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ABSTARCT 

In recent years, the strong demand for higher performance structures has driven a 

new development of smart materials and structures. Piezolaminated smart structures 

composed of passive elastic materials and active piezoelectric materials have been 

recently developed, which seem to be very promising in a variety of engineering 

application. 

A finite element model of piezolaminated composite curved beam based on 

Timoshenko beam model and linear piezoelectric theory is presented. Finite element has 

three mechanical degree of freedom (u0, wo, By ) per node and one electrical degree of 

freedom per piezoelectric layer. Finite element has n-host structure layer and two 

piezoelectric layers. In deriving the finite element model of piezolaminated curved beam 

first displacement equation is given followed by strain displacement relationship, 

constitutive equation of piezoelectric, force and bending moment relation, strain energy 

equation, electrical energy equation, work done by external forces and electrical charges, 

kinetic energy equation. Governing equations are derived using Hamilton's principle 

Constant gain negative velocity feedback controller is used for vibration control. A 

neuro-controll also has been developed for controlling linear and non-linear structure. A 

code is developed in MATLAB for making numerical studies. Code is validated for static 

and dynamic analysis with the available literature. 

Numerical studies is carried out in the reference of layered curved beam for the 

effect of radius of curvature on tip deflection, shape control, effect of actuator coverage 

area on tip deflection, active vibration control and application of neuro-controller on non-

linear structure/plant. 

Finally, it is observed that piezoelectric actuators can be used to control the shape 

of curved beam and a combination of sensor-actuator of controller can be used to control 

the vibration. 
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CHAPTER 1 

INTRODUCTION 

1.1 Motivation: 

Structural vibration suppression has attracted the attention of engineers since 

machines with moving parts and vehicles were invented. Especially the reductions of 

noise caused by structural vibrations and the diminishing of devastating vibrations have 

been of great interest. Passive and active control for structural vibration has been 

dramatically developed for both research and engineering applications in the past few 

decades. Effective vibration control is known to play an essential role in minimizing the 

risk of structural failure and improving the integral performance of systems. 

Governed by the need of lightweight solutions for the aerospace industry, active 

vibration control techniques have experienced rapid developments in the last thirty years. 

While conventional approaches with passive damping materials minimize structural 

vibrations they add substantial amounts of weight to the structure and are -minimized in 

their performance. However, active control techniques using smart materials offer light 

weight high performance solutions to vibration problems. Smart material based actuators 

and sensors are generally small and lightweight and hardly contribute to the total mass of 

the structure. Rising costs for gasoline and increased environmental concerns have 

compelled the automotive and aircraft industries to search for lighter damping solutions 

for their products. Decreasing the mass of passive damping materials in today's 

automobiles could lead to better fuel economy and, hence, lower the emission of 

greenhouse gases and pollution. Active vibration control systems retain low noise 

standards, while at the same time reducing the mass of passive damping materials. 

Containing more than one ton of passive vibration damping materials modern 

commercial airplanes are another example with a high potential for benefiting from 

reduced weight and decreased vibration and noise levels. Assuming a constant lift-off 

weight for an airplane, active vibration control can help to transport more cargo in one 

flight and, therefore, reduce the number of necessary flights. Both industries, the 

automotive and the aircraft are spending millions of Dollars every year on research for 

new lighter materials and new technologies like active vibration damping. 
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The field of smart structures has been an emerging area of research for the last 

few decades. Smart structures or intelligent structures can be defined as structures that are 

capable of sensing and actuating in a controlled manner in response to an input. The 

ability of the piezoelectric materials to convert electrical to mechanical energy and vice 

versa makes them to be employed as actuators and sensors. A variety of different 

materials can be utilized as either sensor or actuator elements in smart structure 

applications. Depending on the specific material used, the sensor and actuator elements 

are controlled through electric, magnetic, thermal, or light energy. Some of the common 

actuator and sensor materials include: piezoelectric materials, shape memory alloys, fiber 

optics, electrostrictive materials, magnetostrictive materials, and electro-rheological 

fluids. In piezoelectric materials electrical charge is produced due to mechanical strain, 

this is called the direct piezoelectric effect and mechanical strain is produced due to an 

applied electric field, which is called the converse piezoelectric effect. The coupled 

mechanical and electrical properties of piezoelectric materials make them well suited for 

use as sensors and actuators. Other advantages of piezoelectric materials which help 

account for their widespread popularity include: simple integration into the structure; a 

readily obtainable commercial supply of piezopolymers and piezoceramics. The two 

common types of piezoelectric materials are lead zirconate titanate (PZT) ceramics and 

polyvinylidene fluoride (PVDF) polymers. When used as actuators, these materials can 

be used to generate a secondary vibration response in a mechanical system, which could 

reduce the overall response, by destructive interference with the original response of the 

system, caused by the primary source of vibration. 

This work deals with the modeling of a composite curved beam using finite 

element method assuming the Timoshenko beam theory. The dynamic characteristics of 

the structure are studied and piezoelectric layers are used to control its vibration. The 

vibration of the structure is controlled using constant gain negative velocity feedback 

controller. A neuro-controller is developed. Based on the training, this controller can be 

used for both linear and nonlinear control action. 



1.2 Preamble 
The primary objectives of this study are to develop a simple finite element for 

multilayered composite curved beam. The element has three mechancial degrees of 

freedom, two displacements and one slope, (i.e. shear rotations) per node and one 

electrical degree of freedom per piezoelectric layer. The accuracy of the element is 

demonstrated through the problems. In the present work the effect of radius of curvature 

on the tip deflection, shape control of composite curved beam, the effect of raidus of 

curvature on natural frequency, transient vibration control of composite curved beam and 

neuro-controller is developed for linear and non-linear control application. 

1.3 Organization of the thesis: 

Chapter 2 addresses background of smart material, piezoelectric constitutive 

relations and the strategies in the active vibration control have been discussed. 

Chapter 3 contains a brief discussion regarding the previous work that has been 

done in this field. Summarized details of work carried out by different authors, their 

objectives and conclusions are given. 

Chapter 4 details the development of the finite element model using the 

Timoshenko beam theory, the derivation of the equations is given in detail. 

Chapter 5 discusses the basic terminology of Neural Network. The importance of 

neuro-controller in smart structure is explained. The back-propagation algorithm is 

discussed. 

Chapter 6 presents the results and discussion part. 
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CHAPTER 2 
BACKGROUND 

This chapter covers the explanation regarding the smart structures which includes 

a brief description of the piezoelectricity and active control strategies for the vibration 

suppression. 

2.1 Smart Materials 

Materials of all kind play an important role in our society. It is obvious that new 

materials and applications are continuing to emerge. "Smart" materials are one of the 

emerging materials, in today's development of material science and technology. The 

concept of smart materials indicates few more special .  functions which are not being 

found in traditional structural materials. Smart materials are thus defined that the material 

which one has capability to "feel" a stimulus and suitably react to it just like any Iiving 

organism. Inanimate, as the material inherently is, it does not posses the capabilities of 

sensing and processing of stimulus and actuating the response [1]. 

Structural science and technology have made amazing developments in the design 

of electronics and machinery using standard materials, which do not have particularly 

special properties (i.e. steel, aluminum, gold). Imagine the range of possibilities, which 

exist for special materials that have properties scientists can manipulate. Some such 

materials have the ability to change shape or size simply by adding a little bit of heat, or 

to change from a liquid to a solid almost instantly when near a magnet; these materials 

are called "smart materials". In simple way we thus may define, the smart material that 

responds to change in temperature, moisture, electric and magnetic fields. 

An Intelligent structure consists of four basic components 

1. Structural system 

2. Sensory system 

3. Actuator system 

4. Controls 
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Fig 2.1 Intelligent Structure 

Fig. 2.1 gives an illustration of an Intelligent Structure. Smart materials and 

structures are considered to possibly have the capability to contribute to vibration 

suppression of the structure, hence improved performance of the system. The following 

are strengthens of smart material/structures concluded from the research of the past. 

Smart structures, with integrated sensors and actuator materials, might eliminate 

the need for heavy mechanical actuation systems or damping systems through their 

functionality for shape change or vibration control. 

Smart structures are lighter in weight, consume less energy and achieve higher 

performance levels. They are important because they have the ability to take advantage of 

new advancing computer technologies and integrated sensor/actuators [2]. 

For vibration control purposes, a number of smart materials can be used as 

actuators and sensors such as piezoelectric materials, magneto-rheological materials, 

electro-rheological materials, and shape memory alloys (SMA).Here, we concentrate on 

using piezoelectric materials because they have good broadband sensing and actuation 

properties. Different smart materials include: 

Piezoelectric Materials: Piezoelectricity is the ability of a material to develop an 

electrical charge when subjected to a mechanical strain and conversely. They have a 



recoverable strain of 0.1% under electric field; they can be used as actuators as well as 

sensors. Examples are PZT, PVDF, etc. 

Shape Memory Alloy (SMA): These materials appear attractive as actuators 

because of the possibility of achieving large excitation forces and displacements. These 

materials undergo phase transformation at a specific temperature. When plastically 

deformed at a low temperature, these alloys recover their original undeformed condition 

if the temperature is raised above the transformation temperature. This process can be 

repeated again. A remarkable characteristic of SMA is its large change of modulus of 

elasticity with heating (typically three to five times of the room temperature value). The 

most common SMA material is nitinol (nickel titanium alloy) and is available in the form 

of wires of different diameters. Though heating is carried, out internally (electrically), 

response is very slow (less than 1Hz). Examples are Ni-Ti alloys, Cu-Zn-Al, Cu-Al-Ni, 

Fe-Mn, and Fe-Mn-Si, etc. 

Electrostrictive Materials: These are quite identical to piezoelectric materials, 

with slightly better strain capability, but are very sensitive to temperature. Also, 

electrostrictive materials have a monopolar and nonlinear relation between electric field 

and induced strain. They exhibit negligible hysteresis. Piezoceramics can be elongated 

and compressed, while electrostrictive materials only exhibit an elongation, independent 

of the direction of the applied electric field. 

Magnetostrictive Materials: As a magnetostrictive material is magnetized, there 

is a change in length. Conversely if an external force produces a strain in 

magnetostrictive materials, its magnetic state will change. Magnetostrictive materials 

have a recoverable strain of 0.15% under magnetic field; the maximum response is 

obtained when the material is subjected to compressive loads. These materials generate 

low strain and moderate forces over a wide frequency range. These materials . are 

monopolar and nonlinear and exhibit hysteresis. Because of coil and magnetic return 

path, these actuators are often bulky. They can be used in high precision applications. 

Example is Terfenol-D. 
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Electro-Rheological (ER) Fluids and Magneto-Rheological (MR) Fluids: ER 

fluids are smart materials consisting of dielectric micro particles dispersed in an 

insulating liquid, usually silicon oil. When an external electric field is applied, they can 

be changed within a few milliseconds into a solid state but revert to liquids instantly 

when the current goes off. The phenomenon is so called ER effect. Magneto-Rheological 

(MR) fluids are comprised of micron sized iron particles that have been coated with anti 

coagulant material which are dispersed in an oil carrier. MR fluids experience a viscosity 

change when exposed to magnetic field. Examples of MR fluid is tiny iron particles 

suspended in oil and that of ER fluid are milk chocolate or cornstarch and oil [4]. 

