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ABSTRACT 

The work presented here deals with Active Vibration Control (AVC) of a 

Cantilever Beam with Piezoelectric Patches using Finite Element Method (FEM). One 

patch is used as a sensor, sending the signal in terms of voltage to the control system; 

while other is used as an actuator, which applies moments based on the signal (voltage) 

received from the control system. Newmark method of direct numerical integration has 

been used in the programmes coded in Matlab 5.3 to analyse transient responses. 

Negative velocity feedback control  (NVFBC), Independent Modal Space. Control 

(IMSC) and Modified Independent Modal Space Control (MIMSC) are used to control 

both free and forced vibrations. 

In case of free vibration, it is found that with the increase in the value of Gain in 

-Negative Velocity  FBC,  the damping gets increased, while settling time reduces till 

some value of gain, after which response gets unstable. MIMSC gives better 

performance than IMSC, and in both, IMSC as well as MIMSC, damping and settling 

time increases with weighting factor(R); while the peak voltage i.e. control effort 

decreases with increasingR. 
In case of forced vibration with harmonic force input, steady state amplitude as 

well as maximum amplitude decreases with increasing gain in Negative Velocity FBC, 

till some value of gain after which response becomeunstable; while steady state 

amplitude and maximum amplitude increases with weighting factor R in MIMSC and 

IMSC. Control voltage decreases with increase in R in IMSC, MIMSC. In the case of 

forced vibration, IMSC gives better performance than MIMSC. 
The study of forced vibration with ramp input is carried out to achieve vibration 

control by varying axial stiffness of beam by applying same polarity voltage on both 

actuators bonded to the beam in collocated fashion. Control of vibration using variable 

axial stiffness during sweeping  excitation  has been investigated. When patches are 

activated from beginning and deactivated at about  50% of average of first natural 

frequencies with and without the axial stiffness variation, maximum amplitude of the 

vibration has found to be reduced substantially. Though cantilever beam has been 

considered, merely B anging boundary conditions (B.C.) the developed software can 

be used to analyse other types of beams. 
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CHAPTER 1 

INTRODUCTION 

Vibration control is a wide and important area of interest in all sections of 

industry. Before controlling vibrations it is necessary to check various causes of 

vibrations as well as effect of various parameters on the vibration. Elasticity, inertia 

and: damping are the main constituents of the vibrating system. Unwanted vibration 

can have a detrimental and some times catastrophic effect on the serviceability or 

structural integrity of the structure. The effects of uncontrolled vibration can be seen 

on a large scale, such as the collapse of the bridges, big structures, etc. e.g. the 

collapse of the Takoma Narrows suspension bridge in 1940 as well as to a much 

smaller scale e.g. blurring of pphotographs taken by space telescopes, error in readings 

taken by precision measuring devices, etc. 

In general, from buildings to airplanes, space trusses and satellites; cars, 

electric transformers and large bridges, all can be disturbed in their normal function 

by vibration and noise. The control of vibration and noise can be considered as one of 

the most relevant technological challenges in this century. Vibration control is aimed 

at reducing or modifying the vibration level in a mechanical structure. 

Most systems cope up with these problems with conventional passive 

methods. These systems reduce vibrations by simply dissipating energy as heat. 

Unfortunately their damping performance is generally quite poor as they are unable to 

adapt or retune to changing disturbances or structural characteristics, over time. Use 

of lightweight and flexible structures are becoming important in space and aerospace 

activities, either to reduce the high cost of lifting the mass into the orbit or 

transportation cost. Due to flexibility and low internal damping, vibrations once 

introduced in such systems grow to large amplitudes. The conventional form of 

external passive damping is not preferred as addition of a damper adds to overall 

system weight, which is undesirable. 

Though Passive Vibration Control (PVC) has advantages like low cost, 

stability, robustness, reliability, and simple systems but due to recent technological 

advancements such as the availability of high speed. computing devices, smart 

materials and advanced control techniques have led to growing use of Active 

Vibration Control (AVC). AVC has disadvantages like high cost, complexity and 
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somewhat unreliable systems but these can be compensated by the control achieved 

by them. 
Smart Materials has been emerged as a very important component in AVC of 

structures. A smart structure has the capability to respond to the changing external 

environment (load, temperature and shape) as well as to internal environment 

(damage or failure). Smart materials have numerous applications 1k€ AVC, Active

Noise Control, Active Buckling Control, Shape Control, Damage Assessment and 

Health Monitoring. 
A variety of smart materials already exists, and is being . researched 

extensively. These include Piezoelectric Materials, Shape Memory Alloys (SMA), 

Magnetostrictive Materials, Elctrostrictive Materials, Fiber Optic Sensors (FOS), 

Electro-rheological (ER) and Magneto-rheological (MR) fluids. Each individual type 

of smart material has a different property, which can be significantly altered, such as 

viscosity, volume, conductivity, etc. 
Coupled mechanical properties of piezoelectric materials and their availability 

in the form of thin sheets make them well suited for use as sensors and actuators. 

Direct and converse piezoelectric effect governs the interaction between these types 

of materials and structures. Integration of piezoelectric sensors, actuators and 

advanced composites make it possible the formation of high-strength, high-stiffness, 

lightweight structures capable of self-monitoring and self-controlling. Piezoelectric 

( 	materials have another advantage that they do not affect significantly mass and 
r  stiffness properties of original structure. So original dynamic response characteristics 

of structure remain almost unchanged when piezoelectric materials are not activated. 

Next part of this chapter gives information regarding Smart Materials and 

Structures, and Piezoelectricity. Chapter 2 contains literature survey. Chapter 3 

contains finite element formulation of piezo-laminated beam and information 

regarding Newmark Method. Chapter 4 contains information regarding control 

methods used, free and forced vibration response with and without control and effect 

of axial stiffness variation due to actuation of patches and their use in vibration 

control. Chaptcr 5 '- details about result and discussion followed by conclusion and 

suggestions for future work in 9hapter 6. References and appendix containing 

flowcharts are given at the end of the report 
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1.1 SMART MATERIALS 

Smart Materials can be defined as the materials, which have one or more 

properties that can be dramatically altered by external driving forces (stimuli) and 

returns to original state when stimuli is removed. 

Such materials have the ability to change their physical properties like shape 

or size simply by application of heat, electric or magnetic field or to change instantly 

from a liquid to a solid. Most everyday materials have physical properties, which 

cannot be significantly altered; for example if oil is heated it will become a little 

thinner, whereas a smart material with variable viscosity may turn from a liquid to a 

solid within a millisecond duration. 

As stated earlier, a variety of smart materials already exist, and are being 

researched extensively. These include Piezoelectric Materials, Shape Memory Alloys 

(SMA), Magnetostrictive Materials, Elctrostrictive Materials, Fiber Optic Sensors 

(FOS), Electro-rheological (ER) and Magneto-rheological (MR) fluids. Each 

individual type of smart material has a different property, which can be significantly 

altered, such as viscosity, volume and conductivity. Some everyday items are already 

incorporating smart materials (coffeepots, cars, International Space Station, 

eyeglasses, etc). 

The following terms can be used interchangeably: 

• Smart materials 	 • Active Materials 

• Intelligent Materials 	 • Adaptive Materials 

Smart materials will be probably only option for next generation of products 

that must operate under varying service conditions in .constrained environment. 

1.2 CLASSIFICATION OF SMART MATERIALS 
Depending upon the applied driving forces smart materials can . be broadly 

classified into three categories 

• Electrical fields - Common materials include Electrostrictive, Piezoelectric 

(Ceramic and Polymers) and Electro-Rheological (ER) fluids. 

• Thermal fields - Common materials include Shape Memory Alloys (SMA). 

• Magnetic field 	- Common materials include Magnetostrictive Materials, 

Magnetic Shape Memory Alloys (MSM), Ferromagnetic Shape Memory Alloys 

(FSMA), and Magneto-Rheological (MR) fluids. 
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1.3 INTRODUCTION TO SMART MATERIALS 

• Shape Memory Alloys (SMA): The term Shape Memory Alloys (SMA) is 

applied to a group of metallic materials that can return to a previously defined 

shape when subjected to an appropriate thermal procedure. Generally, these 

materials can be plastically deformed at some relatively low temperature, and 

upon exposure to some higher temperature will return to their shape prior to the 

deformation. SMAs allow one to recover up to 5% strain from the phase change 

induced by temperature. SMAs are best suited for one-way tasks such as 

--- 	deployment. SMAs are little used in vibration control. Examples are Ni-Ti alloys, 

Cu-Zn-Al, Cu-Al-Ni, Fe-Mn, and Fe-Mn-Si, etc. 

• Piezoelectric Materials: Piezoelectricity is the ability of a material to develop an 

electrical charge when subjected to a mechanical strain and conversely. They have 

a recoverable strain of 0.1% under electric field; they can be used as actuators as 

well as sensors. Detailed information is given in Section 1.6. Examples are PZT, 

PVDF, etc. 

• Magnetostrictive Materials: As a magnetostrictive material is magnetized, there 

is a change in length. Conversely if an external force produces a strain in 

magnetostrictive materials, its magnetic state will change. Magnetostrictive 

materials have a recoverable strain of 0.15% under magnetic field; the maximum 

response is obtained when the material is subjected to compressive loads. They 

can be used in high precision applications. Example is Terfe l-D. 

• Electrostrictors (Electrostrictive Materials): These are quite similar to 

piezoelectric materials with slightly better strain capability, but very sensitive to 

temperature. The conceptual difference between piezoceramics and 

electrostrictors is their response upon reversing of the electric field. Piezoceramics 

can be elongated and compressed, while electrostrictors only exhibit an 

elongation, independent of the direction of the applied electric field. This effect is 

found in all materials though in very small quantity 10-5  to 10-7  %. 
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• Ferromagnetic Shape Memory Alloy (FSMA): Ferromagnetic shape memory 

alloys (FSMA) are a recently discovered class of actuator materials, whose salient 

features are magnetically driven actuation and large strains (around 6%) e.g. Ni-

Mn-Ga ternary alloy. As the name suggests FSMAs are ferromagnetic alloys that 
also support the shape memory effect. 

Electro-Rheological (ER) and Magneto- Rheological (MR) Fluids: 

When an external electric field is applied to an ER fluid, the viscosity of the fluid 

increases remarkably. And when the electric field is taken away, the viscosity of 

the fluid goes back to the original state. The phenomenon is so called ER effect. 

These fluids can change from a thick fluid (similar to motor oil) to nearly a solid 

substance within a span of a millisecond when exposed to an electric field; the _ 

effect can be completely reversed just as quickly when the field is removed. MR 

fluids experience a viscosity change when exposed to magnetic field. Examples 'of 

MR fluid is tiny iron particles suspended in oil and that of ER fluid are milk 

chocolate or cornstarch 'and oil. 

• Fiber Optics: Fiber optics is becoming popular as sensors because they can be 

easily embedded in composite structures with little effect on the structural 

integrity. They are widely used in Structural Health Monitoring equipments. 

1.4 SMART STRUCTURES 

Anything that is designed to take a mechanical load is called as a structure. 

Within this definition we have everything ranging from overhead power- cables to 

bridges to aircraft to mechanical gearboxes to highways. A smart structure is therefore 

one that monitors itself and / or its environment in order to respond to changes in its 

condition. Spillman and his colleagues attempted to develop a formal definition of 

smart structure in their survey as: 

"A Smart Structure is a non-biological physical structure having the following 

attributes: 

1. A definite purpose - 

2. A means and imperative to achieve that purpose, and 

3. A biological pattern of functioning " 
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Smart structure has the capability to respond to changing external environment 

(such as change in load or shape change) as well as to changing internal environment 

(such as damage or failure) for desired performance. An active structure or smart 

structure consists of a structure provided with a set of actuators and sensors coupled 

by a. controller. Figure 1.1 shows the block diagram of AVC using smart materials as 

sensors and actuators. 

Structure 

Sensors 	 Actuators 
(PZT, PVDF, FOS,..) 	 (PZT, SMA, ER,..) 

Control System 

Figure 1.1 Block Diagram of AVC: Smart Materials as Sensors and Actuators 

1.5 SMART MATERIALS AND VIBRATION CONTROL 

Depending on the application, a wide range of actuators (Piezoceramics, 

Electrostrictive, Magnetostrictive, MR fluid and SMA) and sensors (PVDF, PZT, 

FOS) has been successfully implemented. Tables 1.1 and 1.2 summarises 

.performance of smart materials as actuators and sensors. 

Table 1.1 Actuator Candidates for Smart Materials 

Electro- Magneto- ER Nitinol Piezoelectric Characteristics strictive strictive 
Fluids SMA Ceramics Materials Materials 

Cost Moderate Moderate Moderate Low Moderate 
Networkable Yes Yes Yes Yes Yes 
Embedability Good Fair Good Excellent Excellent 

Linearity Fair Fair Good Good Good 
Response (Hz) 1-20000 0-12000 1-20000 0-5 1-20000 

Maximum 
Microstrain 200 - 200 5000 200 

Max Temp C) 300 300 400 300 300 
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Table 1.2 Sensor Candidates for Smart Materials 

Characteristics FOS Nitinol SMA Piezo-Ceramic Strain Gauge 

Cost Moderate Low Moderate Low 
Networkable Yes Yes Yes Yes 
Embedability Excellent Excellent Excellent Good 

Linearity Good Good Good Good 
Response (Hz) 1-10000 0-10000 1-20000 0-500000 

Sensitivity 
(Microstrain). 

0.11 per 
fiber 

0.1-1.0 0.001-0.01 2 

Maximum 
Microstrain 

3000 5000 550 10000 

Max Temp(°C) 300 300 200 300 

1.6 PIEZOELECTRIC MATERIALS 

Piezoelectric materials are the materials, which have coupled electro-

mechanical properties, when stressed they produce voltage and when applied voltage, 

they deform. A large number of natural and synthetic materials possess piezoelectric 

properties. Following this is a detailed description about piezoelectricity and 

piezoelectric materials. 

1.6.1 Piezoelectric Effect 

The piezoelectric effect was first discovered in 1880 when Pierre and Currie 

demonstrated that certain crystalline material produces an electrical charge on its 

surface when it is subject to a stress field. It was subsequently demonstrated that the 

converse effect is also true; when an electric field is applied to the piezoelectric 

material, its shape and size change. In the former case, the material works like a 

sensor while in the latter case, the material can be used as an actuator if it is 

constrained against deformation. 

In the single crystal of . a piezoelectric material, if a force is applied, a strain 

and hence a change in dimensions occurs, this produces a charge build up on one face 

of the crystal and hence a potential difference across the crystal. This is the 

piezoelectric effect shown in Figures 1.2 and 1.3. 
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Figure 1.2 Piezoelectric Effect and Reverse Piezoelectric Effect _____ 	-. 
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Figure 1.3 Piezo effect on the crystal structure (example of the quartz) 

In contrast, when a voltage is applied across these crystals a dimension change 

is observed and this is known as electrostriction or the reverse piezoelectric effect as 
shown in Figure 1.2. 

Polycrystalline materials such as PZT are a little different. They need to be 

subjected to an electric field to align the dipoles of each crystal cell before their 

piezoelectric properties are realized and this process is called as Polling or 

Polarisation. These polycrystalline ceramics (Figure 1.4) are more versatile than 

single crystal natural compounds because controlling the material combination can 

optimise their properties for specific application. 

Ntrioay--;U v~ith are pdar ands 	 with raxdom pclara ds  

Figure 1.4 Mono-Crystal Vs Poly-Crystal 
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If an AC voltage is applied to these materials, alternating expansion - 
compression will take place as shown in Figure 1.5. 

