
regcent values of ae-tream flow and its past occurrences,

The general form of this model may be expressed as

Xg ® 8 RpaqoXpeor cooeXopy ¢ € ooe ) +e(2:1)
whore,
K %3 an integer
et is & randon variable.
(a) High Orxder Autoeregressive Model

In this model the value of an event 18 assumed to
depend on the value of several past events. The express-
ion given by Prassad (1967) is 3
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m
xt = m xtuk + et .-.(3.2)
z = 1
where,
Xe 58 the magnitude of tho even under consideration
ry serial correlation between Xy and xt-»k
S Magnitude of the avent at time (tek)
n finit to which dependence 18 significant
et Independent normal variable.

(b) First Order Autorsgressive Model
Ihis model assunes that the value of an event at

cartain time t is only dependent on the value of the event

inmmediately proceeding it L.e., at (t~1) time. when K'a 1,
the equation (3.2) becomes first order autogegressive model,
or also called rirst order Morkov Model. The above egquation

them becomes

xt = 1'1 xt" 5 ‘t --.(3.3)
The dravback in this model, 18 that the means and variance

of the recorded sequancaes are not preserved.

Brittan (3) (1961) us @ a model for generating staw

tionery sequence or'annual stream flous which is of the
type

Qy = ¥ Oy +(1o0)3 +B(1er) V2¢, vee(3u4)
Hore 5 &nd 8 are mean and standard deviation respectively
of the recorded ssquences of annuu)l stream flows. However
this model cannot be used for generation of se.sonal

stream flows.
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The above equatione was latter modified dy
Thomas and Flering (,2) (1962) and developed a model for
generation of monthly stream flows by serieal correlation
of monthly flows.

Qger = Qgpq 038 # B (=D V2 4 LGy

vhere Qq and Qq 4 = are the discharges during the ith and
(1+1) th month,
53 and 53,1 are the mean monthly discharges during the

3 th and (J+1)th month, within a repetitive
anmaal cycle of 12 months,

b3 is the regression coofficlent for estimating
volune of discharge in (J+1) th month from the
Jth month. |
541 ‘18 the standard deviation of discharge in the (J+1)
ronth,
Ty 48 the correlation coefficient between flows in the
Jth and (3j+1) tb month,. '
‘1 is the random normal deviate with zero mean and

unit variance.

3¢2+2+ Multiple Regression Model

A model for atochastic stream flow sirulation
by multiple regredsion analysis utilising precipitation data,
was developed by Bonne(2) (1971) . The gengrating equation
1s basically a Markovian model a3 1t includes the former
state of the watershed in terms of the pnncocdihg flow
and precipitation. Tha model is in the form of «



X, A+ BXo g% CPp+D iy o8 %‘} Pi+g, ¢
$ute)

wvhers, »++(3.6)

Xo Current monthly flow

Xpet Previous month flow

Pt Current month precipitation

b ] = 1929390¢+12y vater year month counter.

::P1 accunulative precipitation #ince the baginning of

snow peak.
AyByCyD,E Multiple regression coefficient
By Standard error of estimptes of the flows,
¢ Random deviate with zero mean and unit variance.

3.2:3 Time Series Model

Most of the hydrologic record constitutes a tine
series denoted by Xes ty ¢ani T , where Xy 18 the hydro-
glc variable attriduted to the time interval t , and T im
the length of hydrological record. The general model is

described as,

xt = Tt * Gt + Bt » Rt ves(3.7)
where,
x," ob.irv-d. monthly river flow sequence
Tt Trend component
Ce Cyelie eomponent
B, Steehastic component

Rt Random component,
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A8 1t has becn mentionsd in the earlier chapter,
that the objective of this study is to analyse the struce
ture of the time » ries of monthly runoff for 1K3A gauging
stationy, and formulate a mathematical model, vhich will |
be used to generute the synthetic ssequences, the detailed
analy#is of time series is discussed in the follouing sece
tion.

3.3 TIME SERI.8 ANALYSIS

Time series of river flows, 18 sz seguence of values

arranged in order of their occurrence and can be character=

ised by statistical properties, a sequence of a variable
as a function of another independent varisble, usually

time, represented by

X(t‘) .K(wg X(t3) s+e¢ wWhere t.‘<t2<t3 < ...&m

In the typical time s ries there are discernidle three main
features which seenm to be independent of one another and

attrilutable to distinct causess

(a) @ broad long-term momement, called the TREND,

(b) an oscillation gbout the trend which may be a teasonal
eoffect with fairly regular period or a rather longe

period, irregular oscillation, often called a cycle.

(c) A=n irregular, unsystematic or random component,
sonetines called the Residual.

However, not all time series exhiibit all thras of these

features,

The hydrologic time series of runoff is a ccntinwus
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record of fiows anid for analyticul purposes should be
transformed into a descrete time series. The choice of

& suitadble time intervul 18 a necessary first step.

It is, generally, possible to classify time series
a5 being either of two types: stationery or non-stationery.
In stationery time series, thae general structure and the
statisticul parameters represanting the ssme, like the
mean, do nct vary from one segment of series to another,
Non=gtaticnery time series, the different segments are dis-
sizilar in one or more aspects. Howevery, in nonstationery
time series, it 1a nefesszary to conslder absolute tinme
- since the serics cannot be assumed to have begun prior
to the time of the initial observation (Chow ).

3301 Gﬁﬂ@l’ﬂl Model

It has been assumed that a time series Xy of monthly
flow sequences of River Rufiji at Pangani Falls (1K3A) can
be adequately represented by a linear additive model

Xy = Ty ¢ Cy + 8y + Ry ees(3.8 )
whera,

Xe Observed monthly river flow sequences.

Tt. Trond component

Co Gyciic component

’t Etochastic component

R’ Randon component.,

- WWTRAL LIBRACY UMITRSITY OF ROORKEE

HROORY



3.3.2 Trend Analysis

Tredd represents a smooth motion of the series
over a long periond of time. It always revealsa the general
tendency of increase or decrease of the h&drological
vuriable with time. Analysia of trend cen be done by
either the moving average method, which eliminatea the
minor fluctuation to show up the long term trends, if any
more vlearly, or by fitting = mathematical trend to the

Gutay the advantage of which iles {n extrapolation and
interpolation. The draw back in moving average method
18 thut though 1t tends to smooth out the data it may
introduce an oscillatory movement into the random element
which may not boe present in the original data and thia
does not presarve the main feature of the time sSeries,

8o aa to remove the trend, it is necessary to
axcoth out irregularities in the time series. Assume that
toe observutions Zy 3 Xy seesXy are taken st equal inter~
vals of time the pethods of moving average consists of
" determining overlaspping mesns of m successive weighted

values, for m= 3 ,

!a’ = (b,x,# pgzéﬁ b3!3) / 3 eve{3.9)
Y, = (byXy g b, X o ¢ by Xg)/3 e e(3.11)

The weights of the moving pverage By 9 baam b3 ars such
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that that sum squal to 3. In general, for moving
averages of m ,

n

® . se\ 3
1521 4 = (313)

The wveights may be either positive or positivc and nega-
tive.

In the presont case, the least square mathod has
been adopted to & mathematical model. The only advantages
being that 3= | ‘

(a) the method exprasses trend in the form of a
mathematical formula which nay de easily interprated.
(b) Results obtaied under the method are definite and
independent of any aubapcti.ve estimate on the
~ part of the statisticlan.
(¢) ‘The resulting equation is in convenient form for
axtrapolation (extension into future or past).

The only disadvantages ars that the technique used is
mathematical) and the method 18 based on the assumption
that the data follows a trend that can be axpressed
by a mpthematical equation.

If a straight line trend i3 assumed, the line of
the trend vill have a formula of the type ,

Y=a+bX ve(3.13)
In this formula the values of a and b aust be determined
' The formula, however, will describe any one of an infinite
nusber of lines. It is necessary, therefore to decide



which 1line best descridbes tho data.

The principle of least squgres alds in determine-

ing the line thut best describes the trend of the data. The
principle s~tates that a line of bast fit to & ascries of
values 13 g line the sum of the squares of the deviations
(the differences between the 1line and the sctual value) about

which will be g minimum. There can be émly one line having
this qualification . (12).

By taking the sum of 8quares of the residuals
a® minimum, the normal eguation, obteined are

}:I = nA+ BS_’X 001(34-1"‘)
XY = ASX + Byx® eeel(3.15)
These are solved as simultancous equations and the values of

conatants A and B can be found out by -

YTX® « XS xv

A = 00-(3016)

nrx? - (IR

AFXY =~ XTY

Be=

e e(3.17)
nEx2 = (g2

The summation %Y denotes the sum of discharges for n number

of months of observation.

After the values of the constants A and B are
calculated, the relation trend ocurve can be fitted.
Daducting this trend values from the stochastic hydrologic
process, the time series will be left with, the period end



64

residusl compo ents which may be taken as measure of devige
tions from the trend line of the time series.

3.3.3 _Periodic Component

when significant long tern fluctuations in the
saries of recorded river flows are removed, then removal
of periodicities is a pre~rcquisite to thu analysis of
stochastic coaponent, The periodic component represents
a regular or oacillatory form of variations such as diurnal,
seasonul and secular changes®, that exist frequently in the
hydrologic:) phenomenon. Such variations are of nearly
constant length and may be reaapnab&y_ﬁa assumed sinuosidal
with varying frequenciles.

The monthly time series Xq9 Xa, 23, ...Xﬂ

- with a fundamental period of length T - n , ¢t , vhere

n 1is the total number of observetions equal spaced by
t in the period T from t and (t4+T), may be expanded into
a Fourier Series according to the following formulae

M
2*n ¢t n
where, «»(3.18)

Xt = flow at month t,

330/2 mean of 8 ries X,

m " nusber of aignificant harmonics.
Aynt Byy Fourier coefficient

T Basic period of series for monthly data equal
to 12. |
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't = Btochastic component for months t represented
by an autogressive schems und an independent
uncorrelated randon number,

The hamdnic coefficint are defined as @

: n ' . |
% & (g) g xt cos (? b nVT) n(3d9)
n

an"’f (2/N) %1 xt sin (WT) | se+€3420)
where

N is the number of the data points
n 15 number of years

T the basic period of series.

Also Equation(3.18) can be exprosged in a different form as

, Zt > ANO/R < !; cm Coe (Z‘W nﬁlf » Qm) npt(Staj)

Cxa = (iy, + B2y V2 | een(3.22)
and | - | ,
.Xn = tan 1( i@___) | ‘ -n(392'37

®xn 18 defined as the phase angle ..

