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ABSTRACT 

Active vibration control and using piezoelectric sensors and actuators have 

recently emerged as a practical and promising technology. Efficient and accurate 

modeling of these structures bonded to or embedded with actuators and sensors is 

needed for efficient design of smart structures. This dissertation addresses the 

modeling of these structures and the associated control system design technique. 

- For piezoelectric laminates the governing equations of motion are derived 

using First Order Shear Deformation Theory (FSDT) and the dynamic response 

fields inside the laminate are obtained. A finite element approach for design of a 

structure and its control system for suppressing vibration is presented. A finite 

element model for a smart plate with surface bonded piezoelectric patches is 

developed using a quadratic rectangular element. Genetic algorithms are used to 

approximate the optimum locations of the piezoelectric actuators over a plate. The 

objective function for the genetic algorithm is taken as the energy dissipated by 

the controller. The modal analysis is carried out to establish the dynamic 

characteristics of the system before and after the application of actuators. 
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Chapter 1. INTRODUCTION 

1.1 Motivation: 

All the mechanical systems are subjected to various conditions that may result in 

vibrational motion;, hence vibration is a significant factor to be considered in the design 

of lighter mechanical systems, systems working at high speeds and the systems like 

micro sensing, micro actuation, space structures etc. where accuracy finds a great 

importance. Vibrations may lead to fatigue in the material, damage to the structure, 

deterioration of system performance, increased noise level and increase in the difficulty 

of predicting the behavior of the structure. Active vibration methods can be used to 

eliminate the undesired vibrations. The use of smart structures is experiencing - a 

tremendous growth in actively controlling the vibration. 

Advanced composite materials are finding increasing application in aircraft, 

automobiles, marine and submarine vehicles besides other engineering applications. The 

fiber-reinforced composites possess two desirable features: one is their high stiffness-

weight ratio and the other is their anisotropic material property that can be tailored 

through variation of the fiber orientation and stacking sequence- a feature which gives 

the designer an added degree of flexibility. In this paper a finite element model for a 

composite plate has been developed using the first order shear deformation theory for 

laminated plates to analyze the behavior of piezoelectric material over a plate structure. 

The field of smart structures has been an emerging area of research for the last 

few decades. Smart structures or intelligent structures can be defined as structures that 

are capable of sensing and actuating in a controlled manner in response to an input. The 

ability of the piezoelectric materials to convert electrical to mechanical energy and vice 

versa makes them to be employed as actuators and sensors. If these are bonded properly 

on to a structure, structural deformations can be induced by applying a voltage to the 

materials, employing them as actuators. Similarly, these piezoelectric materials can also 

be employed as sensors since deformations of a structure would cause the deformed 
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piezoelectric materials to produce an electric charge. The extent of structural 

deformation can be observed by measuring the electrical voltage the sensors produce. 

This voltage is multiplied by some gain according to the control law implemented and is 

fed back to the actuators. The actuators made of smart materials react to the voltage and 

generate mechanical changes. Using the changes from the actuators, the vibration or 

other dynamic characteristics can be closely controlled. 

For a complex structure, it is very expensive to implement smart materials over 

the entire surface. Hence the sensors and actuators are usually discretely distributed over 

the structure. One of the limitations of piezoelectric actuator is the amount of the force it 

can exert. Hence it is important that the actuators are placed at optimal locations so that 

the required control effort is minimum. Thus optimization of placement of these sensors 

and actuators over the structure becomes an important task in suppressing the vibration 

of the structure. The problem becomes critical as the number of sensors/actuators to be 

used over the structure increases and as the mode shape becomes complicated. Therefore 

optimization techniques have to be used in such cases to find a good set of 

sensors/actuator positions. The significance in using such algorithms is not only the 

solution to problems but also, drastically cost savings in both experimental and time 

expenses. Genetic algorithm produces a global optimum and can be applied to 

complicated problems with relative ease. It is more flexible and provides more accurate 

solution. 

This work deals with the modeling of a composite plate using finite element 

method assuming the first order shear deformation theory for plates. The dynamic 

characteristics of the structure are studied and piezoelectric patches are used to control 

its vibration. The optimum locations of the piezoelectric actuators are approximated 

using genetic algorithm. The objective function for the genetic algorithm is taken as the 

energy dissipated by the controller. The modal analysis is carried out to establish the 

dynamic characteristics, of the system before and after the application of actuators. 
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1.2 Preamble 

The primary objectives of this study are to develop a simple finite element for 

multilayered composite plates. The element contains five degrees of freedom, three 

displacements and two slopes. (i.e. shear rotations) per node. The accuracy of the 

element is demonstrated through the problems. Our objective is to study the dynamic 

characteristics of the structure before and application of the piezoelectric patches 

over the plate. Further the implementation of genetic algorithm to optimize the 

location of the actuators over the plate structure, taking the objective function as the 

minimization of the energy dissipated by the controller and finally to obtain the 

dynamic response of the structure using the modal analysis before and after the 

application of the piezoelectric actuators over the plate. 

1.3 Organization of the thesis: 

Chapter 2 addresses some theoretical background needed for the work. The strategies in 

the active vibration control have been discussed. Some perspectives in smart structures 

and piezoelectric materials have been given. It also introduces genetic algorithms and 

discusses their advantages. 

Chapter 3 contains a brief discussion regarding the previous work that has been done in 

this field. Summarized details of work carried out by different authors, their objectives 

and conclusions are given. 

Chapter 4 details the development of the finite element model using the first order 

deformation theory, the derivation of the equations is given in detail along with the 

development of the objective function for genetic algorithms to optimize the location of 

the actuator/sensors. 

Chapter 5 discusses the optimization of the actuators over the plate. The use of genetic 

algorithms is discussed. The objective function is derived in this section which is then 

used in the algorithm for optimizing. 
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Chapter 6 shows the solution to various problems considered. The results are discussed 

with the help of graphs and figures. 
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Chapter 2. BACKGROUND 

This chapter covers the explanation regarding the active control strategies for the 

vibration suppression, the smart structures which includes a brief description of the 

piezoelectricity and lastly the genetic algorithms are explained in detail. 

2.1 Active control strategies for vibration suppression 

A control system is considered to be any system that exists for the purpose of 

regulating or controlling the=flow of energy, information, money, or other quantities in 

some desired fashion. A control system is an interconnection of many components or 

functional units in such a way as to produce a desired result. In a closed loop or active 

control system, there is typically some model of the system to be controlled, a control 

law, and some sensors that make measurements to carry out the control. Figure 2.1 

shows a block diagram of a typical closed loop control system. In this control system, 

the control U(t) is modified by information obtained about the system output, Y(t). 

Dis 

Goals 	 Uçt 	 Y(t) 

	
it  

Control Law 	 System 

Sensors 

Measurement Errors 

Figure 2.1: A closed loop control system 

The feedback closed loop control system shown in Figure 2.1 represents a typical 

continuous control system. 
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2.2 Perspectives in Smart Structures. 

The field of smart structures has been an emerging area of research for the last 

few decades. Smart structures (also called smart material structures) can be defined as 

structures that are capable of sensing and actuating in a controlled manner in response to 

a stimulus. The development of this field is supported by the development in the field of 

materials science and in the field of control. In materials science, new smart materials 

are developed that allow them to be used for sensing and actuation in an efficient and 

controlled manner. These smart materials are to be integrated with the structures so they 

can be employed as actuators and sensors effectively. It is also clear that the field of 

smart structures also involves the design and implementation of the control systems on 

the structures. A well designed and implemented controller for smart structures is thus 

desirable. 

In this thesis, we consider the case of vibration of smart structures. The stimulus 

to a structure may originate from external disturbances or excitations that cause 

structural vibrations. A smart structure would be able to sense the vibration and generate 

a controlled actuation to itself so the vibration can be minimized. For vibration control 

purposes, a number of smart .materials can be used as actuators and sensors such as 

piezoelectric, shape memory, electrostrictive and magnetostrictive materials. Here, we 

concentrate on using piezoelectric materials because they have good broadband sensing 

and actuation properties. 

Different smart materials include: 

• Shape Memory Alloy (SMA): The term Shape Memory Alloys (SMA) is applied to a 

group of metallic materials that can return to a previously defined shape when 

subjected to an appropriate thermal procedure. Generally, these materials can be 

plastically deformed at some relatively low temperature, and upon exposure to some 

higher temperature will return to their shape prior to the deformation. SMAs allow 

one to recover up to 5% strain from the phase change induced by temperature. SMAs 
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are best suited for one-way tasks such as deployment. SMAs are little used in 

vibration control. Examples are Ni-Ti alloys, Cu-Zn-Al, Cu-AI-Ni, Fe-Mn, and Fe-

Mn-Si, etc. 

• Piezoelectric Materials: Piezoelectricity is the ability of a material to develop an 

electrical charge when subjected to a mechanical strain and conversely. They have a 

recoverable strain of 0.1% under electric field; they can be used as actuators as well 

as sensors. Examples are PZT, PVDF, etc. 

• Magnetostrictive Materials: As a magnetostrictive-  material is magnetized, there is a 

change in length. Conversely if an external force produces a strain in 

magnetostrictive materials, its magnetic state will change. Magnetostrictive materials 

have a recoverable strain of 0.15% under magnetic field; the maximum response is 

obtained when the material is subjected to compressive loads. They can be used in 

high precision applications. Example is Terfenol-D. 

• Electrostrictors (Electrostrictive Materials): These are quite similar to piezoelectric 

materials with slightly better strain capability, but very sensitive to temperature. The 

conceptual difference between piezoceramics and electrostrictors is their response 

upon reversing of the electric field. Piezoceramics can be elongated and compressed, 

while electrostictors only exhibit an elongation, independent of the direction of the 

applied electric field. This effect is found in all materials, though in very small 

quantities 10-5 to - 10-7 %. 

• Ferromagnetic Shape Memory Alloy (FSMA): Ferromagnetic shape memory alloys 

(FSMA) are a recently discovered class of actuator materials, whose salient features 

are. magnetically driven actuation and large strains (around 6%) e.g. NiMn-Ga 

ternary alloy. As the name suggests FSMAs are ferromagnetic alloys that also 

support the shape memory effect. 
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• Electro-Rheological (Er) And Magneto- Rheological (MR) Fluids: When an external 

electric field is applied to an ER fluid, the viscosity of the fluid increases remarkably. 

And when the electric field is taken away, the viscosity of the fluid goes back to the 

original state. The phenomenon is so called ER effect. These fluids can change from 

a thick fluid (similar to motor oil) to nearly a solid substance within a span of a 

millisecond when exposed to an electric field; the effect can be completely reversed 

just as quickly when the field is removed. MR fluids experience a viscosity change 

when exposed to magnetic field. Examples of MR fluid is tiny iron particles 

suspended in oil and that of ER fluid are milk chocolate or cornstarch and oil. 

• Fiber Optics: Fiber optics is becoming popular as sensors because they can be easily 

embedded in composite structures with little effect on the structural integrity. They 

are widely used in Structural Health Monitoring equipments. 

2.3 Piezoelectric Materials 

In 1880, Pierre and Paul-Jacques Curie discovered the direct piezoelectric effect on 

various crystals such as tourmaline, Rouchelle salt and quartz. The crystals generated 

electrical charges on their surfaces when they were mechanically strained in certain 

directions. In the following year, they also discovered the converse piezoelectric effect 

that the shape of crystals would change when an electric field was applied to them. 

The ability of the piezoelectric materials to exchange electrical and mechanical 

energy opens up the possibility of employing them as actuators and sensors. If the 

piezoelectric materials are bonded properly to a structure, structural deformations can be 

induced by applying a voltage to the materials, employing them as actuators. On the 

other hand, they can be employed as sensors since deformations of a structure would 

cause the deformed piezoelectric materials to produce an electric charge. The extent of 

structural deformation can be observed by measuring the electrical voltage the materials 

produce. Unfortunately, the piezoelectric effect in natural crystals is rather weak so they 

cannot be used effectively as actuators or sensors. 



However, recent developments in the field of materials science have provided 

piezoelectric materials that have sufficient coupling between electrical and mechanical 

domains. Two of the commonly used piezoelectric materials are polyvinylidene fluoride 

(PVDF), a semi crystalline polymer film, and lead zirconate titanate (PZT), a 

piezoelectric ceramic material. PZT has larger electromechanical coupling coefficients 

than PVDF so PZT can induce larger forces or moments on structures. However, PZT is 

relatively brittle while PVDF is flexible and can be easily cut into any desired shape. 