Fiber Optics: This material is becoming popular as sensors because they can be 

easily embedded in composite structures with little effect on the structure integrity and 

also has potential of multiplexing. These fibers have relatively small diameters and can 

be embedded into the structure with negligible effects on the overall properties of the 

structure. In practical applications, a light source is sent into the network or grid of these 

fibers that are embedded in the structure. The signal is received at the other end and is 

processed or analyzed. Any changes in the light signal (phase, polarization, frequency, 

wavelength, intensity, etc.) would correspond to some mechanical changes in the 

structure. These sensors are useful in the health monitoring of the structure such as 

detecting cracks; and can also be designed to detect strains and other variables. A 

sophisticated network of fiber optics used in intelligent structures will be analogous to a 

nervous system of the structure. Another advantage of fiber optic is that it is virtually free 

from electromagnetic interference as well as having 'quite little energy loss from the 

transmission of light. Though it seems like an ideal sensor, its implementation might 

require embedding techniques which are non-trivial and the general engineering 

community has less than a high degree of familiarity with it [5]. 
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2.1.2 Piezoelectric Materials 

In 1880, Pierre and Paul-Jacques Curie discovered the direct piezoelectric effect 

on various crystals such as tourmaline, Rouchelle salt and quartz. The crystals generated 

electrical charges on their surfaces when they were mechanically strained in certain 

directions. In the following year, they also discovered the converse piezoelectric effect 

that the shape of crystals would change when an electric field was applied to them. 

The ability of the piezoelectric materials to exchange electrical and mechanical 

energy opens up the possibility of employing them as actuators and sensors. If the 

piezoelectric materials are bonded properly to a structure, structural deformations can be 

induced by applying a voltage to the materials, employing them as actuators. On the other 

hand, they can be employed as sensors since deformations of a structure would cause the 

deformed piezoelectric materials to produce an electric charge. The extent of structural 

deformation can be observed by measuring the electrical voltage the materials produce. 

Unfortunately, the piezoelectric effect in natural crystals is rather weak so they cannot be 

used effectively as actuators or sensors. 

However, recent developments in the field of materials science have provided 

piezoelectric materials that have sufficient coupling between electrical and mechanical 

domains. There are two broad classes of piezoelectric materials used in vibration control: 

ceramics and polymers. The piezopolymers are used mostly as sensors; because they 

require high voltages as well as they are lightweight and flexible so they are not effective 

as actuators on stiff structures. The best known is the polyvinylidene fluoride (PVDF). 

Piezoceramics are used extensively as actuators and sensors, for a wide range of 

frequency including ultrasonic applications. The best known piezoceramic is Lead 

Zirconate Titanate (PZT) [Pb (Zr, Ti) 03]. PZT has larger electromechanical coupling 

coefficients than PVDF so PZT can induce larger forces or moments on structures. 

However, PZT is relatively brittle while PVDF is flexible and can be easily cut into any 

desired shape. PVDF also has good sensing properties so it is commonly used for sensors. 

Piezoelectric materials offer a number of advantages over conventional actuators like low 

energy consumption, fast response, high efficiency and compactness. But they have some 

limitations also like voltage that can be applied is limited in the range of-500 V to 1500V, 

8 



the piezo materials cannot be used above their curie temperature, which is 200°C to 300 

°C due to possibility of depolarization. 

2.1.3 Piezoelectricity 
The piezoelectric effect is a property that exists in many materials. The name 

combines "piezo" which is derived from the Greek word for pressure, and "electric" from 

the Greek word for amber—static electricity generated by rubbing amber being the first 

known electric phenomenon. A rough translation is pressure-electric effect. In a 

piezoelectric material, the application of a force or stress results in the development of a 

charge in the material. Conversely, the application of a charge to the same material will 

result in a change in mechanical dimensions or strain. 

Several ceramic materials exhibit a piezoelectric effect. These include lead-

zirconate-titanate (PZT), lead-titanate (PbTi02), lead-zirconate (PbZrO3), and barium-

titanate (BaTiO3). Strictly speaking, these ceramics are not actually piezoelectric but 

rather exhibit a polarized electrostrictive effect. 

A material must be formed as a single crystal to be truly piezoelectric. Ceramics 

have a multi-crystalline structure made up of large numbers of randomly orientated 

crystal grains. The random orientation of the grains results in a net cancellation of the 

piezoelectric effect. The ceramic must be polarized to align a majority of the individual 

grain's effects. Nonetheless, the term "piezoelectric" has become interchangeable with 

"polarized electrostrictive effect" in most literature. 

Poling 

Piezoelectric ceramic materials are not piezoelectric until the random ferroelectric 

domains are aligned. This alignment is accomplished through a process known as poling. 

Poling consists of inducing a DC voltage across the material. The ferroelectric domains 

align to the induced field resulting in a net piezoelectric effect. It should be noted that not 

all the domains become exactly aligned. Some of the domains only partially align and 

some do not align at all. The number of domains that align depends upon the poling 

voltage, temperature, and the time the voltage is held on the material. 
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During poling the material permanently increases in dimension between the 

poling electrodes and decreases in dimensions parallel to the electrodes. The material can 

be de-poled by reversing the poling voltage, increasing the temperature beyond the 

material's Currie point, or by inducing a large mechanical stress. 

Post Poling 

Applied voltage: 
Voltage applied to the electrodes at the same polarity as the original poling 

voltage results in a further increase in dimension between the electrodes and decreases 

the dimensions parallel to the electrodes. Applying a voltage to the electrodes in an 

opposite direction decreases the dimension between the electrodes and increases the 

dimensions parallel to the electrodes. 

Applied force: 

Applying a compressive force in the direction of poling (perpendicular to the 

poling electrodes) or a tensile force parallel to the poling direction results in a voltage 

generated on the electrodes that has the same polarity as the original poling voltage. A 

tensile force applied perpendicular to the electrodes or a compressive force applied 

parallel to the electrodes results in a voltage of opposite polarity. 

Shear: 
Removing the poling electrodes and applying a field perpendicular to the poling 

direction on a new set of electrodes will result in mechanical shear. Physically shearing 

the ceramic will produce a voltage on the new electrodes. 

2.1.4 Piezoelectric constitutive relations 

Piezoceramic materials are assumed to be linear and the actuation strain is 

modeled like thermal strain. Piezoceramics can be idealized as an orthotropic material 

such as unidirectional laminated composite. The constitutive relations are based on the 

assumption that the total strain in the actuator is the sum of the mechanical strain induced 

by the stress, the thermal strain due to temperature and the controllable actuation strain 

due to electric voltage. 
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The axes are identified by numerals: 1 corresponding to x-axis, 2 corresponding 

to y-axis and 3 corresponding to z-axis .A piezoelectric material produces strains when an 

electric field is applied along its poling direction, which is generally along the 3-direction 

for a monolithic-type material Conversely, it generates electric displacement when it is 

strained. While the former property is used in actuation, the latter is used in sensing. Fig. 

2.2 shows the axis configuration of piezoelectric patch describing the directions of 

applied electric field. 

u 

Figure 2.2 Axis Configuration of Piezoelectric Patch 

Coupled electromechanical constitutive relations are: 

{o} = [Q] {e} — [e]T  {E} 
	

(2.1) 

{D} = [e] {s} + [s] {E} 
	

(2.2) 

Where 
{6} = Stress vector 

{s} = Strain vector 

[Q] = Elasticity constant matrix 

{E} = Electric field 

{D}= Electric displacement 

[e] = Piezoelectric constant stress matrix 

[s] = Dielectric constant matrix 
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Rewriting above equation 
C' 

DI 	0 	0 	0 	0 	d,5  0 E2 	SI I 	0 	0 	E1  
D2  = 0 	0 	0 d24  0 0 13  + 0 s22  0 E2  (2.3) 
D3 d3, d32 d33 0 0 0 -23 0 0 S33 E3 

613 
812 

Where d33 , d3, and d15  are called piezoelectric strain coefficient of a mechanical free 

piezo element. 

• d31  Characterizes strain in the 1 and 2 directions due to an electric field E3 in 

the 3 direction 

• d33  Characterizes strain in the 3 direction due to field in the 3 direction. 

• d15  Relates shear strains in 2-3 and 3-1 planes due to field respectively. 

Thus, if an electric field E3  is applied to a free piezo-element, it causes 

longitudinal strains 81 , 82  and 63 . If an electric field E, or E2 is applied, the material 

reacts with shear strain Y31 and 23 respectively. 

If a compressive force is applied in the polarization direction (axis 3), or tensile 

force is applied in the plane perpendicular to polarization direction (axis 2 or 1), it will 

result in a voltage that has the same polarity as the original poling direction. 

During the manufacture of a piezoceramic, a large (greater than I kV/mm) field is 

applied across the ceramic to create polarization. This is called coercive field during 

subsequent testing, if the field greater than coercive field, is applied opposite to the 

polarization direction, the ceramic will lose its piezoelectric properties. This phenomenon 

is called depoling. However, it is possible to repole the material. If an applied electric 

field is aligned with the initial polarization direction, there is no depoling sufficient high 

voltage can cause arcing or a brittle fracture. Poling is also possible if high temperature or 

large stress is applied. 
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2.2 Active control strategies for vibration suppression 
Active vibration control using smart structures is used to reduce the vibrations of 

a system by automatic modifications of the systems structural response. Smart structures 

are man-made engineered systems that mimic nature's ability to react to stimuli., Active 

vibration control is widely used because of its broad frequency response range, low 

additional mass, high adaptability and good efficiency. Figure 2.3 shows a typical active 

control system. It consists of sensors, which are used to monitor the mechanical response 

of the structure through changes in the displacements, strains, or accelerations. Once an 

adverse or undesirable structural response is detected in the sensors, a controller 

generates the required input to the actuators. The actuators respond to this input and 

produce a corresponding change in the mechanical response of the structure to a more 

acceptable state. 

Sensors 	 Actuators 
(PZT, PVDF, 	 Structure 	 (SMA,PZT,Ma 
Fiber Optics...) 	 gnetostictive...) 

Control System 

Figure 2.3 An Active Control System [2] 

The capability of smart structures to sense and adapt to their environment leads to 

a wide range of potential applications including: vibration suppression of aircraft 

structures; noise control of helicopter rotors; health monitoring of bridges; shape control 

of large space trusses [2]. 
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CHAPTER 3 
LITERATURE REVIEW 

In recent years many modeling and control techniques for smart structures have 

been proposed. This chapter offers a review of the current literature. The purpose of this 

chapter is to present a short survey of smart curved beam modeling using surface 

mounted sensors / actuators. In the latter part the application of Neural Network in the 

area of smart structure is surveyed. 

Ryu D. H., and Wang K.W. [20] has evaluated the effectiveness of different 

types and configurations of surface-bonded piezoelectric actuators on curved beams. 

Firstly, an analytical model for curved piezoelectric actuators is developed to investigate 

the actuation mechanism, considering the effects of the interfacial stresses as well as 

shear stresses. The average value of the moment distribution calculated from the 

interfacial stresses is used as a performance index to evaluate the actuation authority, 

treating the piezoelectric patch as a point moment actuator. Secondly, for the analysis of 

flat actuators, a three—dimensional finite element method is used to include the effects of 

interfacial peeling stresses. Finally, experiments are carried out to verify the numerical 

model. The results shows that effects of interfacial peeling stresses should be considered 

under certain conditions depending on the system parameters, especially when the 

thickness of the host structure is relatively thin. 