Figure 1.5 Example of Piezoelectric Effect 

1.6.2 Polarisation (Polling) 

The polycrystal is heated above its Curie Temperature and strong electric 
field is applied so that the molecules, free to rotate, align themselves in the direction 
of the field (Figure 1.6). During operation, an electric field applied in the direction of 

the polarisation induces compression of the crystal in this (Polarisation) direction. 

Reversing the field reverses the direction of the strain (Figure 1.5). Polarisation is the 

amount of charge associated with the dipolar or free charge in a dielectric  

twtII 

t: Polarizing direction 

(a) Before polarization 	(b) After polarization 	(c) After removal of electric field 

Figure 1.6 Polarisation of Ceramic Material to generate Piezoelectric Effect 
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1.6.3 Piezoelectric Materials 

Tiey)are two broad classes of piezoelectric materials used in vibration control: 

ceramics and polymers. The piezoplymers are used mostly as sensors; because they 

require high voltages as well as they are lightweight and flexible so they are not 

effective as actuators on stiff structures. The best known is the polyvinylidene 
fluoride (PVDF) (PVF2). Piezoceramics are used extensively as actuators and sensors, 

for a wide range of frequency including ultrasonic applications. The best-known 

piezoceramic is Lead Zirconate Titanate (PZT) [Pb (Zr, Ti) 03]. 
Piezoelectric materials offer a number of advantages over conventional 

actuators like low energy consumption, fast response, high efficiency and 

compactness. But they have some limitations also like voltage that can be applied is 

limited in the range of -500 V to 1500 V, the piezo materials cannot be used above 
their curie temperature, which is 200 °C to 300 °C due to possibility of depolarisation. 
Table 1.3 summarises piezoelectric materials. 

Table 1.3 Piezoelectric Materials 

Type Material 
Single Crystal Quartz 

Lead Magnesium Niobate (PMN — PT & PZN - PT) 
Ceramics Lead Zirconate Titanate (PZT) 	[Pb (Zr, Ti) 03] 

Lead Metaniobate (LMN) 
Lead Titanate (LT) 
Lead Magnesium Niobate (PMN) 

Polymers Polyvinyledene Fluoride 
Composites Ceramic Polymer 

Ceramic Glass 
Natural Quartz, Tourmaline 
_Synthetic PZT, PVDF, Barium Titanate, LMN, LT, PN, etc 

1.6.4 Classification Of Piezoelectrics 
Pyroelectrics: materials in which electric field generates as a result of application 
of heat and degree of polarisation depends on the temperature. 

Ferroelectrics: materials in which spontaneous polarisation can be induced by an 

electric field. Reversing external electric field can change their polarisation 
direction. Examples are PZT and PVDF. 
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Ferroelastics: materials in which spontaneous polarisation can be induced due to a 
mechanical load. 

Ferro- 	• Piezo- 

electrics electrics 

Figure 1.7 Classification of Piezoelectric Materials 

1.6.5 Constitutive Equations 

Piezoelectric materials are considered from both points of views: Mechanical 
and Electrical. 

Mechanical: Relation between stress and strain (Hook's Law). 
Strain = Compliance X Stress (S = s T) 	 (1.1) 

Electrical: 	How charge moves in a dielectric material when it is subjected to a 
voltage and.  vice versa. 

Charge Density = Permittivity X Electric Field (D = E E) (1.2) 
Constitutive Equations: Relate different Mechanical and Electrical quantities. 

S=sET +d'E and D= ET E+dT 	 (1.3) 
Where, 

Term Meaning SI Unit 
S Strain mm/mm 
s Compliance mm /N 
T Stress N/mm 
D Charge Density (Dielectric Displacement) (Charge/ area) C/m 

Permittivity /m 
E Electric Field V/m 
d Matrix of Piezo Coupling Terms m/V 
SE Compliance at Fonstant/zero)electric field 'mm /N 

£T  Permittivity atcc"onstant/  zJstress field F/m 
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The convention used to formulate the constitutive equations in three 

dimensions is as shown in Figure 1.8. Polling is generally done in direction 3, while 

direction 1 is aligned with, length of beam, plate, etc and direction 2 for width. 

2 

1 
Figure 1.8 Convention of Piezoelectric Materials 

Constitutive Equations considering thermal effect is in Equation 1.4 as 

El  S11  S12  S13  0 0 0 1[o1 1 0 0 d31  [a1 1  
E 2  S21  S22  S23  0 0 0 	I I Q2  0 0 d32  E  - 	 a2 

E3  S31  S32  S33  0 0 0 Q3  0 0 d33  
0 

1  a3
6  FE21+  0 

 
723 0 0 0 S44  0 011r23 + 0 d15  

731 0 0 0 0 S55  0 D31 d15 0  0  3  0 

b 12' 0. 0 0 0 0 S66  T12  0 0 0 0 
(1.4) 

Where, 

El  = Linear Strain in direction 1 

y23 	= Shear Strain in direction 23 

Sij 	= Elements of Compliance Matrix 

cri 	= Axial Stress in direction 1 

t2 	= Shear Stress in direction 23 

a1 	= Thermal Coefficient of Expansion for direction 1 

0 	= Temperature difference 

0 0 0 0 d15  0 
d = 0 	0 	0 d15  0 0 = Matrix of Piezo-Coupling Terms 	(1.5) 

d31 d32 d33 0 0 0 

In matrix ̀ d' for any term d,1, i stand for applied electric field direction while j 
is the axis of induced mechanical deformation. 
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1.6.6 Piezoelectric Material In Vibration Control 

Coupled electro-mechanical properties of piezoelectric ceramics and polymers 

and their availability in thin sheets make them well suited for the use as sensors and 

actuators. Piezoelectric materials are widely used in vibration control due to their 

competitive performance characteristics as listed in Tables 1.1 and 1.2. Besides these, 

the lightweight actuators don't affect significantly the mass and stiffness properties of 

the original structure, so the original dynamic characteristics of the structure remain. 

unchanged when the piezoelectric patches are not activated. 

Piezoelectric patches apply two types of effects on structures: 

Passive — Change in mass and stiffness characteristics (this effect is negligible 
for stiff structures), and 

Active — Generation of charge and strain due to applied stress and voltage 
respectively. 

Resonance is said to occur when the excitation frequency matches any of the 

natural frequencies of the system, so one should know the natural frequencies of the 

system, hence the eigenvalues of beam with . and without patches have been 

calculated. The contribution of patches in mass and stiffness matrices has been 

considered. The change in mass and stiffness of beam and patches due to application 

of voltage has been considered. Control is achieved by using Negative Velocity 

Feedback Control, IMSC and MIMSC. Comparison haslmade among them. The study 

of forced vibration with ramp input is done to achieve vibration control by varying 

axial stiffness of beam by applying same polarity voltage on both actuators. Though 

cantilever beam has been considered, merely be changing boundary conditions one 
can switch to other types of beam. 
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CHAPTER 2 

LITERATURE REVIEW 

A lot of work has been done in the fields of Vibration Control, Smart 

Materials as well as Vibration Control using Smart Materials. Various researchers 

have used different concepts and structural elements as their focus of research. A brief 

review of the existing available literature is attempted here. The review is arranged 

with work dealing with smart materials and their use in vibration control followed by 

literature dealing with finite element modeling of piezo-laminated beam, basic 

piezoelectric equations, location and size of sensors and actuators. After this work 

describing various control methods like Negative Velocity Feedback Control, IMSC 

and MIMSC and other control methods have been reviewed and in the last research 
work on special problems in this area have been mentioned. 

Richard Lane and Benjamin Craig [1] have given description of smart 

materials and their applications. A description regarding piezoelectricity, its 

subclasses, electrostriction, ER, MR fluids and SMA has been given. Flatau A.B. and 

Chong K.P. [2] have mentioned the importance of basic research in smart materials. 

and structural systems and their development as a great potential for enhancing the 

functionality, serviceability and durability of civil and mechanical infrastructure 

systems and, as a result, offer the potential for significant contributions to the 

improvement of every nation's productivity, efficiency and quality of life. In support 

of this they have quoted some examples of NSF-funded projects and research needs as 
well as some initiatives. 

Kevin Poulin and Rimas Vaicaitis [3] used ER Fluids and PZT actuators to 

control structural vibrations of stiffened composite panels subjected to random inputs. 

A collocated velocity feedback control mechanism is integrated using piezoelectric 

materials as sensors and actuators. They have used transfer matrix method and 

optimal control theory to determine the vibration response of the system. 

Working with synthesis of intelligent structures with shape memory alloys 

Choi, S.B. and Hwang J.H. [4] worked on the sliding mode control for vibration 

control of a flexible structure with the dynamics of SMA. They have considered 

actuator dynamics for the first time in this kind of work. They experimentally 
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identified the dynamic behavior of SMA and employed in the equation of motion of a 

flexible structure. 
New control algorithms that combine spillover suppression with semi-active 

modal vibration control via the use of magnetorheological (MR) dampers have been 

studied by Whalen et al. [5]. The advantages of this approach include the traditional 

positive attributes of MR dampers as well as more efficient use of the dampers 

obtained by targeting control effort at high-energy modes and preventing spillover. 

Strategies for this combined approach are compared with the existing algorithms that 

concentrate solely upon vibration control. Performance measure improvements have 

been found and discussed. 
As stated earlier ER fluids have electrically controllable stiffness, viscosity 

and heat transfer properties. Since 1940s researchers are trying to model these 

properties for use in hydraulic valves, soft clutches and active suspension systems. 

Radcliffe et al. [6] presented a new approach to the control of ER fluids. that 

overcome the problems of imprecise, slow, nonlinear response and high electric 

fields. 
In their paper Cox and Lindner [7] have discussed the use of a modal domain 

optical fiber sensor (MD Sensor) as a component in an active control system to 

suppress vibrations in a flexible beam. An MD Sensor consists of a laser source, an 

optical fiber, and detection electronics. They have shown that the output of the MD 

Sensor is proportional to the integral of the axial strain along the optical fiber. 

Jinsong et al. [8] used a FOS and ER fluid actuator for vibration monitoring of 

smart composite structures. They found same sensitivity in FOS as piezoelectric 

materials with lower cost. They found change in structural damping and natural 

frequencies with varying electric field and hence vibrations can be monitored by using 

FOS and ER fluid. 

Nakra [9] proposed use of viscoelastic damping in vibration control over wide 

frequency band, but they observed dependence of viscoelastic materials on various 

factors like type of dynamic excitation, temperature and strain, etc. Some of the high 

polymers are known to exhibit viscoelastic behavior. Lio and Wang [10] used active 

constrained layer damping (ACLD) with active part of vibration control is supported 

by piezoelectric patches and passive part by viscoelastic materials. Galerkin - GHM 

(Golla - Hughes - McTavish) method is used to discretize and analyze the model in 

time domain. Similar kind of work has been done by Balamurugan and Narayanan 
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[11] with smart constrained layer damping (SCLD), in which a viscoelastic layer is 

sandwiched between two layers of piezoelectric actuators and sensors. This composite 

SCLD when bonded to a vibrating structure acts as a smart treatment. The sensor 

piezoelectric layer measures the vibration response of the structure and a feedback. 

controller is provided which regulates the axial deformation of the piezoelectric 

actuator (constraining layer), thereby providing adjustable and significant damping in 

the structure. The damping offered by SCLD treatment has two components, active 

action and passive action. The active action is transmitted from the piezoelectric 

actuator to the host structure through the viscoelastic layer. The passive action is 

through the shear deformation in the viscoelastic layer. 

The foregoing literature dealt with general work related to vibration control 

and smart materials. The literature based on finite element modeling of 

piezolaminated beam and its vibration control follows next. 

Colla [12] presented work describing the basic knowledge required for AVC 

using Piezo-patches and description of actuators and sensors and smart materials has 

mentioned. Various control strategies like feedback control (FBC), feed forward 

control (FFC), has been mentioned in details. Piezoelectric constitutive equations, 

related terms and the limitations of piezoelectric materials have been mentioned. 

Crawley and Luis [13] derived static and dynamic analytical models for 

segmented piezoelectric actuators that are either bonded to an elastic substructure or 

embedded in a laminated composite. They used various piezoelectric materials to find 

their effectiveness in transmitting strain to the substructure. They experimented with 

three types of beams — aluminum beam with surface bonded actuators, glass/epoxy 

beam with embedded actuators and a graphite/epoxy beam with embedded actuators. 

They found the piezoelectric materials either bonded or embedded are highly 

effective. They derived models of piezoelectric patches in this work. 

Sze and Yao [14] prepared a number of finite element models for modelling of 

smart structures with segmented piezoelectric patches. These included eight-node 

solid shell element for modelling homogeneous and laminated host structures as well 

as an eight-node solid shell and a four-node piezoelectric membrane element for 

modelling surface bonded piezoelectric sensing and actuating patches. They studied 

number of problems with these models and found results agreeing with experimental 

results. 
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The location and dimensions of piezoelectric patches. and their size make a lot 
of impact on the dynamic characteristics of the structure besides other factors like 

cost, control system complexity, etc. For simple structures it is easy to address these 

problems but as the elements and complexity of structure increases this problem also 

grows. Many• researchers have been working on this issue. They used different 

analytical and experimental techniques to solve this problem. 
Aldrainhem et al. [15] stated the optimal location of the actuator for a 

particular structure as the position at which the strain energy of the structure is the 

highest. They found one point of maximum strain energy in shape control while as the 

response in combination of several modes in vibration control, the highest strain 
energy locations at different points for different modes. They experimented with 

beams using various boundary conditions. They used double as well as single pair of 
actuators for comparing performances. Mota Silva et al. [16] addressed the problem 
of shape control and correction of small displacements in composite structures using 

piezoelectric actuators glued or embedded. They gave equal importance to 

formulation of an accurate mathematical model. able to deal with shape control 

applications, and the determination of the optimal location of the piezoelectric 

actuators together with the optimal actuation voltages. They used Genetic Algorithms 

(GAs) as the optimisation technique and the optimisation function was defined, in 

-terms of the surface error, by the square root of the deviation between the predefined 

shape and the achieved shape obtained when applying the optimum actuation 

voltages. Maximum errors of 15% were obtained between simulation/experimental 
results and the pre-defined curve. 

Devasia et al. [17] considered the problem of simultaneous placement and 
sizing of distributed piezoelectric actuators to achieve the control objective of 

damping vibrations in a beam. They found the position and length of piezoelectric 

actuators to maximize modal damping with FBC. Beam considered was simply 
supported beam. 

Schwinn and Janocha [18] built a very different aspect of Self-Configurable 
Actuator Sensor Array for Active Vibration Suppression. The usually applied method 

for the design of an active vibration control is to describe first the modal behavior of 
the structure and then to place the actuators and sensors according to an optimisation 
criterion. The new concept presented in this paper is to apply a number of 
piezoelectric ceramic patches onto a structure, without necessarily knowing the 
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structural behavior in advance. This system is able to identify itself with the help of 

the ceramic patches and the specific functionality of a patch as an actuator, a sensor or 

as inactive, is determined according to a performance index. Different actuator/sensor 

configurations for varying boundary conditions were studied, and the results are 

presented in this paper. Number of authors worked on this subject of optimisation 

with number of concepts, Frecker [19] done excellent work of summarizing all these 

concepts. He classified these concepts as Actuator Placement, Actuator Placement-
Controller, Electronics, and Actuator-Structure. 