PVDF also has good sensing properties so it is commonly used for sensors. In this thesis, 

we concentrate on using PZT as actuators and sensors. Our results show that PZT can be 

effectively used as a transducer for vibration control of flexible structures. 

2.3.1 Piezoelectric Effect 

The piezoelectric effect was first discovered in 1880 when Pierre and Currie 

demonstrated that certain crystalline material produces an electrical charge on its surface 

when it is subject to a stress field. It was subsequently demonstrated that the converse 

effect is also true; when an electric field is applied to the piezoelectric material, its shape 

and size change. In the former case, the material works like a sensor while in the latter 

case, the material can be used as an actuator if it is constrained against deformation. 

2.3.2 Piezoelectric Materials 

They are two broad classes of piezoelectric materials used in vibration control: 

ceramics and polymers. The piezopolymers are used mostly as sensors; because they 

require high voltages as well as they are lightweight and flexible so they are not effective 

as actuators on stiff structures. The best known is the polyvinylidene fluoride (PVDF) 

(PVF2). Piezoceramics are used extensively as actuators and sensors, for a wide range of 

frequency including ultrasonic applications. The best-known piezoceramic is Lead 

Zirconate Titanate (PZT) [Pb (Zr, Ti) 03]. 



Piezoelectric materials offer a number of advantages over conventional actuators 

like low energy consumption, fast response, high efficiency and compactness. But they 

have some limitations also like voltage that can be applied is limited in the range of -500 

V to 1500 V, the piezo materials cannot be used above their curie temperature, which is 

200°C to 300 °c due to possibility of depolarization. 

2.3.3 Classification Of Piezoelectrics 

Pyroelectrics: materials in which electric field generates as a result of application of 

heat and degree of polarization depends on the temperature. 

Ferroelectrics: materials in which spontaneous polarization can be induced by an 

electric field. Reversing external electric field can change their polarization direction. 

Examples are PZT and PVDF. 

Ferro elastics: materials in which spontaneous polarization can be induced due to 

mechanical load. 

Piezo-electrics 

Pyroelectrics 

Ferro-electrics 

Figure 2.2 Classification of Piezoelectric Materials 

2.3.4 Piezoelectric Materials In Vibration Control 

Coupled- electro-mechanical properties of piezoelectric ceramics and polymers and 

their availability in thin sheets make them well suited for the use as sensors and 

actuators. Piezoelectric materials are widely used in vibration control due to their-

competitive performance. Besides these, the lightweight actuators don't affect 

significantly the mass and stiffness properties of the original structure, so the original 
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dynamic characteristics of the structure remain unchanged when the piezoelectric 

patches are not activated. 

Piezoelectric patches apply two types of effects on structures: 

Passive - Change in mass and stiffness characteristics (this effect is negligible for stiff 

structures), and 

Active - Generation of charge and strain due to applied stress and voltage respectively. 

Resonance is said to occur when the excitation frequency matches any of the 

natural frequencies of the system, so one should know the natural frequencies of the 

system, hence the eigenvalues of plate with and without patches have been calculated. 

The contribution of patches in mass and stiffness matrices has been considered. The 

piezoelectric patches location over the plate is also optimized using the genetic algorithm 

so as to obtain an optimal control of vibrations of the plate. 

2.4 Optimal Placement Of Actuators/Sensors Over The Plate 

Optimal placement of actuators is finding a great importance in the field of 

research in these days. One of the limitations of a piezoelectric material is the amount of 

force it can exert. Hence, it is important to optimize the locations of the actuators so that 

the required control effort is minimum. Similarly, to obtain a good signal to noise ratio, 

sensors should be chosen to provide maximum output for the vibration in the modes of 

interest. These problems become more critical as the number of actuators and sensors 

increases and the mode shapes become more complicated. Sometimes we find that the 

structure has close (or exactly the same) frequencies. For the same reasons, it necessary 

to use multiple actuators and sensors. As the mode shapes become more complicated the 

modal interactions of actuators and sensors are also quite complicated. Therefore, it 

necessitates use optimization techniques to find a good set of actuators and sensors. Out 

of several optimization techniques, we choose a genetic algorithm (GA), in this thesis as 

it can produce a global optimum solution and can be applied to complicated problems 

with relative ease to optimize the location of actuators over the plate. The detailed 

explanation of the genetic algorithm is given in chapter 5. 



The next chapter discusses about the previous work that is carried by different 

authors in the field of vibration control using the smart materials. It includes the brief 

introduction of their work done and conclusions derived by them. 

12 



Chapter 3. LITERATURE REVIEW 

Smart structures, incorporating piezoelectric materials, offer an efficient method 

for implementing active control technologies and as a consequence the topic has 

received considerable interest in recent years. Piezoelectric materials have been widely 

used for sensors and actuators due to their attractive properties, such as low weight and 

rapid response. Below, some relevant work in the area of vibration control using the 

smart structures is reviewed. 

Crawley and de Luis [1987] developed analytical models to predict the static and 

dynamic response of intelligent systems to an applied voltage. These models were 

applicable to systems with segmented piezoelectric actuators that are either bonded to an 

elastic member or embedded in a laminated composite structure. They also consider 

perfect bonding conditions between the actuators and the structure as well as bonds of 

finite thickness and stiffness. The models were used to select an optimal location for 

actuators. With a PZT consisting of two piezoceramic actuator devices bonded at equal 

but opposite distances from the neutral axis of the beam, three experimental systems 

were constructed: an aluminum beam with two surface-mounted PZTs, a glass-epoxy 

beam with two PZTs and a graphite-epoxy beam with one PZT. The PZTs were used to 

excite steady-state resonant vibrations in the beams and the experimental responses were 

seen to agree with the analytical models. Static tests performed on the glass-epoxy 

laminated material with embedded PZTs showed a reduction in ultimate strength of only 

20% and no significant change in the global elastic modulus of the composite laminate. 

In the work from which his Master of Science thesis arose, Collins et al. [19901 provided 

a brief but informative history of piezoelectricity and some of the basic physical 

properties and mathematical relationships used in the study of piezoelectric materials. 

The fact that other noncrystalline materials, such as wood, bone and some polymers, 

exhibit piezoelectric behavior is discussed. In particular, the discovery of the 
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piezoelectric effect in polyvinylidene fluoride (PVDF) is presented. In its unpolarized 

form, PVDF is a clear, lightweight and tough yet highly flexible film that is often used as 

a passive protective coating for many surfaces due to its high resistance to various 

chemicals and ultraviolet light. After suitable processing consisting of stretching at high 

temperatures, exposure to high electric fields during cooling (poling) and surface 

metallization, PVDF can be used as a sensor and/or actuator for active structural control. 

After the outstanding introduction to the history, manufacturing and application of 

piezopolymers, Collins et al. proceeds to model and experimentally verify the use of 

PVDF as modal sensors and spatial filters for various mechanical systems. 

Hagood, Chung and von Flotow [1990] presented a more detailed consideration of the 

interaction between an elastic structure and piezoelectric actuators used for active 

structural control. Also, they developed state space models for voltage and current-

driven piezoelectric devices and assessed how the dynamics of the actuator and passive 

electrical network influence the overall system dynamics. These models are used to 

predict the behavior of a cantilevered beam with surface-mounted piezoceramic devices. 

Lastly, open- and closed-loop control experiments were performed to verify the 

analytical models, thus showing significant effects of the electrical circuit on the beam 

dynamics. 

Cox and Lindner [1991] discussed in their paper, the use of a modal domain optical fiber 

sensor (MD Sensor) as'a component in an active control system to suppress vibrations in 

a flexible beam. An MD Sensor consists of a laser source, an optical fiber, and detection 

electronics. They have shown that the output of the MD Sensor is proportional to the 

integral of the axial strain along the optical fiber. 

Kulkarni and Hanagud [1991] developed an electromechanical model for a combined 

generic three-dimensional, isotropic, linearly elastic body and piezoelectric body 

undergoing small or large deformations using a variational formulation. The model is 
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then used to develop a two-dimensional finite element formulation to predict the static 

and dynamic response of the system to applied voltages that vary with time and spatial 

distribution on the surface of the patch. A detailed treatment of the electromechanical 

coupling between the active element and the elastic body is presented. The,  stresses and 

strains predicted by the static analytical model were verified using a cantilevered 

aluminum beam with piezoceramic patches bonded to the top and the bottom surfaces. 

The same beam was used to verify the dynamic response of the system to various types 

of applied voltages. It was found that electric fields applied to the actuators in a non-

uniform manner, such as a linear, cosine or exponential variation along its length, result 

in different types of bending moment distributions being applied to the beam. 

Hinton E. et. al.,1995, dealt with the free vibration analysis of prismatic folded plate and 

shell structures supported on diaphragms at two opposite edges with the other two edges 

arbitrarily restrained. The analysis was carried out by using curved\ variable thickness 

finite strips based on Mindlin_Reissner shell theory, which allows for transverse shear 

deformation and rotatory inertia effects. The accuracy and relative performance of a 

family of CO strips were examined. Results are presented for a series of problems 

including plates, cylindrical shells and box girders. In a companion paper these accurate 

and inexpensive finite strips were used for structural shape optimization. 

Banks, Smith and Wang [1995] examined the interaction between piezoelectric actuators 

on such structures as beams, plates and more complicated shell structures such as a right 

circular cylinder. The changes in mechanical stiffness of the structure due to the 

attachments were studied in addition to the ability of the patches to apply forces and 

moments, which were found to depend on the geometry and placement of the patch in 

addition to the applied voltage. The influence of internal forces and moments due to the 

structure and the actuator as well as those due to actuating the patch are then related to 

the time-dependent structural equations of motion. With that, these models can be 

applied directly to controlling the vibration of such structures, particularly those of a 
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curved nature. Since the structure at the focus of this research was a toroidal shell, the 

results from Banks, Smith and Wang will contribute greatly when control of the entire 

inflated member is considered. 

Langley [1995] claimed in his paper that the equations for natural frequencies developed 

by Rayleigh are invalid. Since the point mobility of a membrane has an infinite 

imaginary component, any inertial force created by an attached point mass would lead to 

an infinite displacement at that point. Clearly this is not the case; however, it was found 

that large deformations do take place around the attachment that can only be represented 

by a multi-term Rayleigh-Ritz method. With this approach, Langley presents solutions 

for the free vibration-of a circular membrane with a point mass attachment as well as the 

forced response of a square membrane with a point mass attachment using the modal 

summation method. The results are used to understand the physical limitations of linear 

membrane theory with point mass attachments. In order to obtain more accurate results, 

he suggests the use of a nonlinear theory, considering the attachment to have a finite area 

or taking into account the finite bending stiffness of the membrane (i.e., plate theory). 

Niekerk and Tongue [1995] investigated ways to actively reduce the transient noise 

transmission through a membrane covering a circular duct. Once the nature of the sound 

has been identified, only a few milliseconds are available to determine the control signal 

and actuate the structure. Therefore, piezopolymer actuators were used because they 

offer, the ability to operate at high frequencies. Their experiment used a speaker to impart 

sound waves into a duct whose cross-section is covered by an elastic membrane fitted 

with discreet piezopolymer (PVDF) actuators. The sound pressure imparted to the film 

was measured immediately before the membrane by a microphone. The resulting 

velocity of the center of the membrane was measured with a laser vibrometer, whose 

output was used as a feedback signal for the control loop. The output of this control loop 

was given to the PVDF actuators attached to the membrane. The resulting sound 

pressure level was measured at a microphone on the side of the membrane opposite the 
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speaker. Three control schemes were investigated analytically, and then experimentally, 

namely optimal control, sliding control and velocity feedback control. It was found that a 

reduction in transient noise transmission through the membrane was possible. 

Experimental results confirmed this analytical prediction. The PVDF actuators 

performed fast enough to control the membrane and velocity feedback was found to be 

the most stable and easily implemented control method 

Suleman and Venkayya, (1995), developed finite element formulations for composite 

plates with laminated piezoelectric layers. They developed 24 degrees of- freedom 

piezoelectric plate elements with one electrical degree of freedom per surface. They 

made assumptions that the electrical degrees of freedom were constant along the plane 

and vary linearly through the thickness of the piezoelectric layers. An advantage of their 

methodology is that the analysis eliminates problems associated with modeling thin plate 

elements with isoparametric solid elements, which have excessive shear strain energies 

and higher stiffness in the thickness directions. 