M.H.H. Shen [32] has been proposed a one-dimensional mathematical model for 

determining the mechanical responses of beams with piezoelectric actuators. This model 

is based on Timoshenko beam theory with the host beam and piezoelectric patches being 

separately modelled using beam elements. 
• l 

Hui-Ru Shih [19] has presented the distributed vibration sensing and control of 

piezoelectric laminated curved beam. The mathematical model of curved beam with a 

distributed piezoelectric sensor and actuator is formulated first, followed by vibration 

analysis. This model provides estimates of the sensor signal, actuator-induced membrane 

force, and actuator-induced bending moment, as well as predicting the controlled 
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damping ratio and dynamic response. The sensor sensitivity with various sensor 

thicknesses is studied and compared. 

P. Seshu, V.K.Gupta [23] has been developed a shell finite element formulation 

to model typical smart antenna shell structures incorporating piezoelectric actuators for 

their shape control. This element has been used to study the behavior of support curved 

beams under piezoelectric actuation. Experiments have been conducted to study static 

actuation of straight and curved beams under varying amplitude of field. 

Balamurugan, V. and Narayanan, S. [22] have dealt with the active vibration 

control offceam like structure with distributed piezoelectric sensor and actuator layers 

bonded on top and bottom surfaces of the beam. A finite element model based on 

Bernoulli-Euler beam theory has been developed. The contribution of the piezoelectric 

sensor and actuator layer on the mass and stiffness of the beam is considered. Three types 

of classical control strategies, namely direct proportional feedback, constant-gain 

negative feedback and Liyapunov feedback and an optimal strategy, Linear Quadratic 

Regulator (LQR) scheme are applied to study their control effectiveness. 

Balamurugan, V. and Narayanan, S. [9] has dealt with finite element modelling 

of laminated structures with distributed piezoelectric sensor and actuator layers and 

control electronics. The effects of temperature on the electrical and mechanical properties 

and the coupling between them are also taken in to consideration in the finite element 

formulation. The formulations are based on the first order deformation theories. 

Constant-gain negative feedback and Liyapunov feedback and an optimal strategy, Linear 

Quadratic Regulator (LQR) approach are used for active vibration control with structures 

subjected to impact, harmonic and random excitations. The influence of pyroelectric 

effects on the vibration control is investigated. The LQR approach is found to be more 

effective in vibration control with lesser peak voltages applied in the piezo actuator layers 

as in this case control gains are obtained by minimizing a performance index 

Sudhakar A. Kulkarni, Kamal M. Bajoria [8], have presented a finite element 

formulation of a degenerate shell element, using higher order shear deformation theory. 
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An eight-noded element is used to derive global coupled electro elastic behavior of the 

overall structure. The model incorporates the warping of cross section due to transverse 

shear stresses and assumes a parabolic shear strain variation over the thickness. The static 

deflections of bimorph beam are compared with the literature. Active vibration control 

performance of the piezolaminated curved beam with distributed sensors and actuators is 

studied. The variation of the damping effect with different gains and actuator coverage is 

studied. 

Snyder and Tanaka [24] developed a nonlinear feedforward controller for smart 

structures, and they showed that the neural network is essentially a transversal filter with 

a nonlinear hidden layer between the input and output. 

Chen of al. [25] presented a numerical study related to the active control of the 

vibrations of a cantilevered beam with piezoelectric actuators using Modified Modal 

Space Control (M.I.M.S.C.) algorithm coupled with Neural Network for state estimation. 

The neural network state estimation for this modal parameter has to be designed with 

training data given by numerical simulation of the M.I.M.S.C. algorithm. The design 

takes place through the implementation of back propagation algorithm. 

Vital Rao and Damle et al. [26] presented some of the structural identification 

and robust control methods used for smart structure applications. Experimental results of 

both identification and robust control of two smart structure test articles has been 

presented. A new adaptive learning rate algorithm and an adaptive neuron have been 

introduced to enhance learning in multi-layered neural networks. 

Yi-Kwei Wen, Jamshid Ghaboussi, Paolo Venini and Khashayar Nikzad [27] 

have presented a method of control of structures based on neural networks. Analytical 

and experimental investigations have been discussed and finally numerical examples are 

given of control of a non-linear single degree of freedom structure by neural net. 

James Douglas Schieffer and Kelvin Erickson [28] have developed a neur-

ocontroller to control the vibration of a cantilever beam. The neural network uses only 

past tip position to predict the position of cantilever beam tip for the next five samples. 
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The output of the neural net structure is then used to calculate predictions of the velocity 

and acceleration are then used to calculate the voltage needed to excite piezo-ceramic 

actuators in order to bring the beam back to its steady state. The controller brings the 

beam back to resting position when subjected to impulse and a random input to the beam 

significantly faster than when the beam has no control. 

K.Chandrashekhara, M.T.Valoor and S.Agarwal [29] have developed a self 

adapting vibration control system is developed. A hybrid system comprised of a 

dynamical diagonal recurrent neural network and an adaptive feedforward neural network 

is used to control the beam vibrations. A finite element model based on shear 

deformation theory is used to simulate the vibration response of laminated composite 

beams with integrated piezoelectric sensors and actuators. A robustness study including 

the effects of tip mass, structural parameter variation and partial loss of sensor output is 

performed. 

Ratneshwar jha and Chengli He [30] has presented a comparison of neuro-

controller with standard LQR control system for vibration reduction. Controller 

performances are tested using an experimental setup employing a cantilevered plate with 

surface bonded PZT actuators. The result shows that the neural adaptive predictive 

controller is very promising in terms of control effectiveness and control effort in the 

vibration suppression of smart structures. 

Gwo-Shing Lee [14] has implemented neural networks to system identification 

and vibration suppression of smart structures. Three neural networks are developed, one 

for system identification, the second for online state estimation, and the third for 

vibration suppression. It is shown both in analysis and in experiment that these neural 

networks can identify, estimate, and suppress the vibration of a composite structure with 

embedded piezoelectric sensor and actuator. 
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CHAPTER 4 
FEM FORMULATION 

There are two FEM models available for Beams. In Euler Bernoulli Beam Theory 

the assumption made is, plane cross section before bending remains plane and normal to 

the neutral axis after bending. Timoshenko Beam Theory corrects the simplifying 

assumptions made in Euler Bernoulli Beam theory. In this theory cross sections remain 

normal to the deformed longitudinal axis. The deviation from normality is produced by a 

transverse shear is assumed to be constant over cross section [6]. Thus the Timoshenko 

Model is superior than Euler Bernoulli model in precisely predicting the beam response. 

Timoshenko beam theory is used in this work to generate the FE model of cantilever 

curved layered beam with distributed on both side by piezoelectric material 

Piezoelectric elements can be incorporated into a laminated composite structure, 

either by embedding them or by mounting them onto the surface of the host structure. 

Surface mounted piezoceramic elements are usually bonded to the surface of a structural 

element and transfer stresses to the structural member according to the magnitude of the 

excitation voltage applied to them. There are two beam models in common use in 

structural mechanics, these are as follows 

4.1 Euler-Bernoulli (EB) Model 

This is called classical beam theory or engineering beam theory. This model 

accounts for bending moment effects on stresses and deformations. The effect of 

transverse shear forces on beam deformation is neglected. Its fundamental assumption is 

that cross sections remain plane and normal to the deformed longitudinal axis as shown in 

fig.4.1. The rotation 0 is due to bending stress alone neglecting the transverse shear 

stress. This rotation occurs about a neutral axis that passes through the centroid of the 

cross section [3]. 
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Figure 4.1 Euler Bernoulli Beam Model [3] 

4.2 Timoshenko Beam Model 
In this theory cross sections remain plane and rotate about the same neutral axis as 

the EB model, but do not remain normal to the deformed longitudinal axis as shown in 

fig.4.2. The deviation from normality is produce by a transverse shear that is slope of the 

beam consists of two parts, one due to bending and other due to shear [3]. 

normal to reference 

direction of de 
cross section 

Figure 4.2 Timoshenko Beam Model [3] 
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4.3 Displacement Function 
Using the assumptions of Timoshenko beam model [6], displacement field is 

given as: 

u(x,z,t) = u0  (x, t) + z0, (x, t) w(x,z,t) = w0(x,t) 
	

(4.1) 

where (uo,wo) are the displacements of a point on the mid-plane of beam, and O, is the 

rotation (about the y-axis) of a transverse normal line as shown in fig 4.3. 

z' W  

R 

t'iezoiayer 

Figure.4.3 Geometry and co-ordinate systems of beam element 

One-dimensional interpolation (shape) functions are used to define the geometry 

field at any point in the element. These shape functions relate the curvilinear coordinates 

in the nodal Cartesian coordinate system to the element coordinate system. These shape 

functions are, 

N1(4)—_(1—fl 	N2()=--(1+) 	 (4.2) 

The element has three'elastic degrees of freedom uo  , w,, and By per node. 

{8,}e  = { uo; x''01 ,y;, T 	i =1, 2 	 (4.3) 

where u01 , w0, are the displacements along x and z axes respectively at node i and Byj  is 

the rotation of normal about y-axis of node i. 
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Using the shape functions, one can define all field variables as follows, 
2 	 2 

u=~N;u0i +NJ z9 t 	w = N;wo, 	ey — j N'By' 

Field variables can be written in matrix form as follows, 

(4.4) 

u Nl 0 zNl N2 0 
{u} = 	= 0 Nl 0. 0 N2 JOW.

y0 0 N1 0 0 

U 
01 

w 01 
zN2 e 
0 	Y1 _ [Nu ]{8}e 

u 
N
2 

02 

w 
02 

0 
y2 

(4.5) 

4.4 Strain-displacement relationship 

The strain displacement relationship is given as, 

au au 	aB 
R + z ox l , 	_ £ p + Z£b 

Where, 

£ p= aax~ +R I Eb = 
ao  Ou 

=a }-Fz ax1,£S _C 

Above equation can be written as, 

~p =[---- 
 'Ni 0 	N2 O][uoi w01 6yl u02 w02 0y2 ]T =[Bu ]{8}c (4.8) 

£b [0 0 a Ox 1 0 0 a~ 21 [uol w01 9y1 u02 w02 9y2 ]T = [Bb ] {8}e (4.9) 

ES = [— Rl 	a~ 	1 Ni RZ as N2 ] [uo i w01 0 u02 W02 Bye ]T 4.10 
_ [Bs ] {8}e 

where [B.], [Bb] and [BS ] are the matrix in terms of shape function and its derivative. 

(4.6) 

(4.7) 
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4.5 Constitutive equations of piezoelectric materials 

The linear equations coupling elastic field and electric field in piezoelectric 

medium are expressed by the direct and converse piezoelectric equations, respectively. 

{o} = [Q] {e} - [e]T {E} 
	

(4.11) 

{D} = [e] {s}+[s]{E} 
	

(4.12) 

where [Q] = transformed stiffness matrix = [T ]T [Q] [T ] 

cos e 	0 
[T] _ 

0 cosO. 