A lot of works dealing with different control strategies like Negative Velocity 

FBC, IMSC, MIMSC, etc., have been carried out in the past. Trindade et al. [20] 
presented the design and analysis of the piezoelectric active control of damped 

sandwich beams. This was done using a specific finite element, able to handle 

sandwich beams with piezoelectric laminated surface layers and viscoelastic core. The 

control design and performance were then evaluated using three control algorithms 

applied to the reduced-order model, namely, Linear Quadratic Regulator (LQR), 

Linear Quadratic Gaussian (LQG) and Derivative Feedback. Derivative feedback 

controllers found less effective than an LQR one, but their well-known spillover 

destabilizing effects were attenuated by the increase of stability margins provided by 

the viscoelastic damping, while LQG controllers performed well as LQR ones. 

Balamurugan and Narayanan [21] prepared finite element model based on 

Euler-Bernoulli beam theory to study AVC of beam with distributed sensor and 

actuator layers. They used three types of control strategies, namely direct proportional 

feedback, constant-gain negative velocity feedback and 'Lyapunov feedback and an 

optimal control strategy LQR to study control effectiveness. They used different types 

of loadings, such as impulse, step, harmonic and random. They developed sensor and 

actuator equations for the case of distributed sensor and actuator on cantilever beam, 

which were quoted later in this report. Narayanan and Balamurugan [22] used 

Timoshenko Beam Theory to model Plate and Shell and used Constant-gain Negative 

Velocity Feedback, Lyapunov feedback as well as a LQR approach, subjected to 

impact, harmonic and random excitations. They also considered influence of the 

pyroelectric effects on the vibration control performance. They found the LQR 

approach to be more effective in vibration control with lesser peak voltages applied in 

the piezo actuator layers. They highlighted the application of these elements in high 

performance, lightweight structural systems. Chen et al. [23] presented a finite 
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element formulation for vibration control and suppression of intelligent structures 

with a new piezoelectric plate element. On the basis of a negative velocity feedback 

control law, a general method of active vibration control and suppression for 

intelligent structures was put forth. Dynamic stability and the effect of vibration 

control for intelligent structures were investigated by introducing the state space 

equations of intelligent structures. The damped frequencies as well as the damping 

ratio were derived by state space analysis. 

There has been a lot of work on very effective control techniques like 

Independent Modal Space Control (IMSC) and Modified Independent Modal Space 
Control (MIMSC). 

Nguyen [24] quoted that IMSC method avoids control spillover generated by 

conventional control schemes such as Coupled Model Control (CMC) by decoupling 

the large flexible space structure into independent subsystems of second order and 

controlling each mode independently. The IMSC implementation requires the number 

of actuators be equal to modelled modes, which in general is very huge. He proposed 

two methods for the implementation of IM$C with reduced number of actuators. In 
the first method, first m modes are optimised, leaving last (n-m) modes unchanged. 
In the second method, generalised inverse matrices are employed to design the 

feedback controller so that the control scheme is suboptional with respect to IMSC. 

He simulated on Simply Supported Beam. 

Baz, Poh and Fedor [25] studied on Independent Modal Space Control whose 

modal forces were generated by Positive Position Feedback (PPF) strategy, which is 

in contrast with negative velocity and position FBC. They found the model 

maintained the simplicity of IMSC and at the same time it utilises only the modal 
./\ 

	

	position signal to provide a damping action to undamped modes. The results were 

_ compared with those obtained from IMSC, PPF with second order filters, the Psuedo-

Inverse (PI) and MIMSC. The proposed method found to be useful for VC of large 
• flexible structures. 

Wang and Huang [26] introduced a vibration control method for a flexible 

beam subjected to arbitrary, unmeasurable disturbance forces with IMSC. They chose 

the modal filters as the state estimator to obtain the modal coordinates and modal 

velocities for the modal space control. Because of the existence of the disturbance 
forces, applying only the state feedback to suppress the vibration usually cannot 
achieve the desired control performance hence they introduced modal space 
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feedforward control to cancel out " the disturbance forces. The disturbance force 

observer as established to observe the disturbance modal forces for the - feedforward 
control. The control gains were derived from the extended optimal control algorithm, 

where' the disturbance modal forces were treated as exogenous state variables. By 0 
combining the feedback, feedforward control laws and the disturbance force observer 
together, the vibration control performances were discussed. 

Kamath [27] gave a description of IMSC and the equations required fcr that 

purpose. He also has given the summary of actuators, sensors, FBC, Velocity FBC, 

/Collocated vs. Non-Collocated, IMSC, LQR. He compared the results obtained by 

IMSC with Velocity FBC and Impedance Control. Singh et al. [28] presented general 
equations required for the problem formulation on IMSC as well as MIMSC. They 

recommended this method to be useful in flexible structures that were mostly useful 

in space activities. They described some efficient strategies for AVC of a beam 

structure using piezoelectric materials. The essence of the method proposed is that a 

feedback force in different modes be applied according to the vibration amplitude in 

the respective modes i.e., modes having lesser vibration may receive lesser feedback. 

This weighting may be done on the basis of either displacement or energy present in 

different modes. The method proposed is in fact an extension of the MIMSC with the •  
addition that it proposes to use the sum of weighted multiple modal forces for control: 

They .found from the analytical results that the maximum feedback control voltage 

required in the proposed method is further reduced as compared to existing methods 

of IMSC and MIMSC for similar vibration control. They also discussed limitations of 
the proposed method. 

Baz, Poh and Studer [29] developed MIMSC method for designing AVC 

systems for large flexible structures. The method accounts for the interaction between 

controlled and residual modes. The MIMSC relies on an important feature that is. 
based on `time-sharing' of a small number of actuators, in the modal space, to control 

effectively a large number of modes. Generally flexible structures are controlled by  

their dominating modes, but these modes get controlled after some time, and residual 

modes get excited due to these control forces. IMSC method relies only on dominant. 

modes but neglect effect of control forces on residual modes. MIMSC modifies IMSC 

to account for the spillover from the controlled modes into the uncontrolled modes. 

Working on MIMSC onwards Baz and Poh [30] used a beam with piezo-patches and 

compared the results obtained by MIMSC with IMSC and PI method. They found 
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MIMSC to be more useful for AVC of large flexible structures with small number of 

actuators. 

Other control methods apart from the above mentioned ones have also been 

tried by the researchers. Kashani [31] worked on active damping of a flexible plate 

using LOR and LQG methods. He previously used collocated controllers i.e. actuation 
and sensing required at same location(s) which is not possible so then he used these 

methods to achieve better control. Clark and Bernstein [32] worked on LQG with 

FBC as well as FFC. They found hybrid control to be more advantageous due to 
advantages from both methods. They worked on TITO (two input — two output) 

system. In many contemporary engineering works traditional control methods can not 
be used either because the required actuators become too heavy for the application at 

hand or because the method itself can not cope with the circumstances of the 
applications, like space structures such as satellites. Salemi and Golnaraghi [33] 

worked on beam using Linear Coupling Control (LCC), by coupling a second order 
linear system to an oscillatory plant to create an energy exchange between the two 
components of the system. 

The last phase of this literature survey contains the papers with some special 

work related to this topic. Generally the actuators are unimorph; that is, single 

piezoelectric layer is bonded to single elastic layer and bimorph, where one piezo-

layer is attached at top and other at the bottom. 

Sitti et al. [34] focused on the design, fabrication and characterisation of 

unimorph actuators for a microaerial flapping mechanism. PZT-5H and PZN-PT were 

investigated . as piezoelectric layers in the unimorph actuators. Design issues for 

microaerial flapping actuators were discussed, and criteria for the optimal dimensions 

of actuators were determined. For low power consumption actuation, a square wave 
based electronic driving circuit was proposed. Yunfeng Li et al. [35] worked on 
Vibration Control of a PZT Actuated Suspension Dual-Stage Servo System using a 

PZT sensor. They utilised as a vibration sensor to control both the voice coil motor 
(VCM) actuator butterfly mode and the suspension sway mode. 

The important assumption, usually made by most of authors is the bonding 
`v • between piezoelectric material and beam is perfect. But during operation as well as 

due to applied large voltages/ forces this assumption seizes after some time and 

debonding may take place during service life. Sun, Tong and Atluri [36] discussed 

effects of piezoelectric sensor/actuator debonding on vibration control of smart 
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beams. They took into account, both flexural and longitudinal displacements of the 

host beam and piezoelectric layer as well as the peel and shear strains of the adhesive 

layer. They used both, collocated and non-collocated control schemes to study effects 

of sensor and actuator debonding on AVC of smart beams. They found high peel 

stresses might be created around the periphery of an actuator layer causing debonding. 

They created a model of debonding on a beam and found the governing equations. 

One of the most popular methods of modelling piezoelectric laminates, is via 
the modal analysis technique. In this approach the solution of the PDE, that governs 	9 
the dynamics of the laminate, is assumed to consist of an infinite number of terms. In 

control design problems, one is often interested only in designing a controller for a 

particular frequency range. In these situations, it is common practice to remove the 

modes that correspond to frequencies that lie out of the bandwidth of interest and only 

keep the modes that directly contribute to the low-frequency dynamics of the system. 

Reza Moheimani [37] suggested a method of minimizing the effect of the removed 

higher order modes on the low-frequency dynamics of the truncated model of a 

piezoelectric laminate beam by adding a zero frequency term to the low-order model -
of the structures He presented simulations and experimental results to support his 
ides. 	 ---_------_ ._ _------ 	------ ---~ 	~ ~ ------ - --~~' 

Hybrid Vibration Control has advantages of both, AVC and PVC. Kang et al. 
[38] worked on interaction of active and passive vibration control of laminated 

composite beams with piezoceramic sensors/actuators. They used FEM for the 

analysis of laminated composite beams, and also considered damping and stiffness of 

adhesive and piezoceramic layers. They used velocity feedback control to carry out 

experiments. The finite element analysis was verified by comparing the experimental 

results in terms of active and passive damping ratios (~) and modal dampings (2zr ) 

as well as fundamental frequency. They found, when the gain in velocity feedback 

control is small, the active control followed the trend of the passive control, but 

provided additional effects due to the active control; but for a large feedback gain, the 

active control is dominant over the passive control. Garga and Anderson [39] briefly 

reported the advances made in the area of vibration suppression via recently 

developed innovative techniques (for example, constrained layer damping (C~.D)_ 

treatments) applied to civilian and military structures. They quoted some research 

projects related to them uch as developing and evaluating the performance of novel 
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active—passive hybrid smart structures for real-time vibration control; developing 

theoretical equations that govern the vibration of smart structural systems treated with 

piezomagnetic constrained - layer damping (PMCLD) treatments; and developing 

innovative surface damping treatments using micro-cellular foams and active standoff 

constrained layer (ASCL) treatments. 

2.1 CONCLUSIONS AND SCOPE FOR PROPOSED WORK 
A critical study of literature reveals that Smart/Intelligent System often 

incorporate beam, plate or shell like flexible structures. A beam or beam like structure 

is very common in large flexible structures like, aircraft wings, helicopter blades and 

antenna. Many researchers have worked on beam, plate and shells as structural 

elements to study and control vibrations. They have used different models to model 

the beam like Euler-Bernoulli Model, Timoshenko beam theory, etc. It has found that 

location and size of piezoelectric patches matter a lot in dynamic characteristics of the 

beam. Various types of loadings have been used, viz. Impulse, Harmonic, Step and 

Random. Control techniques used by them are Negative Velocity Feedback Control, 

Independent Modal Space Control (IMSC), Modified Independent Modal Space 

Control (MIMSC), Positive Position-  Feedback (PPF) and Psuedo Inverse (PI) to 

control either vibrations or shape. Some authors worked only on Active Vibration 

1 Control (AVC) or Passive Vibration Control (PVC), while others highlighted the 

effectiveness of Hybrid Vibration Control (HVC) to take advantages of both 

techniques. 

-; 	Work presented here deals with active vibration control (AVC) of a cantilever 

!beam with piezoelectric patches used as both actuators and sensors. Finite element 

" method (FEM) has been used to model the beam and Newmark method of direct 

numerical integration has been used to find transient responses by developing 

} 	programmes using Matlab. When same polarity voltage is applied to piezo-patches, 

'bonded on both sides of beam there is increase in stiffness of beam due to tensile 

force generated by patches. A new concept of using an increased axial stiffness of the 

beam due to applied voltage on patches has been attempted to control vibrations. Due 

to increase in stiffness, the natural frequencies of the beam increases, so one can-

actuate patches till the beam passes through original natural frequency resonance and 

later the patches can be de-activated so the beam can pass from increased natural 

frequency resonance. 
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CHAPTER 3 

FEM OF A BEAM WITH PIEZOELECTRIC PATCHES 

This chapter contains statement of the problem, description of Finite Element 

Model of a beam with piezo-patches, Transformation-Section Method necessary to 
calculate Young's Modulus and Moment of Inertia of a composite (sandwiched)-
beam, an introduction to Newmark Method to get transient responses, formation of 

global damping matrix using Rayleigh's (Proportional) Damping, concepts of modal 

displacement, modal velocity and mass normalised eigenvectors and their use in 

estimating vibration response. 

The method used to formulate the problem is finite element method due to its 

ability to take into account effect of dimensions, material properties and the forces 

exerted by actuators or external forces in active vibration control of structure easier 

than analytical methods, as well as changes in the parameters can be made easily. 

3.1 ASSUMPTIONS IN THE MODELLING 	V 

Following assumptions are made while formulating the finite element model 
of the beam. 

A. Bonding between patches and beam is assumed to be perfect. Validation of results 

• largely depends on this assumption of the perfect bond. If the patches are rigid 

(like PZT), its length should be minimum for perfect bond. 

B. Bonding is assumed to be thin enough, not to alter the dynamic characteristics of 

the beam, significantly. 

C. Effect of temperature on Electrical and Mechanical properties of patches as well 

as beam is assumed to be negligible. 

D. The strain distribution is assumed to be linearly varying, across the thickness of 

the patches, though in real case it is uniform. Euler - Bernoulli beam model is 

considered (Figure 3.1). 

E. Moments are uniform throughout patch, but they are assumed to be applielat ° I'1  ` 

nodes (end points) only, this model is called as Pin-Force Model. 	 $ r' 

F. Piezoelectric patch is assumed to be of pure uniaxial actuation case, i.e. d31  0 o,' r 
d32 = 0. The effective axis of piezo-layer is aligned with the length direction of the 

beam to ensure maximum piezoelectric force. 	 V_ 

V' LV A 
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PZT Patch 

Beam 
Cross — section of 
Beam with Patches 

Uniforn Strain 
Model 

Euler - Bernoulli 
Model 

Figure 3.1 Uniform Strain Model and Euler — Bernoulli Model 

3.2 STATEMENT OF THE PROBLEM 

The sequence used to analyse the vibration response of beam with and without 
control is as given below: 

1. Assembly of Global Matrices from Element Matrices and formation of Global 
Damping Matrix. 

2: Eigenvalue and Eigenvector determination to calculate Natural Frequencies. 
3. Free vibration response without control. 

4. Free vibration response with negative velocity feedback control (Simple) 

5.. Free vibration response with negative velocity feedback control (Sensor and 
Actuator) 

6. Free vibration response with Independent Modal Space Control (IMSC). 
7. Free vibration response with Modified Independent Modal Space Control 

(MIMSC). 
8. Forced vibration response without control. 
9. Forced vibration response with negative velocity feedback control (simple). 
10. Forced vibration response with negative velocity feedback control (Sensor and 

Actuator) 

11. Forced vibration response with Independent Modal Space Control (IMSC). 
12. Forced vibration response with Modified Independent Modal Space Control 

(MIMSC). 
13. Vibration control using axial stiffness variation due to patch actuation. 
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3.3 FINITE ELEMENT MODEL OF BEAM WITH PATCHES 

The dimension and material details of the cantilever beam and piezoelectric 

patches considered are as shown in Table 3.1 and model is shown in Figure 3.2. 