Masad [1996] studied a rectangular membrane with uniform tension and thickness, but 

with linearly varying density along one dimension of the membrane. Solutions to natural 

frequencies and mode shapes were obtained using both a numerically accurate analytical 

technique and approximation methods for the inhomogeneous membrane. The resulting 

frequencies and mode shapes were compared to those of an equivalent, homogeneous 

membrane. As expected, some variation was seen between the two types of membranes-

and the approximate method was able to closely predict the natural frequencies. 

A square membrane under uniform tension with a centrally located circular area of finite 

radius and either continuously or discontinuously varying density was . considered by 

Bambill, et al. [1997]. He determines the natural frequencies using both the Optimized 

Rayleigh-Ritz method and an approximate conformal mapping approach. Reasonable 

agreement is seen between the two methods for the discontinuously varying density. 
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Likewise, acceptable results are obtained for the square membrane with circular center 

section of continually varying density. 

Saravanos, D.A. (1997), developed finite elements that enable the formal analysis of 

piezoelectric composite shells. His methodology was based on what is called a "Mixed 

Laminate Theory." This theory utilizes unique approximations for displacements and 

electric potentials. The first order shear deformation theory was assumed on the 

mechanical displacements, while discrete layer ("layer wise") approximations are 

assumed on the electrical potentials. The advantages of this mixed laminate theory are 

they 

1.) Accurately and efficiently model thin and/or moderately thick laminated piezoelectric 

shells with arbitrary laminations and electric configurations, and they 

2.) Captured the through-the-thickness electric heterogeneity induced by the embedded 

piezoelectric layers. 

Finite element methods were compared to exact solutions. The analysis was justified 

with excellent convergence and agreement with fundamental frequencies and through-

the-thickness electromechanical modes of moderately thin plates. 

Jinsong et al. [1998] used a FOS and ER fluid actuator for vibration monitoring of smart 

composite structures. They found same sensitivity in FOS as piezoelectric materials with 

lower cost. They found change in structural damping and natural frequencies with 

varying electric field_ and hence vibrations can be monitored by using FOS and ER fluid. 

Of particular interest to the present study, Pronsato et. al. [ 1999] considers a rectangular 

membrane under uniform tension with a rectangular center section having a constant 

density different than the rest of the structure. Again, approximation techniques are used 

to find the frequency coefficients, from which natural frequencies can be extracted. The 

approximation was made possible by using a truncated Fourier series consisting of a 

linear combination of sine waves to approximate the displaced shape of the vibrating 



membrane. The results are tabulated for different ratios of density between the outer and 

inner areas as well as different dimensions of the inner rectangular section. Finally, good 

correlation is seen when the results are compared to a previous paper in which only one 

polynomial expression was used to represent the displacement of the membrane. It can 

be shown that results attained by Pronsato are even more accurate than those of the 

previous paper. 

Payman Afshari and G. E. 0. Widera, (2000), developed a series of plate elements, 

based on the modified complementary energy principal, to study the free undamped 

vibration response of laminated composite plates. They selected Mindlin thin plate 

theory to govern the general characteristics and behavior of these plate elements. A 

series of in-plane strain functions were assumed from which the corresponding in-plane 

strains and corresponding stresses for each lamina were determined. The transverse 

stresses were then computed by satisfying the equations of the equilibrium. Eight-noded 

isoparametric elements were utilized to describe the displacement field. These hybrid 

plate elements are used to form the stiffness and the consistent mass matrices. The 

fundamental natural frequencies were then computed by solving the generalized 

eigenvalue problem and their application demonstrated via a number of examples. 

Wang and Chen (2000) performed a modal analysis of a simply supported plate using 

only PZT patches as actuators and PVDF patches as sensors. Their work included a 

theoretical development of the interaction between the smart actuators and sensors with 

the steel plate, generation of a column in the frequency response function matrix, 

generation of the plate's mode shapes, and extraction of the plate's modal parameters. 

They acknowledged that smart materials have a major advantage over the conventional 

structural testing. Piezoceramic transducers can be integrated into the structure, and that 

the idea of using smart materials for system identification is also important to other 

applications such as structural vibration and acoustic control. 
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Sze and Yao [2000] prepared a number of finite element models for modelling of smart 

structures with segmented piezoelectric patches. These included eight-node solid shell 

element for modelling homogeneous and laminated host structures as well as an eight-

node solid shell and a four-node piezoelectric membrane element for modelling surface 

bonded piezoelectric sensing and actuating patches. They studied number of problems 

with these models and found results agreeing with experimental results. 

Clayton L. Smith, (2001), demonstrated that multiple layer modeling is achievable by 

single layer equivalent modeling using equivalent material properties. He derived finite 

element methods for modeling piezoelectric structures, which account for mechanical 

and electrical characteristics of the structure and validated the linear theory of 

piezoelectricity with ABAQUS models using piezoelectric elements. He also 

demonstrated equivalent single layer techniques for modeling piezoelectric laminated 

structures and determined equivalent loading techniques for modeling piezoelectric 

structures and piezoelectric laminated structures subject to electrical loading conditions. 

He simplified the analysis of piezoelectric laminated structures such that computational 

models can be developed to investigate the static and dynamic response using equivalent 

representations of the structure. 

Makhecha D.P. et. al.,(2002), studied the effects of higher-order theory, that accounts 

for the realistic variation of in-plane and transverse displacements through the thickness, 

on the modal loss factors and natural frequencies of thick composite laminated/sandwich 

plates. They presented a displacement-based CO continuous isoparametric, eight-noded 

quadrilateral plate element, based on realistic higher-order theory. The accuracy and 

effectiveness of the present model over the first- and other higher-order theories for 

vibration and damping characteristics were, demonstrated considering thick 

'laminated/sandwich plates. They suggested that, the higher-order terms such as 

stretching term in the transverse displacement field, slope discontinuity in thickness 

direction for in-plane displacements, and various other high order terms are important in 
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evaluating the damping and forced response characteristics of sandwich laminates. This 

mainly depends on the ply-angle, lamination scheme, aspect ratio and core thickness 

Yan Y.J. and . Yam L.H., 2002, presented in their paper the optimal design methodology 

of number and locations of actuators in active vibration control of a space truss _using 

multiple piezoelectric ceramic stack actuators. They applied eigenvalue distribution of 

the energy correlative matrix of the control input force, to determine the optimal number 

of actuators required, and genetic algorithms (GAs) were adopted to search for the 

optimal locations of actuators. Their results showed that the disturbance acting on a 

structure is a key factor in determining the optimal number and locations of actuators in 

active structural vibration control, and a global and efficient optimization solution of 

multiple actuator locations can be obtained using the GAs. 

Liew K.M. et. al., (2003) , suggested that in conventional analyses of composite 

laminates, the assumption of perfect bonding of adjoining layers is well , accepted, 

although this is an oversimplification of the reality. It is possible that the bond strength 

may be less than that of the laminate. Thus, the study of weak bonding is an interesting 

focus area. In their study, an elastic bonding model based on three-dimensional theory of 

elasticity in a layer wise framework is used to study composite laminates. The 

differential quadrature (DQ) discretization is used to analyze the layer wise model. The 

present model enables the simulation of actual bonding stress states in laminated 

structures. The interfacial characteristics of transverse stress continuity as well as the 

kinematics continuity conditions were satisfied through the inclusion of the elastic 

bonding layer. Their model was employed to investigate the free vibration of thick 

rectangular cross-ply laminates of different boundary conditions and lamination 

schemes. 

Peng F et.al.(2003) investigated the actuator placement on a plate structure and vibration 

control of the structure. They optimized the location of actuators based on maximizing 
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the controllability grammian. It was implemented using structuring analysis in. ANSYS 

and genetic algorithm. Further they used a filtered-x LMS based multichannel adaptive 

control to suppress the vibrations. They also performed the numerical simulations in 

suppressing tri 	sinusoidal 	responsse 	at three points of the plate. 	Their results 

demonstrated that the genetic algorithm is an effective method to reduce the energy 

required for achieving significant vibration reduction. 

Shimpi R.P. and Ainapure, (2004), extended, variationally consistent layer-wise 

trigonometric shear deformation theory to deal with free vibration of two-layered 

laminated cross-ply plates. They Derived Governing differential equations by making 

use of a displacement field which allows a sinusoidal variation of the in-plane 

displacements through the laminate thickness. And concluded that, in their displacement 

based theory, constitutive relations between shear-stress and shear-strains are satisfied in 

both the layers, and, therefore, shear correction factor is not required. Compatibility at 

the layer interface in respect of in-plane displacement and compatibility in respect of 

transverse shear-stress is satisfied, yet present theory contains fewer unknown variables 

than that of the first order shear deformation theory. Effects of rotary inertia and other 

inertias are also included. They also suggested that their theory will be convenient for 

finite element modeling and finite element based on the present theory will be free from 

shear locking. From the illustrative example, it is seen that the present theory gives the 

accurate results. Efficiency of the theory was demonstrated through illustrative 

examples. 

- 22 



Chapter 4. THEORETICAL MODELLING 

In this chapter we develop the equations relevant to the problem. First the first 

order deformation theory for laminated plates is introduced. Then a laminated composite 

plate is considered to derive its stiffness. -and mass matrices using the finite _element-

method under the assumptions of the first order shear deformation theory. Further the 

governing equations for static and dynamic analysis of the plate are derived. Then the 

modal analysis for the plate along with the piezoelectric patches is discussed along with 

the equations. The objective function for the genetic algorithm is then derived by 

minimizing dissipation of the energy.  

4.1 First Order Shear Deformation Theory: 

Classical plate theory is based on the assumptions that a straight line 

perpendicular to the plane of the plate is (1) inextensible, (2) remains straight, and (3) 

rotates such that it remains perpendicular to the tangent to the deformed surface. i.e. the 

transverse normal and shear stresses are neglected. Thus it unpredicts the deflections and 

over predicts the frequencies as well as buckling loads of plates. That is why it is 

necessary to use some other theory. [Reddy. J.N, 2003] 

The first order shear deformation theory (FSDT) extends the kinematics of the 

classical plate theory by relaxing the normality restriction and allowing for arbitrary but 

constant rotation of transverse normals [Reddy. J.N, 1998]. It means the condition (3) is 

removed. The more significant difference between the CPT and FSDT is the effect 

including the shear deflections on the predicted deflections, frequencies and buckling 

loads. So the primary objective in developing analytical solution for the rectangular 

plates using FSDT is to bring out the effects of shear deformations on deflection, 

stresses, frequencies and buckling loads. 
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Figure 4.1: Deformed and undeformed geometries of an edge of a plate under the 

assumptions of CPT 

Figure 4.2: Deformed and undeformed geometries of an edge of a plate under the 
assumptions of FSDT 

The linear constitutive elastic field equation for a typical layer is given by 

o-S 	in 2 	n2 	— 2mn T Q11 Q12 Q1 	mz 	nz 	— 2mn e 
cr = n2  m2 	2mm 	Q12 Q22 Q26 n2  m2 	2mm E y  

zxy k  mm — mn m2  — n Z 	 16 Q26 QGG mm — mn m2  — n2 Ysy k  
k 

T z 	m n Q44 Q45 m n Y, 	 (4.1) 
LVXJk 	n m Q45 Q55 k — n n1 Yxz k 

where 

m = cos9, n = sin0, 9is skew angle and Q, are the elastic stiffness coefficients, 
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A doubly curved shell is taken with coordinates x, y along the in plane direction and z 

along the thickness direction. Based on FSDT of small strains, the displacement u, v, w 

at a point (x, y, z) and independent rotation 0, and By of Normal in xz and yz planes 

respectively as: 

u(x,y,Z,t) = u0 (x,Y,t)+ Z01(x,y,t) 

v(xiy,Z,t ) =vo(x;y,t ) ±ZOy(x,y,t) 	 (4.2) 

w(x, y, z, r) = wo (x, y, t) 

Where 

u,v and w are the displacement components in the piezoelectric composite plate space 

along x,y and z axes respectively, 

uo,vo and zo are displacements of the reference point (x, y) on the midplane (z=0) 

8X and 9y are the slopes of the normal to the reference point (x, y) on the midplane in yz 

and xz planes respectively. 