‘Bquation (3.421)  states that comolex periodic data
consists of a stationery nsan value’ camponen;t, %;a

and an infinite nuzber of sinuscidal cozponent (harmonics)

that have amplitude an and phase OXn . *

If 6° {8 the total warlance of the time serios
Xys the part of the variance accounted for by the Kth
harmonic is

2 2
02 7 28% or (A, + By) / 28% vee(3020)
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Ir Ym’xna "'”Ynn be the magnitude of n ~harmonic
and 41f n harmonics are present in the series, then the
value of the psriodic component is given by 3

Ctu (Yn1 4 !na L In3 * ssee? Inn) o.d,(acm

3+3.3.1 Correlogranm and Auwwtnormlauon Analysis

The autow=correlation anulysis is uscd to find the
inter-dependence of successive values of a time series,

A measure of this dependence is given by the autoe=corrslation
cosfficien t.

For a discrete time u«aﬁan, it i3 Qefined as ¢
E (xt 'xﬁﬁ) - B (xt) E(Xut)

2
(®mxF) » (B Xy

| pjﬁ = o (34526)

“where, X = 152y3pecsoymt and m<{R

Ir Pk 18 plotted a8 ordinates against their
‘ reiﬁactho lag values K as abscissg and the plotted

‘pointed are joined each to the next by a straight line,
the resulting plot is a correlogram. The auto~correlation
coeffici-nt of the continuous series is commonly known

a8 Serial correlation coefficient, If the correlation
betwean the two 18 referred to as the kth order serial
correlation and is given by ¢
- Cov (X4 @ x )
l‘k ~ hat.. : ves(3:.27
72
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whers
Cov (xt.x,,k) 18 the sumple autocovariance and

Var(xt) and Var (xuk) s the sample variance.

Further,
¢ WX R-K

CoviXeXpn) = — }: X Xpx * o2 ¢ = &)

] . !‘QK n
( & Xeud
) N=K NeK

var(x,) = _1_ 2 o 3 2
t neX ; t (Nbx)d (Ext)

_ 1 Nek 1 i

| % )2

Then,
N=K HK

(N=K) 5; Xk = ¢ %,%) ( g‘ Yok

l't - . _
- n-xxa “(N-x )d ]1/2 a..m ”f“xa _ mx, /2

; 2 ¢ t i~ &y ”R}

eesf{3.28)

whare N, = length of samples ., For stricktly mean
random sequencies the co¥relogram will hzve & value of
1 atK=0 and an ayprossed value of zero at all other
points,
Confidence Bands

The correlogram can be tested with confidence
linmits at a given level of significance., Anderson(1947) has
formmlated the formula for confidence limits L, for
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the correlogram as:

“1gn, [Fi-2

L =

“ Nel=4

where

N 18 the number of ohserved walues in the time
serias Xt

L Lags used

n, Normal stundard deviate from the standard normal
distridbution for two tail test at a significance
lavel.

Common value of « and the corresponding walues of the 0,

are
o nd
80% 1.28
90% 1.6k
95% 1.96

3.3.5 Power Spectrum Analysis

A power spectrum is the distridution of the
variances of X, on a frequency scale. The mathematical
development &f spectrum indicates the yelation betwsen
the auto corrslation function and the spectrum. Thus the
ordinate of the spectrum represents the variance density

a® a function of the imsular frequency (w = 2¢f), given
by 8(w) o then we get, |

Bx(“n - } Py e dy ves{3.29)

| 8_(uh = Py e ax vee(3.30)
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AlSO P v = s 5 Bx(a) ."2'&1 dw ve{3.31)
Pr = 5 t X (w) A A +++(3.32)
fi .

Qbin v 4is the time lag in case of continuous tinme series,

The one sided pover spectrum 1¢ given by

G (N =284y, 0L r® 00+(3:33)

G (f) 13 a continuous pover spactra over the sve
fraquency sange {0,00)
For real value process, the aboiu eguations are
sinplified . ”Tho real valued two sided power specirum

18 obtained from equation (3.29) by maeking tbe inaginary
Part squal to zero

1 o
S Bin = = of Py COBZF Ly s  oon(3.3W

1 @ )
o¥ § (0 = 2 Py cos ¥ £y -~ %0e(3435)
+=l
and for discrete series
k

1 max
8 (f) = o ‘E rkcosr ¢ ese(3.38)
T

ﬂx(n is known aw namn;nad spectral density
functio . 8ince it is the Fourier transform of the auto-
correlation function, and ¢ also if Gx(t') is Fourier
transform of auto covariance function , then

G (0
Sx(f) - =
o]

‘0.(3037)

8,(N = Co () + 1 QD) cee(3.38)
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where c;(z) and Qz(ty are thes coespectrum and quadrature
spsctrum respectively.

The eugation (3.36) 18 used for the calculation
of spectral dansity function at various frequencies, glving

the nomalised powver spectrui.

The peaks in the spactral density functionsuggests

& possible periodicity in the stochastic process. The spec-
tral analysis gives a powsrful tool to recognise not only
the presencs of psriodic oscillations but also the relative
importince bstween the Several harupnica and also in
identifying mathenatical modals and to simulate hydrologic
tine series., Limitations in applying the spectral density
of theory to hydrologic saries are :
1.  The sories for analysis 18 always a finite in size,
.a; Time shale is discrets rather than continuous,

owing elther to the fnstantanecus obaervations or ¢to

averaging of matural procosss:s over time interval.

Thersfore in an actual case the fundamental assunm»
ption of a continuous spectrum corrssponding to all frege

usnecies from 0 to wis unattainable,

The normalised power spectium Bx(r) 48 calculated
by assuming some value of time lag interval snd the values
of correlation coefficient with the same time lag interval
ars found out by the help of computer programme (No.2)
Appendix.(For) the gonthly river flo.s duta K has been
taken a8 § months, ‘nin and Kmnx has been taken as 6 ahd
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120 and the value of q:(t) is found out corresponding.
to the different values of frequencles. ’

3.3.6 The Stochastic Component

The residual series, Zy » after the removal of
trend and periodic component from the original time series,
‘consists of stochastic component B, and an uncorrelated
random component, Rt.

Zy = X = Ty = Py = (Bt + RY) vee{3.39)
The residual series belongs to a class of non=
deterministic processes which include auto-regressive '

‘ moving everages and other schames of linear regression.

The type of model tn be fitted to the stochastic
éomponent'can be ascertained from the correlogram analysis
of the residual series . First or second order autorregress~
ive model can bs fitted depending upon the shaps of the

correlogram.

The measure of best of fit of the auto~regressive
model 18 simplified by the determinationof coefficient,
Rf s 1 2 1,2,3,...0. Since R::,n% > 332 > Rf
a certain criteria can be developed as when a model of
a given order should be selected . The determination of
the coefficient for the first, second or third auto~

regressive mnodel in terms of rk are given by=-

2
g’ - 1 voe{3.40)
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2
2 =(fer2eafr) s (1-0f) eea(3.49)
A - - l’n “'o
52 rperparirparirlarydeyarde, Sbryrpryrier-re
3 =
(I~arferfoarir, )
0.0{3.102)
The first order model is selected if
RZR{ L 0.00 end R} - RZ g 0.02 es o (3o28)

The Second order model is selected, 1if

82 - 52 50.01 ona

2 o s (3.420)
ag - Rg X 0.01
The third order model is selected, 1if
ng -nf > 0.01 and
2 2 oo {3.420)
33 - Ra > 0.04

Oncs the order of the modal is ascertained sccording
to the above criteria, the auto~regressive coefficient
can be calculated for the 1st 4, 2nd and 3rd order as

followss
18t Order and Order
n=1 R= 2
. b Phd PP o -
8y =% agm 12 4 = -£é-?¥
1 1 - g2 -] 2
) R
3rd order

n= 3



(1-r2 ) (ror) « (1 = 1) (r,r = r)
. = 1°T9 2 (B %3
(1=r) (1-205 ¢ 1)
(1= “rdepr
ﬁa ) ra) (r +r 1 r1r3)

(er) (=215 + 1)

i (x‘,wrs) (r%":z)* (1-:'3) (r1r2~r3)

..3 : : o -0»(30'6)
(1=r) (1~2r$ + T,

80 as to decide upon the order of the model
~to be used the values of R? » Rg and Rg have to De

calculated.

Those values have been found out to be

H? = 00371
ng = 0.372
R§ = 0,386,

Therefore the first order Markov Model was Pitted
to the stochastic component, us ecquation (3.420) is
satisfied.

Zt = l‘\‘ Zt,.' + Rt ...(3.@0)

3.3.7 Random Component

- The Random component 13 obtained by removing
from the river run off series, the trend, periodicity
and the stochastic componant

Rt'¥ .% "’% 'st 0-0(3010-5)‘
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The randos function may be defined simply as
one which cannot be formulated in a manner to provide
precise pradiction of values of function. Although the
function is concerned as being the wet effect of certain
physical causes the number of caus & is viewed as being
very large, with each cause producing a small effect.

The randonm component in the absence of any
trend 13 obtalned by removing the cyclic and stochastic
component from the originel time series as given in the

“above cquatﬁan.

3.4 GENERATION OF RANDOM NUMBERS

The most acceptadble methods for generating
random numbar-s are s

(a) Unifomnly distributed.

() Statistically independent

(c) Reproducible.

(&) Nonerepeating for any desired length.
(o) Capable of generating random nunbers at

high rates of speed.
(D Require minioum computor memory.