Table 3.1 Descriptions of Beam and Piezoelectric Patches 
Property Beam Piezoelectric Patches 
Material Steel C 35 PZT 

Young's Modulus (GPa) 206 63. 
Mass, Density (Kg / m) 8000 7600 

Length (mm) 350 40 
Width (mm) 30 20 

Thickness (mm) 3.0 0.1 
d31 (m/V) - 200 x 10.12  

g31 (Vm/N) - 0.01 

10 	4O, 20 tmin~ 

	

 
H + I 	.' 	 HR Patch 	Beam 

i0.1fmm~ 

3.Omm ~ 
0.1 ~znm 

350 fmi 	 _
• 

31 . O v 

Figure 3.2 Cantilever Beam with Piezoelectric Patches 

The number of Finite Elements considered in this problem is 12. ~r the case 

of beam considered here, one-dimensional element with two degree/ f freedom —.-

(D OF) system, that means, slope (u2, u4) and deflection (ul, u3) are taken into account 

at every node as shown in Figure 3.3. 



.tul 	 tu3 

:tip::;. 	... 	;: r•.,;, ; •.:, ,~ •: , ::;.:.:•:: ;:;f ;; 

( u2 	 u4 

Figure 3.3 Beam under bending deformation 

The element stiffness and element mass matrix for the beam with bending 

deformation [40] are given in Equations 3.1 and 3.2. 

Element Stiffness Matrix 

12 61 —12 61 
El 	6! 412 —61 212 

k - 
(3.1) 

I3 	—12 —61 12 —61 
61 212 —61 412 

Element Mass Matrix 

156 221 54 —131 

pit! 	221 412 13l _312 
me _ 420 I54 131 156 —2211 	

(3.2) 

—131 —312 —221 412 

The patches are applied on top and bottom of the beam at second element 

(Figure 3.2), starting the numbering of elements from root (fixed end). The details 

required in this element stiffness and element mass are length (1), Young's modulus 

(E), moment of inertia (1), mass density (p) and cross-sectional area (A) 

(Equations 3.1 and 3.2). 

3.3.1 Beam Finite Element With Piezoelectric Patch 

A beam with piezoelectric patches is a case of composite (sandwiched) beam, 

in which beam is sandwiched between two. piezoelectric patches. The effective 

Young's Modulus is calculated by Transformation - Section Method [41]. The 

description of this method is as bellow: 
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Transformation - Section Method .: 

In this method, the sandwiched or composite beam, made of two or more, 

different materials is virtually transformed into an equivalent beam made of single 

material for the purpose of bending and similar type of analysis. s. Figure 3.4 shows the 
original and transformed cross sect}ion-o -the beam _. 

~"  

(E1B2) b 

E tl 

E2 	t2 

b 	 b 

Original Cross -Section 	Transformed Cross -Section 

Figure 3.4 Transformation Section Method 

The original beam is made of two different materials having modulus of 

elasticity El and E2. The thickness of these materials is shown in Figure 3.4. Here the 

width of both is same, but it may be different.'  

In transformed section, the beam is virtually transformed to be made of only 

one material, either of first (El) or second (E2). The Modular Ratio is getting 

multiplied to the width of the material to be transformed. When the transformed beam 

is to be made of first material, Modular Ratio (E2/El) is multiplied to width of second 

material, and when the transformed beam is to be made of second material, Modular 

Ratio (E1/E2) is multiplied to width of first material. The Young's modulus to be 

taken into account is of transformed materials' Young's modulus, M.-I. is of 

transformed section and cross-sectional area is of original cross-section. To calculate 

the mass density of patches element, original dimensions need to be taken into 

account. 

Summarising, 

E = E of Transformed Section, 	 A =A of Original Cross Section, 

I = I of Transformed Section, 	 p = p of Original Cross Section. 
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For the model of the beam considered in this problem, the transformed section 

is as shown in Figure 3.5 
20 mm 

6.1165 mm 

0.1 mm 

2 
0.1 mm 

3.0mm 1 	 30~mm 
Figure 3.5 Transformed Section of Beam with Piezo-Patches 

The mass density of the patched element is calculated by Equation 3.3. 

Pc = PPZTVPZT + PaeanVnem„ 	 (3.3) 

Where, VPZT = Volume Ratio of PZT material 	 (' _kV) 

= Volume of Patches /iTotal Volume of Patched ement  

The required properties of elements are tabulated in Table 3.2 

Table 3.2 Properties of Beam Finite Elements 

Property First Element Patched Element Other Elements 
Quantity 1 1 10 

Length (mm) 10 40 30 
A (mm) 90 94 90 
E (GPa) 206 206' 206 
I (mm) 67.5 x 1012  x 1012  x 10 12  
p (kg/m) 8000 7982.9787 8000 

3.4 NATURAL FREQUENCIES OF BEAM 

Resonance is said to occur when the excitation frequency matches any of the 

natural frequencies of the structure, so one should know the natural frequencies of the 

structure. Before determination of natural frequencies, one needs to form Global 

(Mass and Stiffness) Matrices from Element (Mass and Stiffness) Matrices, and then 

these Global Matrices are modified by putting boundary conditions of particular beam 

(structure). Boundary conditions for cantilever beam are the values of slope and 
deflection) ,re zero at fixed end. Corresponding rows and columns are deleted from 
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Global Stiffness Matrix and Global Mass Matrix, as well as Force Vector, 

Displacement Vector and others in Newmark Method.  

Then by using Matlab 5.3 Software the eigenvalues and eigenvectors are 

determined. Natural frequencies for the beam are calculated by taking square root of 

eigenvalues. Analytical formula [42] used to calculate first five natural frequencies of 

beam is given in Equation 3.4. 
~EI

cv„ = (r;l)2 	 (3.4) 

where, 

m = mass per unit length 

con = Natural frequency in (rad/s) 

L = Length of the beam 

ril = Constant 

For cantilever beam Ti! has values for first to fifth natural frequencies 

respectively as 1.875, 4.694, 7.855, 10.996, and 14.137 [42]. 

3.4.1 Formation Of Global Mass And Stiffness Matrix 

The global matrices are formed by placing corresponding components of 

element matrices at the corresponding nodes. If m h̀ element is to be assembled, then it 

has 4 x 4 size element matrix, and nodes are m and m+1. The components of this 

matrix are placed from 2m-1 to 2m+2 places of global matrices, as each node has 2 

DOF (Refer Figure 3.6). 

1 
2 
3 

m 

n-1 
n 

123 	m 	n-1 n 

Figure 3.6 Global matrix assembly from element matrices 
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Sr 
No 

Natural Frequency (Hz) Matlab Difference-" 
(%) with Patch -  without Patch 

1 20.226 C ' o1 	18.975) 6.5929 
2 126.260 :74D)-118.92o  6.1722 
3 352.760 j9 .7 j c> 4 333.010 5.9308 
4 690.600 652.790 5.7921 

5 1142.100 1079.900 5.7598 
6 1709.600 161.5.600 5.8183 
7 2397.700 2262.000 5.9991 
8 3213.600 3022.300 6.3296 
9 4165.700 3901.100 6.7827 
10 5261.400 4902.100 7.3295 
11 6498.700 6020.700 7.9393 
12 7820.700 7173.900 9.0160 
13 9636.500 9208.500 4.6479 
14 11367.000 10765.000 5.5922 
15 13349.000 12653.000 5.5007 
16 15652.000 14829.000 5.5499 
17 18365.000 17321.000 6.0274 
18 21555.000 20168.000 6.8772 
19 25257.000 23401.000 7.9313 
20 29413.000 27015.000 8.8766 
21 33731.000 30897.000 9.1724 
22 37426.000 34719.000 7.7969 
23 46533.000 37778.000 23.1749- 
24 55055.000 46533.000 18.3139 

The results obtained from Matlab 5.3 and from Equation 3.4 are tabulated in 

Tables 3.3 and 3.4. For the problem considered here, 

Number of Finite Elements 	= 	12 

Number of nodes 	 = 	13 

Degrees of Freedom (DOF) 	= 	2/ Node 

Total Number of DOF 	= 	26 (without B.C.) 

= 	24 (with B.C.) 

As number of DOF is 24, hence the beam has 24 natural frequencies. Size of 

global matrices is 24 x 24. 

Table 3.3 Natural Frequencies of Beam with and without patches 
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Table 3.4 Natural Frequencies as csamparison-with Analytical Results / DL U 

Sr 
No 

Natural Frequency 
with Patch (Hz) 

Difference 
Natural Frequency 
without Patch (Hz) 

Difference 

(%) Matlab Analytical Matlab Analytical 
1 20.226 20.024 -'09987 18.975 19.073 0.5138 
2 126.260 125,500 0.6019 118.920 119.800 0.7346 
3 352.760 351.440 0.3742 - 333.010 335.290 0.2962 
4 690.600 688.700 0.2751 652.790 658.360 0.8460 
5 1142.100 1138.300 0.3327 1079.900 1090.120 0.9375 

As the number of finite elements increased, the results obtained by Matlab 

get closer to experimental/analytical results, but computational time increases a little 

bit. The difference is very less with analytical result (< 1 %), so FEM and Matlab4ed 

for subsequent analysis. 

3.5 FORMATION OF GLOBAL DAMPING MATRIX - 

Estimating the damping matrix for the physical system is not an easy task. 

There is no Element Damping Matrix concept, and damping needs to be considered in 

the global matrix form only. #-11 t f4s4f models are available to model the 

damping, but most favored are proportional damping models in which damping is 

assumed to be some percent of either global stiffness matrix or global mass matrix or 

both (Rayleigh's Proportional Damping). 

Rayleigh's (Proportional) damping matrix has an advantage of possessing the 

same characteristics as mass and stiffness' matrix. 

In this method, the values of first two natural frequencies and damping ratios 

are put in Equation 3.5 (where, i = 1,2) and the global damping matrix will/g t from 

	

Equation 3.6. [ 4O) 	 °•~ 

	

= 2 	 (3.5) 

[C] = p [M] +q [K] 	 (3.6) 

VJ r From results, 

col =127.083 rad/s 

Co = 793.304 rad/s o 	: p 	 (3.7) 

The damping ratios are 0.01E 0 -jfor Mechanical Engineering structures. 

	

= 0.01 and 	~z . = 0.03 	 (3.8) 

CI 

32 



'Putting corresponding values from Equations 3.7and 8~in Equationç3.5') 

p = 1.3550 

q=7.3480x10-5 	 (3.9) 

By putting these values in Equation 3.6, global damping matrix is 

[C] =1.3550 [M] + 7.3480 x 10-5 [K] 	 (3.10) 

3.6 NEWMARK METHOD 	 __ 
Newmark method has been preferred to determine the transient free/for d 

vibration) response of a structure (beam), which falls under the category of direct 

numerical integration method and has the advantage of definite stability [43]. This is 

also called as Newmark- /3 or /3 -Newmark method. 

The procedure for this method is as below, before going for actual iterations, 

some initial calculations are necessary which are constant for particular application, 

and does not change for every iteration step. 

A. Initial Calculations 

1. Form Global Stiffness Matrix (K), Global Mass Matrix (M) and Global Damping 

Matrix (C). 

2. Initialize ii , u , u at time t = 0 (generally the acceleration, and velocity are taken 

as zero and some displacement is given to the beam). 

3. Select time step At and parameters a and 6 and calculate integration constants, 

S z 0.50 	and 	a a 0.25(0.5 + b)2 	 (3.11) 

1 

a0 aAt2 	 al
__

aAt 

az = 1 
aAt 	 2a 

a4=--1 	 a5= At 
6 _2 

a 	 2\a 

a6 = At (1- 6) 	 a7 = 6 At 	 (3.12) 

4. Form Effective Stiffness Matrix K 

K=K+ aoM+ a1 C 	 (3.13) 

Now following equations 3.14 to 3.16 need for each iteration step. 
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B. For Each Time Step 

1. Calculate effective loads at time t+ At as 

R t+ et = R t+ et + M (ao u t  + a2  a 1  + a3 u + C (a1 U 1  + a4  ii t  + as fit) (3.14) 
2. Solve for displacement at time t + At 

K u l+  At = R t+ et 	 (3.15) 
3. Calculate accelerations and velocities at time t+ At as 

ut+et =ao(ur+et-u:)—a2(u,)—a3(ur) 

= u t + a6 (ii r) + a7(u t+ pt) 	 (3.16) 

3.6.1 Selection Of Time Step, At 

Lowest Natural Frequency = 20.226 Hz 

Time Period 	 =1/20.226 = 0.049 sec 

Thus, the actual free vibration completes one cycle in 0.049 sec, so the time 

period of sampling wave should be at least 10 times smaller than this, i.e. 0.005 sec. 
For the case of  Modified Independent Modal Space Control,  the aim is to control at 

least first 6 modes. Time step used here is less than 50% of time period of sixth 
natural frequency. 

Sixth natural frequency 	= 1709.6 Hz 

Time period 	 =1/2000 = 0.0005 sec 

Time Step 	 = Time Period /2=0.00025  sec 

Let d = 0.50, a = 0.25 (stability requirement of the integration scheme) and 

calculate constants ao  to a7  from Equation 3.12. 

At ' = 0.005 sec (For Vibration analysis, except MIMSC) 

= 0.00025 sec (for MIMSC) 

3.6.2 Determination Of Constants 

 

(3.17) 

For Vibration Analysis (Except MIMSC) 

At = 0.005 sec, hence from equations 3.12, 

ao  = 1.6 x 105 	 a1 =400 a2 = 800 

 

a3 = 1 	 as=1- 	 a5 =0 

a6 = 2.5 x 10-3 
	

a7 =2.5x10 3 
	

(3.18) 
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For MIMSC 
At = 0.00025, hence from equations 3.12, 

ao  = 6.4 x 107 	 a1  = 8000 	a2  = 16000 

a3=1 	 a4=1 	 a5=0 

a6 = 1.25 x 10-4 	 a7  = 1.25 x 10"4 	 (3.19) 

3.7 MASS NORMALISED MODE SHAPE VECTOR 

U = Matrix of Eigenvectors = Mode Shape Matrix 

— [1 	02 ............... 0rt1 
	

(3.20) 

= Eigenvector corresponding to i h̀  Natural Frequency (Eigenvalue) 

MG  = UTMU = Generalised Mass Matrix 	= Diagonal (M11 M22 ... M..) 
KG = UTKU = Generalised Stiffness Matrix 
CG = UTCU = Generalised Damping Matrix 

When each column of eigenvector matrix is divided by corresponding 

generalised mass matrix element's square root, it is called as Mass Normalised 

Eigenvector Matrix. 

_ L  01 	02 	.....  o"  ] 	 (3.21) 
M nn 

3.8 MODAL DISPLACEMENT AND MODAL VELOCITY 

Modal displacement and velocity are hypothetical quantities, useful to analyse 

the vibration behavior of a Multi-DOF system in easier manner. Let us assume the 

physical displacements of various nodes are arranged in a vector `x' for any system, 
then, 

x = a 	 (3.22) 
Where, - 

x = Global Displacement Vector 0 = Mass Normalised Eigenvector Matrix 

S = Modal Displacement Vector 
— 	In this similar manner differentiation of above equation with time gives 

Velocity. 	 =' 
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3.9 AXIAL FORCE DUE TO PATCH ACTUATION 

Consider a beam with piezoelectric patches applied on both sides of the beam. 