4.2 Boundary conditions: 

y Y 
4 

w= e ems- 0 

w=o 
X e=o 	 0 0 

e=0 
y 

e~` o 
Y 

Figure 4.3: Boundary conditions for simply supported (quantities with an asterisk 

only) and clamped edges. 
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Figure 4.3 shows various types of boundary conditions on an edge of the plate 

element for the first order shear deformation theory. When the .edge is parallel to the x or 

y axis, the normal and tangential components of a variable become the y and x ( or x and 

y) components, respectively, of the variable [Reddy J.N.,2003]. 

4.3 FEM Formulation: 

A simple 4 noded rectangular element is considered. 

	

114,V4,W4>e4.,04y 	 113 v3,titi3'°3s>e3y 

	

111,V1 , x'i >81x , 01y 	 '112 :1'2 , M'2 : 02x > °2y 

Figure 4.4: Four noded rectangular element 

Displacement functions: Two dimensional interpolation (shape) functions are used to 

define the geometry field at any point in the element cross-section. These shape function 

relate the curvilinear coordinates in the nodal Cartesian coordinate system to the element 

coordinate system 

N1 =(l—)(l—i) 
	

N2 = 4(1+~)(1-11) 

N3 = I(1+~)(l+i ) 
	

N4 = 4(1— )(1+ 77) 
	

(4.3) 

The element has five elastic degree of freedom u0, v0, w, 9x and O,, per node, 

{4, }e = [uOi V0, 	Wi ex, 	ey; J 	i =1,2,3,4 

Each variable of the degree freedom can be represented n terms of the shape function as 

u0 = [ N.. Jtq} 	v,, = [N,, j{q} 	w = [N. ]{q} 	BX = [N0J{q} 	By = [N9 J(4} (4.4) 

r0 



And the displacement field within the element can be given as: 

U 	 1 0 0 0 0 	u0 . 

u= w= [Nu ~{q} = 0 0 1 0 0 	N; [1]5x5 w 

v 	 0 1 0 0 0y 4 	vo 
(4.5) 

0, 	 0 0 0 1 0.'' 	0. 

0 0 0 0 1 	6 

Assuming small deflection and considering the effect of shear deformation. The total 

strain can be expressed as: 

{e} 
= 
{} + {zsb} 

(4.6) 

Where the midplane (membrane) strain 16, }, bending strain {eb } and shear strain {E,. } is 
given by 

NO 8Nu°' 0 0 0 	0 u. 

{~n } = ° 
4 

_ 

ax 

0 
aN 

v°' 0 0 	0 
v°4 
w. = [Bn ]{q} (4.7a) 

NU a 

ax. aY 
 0 0 	0 O 

aOx 0 0 0 aNe=' 0 u;, 

{Eb } = 
aey = 0 0 0 

ac 

0 aNey, 
v o, 
w. _ [Bb ]{q} (4.7b) 

ay 
aex +aey _ auo 	a,'o _ 

1=1 

aNN., _  &N, , aNB, 
v 

aNBy, 
B 

e, 
Ox ° i L 

0 

0 	0— aNW' Nes 011V01 1  

uo 

0y, — '_' 0 	0 	— w' 
aY NBy, 0 eX 

e, 
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4.4 Energy equations 

Potential energy equation: 
Using constitutive equation, the inplane stress-strain behavior of the kth lamina of the 

laminate is represented as [Rajeev Wumar ,2003 

~v 

6x 

= [{}+ z {Eb }Jk 

i-zy 

Where  

(4.8) 

If {F} represents the membrane stress resultants (F. , Fyy, Fxy ) and {M} represents the 

bending stress resultants (M, Myy, Mzy ) we can relate these to membrane strains { sp } 

and the bending strains { TM}, through the constitutive relations as: 
I 

{F} = LAS JEn }+ [B;i .I{ b } 	 (4.9) 
{M } = [By ](En 1 + LDS {Sb } 

Where, 
n hk 	 r 	n hk 	 n h. 

{A►i } ° 	f LQ~ z 	{B;U _ I fLQjzdz 	{D ] = I f [Q;~ J2dz 	 (4.10) 
k=1 hk-1 	 k=I bk-1 	 k=1 hk-1 

The transverse shear stress of the kth layer can be written as 

'- = [Qy ](,%}k Where i, j = 4,5 	 (4.11) 
Z'n k 

It is assumed that shear stress is not influencing the piezoelectric effect. 

If {S} represent the transverse shear force resultant (S,,, Syz), then it is related to the 

transverse shear strain through the constitutive relation: 

{S} = {HU J{sr } 
	

(4.12) 

Where, {H~ } _ k~; kaj f[Q;~ I dz 
k=1 	hk-i 

Where kai ; kaj being shear correction factors as per reissner's variation method 

k 1 =, kaj = 5/6 
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Using the variation principle the strain energy functional, V is given by 

V = 	 }T {F}+ {eb IT {M} + j{_.,• IT {S} dA 	 (4.13) 
2 A  A 

On putting value from equation (4.8) in to (4.10) 

V 	\lP  L 	+ {£ P }T [BY R£b })IA]+ 

 

[f(j," 
 

}T  LBij }~£P + {£b }T LDij Jl£b ~/ - + 	5 	}T [Hl !l£s• } 1A 
A 	 A 	 A 

(4.14) 
On putting values from equation (4.5) & (4.7) in above equation 

V = 1 {q }T %B,  1 [AI 1BP ] + [BP JBU I Bb ] + [Bb 1 [BU IBn ] + [Bb 1 [D,j IBb ] + [B.c J [Hij IBs ]FA {q } 
2  A 

(4.15) 
Say 

[k]= $( B P T LAij1BPI + [BP]T [BijIBb]+ [Bb1T [BY IB P]+ [Bb]T [DijI$b1+ LB.c1T L 	B.sJ)IA 
A 

On putting these values in above equation 

V = I {q}T [k]{q} 	 (4.16) 

Kinetic energy equation: 	- 
The element kinetic energy is: 

z 	z 	z 	z 	z 
T = 	pun +V" +w +1 Bx +0y 	 (4.17) 

A 

n, h,  n, h, 

Where 	p= 	Jpa'z 	l=) 
fz2 pdz 

k= hk-1 	 k=1 hr-1 

On putting displacement in terms of shape function 

T = 1 {q }T [m]{q } 	 (4.18) 
2 

Where 

[m] _ f~qNu. J [A n 1+ [Nv, ] [NV~ ] + [Nw 1 [NW ])+ I (JNJ [N9 1+ [N9 .} [NO .)}A (4.19) 
A 
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Work done by the external forces and electrical charge: 

The virtual work done by the surface force & the applied electrical charge density is 

given by: - 

6W ` = J{Su }T { fs Ids 	- 	 (4.20) 
s 

Where {f } and Ifq } are the surface force density and surface electrical charge density 

respectively. sl and s2 the surface area where the surface forces and electrical charge are 

applied respectively. 

On putting value of displacement & electrical field in above equation. 

6 S = {( }T {Fr } 
	

(4.21) 

Where 
{Fr } = f [Nu J{fr }ds 

.r~ 

The Langrangian L of a bonded piezoelectric body is defined by the summation of all 

kinetic energy & potential energy (included strain and electrical energies) 

L=T—V+W e 
	

(4.22) 

Hamiltion's principle assumes that the energy variation over an arbitrary period of time 

is Zero, i.e. 
rJ 

f,5(L + W')dt = 0 	 (4.23) 

On putting value if L from equation (4.22) 

J(bT —by+bVsS t=0 	 (4.24) 

It is assumed that the dynamic coupling of heat transfer with structural deflection and 

electric field are small. The temperature field can be calculated based on the given 

thermal excitation using the principles of heat transfer. 
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Different terms in above equations are as: 
!I 	1f 

f bVdt = f {&~}T [kvu ]{q}dt 	. 	 (4.25) 
r„ 	r„ 
r! 	If 

fbTdt f{b dt 	 (4.26) 
ro  /o 

,f  1 

Prdt  = f {&~}T {Fs }dt 	 (4.2-7) 
ra 	 r„ 

On putting these values from (4.25), (4.26) and (4.27) in Hamilton equation (4.24) we 

get 

[muu ] {9 }— [kuu ]{q } 	t = 0 	 (4.28) 

On comparing both side coefficient of {&i}T 

[m]{q}+ [k]{q} = {FS } 	 (4.29) 

In global form, 

[M]{q}+ [K]{q} = {F} 	 (4.30) 

Where 
[M]={m} 

e 

[F] = •LFse] 
e 

For static analysis, 
[K]{q} = {F} 	 (4.31) 

For free vibration analysis, {F} is taken zero and hence the equation of motion becomes. 

[M]{q}+ [K]{q} = {0} 	 (4.32) 

r 
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4.5 Patch effect 

The above equations can be used for both the isotropic plates and the composite 

plates. The actuator properties i.e. its voltage characteristics is not considered in the 

above derivations. The following equations are derived considering the effect of the 

piezoelectric actuators and sensors. 

Assumptions: - 

1. The piezoelectric actuators/sensors are mounted perfectly over the plate. 

2. The voltage applied to the actuator is approximately converted into the force. 

Rewriting the displacement components - of a composite plate (1) based on the 

assumptions of the first order deformation theory for small strains. 

u(x, y,Z,t) = uo (x, y,t)+z6x (x, y,t) 

v(x,Y_, z, t) = V. (x,.y, r) + zey  (x, y, 0 ) 
	

(4.33) 

w(x, y, z, t) = w0  (x, y, t) 

Now the strain vector at any point (x,y,z) with respect to the structural coordinate 

system can be expressed in a reduced form as 

{c}=[TIZ s 

Where 

m2  n2 . 0 0 mn 
n z  m Z  0 0 — mn 

[T]= 0 0 m —n 0 
0 0 n m 0 
2mn 2mn 0 0 m2 —n2  

(4.34) 

(4.35) 

1 0 0 0 0 2 0 0 
0 1 0 0 0 0 z 0 

[Z]= 0 0 1 0 0 0 0 0 
0 0 0 1 0 0 0 0 
0 0 0 0 1 0 0 z 

m=cos 9, n=sin 0 and 9 is the skew angle. 

(4.36) 



(4.37) 

auo  
ax 

avo  

av 

1avo  
+ oy  ay 

° 1+0 x ax 

1auo 

 

+1  ayo 
ay 	ax 

Bx,x 

BY.y 

Ox, y + V  y,x 

(4.38) 

Finite Element Model: 

An eight noded isoparametric element is adopted and the spatial coordinates in terms of 

the shape functions are given by 
8 	 8 

x=I N; x; 	 (4.39) 

Where Ni  are the shape functions 

The displacement vector {u} at any point (x,y,0)on the mid plane is defined in terms of 

the nodal variables and the shape function [Nd ] as 

{u}= [Nd] { u; } 	 0 	 (4.40) 

[Nd]=[[N,1] [N2 1] ... [Ns  1]] 	 (4.41) 

I - a 5x5 Identity.  matrix 

33 



Using the equations (4.34), (4.38) and (4.40)we can write a reduced form of strain vector 

{ e} = [ 7] [ZJ [Bd] { u } 	 (4.42) 

Where [Bd] = [[B1 I] [B2 1] ... [B8 I]] 	 (4.43) 

and 

[B;]=I 

aN` 0 0 0 0 
ax 

0 aN' 0 0 0 
~y 

0 0 0 Ni ay 

0 0 Ni 0 
dx 

8N; DN ; 0 0 0 
dy dx 

0 0 0 aN' 0 
dx 

0 0 0 0 aN' 
dy 

0 0 
dy dx 

(4.44) 

Energy equations 

Internal Work: 

Internal work done by the material layer is given by 

Win, _ ${s}7 {6}dv 	 (4.45) 
v 

But the stress is given by 

{a} = [Q]{s} 	 (4.46) 

E' y12 E' 0 0 0 
1— v12 v2 , 1— v12 v21 

v12 E1 Ez 
0 0 0 

Where 	{Q]= 1—v1Z v21 1—v12 v21 
0 0 G12 0 0 

0. 0 0 G23 0 

0 0 0 0 G13 
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From equations (4.45) and (4.46) 

J{e}7 {Q}{E}dv 	 (4.47) 
v 

By equation (4.42) and (4.47) 

W nt = {u} J[Ba ]T [Z]T [T ]T [Q][T ][Z][Bd ]dv {u } 	 (4.48) 
V 

If we say 

[kn 1= $[BJ ]T [Z]r [T ]T [QJET I ZI Bd ]dv 	 (4.49) 

Then, equation (4.48) becomes 
= {u}T [kb ]{u} 	 - 	 (4.50) 

Now considering the stress in the actuator layer, 

Internal work done inside the actuator layer can be given as 

WA =${~A }
T

{ A }dv 	 (4.51) 
v 

But stress in the actuator layer 

{~ A }= [Q A ]{E A }—{e]{E} 	 (4.52) 

From equation (4.51) and (4.52) we can write 

W A = j ( & 
.4 

~Q A ~{E A } — {E A }' [e]{E}~dv int 	 (4.53) 
v 

By equation (4..36) and (4.42) . 