One of_the simplest methods of generating random
numbers is the nethod of sampling cards, The cards are
' first mumbared, one for each value . The cards are then
shuffled and a card 18 drawn at random, its value 18
taken as first generated random numberi. |
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However, this method bgve boen~;iup11fied by

the use of random number tables, which have been conste
ructed by more efficiant methods. These tables have been
subject to the standard statistical tests of randomness
and aie conaidezred gecpptadle for gsneral sampling use.
Genoraily, standard prograns and subroutines, for genera~
ting normally distriduted random number, and rsctangularly
distributed prandom numbers, respectively, are available
in IBM and in most mathematics Libraries , s tntiatica
Laboratories and offices. The s~-tandard Computer program
for this purpose, is furnished as per appendix ( X ).
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AVALYSIS OF RESULTB  AND CONCLUSIONS

b.1 ARALYSIS OF RESULTS

4.1.1 Applifation of Curve Fittings to Rufiji River at
Btiegler's Gorge (1K3).

A simple procedure making use of the ‘mnra.lizéd
frequency equation by tbe application of Gumbel method
curve fitting 1s given below for the adove mentioned
rviver gauging stations |

1. List the annual (or seasonal) floods
11, Compute X and 8X by using equations

- X
X = X

N
58X = ] L (X=X) */ N1 a J —5;'(22‘ %9)

114, Prepare a conmyutation form with column heading
from left to right, as followst
T,Xy 8 4 KBX y X = X KSX « The table 18
convanient method of computing X»vmlues fronm
glven (T) values by formula X = imsx

iv. B From Table 2+«i=1 showing (K) factors for the
Gumbe) method, list in the list (1) column of

the computation form a represantative selection
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of return periods for which thaere are columns in Table
2°b=1,

Y. Enté§r the coaputed values for (i) and (8x) on
the computation form in the appropriate columns,

The same values apply fosdl Tevalues,

vi. For ¢ach of the selacted Tevalues, extract the
K=factor from Table g=li»1 and these in the
computation form. Note that the values: of (N),
which is the number of floods of records, is used
in extra.ting the K-factors and that interpolation
may be necessary.

vii. Compute valuss for (K8x) and (X) for each T«
vaim an® enter these values in the computation

form . The X+values are the flood magnitudes for the return
period ('i‘) » They arc used for constructing |

| the fraquency curvae.

viis. Using the extroeme probability paper plot the
X«yalues (or ordinates) from the computation
form and join them with a ltraight; line to obtain
the required frequency Curve.

iz, Note that it 18 necessary to plot the antire
frequency cuyvo if t‘.hé (T) wvalue for a given
{(X) value, or the (X) value for a given (7} vaiue
18 required, After carrying out step (1),(ii)
from Table 2=h=1, formula X = i + K8Xcan be
used 4in conjunction with (K) factors to derive
the raqiured value of either (1) or (X), as the
case asy be.
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Xo To judge the goodness of fit the observed data
are also plotted on the extreme value probability
paper depending on Table imieh,

The constructed frequncy curve computations for
1X3, by the Gumbael method 18 shown in Table Ls1=2 Table

Wei=5 shows the computations for fitting Gunmbelts law
(as adopted by Ven Techow ) by least square method.

The law 18 cxpressed as

' T

whare (Y) 18 the flood with a return period T. The
step by step procedure is as given belows

(1) Rank the observed floco s (¥) of the annual series
in decreasing order.

{(11) Compute Tevalues for each of Y=»values by using

T = Eﬂl
M T
(111)Compute X~values vhere X =:log 1lo for

10 10 T=1¢
all the items, ‘

(iv) Compute the product (XI) and xa for all the items,
() Find out summations¥X, §Y, rX% and T XY ,
and substitute these values in the normal squations
to obtain parameters (4) and (B) of the least square

line.
(vi) Plot af the fitted equation 4f line on extreme

valus probability paper after computing a fev values
of (Y) for selected (T) vaglues. This is the required
frequency line,
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vii. To judge the goodness of fit, the observed duta
are alac plotted on the sume paper depending on

Table Y~1=5,

Figure( 4-1-1 )y shows the best fit 1ine and the observed
flood plotted on an extreme value probdbabdllity paper for
1K3. Table 4=1e5 shows the comput tions for fitting Gumbol
law by method of least squares.

For determining the confidence bands , a simple
procedure to compute the confidence 1imits for the Gumbdbel

frequerncy curve for 1K3 atution 1is as followss

’(1) Compute 8x / ﬁi

(11) For the given return period (T) and (N) compute
v {a factor derived from Gumbel K-factors) using
. relation v = 141.4K + 1,1X° ., The values of ()
are given in Table be1=2 for the appropriate
values of (N) and (T).
(111)  Compute the factor oy = v Sx / [N

(1v) Select the desired confidencs limit and the corres-
ponding value of t from Table Yetet,

(v) cOmputi product t. oy.

(v1) Compute values for X= ¢ oy and X+t op . These

values represent the upper and lower limitas of
the X~ values for the selected confidence limit
at the given return period 7. Plot the results at
the appropriate (T) abscissa on the frequency
curve. ‘
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vii. Repeat the operation for one or more other values

of T.

A straight line joining the plotted limiting points will
provide the gcquired bands for selscted confidence limits.
The procedure is L{llustrated in an txémplo in Table Ye1=g
and the confidence bands are shown in Figure ( 4--1),

In the case of curve fitting by 103 normal method
and using chowt's frequency factors, the fregquency curve

is derived for the station in question. The computation

procedurs 18 as followss

(1) ~ Compute X and sk fron the annual series of
floods as shown in the Table Le=i=3,

(11) Compute Cvqy 1.6, Bx/i vhere (Cv) is the coeff-
icient of variation.

(111) Compute Cs from Cs = 3Xv + Cg where Cs 18 the
coefficient of skewness, or extract (Cs) from
the subsidiary voluune in Table 2=i~1 , the Chow
Table for (K) factors for the computed value of
Cv 5 using interpolation if necessary.

(iv) Set up a computation form as shown in Table L=1«3

(v) Ent-x' reprefentative (P) wvalue from colums
in Table 2=k=1 ., Enter X and 8x values in the

_ computation fom. | |

(vi) Prom Table 2-L=1 of Chow Prequency factor select
(K) factor for selacted (P) value entering in:the
table on the line for the computed (Cv) end (Ca).
Intorpoiauon may be necessary, Enter the (X)
factors in the computation form.



TABLE 4»1=1 VALUNS OF STANDARD NO:IMAL VARIATE FOR VARIOUS
PROBABILITIUS

Probabdility 0.500 0.683 0.800 0.900 0.950 0.980 0.990
t 0.67% 1.000 1.282 1.645 1.960 2.326 2.576

TABLE W=1=2 ~ VALUuS OF 4 for use IR COMPUTING CONFIDEICE
LIMITS FOR GUMBEL CURVE

n | T=0 20 25 0 50 75 100

15 2,476  3.233 3409 3.608 W,113 K525 b.818
20 2.%00 3,075  3.292  3.468  3.968  W.362 L4.843
20350 . 3.007  3.288  3.391  3.87%  L.259 4,533
2.137 2.960 3.166 3.356 3.811 4,187 b. W55
2.272 2.898 3.099  3.26%  3.725 4,093  &.353
2.2 2,857 3,056  3.217  3.671  L.031 4,288
2.0  2.830 3.02% 3.185 3.633 3.489  b.242

4] 2.201 2,800 2.976  3.150  3.5%2  3.943 L4194
100 2,181  2.769 2.959  3.1%h 3,549 3.896 W.1b2

T 2E 8N
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TABLE Ueie2
CONSTRUCTION OF FREQURNCY CURVE FOR 1K3 BY GUMBEL METHOD

K K.8% Flood flow
Return - from Table . in cussecs
period(T)| X 8X III Col.3xl XuXeKSx
30102"5
1 2 3 4 5 5
5 3652 12.68 0.950 12.05 8.7
10 36.42 12.68 1.672 21.20 57.62
20 36,42 12.68 2,566 30,00 66442
50 3642 12.68  3.26% %1.39 77.81
100 3642 12,58 3.5 50.05 86.47
TABLE w-s

CONSTRUCTION OF FAEQURNCY CURVE FOR 1K3 BY LOG NORMAL METHOD

Cv = Coefficient of Varlation = Sx/X _ 14:68 _ . W

Cy = 0.348 | 36.42
Cs = Coefficilent of Skev = v+l x 1.04440.042x1.086

Probabie K K.5x2 Flov in cumsec
Mey(P) | ¥ 8z Prom Table XoX+KEx
in £ ( |
1 2 3 b 5 -
95 38.42 12.68 -1.22 “15.47 20.95%
50 - 36.42 12.68 «0.20 2.5 33.88
20 36002 12.68 +0,688 8.62 L5.0h
5 5.2 1268 +1.89 23.96 60.38
1

360242 12.68 +3.29 k.72 ’ 78.14




TABLE Yeiel

FLOOD FRECUMNCY ANALYSIS BY USIUG FREQUENCY PACTOR FOR RUFIJI RIVER
AT STIYGLERS GORGE (1K3) POR THE PKRIOD 19551972

Anmual Peak(X) FPlotting Positicns
discharges in
Order ‘ Axa

(100 ) cumecs in |
|descending order | (M) Return Period ;:‘:!;a::.n;y
74 | S,

Kot

Year

N+ 1
mbaﬂr(in|yru)

.. - “in percent

1 2 3 b ' 5 6
1956 54420 1 19.00 Su26 - 2937.84.
1950 44,80 2 9.50 6413 2007.04
1962 .00 3 6+33 6.69 1936.00
1968 43,00 4 4,75 10.25 1849.00
1963 42.80 ] 380 12.82 . 1831.8%
1961 %1.90 8 3.17 15,38 1655.6%
1964 41.00 7 2,71 20.05 1681,00
1970 50.80 B 235 ' 20.50 1664 .64
1955 40.00 9 2.11 23.09 1600.00
1958 36.50 10. 1.90 25.63 1324.96
1972 = 34.60 11 1.73 8.19 1267.36
1971 34.60 12 1.58 30.74 1197 .16
1957 32.60 13 1.46 32.32 1062.76
1965 27.80 % 1.36 35.88 772.84
1967 27.80 15 . 3845 772.8%
1966 26400 16 1.18 41,00 676.00
1969 240 17 1.12 b5.87 595,36
1959 18.00 18.00 186 " b6.13 324,00

Total ¥ 655.70 | J%%23616.05




Table 4=1=h4 (Contd,.)

X = 36.42 ocunces

BX = 12.68 Cumecs

o 655.70

- e - = 36,42
Mean X 'y"""""' 18

8quar=4 Mean (i)a = (36.152)3 = 1326.b2

X
Mean of squares X-z o 2
N
23616095 '
B rmrromaram—————
18
= - 1“'-”
. o | S v
Standard Deviation 8x = ﬁ.(xa - %2

:g (1403.11) = 132642

‘g 12.&’



TABLE 4 » 1 ~§

PITTING OF GUMBEL'S LAW Y= A+ B 1.031 0 1ch

T
T=1

85

TO ANNUAL FLOODS OF RUPIJT RIVER AT STIEGLER'S GORGE(1KJ)

Xwlo
Annual Ne1 fo <
Order - P
Year g::lc‘:hargosi M TN | T 1“10' - X
(D in 100 (Regya) | 5:%"'

1 2 3 ¥ '—% 7 B
195‘6 5“020 1 19.00 1 -035 -y 05336 -l 722 2‘965
1960 L, 80 2 9050 1-11 B | 013’* «1.,260 10587
1962 L4400 3 6.33 1.19 “:‘ 1221 =1.335 1.782
1963 53.00 4 b, 75 1.27 «0.9839 +1.250 1.%563
1963  L42.80 ] 3.80 1.39 =0.8448 =1.17% 1.378
1984%  41.00 ? 2.71 1.58  =0.,7007 =~1.007 1.225
1958 36.40 10 1,90 2.111  =0,489 ~1.032 1.065
1972 35!60 11 k) l73 Qe 369 ""'00102610 »1,010 1 .020
1971 34,60 12 1.5  2.72% =0.3581 «0,975 0.950
1957  32.60 13 1.46 3.173  *D.2999 «0.951 0.6W0
1965  27.80 1% 1.36 3.711  =0.2393 +~0.90h 0.817
1967 ~ 27.8C 15 1.27 4,703  =0.172h =0.811 0.658
1986 26.00 - 16 1.18 6.555 =0.0980 ~0.642 0.b12
1969 2h.40 17 1.2 9.333 =0.0132 +~0.123 0.015
1959 18.00 18 1.06 17.666 00,0969 1,712 2.931

1y =655.70 £x  sxx [fx®

==10,3750 =«15.860

»22.85%



Table Yei=5 (Centd..)