When same polarity voltage is applied to patches, there is change in length of the 

beam due to axial forces (either tensile or compressive), but if opposite polarity 

voltage applied to both patches the beam bends in the similar manner as bimetallic  

strip. 	

~ 
l

M 

When axial tensile force is applied to the beam, its stiffness increases, and for  

axial compressive forces its stiffness decreases._ 

The formulae [44] useful for calculation of axial forces are as below: 

Free strain in actuator due to application of voltage (Figure 3.2) is 

£ p = d3r V 
a 

(3.23) 

The strain in the structure (beam), when piezo-patch is bonded to the beam 

and only voltage is applied to patch and no external loading. 

2E E t Q Qp 

ES 
(3.24) 

2Ea ta + Ests 

Stress in the beam, 

_ €S ES (3.25) 

Force (Axial) in the beam, due to piezoelectric patch actuation 

Fs =ors AS (3.26) .. 

Stress in the actuator 

Qa =_Ea(E5-EP) (3.27) 

Where, 

E p = Free Strain in Piezo-Patch (without Constrain) 

E s = Strain in beam (Host Structure) - 

Ea = Actuator (Piezo-Patch Modulus of Elasticity) 

ES = Beam (Host Structure Modulus of Elasticity) 

to = Thickness of Actuator 

is = Thickness of Beam (Host Structure) 

or,s = Stress in Beam 

as = Stress in Actuator 

FS = Force in Beam 

As = Cross-section of beam 
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3.9.1 Calculation Of Change In Stiffness Due To .Axial Force 
The axial force is induced on account of same polarity voltage to two 

collocated piezoelectric patches, one on either. side of the beam (Figure 3.1). The 

stiffness matrix due to external axial force [45], to be added to the corresponding 

Element Stiffness Matrix (where Piezoelectric patch is present) can beting from 

Equation 3.28. 

36 

F 	31 
kP  301 —36 

31 

31 —36 31 

412  —31 _12 

—31 36 —31 
12  —31 412  

(3.28) 

This matrix is to be added at the corresponding element stiffness matrix of the 

element on which patches are applied. 

3.10 SUMMARY 
This chapter introduced all the formulae and finite element method concepts, 

necessary for the work of active vibration control of a piezo beam. 

The element considered for this case of a beam is of two-dof element, among 

three types [40], viz. one-dof (only axial deflection), two-dof (slope and vertical 

deflection) and three-dof (slope, vertical and axial deflection). The Newmark-P 
method is very useful method to analyse and get the vibration response while other 

method is Wilson-0 method [43]. Transformation section method becomes useful to 

convert composite beam element in simple beam element. From results of natural 

frequency, it is clear that the error is very less (< 1%) between analytical and FEM 

results, and the error reduces with increased number of elements, so FEM is used for 

subsequent transient analysis. 
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CHAPTER 4 

FREE AND FORCED VIBRATION: 

WITH AND WITHOUT CONTROL 

This chapter is divided into three major topics 

1. Free vibration response with and without active control, 

2. Forced vibration response with and without active control, 

3. Vibration control during sweeping excitation using controlled axial 

stiffness variation. 

Before discussing the actual work, some description of the three control 

methods used is necessary, which is briefed in the coming sections. 

4.1 NEGATIVE VELOCITY FEEDBACK CONTROL 

When a voltage is applied to a piezoelectric patch, there is change in the 

dimensions of the patch and if only one side patch is used as actuator then this patch 

as well as beam bends. The moments applied by patch are directly co-related with 

voltage applied to it.. These moments are assumed to be applied at the ends of patch 

(nodes) (Pin Force Model). This report contains two approaches for negative velocity 

feedback control method; in the first one, piezoelectric patches are not modelled in 

Newmark Method in terms of voltages, moments. Instead, a simple mathematical 

modelling of control process is attempted, while in the second approach, patches are 

modelled to sense rotational displacement of the beam, voltage corresponding to these 

is multiplied by some gain, and the resultant voltage is applied to actuators. The 

actuators apply opposite types of moments on the beam to control/reduce vibrations. 

The mathematical model behind this is given by Equation 4.1. 

The governing equation for a forced damped vibration response is 

mz+lee+cx =F 
	

(4.1) 

In forced damped vibration equation with Negative Velocity FBC, , term 

— Gz is added as an additional forcing term. When this term is transferred to LHS, 

then it can be seen that the damping of the system increases by 9 
 as in Equations 4.2 

and 4.3. 



V 
	kRl~~~ 	 1`c L ,t . 	

v 7ix kx + cx = F — Gk 	i ~ ` 	 (4.2) 
~ ~t~t~°-~  

fd 

	

C4 
	 (4.3) 

The approach here used i
i

s'Negative Velocity, Constant Gain FBC. In which, 

Feedback Force = - Gz 	 (4.4) 

Where,~Gain, G is constant)and only velocity term varies. 

Another approach is Negative Velocity, Constant Amplitude FBC. In this approach, 

feedback force is constant in magnitude only its direction changes. 

Feedback Force = -G sign (x) 	 (4.5) 

Where, function sign (z) works as, 

—1 if A<0 
sign (A)= 0 if A=0 	 (4.6) 

	

} 	 1 if A>O 

4.1.1 Negative Velocity Feedback Control (Simple) 

As stated earlier, in this method only simple mathematical modelling of the 

control process is done assuming that, the patches are doing their work of sensor and 

actuator as designed. The effective force term in Newmark Method (Equation 3.14) /p 

modified accordingly. 

At every iteration step, a feedback force - Gz is added to the effective force. 

Hence the effective force is reduced so as the displacement. 

4.1.2 Negative Velocity Feedback Control (Sensor And Actuator) 

In this approach, the sensors are modelled to sense rotational (angular) 

displacements, while some gain is applied by control systems, producing resultant 

voltage to be applied to the actuators, which in turn applies moments on the beam 

[21,22]. 

The sensor voltage is given by Equation 4.7 [21,22]. 

VS = — patch 
g3IE patch [ (tbea,n + tpa,ch )](O y — 0y_1) 	 (4.7) 

patch 

The actuator voltage is obtained by differentiating the sensor voltage and 

multiplying it by appropriate gain as in Equation 4.8 [21,22]. 

VA = —GV 	 (4.8) 
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The moment applied by actuator are given by Equation 4.9 [21,22]. 

MA = [,Z lt6eam + tPate►, )]EparchdslbpatChVA 	 (4.9) 

Where, 

Vs  = Sensor Voltage (V) 

VA  = Actuator Voltage (V) 

0,, = Rotational (Angular) Displacement at node y 

MA = Moment applied by the Actuator 

4.2 INDEPENDENT MODAL SPACE CONTROL (IMSC) 

Literature review reveals that Meirowitch and Baruh first put forth this 

concept in a well-planned manner [28], while Baz and Poh [25,29,30] put forth 

concept of MIMSC. Meirowitch and Baruh developed the IMSC method for 

controlling vibrations of a distributed mass body. They showed that, IMSC has 

advantages over traditional coupled mode technique in that it.  offers a larger choice of 

control techniques, including non-linear control, requires less computer storage, and 

needs far less computational effort, etc. In this method feedback control parameters, 

which are displacement and velocity gain5are selected as modal gains. 

The formulae and steps for IMSC are as below [24,25,27,28]. 

Optimal Positional Gain and Optimal Velocity Gain are given by Equations  
lo 	44 and 4 Y2, respectively. 

gP  = —co,R + 	o,.R) + cv, R 	 (4.10) 	"J 7 

g, = ij2o),R(—a),R + (co,R)Z  + (0,2R) + co,2R 	 (4.11) 

The piezo-location vector (D), which is necessary to give the location of the 

piezo-forces, is given by Equation 4.12. If the patch is bonded at the element having 

DOF as m to m+3, then only that elements in piezo-location vector need to be 

modified, so m:m+3 used in following equation. 

0 
1 

D (m : m + 3) =2 bd31EPaten (tBeam+tPatch) 0 	 (4.12) 
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Modal force, voltage and control force are given by Equations 4.13 to 4.15, 

respectively. 

– (g pw + g~a) 
F' Modal =  

Voltage = 	 (4.14) 
UND 

(4.15) Control 	r 	 \ 	J 

her rSkQft, 

r•r = Natural Frequency corresponding to the mode to be controlled. 

R = Weighting Factor 

gp = Optimum Positional Gain 

gv = Optimum Velocity Gain 

6 = Modal Displacement 

= Modal Velocity 

D = Piezo-location Vector 

U = Matrix of Eigenvector 

UN = Matrix of Mass Normalised Eigenvector 

—7 Fj j0 , = Modal Force Vector 

Voltage = Voltage to be applied at patch 

_--=Fco,aroI = Control Force Vector 

b = width of the patch 

. O 

7kU 
-~j 	4.2.1 Weighting Factor, R 	 0  

R is the Weighting Factor that balances the reduction of the vibrational energy 

with respect to the control voltage required. The value of `R' ranges from 1 to 1000. 

From the above definition it is clear. that R is actually a factor that balances 

vibrational energy and control energy during active vibration control of the structure. 

As value of `R' increased, control force gets reduced, causing reduced damping and 

increased vibrations. 	 .' 
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4.3 MODIFIED INDEPENDENT MODAL SPACE CONTROL (MIMSC) 

Baz and Poh [25,29,30] modified the IMSC method to MIMSC to control 

different modes of vibrations of distributed structures separately depending on the 

energy in each mode given by to 28 Z + S 2 . 

In IMSC it is assumed that control forces will not excite residual higher order 

modes i.e. there is no control spillover from controlled modes to uncontrolled modes. 

But in practical situation, the spillover is present causing uncontrolled modes to get 

excited due to controlling forces. 
MIMSC incorporates an extremely important feature, based on time-sharing of 

a small number of actuators in modal space to control a large number of modes. In 

practice there are two types of time-sharing strategies applied, description is given in 

Section 4.3.1. 

C) 
4.3.1 Time Sharing Strategies 

A. Sequential time sharing strategy, ~-  

[
_ 1>n`tlus method, control forces are computed, at the first time interval, to 	M 

control'.rt to c h̀ modes using C actuators. Then at the second time interval 2"d to  

(c+1) k̀ modes controlled, and so on. Once all modes received their share of control 

this cycle is repeated again. 
This strategy is useful in Vibration Control of large structures with relatively 

less number of actuators, when IMSC fails to do so. 

B. Modal energy strategy 
Better vibration control can be achieved when the time-sharing is based on 

modal energy strategy, particularly when the number of controlled modes is very 

small as compared to the number of uncontrolled modes. In this strategy, energy 

present in each mode (Ur ZS Z + b Z ) is 

mode wi 

at specific intervals of time and the 9 

Time-sharing concept should be considered carefully in conjunction 

dynamic characteristics of actuators. If one actuator is used to control several modes 

of vibrations then its frequency band should be wide enough to cover desired 

controlled modes. In general ' practice, one actuator is dedicated to control low-

frequency modes, another medium-frequency modes, while high-frequency modes 

can be damped quite easily and more effectively with passive damping methods. 
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4.4 FREE VIBRATION RESPONSE  

For free vibration, the external force tent is a sent in Newmark Method in 

Equation 3.14. The vibration is induced by an initial displacement excitation 

(preferably applied at the free end of the beam). To achieve this, a force of some value 
is applied at the tip, the displacement values got from this are taken as initial 

displacement vector and the force is removed and let the beam to vibrate freely. 

The flowchart for this is given in Appendix A (Refer Flowchart 1). 

The external force term as well as control force term is obviously not 

accounted for the free vibration response using Newmark Method. The values of 

displacement, velocity and acceleration as well as effective force are extracted at the 

end of each iteration step and stored in separate variables to plot corresponding 
graphs. 

First calculating logarithmic decrement from the vibration response and then 
using the relation between logarithmic decrement and damping ratio, the damping 
ratio can'be calculated (Equation 4.16). 

= 	= l loge x' 	 (4.16) 
1 _ z 	 n.4) 	x„ 

here, 

xl = Amplitude at first cycle 

x„ = Amplitude at n h̀ cycle 

S = Logarithmic Decrement 

~ = Damping Ratio 

/i = Number of Cycles considered to calculate Damping Ratio. 

The vibration response by various control techniques can be compared based 
on the Edam:p:i:n:g::::ra~~io or based on settling time,, which is the time required for the 
vibration response to fall within a prescribed band (0.05 to 0.1 % of the maximum 

amplitude of free vibration without control). This band is also called Threshold Value. 

4.4.1 Free Damped Vibration: Negative Velocity Feedback Control (Simple) 

As stated earlier in this method, only mathematical force term is added as a 

control force. In Newmark Method, at the end of each iteration step, one will get 

values of displacement, velocity and acceleration at the tip of the beam. The rotational 

velocity values will be taken for the element corresponding to piezo-patch and these 



values multiplied by Gain will give the control force (moments) that need to be 

applied on the beam. These control force term is getting added to the effective force 

term in Newmark Method and the cycle goes on. 

The values of displacement, velocity, acceleration, effective force as well as 

control force at patch are extracted at the end of each iteration step and stored in 

separate variables to plot corresponding graphs (Refer Flowchart 2). 

4.4.2 Free Damped Vibration: Negative Velocity FBC (Sensor And Actuator) 

In this method the piezo-patches actually modelled to sense the rotational 

velocities and then these values are multiplied with Gain to give the voltage to be 
	

0 
applied to piezo-actuator, which in turn applies moments on the beam. 

The values of displacement, velocity, acceleration, effective force as well as 

control force at the patch, sensor voltage and actuator voltage are extracted at the end 

of each iteration step and stored in separate variables to plot corresponding graphs 

(Refer Flowchart 3). 

4.4.3 Free Damped Vibration: IMSC 

In this problem first mode (corresponding to lowest natural frequency) has 

been controlled. Values of optimal positional gain and optimal velocity gain are 

calculated based on this lowest natural frequency and Weighting Factor (R). Mass 

Normalised Eigenvector is also calculated using standard functions available in 

Matlab 5.3 to calculate eigenvectors and using Equations 3.20 and 3.21. 

In Newmark Method, at each iteration step, the modal displacement and modal 

velocity are calculated and then modal force, voltage, control force is calculated from 

equations 4.13 to 4.15. This control force term is added to the effective force term in 

the Newmark Method (Equation 3.14). The values of displacement, velocity, 

acceleration, effective force, .control force at patch and voltage are extracted at the end 

of each iteration step and stored in separate variables to plot corresponding graphs 

(Refer Flowchart 4). 

4.4.4 Free Damped Vibration: MIMSC 

Modal Energy Strategy has been used as a time-sharing strategy to find the 

mode with highest modal energy, at specific intervals (20 iterations = 5 x 10"3  sec) and 

to control that mode with highest modal energy. The IMSC method is modified as the 
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values of optimal positional gain and optimal velocity gain has to be calculated based 

on the natural frequency corresponding to the dominating mode and Weighting Factor 

(R) at each iteration of Newmark Method. Other procedure is similar to IMSC. So 

equations 4.10 to 4.15 needed at each iteration step. The values of displacement, 

velocity, acceleration, effective force, control force at patch and voltage are extracted 

at the end of each iteration step and stored in separate variables to plot graphs 

(Refer Flowchart 5). 