W n = {u}' 5[B j'  [Z A J [TA ]7 [QA 
IT A IZ A IBA]dV {u } — {u }T S[B J ]' [z' ]7 [TA ]7 [e]{E }dv 

v 	 V 

(4.54) 

As the electricity is applied in the thickness direction only 
A 

0 

{E} = 0 

0a 
tQ 

If {E} = O° Then [e]= {e3 } 
tq 

35 



From this and from equation (4.54), 

Wi A = {u} J[Bd r [ Z A 
} [TA IT 

[QA IT A IZ A IBA l"V {u } — {u }T J [Bd J, [Z A ]7 LTA }, [e3 dA q5 

v 	 v 

(4.55) 

Say 	 - 

{k } = j [B 17 [Z A,T [T " ] [Q A ~T A IZ ' JB 	v {u } and 	 (4.56) 
V 	 J 

{kdO }= f[BAIT [z ]T [T AT dA 	 (4.57) 
v 

Then from equations (4.44), (4.45) and (4.46) 
Wins = fu}T [k P ]{u}— {u}T [kdj k A 	 (4.58) 

Electric displacement vector is given by the direct piezoelectric effect 
{D} = [e]{s}+ [x]E} 	 " (4.59) 

In the absence of electric field 
{D} = [e]{s} 	 (4.60) 

As here strained sensor is only placed in Z direction. Therefore in this case only DZ 
component of D will be on the sensor surface. 
{Dz } = [e3 ]7 {e } 	 (4.61) 

From equations (4.42) and (4.61) 
{DZ } = [e3 ]' [T ][Z 'S JBd; ]{u } 

	
(4.62) 

From the Guass's law, the charge output qij of the ith electroplated sensor can be given 
by 

q' 	 (4.63) 

Where 
q~= JDZ dA 

From equations (4.62) and (4.64) 
q (t) = J{e3 }' [T][ZS IBs ]{u}dA 

Say {k dc }T .= f {e3 IT [T ][Z s lB ]dA 

By equation (4.65) and (4.66) 
q J (t) = {kd,. }T {u } 

(4.64) 

(4.65) 

(4.66) 

(4.67) 
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Current is the rate of change of charge i.e. 

1 dt q' tt) 	 (4.68) 

From equations (4.67) and (4.68) 

i = {kdc }T {u} 	 (4.69) 

Sensor voltage 
i = g ` {kds }T {u } 	 (4.70) 

Where gC is the current gain of the charge amplifier 
This sensor voltage is given to the actuator after desired amplification, therefore actuator 
voltage 
q5A = g q5s 	 (4.71) 

Where g is the constant gain to couple the input actuator voltage and out put sensor, 

From equations (4.70) and (4.71) 

cb A = gg ` {kd,. }' {u } 

By equations (4.58) and (4.72) 
= {u}T [k]  {u}_ {u}T [kdo ] gg ̀ {kd , }'' 

External work done 
w, = f {d}{f"}dA+Z{d}' {f,}- f {d}'' p{d}dv- f {d}' p{d}dv 

A 	 v 

Where {d}=[ZZIN][u] 

(4.72) 

(4.73) 

(4.74) 

(4.75) 

From equations (4.74) and (4.75) 

w, _ {u}T J{N}' {ZZ}' {f d }dA + {u}T [N]' [ZZ]' E {f ; }- {u}' J~[N]' [ZZ]' p[N]+ [N]' iZZ A
I
T [NDdv u 

A 	 r 	 v 

(4.76) 

Now if 

[mb ] = f [N ]T [ZZ ]T Pb [ZZ ][N ]d v 
V 

[mn]= J[N]7 [ZZA  ]Pb [ZZ A IN]dv 
v 

(4.77) 
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1 0 0 2 0 

0 1 0 0 2 

Where [ZZ] = 0 0 1 0 0 
0 0 0 1 0 

0 0 0 0 1 

From equations (4.76) and (4.77) 

was! _ {u}T f[N]7' [ZZ]T { f J }dA + {u}' [N]' [ZZ]T J] f. — {u}' [mb u~ — {u}T [m, ] 	(4.78) 
A 

By the principle of virtual work 

taint Wext 
	 (4.79) 

This means, from equations (4.50), (4.54), (4.78) and (4.79) 

[mb u + [m P iu} + {kda }g`g{kd., }'. {u} + [kh ][u} + [k P ~{u} = j[N]' [ZZ]' { fd }dA + [N]' [ZZ]T I { } 
A 

(4.80) 
In global form, 

	

[K da ][GO IK d I ~+[KjjXj+[K P RXj= {F}  +{F"} 	(4.81) 

Say 
[MJ-[Mb}+[MP]; 

(4.82) 

Assuming a proportional or Rayleigh damping, 
[C]=a [M] + R [K] 	 (4.83) 

a and R are constants. 
From. equations (4.81), (4.82) and (4.83) 

{M Jj X } + ([C] + [K dp 1G0 1K XX-  } + [K ]{X }= {F } 	 (4.84) 

Whelre [0] is a normalized eigenvector matrix 

Now substituting [X]=[q5][f], where [0] is the modal matrix 

and premultiplying both sides of the equation by [Ø]T, we get 

	

[O]T [M][o}{Y} + [0]T ([c]+ [Kda ][Ga ][Kd,. D[Kd,, D[~]{Y + [KI0l{Y} _ [0]T {F} 	(4.86) 

38 



Now say 
[M n ] [" IT [M ]1q ] = diag [I ] 

[c ] [cz ] [C]{Y]= diag [2ci ] 	 (4.87) 

[K„]= [q]T[K][O]= diag [w?] 
Now from equations (4.86) and (4.87) 

[M. ifr} + qC. ]+ [0]7 [Kda IGo I Kd, 	+ [Kn }{Y} _ [0]T {F} 	 (4.88) 

(4.89) 

From equations (4.88) and (4.89) 

[Mn ]~U} + QC„ ]+ [[]T [Kd, ][G, I Kd. ][oD{U} + [Kn ]{Y} _ [[]' {F} 	 (4.90) 

From equations (4.88) and (4.89) 

0 	I1{} Y 	0 
U = _[ 

 MR]'[Kn].—[M]
-
~([C.]+[[]`[KddIGaR d, 101) {u} + 	

. {F} 

(4.91) 
0 	 1 

[A] — [ í ]'[Kr]  — [M ] ' [c  ] + [Y] / [Kd0 PaJKd,][ ]) 

[B] = [ ]T {F} 	 (4.92) 
[0 

Y 
{W}= U 

4.6 Location Optimization of Point Actuators 

The state representation of the model can be written as 
From equations (4.91) and (4.92) 

f
W } = [A W + [B]{F } 	 (4.93) 

Note the dependence of matrix B on the location of force actuators. If an actuator is 

located at the nodal point of a mode, this mode becomes uncontrollable through that 

actuator. Actuator location in the vicinity of the node would, require a large effort to 

control this mode. 

39 



Now, we define the problem of minimum control energy requirement to regulate the 

system from an initial state, xo , to a final state, x f as (Hac, and Lui, 1993) 
7j 

Minimize J, = Ju'' (t)u(t) 
0 

Using Pontryagin's minimum principle 

(J, )min = [eA 
1
jX(0)—X(t .r ) 1T W,(t f)-i[eA,,X(0) — x(tf)] 

where 
If 

W c (t f ) = e Ar BB T e A
T 

r dz 
0 

The matrix W, (tf ) is called the controllability grammian matrix and it depends upon the 

input matrix B . Maximizing a norm of the controllability grammian matrix would lead 

to the minimum control energy requirement. In addition, a small eigenvalues of the 

controllability grammian matrix would lead to at least one mode requiring very high 

control effort. This implies that all the eigenvalues of the controllability grammian 

matrix should be as high as possible. It is also more desirable to have the condition of 

minimum energy requirement be independent of the final time, tj. A grammian matrix 

independent of tf is obtained using the following relation: [Jha A.K.,2002] 

A 

7' 

W,(tf )=W,(cO)—e' f̀ W,(co)e f̀ 

For a stable system, as tf increases, the effect of the second term in the above equation 

decreases and hence it is appropriate to impose the minimization problem based upon 

WW (co), which is independent of the final time. The matrix WW (co) can be calculated by 

solving the Lyapunov equation 

A T4~(ao)+W (ao)AT =[Q] 
Where 

[Q] —_ 
[K,,  

0 M„ 

(4.94) 
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The eigenvalues of the matrix WW (co) play a crucial role in determining the performance 

of the actuator. Based upon the observations about the eigenvalues, we define the 

following performance index (PI,) 

 Fi=IPIS 	I 2
a( ,)

( 2N 

,_1  
(4.95) 

where 2;  are the eigenvalues of W,(oq), and o-( j) is the standard deviation of A;. A high 

value of the standard deviation implies that the eigenvalues are widely separated and 

hence some of them are less controllable and some of them are more controllable. A case 

where all the modes are almost equally controllable is preferable. This leads to a very 

low standard deviation and hence a high performance measure. The summation term in 

PIC represents the size of the grammian and should be large for good performance. To 

ensure that all the eigenvalues of the grammian are high (for good controllability of each 

mode), the performance index includes the product of all the eigenvalues. 
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Chapter 5. GENETIC ALGORITHMS 

Once the governing equations are derived, the genetic algorithms are used to 

optimize the location of actuators. The genetic algorithms require an objective function 

for optimization. The minimizing of dissipation of energy explained in the previous 

chapter is taken as the objective function for this optimizing technique. This chapter 

explains the development of genetic algorithms and the various variables used in the 

algorithm. The steps of genetic algorithms are discussed separately in detail in this 

chapter. 

5.1 Description 
Genetic Algorithms were developed by Holland in 1975. Although these 

algorithms emerged simultaneously with two other streams known as Evolution 

Strategies (ES) and Evolutionary Programming (EP), GAs are today the most widely 

known type of evolutionary algorithms. Differing from conventional search techniques, 

the common feature of these algorithms is to simulate the search process of natural 

evolution and take advantage of the Darwinian survival-of-the fittest principle. In short, 

Evolutionary algorithms start with an arbitrarily initialized population of coded 

individuals, each of which represents a search point in the space of potential solution. 

The goodness of each individual is evaluated by a fitness function which is defined from 

the objective function of the optimization problem. [Garcia, 1999] 

Then, the population evolves toward increasingly better regions of the search 

space by means of both random and probabilistic (or deterministic in some algorithms) 

biological operations. 

The basic operators used in GAs consist of selection (the selection of parents for 

breeding), crossover (the exchange of parental information to create children) and 

mutation (the changing of an individual). In addition, following the Darwinian Theory, 

an elitism operator (the protection of best individuals) is found in more elaborated GAs. 

Note however here that the ergodicity of the biological operators used in GAs 

makes them potentially effective at performing global search (in probability). Also, GAs 
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have the attribute of a probabilistic evolutionary search (although it is most commonly 

referred to as a randomized search), and are neither bound to assumptions regarding 

continuity nor limited by required prerequisites. 

The GA technique has been theoretically and empirically proven to provide 

robust searches in complex spaces. Much of the early work of GAs used a universal 

internal representation involving fixed-length binary chromosomes with binary genetic 

operators. 