- XY =NxXY
Y = £x = 38.42 s Bm
R -
Ix? -y
i l--—-vzx s =0.576
N ' B w »21.29
X2 = 0.320 Ae ¥ = BX . 24.18
T

" Line of best Fit, Y= A+ B z,ogm 19.10 .;:‘.._

= 24,18 = 21.25 hgo lo% s
o Te1

urn periof ' Est :mated Flood
Return periof T ‘ |
(T) 4n years. ‘10 ‘10 T flow(Y) in 100
. , cumecs
. ‘iG | -1.3439 52.76
25 - *1.76968 61.78

100 ~2. 3665 .47

86
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TABLE b= { « g

COMPUTATION OF CONFIDENCE LIMI"S FOR GUMBRL FREQU«NCY CURVE

FOR RUFIJI RIVER AT BTIOOLER'S8 GORIE

_(1) The standard normal variate for 95% Pmbability.
t = 1.96 from Table { k=1=1)

8x Sx 12068 ’8968

(18 = B e g ——— 2,90
B ﬁé m : zlcah

(111) # = & factor derived from Gumbel (K) factor using
relation p ¥ = 1 4 1.4K + 1.1 X2

T . S5 Confidence Iimits
Estimated hid
Return ﬂoodéﬂ.ou x‘;m tab:n% . ol toy ‘m"mw’
lzgiod X) in 100 | 2 99 Upper Lover
‘ cunecs from| ' =rX2, ‘ -
in yeuas| r,p)elmq~3 . , X oy _ X tgﬁ .
1 2 3 C b 15 6 7
10 5963 2045 7.3t W33 7396 ML
20 70.38 3.156 el 18,50  88.88 51.88
50 8450 4,055  12.12 2375  107.80  60.30

100 oh,65 W.7h8 W20  27.83 122.48 66.82
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(vid) Compute vulues fok {K8x) . Compute (X) values
for sach of the (P) values by the formula X wX+KEx

(viii) Flot the (X) wvalues at the appropriato () value
abscissa on log=probability paper. Draw a straight
1ins through the plotted points to produce the
required frequency curve.

(1x) To judge the goodness of fit the ebserved date are
also plotted on ths asame probability paper
depdnding on the Table We1«5, Pigure (4-1-2) shows
the best f1t line and the obssrved flood plotted
on any logenormal probability paper. Alsc table
(4=1=3) shows ths computations for the construction
of fraquency curve for the station, by the loge=normal
method.

4.,1.2 Maximum Likelihood Estimates

Before the maximum likelihood estimates are celcula=
ted, the observed data for 1K3, gauging station is tabulated
as given in Table 4=i«9, Using the sum in column 3 the
sample mean of the actual observed data is celculated, which
temes out to ba 36420 cumocs. with this the, observed
annusl flows are tranaforﬁad into dimensionless form, in
terms of sample mean by Egn K1 ™ 35‘ and given in column (k).
where Ki is the mndulnr cﬂcfriciegt, 7 4is the sample
mean, 0, is the annugl observed river flow. The
modular coerric;entg are arranysd in an array, in order to

simplify or facilitate the further computation,

After this, procedure the maximum likelihood

estimates ars computed as follows:
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(1) Normal Function = Bquation (2.39) and numerical
data in column (4) Table Le1=9,

£ = 1 x4 =1.0
18 _

and Equation (2.40) with column (6) Table Y4=f«9

o = J '}a x 1.03% - =0,075

(2) Log NMormal 2 Function = Applying Eqn.(2.45) and
colusn (7), Table Le=1-9

~ 1

= -000%
With Bgn (2.45) and “olumn (9)

& = %8 x 1.109

= 0.248

(3) Gusbel Function = The procedure is the same as Normal
Punction.

(k) Gamma 2 Function = Using Eqn (3.48) and Colum (7),
Table Y=1~9 |

1 5

- - -O.o

10]1#3 ‘0 1v( 86)l

« = ‘ “4%

1 )
4 [o . <-o.5oes)J

= 5.05"5&\
= 5005 « 0,001 = 500“90
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Since the correction factor &4 & 18 0,001 for « = 5.05

according to Table =g 3 and Table 2+6=2

1 1
,3 n *x 1 x 18 m e Y 1 x 18
o« 18 5.049 18
” 0.200

41,3 Class Interval Limits snd Observed Class Freguencies

(1) Normal ©For five class intervals, four class interval

limits one computad by equation {2=h=1) and Table (4~1=9) ana

observad clnss frequancies, 0 P are determined and squared

as follovs 2
OJ 03
6 36
K1 = 1.000 = 0.840 x 0.075 = 90910‘9 %
KE = 1,000 «0.255 x 0.075 = 0,980
1 1
K3 = 1 .,000 + 0.255 4 0!0?5'“ 02
' D . 1 1
Ky, = 1.00040i84010.075 = 1.06 |
8. &
18 106

(2) Log«Normal 2 <« According to Egn (2.1#7) end pqra.matcr

estimates, computed previously, the class intervals limits

are 3 <
5 )]

1
K., = exp(=0.028+0,255x0.248)=0.905
"‘" 7 49
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Ka = oxp (=0.028 +0.253x0.248) = 1.152

2 4
K“ = 0XD (‘0.0%’0.8“0‘002“8) = 1.1W

= .

18 88

(3) Gamma 2 ~ Bquation (2.50) with corresponding values
of "3 from table 2-6~2 gives.

2
1 ’ w 1 1
K, = Q.
1 m— b 3 2 - 560
2 b
K, = 0.45 x 1.613 = 0.725 .
3 9
Ky = 045 x 1,943 = 0.87%
3 . 9
Kl& = .09""5 X 2.289. = 1.030
I
18 10%

h.1.4 Computation of S.mple Chi-Squares

The sample chi?-:quaro's are computed by BEgn (2.38)
for each sslected function separately and then converted
into corresponding probability by the help of table L=1~7,
(1) Normal s for £ = 2 degress of freedom.

';:2 = :!28 % 106 ~18 = 12 and P(Xz) = 20,999

(2 log Normal 2 = For f = 1 degree of freedom

A2 . %81: 88 = 18 = 6.1 and PXD) = 0:9%0



TABLE & = W

CHI —8QUARE DISTRIBUTION
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‘2 for
ro2) |[fe1 a.f fe2df [[F®H fetdf 2 | fw2d.f
0,001 0.000  0.020 0.700 2.706 ¥.605
0,005 0,001  0.0M0 | 0750  3.841 5.9
. 0.010  0.006  0.103 t 0.800 5.020 7.380
0.020 0.016  0.2M 0.900 5,692 Dbk
0.025  0.06% 0.4k u 0.950  6.635 9,210
0.050  0.102 0.575 0.980 74800 10.607
0,100 0.148  0.713 0.99%  .10.827 13.815
0.200 0455 1.386 ’
0,250  1.07% ~ 2.408 “
0.0  1.320 2770
0,500  1.642 3.219 |
}




 TABLE 4= 1=9

PATA YFOR 9K3 GAUGING STATION
Annuel Q ) "
. | vem ﬁm@ K | KB {gohyz | anmg 2R ok )
¥o. (marqu 4 =1.000 1%2# =1ns )
cumecs
=0.028
1 2 3 b 5 6 7 8 9
1 1956 54%20.0 1.4881 0.488  0.238  0.3927  0.3647 08133
2 1960 .4480.0 1.2%0 . 0.2% 0,053 0.28%2 0.2872 0.066
3 1962 L4400.0 1.2081 . 0.208 0.0k3  0.1887 0.1607 0.026
b 1968 %30.0 1.1806 0.181  0.033  0.166%  0.138% 0.019
5 1963 4280.0 1.1751 | 0,175 0,031  0.163%  0.133% 0.018
6 1961 . H190.0 1.1504 0,150 0,023 0.1393 0.mM8 0.013
7 1964 H100.0 1.1257  0.126 0.016 0.1185  0.0905 0.008
8 1970 4080.0 1.1202  0.120  0.0%%  0.1133  0.0853 0.007
9 1955 . 4000.0 1.0982  0.098 0.010 0.0938  0.0658 0.004
10 1958  3640.0 0.99%%  =0.001 0,000001 =D.0006  =.0274 0.00073
11 1972 3560.0 0.9774 =0.023 0.000529 =0.0229 «.0051 0.00026
12 1971 3460.0 0.9500 ~0.05¢ 0.002500 +0.0513 ~=.0233 0.0005h
13 1957 3260.0 0.9951 <=0.105 0.011025 +0,1108  ~.0828 0.0060
% 1965 2780.0 0.7633 ~0.237 0.056169 =0.2701  «.2521 0.0586
15 1967 2780-0 0.7633 ~0.237 0.056169 =0.2701 -,2h21 0.0586
16 1966 2600.0 0.7138 =0.286 0.081796 =0.3372 -, 092 0.0456
17 1969  2W0.0 0.569% <0.33 0 0.108900 ~0.4006  ».3726 0.1388
18 1959 1800.0 0.4942 <=0.506 0.056036 +«0.70L8  ~.6768 0.4580
TOTAL 65570.0 18.0 1.03% «0.5086 1,109
Q = w = 3642.0 cumecs

18



TABLE % = 1 = 10
ESTIMATIO!N OF FLOOD FOR RUFIJI RIVER AT STIBGLER¢S GORGE
1X3 BY NORMAL,OUMBEL AND LOG NORMAL 2
Formula Q400 ™ 3 (1+Ko»)

Btation 3 X From | o | (1+Kor) Q400

cumecs Chow Bo cunecs

Renarke

NORMAL DISTRIBUTION

méfé.g. I:ivor

a egleris |

Gorge (1K3) 36h2 2.33 0.075  1.475 7940
GUMBSL DISTRIBUTION

(K3 3k 3.3W9 0.075  1.251 0 8190

LOG NORMAL DISTRIBUTION Q400® Quntilog [
. ) o 2'3

l.o:g#*ﬁlogo' -‘J

- | Antilog
Q , - ol JogeK | Q400
W s X :mgp 1o;p- Klo 10

2.3 - | cumecs

Station

Rufiji River . o ,
(18 - 3642 2.33 «0.028 0.248 0.578 1.173 7900




(3) Gammg 2 = for £ = 1 diﬁrn of freedon

= é x 10h 518 = 10,8 and P(Ka) = 0,991

A 18

It can be observed from the results, that loge
Normal 2 distribution is applicable to this wiver gauging
station (1k3) , since it has the probability of Chie
square 1ess than the commnnly used level of significance
(0.95) . Hance the stytistical test of this distribution 4s
non=-significanty dut for Normal and éamma 2 distributions,
they are lignificant » Also, the umali.r probability of
Chi~square, theo better Pitting &0 observed data.