4.5 FORCED VIBRATION RESPONSE 
For Free Vibration the external force term is absent in Newmark Method 

(Equation 3.14) while for forced vibration term, this term is present. Depending on the 

L 

	

	%f type of the force to be applied this term can be modelled in the Newmark Method. For 

harmonic input, fo sin(vJt) is used, while this term is modified for the case of 

sweeping excitation as a = w o  + a&t.The impulse force input is given by a force for 

very short duration e.g. 1 ms, while for Step input this term is modified by applying 

force for some considerable time duration. The flowchart for harmonic input is given 

in Appendix A (Refer Flowchart 6). 

The values of displacement, velocity and acceleration as well as effective 

force are extracted at the end of each iteration step and stored in separate variables to 

plot graphs. Comparison among results by various control techniques cannot be done 

by settling time, damping ratio as in case of free vibration, but steady state amplitude, 

maximum amplitude are used to compare results. 

4.5.1 Forced Damped Vibration: Negative Velocity Feedback Control (Simple) 

The difference between this method and as applied to free vibration (Section 

4.4.1) is that, the external force term is added to the effective force term in Newmark 

Method and beside all variables stored in free vibration case (4.4.1), external force is 

also extracted at the end of each cycle (Refer Flowchart 7). 

4.5.2 Forced Damped Vibration: Negative Velocity FBC (Sensor And Actuator) 

The difference between this method applied to forced vibration case and that 

applied to free vibration (Section 4.4.2) is that, the external force term is added to the 

effective force term in Newmark Method and beside all variables stored in free 
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vibration case (4.4.1), external force is also extracted at the end of each cycle (Refer 

Flowchart 8).  

4.5.3 Forced Damped Vibration: IMSC 	 /'' 

As previous method, the difference between this method~and asf applied to free 

vibration (Section 4.4.3) is that, the external force term is added to the effective forc.~~~ 

term in Newmark Method and beside all variables stored in free vibration case (4.43), 
extemar of rce is also extracted at the end of each cycle (Refer Flowchart 9). 

4.5.4 Forced Damped Vibration: MIMSC 

As previous method, the difference between this method and as applied to free 

vibration (Section 4.4.4) is that, the external force term is added to the effective force 

term in Newmark Method and beside all variables stored in free vibration case (4.4.4.), 

external force is also extracted at the end of each cycle (Refer Flowchart 10). 

4.6 VIBRATION CONTROL USING CONTROLLED AXIAL STIFFNESS 

VARIATION 

In section 3.9, description of axial stiffness variation, due to actuation of 

piezo-patches has been given. This concept can be used to control vibration i.e. to 

reduce the amplitude of forced vibration. If tensile force is exerted on the beam, bY...~,!'';~~~~ 

using patches, then the stiffness of the beam increases, causing increase in the natural~sca~/ 

frequency of the beam. 	 i 1Wo~ C 

Suppose, a beam is required to vibrate with varying frequency like ramp input, 

in which case the excitation frequency varies from zero to some definite frequency. In 

such a case the resonance may occur at which, the excitation frequency matches Y 	 ~ 	 q 	Y   
natural frequency. This concept can be used as, let the beam vibrate with increased 

natural frequency till the first resonance (i.e. resonance with normal natural 

frequency) will pass. Then again deactivate the patches so that the beam will have 

original natural frequency and the second resonance i.e. resonance with increased 

natural frequency will also pass. This will cause the reduction in the maximum 

amplitude of vibration (Figure 4.1). Parameters of the beam used for this model are as 

below in Table 4.1, an Aluminum beam with PZT patches is considered here. 
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Figure 4.1 Effect of Axial Stiffness Variation on Vibration Response 

Table 4.1 Properties of Beam and Patches 

Property Beam 
Piezoelectric  

Patches 
Material Aluminum PZT 
E (GPa) 70 63 
4 (kg/m) 2700 7600 

Length (cm) 25 8.5 
Width (cm) 3 2 

Thickness (cm) 0.2 0.03 
d31 (n\v) - 210 x 10 12  

With this configuration the natural frequency results are 

Natural Frequency without Axial Stiffness = 	31.856 Hz 

Natural Frequency with Axial Stiffness = 	36.260 Hz (4.17) 

Now the voltage that could be applied on the patch has ranges specified by the 

manufacturer. The patches used by National Instrumentation have limitation on 

voltage as -500 V to +1500 V. So applying -500 V on the patches, and using 

= 0.01, 2 = 0.03, Ot = 0.003 sec and 

~~ 	 zJ = ZU0 + a&t (zoo = 0, a = (50-0)/Iterations). 

F=fosin(wt)(fo =0.1) 	 (4.18) 

The patch is activated at the beginning of the iterations, and deactivated after 

CA tu +02), where n ranges from 0 to 1. The results were obtained and the 

maximum amplitude is calculated (Section 5.3). 
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CHAPTER 5 

RESULTS AND DISCUSSION 

Introduction to the various control techniques such as Negative Velocity FBC, 

IMSC and MIMSC has been briefed in the previous chapter. This chapter deals with 

the implementation of these techniques in controlling the free and forced vibrations of 

the beam. The results obtained from the codes (programmes) developed in Matlab 5.3 

using Newmark Method of direct numerical integration technique; to find the free and 

forced vibration responses with and without control are presented in the subsequent 
section 	lot of simulations have been carried out for every type of control method, 

to find effect of various parameters such as weighting factor R, Gain, etc on vibration 

control. Only one type of response is taken from each category to show the nature of 

the response using that particular control method. After this, in-each category, the 
effect on the resultant vibration response (i.e.amps 	litude~, damping ratio, settling time 
etc.) of various control parameters like R, Gain has been studied. 

For all the programmes, th vva}uesthe following values are common, 

Number of Finite Elements = 12 

=0.01 and 

~2 = 0.03 

Ot = 0.005 sec except MIMSC 

= 0.00025 sec for MIMSC 	 ~ Ǹ 
Iteerations= 500 to 10000  

Threshold Value = ± 0.005 mm (< ±0.05% of maximum amplitude in case 

of free vibration without any control) 

The results are divided into three sections, free vibration with and without 

control, forced vibration with and without control and vibration control using axial 
stiffness variation. 
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5.1 FREE DAMPED VIBRATION 
'The free damped vibration response, implies uncontrolled free vibration 

response of the beam using inherent (proportional) damping of the system and is 

shown in Figure 5.1. The Figure 5.1 shows that the peak amplitude is exponentially 

decaying due to natural inherent damping of the system. The graph shows the 

response for 5 seconds. As stated earlier, the settling time is the time required to attain 

the response by structure within threshold value, which is ± 0.005 mm. 
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Figure 5.1 Variation of displacement with time (uncontrolled Free Vibration) 

For the case of the beam studied here, and for the given damping values, and 

patches used, the results obtained are as below (refer Figure 5.1). 

X10 	= 0.01101 (Damping Ratio based on first 10 cycles) 

Settling Time = 4.500 sec 

Amplitude 	= 0.04388 mm (at the end of 2.5 sec) 

= 0.00194 mm (at the end of 5.0 sec) 



5.1.1 Free Damped Vibration: Negative Velocity FBC (First Approach) 

The free damped vibration response with negative velocity control by first 
approach with Gain value as 0.1 is shown in Figure 5.2. 

x 10' 
1.5 i---- Free Damped Vibration - Negative Velocity Control (Gain = 0.11 

v 
15 0.5 
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i 
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-0.5 

1 
v. 	> 	>.s 	2 	2.5 	3 	3.5 	4 	4.5 	5 

Time (sac) 

Figure 5.2 Variation of displacement with time (NVFBC) (Gain = 0.1) 

The effect on amplitude at end of 5 sec, damping ratio and settling time due to 

variation in gain is tabulated in Table 5.1 and depicted in Figures 5.3 to 5.5. 

From the figures and Table, it is seen that damping ratio almost linearly 

increases with gain. Amplitude at end of 5.0 seconds is decreasing with gain, it starts 

increasing again after gain value 0.115 and response became unstable, after gain value 

of 0.175. Settling time first decreases till the gain becomes 0.12 and then again 

increases with gain. Figure 5.6 shows the vibration response with negative velocity 

feedback control for gain 0.2, for which the response becomes unstable. 
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Table 5.1 Free Damped Vibration with Negative Velocity FBC (Simple) 

Gain ,o  
Flo 

(compared to 
uncontrolled) 

Amplitude at 

5 sec (mm) 

Settling 
Time (sec) 

Settling Time 
(compared to 
uncontrolled) 

0.000 0.011010 100.00 1.9400x10 3  4.500 100.00 

0.010 0.011950 108.54 1.5580x10 4.140 092.00 

0.050 0.014930 135.60 1.4700x10 3.165 070.33 

0.075 0.016566 150.46 1.7236x10 2.730 060.67 

0.100 0.018298 166.19 1.6665x10-  2.445 054.33 

0.110 0.019030 172.84 7.1918x10" 2.365 052.56 

0.115 0.019408 176.28 3.2726x10 5  2.265 050.33 

0.120 0.019794 179.78 7.2315x105  2.265 050.33 

0.150 0.022338 202.89 2.7850x10 2.895: 064.33 

0.175 0.024463 222.19 2.2995x10 2  Unbounded - 

0.200 0.027726 251.83 5.4817x10 Unbounded - 
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Figure 5.3 Variation of amplitude (at the end of 5 sec) with Gain (NVFBC) 
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Figure 5.4 Variation of damping ratio with gain (Negative Velocity FBC) 
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Figure 5.5 Variation of settling time with gain (Negative Velocity FBC) 
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Figure 5.6 Variation of displacement with time (NVFBC) (Unstable Response) 

5.1.2 Free Damped Vibration: Negative Velocity FBC (Second Approach) 
The free damped vibration response with negative velocity feedback control 

by actually modelling sensors and actuators in Newmark Method (second approach) is 

shown in Figures 5.7 and 5.8 with Gain 0.01. Figure 5.7 shows the variation of 

displacement of the tip of the cantilever beam with time, while Figure 5.8 shows the 

variation of actuator voltage with time. The displacement is decaying logarithmically 

with time, but due to increased damping owing to added active damping, compared to 

free uncontrolled case (Figure 5.1), the decay is fast. The actuator voltage also shows 

almost similar type of nature as that of displacement. 
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Figure 5.7 Variation of displacement with time (Negative Velocity FBC) 
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Figure 5.8 Variation of actuator voltage with time (Negative Velocity FBC) 
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The effect on amplitude at 5 sec, damping ratio and settling ' time due to 

variation in gain value is tabulated in Table 5.2 and shown in Figures 5.9 to 5.11, 

respectively. Variation of actuator voltage with gain is shown in Figure 5.12. 
From the figures it is seen that amplitude at end of 5.0 seconds and settling 

time decreases with gain till gain value becomes 0.12 and the response becomes 

unstable after that. The damping ratio shows the linear increase with gain. The 

actuator voltage also found to linearly increasing with gain till gain value becomes 

0.12, and as after that the response becomes unstable, so obviously the voltage 

increases suddenly. 

Table 5.2 Free Damped Vibration with Negative Velocity FBC (Sensor) 

Flo Settling 
Amplitude Voltage (V) 

% of free Time % of 
Gai at end of Settling 

10 vibrations free vib. 
n 5.0 sec Time 

without . without Max Min (mm) 
control control 

0.00 0.01101 100.00 1.9400x10 3  4.500 100.00 0 0 
0.01 0.01152 104.63 1.7650x10 3  4.320 096.00 3.506 -3.148 
0.05 0.01350 122.62 7.4700x10 4  3.655 081.22 17.28 -15.66 
0.10 0.01521 138.15 9.1685x10 5  3.060 068.00 33.94 -30.96 
0.11 0.01557 141.42 4.3282x10 2.985 066.33 518.52 -518.57 
0.12 0.01601 145.41 1.5989x10 2.880 064.00 32029 -31057 
0.20 0.01891 171.75 2.850x10 - - - - 
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Figure 5.9 Variation of amplitude (at the end of 5 sec) with gain (NVFBC) 
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Figure 5.10 Variation of damping ratio with gain (Negative Velocity FBC) 
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Figure 5.11 Variation of settling time with gain (Negative Velocity FBC) 

Free Damped Vibration - Negative Velocity Control (Sensor) 
600 

500 

400 

m t» 

300 
o 

a~. 

200 

100 r 

Gain 

Figure 5.12 Variation of actuator voltage with gain (Negative Velocity FBC) 
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5.1.3 Free Damped Vibration with IMSC 	 L~~ ~~ t F A~  

The free damped vibration response with IMSC is shown in Figures 5.13 and 

5.14. Using the weighting factor (R) as 1.0 ('the time domain response of the beam is 

shown in Figure 5.13, while variation of actuator voltage with time is shown in Figure 

5.14. The effect of variation of R on the values of maximum amplitude and steady 

state amplitude is given separately in Section 5.1.5. The effect of R on damping ratio, 

amplitude at 1.0 seconds and settling time is tabulated in Table 5.3 (given after the 
Section 5.1.5). 

From Table 5.3 it is seen that, damping is considerably high in case of IMSC, 

as compared to free uncontrolled as well as free vibration with negative velocity 

feedback control, maximum damping is about 1.45 times than free uncontrolled case, 
setting time is 2.88 seconds for the gain = 0.12 (Table 5.2). While for IMSC, damping 

is 8.42 times, and the settling time is 0.22 seconds at R = 9. Thus, settling time has 

reduced drastically in case of IMSC than NVFBC. For the same amount of control, 
voltage requirement is less in case of IMSC. 

12 x 10, 	 Free Damped'Yibration - IMSC (R = 1.0) 
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Figure 5.13 Variation of displacement with time (IMSC) 
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Figure 5.14 Variation of voltage with time (IMSC) 

0 

5.1.4 Free Damped Vibration with MIMSC 
Using the weighting. factor (R) as 1.0, the. time domain response of the beam is 

shown in Figure 5.15, while variation of applied voltage with time is shown in Figure 

5.16. The effect of variation of R on the values of maximum amplitude and steady 

state amplitude is given separately in Section 5.1.5. While its effect on damping ratio, 
amplitude at 1.0 seconds and settling time is tabulated in Table 5.4 (given after the 
Section 5.1.5). 

Peak voltage in case of MIMSC is 1022.1 V. For NVFBC, maximum-damping 
is about 1.45 times than free uncontrolled case, setting time is 2.88 seconds for the 
gain = 0.12 (Table 5.2), for IMSC, damping is 8.42 times, and the settling time is 0.22 
seconds at R = 9, and for MIMSC damping is about 9 times, settling time is 0.30 
seconds at R = 35. For the same amount of control, voltage requirement is less in case 
of IMSC than NVFBC, while least for MIMSC. 
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Free Damped Vibration - Modified I MSC (R = 1.0) 
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Figure 5.15 Variation of displacement with time (MIMSC) 
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Figure 5.16 Variation of voltage with time (MIMSC) 
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5.1.5 Comparison of Controlled Vibration using IMSC and MIMSC 

The comparison between IMSC and MIMSC to find effect of weighting factor 

(R) on active vibration control is given here. The common ground for comparison is 

the weighting factor (R). The results are tabulated in Table 5.5 and shown in Figures 

5.17 to 5.20. 
Figure 5.17 shows the variation of amplitude at the end of 5 seconds with 

weighting factor. The resultant amplitude achieved by MIMSC is smaller than IMSC, 

and it shows increase with R in case of MIMSC, while it decreases with certain value 

of R (= 40) and again increases in case of IMSC. 