[e] = transformed piezoelectric constant matrix= [T ]T [e ] 

[e] = piezoelectric constant value 

_  E'  0 
[Q] =stiffness matrix= (1— v12)(1— v21) 

0 	G13 

The present element has three degrees of freedom u0, , w01 , 8y; per node and one 

electrical degree of freedom, 0 per element per piezoelectric layer. The electric field can 

be written as, 

00 

E 	ax 

x a~ 

{E} = 

Ey =- 

EZ 	a0 
az 

0 0 

_ lts _ 	0 ~S= B 
0 	0 {øa} — [ B]

{o} 
 

0 lta 

(4.13) 

Where t., and tQ are thickness of piezoelectric sensor and actuator respectively. 
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4.6 Force and Bending Moment 

For a piezolaminated composite laminate, if {F} represents the membranes stress 

resultants and {M} represents the bending stress resultants for n layers will be written as, 

+h/2 +  h12 	 n h {F} = $ 6dz = Z 57 /' a., dz 	{M} = f azdz = 	6 z dz (4.14) 
-h/2  k=1 k-1  -h/2  k=1 k-1 

From equations (4.11), (4.12), (4.13) equation (4.14) reduces to, 

{F}=[A]{s p}+[B]{sb}— j [e]T{E} dz 
'p 	 (4.15) 

{M}=[B]{s p}+[D]{sb}— J z [e]T{E} dz 
tp 

where 

[A] = y f hk [Q]k dZ [B] = Y- f k-1 hk [Q]k z dz [D] = fhk [Q]k Z2 dZ 	(4.16) 
k=1 k-1 	 k=1 	 k=1 k-1 

The transverse, shear stresses of the kth lamina can be written as, 

{rxz} _"[Q]{es }k 	 (4.17) 

If {S} represents transverse shear force resultant then, 

+h/2 

{S} = $ Izc } dz = [Es ]{e, } 	 (4.18) 
-h/2 

Where [ES ] is shear stiffness coefficients of laminate given by, 

h 

[ Es ] = k~ kS2 h f [Q]kdz 	 (4.19) 
k-1 

Where ks is shear correction factor [7]. 
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4.7 Energy Formulation 

4.7.1 Strain Energy 

Using the Variational principle the strain energy functional, V is given by 

V = 2 j ({eP }T {F}+{sb }T {M}+{ss }T {S}) dA 

- J ({ EP  }T  + Z{Eb }T ) [e]T  {E }T dV 	
(4.20) 

VP  

V = 2 {S}e [Kuu ] {8}e  F {5}e [K 0 ]e  { $}e 	 (4.21) 

[K..]e  = Jb [[Ba]T  [A][Ba]+[Bb]T  [B][Bb]+[Bb]T  [B][B.]+[Bb]T  [D][Bb] 
0 

+[BS]T  [EE][BS]] dl 

[ O]e  = 5 [[B,]T  [e]T  [BO ]T  +Z[Bb ]T  [e]T  [B0 ]] dV 	 (4.22) 
VP  

where [Kuu ] the element stiffness matrix is[K 0 ]  is the element elastic-electric coupling 
e 	e 

stiffness matrix and b is width of beam. 

4.7.2 Electrical Energy Equation 

Using constitutive relations, strain displacement and electric field electric-

potential relations, the element electrical energy can be written as, 

We  = 2 f {E }T  {D}dV 
VP  

K'e 

 

where, V. is volume of piezoelectric layer. 

(4.23) 

=-.  2 J {O}e [BO ]T  [e] [ [Ba ] +z[Bb  ] ] {8} d V — 2 J {o}e  [B0  ]T  [s] [B0  ] {o}e 
 dV (4.24) p 	 P 

We = — 2 {O}e [Kou  ]{8}e  — 	](ø}e 	 (4.25) 
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where ([K0] _ [Kuo ]T ) is element elastic-electric coupling stiffness matrix and [K00 ] is 

element electric stiffness matrix. 

4.7.3 Work done by external forces and electric charge 

The work done by the surface force and the applied electrical charge density is 

given by 

Ws = f{u}T{fs}dA—f[E]T{q}dA 
	

(4.26) 
A 	 A 

Where { fr  } and {q} are the surface force intensity and surface electrical charge density, 

respectively. The above equation can be written as 

W = {5}' {Fs } +{o}T {Fq }e 
	 (4.27) 

Where, {FS}e  is an applied mechanical force in an element due to surface forces and are 

the {Fq}e  applied electrical charge in an element. 

4.7.4 Kinetic energy equation 

The element kinetic energy is 

T=2muo +2miv2+2IBy 	 (4.28) 

Where, 

{uo } = [Nu ] {S}e {N'} = [ ivy] {d}e  {9y  } = [Ney  ] {8}e 	 (4.29) 

T = 2{S}e bJa[P([Nu ]T  [Nu]+[Nw]r [Nw])+I([Ney ]T  [Net ])] dl{S}e 	(4.30) 

Where, 

P =
k_1 k-1 

$I 	pdz , 	I = k1f hhk-1 z 2  pdz and n is the number of layers -  
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T = 2 {S}e [Muu ] {8}e 	 (4.31) 

where [Muu ] is element mass matrix. 

4.8 Equation of motion 

Hamilton's principle assumes that the energy variation over an arbitrary period of 

time is zero. Using Hamilton principle, the governing equation for an element can be 

written as 

J7(T-V+W)dt=0 
r 

(4.32) 

Putting equations (4.21), (4.25), (4.27) and (4.31) in equation (4.32), we get following 

global equations of motion and is given by, 

[Muu]e{S}e+[Kuu]e{CS}e+[Kuo]e{0}e -{F}e 	 (4.33) 

[Kcsu ]e {8}e +[Koo1e{0}e ={Fq }e 	 (4.34) 

The eq. (4.34) can be written as, 

{0}e = [KKO]e ' {F9}e —[KKO]e ' [Kgu ]e{8} 	 (4.35) 

Substituting eq. (4.35) in eq. (4.34) we get, 

[Muu]e{~}e +[[Kuu]e -[Ku~]e [Ko]e1 [Kqu ]e ]16}e = ̀ F}e -[Kuo ]e [K~]el { F}e (4.36) 

When eq. (4.34) is applied to sensors where the external applied charge is zero, 

the sensed voltage is given by 

{øs }e ` —[KOO ]se [Køu ]se {(S }e 	 (4.37) 

Subscript `s' denotes the sensor layer. In general, all the structures are lightly damped. 

Hence adding the artificial linear viscous damping the global equations of motion can be 

obtained by assembling the elemental equations and is given by, 

[Muu]{S}+[C u ]{8}+[[Kuu ] - [K ~][K~]-'[KKu ]]{d} = {F }-[Kum ][K ]'{F}  (4.38)s 

26 



where [Muu  ] , [K, J ,([K0]   =[K0 ]), [KOO  ] and {F5 } are the corresponding global quantities. 

{qa  } is the actuator voltage vector and [C ] is the structural damping included via 

Rayleigh damping which is given by, 

[ uu] — a[M]+Q[K] 	 (4.39) 

where a and fi  are the Rayleigh's constant and [M] , [K] effective mass and stiffness 

matrix. 

4.9 Negative velocity feedback and vibration control 

In order to provide proper velocity information to the piezoelectric actuators, the 

voltage induced in the sensor layer is differentiated and fed back. Accordingly, a 

feedback control gain is used . to enhance the sensor signal and also to change its sign 

before the voltage is injected into the piezoelectric actuators [8]. 

Constant-gain negative velocity feedback 

In this method of control, the sensor signal is differentiated so that strain rate (related to 

velocity) information is obtained and the actuator voltage is given by 

0a(t) = —GØ(t) 
	

(4.40) 

The velocity feedback can enhance the system damping and therefore effectively 

control the oscillation amplitude decays the feedback voltage also decreases. This will 

reduce the effectiveness at low vibration levels for a given voltage unit. In order to 

provide proper velocity information to the piezoelectric actuators, the voltage induced in 

the sensor layer is differentiated and fed back. Accordingly, a feedback control gain is 

used to enhance the sensor signal and also to change its sign before the voltage is injected 

into the piezoelectric actuators [9]. 



CHAPTER 5 

NEURAL NETWORK 

5.1 Introduction 
Work on artificial neural networks, commonly referred to as "neural networks," 

has been motivated right from its inception by the recognition that the human brain 

computes in an entirely different way from the conventional digital computer. The brain 

is a highly complex, nonlinear, and parallel computer (information-processing system). It 

has the capability to organize its structural constituents, known as neurons, so as to 

perform certain computations (e.g., pattern recognition, perception, and motor control) 

many times faster than the fastest digital computer in existence today. 

A "developing" neuron is synonymous with a plastic brain: Plasticity permits 

developing nervous system to adapt to its surrounding environment. Just as plasticity 

appears to be essential to the functioning of neurons as information-processing units in 

the human brain, so it is with neural networks made up of artificial neurons. In its most 

general form, a neural network is a machine that is designed to model the way in which 

the brain performs a particular task or function of interest; the network is usually 

implemented by using electronic components or is simulated in software on a digital 

computer. To achieve good performance, neural networks employ a massive 

interconnection of simple computing cells referred to as "neurons" or "processing units." 

We may thus offer the following definition of a neural network viewed as an adaptive 

machine: 

A neural network is a massively parallel distributed processor made up of simple 

processing units, which has a natural propensity for storing experiential 

knowledge and making it available for use. It resembles the brain in two respects: 

1. Knowledge is acquired by the network from its environment through a learning 

process. 

2. Interneuron connection strengths, known as synaptic weights, are used to store 

the acquired knowledge. 
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The procedure used to perform the learning process is called a learning algorithm, 

the function of which is to modify the synaptic weights of the network in an orderly 

fashion to attain a desired design objective. 

The modification of synaptic weights provides the traditional method for the 

design of neural networks. Such an approach is the closest to linear adaptive filter theory, 

which is already well established and successfully applied in many diverse fields. 

However, it is also possible for a neural network to modify its own topology, which is 

motivated by the fact that neurons in the human brain can die and that new synaptic 

connections can grow [11]. 

5.2 Benefits of Neural Networks 

It is apparent that a neural network derives its computing power through, first, its 

massively parallel distributed structure and, second, its ability to learn and therefore gen-

eralize. Generalization refers to the neural network producing reasonable outputs for 

inputs not encountered during training (learning). These two . information-processing 

capabilities make it possible for neural networks to solve complex (large-scale) problems 

that are currently intractable. 

The use of neural networks offers the following useful properties and capabilities: 

1. Nonlinearity. An artificial neuron can be linear or nonlinear. A neural network, 

made up of an interconnection of nonlinear neurons, is itself nonlinear. Moreover, the 

nonlinearity is of a special kind in the sense that it is distributed throughout network. 

2. Input-Output Mapping. A popular paradigm of learning called learning with a 

teacher or supervised learning involves modification of the synaptic weights of a neural 

network by applying a set of labeled training samples or task examples. Each example 

consists of a unique input signal and a corresponding desired response. The training of 

the network is repeated for many examples in the set until the network reaches a steady 

state where there are. no further significant changes in the synaptic weights. The 

previously applied training examples may be reapplied during the training session but in 

a different order. Thus the network learns from the examples by constructing an input-

output mapping for the problem at hand. 
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3. Adaptivity. Neural networks have a built-in capability to adapt their synaptic 

weights to changes in the surrounding environment. In particular, a neural network 

trained to operate in a specific environment can be easily retrained to deal with minor 

changes in the operating environmental conditions. The natural architecture of a neural 

network for pattern classification, signal processing, and control applications, coupled 

with the adaptive capability of the network, make it a useful tool in adaptive pattern 

classification, adaptive signal processing, and adaptive control. 

4. Evidential Response. In the context of pattern classification, a neural network 

can be designed to provide information not only about which particular pattern to select, 

but also about the confidence in the decision made. This latter information may be used 

to reject ambiguous patterns, should they arise, and thereby improve the classification 

performance of the network. 