1501‘5 Statistical lmg_;yﬂil

The various statistical terms used in this study

ars as followss
Mean (X  a T xy¥
2 e 2
variance (89 = XS = WX ) 2 wyNed

Standard of Variation «#fin = IVarianec

. 8
Coefficient of Varistion (CV) = ~——

X
First serial auto~correlstion cbarficicnt
XpoXgay = XeXgaq

K
[Ii s(x,)a ] e [)'E%._, (%92 Jva

ry=



Skewness coefficient

3 R - 3
C = S X = My ) Xpe N Xy
.

2 _z32 e
Rl Txg - %)

Range 'R' = 8“x “ Bn

where o
Bax = Max (X, = xt_)
Bnin = Min (Xt - i‘t)

Where
xt is the observed time serics

X 418 the length of the time series,
The above statistical properti:s have been computed by
running the computer program given in Appendix ( vir ).

4.1.6 Analyais cf Hiaﬁorioal Data

For the anslysis of time series of the available
hydrologic data, all computations have been done by computor,
IBM 1620 Model. The mathematical treatment for the required
analysis has been discussed ezrlier. First, the trend compo=
nent is removed from the composite time series, and then
perfodic componenta are r:moved, thus leaving the random
component glone. For the datedt&ou and isolation of periodic
component correlogram analysis, periodogram analysis and
spectral analysis have been used. The procedure for the
detection of each component from oie another is analysed

a8 belov.



4.,1.6 Trend Component Analysis

The method of lenst squares already discussed
in Chapter III is used for development of trend. The trend
is represented by & straight line. The equation for the
trend line is assumed a8 given by Y = A+BX where the trend
constant§ A and B are glven by equations 3.16 and 3.17
respectively. The computation method has been given in
the computer programme as per Appendix ( W ) the trend
line has been shown in Figure be1=3,

(a) CorrelationAnalysis

ihe serie~l depandance of the hydrologic data
is found out with the help of this analysis. The sarial
correlation coefficients are calculated from Eqn 3=28.

' The procedure for calculsting seriaml correlation
coefficient (rk) values has been given in the computer
programme, appendix ( \V } . The correlograms are const=
ructed by plotting T, values against ti.e lag. The correlo=
gram for Rufiji river at Pengain Falls , has been drawn
a8 per Fig. 4=1~5 to 8.

The brief procedure for this analysis is as

follows,

1. Renove the trend component and get YR Lprogramme
Appenddx () lii) ).

Qe Pind out correlogram with YR with the help of

program Appendix (Vv ).
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3. " Remove the cycle indicated by the correlogram

| and then find new values of YR with the help of
Computer programme appendix ( vV ).

b, Repeat the operations 2 and 3 for various other
‘barmonics which are required to be ramoved, till
‘no cyele i3 indicated by the correlogram.

The results of the above analysis is shown in
Tige 4.1.5 t0 8 . The values of YR after romoving 32

months, 6 month, & month, 3 month and 2 month periods
are given in Appendix ( \Vb),

(b) Periodogram Analysis

The seﬁultnr’l periodogran 1s developed by uaing
the bharmonic analysis and magnitude of the aquared ampli~
tudes 18 calculated with the eguation 3.22 . Thess values
are plotted against the frequencies for which the ampli-
tude values have been calculated. The periodogram will
indicate the periods present in the hydrologic data and
the reactive magnitude of wvarious harmonica'uill be shown
by the periodogram as per Fig. %.1.9.

(c) Power Spedtnm

The varignce spectrum 15 developed by calculating
the normalis 4 spectral density function. This will give
two sided normalised pover ipoctrun. The power spectrum
will show peaks with different frequencies and it will
" give the possible periodicities precisely at its freguency.
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The normalised spectral density is given by Equation 3.36.

This is calculated by assuming some +values of
time lag interval and vzlues of correlation coefficients
vith the same time lag interval as shown in Appendix { Vi)
Here the vzlue values of K have been taken as 6 and |
120 months . Thus by knowing all the torms, values of
8X(f) is found out corresponding to the different values
of frequencies. The computor program, for this purpose
has been devsloped as per appendix ( Vil ). Pig. k.1.11
shows the powsr spectrum, which shows clezarly the presence
of 12, 6, 3 months periods,

4,1.6.2 8tochastic Component

The residusl series z, 1s subject correlogram and
variance spectrux analysis ia ascertained that it is free
from the presence of any significant sub~harmonics. First

ovder Markov Model has heen fitted as earlier discussed,
the value ry for lag one being significant (r1-0.60§9) ’
the model then fitted becomes

Based on this equation the stochastic component has been
computed by the help of computor program, appendix (IX).

4,1.6.3 Random Coggonc_nt

The random in the absence of any trend, is obtained,
by removing the cyclic and stochastic component from th e
original time series as given in Bquation. The random
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component is obtained (Appendix IXg) bty the help of
computor program ., Computor programme Appendix ( IX )

has bsen dsveloped to compute the mean, vgriance and stand-
ard deviation . The ssries wvas broken into ¢ samples
of %0 walues gnd was plotted as given in Fig. 4.1.12 . This
shows that the rgndom compon:nt is pormally distributed.

Mathematical Modal Adopted for Data Generation

The generpl model adopted for the generation of
monthly ggream flow seguences for 1K3A gauging station
a® discussed earlier is as follows:

- e o a"t
Yﬁ: {560-88—61/‘50 Am1 1{e] ] 12 Y %1 8in ‘2
Yy lre,
+ *XNZ 12 > Bma ”
6Tt
+ Alﬂl3 col e me sin ._.;.a...
* Aoy 08 — 8" * Bymy 0 f:t

Valuzs of AXR1 otﬂml“ and BXN.‘ o .B’mh are given in
Appendix ( vid) and Random nusbers (at) can be gﬁuratcd

by programme Appendix ( X ).

k.2 CONCLUSION

In Chapter II various methods of estimating peak

run=off have been discussed, based onthe nvailable data. I
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In this connection 1K3 Gauging s~tation has bean considered
to arrive at the best fit distridution to the observed
anriual series, In Chapter 3, time series analysis for
1K3A monthly flows has been discussed. As whole, based
on this conclusion, the following inferences can be stated:

(M

(2

(3

)

(5)

(&)

(®

Normal distribution is not fitting to the observed
annual flows a8 the deviation of the observed

series 1s too short.

Al80o Ganmma 2 distribution does not fit well close
te too short annual serieas,

Logenormal 2 and Gumbel distributions are fitting
well to the obsarved annual series. This is verified
as in Figures 4e2=1 and Ys2w2e«,

The trend, periodic stochastic and random components,
all constituting the composite time meries have been
1i30lated,

The trend 1ndicat¢d in the hydrologic series is
decreasing at a rate of 5+95 cumec#/month from
1961“1972 » F&g. “'1'30

The periodic component in monthly run off series .
has becn descridbed by Fourier series with 12 months
fundamental cycle and its harmonics as 64,3 and2
mohths. The 3 and 2 months are less predominant
comp;rntivily to 12 end 6 months Fig. L=1=10.

The correlogram for monthsly run-off has been cons-
tructed vhich tends %o reach ity maximum values
at 1“.’ Fig.. h.1.4 to 8'



(8)

(9

b3

(1

(D

(3

113

Fover spsctrum shows clear pesks at 12,6,4 and 3
mohths at its fraquencies, Fig. %.1.11 . The pre-
sence of peaks at 64,3 months periods are morae
easily secn in the spectrum, than on the correlo-
gram. The pressnce of these sub~harmonics is
indicutive of th§ effects of oscillatory seasonal
effects in the record.
Both the correlogram and power spactrum are useful
and should be used simulatneously for analysis of
hydrologic data, The spectral analysis complements
the correlogram analysis is detecting periodicity
in the hydrologic time sqiics.

8COPE OF FURTHER STUDY

The flood fregquency analysis of annual sariaes can be

conducted using other probability distribution function,
like log=normal 3 and Gamua 3. The atudy also can be
conducted to other rivers, in different weather regimes.

The model, and its efficiency can be tested by comparing
its performance with results obtained by other time
series models.

The model has been developed for monthly river flows.
This al®o cun be applied to time series of 10 daily
waekly and yearly seriesl.
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55

50

LUAUMBIKA 3 HYDROLOGY DESSERTATION WORK
CCEFFICIENT OF CORRELATION R AND AsB
DIMENSION W(150)oHI15C) »GL {1503 sHL(150)
READ 1UsN#AS

FCRMAT(14sFlued)

AMsN

00U 20 I=]19N
READ 30,Q(I19HI(1)

CONT INUE
SUMQ=D 40
SUMH=U 40

DO 40 J=14N
wT=Q(])
H1sH({I)~AS

QLI1)=LOGF(QT
HL{1)®LOGF ({HTY
(
¢

SUMQESUMQHLL
SUMH® 5 UMH+HL

CONT INUE
WAAReSUMQO/AN
HEAR®SUMH/AN
PUNCH5 5+ QBAR yHBAR

)
)
1)
1)
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APPENDIX

FORMAT ( L4HVALUE OF JBAR=9F10e404Xe14HVALUE OF HOAR®F1044)

SUMRY=0,0
SUMXX®Q 40

SE™MYYRU 40
DO 50 Is1sN

XeHL (1) =HBAR

YeQL{ 1 1=QEAR
SUMXY = SUMXY 4 X#Y
SUMXX = SUMXX +X#X
SUMYY® SUMY Y +Y#Y

CCNTINUE

Aw SUMXY 7 SUMXX

Bs 2BAR-A®HBAR

Re 5QRTF { SUMXX#SUMYY )

Re SUMXY /R

PUNCH 60»AsB4R .