Consequently, most of the theory developed (which could fill several volumes!) is 

based on binary coding. In developing the Fundamental Theorem of GAs, Holland 

(1975) focused on modeling ideal Simple GAs (SGAs) to better understand and predict 

GA behavior with above-average fitness receive exponentially increasing trials in 

subsequent generations. Many properties in terms of the binary genetic operator's 

effectiveness were concluded from this theorem. However, it is pointed out that these 

properties give some limited insight into the GA behavior. Mitchell believes that a more 

useful approach to understanding and predicting GA behavior would be analogous to 

that of statistical mechanics in physics whose traditional goal is to describe the laws of 

physical systems in terms of macroscopic quantities, such as pressure and temperature, 

rather than in terms of the microscopic particles (molecules) making up the system. Such 

an approach will aim at laws of GA behavior described by more macroscopic statistics 

such as "mean fitness in the population" or "mean degree of symmetry in the 

chromosomes" rather than keeping track of the huge number of individual components 

in the system (e.g., the exact genetic composition of each population). Regarding 

theoretical guidelines about which GA to apply, the real problems encountered by GAs 

usually compel tailoring the GA at hand as the use of different encoding and operator 

variants could provide different solutions. 

One realizes that there are therefore no rigorous guidelines for predicting which 

variants and more particularly, which encoding, works the best. By addressing the 

binary/floating point debate, the work it is confirmed that there is no best approach and 

that the best representation depends on the"problem at hand. 
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As one can understand, there are many controversies in the GA community over 

the approaches used, revealing that GA theory is by no means a closed book (indeed, 

there are more open questions that solved ones). One final point worth mentioning about 

the GA theory is that many of today's algorithms show enormous differences to the 

original SGA. [Garcia, 1999] 

5.2 Fundamentals 

The purpose here is not to give a thorough theoretical analysis of the GAs 

mechanism, as there are excellent introductory tutorials in the literature. Instead, the 

objective of this section is to provide some answers to explicit questions one may have 

about GAs. In the following, the structure of a simple GA will be presented along with a 

general overview of the main,  techniques/variants that are employed in the GA process. 

Then, the most important features which differentiate GAs from conventional 

optimization techniques are described. Eventually, the strengths and weaknesses of GAs 

are outlined and the type of problems for which the use of these algorithms is pertinent is 

indicated. 

5.3 What are GAs? 

Like all evolutionary algorithms, a GA is a search procedure modeled on the 

mechanics of natural selection rather than a simulated reasoning process. These 

algorithms were originally used for the study of artificial systems. Since their inception 

GAs have been subject to a growing interest as an optimization technique in nearly all 

kinds of engineering applications. Today, there are so many different GAs that it turns 

out, there is no rigorous definition of GAs accepted by all in the evolutionary 

computation community that differentiate GAs from other evolutionary computation 

methods. Indeed, some currently used GAs can be very far from Holland's original 

conception. However, it can be said that most methods called "GAs" have at least the 

following elements in common: populations of individuals, selection according to the 

individuals' fitness, crossover to produce new individuals, random mutation of new 

individuals, and replacement of the populations. These elements are illustrated next, in 

the description of how a simple GA works. A typical GA flowchart appears in Fig. 5.1. 
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How do GAs work? 

GAs are based on the collective learning process within a population of 

individuals (trial solutions called chromosomes), each of which represents a search point 

in the space of potential solutions to a given problem. The chromosomes code a set of 

parameters (called genes). The population (of size ns) is generally randomly initialized 

(at the generation ng=O) in the parametric search space (see POPO in Fig.5.1). The 

individuals are evaluated and ranked in terms of a fitness function. Then, the population 

evolves towards fitter regions of the search space by means of the sequential application 

of genetic operators. 

The basic operators of a simple GA consist of selection (selection of parents for 

breeding); crossover (mating of parents to create children) and mutation (random 

changing of a gene). Following the Darwinian theory of survival of the fittest, an elitism 

operator is usually found in the generational replacement. A generation is accomplished 

when the sequence defined by the application of all operators to the individual parents is 

performed, as illustrated in Fig. 5.1 .The GA produces as many generations as necessary 

until the convergence criterion is reached. The goal, throughout this process of simulated 

evolution, is to obtain the best chromosome in the final population to be a highly evolved 

solution to the problem. 

Figure-5.1: Typical Genetic algorithm 
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5.4 Basic steps in a Genetic Algorithm 

5.4.1 Encoding scheme 

To enhance the performance of a GA, a chromosome representation that stores 

problem specific information is desired. Although GAs were developed to work on 

chromosomes encoded as binary strings, it is today common knowledge that for 

numerical optimization problems, one should use a GA with floating point 

representation. One important point that may, however, not be obvious when one starts 

to use GAs (which was my case) is that the crossover variants used should be 

appropriate to the encoding used. There indeed exist both conventional (binary) and 

arithmetical crossover techniques to fit the two different representations. Note that when 

using the real representation, a chromosome is a vector of np genes for the np 

parameters. It should be emphasized here that because much of the early work of GAs 

used a universal coding involving abstract binary chromosomes (that needed to be 

decoded), research on GAs has been slow to spread from computer science to 

engineering, and very little theory exist in the literature on real-valued encoding. 

[Garcia, 1999] 

5.4.2 Fitness function 

The fitness plays the role of the environment in which the chromosomes are to be 

evaluated. This is thus a crucial link between the GA and the system. This function can 

be simply taken as the objective function to optimize or as a transformation (scaling) of 

it. It is assumed that the fitness function to be optimized is positive. In cases where the 

objective function happens to be negative, the fitness function will be a transformation of 

the objective function. 

5.4.3 Parent selection 

Basically, the selection operator determines which of the individuals in the 

current population (of size ns) will be allowed to pass their genetic material to the next 

generation. Using the GA language, one says that it. builds up the mating pool by 
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selecting ns individuals from the current population. There are many ways to achieve 

effective selection, including proportionate, ranking and tournament schemes. The key 

assumption is to give preference to fitter individuals. Using fitness proportionate 

selection, the number of times an individual is expected to reproduce is equal to its 

fitness divided by the average of fitnesses in the population. The most popular and 

easiest mechanism is the Roulette wheel selection where each chromosome in the current 

population has a Roulette wheel slot sized in proportion to its fitness. However, 

depending on the environment (fitness), proportionate and ranking selection schemes 

may lead to premature convergence or on the contrary, to a slow finishing. Those are 

well-known severe technical problems of GAs. However, both problems can be avoided 

if scaled fitness values are used instead of the original values. Another way to 

circumvent these problems is to use a more adequate selection operator. In many 

applications, tournament selection has proved to yield superior results to fitness rank 

selection. In the simplest form, the so-called binary selection, two chromosomes are 

selected randomly from the current population but only the one with the higher fitness 

value is inserted into the mating pool with a probability pt. One interesting feature about 

this selection scheme is that one can adjust the selection pressure directly from the 

tournament probability pt (typically larger than 0.5). Regardless of which selection 

technique is used, the selection operator produces an intermediate population, the mating 

pool, which consists only of individuals that are members of the current population. The 

following two operators, crossover and mutation, are then applied to this mating pool in 

order to generate children. 

Figure 5.2: Roulette wheel 
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5.4.4 Crossover 

The crossover operator is the key operator to generate new individuals.  in the 

population. In addition, it has been shown in the literature that so-called "deceptive" 

problems can be made "easy" by the use of an appropriate definition of the crossover 

function. This operator is applied to each pair of the mating pool with a crossover 

probability pc, usually taken from [0.6,1], 	to produce one or two children. With 

probability 1-pc, no changes are made to the parents (they are simply cloned), but with 

probability pc, genetic material is exchanged between the two parents. In the simplest 

crossover, the single point crossover, a crossover point is _randomly selected and the 

portions of the two chromosomes beyond this point are exchanged. Multipoint crossover 

is similar except that multiple cross points are chosen at random with no duplication. 

Uniform crossover generalizes the scheme by making every gene a potential crossover 

point. Single, multipoint and uniform crossovers are generally considered conventional 

binary techniques, and when real encoding is used, arithmetic crossovers are the most 

suited. 

X. y1 

ossover 	 y2 

Figure 5.3: Crossover 

5.4.5 Mutation 

This operator should allow a GA the finding of solutions which contain genes that 

are nonexistent in the initial population. It can also prevent the GA from loosing some 

genetic material without any chance of adopting it again. Often viewed as a background 

operator, mutation modifies gene values according to a mutation probability. Using 

binary encoding, this simply means changing a 1 to a 0 and vice versa with a small 

probability. Using real encoding, when a global modification called jump mutation is 

applied, each gene in any chromosome is replaced with a random value (from the entire 



parametric search space) with probability pmj. A "mutation-based" operator can also be 

applied locally with the creep variant (not a pure mutation operator in the sense of GAs) 

which consists in the addition or subtraction with probability pmc of a small value to the 

gene (1% of the actual gene value). 

Whereas the crossover operator reduces the diversity in the population, the 

mutation operator increases it again. The higher the mutation probability, the smaller is 

the danger of premature convergence. A high mutation probability will however 

transform a GA into some kind of random search algorithm, which is of course not the 

intention of the algorithm! Mutation probabilities are usually small (so as not to interfere 

with the combination of the best features of parents made by the crossover operation), 

and range from 0.001 to 0.10, the higher values being typically applied with real 

encoding. 

0 1 0 1 0 1 1 lutation o 1 0 1 0 0 1 
a 	 > 	 —- _ 

'1' 
Figure 5.4: Mutation 

5.4.6 Replacement strategies 

In the simplest form of GAs, when the operation of selection, crossover and 

mutation are completed on the ns individuals of the current population, this entire 

population is replaced with the children created. This is the traditional generational 

replacement. Variations where not all individuals are replaced in each generation exist. 

The simplest case of such a strategy is the elitist strategy where the individual with the 

highest fitness (according to the Darwinian theory of survival of the-fittest) is directly 

transferred from the old to the new generation and only the other ns-1 children are 

generated by the application of genetic operators. 

Generational replacement with probability pr is often used in which nsxpr parents 

are replaced with children while the nsx(1 pr) best parents are kept. An alternative to 
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replacing an entire population at once is to replace one organism in the popul 

whenever a new organism is created. This variant is known as a steady-state GA. 

5.4.7 Convergence criterion 

The most widely used stopping conditions are either that a given number of genera 

have been done already, or that the population has become uniform. When the 

condition is chosen, GAs are typically iterated for anywhere from 10. to 500 or i 

iterations. User defined convergence criterion that are better suited to the problem I 

solved should be preferred (although most of the studies do not address this probler 

is however not easy to define such a criterion, as it will be shown in this work. 

5.4.8 Performance criterion 	 - 

What does it mean for a GA to perform well or poorly? Some perform 

criteria can provide answers to this question. The best fitness reached (best-so-far) 

typical one. One. criterion for computational cost is the number of function evaluat 

Indeed, in almost all GA applications, the time to perform a function evaluation v 

exceeds the time required to execute other parts of the algorithm (which are 

considered to take negligible time). Note that because randomness plays a large ro 

each run (two runs with different random number seeds will generally produce diffi 

output), often GA researchers report statistics (about the best fitness for insta 

averaged over many different runs of the GA on the same problem. 

Besides the genetic operators presented here, there exist a number of diffi 

operators (inversion, reordering), in addition to advanced features (diploid, dominani 

recessive genes, sharing fitness function) which are used in different applications bu 

yet widely. GAs are still far from maturity. 
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Chapter 6. RESULTS AND DISCUSSION 

A MATLAB code is written and has been used to solution for various static and dynamic 

problems. The variation of max static deflection with various parameters of the laminate 

laminated plates has been studied and a free vibration analysis of isotropic and orthotropic is 

carried out using the code to obtain the natural frequencies and mode shapes. 

In actual terms, the plate is a structure which has infinite number of degrees of freedom. 

So it can have any number of natural frequencies. But we are concerned with the lower 

frequencies which come in practical limits. Here with the use of finite elements ( grid: 2 x 2 in 

most of the cases, resulting in 3 X 3=9 nodes) we are reducing the degree of freedom of the 

plate to a total of 45 degrees of freedom which include 5 degrees of freedom( u, v, w, 6x, O,) at 

each node. 

Further when we apply the boundary conditions or supports, depending upon the type of 

support applied, some more DOF's are constrained resulting in a fewer degrees of freedom left 

for calculating the natural frequencies and mode shapes. 

The following figures show the 2 x 2 FE model for a simply supported, cantilever and 

clamped plate with constraints at the boundaries. 