5. Contextual Information. Knowledge is represented by the very structure and 

activation state of a neural network. Every neuron in the network is potentially affected 

by the global activity of all other neurons in the network. Consequently, contextual 

information is dealt with naturally by a neural network. 

6. Fault Tolerance. A neural network, implemented in hardware form, has the 

potential to be inherently fault tolerant, or capable of robust computation, in the sense 

that its performance degrades gracefully under adverse operating conditions. For 

example, if a neuron or its connecting Iinks are damaged, recall of a stored pattern is 

impaired in quality. However, due to the distributed nature of information stored in the 

network, the damage has to be extensive before the overall response of the network is 

degraded seriously. Thus, in. principle, a neural network exhibits a graceful degradation 

in performance rather than catastrophic failure [Ii]. 

5.3 Model of a Neuron 

A neuron is an information-processing unit that is fundamental to the operation of 

a neural network. The block diagram of Fig.5.1 shows the model of a neuron, which 

forms the basis for designing (artificial) neural networks. Here we identify three basic 

elements of the neuronal model [1 1]: 



1. A set of synapses or connecting links, each of which is characterized by a 

weight or strength of its own. Specifically, a signal x;  at the input of synapse 'i' connected 

to neuron 'k' is multiplied by the synaptic weight w,a. It is important to make a note of the 

manner in which the subscripts of the synaptic weight w are written. The first subscript 

refers to the neuron in question and the second subscript refers to the input end of the 

synapse to which the weight refers. Unlike a synapse in the brain, the synaptic weight of 

an artificial neuron may lie in a range that includes negative as well as positive values. 

2. An adder for summing the input signals, weighted by the respective synapses 

of the neuron; the operations described here constitutes a linear combiner. 

3. An activation function for limiting the amplitude of the output of a neuron. The 

activation function is also referred to as a squashing function in that it squashes (limits) 

the permissible amplitude range of the output signal to some finite value 

x1 

x2 

X3 

xn  

Yk 

	

Inputs 	 Summation of 
weighted inputs 

Figure 5.1 Nonlinear model of a neuron [12] 

An effective synapse which transmits a stronger signal will have a 

correspondingly larger weight while a weak synapse will have smaller weights. Thus, 

weights here are multiplied factors of the inputs to account for the strength of the 

synapse. Hence, the total input received by the neuron is 

uk = Wkl x1  + w 	+.....+w   nxn 	 (5.1) 

n . 

	

_ Y xi 	 (5.2) 

on 
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and Yk  =f(uk+bk)=f(vk) 	 (5.3) 

where uk  is the linear combination output due to input signals; and bk  is bias; J( ) 

is the activation function; and yk  is the output signal of the neuron. 

5.4 Network Architectures 
The manner in which the neurons of a neural network are structured is intimately 

linked with the learning algorithm used to train the network. In general, there are three 

fundamentally different classes of network architectures [11]. 

5.4.1. Single-Layer Feedforward Networks 

In a layered neural network the neurons are organized in the form of layers. In the 

simplest form of a layered network, there is an input layer of source nodes that projects 

onto an output layer of neurons (computation nodes), but not vice versa. In other words, 

this network is strictly a. feedforward or acyclic type. It is illustrated in Fig.5.2 for the 

case of four nodes in both the input and output layers. Such a network is called a single-

layer network, with the designation "single-layer" referring to the output layer of 

computation nodes (neurons). The input layer of source nodes is not counted because no 

computation is performed there. 

Inputs Outputs 

Input layer 	 Output layer 
of source node 	of neurons 

Figure 5.2 Single layer feedback network [11] 
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5.4.2. Multilayer Feedforward Networks 
The second class of a feedforward neural network distinguishes itself by the 

presence of one or more hidden layers, whose computation nodes are correspondingly 

called hidden neurons or hidden units. The function of hidden neurons is to intervene 

between the external input and the network output in some useful manner. By adding one 

or more hidden layers, the network is enabled to extract higher-order statistics. In a rather 

loose sense the network acquires a global perspective despite its local connectivity due to 

the extra set of synaptic connections and the extra dimension of neural interactions. The 

ability of hidden neurons to extract higher-order statistics is particularly valuable when 

the size of the input layer is large. 
The architectural graph in Fig. 5.3 illustrates the layout of a multilayer 

feedforward neural network for the case of a single hidden layer. 

Inputs 
puts 

Input layer 	 Layer or maaen Layer or ouLpur 

of source 	 neurons 	neurons 

nodes 

Figure 5.3 Multilayer feedback network [ 11 ] 

The neural network in Fig. 5.3 is said to be fully connected in the sense that every 

node in each layer of the network is connected to every other node in the adjacent 

forward layer. If, however, some of the communication links (synaptic connections) are 

missing from the network, we say that the network is partially connected. 
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5.5 Learning Process 
Learning is the process by which the free parameters of a neural network are 

adapted through a process of simulation by the environment in which the network is 

embedded. The type of learning is determined by the manner in which the parameter 

changes takes place [11]. 

Learning methods in Neural Network can be broadly classified into three basic 

types: supervised, unsupervised, and reinforced. 

1. Supervised learning. In this learning method, every input pattern that is used to 

train the network is associated with an output pattern, which is the target or the desired 

pattern. A teacher is assumed to be present during the learning process, when a 

comparison is made between the network's computed output and the correct expected 

output, to determine the error. The error can then be used to change network's 

parameters, which result in an improved in performance. 

2. Unsupervised learning. In this learning method, the target output. is not 

presented to the network. It is as if there is no teacher to present the desired patterns and 

hence, the system learns of its own by discovering and adapting to structural features in 

the input patterns. 

3. Reinforced learning. In this method, a teacher though available, does not 

present the. expected answer but only indicates if the computed output is correct or 

incorrect. The information provided helps the network in its learning process. A reward is 

given for a correct answer computed and a penalty for a wrong answer [12]. 

5.6 Training Multilayer Networks 

The procedure for selecting the network parameters (weights and biases) for a 

given problem is called training the network [13]. In this section a training procedure 

described called backpropagation. The training process requires a set of examples of 

proper network behavior - network inputs and target outputs. During training the weights 

and biases of the network are iteratively adjusted to minimize the network performance 

function. The default performance function for feedforward networks is mean square 
error (mse - the average squared error between the network outputs and the target 

outputs). 

34 



5.6.1 Back propagation Networks 
Back propagation is a symmetric method of training multilayer artificial neural 

networks. It is built on high mathematical foundation and has very good application 

potential. It is applied to a wide range of practical problems and has successfully 

demonstrated its power [12]. 
The training of a Multilayer network is usually accomplished by using a back-

propagation. (BP) algorithm that involves two phases 

1. Forward Phase. During this phase the free parameters of the network are fixed, 

and the input signal is propagated through the network. The forward phase finishes with 

the computation of an error signal. 

e;  =(y' —y) 
	

(5.4) 

where ya is the desired output and y, is the actual output produced by the network in 

response to the input xi. 

2. Backward Phase. During this second phase, the error signal e, is propagated 

through the network in the backward direction, hence the name of the algorithm. It is 

during this phase that adjustments are applied to the free parameters of the network so as 

to minimize the error in a statistical sense. 

5.6.2 Back Propagation Algorithm 

The back-propagation algorithm is central to much current work on learning in 

neural networks. Back-propagation learning may be implemented in one of two basic 

ways, as summarized here: 

1. Sequential mode (also referred to as the on-line mode or stochastic mode): In 

this mode of BP learning, adjustments are made to the free parameters of the network on 

an example-by example basis. The sequential mode is best suited for pattern 

classification. 

2. Batch mode: In this second mode of BP learning, adjustments are made to the 

free parameters of the network on an epoch by- epoch basis, where each epoch consists of 

the entire set of training examples. The batch mode is best suited for nonlinear regression 

[11]. 
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The algorithm gives a prescription for changing the weights wpq in any feed- 

forward network to learn a training set of input-output pairs. The network is shown -in fig. 

5.4. , x is n x l input vector and y is a m x l diagonal output vector. The hidden layer 

consists of h computational units, w represents a typical connection weights between 

output layer and hidden layer while wok represents a typical connection weight between 

hidden layer and input layer. 

V, 

A 

x 

r k 

Input layer 	Hidden layer 	Output layer 

Figure 5.4 A two layered network [11] 

Forward Propagation 

The forward response of such a network is given as follows: 

The input to the ]" hidden unit is expressed as 
n 

S = W kxk 	 (5.5) 
k=1 

Output of the jth hidden unit is given as 

v~ = f (S~) 	 (5.6) 

wheref is the squashing function, generally taken as sigmoidal activation  

1+e 	
(5.7) 

Finally the input to the ith output unit is 
h 

(5.8) 

Output y is given as 

y, _f(q) 	 (5.9) 
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Backward Propagation 
The instantaneous error back propagation algorithm is derived following the simple 

gradient principle where, a typical weight W;j between output layer (j) and hidden layer 

(i) is updated as follows 

W,j(t+1)=w;j(t)-rim 
	

(5.10) 

where i is the learning rate and e = 2 (yd (t) — y(t))2 is the error function to be minimized 

[15]. 

Algorithm 
The implementation of error back-propagation algorithm can be given as follows [15] 

1. Initialize the weights to small random values. 

2. Choose a pattern Xk k=1, 2.......n and apply it to the input layer. 

3. Propagate the signal forward. through the network using 
n 

_ W~k xk 	 (5.11) 
k=1 

v = f (S~) j =1,2......h 	 (5.12) 

h 
q, = 	w,jv j 	 (5.13) 

yt = .f (q:) i =1,2......a 	 (5.14) 

4. Compute the details for the output layers 

(5.15) 

By comparing the actual outputs y, with the desired ones yd for the pattern xk 

being considered. 

5. Compute the details for the hidden Iayers by propagating the errors backwards 

Aj = f(S )l w,c5 	 (5.16) 
i=] 

6. Use 
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W (t + 1) = wry (t) +7]81'v~ 

WJ t+l = tiv. t + 0 .x 	
(5.17) 

~k ( ) - ~k O ~ ~ k 

to update all connections. 

7. Go back to step 2 and repeat for the next pattern. 

5.7 Steps involved in developing an Artificial Neural Network 

A number of issues should be considered before initiation of any network 

training. Some of the following issues are relevant to BP ANNs while others are 

applicable to the design of all ANN types [16]. 

i) Database size and partitioning 

Models developed from data generally depend on database size. ANNs, like other 

empirical models, may be obtained from databases of any size, however generalization of 

these models to data from outside the model development domain will be adversely 

affected. Data to be used for training should be sufficiently large to cover the possible 

known variation in the problem domain. The development of an ANN requires 

partitioning of the parent database into three subsets: training, test, and validation. The 

training subset should include all the data belonging to the problem domain and is used in 

the training phase to update the weights of the network. The test subset is used the 

learning process to check the network response for untrained data. The data used in the 

test subset should be distinct from those used in the training. Based on the performance of 

the ANN on the test subset, the architecture may be and/or more training cycles applied. 