60 FOIMATLIZHVALUE OF A 29F1l0+s498Xs12HVALUE OF b woF 10e4»4Xy

70
8Q
30
20

1 12HVALUE OF R 33F1044)
PUNCH TOsA»EaR
FORMAT(3E2048)

PUNCH 80

FCRMAT( 1 THVALUE OF LOG(H=-A})
PUNCH 30s(HL(I)e1Im])N)
FCRMAT(8F10,4)

PUNCH 90

FORMAT(I5HVALUE OF LOGLUL))

PUNCH 300(QLITIII=1aN)
a0 TO 100
eND

T

—
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LUHUMBIKAs HYDROLOCY DESSERTATIOM WORK ' APPENDIX U
COEFFICIENT OF CORKRELATION R AR AsBolR3ALAR AND IK3BAR
DIMENSION QIK3A(300)sQIK3(300)»QALL300)»GL{3C0)

READ 1GoN

FORMAT (1492F1044)

Ahk=N

DO 20 I=],N

READ 100JsQIK3A(J}QIKI(J)

SUMQA® U4V

SUMQs0 40

DO 40 IsleN

G, . T=QIK3A(T1)

QT=QIK3t 1)

QAL (1 )=LOGF (QAT)

QLEI)=LOGF(QT)

SUMQA= SUMQA+QALL 1)

Rz LIBERLAL!
ggggmfgégégﬂﬁlﬁan,mo.a.sx.«mma BAR »yFi0ea)

XY 0.0

SLMXX=C el

SLMYY= (a0

DG 50 ImleN
Y=QAL{])}~QABAR

Xe QLI 1)~QBAR
SUMXY=5UMXY+XBY

SUMXX® SUNMXX +X%X
SUMYYeSUMYY+YRY

A= SUMXY 7SUMX X
BaQABAR~A®GBAR
ReSQRTF { SUMYYRSUMX) }
ReSUMXY/R

PUNCH 609A9BR
FORMAT(3HA mpFl0e8,3HB 2yF10ebe3MHR 24F10e4)
PUNCH TOsAsBoR
FORMAT(3E2048)

PUNCH 80

FURMAT { 3HNC o 2X9HLOC ( IKIA I 2XBHLOGIIKS))
DO 90 I=1N

PUNCH 102 19GALLIT)oCLLT)
GO TO 100

END
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C C LUHUMRBTKA OISCERTATION WORK HYDRCLOCY

C FROGRAMMNE FNR SEPERATION OF TREND COMPONENT
DIMENSION X4 0)sY (60" 3sYTLA00) 2 YR{40)
RFAD 50N

50 FORMAT (15}
READ 60st X (1)sl=leN)
60 FORMAT(12'%6e2)
READ 60s(({1)el=1,N)
SUMX=0,
SUMYa(,
SUMXXu (" 4
SUMXYs [,
DN 2% IsleM
SUAXsSUMX+X (]
SUMYsSUMYAY(T)
KX=X{T)r®»X(I)
SUMX X = SUMIX 4 XX
XYs)(I)#Yy1)
SUMXY=SUMXY+XY
25 CONTINVE
AN=N
DENOMes AMRSUMXX=~SUNX# SN X
Az ( QUMY S SUNX X=SUMAESUMXY ) 7DENOM
Ba(ANE SUMYY=SUMX*SUMY ) /DENCH
X120
DO 29 I=1.N
Xl=Xi+1le
YT(I)=sA+D#X]
YRETY=Y(I)=YTLI)
29 CONTINUE
PUNCH 11
11 FORMAT (19X +SGHRESULTE OF VALUES TREND COMPONENT YT AND YR VALUES)
PUNCH 12
12 FORMAT (21X o38HVALUES OF TREND COMPONENTY YT SEPERATED)
PUNCA 1Co(YT(I)el=1sN)
10 FORMAT(6F1244)
PUNCH 14
14 FORMAT(2XW52HVALUES YR AFTER REMOVING TREND COMPONENT YT FROM Y(I)
1)
PUNCH 10e{YR(I)sIxlN)
PUNCH 30\
30 FORMAT (10X 91 1HVALUE OF Amo4F154,5)
PUNCH 3194
31 FORMAT(1CY% 1 IHVALUE OF Ba¢Fl%e5)
sTOP
ERD
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C € LUHUMITKA /HYDROLOGY/DTSSERTATION WORK

C
C

900

20

10

PROARAMME FCR CORRELOGRAM
CALCULATION OF K AND R{K)
NIMENSION X(470)sR(400)KR140D)

READ B3 sNoeKlpk2
FORMAT(141%)

READ T00oIXtL)oslL=sN)
FORMAT (6F12,4)

IK=Q

00 10 KeKleK2sK]

XZ=),

X1sNge

X2=0)o

X%3=0),

X4m()y

NX = NwK

DO 20 I=leNK

Jul+K

XZeXZ+X{ 1)

X1=X1+XtJ)
X2uX24X(T)ext1)
X3sX3+X(J)RX (D)

Xa=Xh «X{J1#X(J)

CONTT {UE

AMNK =N
AxSQRTF{ANE MY 2=XZ#XZ)
AuSORTF{ANK#X3wX]1%X11}
REK)a [ANK®X4=X2%X 15/ L ARDY
IK=1K+]

KRIIK ) =K

CONTINUE

PUNCH S»(KR(T)sI®]lyIK)
PUNCH 900 (R(K)oKmK1sK ¥ 9K1)
END

120
(1)

APP|
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LUMUMSIKA /HYDRCLOGY/D1oSE) TATION wURK APPERGIX (V)
PROGRAMME FGR ISCLATICH OF PERICDIC CUMPUNENT
THAT 15 PRUHGKAMME FOR CSTILATION OF S1iksulial COMPONENT
DIMENSTON YR(G6UU)

REACSO o N

FORHATIIS)

READ 119 (¥REI)sImlgiv)

FORMATLOF\208)

KEAD 12¢M

FORMAT (1Y)

PUNCH2 T o I

FORMAT ( 6X s 1 SHVALUES us Mmg,5)

PlEe3e 1416

AN® M

ANy o

XKl g

CO 13 1=l

Alsl

Xl JuPIL®AT ZANL

fv RIFFEREYD LELOW 18 SWALL |, IN ZUPTE®(SHALLIN(SMALLIT/T
FOR TIME PERIOD Tel2

Nel FUR FILOVING 12 LOihTHS PERIOD

Nm2 FUR PENOVING 6 HONTHS VERIOD

N23 FUR WEMOVING & HOUNTHS PERIOD

Nes FOR REMOVING 3 HORTHS PERIOD

5 HERE FOK TwlBUesli=15950945960 RELPECTIVELY
HENCE NeT/ZLSHALLINRL1Z2s6 906 9% RESPECTIVELY

bNey

CNmGN/ 20

AXSBAXIN*YU T JRCOSF(X) /CH
EXA®SANFY LU I RSINF (X) ZCH

CONTIHUE

CXASHURTF {AXNHARI+LXR®BXN )

THEITA®RATANF (AXNZGXIE)

PUNECH 2)

FORMATUBX s 3HARN 1 UX o SHUXN o YOH o BHEXIIw DX o SHTHETA)
PUNCH 209AXNoEBXNsCXNo THETA

FORMAT(4F L342)

DO luv Imlel

Afs]

XeZ UusPIESAT /AN

YROI)mYR( [ )= (AXNRCOSF (X)L NRBSINFXY) '
CONTYINUE

PUNCH 61

FORMAT{18Xv43HYR VALUEL AF Lk READYAL OF GAORTHS PERIOD)
PUHCH BUsLYRII)sInlel)

FORMAT(6F12.4)

GO TO 1%

ENi
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C € LUHUMBIKA /HYDROLOCY/DISSERTATION WORK APPENDIX (V1))
C PROGRAMME FOR PERODOGRAN ANALYSIS

C CALCULATION OF AXNsIXNsCXSsFREQUENCY (F)

DIMENSION YR{2QV) \\
READ 509N \

80 FORMAT (15) .
READILe (YR(1)eIwloN)

11 FCRMAT(6F1244)

15 READ12 s

12 FORMAT(15)
PlEu3,1416 | \
AN=M .
AKN'*D. »\\ A
BXH’OQ .
DOL3 JuloN
Al el
Xe2,08PIERAT /AN
BreH ’ .
CR*3N/ 24 : \
AY UmAXN+YR(T)#COSF{X)/CN \
BYNwBAN+YR{T)*SINF(X)/CN \

13 CONT IRUE \
FlaMm \

Fale/F1

CX SmAXN®AXN+BXN#BXN .o \

PUNCHT - g

7 FCRMAT (6X93HAXN 12X y BHBXN »12X 9 3HCXS s 14X » LHF ) , |
PUNCHE s AXN»BXN#CXS o F _ N

6 FORMAT(4F1544) '\
GOTO 15 \\
END
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LUHUMGIKAs FYRROLOGY DESSERTATION WORK
PROGRAMME FOR ANALYSIS OF POWER SPECTRUM
DIMENSION RU30)sVDI30}eF(30Q)

READ 1oNsK)leM

FORMAT(315)

READZ#(R(T)sIm1aN)

READ2+s(F(K) yKuloM)

DO19K=19H

VO(K)=0,

j1=0

DO2UI=1sM

I1=11+4K1

A=11] .
K1sR(IT)¥COSFI2e%3414106%FIK)I®AK) /301416
VIR )= VDUIK)+X)

CONTINUE

CONTINVE

PUNCH &

FORMAT{39Xs) IHVALUES OF F)
PUNCH2 s {FIK) 9Kl M)

PUNCH 7

FORMAT (39X e} 2HVALUES OF VD)

O0 8y IwlsM

VDUI)=VO({])/10e0%ug
PUNCH3 o (VDY ) oKa 1 94}

FORMATL6FLlU.5)

FORMAT(4F20,.8)

END

123

APPENDIX VI
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C C LUHUI JIKA ZKYDROLOGY/DLSSERTATION HORK Appennlxhﬂm
C PROGUALSL FOR FINDING (UT STATISTICAL PARAMETERS
C GEAR STALDARD CCVIATICH,VARIANCE AND AND CoVe
C DATA JSTL YU o¥YREIIeYI(2)oYRIB) o YRIG) sYRID) o YREO)
DILCRSICH YR(6UVO)
RCAD AU
10 FORMAT(ED)
100 CAD 11elYRUT)oleleN)
11 FORIAT(GF1200)
LUILBu el
D0 64 lolsl.
SULL=SUMLeYR(T)
&4 CoLTINYE

Ailsil
ANCAN=SUNY/ AR
C THAT IS AMEANEMEANGD SIGMA(X) /N

PUHCH 13 sANEAN
i3 FORMATLLICX» 1 THHEAN OF THE DATA®9EL1608)
SUii2s0 o0
DO 14 I=1.H
SUM2=2 UM+ YR T ) ~ARMEAN) 022
C THAT 1S SUM2= (SJYGHALA=BARIX ) ) )be2
14 CONTLUE
SDaSCRTFISUM2/{AN=1.0))
C THAT S SDoSTANDARD PEVIATIONS(SIGHAIX~EAR(X) }I202/N=1
PUINCH 25980 :
25 FOREAT(IUXoI1IHSTANDARD DEVIATION OF THE DATA®F1204)
< VARTAHCE ® S5QUARE OF STANDARA LEVIATION
VAReShee2
PUNCH 1%5sVAR
15 FORMGATLLI0X» 17THVARIANCE OF DATASpE1608)
C CoVeulOEFFICIENT OF VAI TATION
CVel0Jo45SD/AMEAN
PUNCH 16sCV
16 FORMAT(10X914HCoVe OF LATA 24£1600)
G0 7O 100
LiHD