	

U4 ,V4 , lW4 '04x' 04X  _ 	 u3 ,V3  ,%c3 , el. , e3y 

	

U1, V1 , M 'ou , 61y 	 U) ,V) , W2 '02x' 02y 

Figure 6.1: DOFs at each node 
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6.1 Boundary Conditions 

6.1.1 Simply supported plate: 
u v w 0  

3132333
7
435 . 0=O 	41 42 43 44 45 

8y =0 	4 

------- -----~ 

o o 

0 0 

2 	3 

 

L--- ---- -----J 

u=v~tr=0 
6 8v =0 

1112131415 

1 2 3 4 5 	ll '=\v=0 
0x =0 

Figure 6.2: Boundary conditions for a simply supported plate. 

After applying the boundary conditions [ref 4.2], out of 45 DOFs, we will get 38 DOFs as zeros. 

i.e. DOFs 

1 2 3 4 5 6  7 8 .9 11 12 13 14 15 16 17 18 20 21 22 26 

27 28 30 31 32 33 34 35 36 37 38 39 41 42 43 44 45 

will be zeros, and we will be left with DOFs 10 19 23 24 25 29 40 with some values. 

That is we will be left with only 7 DOFs. So in dynamic analysis of a simply supported plate we 

will get 7 natural frequencies and corresponding mode shapes in the dynamic analysis. 

6.1.2 Cantilever plate: 

u=v=0 
31 32 33 34 35 	

a 	 9 4142434445 

u=v=v=0 
6 =€= 0 4 5 

u=r=0 
P6 

1?:,- 
	

2 
	 1112131415 

12345  u=v=0 

Figure 6.3: Boundary conditions for a cantilever plate 
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After applying the boundary conditions [ref. 4.2],, out of 45 DOFs, we will get 27 DOFs as 

zeros. 

i.e. DOFs 

1 2 3 4 5 6 7 11 12 16 17 18 19 20 21 22 26 27 31 	32 
33 34 35 36 37 41 42 

will be zeros, 

and we will be left with DOFs 8 9 10. 1314 15 23 24 25 28 29 30 38 39 40 43 44 45 with 

some values. 

That is we will be.left with only 18 DOFs. So for a simply supported plate we will get 18 natural 

frequencies-  and corresponding mode shapes in the dynamic analysis. 

6.1.3 Clamped plate: 

u==v=v=O 
6 

 
0=0=y  0 x 

	

I 	 3 1112 13 14 15 

	

1 2 3 4 5 	u v=w=0 
0=0=0 x y 

Figure 6.4: Boundary conditions for a clamped plate 

After applying the boundary conditions [ref. 4.2], out of 45 DOFs, we will get 42 DOFs as 

zeros. 

i.e. DOFs 

1 2 3 4 	5 6 7 8 9 10 11 12 13 14 	15 16 	17 18 19 	20 21 

22 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 

45 

will be zeros, 

and we will be left with DOFs 23 24 25 with some values. 

That is we will be left with only 3 DOFs. So for a clamped plate we will get 3 natural 

frequencies and corresponding mode shapes in the dynamic analysis. 

u=ti=w 0 
31 32 33 34 35 	

x  y 0 

	

g 	 41 42 43 44 45 

0=0=0  4  xy 
5 

O O 
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6.2 Static analysis results 

6.2.1 Effect of grid size on max deflection of the plate. 

The program was run to obtain the results using different grid sizes (or refinement of mesh) for 

different boundary conditions. 

Material Properties: 

E1= 30x106  N/m2  

E2= 30x 106  N/mz  ( isotropic material) 

v=0.3 

G12= E1/ (1+v)= G13=G23; 

Geometric Properties: 

Plate dimensions: 1 Om x l Om x .lm 

Load = 500 N 

Density: 2752.3 Kg/ m3  

Sl .No Grid Max Deflection 

Simply Supported plate 

(m) 

Max Deflection 

Cantilever plate 

(m) 

Max Deflection 

Clamped Plate 

(m) 

1 2 x 2 0.1662 4.7740 .0037 

2 4 x 4 0.1446 4.7066 .0868 

3 6 x 6 0.1466 4.6982 .0795 

4 8 x 8 0.1472 4.6976 .0823 

5 10 x 10 0.1475 4.6978 .0841 

Table 6.1: Deflections for different grid sizes for plate with different boundary conditions 

The table 6.1 shows the values of the deflection obtained by solving the problem 

considering the different grid sizes, in other words the number of elements and the figures 

6.5,6.6 and 6.7 show the same graphically for different boundary conditions for the plate. 
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Effect of Grid Size in calculation max 
deflection for a Simply supported plate 

0 17 
0 0.165 - 

0.16 - 
0.155 

o 
0.15 

0.145 
0.14- 

0 	1 	2 	3 	4 	5 	6 

Grid Size 

Figure 6.5: Max. deflection obtained considering different grid sizes for a simply supported 
plate 

.- 
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Figure 6.6:-Max. deflection obtained for different grid sizes for a cantilevered plate 

It was observed that the use of small number of elements resulted in large deviation of 

the results obtained from the actual results. As we can see from the above results the use of l x 1 

has a large deviation and while 2x2 has a small. However as we go on increasing the size of the 

grid i.e. increase the number of elements, the results converge and are approximately- equal to 

the actual results as we can see from the above results and graphs the use of higher grids 3x3, 

4x4, 5x5 have almost equal value for the deflection. 
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Effect of Grid Size in calculation max 
deflection for a Clamped plate 

0.1 y 	x 	Sri 	? 

0.06 

0.04  
0.02  

0 	1 	2 	3 	4 	5 	6 

Grid Size 

Figure 6.7: Max deflection obtained for different grid sizes for a clamped plate 

6.2.2 The effect of fiber orientation in an orthotropic material on maximum static 
deflection. 
The program was executed to obtain the results using different fiber orientation angles for 

different boundary conditions. 

Material Properties: 
E,= 1 x 106  N/mz  
E2= 30 x 106  N/m2  
v=.3 
G12= Ei/ (l+v)= Gi3=G23; 
Density: 2752.3 Kg/ m3  

Geometric properties: 
Plate dimensions: lOm x lOm x .lm 
Load = 500 N 
Density: 2752.3 Kg/ m3  

The material properties and geometric properties of the plate are stated above. The table 

6.2 gives the deflections for different orientation angles in a composite plate for a simply 

supported and a cantilevered plate. 
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Si. No Orientation of 
fiber 

(degrees) 

Max deflection 
Simply supported 

plate (m) 

Max deflection 
Cantilever plate 

(m)  
1 0 0.5606 5.5126 
2 15 0.5245 5.2145 
3 30 0.4646 4.6158 
4 45 0.4394 4.5125 
5 60 0.4646 4.4849 
6 75 0.5606 4.1226 
7 90 0.5606 3.5126 
8 105 0.5245 4.1312 
9 120 0.4646 4.5016 
10 150 0.4646 4.7012 
11 180 0.5606 5.2541 

Table 6.2: Deflections for different orientation angle of the fibers for a simply supported and cantilevered plate 

It was observed that for simply supported plate the deflection was found to be maximum -

for orientation angles 0, 45 and 90 degrees, which means that the plate offers minimum stiffne s~ 

at these orientation angles. Where as the deflection is minimum for angle 22.5 and 67.5 degrees: 

It means the plate offers maximum stiffness when the fibers are oriented at these angles. Thy` 

following figures 6.8 and 6.9 shows the change in deflection with respect to the change in 

orientation angle of the fibers graphically for a simply supported plate and a cantilevered plat 

respectively. 

Effect of skew angle- on max deflection of a 
simply supported plate 

o 0.4  
 • 

G) 	r  

x 0.1 	 ." 

0 	2 	4 	6 	8 	10 	12 

angle (degrees) 

Figure 6.8: Variation of max deflection with the orientation angle: simply supported plate 
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Effect of skew angle on Max deflection 

	

w1,:rac 	ray r..~,. 	x 	, 	f„ 	x • 

•, 3gyy 	y~,. b 9 	F _ zk y~ 	Per 	̀ '.`~' 	5. 	;.:_ 

0 15 30 45 60 75 90 105 120 135 150.165 180 195 
Orientation angle(deg) 

Figure 6.9: Variation of Max deflection with the orientation angle: cantilever plate 

6.2.3. Effect of h/Lon maximum deflection for a cross ply laminated plate which is 
simply supported. 

The program was executed to obtain the results using different fiber orientation angles for 

different boundary conditions. 

No. of layers= 9 

Lamination pattern: 0/90/0/90/0/90/0/90/0 

Material Properties: 

All layers of same material 

E1= 0.3 x 6.$948x10" N/m2 

E2=0.75 x 6.8948x109 N/m2 

v=.3 

G12= 0.45x6.8948 x109 N/m2 = G23 

G13=  0.375x6.8948 x109 N/m2 

Density: 1510 Kg/ m3 

Geometric Properties: 

Plate dimensions: lOm x lOm x .lm 

Load = 500 N 

.1, 



S1. No h/a 2X2 4X4 6X6 
1 0.1 0.419 0.4255 0.4265 

2 0.05 0..4024 0.4095 0.4055 

3 0.01 0.3971 0.4044 .0.4106 

4 0.001 0.3969 0.4041 0.4053 

5 0.0001 0.3969 0.4041 0.4053 

6 0.00001 0.3969 0.4041 0.4053. 

Table 6.3: Deflections for different thickness to side length ratios for a simply supported plate 
using different grid sizes. 

Table 6.3 gives the values of the deflection for different thickness to side length ratio of 

a simply supported square plate obtained using various grid sizes. As expected it was observed 

that the deflections were least when the thickness of the plate is minimum and as we go on 

increasing the thickness the stiffness of the member increases and the deflection for the applied 

load decreases. The following figure 6.10 shows this graphically. 

Effect .hIL on the max deflection of an 
orthotropic simply supported plate 

.. 0.43 

r 	x 

E 0.395  

0 	0.02 	0.04 	0.06 	0.08 	0.1 0.12 
h/L 

Figure 6.10: Variation of Max deflection with the thickness of plate : simply supported plate 

2X2 

— 4X4 

— 6X6 
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6.3 Dynamic analysis results: 

6.3.1. Dynamic analysis of isotropic plate: 

After executing the program for dynamic analysis we obtain the natural frequencies of 
the plate. We have used an element grid size of 4X4. 

No. of layers: 1 
Material properties of the plate: 
E1=30 x 106  N/mm2  
E2= 30 x 106  N/mm2  ( isotropic material) 
v=0.3 
G12= E1/ (1+v)= G13=G23; 
Density: 2752.3 Kg/m3  

Geometry properties of the plate: 

W=10; 
L=W; 
h=L/10 

Casel. Simnly sunnorted elate: 
Mode No. Natural fre uency(Hz) 

1 1.2405 
2 12.4345 
3 13.5984 
4 25.5588 
5 26.4842 
6 29.0095 
7 29.8524 

Table 6.4: Natural frequencies for an isotropic simply supported plate 

Case 2: Clamped plate 
Mode No. Natural frequency(Hz) 

1 4.0701 
2 25.8808 
3 25.8808 

Table 6.5: Natural frequencies for an isotropic clamped plate 
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Case 3: Cantilever plate: 

Mode No. Natural Freguency(Hz) 
1 0.1741 
2 0.4446 
3 1.2834 
4 1.5693 
5 1.7986 
6 2.0090 
7 7.6769 
8 11.9636 
9 12.0564 
10 13.2627 
11 19.1503 
12 19.7475 
13 20.5032 
14 21.9353 
15 28.5818 
16 29.3585 
17 32.5296 
18 32.6847 

Table 6.6: Natural frequencies for an isotropic -cantilever plate 

6.3.2. Dynamic analysis of orthotropic plate: 

No of lam 2 
Material Properties: 
E2(i) = 30x 106  N/m2  
E1 (i)  =1200 x 106N/m2  
v 12(i) 	= 0.25; 
G12 	= 18 x 106  N/m2  
G13 	= 15 x 106  N/m2  
G23 	= 15 x 106  N/m2  
Density = 2752.3 kg/m3; 
Petteren=[0,90] 	i=1,2; 
Geometry Drooerties of the plate: 
W=1m; 
L = W; 
h=L/10 
Thicknesses of the layers = [h, h] 
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6.3.2.1 Natural frequencies: 

Casel. Simply supported plate: 
Mode No. Natural fre uency(Hz) 

1 56.4 
2 600.4 
3 606.4 
4 648.2 
5 748.7 
6, 769.6 
7 1063.0 

Table 6.7: Natural frequencies for an arthotropic simply supported plate 

Case 2: Clamped plate 
Mode No. Natural fre uency(Hz) 

1 84.5961 
2 646.8550 
3 747.1693 

Table 6.8: Natural frequencies for an orthotropic clamped plate 

Case 3: Cantilever plate: 
Mode No. Natural Fre uenc (Hz 

1 14.2926 
2 15.8610 
3 60.3229 
4 72.4961 
5 72.9922 
6 78.6176 
7 291.6285 
8 421.8742 
9 535.4848 
10 642.9015 
11 672.8936 
12 703.8637 
13 723.0361 
14 766.3846 
15, 776.2318 
16 875.7813 
17 933.7300 
18- 952.3341 

Table 6.9: Natural frequencies for an orthotropic cantilever plate 



6.3.2.2 Mode shapes 
First mode shape 
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Figure 6.11: 1S` Mode shape: Simply supported orthotropic plate 
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Figure 6.12: 2"dMode shape: Simply supported orthotropic plate 
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Figure 6.13: 1St  Mode shape: Clamped orthotropic plate 



Figure 6.15: 1S1  Mode shape: Cantilevered orthotropic plate 

Figure 6.16: 2nd  Mode shape: cantilevered orthotropic plate 
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6.3.3. Variation of natural frequencies with the orientation angle for a 
cantilevered plate: 

The above plate is considered to study the how the natural frequency varies as the 

orientation angle of the fiber in the composite material changes. The material properties 
and geometric properties are taken from the previous problem. 