The portion of the data is the validation subset which should include examples different 

from those in the other two subsets. 

ii) Data preprocessing, balancing, and enrichment 

Several preprocessing techniques are usually applied before the data can be used 

for training to accelerate convergence. Among these are noise removal, reducing input 

dimensionality, and data transformation, treatment of non-normally distributed data, data 

inspection, and deletion of outliers. To balance a database, some of the over-represented 

classes may be removed or extra examples pertaining to the under-represented class 
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added. Another way is by duplicating the underrepresented input / output examples and 

adding random noise to their input data. 

iii) Data normalization 

Normalization (scaling) of data within a uniform range (e.g., 0-1) is essential (i) to 

prevent larger numbers from overriding smaller ones, and (ii) to prevent premature 

saturation of hidden nodes, which impedes the learning process. 

iv) Input /output representation 

Proper data representation also plays a role in the design of a successful ANN, the 

data inputs and outputs can be continuous, discrete, or a mixture of both. Binary inputs 

and outputs are very useful in extracting rules from a trained network. 

v) Network weight initialization 

Initialization of a network involves assigning initial values for the weights (and 

thresholds) of all connections links. Weights initialization can have an effect on network 

convergence. Typically, weights and thresholds are initialized uniformly in a relatively 

small range with zero-mean random numbers. 

vi) BP Learning rate (,) 

A high learning rate, , , will accelerate training (because of the large step) by 

changing the weight vector, w, significantly from one cycle to another. However, this 

may cause the search to oscillate on the error surface and never converge, thus increasing 

the risk of overshooting a near-optimal w. In contrast, a small learning rate drives the 

search steadily in the direction of the global minimum, though slowly. A constant 

learning rate may be utilized throughout the training process. 

vii) BP momentum coefficient (,u) 

A momentum term is commonly used in weight updating to help the search 

escape local minima and reduce the likelihood of search instability. A p accelerates the 

weight updates when there is a need to reduce i to avoid oscillation. A p >1.0 yields 

excessive contributions of the weight increments of the previous step and may cause 

instability. Conversely, an extremely small µ leads to slow training. 
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viii) Transfer function 

The transfer (activation) function is necessary to transform the weighted sum of 

all signals impinging onto a neuron so as to determine its firing intensity. Most 

applications utilizing BPANNs employ a sigmoid function. Three basic types of 

activation function are described here [13] 

1. Threshold Function. A very commonly used Activation function is the 

Thresholding function. In this, sum is compared with a threshold value 0. If the value of v 

greater than 0, then the output is 1 else it is 0. For this type of activation function, 

described in fig.5.2 we have 

Input 

Figure 5.5 Thresholding function [12] 

where, v is the step function known as Heaviside function and is such that 

1,v> t9 
f(v) = 

	

	 (5.18) 
0, v<B 

2. Signum Function. Also known as the Quantizer function, the function v is 
defined as 

+1, v>O 
.f (v) _ 

—1, v<-9 
(5.19) 

Input 

Figure 5.6 Signum function [12] 



3. Sigmoidal Function. The function is a continuous function that varies gradually 

between the asymptotic values 0 and 1 or -1 and +1 and is given by 

1  
.f (v) = 

1-F e —at 	 (5.20) 

where, a is the slope parameter, which adjusts the abruptness of the function as it 

changes between the two asymptotic values. Fig.5.4 illustrates the sigmoidal function. 

1.0 

Figure 5.7 Sigmoidal function [12] 

ix) Convergence criteria 

Three different criteria may be used to stop training: (i) training error (p<=s) (ii) 

gradient of error (Ap<=S), and (iii) cross-validation, where p is the arbitrary error 

function, and s and S are small real numbers. The third criterion is more reliable; however 

it is computationally more demanding and often requires abundant data. Convergence is 

usually based on the error function, p, exhibiting deviation of the predictions from the 

corresponding target output values such as the sum of squares of deviations. Training 

proceeds until p reduces to minimum. The most commonly used stopping criterion in 

neural network training is the sum-of-squared-errors (SSE) calculated for the training or 

test subsets as 
NM 

SSE=— Y- Z(t pi —Opi )2  

N p=1 i=1 
(5.21) 

where Opi  and tpi  are, respectively, the actual and target solution of the ith  output node on 
the pt  example, N is the number of training examples, M is the number of output nodes. 

Generally, the error on training data decreases indefinitely with increasing number of 

hidden nodes or training cycles, as shown in Fig.3.6. The initial large drop in error is due 

to learning, but the subsequent slow reduction in error may be attributed to (i) network 
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memorization resulting from the excessively large number of training cycles used, and/or 

(ii) overfitting due to the use of a large number of hidden nodes. During ANN training, 

the error on test subsets is monitored which generally shows an initial reduction and a 

subsequent increase due to memorization and overtraining of the trained ANN. 

Number of Hidden Nodes OR Number of Training Cycles 

Fig. 5.8 Criteria for termination of training and selection of optimum network 

architecture [16] 

x) Number of training cycles 

The number of training cycles required for proper generalization may be determined by 

trial and error. For a given ANN architecture, the error in both training and test-  data is 

monitored for each training cycle. Training for so long can result in a network that can 

only serve as a look-up table, a phenomenon called overtraining or memorization. 

xi) Hidden layer size 

In most function approximation problems, one hidden layer is sufficient to 

approximate continuous functions. The determination of the appropriate number of 

hidden layers and number of hidden nodes (NHN) in each layer is one of the most critical 

tasks in ANN design. With increasing number of hidden nodes, training becomes 

excessively time-consuming. The optimal number of HN essential for network 

generalization may be a function of input / output vector sizes, size of training and test 

subsets, and more importantly, the problem of nonlinearity 
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xii) Parameter optimization 

As can be seen, BP training requires a good selection of values of several 

parameters, commonly through trial and error. Six parameters should not be set too high 

(large) or too low (small), and thus should be optimized' or carefully selected. Table 3.1 

lists these parameters and their effect on both learning convergence and overall network 

performance. 

Table 5.1 Effect of extreme values of design parameters on training convergence and 

network generalization [16] 

Design Parameter Too high or too large Too low or too small 

Number of hidden layers Over fitting ANN Under fitting 

(no generalization) 

Learning Rate (i) Unstable ANN (weights) Slow Training 

Momentum Coefficient (p.) Reduces risk of local minima. Entrapment in local 

Speeds up training minima 

Slows training 

Number of training cycles Good Recalling ANN Incapable of responding 

the data. 

Size of training subset ANN with good Bad generalization 

generalization 

Size if test sub-set Ability to confirm ANN Inadequate confirmation 

generalization capability of ANN generalization 

capability 

ANNs also have limitations. These include (i) ANNs' success depends on both 

the quality and quantity of the data, (ii) a lack of physical concepts and relations, and 

(iii) the inability to explain in a comprehensible form the process through which a given 

decision (answer) was made by the ANN. 
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5.8 Neural Network Control 

Conventional control theory relies on the key assumption of small range of 

operation for the linear model to be valid. When the operation range is large, a linear 

controller is likely to perform poorly or to be unstable, because the nonlinearities in the 

system cannot be properly compensated for. To implement high-performance control 

systems when the plant dynamics characteristics are poorly known or when large and 

unpredictable variations occur, a new class of control systems called nonlinear control 

systems have evolved which provide potential solutions. Four classes of nonlinear 

controllers for this purpose are robust controllers, adaptive controllers, fuzzy logic 

controllers and neural controllers [17]. 

Complex smart structures, employing a large number of distributed sensors and 

actuators, are likely to exhibit nonlinearity and variation with time. The classical control 

requires a high fidelity model of the plant for control law design. Such models, generally 

based on finite element analysis or experimental identification, are very difficult to obtain 

for complex structure. Vibration control of smart structure using neural networks has thus 

been receiving attention for their advantages in self-learning, fault tolerance, and parallel 

processing [18]. 

There are typically two steps involved when using neural networks for control 

• System Identification 

• Control design 

System Identification 

System identification by neural network is to adjust the connective weights in the 

multi-layer neural network for minimizing the difference between the network output and 

desired output by repeated training [15]. Let eq. (5.22) describes the input-output relation 

of a plant. Then use the set of input-output data's to train a neural network as a model of 

the system. Let yj denote the output of the neural network produced in response to an 

input vector x;. 

if f (x,) 
	

(5.22) 



The difference between ya and network output y, provides the error signal vector e;, as 

depicted in fig.5.9. This error signal is in turn used to adjust the free parameters of the 

network to minimize the squared difference between the outputs of the unknown system 

and the neural network in a statistical, sense, and is computed over the entire training set 

[11]. 
d 

system 

Input vector 	 e' 
xi 

Neural Network 
model 	yi  

Figure 5.9 BIock diagram of system identification [11] 

Control design 

In a general sense, the identified neuro model is then used to adapt the neural 

network based controller such that the plant output follows the output of a predetermined 

reference model. Some of the more popular neural network architectures for system 

identification and control are described below [13]. 

5.8.1 Fixed Stabilizing Controller 
This type of controller is used for control of robot trajectory, where a proportional 

controller with gain was used as the stabilizing feedback controller. The advantage of this 

architecture is that it can start with stable system, even though the neural network has not 

been adequately trained. 

5.8.2 Adaptive Inverse Control 
The adaptive algorithm receives the error between the plant output and reference 

model output. The controller parameters are updated to minimize that tracking error. The 

basic model reference adaptive control approach can be affected by sensor noise and 

plant disturbances. An alternative which allows cancellation of the noise and disturbances 

includes a neural network plant model in parallel with the plant. That model will be 
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trained to receive the same inputs as the plant and to produce the same output. The 

difference between the outputs will be interpreted as the effect of noise and disturbances 

at the plant output. The signal will enter an inverse model to generate a filtered noise and 

disturbance signal that subtracted from the plant input. The idea is to cancel the 

disturbance and the noise present in the plant. 

5.8.3 Nonlinear Internal Model Control 
It consists of neural network controller, a neural network plant model, and a 

robustness filter with a single tuning parameter. The neural network controller is 

generally trained to represent the inverse of the plant, if the inverse exists. The error 

between the output of the neural network plant model and the measurement of the plant 

output is used as the feedback input to the robustness filter, which then feeds in to the 

neural network controller. 

5.8.4 Model Predictive Control 

It optimizes the plant responses over a specified time horizon. This architecture 

requires a neural network plant model, a neural network . controller, a performance 

function to evaluate system responses, and an optimization procedure to select the best 

control input. The neural network controller is learns to produce the input selected by the 

optimization process. When training is complete, the optimization step can be completely 

replaced by the neural network controller. 

5.8.5 Stable Direct Adaptive Control 

The method uses Lyapunov stability theory in the design of the network learning 

rule, rather than a-  gradient descent algorithm like backpropagation. The controller 

consists of three parts; linear feedback, a nonlinear sliding mode controller and an 

adaptive neural network controller. The sliding mode controller is used to keep the 

system state in a region where the neural network can be accurately trained to achieve 

optimal control. The sliding mode controller is turned on whenever the system drifts 

outside this region. The combination of these controllers produces a stable system which 

adapts to optimize performance. 



91 
5.8.6 Modal Reference Control 

The Modal Reference Control uses two neural networks; a controller network and 
a model network. The model network can be trained off-line using historical plant 
measurements. Then the controller is so that the plant output follows the reference model 

output. Both model network and controller network are trained using backpropagation 
algorithm. The fig.5.9 shows Modal Reference Control. 

Control 
- 	Error 

Reference 
Model 

Model Plant Model 	Error 

Command 	 - 
Input 	

LO-tp1t 

 
 

Plant 
Controller 	Control 

Input 

Figure 5.10 Model Reference Control [13] 

This control architecture requires the use of dynamic backpropagation for training 

the controller. This generally takes more time than training static networks with the 

standard backpropagation algorithm. The controller requires minimal online computation. 