10
12
11

22
13

14

15
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LUAUMB IKA=HYDRULOGY ~DISSERTATION WORK

SE?ERATION OF STOCHASTIC AND RANDUM COMPONENTS
GIMENSION YR{400)s8T(400)RkI(400)

READ 10N

FCRMAT(15)

READ 12»Al

FCRUAT({3FLlUL4)

READ 1le(YR{I)ol=ls )

FCRMAT(6F1244)

DO 22 1=2eN

Kel~}

STIK)=AL#YR(X)

RO(K)wYR{TI)=-ST(K)

CONT INUE

PLNCH 13

FCRMAT (25X o 3OHVALUE 3 OF STOCHASTIC COMPONENT)
LlsnN=1

PUNCH 1&69(ST(M)eMul)Ll)

FGRIMAT(6F1244)

PUNCH 15 _

FORMAT(2TX»26HVALUL S OF RANDOM COMPINENT)
PUNCH 16+(RD(M)oMsIsL))

sSTop

END

o FT
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LUHUMEIKAs HYDRCL JGY DUSSZRYATION WORK APpﬁﬂulmy)
DIMENSION 24120009 T(1240)

READ 1UeX

FORMAT(F1244)

READ 48N

FORMAT(15)

DO 100 I=1lsN

CALL RANDOM(IX)

RANOOMIX) SUSROUYINE AVAILALLE WITH COMPUTER CENRTRE IN PACK (&)
Z(1)=X

CONTINUVE

PUNCH 11

FORMAT (22X 36HUNIFORMLY DISTRIGUTED RANDOM NUMDERSe//7)
PUNCH 202281 1el=1sll)

FORMAT(4E1648)

READ S5us(Z(1)aln)leN)

FORMAT{4(FlZer0X))

Pli=3e1415

00 30 l=1lsNNs2

ARGMT= 24URPIE%Z(]+1)

X1=2(1)

AAR=2  ORLOGF (XI}

BO=m{{AA)##0Q ,5)

T(I)=GB#COSF(ARGMT)

T(I+1)=sUB%SINF(ARGMT)

CONTINUE

PUNCH 22

FORMAT (23X s 31HGENZRATED NORMAL RANDOM NUMBI RS/ /7/7)
PUNCH 21(TC(1)elnlalN)

FORMAT(GEL1648)

END



1554,7275 +34684 9684 154244002 153642501
1517, 7727 151166136 1505465446 149942952
1480,8178 16T76.6587 166864995 1¢ 3243404
1443,86%0 V4377038 163145647 14 15,3855
1406,9001 ~5007490 139445890 123804307
13699533 +36307941 135766350 13514758
133249904 132640392 132046801 131445210
1796,0436 - 1289.8844 1283,7253 12775661
1259,0087 125269290 12467704 124046113
1222,1339 121569767 120240156 121346564
1105,1790 Y17940199 1172.,0607 113647016
1148,2242 114240650 113509059 112947467
1111.2693 .10%.1102 1098.,9510 1092,7219
107643149 "N6Re 1553 1061,9962 105500370
1037,3596 103162005 1029.0413 1018,6822
1000,4048 99442656 90840065 9819273
963,4497 95742900 95161310 944,9725
02646951 92063359 91441768 200.0176
86945402 68343811 87702219 B71.0628
3525854 8460062062 84042671 8341079
A15,63095 809e471% 80343122 7971531
778,6757 77265165 76643574 76001582
741,208 73565617 129.,402% 12302434
VALUES YR NAMELY VALUES OF Y(I) AFTER REMOVING
-1174,7275 31643106 ~942 44092 ~99642501
«83T7oTT727T =i071646135 =1140,6544 =1199,2952
2989,1822 229543413 - 290145005 231746596
-813,8630 ~987s 7031 ~10406e5447 ~9¢543855
119369019 220642514 357544102 12115693
~069,9533 ~94347941 -97766350 ~1011.56750
1147.0016 157361607 245943199 1254790
«786,2436 ~820,08048 ~89347253 «077e566]
-579,0337 ~932.92906 153342290 939.3387
-022,1339 ~835s9747 ~80040156 -893.65064
~205,17920 150,%001 162741303 133.,2984
-T43,2242 ~(%240650 ~32549059 ~T197467
=55142693 ~62041102 56140490 747420081
-65443145 -6886155% «74149962 «61548370
1002,6404 AT00L 7993 4569,9587 278141170
~390,4040 ~004e2456  =570,0865 ~68149273
11645591 66247092 1188480684  ~234,4,9725
59664951 =620e33%9 ~644641768 -£ 1840176
2210445983 205646189 36247781 -2 1106208
~49249854 33604262 ~56042671 ~5)441079
~175,6305 ~22% 4114 ~1%943122 ~2741931
~25106757 ~4224516% «45643574 «270.1902
=151,7208 33545617 ~9866025 ~111.243%
VALUT OF A= 1560,00660
«6,15914

VALUF OF B=

127
NESULTS OF VREGHGTYSREND COXPONENT YT AND YR VALUES
VALUES OF TREND COMPONENT YT SEPCRATED

e

1530.,0909 1523.9318
1693,1361 1806497069
1656,1812 14%0.0221
151902264 141340672
1382,2715 137601124
1345,3167 133941575
1308.3618 1302.2027
1271.4070 126542478
1234,4521 122862930
119704973 119143381
1160.5428 11%4,3833
1123.5876 1117.42606
1086,6327 1080,4736
10649,6779 1063,5187
1012,7230 100645639
DT75.7682 969.,6090
938.8133 932,6542
9018588 89546993
86449036 B98¢ T445
827.94688 821s7896
790.9939 7B4,8%48
754.0391 T47.8799
T717,0042 71049251
TREND COMPONENT YT FROVM
=650,0909 «103.9310
=1200,1361 +=116649769
T743,8188 57540221
~634422064 ~D3.0672
-502.2715 -71641124
-151%,3187 1140,8425
-49043618 ~102¢2027
«~72145070 -56542478
563444521 ~T6042930
~T87c4973 ~531+33081
=500.5424 67443833
1356446124 ~5067e4206
«13606227 ~540e4736
~56946779 330644813
317.,2770 -30645639
-655,76082 303910
*49303133 -552¢6542
10841415 184643007
4048 ,9036 4508474469
&84T 9400 ~3T167896
~304,9939 ~3860,8348
~184,0391 ~57.8799
523100502 ~228.9251



RESULTS

CORRELOGRAM

CALCULATICH OF K ARD R{KY FOR Kls1l AND K2=60

15 18
29 3g
LX) o4
57 58
w5838
~e 35415
3085
~e5159
3139
“03157
+ 1361
*02752
«3324
~ed 65U

3
17
31
45
59

4 5
18 i¥
32 33
&b %7
50

e3761}
velllh

+ G755
~s1510

«0463
-s 1953

«0312
~e 1320

1592
ve 1068

& 1
20 21
34 35
48 49

+D4ES
- D476
*u153§
0512
-e1599
~e G617
~e1134
NiTXY
- U643
+3&1H

RESULT 5

8
é2
38
50

9
23
37
51

~a £ Q0T
«1393
-e2625
22188
22839
-~2035%5
il 1l
» 2181
~edeB2

- #2912

10
24
38

52

11 12
25 26
39 &0
53 54

~e3543
»3463
~234063
+ 3003
~¢359%
«0812
-e 3208
¢3210
~e3258
. 93540

CALCULATICN OF K ARD REK) FOR Klsl AND K&wmi20

é 12
96
~e362%
~e 3358
~e 3423
e &2

18
102

24 g

108 114

« 38569
4239
21875
«1842

36 42
120
~e37T71}

~e 3247

-e34086

L 2:1

54

24207
w4643
e 3255

60

€t T2

~e3650
~s3457
~a 2682
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\Vb

13 15
27 28
41 42
55 56

~e3924
«3869
~«3771
 «%Z07
~«3650
«1583
-+3358
+8239
~e3247
v4643

78 &4
»1583

. +8636
«0236



VALUES OF Ms 12

129 V

AXN XN CI.N THETA
336453 052616 1GUSebY o33
YR VALUCS AFTER RumOval. GF WOATHS Poniow
»1B87cedb& s ~5610439H =1lbGuel Ths =luwS2e8T767 -b34eTl%1 £32e0184%
S TS XY -~THe 7411 ~iligerbyd =H82e%713 =1UR34015¢ =1503,.5401
222106378 130204675 PP IINEY. F lobled4l3 55942071 ~238e4638
-bbe3137 £el713 wQlhed 550 =ib940720 849464 10 ~b19e6324
Q2500378 129103745 2623 e 230 59%620620 “686ed? 49 -379¢5401
~10843943 LGeUB37 -2% o0in80& -29941744 “B3de 7240 H04eo 2633
3T9e¥379 LOBVedBlY 15907 a6 76 LY%«10632 ~H8E.94%3 ~3605e¢6164
LS9 § L 5.3V 1ode¥bée Loefald ~32ledTHY -93620265 ~901s 6430
wl346,6001 ~lvele0lld 63Yevinie3 31656957 ~5190220 4510697
565358 1565000 G2e B *257.3775‘ ~00Le%3 40 ~5679453
R Tia 1620 wiolev06Y 0T TH0Y wH5ieY T4 735,097 ~=337.76%0
1943636 1906l 1y LéG ol 300 -i23a0791 154045046 ~304.0496
«131340619 =~1817e%%7. 3Gl et bib 040463 =32lel34 20348453
110,4830 3047336 l0enmdb 4Qe%l932 «~385414404 20490661
103949381 471569099 JulTel b2 212448672 1324750% »l6Se¥217
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CALCULATION OF AXN , BXN, CX8 AND FREQUENCY (F)

M ’cl

EXy EXN CX8 ¥
- 378.1640 =300.8739  233533.1700 0.0416
- 96.4439 - 70,1824 14226.9990 0.0625
336.5373 952.1683 1019881.9000 0.0833
-202.8917 «343.8619 159406.0900 0.1000
24,3798 ~145.0569 21635.8840 0.11111
- 38.1687 =317.0874 102001, 3200 0.1250
«261.0107 177.4185 99603, 9440 0.1666
46,0787 *162.6556 285801200 0.2500
128.802 11.3237 167 30.6000 0.3333
- 11,4640 0.0013 131.4242 0.5000
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RESDLTS OF POWER SPECTRUM ANALYSIS