Figure 5.18 shows the variation of damping ratio with R, and as expected, in 

this case also damping is more in case of - MIMSC than IMSC. Figure 5.19 shows the 

variation of the settling time with R. In case of IMSC it is seen that settling time 

shows first decrease and then increase with increasing value of R, while for MIMSC, 

settling time increases with R. Figure 5.20 shows the variation of voltage with R, and 

as expected, voltage decreases with increasing R, but for MIMSC voltage requirement 

is lesser than IMSC. 

Here one may observe that the peak voltage in case of IMSC is 1088.7 V 

while in case of MIMSC it is 1022.1 V i.e. a drop of 6.52 % is there in MIMSC 

(Figures 5.14 and 5.16). This indicates a better effectiveness of MIMSC in place of 

IMSC. From Tables 5.3 to 5.5 it is seen that, damping is considerably high in case of 

IMSC, as compared to free uncontrolled as well as free vibration NVFBC, but lesser 

than that of MIMSC. From Table 5.4 it is clear that, MIMSC controls more than one 

mode, but as the value of R increased the number of controlled modes decreases. First 

mode is controlled for every value of R, while second mode is controlled till R=10, 

and last (24 h̀) mode-is controlled till R=6, while IMSC controls only first mode. 
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Figure 5.17 Comparison of Free Vibration response with IMSC and MIMSC 
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Figure 5.18 Comparison of Free Vibration response with IMSC and MIMSC 

(variation damping ratio with R) 
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Figure 5.19 Comparison of Free Vibration response with IMSC and MIMSC 

(variation of Settling Time with R) 
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5.2 FORCED DAMPED VIBRATION 

The control of forced vibrations is most common problem encountered in 

industrial life; The main problem is the nature of external force is not definite. The 

external force may be harmonic, impulse, step and even in worst case random. Most 

of the times it is not possible to make the response near to zero or within threshold 

value, but the amplitude of vibration can be reduced to some extent. 

The response of the vibrating t1'e beam of Figure 3.2 with a harmonic force 
input (F ', = fo sin(wt ), where fo = 1 N, zu ' = 15 Hz (94.2478 rad/s) found using 
Newmark Method is shown in Figure 5.21. 

To compare the response achieved by various control methods in case of 

forced vibration, the steady state amplitude and maximum amplitude of the vibrating 
beam are the set parameters. 

x 1O' 
	

Forced Damped Vibration 

U 	0.5 	7 	1.5 	2 	2.5 	3 	3.5 	4 	45 	5 
Time.(sec) 

Figure 5.21 Variation of displacement with time (uncontrolled forced vibration) 
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5.2.1 Forced Damped Vibration with Negative Velocity Feedback Control 

(First Approach) 
The forced vibration response with negative velocity control by first approach 

with gain value 0.1 is shown in Figure 5.22, while variation of maximum amplitude 

and steady state amplitude with gain are shown in Figure 5.23 and tabulated in Table 

I 

Table 5.6 Forced Damped Vibration with Negative Velocity FBC (Simple) 

Gain 
Amplitude (mm) Steady State Amplitude 

(% of forced 
uncontrolled vibration) 5.0 Max Steady 

0.000 -0.07812 3.62220 2.3850 100.00 
0.100 -0.14441 3.47320 2.2900 096.02 
0.150 -0.17249 3.40290 2.2650 094.97 
0.175 -0.18648 3.36870. 2.2600 094.76 

0.180 -0.16982 3.36200 2.2665 095.03 

0.200 -0.38372 3.33520 2.3500 098.53 

0.250 18.89000 18.89000 Unbounded - 

0.300 -1.676x10 1.574x10 Unbounded - 

From the Figure 5.23, it can be seen that, the maximum as well as steady state 

amplitude, first decreases with gain, while after some value of gain (0.25) the 

response gets unstable. The decrease in the amplitude is almost linear with gain value. 

The maximum reduction in the amplitude is found at the gain value 0.175 and the 

steady state amplitude is 94.76% of the steady state amplitude in uncontrolled case. 
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Figure 5.22 Variation of displacement with time (NVFBC) (Gain = 0.1) 
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Figure 5.23 Variation of Maximum and Steady state amplitude with gain 



5.2.2 Forced Damped Vibration with Negative Velocity Feedback Control 

(Second Approach) 
The forced vibration response with negative, velocity control by second 

approach with 0.1 gain is shown in Figures 5.24 and 5.25. 

a .x 7oa 	Forced Damped Vibration - Negative Velocity Control (Gain = 0.1) 

•0 	0:5 	1 	1.5 	2 	2.5 	3 	3.5 	4 	q•? 

Time (sec) 

Figure 5.24 Variation of displacement with time (NVFBC) (Gain = 0.1) 

Free Damped Vibration - Negative, Velocity Control (Gain =0.1) 

-1000 
	0.5 	1 	1.5 	2 	2.5 	3 	3.5 	4 	4.5 	5 

Time (see) 

Figure 5.25 Variation of actuator voltage with time (NVFBC) (Gain = 0.1) 
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Variation of maximum amplitude and steady state amplitude with gain are 
shown in Figure 5.26, followed by variation in actuator voltage with gain in Figure 

5.28 and tabulated in Table 5.7. The maximum amplitude as well as steady state 
amplitude decreases with gain, while after certain value of gain (0.15) the response 

gets unstable. Actuator and sensor voltage also increases slowly till the value of gain 
becomes 0.15, and then increases rapidly. The maximum value of actuator voltage 
within stable region is found to 180 V. 

The least steady state amplitude is found at gain value of 0.11, and this is 
96.85 % of the steady state amplitude of uncontrolled case. While in simple 
mathematical modelling, it was 94.76 % at the gain value of 0.175. The difference 

may be due to mathematical modelling of sensor and actuator and the values of 
Piezoelectric Stress Constant and Piezoelectric Strain Constant. 

Table 5.7 Forced Vibration Negative Velocity Control (Sensor) 

Gain 

Amplitude (mm) 
Steady state 
Amplitude 

(% of forced 
uncontrolled 

vibrations 

Actuator Voltage 

Max Steady Max Min 

0.00 3.6222 2.3850 100.00 0 0 
0.01 3.6138 2.3800 99.79 9.4172 -9.2465 
0.05 3.5804 2.3500 98.53 46.2430 -45.0530 

0.075 3.5599 2.3250 97.48 68.5970 -66.4810 
0.10 -3.5397 2.3155 97.09 90.4611 -87.2134 
0.11 3.5317 2.3100 96.85 177.100 -174.580 
0.15 1.l8xlOOS Unbound - 6.39x10 -6.72x10 
0.20 6.52x10 Unbound - 3.10x10 -2.81x1039  
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'Forced Damped Vibration - Negative' Velocity Control (Sensor)' 
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Figure 5.26 Variation of maximum and steady state amplitude with gain 
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Figure 5.27 Variation of actuator voltage with gain (NVFBC) 
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5.2.3 Forced Damped Vibration with IMSC 

The time domain response of the beam for forced vibration control using 

IMSC with weighting factor (R) as 1.0 is shown in Figure 5.28, while variation of 

applied voltage with time is shown in figure 5.29. The effect of variation of R on the 

values of maximum amplitude and steady state amplitude is included in Section 5.2.5. 

While its effect on damping ratio, amplitude at 1.0 seconds and settling time is 

tabulated ut,Table 5.8. From Table 5.8 it is seen that, voltage decreases with R, but, 

reduces k ntrol effect. The steady state amplitude becomes 31.65 % of that of 

uncontrolled case, with R = 1, but voltage is very high (>2000 V), which is not 

practically feasible. 

Table 5.8 Forced Vibration with IMSC 

R Amplitude (mm) 
Steady state 
Amplitude 

(% of forced 
uncontrolled 
vibrations 

Actuator Voltage 

Max Steady Max Min 

0 3.62220 2.38500 100.00 0 0 
1 0.81281 0.75500 31.65 2207.8 -1977.3 
2 0.99502 0.95420 40.01 1789.0 -2009.2 
3 1.12490 1.08500 45.49 1675.4 -1965.2 
4 1.26170 1.17800 49.39 1589.7 -1881.9 
5 1.36900 1.25600 52.66 1524.2 -1797.2 
6 1.45580 1.31500 55.14 1511.9 -1719.3 
7 1.52790 1.36500 57.23 1508.1 -1649.4 
8 1.58890 1.40800 59.04 1499.5 -1588.0 
9 1.64160 1.44650 60.65 1487.7 -1545.8 
10 1.68750 1.47950 62.03 1473.9 -1506.4 
15 1.85370 1.60750 67.40 1395.2 -1345.0 
20 1.96040 1.69500 71.07 1319.4 -1227.0 
25 2.05310 1.76000 73.79 1252.7 -1136.5 
30 2.15140 1.79980 75.46 1194.9 -1064.3 
35 2.22200 1.84500 77.36 1144.4 -1013.6 
40 2.30030 1.87800 78.74 1100.1 -990.53 
45 2.35860 1.89550 79.48 1060.8 -968.60 
50 2.40950 1.92500 80.71 1025.6 -947.86 
60 2.49430 1,.95300 81.89 965.22 -909.86 
70 2.56270 1.97750 82.91 914.92 -876.06 
80 2.61950 2.00550 84.09 872.17 -845.89 
90 2.66670 2.01200 84.36 835.24 -818.78 
100 2.70920 2.04520 85.72 802.90 -794.27 
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x 10'' 	 Forced Damped Vibration - IMSC (R = 1.0) 
Ii 
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4 ' 

Figure 5.28 Variation of displacement with time (IMSC) (R = 1.0) 

Forced Damped Vibration - IMSC (R = 110) 

P 
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Time (sec) 

Figure 5.29 Variation of voltage with time (IMSC) (R = 1.0) 
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5.2.4 Forced Damped Vibration: MIMSC 

The response of forced vibration control using MIMSC with weighting factor 

(R) value 1.0 is shown in Figures 5.30 and 5.31. The time domain response of the 

beam is shown in Figure 5.30, while variation of applied voltage with time is shown 

in figure 5.31. The effect of variation of R on the values of maximum amplitude and 

steady state amplitude is given in Section 5.2.5. While its effect on damping ratio, 

amplitude at 1.0 seconds and settling time is tabulated in Table 5.9. 

Table 5.9 Forced Vibration with IMSC 

R Amplitude (mm) 
Steady state 
Amplitude 

(% of forced 
uncontrolled 

vibrations 

Voltage 
Modes 

Controlled 

Max Steady Max Min 

0 3.6222 2.3850 100.00 0 0 0 
1 1.1148 1.0620 44.52 3538.0 -3503.5 1,2 
2 1.1676 1.1232 47.09 2069.9 -2658.9 1,2 
3 1.2227 1.1830 49.60 1866.2 -1952.6 1,2 
4 1.3073 1.2965 54.36 1791.0 -1765.7 1,2 
5 1.3984 1.3856 58.09 1731.3 -1695.5 1,2 
6 1.4771 1.4569 61.09 1680.9 -1636.0 1,2 
7 1.5292 1.5185 63.67 1647.8 -1588.4 1 
8 1.6176 1.5675 65.72 1608.9 -1544.0 1 
9 1.6721 1.6215 67.99 1573.9 -1504.6 1 
10 1.7210 1.6550 69.39 1541.9 -1469.4 1 
15 1.9107 1.7780 74.55 1414.4 -1353.1 1 
20 2.0445 1.8586 77.93 1320.4 -1242.4 1 
25 2.1469 1.9160 80.34 1246.2 -1172.3 1 
30 2.2291 1.9560 82.01 1185.2 -1116.2 1 
35 2.2974 1.9856 83.25 1133.6 -1069.7 1 
40 2.3553 2.0125 84.38 1089.3 -1030.1 1 
45 2.4054 2.0298 85.11 1050.4 -995.63 1 
50 2.4493 2.0500 85.95 1016.0 -965.19 1 
60 2.5234. 2.0675 86.69 957.25 -913.47 1 
70 2.5839 2.0956 87.87 908.67 -870.68 1 
80 2.6346 2.1123 88.57 867.51 -834.37 1 
90 2.6778 2.1322 89.40 831.94 -802.93 1 

100 2.7157 2.1505 90.17 800.80 -775.28 1 
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Figure 5.30 Variation of displacement with time (MIMSC) (R = 1.0) 
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Figure 5.31 Variation of voltage with time (MIMSC) (R = 1.0) 
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From Table 5.9 it is seen that, voltage decreases with R, but it reduces control 

effect. The steady state amplitude is 44.52 % of that of uncontrolled case, with R = 1, 

but voltage is very high (> 3000 V), which is not feasible. It seems for same value of 

R, IMSC gives better performance than MIMSC, although MIMSC controls more 

than one mode. First two modes were controlled till R = 6, and after that only first 

mode is controlled. 

5.2.5 Forced Damped Vibration: IMSC Vs MIMSC 
Comparison between IMSC and MIMSC is shown in Table 5.10 and Figures 

5.32 to 5.38. From figures, it is seen that MIMSC gives lesser control effect in case of 

forced vibration, while this is otherwise in free vibration. 
The amplitude at 2.5 seconds, maximum amplitude and steady state amplitude 

have higher values for same weighting factor in forced vibration. The amplitude at 2.5 

seconds decreases with R, but maximum amplitude and steady state amplitude 

increases with R; while voltage drops with R. For IMSC, the voltage ranges from 800-

2200 V, while for MIMSC range is 800-3540 V, so it may be possible, the control 

effort by MIMSC may be divided into more than one mode. 

Forced Damped Vibration - IMSC vs Modified IMSC 
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5.3 VIBRATION CONTROL: AXIAL STIFFNESS VARIATION 

The sweeping 	itn is given to beam at its free end in the form of 

sinusoidal excitation in the form 0.1 sin(cot) , where ry and t both change continuously 

from 0 to 15 seconds at the ramp rate of 10 rad/s2. Natural Frequency without axial 

stiffness variation found 31.856 Hz while with axial stiffness variation 36.260 Hz. 

The main idea behind controlled switching of the piezoelectric patches is to 

switch the natural frequency of the beam during sweeping excitation to avoid the 

resonance phenomenon and the associated large resonant amplitudes. Figure 5.36 

shows the response of the beam during sweeping harmonic excitation when the 

patches are in deactivated state. 
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Figure 5.36 Time domain response of the beam (patches in deactivated state) 

The expected resonance is showing high resonant amplitude of 8.663 mm and 

the resonance is encountered at 10.3 sec during sweeping excitation. The beating 

phenomenon is observed after the resonance is crossed and is expected in such 

excitation case. The sharp resonance peak is observed indicating a lower damping 

value. Similar simulation is carried out when both the patches of the beam (applied in 

collocated fashion) are applied a constant same polarity voltage of —500 Volts. Hence 

when similar sweeping excitation was applied to the beam, the resulting response of 

the beam is shown in Figure 5.37. The peak response in this case has been observed at 

11.64 sec and the amplitude at resonance is 7.5 mm. 
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Figure 5.37 Time domain response of the beam (patches in activated state) 

The delayed resonance is expected as the stiffness of the beam is more in this 

case due to activated state of patches and hence the natural frequency is more 

(36.2Hz), compared to 31.85Hz in case of deactivated state. The peak amplitude j~.1 u 

(7.5mm) observed is slightly less compared to the peak amplitude of 8.66amm_in_case J 

of the deactivated state (Figure 5.36). A gap of 1.34 seconds exists between the time 

at which peak response occurs in case of activated state (11.64sec) and the time at 

which peak response occurs in the case of deactivated state (10.3sec). By suitably 

adjusting the switchover between these two time values, resonance could be avoided. 