5.9 Tapped delay line (TDL) 

TDL is used to give the delayed inputs to the network. The number of delays 

increases with the order of the plant. Fig. 5.7 shows the representation of the TDL. 

x 

x(k-n ) 

n delays 

Figure 5.7 TDL 
where xk is the input at kth  time instant and x(k l) and x(k) are the inputs .at (k1)t" and (k-
n)th  time instant respectively. 
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CHAPTER 6 

RESULTS AND DISCUSSION . 

6.1 Validation of the FEM model 
The theoretical formulation of the beam model is first validated by comparing 

obtained numerical results with the experimental and numerical results of other 

researchers and then provides some new results. 

6.1.1 FEM validation without piezolayers 
The non-dimensional fundamental frequency for simply supported laminated 

composite cylindrical panel having dimensions and properties given in the literature [21] 

is obtained by varying the thickness to radius ratio. The results obtained by present FEM 

model is compared with the literature [21]. It is observed that both results compare 

extremely well. 

Table 6.1 Non-dimensional fundamental frequencies for simply supported laminated 
composite cylindrical panel 

h/R 
Non-dimensional fundamental frequencies (00/900) 

Reddy Present FEM 
1/300 24.576 25.05 

1/400 19.509 19.75 

1/500 16.668 16.73 

6.1.2 FEM validation with piezolayers 

• Static Validation 

A piezoelectric bimorph cantilever beam (100mm x 5mm x 1 mm) constructed of 

two layers of PVDF bonded together with opposite polarity is considered. The beam is 

modeled with the present FEM. The cantilever is modeled by taking five elements and 

the deflection of the free end of the beam is compared with [22]. The comparison is 

shown in Table 6.2.The results agree very well with the theoretical results. 

Cfj 



Table 6.2 Nodal deflection of the piezoelectric bimorph beam 

Distance 
(mm) 

Deflection(micron) 

Theory Beam FEM QUAD4 Experiment She119 Present FEM 
20 0.0138 0.0124 0.0139 - 0.0144 0.0136 
40 0.0552 0.0508 0.0547 - 0.557 0.0550 
60 0.1242 0.116 0.1135 - 0.1240 0.1239 
80 0.2208 0.210 0.2198 - 0.2192 0.2207 

100 0.3450 0.330 0.3416 0.315 0.3415 0.3451 

• Dynamic Validation 

A semicircular steel shell embedded with a PZT piezoceramic layers on the top and 

a bottom surface is considered as shown in fig.6.1 One end of steel ring is fixed and the 

other end is free. It is 250 mm wide and 5 mm thick with an inner radius of 250 mm. The 

thickness of the PZT layers are 0.25 mm. The material properties are described in the 

Table 6.3. The first. six natural frequencies are obtained by using present FEM model and 

are compared with the literature [9]. The comparison is shown in Table 6.4.The results 

agree very well with the results given in the literature [9]. 

PZT Sensor 
(0.25mm thick) 

PZT Actuator 
(0.25mm thick) 

250mm V A 
R 250nun 

5mm 

Figure 6.1 Semicircular piezolaminated steel curved beam 



Table 6.3 Material properties 

Properties Steel PZT ceramics 

Young's Modulus (N.m- ) E1 =E2 =210x 10 Ea  =Es  = 63 x 10 

Density (kg/m) 7800 7600 

Poisson ratio V12 = 0.3 va  = vs  = 0.3 

Piezoelectric Constant (m/V) - d31 = d32 = -1.79 x 10 

Electrical permittivity (F/m) - b11  = b22 = b33 = 1.505x 10-8  

Table 6.4 Comparison of Natural frequencies in Hz 

Sr.no. First six natural frequencies by 
literature [9] 

First six natural frequencies 
by 	 resent model 

1.  8.61 8.4 
2.  14.85 12.10 
3.  27.22 26.59 
4.  63.19 52.09 
5.  93.16 91.61 
6.  207.88 206.52 

6.2 Case study 

A layered curved beam is considered. The top and bottom layers are made of 

piezoelectric material and middle layer is made of steel. The piezoelectric material is 

lead-zirconate-titanate (PZT).The radius of curved beam is 0.2 m, width 50 mm, 

thickness is 3 mm and curvature angle 180°  .The thickness of each piezolayers is 0.25 

mm. Detailed material properties are listed in Table 6.5. 

Table 6.5 Material properties 

Properties Steel PZT G1195N ceramics 

Young's Modulus E, =E2 =210 x 1011  N.m 2  E, =E2  = 63 x i09  N.m 

Density 7800 Kg/m3  7600 Kg/m3  

Poisson ratio V12 = 0.3 V12 = 0.3 

Piezoelectric Constant - d31 = 2.54 x 10-10  (mN) 

Electrical permittivity - b33 = 1.505x 10-8  (F/m) 

50 	G12 \ 
(-) 4) 
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(0.25srun thick) 
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ck 
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Figure 6.2 Semicircular piezolaminated steel curved beam with one end fixed 

6.2.1 Effect of radius of curvature on tip deflection for both symmetric and 

antisymmetric ply orientation 

In this case the total number of layers considered here are four. A point load of 

2N is acting on the tip at the free end of the beam. The effect of radius of curvature on tip 

deflection in case of antisymmetric and symmetric ply orientation in layered beam is 

presented in table 6. 

Total number of layers = 4, no. ofpiezolayers= 2, F= 2 N 

Table 6.6 Effect of radius of curvature on tip deflection 

Radius of curvature 
R (mm) 

Tip Deflection (m) 

Antisymmetric (00/450/00/450) Symmetric (00/450/450/00) 

100 1.7599x 10" 2.0418x 10" 

150 5.7318x10 6.6953 X 10" 
200 0.000136 0.000160 
250 0.000266 0.000311 
300 0.000460 0.000540 

From Table 6.6 it is observed that for both symmetric and antisymmetric 

configuration of layered beam a tip deflection increases as radius of curvature increases. 

For the same radius of curvature tip deflection for symmetric case is more than 

antisymmetric case. 
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6.2.2 Shape control of composite curved beam 
In fig.6.3 AB is the neural plane of the curved beam. AC shows the deformed 

position of the neutral plane under tip point load 3 N. To maintain the original position of 
the neutral plane, electric voltage is applied across the thickness of piezoelectric layers in 
biomorphic arrangement. For the applied voltages the position of the neutral plane 
changes as shown in the fig.6.3 and fig.6.4 for curvature angle 900 and 1800 respectively. 

a. Shape control for curvature angle of 900 
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200V 
---- 240V  

i l -B 
C 

0 	0.05 	0.1 	0.15 	0.2 	0.25 
Distance from fixed end (m) 

Figure 6.3 

•Fig. 6.3 shows that applied voltage 100V, 200V, 240V changes the position of the 

neutral plane. It is observed that neutral plane regains approximate its undeformed 
position at 240V. 
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b. Shape control for curvature angle180° 
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Figure 6.4 

Fig. 6.4 shows that the applied voltage 100V, 200V, 260V changes the position 

of the neutral plane. It is observed that neutral plane regains approximate its undeformed 

position at 260V. 

6.2.3 Tip deflection versus area covered by PZT for different values of radius of 
curvature 

The effect on tip deflection for different values of radius of curvature and for 

different percentage of actuator coverage area from fixed and free end of the beam is 

shown in fig.6.5(a) and (b) and fig.6.6 (a), (b), (c) and (d) for curvature angle of 900 
respectively. 
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6.2.3.1 For curvature angle of 900 
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Figure 6.5 

From fig.6.5 (a) and (b) it is observed that as the actuator coverage area increases 

from fixed end the deflection increases at a point which is at distance from fixed end for 

the given radius of curvature and applied voltage. 
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b. Actuator coverage area from free end 
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Figure 6.6 

From fig.6.6 (a), (b) and (c) it is observed that for the increase in actuator 

coverage areas from the free end the deflection increases at a point which is at distance 

from fixed end for given radius of curvature and applied voltage. It is also true for the fig. 

6.6 (d) but only deflection is in opposite direction due to opposite polarity voltage. Also 

for fig 6.6 (c) and (d) have the same value of maximum deflection but in opposite 

direction. 
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6.2.3.2 For curvature angle 1800  and actuator coverage area from fixed end 
The effect on tip deflection for different values of radius of curvature and for 

different percentage of actuator coverage area from fixed end of the beam is shown in 

fig.6.7 (a) and (b) for curvature angle of 1800 . 
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Figure 6.7 
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6.2.4 Effect of radius of curvature on natural frequency for both symmetric and 

anti symmetric ply orientation 

The effect of radius of curvature on the natural frequency is obtained for 

antisymmetric and symmetric ply orientation in composite curved beam for curvature 

angle of 180°.The comparison is shown in the Table 6.7. 

Table 6.7 Effect of radius of curvature on natural frequency 

Radius of curvature 
R (mm) 

Antisymmetric 
00/450/00/450  

.f (Hz) 

Symmetric 
00/450/450/00  

f(Hz) 

100 60 56.22 
150 26.54 24.699 
200 14.88 13.81 
250 9.50 8.8112 
300 6.593 6.106 

It shows that natural frequency is more in case of antisymmetric composite curved 

beam compared to symmetric curved beam for the same value of radius of curvature and 

as the radius of curvature increase natural frequency for both symmetric and 

antisymmetric layered beam is decreases. 

6.2.5 Transient vibration control for different gains 

Newmark's direct time integration scheme is adopted to evaluate the transient 

responses. The values of time integration scheme parameters S' and a' are assumed 0.5 

and 0.25 respectively. We have'studied following cases for transient vibration control. 

6.2.5.1 For initial displacement of 1mm in hoop direction at free end 

An initial displacement of 1mm is applied in the hoop direction and 

corresponding responses in radial and hoop direction is studied. Fig. 6.8 shows the free 

vibration response in hoop and radial direction. 
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Fig.6.9 shows the effect of passive damping on the free vibration of the beam for the 

value of damping factor 0.01. It is observed that damping has less effect on vibration 

decay. 	- 
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Fig. 6.10 (a), (b) and (c) shows the controlled response in radial direction at gain 50, 100, 

150 respectively. It is observed that as gain increases vibration decay lost. 
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Fig. 6.11 (a), (b) and (c) shows the controlled response in hoop direction at gain 50, 100, 

150 respectively. It is observed that as gain increases vibration decay lost. 
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6.2.5.1 For uniform distributed load 

A uniform distributed load of 1000 N/m2  is applied in the radial direction and 

corresponding response in radial direction at tip node of composite curved beam is 

studied. Fig.6.12 shows the uncontrolled response with and without damping. 
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From graph 6.13 (a), (b) & (c) it is clear that as gain increases the control on vibration is 

effective. 
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6.2.5.3 Tip Deflection control for initial displacement of 1mm in hoop direction for 

different piezoelectric layer coverage area 
The vibration control of smart composite curved beam is also studied by varying 

the sensor/actuator percentage coverage area from the free end of the beam for a specific 

gain. 
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Fig.6.14 (a), (b) and (c) shows the tip responses in hoop direction at 40%, 60% 

and 80% of piezoelectric layer coverage area from free end respectively for a specific 

gain G=150. It is observed that vibration decay fast for more coverage area of 

piezoelectric layer. 
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Fig.6.15 (a), (b) and (c) shows the tip responses in hoop direction at 40%, 60% and 80% 

of piezoelectric layer coverage area from fixed end respectively for a specific gain 

G=150. It is observed that at 40% piezolayer coverage area the vibration decay is as good 

as for at 60% and 80% and hence there is no necessary to increase percentage of 

piezolayers coverage area more than 40% from fixed end for vibration control. It is also 
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observed that better vibration control is obtained for small percentage of piezolayers 

coverage area from fixed end as compared to piezolayers coverage area from free end. 