Values of |

r VD r vD
0.5000 3.04625 0.12500 0.413801
0,4500 1.821043 0.1000 0.27798%
0.4%000 - 0.277695 0.08300 3.382764
0.3%0 0.278171 0.07500 «1.038877
0.33300 3.38%55 0.07000 “0.285306
0 .30000 ~1.822218 0.06500 0479942k
0.25000 3.405599 0.06000 1.931568
0.20000 ~1.821449 0.05000 «1.821816
0.16700 3.383297 0.0%200 0.41%021
0.15000 .277881 0.03500 =0.75%09




RESULTS
RECOVAL OF 12 nMOITHS

ACEAN OF THE DATA® =0,23310600E+02
STARDARD DEVIATION OF THE DATA® 906207033
VARITANCE OF DATA® (0,72679766E+06
CeVe OF DATA = =0,41219290E+04
REHOVAL OF 6 FKMONTHS

HEAN OF THE DATA® =0,233100978+02
STANDARD DEVIATION OF THE DATAe 94005226
VARIANCE OF DATA®s (Qo3B45823ZE+006
CoVe OF DATA = =004024802B2E+04
REHMOVAL OF 4 MONTHS

IMCAN OF THE DATA® =0,21842316E+02
STANOQARD DEVIATION OF THE DATA= 933046476
VARIANCE OF DATAe 0.NT7132436E+06
CoVe OF DATA » =0042735741E404
REMOVAL OF 3 HMONTHS

MEAN OF THE DATA=m «0,2184252BE+04
STANDARD DEVIATION OF THE DAT A= $284,5085
VARIANCE OF DATA=  0,J6212601E+006
CoVe OF DATA = =0,425:19204E404
STOCHASTIC RUMIBRENT

MEAN OF THE DATA® ~0, 44046111E+02
STANDARD DEVIATION OF THE DATAs 56501790
VARIANCE OF DATA® 0.31942T73007¢006
CoVe OF DATA © ~Us39123263E20%
ROKDON  HONGERGST

AEAN OF THE DATA® Qs 477051156401

STANDARD DEVIATION CF THE DATA= 72760120
VAR] ANCE OF DATA= (0,92971119E+00

CaVe OF DATA = 0,15210960£+409

£

133
Vin g



C € LUMUIITRA-HYPRCL JGY=-DISLERTATEON WORK
PRAGIAY ACCrPTeNZ

¥
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~4N0,5729
16,2378
~NT73.9433
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RESULTS
56930 50130 SCETT 909090
VALUES OF STOCHASTIC CQIPGNERT

«-14T7% 41006 00241956 «208C87%
b a307 24045200 «51%2576
Glb 41665 103547049 H720.0723
~-1B9 42501} -(32T7357 ~164,1150
1277.6000 6262208 ~11R40637
«14 142560 =135, 1607 «30641738
5CGe2178 66e 26068 =116e6760
“50ed 026 »114,5148 21742242
G2 TING ~168.3030 ~190e3319
-03.0200 -(13 44236 -25TeHTLED
(99117 «312.8800 «~16542310
-5l o000 2 502404 1067.0860
59N 420 2 105592 163,8060
-5,08117 1056737¢ ~12440725
168144035 1310.0273 380.2007
51,9938 6546939 w1T7T+3067
17782219 «510+ 4408 «116T000
556 T2 4 153411C5% 28740279
~61029099 wBH0 o H024 ~5945189
10046660 1736470468 »50.7074
“D10e5%45 =591 «067% 143287
17041176 29543006 1096931
-6 41037 ~4A3 ¢ QuG? H60%365

VALUES OF RANDOM CORPORENT i
«17%,8913 63940930 5906521
=163.3807 G0N, 0070 -334,6250
ThOLTTO2 1921018 -72942160
Y243730 «~150e 7397 ~16060T70
wHhETST12G =~55Te4372 ~11143008
*74a670? “51§0¢773 12550977?
w3 TeI0TH 25794 =100.0459
~01e00806 -Zh2e839C -6 290744
=43 49560 =1304,5510 ~10362T72
~10 340 »3504,6349 ~356,9220
6024 TGS 69.0979 4044566
64,6913 171540970 =109644401
09342067 900233 ~158e9929
177640660 ~310.815%9 223002655
2692004 ~6DDWE219 ~53140752
1le5G6% «356.0820 - T3e4048
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/xlﬁs?t
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5235767
«131.0899
~51%3212
~106,2987
-4Qb4 0712
116659060
=5 1006083
+333993
109007359
~124710%
15266570
“&0eTT738
09616231
1464009
~3975590
HIe0137
20645270

~04241104
329%2 0419
~1113568
302874
~51e532]
4600273
~HeQBT0
~63942269
10424082
~209e9650
16,8033
~310+0018
271080%
~H6347002
2704875
-306e2775
204207
083e1612
12921599
-3G345722
352%+0711
=520 00060



CORRELOGRAM  ANALYSIS 135
RBSULTS
zg 26 .:g 28 dg % k)] % g
2 ¥ 2 B % % s sz 5 om
% % 9% %8 ¥ B

Renoval of 12 months

.58100 «3116 -085 -,0107 =,0301 =,00 _
».0003 -,0190 -,066 -.0821 0206 ~.0056
".0".‘50 ’01881 ‘-15”6 1'.08 9 001% .0251#

003’3 .0602 60&8 o0& s 0061 I ;05”46

-.0186 -,2080 -+ 2120 «,1025 -, 0246 0160

~.02'13 “007& .i165 "yllO53 *1“100 .6322”
hal™ -,1626 - 07 -,0% 00”5 0Q385
A R R
-.0079 -.007 - \0571 +066k 0 YA BTt
Removal of 4§ months
. LS . 0115'?)& «01 58 =0 =,0

- .03%6 tg(’% ' -, 0061 ol 'ngg “qﬁgﬁ - .96 §
".08105 -, 1787 -, 1102 -, 0661 -,0180 '&0356
-, 0006 00926 » m .ows .0386 -,0010
"'00526 , "01962 .., 1720 '10859 *00550 ”’0315

‘03373 "00!016 “01197 *tm% "0%55 "i39100

“RE e =8 <33 %8

L0748 0873 0362 +008%9 =,012% +0049
=-.0106 L0305 + 1000 0727 «0293 1547
Removal of U monthe

.6000 .3762 01"’65 '.0032 ”09669 -,0 “’
”-032!4‘ *.Oﬁgg «,008 -0 : "!0021 «,0843
-, "’.15 -,406 -, 0906 ‘00317 «,01

0012 00713 - | 357 0085]’" &0"17 -,02
-.0559 -,1763 -, 1727 -, 1117 -, 5792 -, 0060
=.0337 - ,0681 -.1278 «.393 w47 =, 4303
-,3306 -, 1166 'vOB"’G -, 028 "c0057 0221

0101 -, 0142 0310 +0393 -,0391 Ohiy

-0685 11 li9 0 =,0006 «,0158 +»0278

0012 +0082 0902 0977 JO¥19 .
Removal of 3 months

.gozgg 00%:;3 0338; &8%1? *.0533 -, 0606
- ®e "o -.031 »00 ‘00978
"008’9 -o15!¥5 "01233 '00820 "001% ‘:0&910

00096 007% -1216 .09)‘8 -0’099 -, 0416
".0"'75 -, 1704 '0,895 ".10200 "06528 '0021“5
- »0297 =,0622 - 11%6 -,391 5 "’.h?% "sk51°
"'032& ‘01089 '.050 «,.0208 0020 00073

0182 0221 016 <069 =.0326 0262

~um - ANEY? - a4 -N1a0
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PERIODOGRAM ANALYSIS
RESULTS AFTER REMOVAL OF 12069493 MONTHS

AXN BXA cXs F
~403,9401 ~25204661 23205540400 +0416
AXN BXN CX$ F
«10147903 ~2540191 1098742320 $0625
AXN BXAN CX$ F
-.0018 +0020 040000 +0833
AXN BXN xS F
~144,3958 ~43646507 21151440400 +1000
AXN BXN cxs F
5644217 ~12046999 1780048660 1111
AXN BXN ¢XS F
-341716 ~33347885 §229745660 *1250
AXN BxN CX$ F
-237,2802 16548798 8331840130 «1666
AXN BXN cXs F
4640763 ~16246576 2658005340 2500
AXN 8XN Cx$ F
138,7806 842342 1932748590 3333
AXN BX A cxs F
-2.8880 «0057 Be3408 +5000
AXN BX Y CX$ F
~40649384 ~:5743737 . 23708745200 $0416
AXN BX €Xs F
~10748205 -3046220 1256249650 «0625
AXN BxN cx$ F
~941293 ~5e6957 10543941 0832
AXN 8XN CXS F
~14448007 -49347501 21788144200 «2000
AXH - BX 4 Cx$ F
4443811 ~12242533 1691545690 1111
AXN BXN cxs F
-15.7881 ~3)249127 9200544130 01250
AXN BXA CX$ F
-0 0002 +0008 040000 1666
AXN BXN cxs F
4648011 ~13547805 2645749140 2500
AXN BXN CXS F
13847806 842350 1932748860 «3333
AXN BXA CX$ F
~2486887 e0067 de3450 5000



AXN
40543399
AXN
«lVT72638
AXid
-9e1289%
AXN
~14202961
AXN
45,0413
AXN
-1401916
AXN
51929
AXN
+U0GH
AXN
1349431
AXi
~4eHh689
AAN
~hlhe 5650
AXN
-105,8333
AXN
-~T7e2377

AXN
~-1&42,0616
AXN
4645860
AXN
1266774
AXN
5.1926
AXN
le7792
AXN
«+0003
AXN
424678

BAN
=-2684T900
BXwW
=31.6844
BXN
~lh 96956
BXn
~44540768
B8x\y
=~12045415
BXN
3306386
BXN
11755
Bad
-.05&2
BX 4
Te05%9
gx
‘«0059
Bx.g
~25Te6693
BAn
-3065659
BXAN
~3.9796
BXaA
~403Q5753
BAN
~120+6134
gxa
=3010071
BXN
141751
BX#
39116
axs
-+ 0006
BX\N
»0048

@ ¢
23654845000
Cxs
1250944300
CXS

1053868

XS
21834145700
CXS
1655849860
XS
90584948%30
XS
L8a3489
Cxs
0.,0000
CXS
1825944840
CXs
199717
CX5
23531947482
CX5
121344,9620
CXS
6842223

XS
1720648200
CXS
1674549050
CXS
9076640100
CXS
2803448
CXS
1844667
CXs ‘
0.0000
CX$
199617

M " M M M M M M m n

T ™

" T T

moMm

| M m

«0416
«0625
<0833
01000
1111
01250
01666
+2500
3333
5000
20416
00625
«0833
+1000
w111l
«1250
e1666
v2500
«2393
5000

1317

12y
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