Si No. Orientation angle (deg) Natural Frequency (Hz) 
1 0 14.2926 
2 15 14.6125 
3 30 15.2341 
4 45 15.6213 
5 60 15.2362 
6 75 14.6201 
7 90 14.3005 

Table 6.10: First natural frequencies for a cantilevered plate for different orientation 
angles 

It was observed that for an orthotropic plate, the natural frequency increases 

with increase in the orientation angle from 0 and then decreases. 

Variation of Natural frequency with the orientation angle 
15.8 

14.2  

0 	15 	30 	45 	60 	75 	90 
Orientation angle (deg) 

Figure 6.17: The variation of first natural frequency with orientation angle for a 
cantilevered orthotropic plate 

The natural frequency is minimum when the orientation angle is 0 degrees. It 

increases with the increase in the angle up to 45 degrees, and then decreases in the same 

manner till 90 degrees. We can conclude from the results that the plate offers minimum 

stiffness when the orientation angle of the fibers is 0 degrees or 90 degrees that is when 

they are along the coordinate axes, and maximum stiffness when the fibers are oriented 
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at an angle 45 degrees. The values of first natural frequencies are tabulated in table 6.10 

and the variation is shown graphically in figure 6.17. 	 --. 

Similar results are obtained when the second natural frequencies are calculated. 

The second natural frequency is minimum for orientation angles 0 degrees and 90 

degrees and is maximum for orientation angle 45 degrees. The same conclusion can be 

drawn from these results also. The table 6.11 gives the second natural frequencies for 

different orientation angles and the figure 6.18 shows the variation graphically. 

Si No. Orientation angle (deg) Natural Frequency (Hz) 
1 0 15.8601 
2 15 16.6982 
3 30 19.4021 
4 45 21.5245 
5 60 19.2045 
6 75 16.6124 
7 90 15.8286 

Table 6.11: Second natural frequencies for a cantilevered plate for different orientation 
angles 

Figure 6.18: The variation of second natural frequency with orientation angle for a 
cantilevered orthotropic- plate 
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6.3.4. Variation of the fundamental natural frequencies with patch coverage 
area: 

In this problem, the piezoelectric patches are placed over the surface and 

the variation of the natural frequency is studied. First the piezoelectric patch is 

covered all over the plate and then the coverage area is gradually reduced to 

observe the changes in the natural frequency of the plate. The material properties 

and geometric properties of the plate are taken from the above problem and the 

piezoelectric material (PZT) are given below. 

PZT Patch 
Ep=6.31 x 107N/m2  
v=0.3 
Density 7760 kg/m3  

Mode 
No. 

Natural 
Frequency 

Natural frequency of plate with the patch coverage 

of bare plate 100% 50% 25% 12% 4% 
Natural 
Frequency. 

%diff Natural 
Frequency 

%dill Natural 
Frequency 

%dill Natural 
Frequency 

%dill Natural 
Frequency  

%diff 

1 14.2926 13.6422 4.55 13.7295 3.94 13.7409 3.86 14.0753 1.52 .14.1211 1.20 

2 15.8610 14.9823 5.54 15.0505 5.11 15.1821 4.28 15.2823 3.65 15.6865 1.10 

3 60.3229 57.4997 4.68 57.7712 4.23 57.9039 4.01 59.7739 .91 59.9609 0.60 

4 72.4961 67.5156 6.87 67.6098 6.74 68.4798 5.54 70.8142 2.32 72.3511 0.20 

5 72.9922 65.5074 9.64 67.0154 7.56 67.3996 7.03 70.4156 2.87 71.9596 0.74 

Table 6.12: Natural frequencies for a cantilevered plate for different coverage area of the 
piezoelectric patch 

However the results obtained do not recommend the optimum coverage 

area of the patch over the plate, but these, results can be used as guidelines for 

selecting the patch coverage area depending upon the application and the natural 

frequencies of the system. 
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The table 6.12 gives the natural frequencies for the bare plate and plate 

with piezoelectric patch over it. The readings were taken for coverage area 5%, 

12%, 25%, 50% and 100% of the plate. As expected, it was observed that the 

natural frequency is maximum for the bare plate and as we go on covering the 

plate with the patch the natural frequency goes on decreasing. The decrease in 

natural frequency is minimum for 5% coverage area and it is maximum for 

coverage area 100% i.e. patch all over the plate. This reduction " in natural 

frequency is due to the increase in the mass. The stiffness has less effect 

compared to the effect of increase in mass. The figure shows this reduction 

graphically for the first five modes. 	- 

Figure 6.19: The variation of natural frequency with piezoelectric patch coverage area 
•for a cantilevered orthotropic plate. 
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6.4 Actuator placement optimization: 

For the actuator placement problem a lmxlm plate is considered. The 

properties of the plate are taken as in the above problem. The optimization 

procedure is explained as below. 

1 2 3 4 5 6. 7 8 9 10 

11 12 I3 14 15 16 17 18 19 24 

21 22 23 24 25 25 27 23 29 30 

31 32 33 34 35 36 37 38 39 40 

41 42 43 44 45 46 47 48 49 so 
51 52 53 54 55 56 57 58 59 60 

61 62 63 64 65 66 67 68 69 70 

71 72 73 74 75 76 77 78 79 80 

81 82 83 84 85 86 87 88 89 90 

91 93 93 94 95 96 97 98 99 100 

A 

Figure 6.20 Plate surface showing 100 elements 

Divide the plate surface into 100 areas with size of 10cmx 10cm as shown 

in figure 6.20. Four areas-  will be chosen for bonding piezoelectric patches. To 

optimize the selection of actuator location, a piezoelectric patch is bonded 

(imaginarily) on these 100 locations one by one, and in each case an investigation 

is made to determine the capability of bonded actuator in controlling the 

vibrations. 

6.4.1 Optimization implementation using genetic algorithm 

Number the 100 candidate locations from 0 to 99. A chromosome is coded 

with 32 binary numbers, with each 8 consecutive bits corresponding to an actuator 

location number from the first bit. With every individual generated by Genetic 

Algorithm, decode and calculate the corresponding performance index until best 

individuals are found. 

First two modes of the plate are considered. Genetic Algorithm parameters 

are set as: The number of individuals in a population is 50; Maximal number of 
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generation is 500; Generation gap is 0.8, which means 40 new individuals are 

created in the population; Selection function is stochastic universal sampling; 

Crossover function is single-point crossover; Mutation function is discrete 

mutation Operator. Normally, genetic algorithm suggests some best solutions 

only, instead of give the final decision directly. The finial decision is still the 

designer's work. Here, the genetic algorithm optimization is performed for 10 

times and the best 12 individuals are listed in Table 6.13. 

Actuator Locations Performance Index values (x 10 + ) 
1 6 10 84 1.212 
2 8 10 94 1.220 
1 10 54 84 1.605 	- 
1 8 10 38 1.165 
1 6 10 57 1.197 
1 6 10 84 1.174 
1 10 57 84 1.196 
1 10 54- 57 1.702 
1 8 10 94 1.532 
1 7 10 84 1.348 
1 7 10 67 1.594 
1 7 10 57 1.601 

Table 6.13: The best 12 individuals obtained by GA. 

The final optimized actuator locations 

rmol© ©nIM 0010:x: 
0I® ®10®1m10m10Q1 
1I5 
EUMIMmlmmmlmm 
®1®®1-.:11®Iml I QI 

mlmmlmmmlmmmm 
ml0mN55m!I  ' 

Figure 6.21: Optimized location of actuators over the cantilevered plate. 
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The problem was also solved considering only the first and second modes 

to be controlled. The genetic algorithm program is run again to calculate the 

performance indices and optimal location of actuators over the surface of the 

plate. The following figures show the location of actuators if only the first and 

second modes are considered for locating the actuators. 

1 2 3 4 5 6 7 8 10 

11 12 13 14 15 16 17 18 19 20 

21 22 23 24 25 25 27 28 29 30 

31 32 33 34 35 35 37 38 39 40 

41 42 43 44 45 46 47 48 49 50 

51 52 53 % 55 56 57 58 59 60 

61 62 63 64 65 66 67 68 69 70 

71 72 73 74 '75 76 77 78 79 80 

81 82 83 84 85 86 87 88 89 90 

91 92 93 94 9S 96 97 98 99 100 

Figure 6.22: Actuator locations when only the first mode is considered 

1 2 3 4 5 6 1 6 4 10 

1 12 13 14 1S 16 17 18 19 20 

21 22 23 24 25 26 27 28 29 30 

31 32 33 34 35 36 37 38 39 40 

41 42 43 44 45 46 47 48 49 50 

51 '52 53 54 55 56 57 58 59 60 

61 2 63 64 65 66 67 68 9 '70 

71 72 73 74 75 76 77 78 79 80 

81 82 83 84 85 86 87 88 89 90 

91 92 93 94 95 96 97 98 99 100 

Figure 6.23: Actuator locations when only the second mode is considered 

6.5 Time response: 	 _ 

The time response of the system can be obtained by carrying out the modal 

analysis. In this problem first the time response of the system for free vibration is 

obtained. The point considered is the point A in the figure: 6.20. Then the force 

constraints are applied on the system and the system behavior is studied. The 
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following figure shows the response of the system before and after the application 

of the forces. 
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Figure 6.24: Time response of the point A (figure6.20)on the plate before and after the 
application of force for model 
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Chapter 7. CONCLUSION 

7.1 Conclusion 

Smart material and structures have great potential advantages in wide range 

of applications, such as aeronautical and aerospace engineering etc. In the field of 

structural shape and vibration control, piezoelectric materials received the most 

attention because of its low mass, high bandwidth, low cost, etc. This paper 

develops a method for piezoelectric patches placement optimization. It is based on 

finite element modeling based on the first order shear deformation theory using 

MATLAB •and controllability grammian maximization and genetic algorithm 

implementation. The energy dissipation method has been adopted for vibration 

suppression of the structure. First the static and free vibration analysis is carried to 

study the variation of static deflection and natural frequencies with the thickness, 

orientation angle of the fibers of the composite plate, and the patch coverage area 

over the plate. Computer simulations are performed on optimizing the location of 

actuators on a rectangular plate. The simulations showed that using this 

optimization of geometric distribution of piezoelectric patches, the vibration of 

the structure can be effectively suppressed. 

7.2 Scope of future work: 

In the current work the dynamic analysis of a cantilever plate is considered 

and the equations are derived under the assumptions of first order shear 

deformation theory. The genetic algorithms are used to optimize the location of 

actuators and the problem shown is the control of a freely vibrating plate. As the 

future work the reader may consider the plate with different boundary conditions. 

The work can be extended to control the vibration of a plate under the forced 

vibration. Further design of the controller circuit will also be a good work that can 

be done in this field. 
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