6.3 Control using Neural Network 

First the model in neural network is developed for identification of the structure 

and for control of the structure using BP algorithm with the literature. 

6.3.1 Validation of Neural Network model 

Both model neural network model and total neural network model is validated 

with the literature [31]. 

Problem 

The dynamics of a nonlinear plant or structure is given by the following second-
order difference equation 

y p(k+1)— yP(k)y, k
-1)[y2(k)+2.5]+u(k) 	 (6.1) I+yp  (k)+yp  (k-1) 

where 

where u(k) is the input to the plant. 

Let us assume that we need to design a neural network controller (Neuro-controller) so 

that the overall behaviour of the controlled system can be described by the reference 

model equation, given as: 

y n(k+1) = 0.6ym(k)+o.2yn(k-1)+r(k) 
	

(6.2) 

where 
r(k) is the reference input to the controller. 



Identification (Model Neural Network) 

In the identification stage, the unknown plant is identified off line using random 

input u(k) by a neural network which is known as model neural network (MNET). The 

input parameters for model neural network are given in Table 6.8. During training, the 

difference between the output of model neural network and the desired output is 

minimized to adjust the connective weights in the multi-layered neural network. Training 

block diagram of the model neural network is shown in fig. 6.16. 

Table 6.8 

Network Initialization Model Neural Network 

Inputs 2 

Outputs 1 

Layers 3 

Neurons per layer [20, 10, 1] 

Steps of training 500 

Error goal 4 X 10 

Uk 
	 y p(k+l) 

Plant 

11I7y e  
_ N NET 

MNET:Model neural network 
TDL :Tapped delay line 

Figure 6.16 Training block diagram of MNET 



1. Generation of input/output pattern 

Input patterns are taken within the range [-2, 2] and corresponding output patterns 

generated using eq. 6.1: Fig 6.17 (a) and fig 6.17 (b) shows input/output pattern for 

training the model neural network. 
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2. Training of Model Neural Network 

The error between the output of the model neural network and desired output is 

minimized during the training. Fig. 6.18 shows the plot of errors versus number of epochs 

during the training. From the fig. 6.18 it is clear that goal is achieved at 727th  epoch 

Performance is 3.99538e-008, Goal is 4e-008 

100  

toe d 
0 100 	200 	300 	400 	500 	600 	700 
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'Figure 6.18 

3. Testing of Model Neural Network 

For the testing of the Model Neural Network, the results are checked for unknown 

input. Let unknown input is defined as 

u(k) = sin(2,rk / 25) 
The unknown input pattern u (k) is calculated for 100 number of steps. The output 

for this unknown input is calculated by two methods. 

1. Analytically. By using eq. (6.1) 

2. Using Model Neural Network. 

Fig. 6.19 shows the output of model neural network coincides with plant output 

very well. 
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Neural Network Controller 

Neural network controller (CNET) generates a controlled signal, which is fed to 

the plant. There are three controller inputs: reference inputs, delayed controller outputs 

and delayed plant/ structure outputs. 

The input parameters for controller neural network are shown in Table 6.9. 

Table 6.9 

Network 
Initialization 

Controller Neural 
Network 

Inputs 3 
Outputs 1 
Layers 3 
Neurons per layer [30, 10, 1] 

r (k) 
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y„,(k+l) 
-- 	----------------------------------- 

 

----------------------------------------- 

TDL 	 + 
e 

T 
D 
L 

CNBT 	 MNET 
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Figure 6.20 
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Total Neural Network (TNET) 
The training of neural network controller can be done on the structure with the aid 

of model neural network. The combination of neural network controller and model neural 
network is known as Total neural network (TNET). The training block diagram of the 

neural network controller with the aid of the model neural network is shown in fig.6.20. 

The input parameters of Total neural network are shown in Table 6.10. 

Table 6.10 

Network 
Initialization 

Total Neural Network 

Inputs 3 
Outputs 1 
Layers 6 
Neurons per layer [20, 10, 1, 30, 10, 1] 
Steps of training 500 
Error goal 2 X 10' 

1. Generation of input/output pattern 

Input patterns for training the controller neural network are also taken within the 

range [-2, 2] and corresponding output patterns generated using eq. 6.2. Generated 

input/output patterns are shown in fig 6.21 (a) and fig 6.21 (b) respectively. 
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2. Training of Total Neural Network Model 

The error between the output of the total neural network and desired output 

(reference model output) is minimized during the training of total neural network. Fig. 

6.22 shows the plot of errors versus number of epochs during the training. From the fig. 

6.22 it is clear that goal is achieved at 1600th  epoch 

10'  
Performance is 1.95979e-005, Goal is 2e-005 
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Figure 6.22 
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3. Testing of Total Neural Network Model 

For the testing of the Total Neural Network Model, let unknown reference input is 

defined as 

r(k) = sin(2ntk / 25) 
The unknown input pattern r (k) is calculated for 100 number of steps. 

The output for this unknown input is calculated by two methods. 

3. Analytically. By using eq. (6.2) 

4. Using Total Neural Network Model 

The output of the total neural network along with the analytical output is shown in 

fig.6.23 and it shows that output of total neural network coincides with reference model 

very well. 
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Two case studies are considered. In first case study, effect of less number of time 

steps on training is studied and in second case study, effect of number of neurons on 

training is studied. 

75 



6.3.2 Case 1. Effect of using less number of time steps for training of identification 

and control model 

Number of time steps used for training of identification and control model = 50 

Number of time steps used for testing unknown input =100 

Identification 
1. Training of Model Neural Network 
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2. Testing for unknown input 
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From fig. 6.25, it is observed that the output of model neural network does not coincide 

with plant output. This study suggests that, number of steps should be taken more as 

much as possible for correct identification. On the other hand for large number of time 
steps, training time will be large. 
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2. Testing of Total Neural Network 
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It is observed that from the fig. 6.26, that training is not complete for less number 

of time steps. Fig. 6.27 shows that output of TNET does not coincide with the reference 

output. This study suggests that for correct controlling, number of steps should be taken 

more as much as possible. 

6.3.3 Case 2. Effect of increasing number of neurons in Model Neural Network and 

Total Neural Network 

Number of neurons in 3 layer Model Neural Network 	= [24, 10, 1] 

Number of neurons in 3 layer Neural Network Controller = [34, 20, 1] 
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2. Testing for unknown input 

4 

3 

2 

c' 
0 

0 

-1 

-2 
0  20  40  60  80  100 

No. of steps 
Figure 6.29 

It is observed from fig 6.28 that as the number of neurons are increased in layer 

[20, 10, 1] to [24, 10, 1], goal achieves at less number of epoch (690 x̀' epoch). Fig. 6.29 

shows that output of MNET deeply coincides with plant output. 
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2. Testing of Total Neural Network 
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Figure 6.31 

It is observed from fig 6.30 that as the number of neurons are increased in layer 

[30, 20, 1] to [34, 20, 1], goal achieves at less number of epoch. Fig. 6.31 shows that 

output. of TNET deeply coincides with reference output. 



CHAPTER 7 

CONCLUSION AND SCOPE FOR FUTURE WORK 

7.1 Conclusion 
In this work a finite element model of piezolaminated composite curved beam 

based on Timoshenko beam model and linear piezoelectric theory is presented. Finite 

element has three mechanical degree of freedom (uo, w0, O) per node and one electrical 

degree of freedom per piezoelectric layer. Finite element has n-host structure layer and 

two piezoelectric layers. 

In deriving the finite element model of piezolaminated curved beam first 

displacement equation is given followed by strain displacement relationship, constitutive 

equation of piezoelectric, force and bending moment relation, strain energy equation, 

electrical energy equation, work done by external forces and electrical charges, kinetic 

energy equation. Governing equations are derived using Hamilton's principle. 

Finite element model is validated for static and dynamic analysis for with and 

without piezolayers with the available literature. A neural network controller is 

developed. 

Based on numerical study following conclusion are drawn. 

• As the radius of curvature increases tip deflection increases for both symmetric 

and antisymmetric layered curved beam. For the same radius of curvature tip 

deflection for symmetric case is more than antisymmetric case. It is because of 

variation of stiffness with layer orientation angle. 

• Piezoelectric actuators can be used as the shape control of the curved beam. It is 

observed that neutral plane of curved beam of curvature angle 900  regains 

approximate its undeformed position at 240V, while neutral plane of curved beam 

of curvature angle 1800  regains approximate its undeformed position at 260V. 

• As the coverage area of actuator increases from the fixed end tip deflection 

increases, deflection increases fastly as the coverage area increases up to 40% 

beyond this, deflection increases slowly. It is because of more stress develops at 

the fixed end. 
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• As the coverage area of actuator increases from the free end tip deflection 

increases uniformly. It is because of more stress develops at the fixed end. 

• Natural frequency of piezolaminated layered curved beam decreases as the radius 

of curvature increases for both symmetric and antisymmetric layers. However, 

natural frequency is more in case of antisymmetric composite curved beam 

compared to symmetric curved beam. It is because of decreasing the 

stiffness/mass ratio. 

• It is observed that decay of vibration is fast at high constant gain. It is because of 

increasing effective damping. It is also observed that constant gain negative 

velocity feedback controllers is asmoptically stable. It is because of amplitude of 

vibration decreases with time. 

• It is observed that for 40% piezolayer coverage area, vibration decay rate is same 

as for at 60% and 80% coverage area. It suggests that it will be uneconomical to 

increase percentage of piezolayers coverage area more than 40% from fixed end 

for vibration control. The reason of this is high stress develop at fixed end. 

• It is also observed that better vibration control is obtained for small percentage of 

piezolayers coverage area from fixed end in compare to piezolayers coverage area 

from free end. It is because of high stress develop at fixed end. 

• Constant gain negative velocity feedback controller is suitable for linear control 

application, while neuro-controller may be used for both linear and nonlinear 

control applications. It is because of neuro-controller depends on training. 

• Number of time steps used for training the neural network controller effects the 

control operation. It is suggested that number of time steps should be large, as 

much as possible. So that sufficient number of input/output patterns should be 

there to train model neural network and controller neural network. 

• Number of neuron in model neural network (MNET) and neural network 

controller (CNET) also effect the identification and control application. 
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7.2 Scope for future work 

• Developed finite element model of layered curved beam can be extended to 

validate experimentally. 

• Developed finite element model of layered curved beam can be extended to 

account the viscoelastic effect between the adjacent layers. 

• Developed finite element model of layered curved beam can be extended to 

account temperature effect in order to include the pyroelectric effect and thermal-

strain effect. 

• Classical negative velocity feedback controller can be replaced with the 

developed neuro-controller to control the vibration. 

• Optimum configuration and location patches should be decided to control the 

vibration. 
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Appendix:A 	 Flow Chart of the MAIN programme 
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Appendix:B 	 Flow Chart of the Shape Control Application 
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Appendix:C 	Flow Chart of Active Vibration Control Application 

Active Vibration Control Application 
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