In this regard, a simulation is carried out with the patches in the activated state 

initially. This causes the response to start approaching the resonance corresponding to 
time 11.64 seconds. However, when at time V 10 'seconds, the patches are deactivated. 

This cause})the beam to have characteristics corresponding, to deactivated state and 

should encounter resonance at 10.3 seconds. However after the switchover, the beam 

continues to have a changing sweeping excitation frequency and the resonance at 10.3 

sec his not fully. realized for lack of time 'available for the interaction of excitation 

frequency and natural frequency corresponding to the deactivated state. The ensuing 

vibration response is shown in Figure 5.38 superimposed over the response for 

activated and deactivated states. Figure 5.38 shows that when switchover is effected at 

10 sec, the peak response of 5.86 mm is observed and the peak response is observed at 
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time is 10.365. Thus by applying a switchover strategy, of activating and deactivating 

the patches, a drop in the resonant amplitude is seen. With switchover being effected 

at 10 sec, the peak resonance amplitude of 8.663 mm (in case of deactivated state) 

drops to 5.8 6mm, a reduction of 33%. Another simulation is carried out, this time by 

effecting the switchover at roughly the midway between the tp  (activated) i.e.11.64 

sec and tp  (deactivated) i.e.10.3 sec. Thus, switchover in the next simulation is 

effected at 10.6 sec, at which the two response curves corresponding to the activated 

and deactivated states meet. Figure 5.38 shows the response curve for this case, again 

superimposed with the other three cases. In this case, the resonance amplitude is the 

least of all the four cases with peak amplitude value of 3.88 mm observed at 10.77 

sec. Thus when stiffness characteristic of the vibrating beam is changed to shift the 

resonance from 36.2 Hz to 31.86 Hz, the actual resonance is encountered at 10.77 sec 

after the changeover is effected at 10.6 sec. The drop in the peak amplitude observed 

in this case is 55.2%. Thus by suitably activating and deactivating the piezoelectric 

patches, one can get a large drop (of the order of 55.2% in this case) in the peak 

resonant amplitude. Further simulation could be attempted to optimize the time at 

which the switchover could be effected to get best reduction in the amplitude. 

Response of switching from 
activated to deactivated 
state at 10.6sec 
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Figure 5.38 Comparison of time domain response of the beam 

(Patches in activated state, deactivated state and controlled switching cases). 

83 



CHAPTER 6 

CONCLUSION AND SCOPE FOR FUTURE WORK 

The formation of the finite element model, able to handle sandwich beams and 

the active vibration control of this beam using piezoelectric patches has been carried 

out. Transient analysis is done by Newmark Method of direct integration techniques. 

Among various control techniques available, Negative Velocity Feedback Control, 

Independent Modal Space Control and Modified Independent Modal Space Control 

were used to control both, free and forced vibrations. Attempt to control vibration 

(during sweeping excitation) by varying axial stiffness of the beam, with the help of 
piezoelectric patches excitation has been made. 

The following points observed while working on Active Vibration Control of 

Piezo-Beam using FEM and from the results and discussion presented in previous 
chapter. 

1. The FEM gives almost similar results with the analytical formulae, in case of 

natural frequency determination, and the error is well below 1 %. The causes of 
error can be, 

• Matlab does calculation with more than 16 digits after decimal point and the 
values of constant `rl' (equation 16) available are in 4 digits after decimal 
point. 

• The analytical formula available is for continuous beam while FEM iiscretises 
beam into small elements. 

2. The difference between analytical values and result by FEM decreases with 

increase in number of elements, but it increases iteration time by a little bit. So 

compromise is needed in both factors, such that error should be within defined 
limit (say < 1 %). 

3. Result of free vibrations with negative velocity feedback control by first approach 

as well as second approach, shows results of similar nature, except change in gain 

value for the same amount of control. The difference in these two cases for control 

effort may be due to actual modelling of sensor and actuator in Newmark method, 

as Piezoelectric Stress Constant (g31) and Piezoelectric Strain Constant (d31) has 

different values. The damping almost linearly varies with gain value, but after 



some gain value, the control forces dominate the effective forces in the beam, so 

response get unstable, due to increased control forces. 

4. When IMSC applied to control first mode in case of free vibration, it is found that 

the maximum voltage requirement is very high as compared to that of negative 

velocity FBC (second approach), but control effect is also more in case of IMSC 

than NVFBC. The maximum amount of voltage is 518 V and settling time is 

2.985 seconds (Table 5.2) for NVFBC, while 1100 V required by IMSC for 0.39 

seconds settling time (Table 5.3). When voltage range required to apply to 

actuator is —453 to +343 V, the settling time is 0.49 seconds. Hence IMSC 

performs better than NVFBC. 

5. Results of free vibration with IMSC show that, voltage decreases as the value of R 

(weighting factor) increased, increasing the amplitude at 1.0. second and settling 

time. Thus control effort reduces with increasing R, and so R balances the 

reduction of the vibrational energy with respect to the control voltage required 

6. In IMSC only first mode is controlled (in this work), while in MIMSC it is found 

that, for lower values of R the modes get controlled are first, second and last 

(24th), while as the value of R increased to 7, the modes that controlled are first 

and second, and for very high value of R (> 10) only first mode get controlled. As 

the R increased, voltage decreases i.e. control effort reduced. But it is seen that, 

for same value of R, damping is more in case of MIMSC than IMSC. The settling 

time and voltage requirement is less for the same value of R in case of MIMSC 

(Refer Table 5.5 and Figures 5.17 to 5.20). It has been shown that time-sharing 

of a small number of actuators to control large number of modes can be achieved 

by using MIMSC, here one actuator control 3 modes. This control system can be 

highly effective in large flexible structure, where it is not possible to apply more 

no of actuators due to 'restrictions in weight and complexity. In this system, the 

peak actuator and sensor voltage is crossing some high limits, so control system 

should be modified so that the, care should be taken, the peak actuator voltage 

should not exceed the breakdown voltage of the piezoelectric patch, at which, it 

will loose its piezoelectric properties. 

7. Results of free vibration with and without control show that, better performance is 

obtained by using MIMSC compared to IMSC, and Negative Velocity FBC. 

8. The criteria for measurement of amount of control achieved is not settling time or 

damping in case of forced vibrations. The criteria are the steady state amplitude. 



The result of forced vibration with NVFBC (first approach) show that with gain 

value of 0.175, the steady state amplitude got is 94.76 % of steady state amplitude 

of forced uncontrolled vibrations (Table 5.6). While by second approach, the 

minimum amplitude is 96.85 % that of uncontrolled vibrations and actuator 

voltage is ± 200 V, which is within range (Table 5.7). So, first approach 

dominates the results of second. 

In case of forced vibrations with IMSC, the results show that, very high amount of 

voltage (± 2000 V) is required, which is not possible in practice, for reduction of 

steady state amplitude to 40 % of that of uncontrolled case (Table 5.8). Even for R 

=100, voltage requirement is ± 800 V, and the steady state amplitude is 85.72 % 

of uncontrolled case. But the linear trend shows that IMSC - performs better. than 

NVFBC. 

D. In case of forced vibrations, MIMSC controls first two modes till R becomes 7, 

and after that it controls only first mode. For same value of R, voltage requirement 

is more in case of NIIMSC till R =20, after that it reduces for MIMSC (Table 

5.10). But steady state amplitude is more for corresponding values in NIIMSC 

than IMSC. So for forced vibrations, the sequence of performance can be IMSC, 

NIIMSC and then NVFBC. 

1. The work with Vibration Control during sweeping excitation using controlled 

axial stiffness variation has been attempted by developing a program to carry out 

controlled actuation/deactuation of the patch. As stated earlier, in this case ' same 

polarity voltage is applied to patches and both patches work as actuators. The 

axial stiffness matrix is added to the element stiffness matrix, corresponding to the 

patched element. The stretching effect of the actuated patch cause increase in the 

stiffness of the element in the lateral direction. This increase leads to the increase 

in the natural frequency. The change in the natural frequency of the beam can be 

utilized in avoiding the large resonant amplitudes by bypassing the resonance 

phenomenon. The drop in peak amplitude is found to be 55.2%. Further 

simulation could be attempted to optimize the time at which the switchover could 

be effected to get best reduction in the amplitude. This method can be useful when 

the frequency of structure is varying from zero value to some definite value, or 

Ramp input, e.g. Helicopter Blades while starting the Helicopter or during the 

speed changes. 



6.1 SCOPE FOR FUTURE WORK 

The presented work may be extended in any of the following directions 
1. Effect of temperature on electrical and mechanical properties of patches as well as 

beam is assumed to be negligible. The temperature variation could affect the 

overall performance, which is not considered in this analysis. 
2. Bonding is assumed to be thin enough, not to alter the dynamic characteristics of 

the beam, significantly. But effect of bonding on the overall dynamic 
characteristics can be done. 

3. Bonding between patches and beam is assumed to be perfect. Validation of results 

largely depends on this assumption of perfect bond. The effect of debonding on 
the dynamic characteristics of the structure can be done. 

4. The combination of axial stiffness variation and active vibration control can give. 

better results, and this method can be applied to any external force, and not only to 
Ramp input. 

5. In IMSC, more than one modes can be controlled by using one actuator, this can 

be simulated, as MIIMSC controls first two and last mode (in this work), so if one 

actuator is used to control first two modes, then results may be competitive to 
MIMSC. 

6. Viscoelastic material can be used to achieve passive damping along with 

piezoelectric patches to take advantages of both — AVC and PVC. 
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APPENDIX A 

FLOWCHARTS 

Flowchart 1: Free Damped Vibration Response. 

START 

' INPUT 
N,E, ,, 2 ' At 
Tterations_ T. t_ h 

Formation of Me, Ke  

Formation of Mg, Kg  

Determination of rw,r  

Formation of Effective 
Stiffness Matrix 

External Force = 0 

For n = 1: Iterations 
Apply Newmark Method 

OUTPUT 
Extract Values of 

disp, velo, accl, 
effective force,at tip 

Plot Graphs 

END 
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Flowchart 2: Free Damped Vibration with Negative Velocity FBC (Simple) 

START 

INPUT 
N, E, 1, ~z At , L, 
t.b. Gain. Iterations. 

Formation of Me, Ke 

Formation of Mg, Kg 

I Determination of tir„ 

Formation of Effective 
Stiffness Matrix 

External Force = 0 

For n = 1: Iterations 
Apply Newmark Method 
Force Control = -Gain*velo 

OUTPUT 
Extract Values of 

disp, velo, accl, 
effective force, 

I _ Plot Graphs 

END 
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Flowchart 3: Free Damped Vibration with Negative Velocity FBC 
(Sensor & Actuator) 

START 

INPUT 
N, E, S1, ~2 , At, d3, g31 
Iterations_ Gain_ T._h.t. 

Formation of Me, Ke 

I Formation of Mg, Kg 

I Determination of vj,~ 	I 

Formation of Effective 
Stiffness Matrix 

External Force = 0 

For n = 1: Iterations 
Apply Newmark Method 
Voltage Sensor 
Voltage Actuator 
Force Control 

/ OUTPUT 
Extract Values of 

disp, velo, accl, effective force, 
Voltage Sensor, Voltage Actuator 
Control Force at tip. 

Plot Graphs 

END 



Flowchart 4: Free Damped Vibration with IMSC 

START 

' INPUT 
N, E, X1, '2 ,  At, d31, 
Iterations, R. L. b,t 

Formation of Me, Ke  

Formation of Mg, Kg  

I Determination of 

Formation of Effective 
Stiffness Matrix 

External Force = 0 

Determine 
Mass Normalised Vector 

For n = 1: Iterations 
Apply Newmark Method 
Modal Disp, Modal Velo 
Modal Force, Voltage, 
Control Force 

OUTPUT 
Extract Values of 

disp, velo, accl; effective 
force, Voltage at tip. / 

Plot Graphs 
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Flowchart 5: Free Damped Vibration with MIMSC 

START 

11  INPUT 
N, E, 1' S2, At,  d31, 
Iterations. R. L. b.t 

Formation of Me, Ke  

Formation of Mg, Kg  

I Determination of za„ 

Formation of Effective 
Stiffness Matrix 

I 	External Force = 0 

Determine 
Mass Normalised Vector 

For n = 1: Iterations 
Apply Newmark Method 
Modal Disp, Modal Velo 
Modal Force, Voltage, 
Control Force, Modal Energy 

OUTPUT 
Extract Values of 

disp, velo, accl, effective 
force, Voltage at tip. / 

Plot Graphs 

END 

96 



Flowchart 6: Forced Damped Vibration Response 

START 

' INPUT 
N, E, 	. z • At, 
Iterations_ T._t_h 

Formation of Me, Ke 

Formation of Mg, Kg 

I Determination of w„ 	~ 

Formation of Effective 
Stiffness Matrix 

External Force = fo sin (cot) 

For n = 1: Iterations 
Apply Newmark Method 

OUTPUT 
Extract Values of 

disp, velo, accl, force 
effective force, at tip/ 

Plot Graphs 
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Flowchart 7: Forced Damped Vibration with Negative Velocity FBC (Simple) 

START 

' INPUT 
N, E, ~1, ~2 , At, t, b 
Iterations, Gain, L , 

Formation of M, Ke 

Formation of Mg, Kg 

I Determination of w„ 

Formation of Effective 
Stiffness Matrix 

External Force = fo sin (cot) 

For n = 1: Iterations 
Apply Newrnark Method 
Force Control = -Gain*velo 

OUTPUT 
Extract Values of 

disp, velo, accl, 
effective force, 

Plot Graphs 

END 



Flowchart 8: Forced Damped Vibration with Negative Velocity FBC 
(Sensor & Actuator) 

START 

INPUT 
N, E, ~, ~2 ' At, d31, 93i 
TteratinnsX ain_ i,_t_ h 

Formation of Me, Ke 

Formation of Mg, Kg 

I Determination of tir, 

Formation of Effective 
Stiffness Matrix 

External Force = fa sin (wt) 

For n = 1: Iterations 
Apply Newmark Method 
Voltage Sensor 
Voltage Actuator 
Force Control 

/ OUTPUT 
Extract Values of 

disp, velo, accl, effective force, 
Voltage Sensor, Voltage Actuator 
Control Force at tip. 

Plot Graphs 

END 



Flowchart 9: Forced Damped Vibration with IMSC 

START - - 

INPUT 
N,  E, , z At, d31, 
Iterations, R. L. b, t 

Formation of Mej  Ke  

Formation of Mg, Kg  

Determination of w 

Formation of Effective 
Stiffness Matrix 

External Force = fo  sin (cot) 

Determine 
Mass Normalised Vector 

For n = 1: Iterations 
Apply Newmark Method 
Modal Disp, Modal Velo 
Modal Force, Voltage, 
Control Force 

OUTPUT 
Extract Values of 

disp, velo, accl, effective 
force, Voltage at tip. 

Plot Graphs 

END 
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Flowchart 10: Forced Damped Vibration with MIMSC 

START 

' INPUT 
N, E, 1, 2 , At, d31, 
Iterations, R, L. b. t 

Formation of M~, Ke 

Formation of Mg, -Kg 	I 

I Determination of w1 

Formation of Effective 
Stiffness Matrix 

External Force = fo sin (cot) 	I 

Determine 
Mass Normalised Vector 

For n = 1: Iterations 
Apply Newmark Method 
Modal Disp, Modal Velo 
Modal Force, Voltage, 
Control Force, Modal Energy 

OUTPUT 
Extract Values of 

disp, velo, acct, effective 
force, Voltage at tip. ~ 

Plot Graphs 

END 
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