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S Y N 0 P S  S 

The analysis of the response of structures 

supported on flexible pile foundations, subjected to 

dynamic loads, involves the problem of interaction 

between soil, pile and superstructure systems. Vari ous 

authors have proposed methods for the analysis of such 

systems. These methods, involve tedious mathematical 

operations and requires elaborate field testing arrange-

ments, and are therefore not suited for the day to-day 

design problems. 

In the work reported here-in, an attempt has 

been made to evolve a simple method to analyse the 

response of such systems under dynamic lateral loads. 

The complex system has been assumed to be represented 

by an equivalent two degree freedom system. The soil 

and pile have been assumed to be represented by a single 

degree freedom system, which is coupled to an another 

single degree freedom system, representing the super-

s tructure. The effect of various parameters, that is, 

natural frequency of foundation,, natural frequency of 

Super-structure and the mass ratio between the super-

structure and foundation systems on the response of 

system,, when exited by earthquake motion has been 
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theoretically analysed. 

Experimental studies have also been conducted 

by mounting a single degree mass spring system, on an 

aluminium pile head, enbedded in sand. The response 

of the system hasbeen actually observed by giving it 

Sinusoidally varying vibrations. The above model has been 

theoretically analysed4  by experimentally evaluating 

the various constants for it. The results obtained 

by e)p eriment al observations and those obtained by 

theoretical analysis compares well. 

It is conclude that, 

A structure supported on flexible piles can be 

reasonably assumed as an equivalent two degree freedom 

systen i.e. a single degree freedom system-  representing 

the super-stzucture coupled with another single degree 

freedom system representing the foundation and soil. 

It is observed that, there is a  particular range 

of Sub-structure natural frequencies at which, the 

forces developed in the super.stzu cture are 1 arg , for 

a particular natural period of superstructure. 
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N O T A T I O N S 

The notations are defined wherever they first 

appear. Here that' are listed in alphabetical order 

for convenience of reference. 

	

A 	= An Emperical Constant in Spectra Equation. 

(A) = Mass Matrixe 

A 	= Non Dimensional Deflection Coefficient. 

(B) = Damping Matrix 

	

Cc) 	= Stiffness Matrix 

	

C f 	= Damping in Soil- foundation Syst en. 

	

Gs 	= Dapping in Super-structure Systen. 

	

E 	Modulus of Elasticity. 

Natural Frequency of Soil-foundation 
Sys ten. 

	

Fs 	= Natural Frequency of Super-structure 
Syst Cn . 

	

g 	= Acceleration die to Gravity. 

	

Z 	= Mcment of Inertia. 

K( x) 	= Subgrade Modulus at Depth x. 

	

Kf 	= Stiffness of Soil-foundation System for 
Lateral Loads, 

Ks 	= Stiffness of Super-structure System for 
Lateral Loads. 
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6 CHAP TER-  I 

INTRODUCTION 

Structures supported on pile foundations are 

often subjected to dynamic lateral loads. Waterfront 

structures can be cited as a good example of such cases 

as they experience the impact, mooring forces of ships 

and wave forces. Earthquake -excited ground motions also 

cause dynamic lateral forces in structures. 

The procedure most resorted to, in the earthquake 

resistant design of such structures, is the so .called 

equivalent static method 'in which a horizontal force equal 

to 	c( hW is taken to act laterally on the structure, ah  
being the horizontal seismic coefficient and 	W the total 

weight of the structure including the surcharge load. In 

such cases, the pile groups are designed for the combined 

lateral resistive force equal to the static horizontal 

force transferred from the super structure to the top 

of foundation. In the analysis, the structure and 

foundations are considered separately and the influence 

of one over the other is ±gnored, -  

Though the design procedure discussed above is 

simple and handy, so far as practical design probl ors 

are concerned, the theory is usually based on a crude 

assumption that the soil, the pile and the super structure 

remain uncoupled during vibrations, and independent of 

5 



each other's influence, In fact such a problem 

involves interaction between the three elements of the 

system as mentioned above, 

The field data show a  differecnt response as com-

pared to structures supported on rigid bases for the same 

magnitude and nature of applied dynamic load. Murphy( 4)  

has discussed the inter-relationship of the earthquake 

ground-structure systems. The effect of interaction 

between the foundation and structure is primarily to 

modify the natural periods of vibrations of s txu ctures(3' 5)  . 

p-ensien(10)  has proposed a rigorous and systemais 

tic procedure for the analysis of dynamically coupled 

pile-structure systems. A rational analytical procecUre 

has been proposed by assuming the pile-structure as a 

continuous system. The interaction between the pile and 

soil has been taken into account by superimposing the 

pile displacements, which in turn are obtained by a 

separate analysis of the medium, Though the procedure 

suggested. by Penzien is systematic and exact, it involves 

tedious mathematical operations and requires elaborate 

field testing arrangements and therefore is not suited 
0 

for use in design offices. 

In the present studies an attempt has been made 

to analyse the response of coupled structure pile systems, 

subjected to lateral dynamic loads. As a result of the 

7 



experimental studies, it has been possible to evolve 

a  simplified analysis, suitable for use in field problems. 

In the theoretical studies reported here the 

structure foundation system has been assumed to be 

represented by a system having two degrees of freedom. 

Thus a single degree freedom system representinge 

superstructure is coupled with another single degree 

freedom system representing soil medium and foundation. 

Experimental studies have been conducted by mounting a  

single degree mass spring system, on a 26" long aluminium 

pile, embedded in the sand. The actual response of the 

mounted mass has been observed by exciting the system. 

The response of the model structure supported on 

the pile embedded in sand has been obtained theoretically 

by assuming a two degree freedom to represent the system. 

The effective mass, spring and damping constant for the 

equivalent two degree freedom system, have been found 

P 	_Ut '1L1 ̀ t, 	Tho nrmY,ii F 	 ';nnc ., n-F +h ., m  nr1,%1 ..n.i 
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REVIEWOF THEORETICAL ND )4 RIMENTAL V 

2,1 	A brief review of the theoretical and 

experimental work on structures supported on pile or 

flexible foundations with a special reference to their 

dynamic behaviour is discussed in this chapter, 

2.2 Dy.n is Coffina Between e JoundajQas 
AQd S 	tjuu-qt _re v„s•tems 

The superstructure and the foundation ask 

f omi two in to geratnd parts of a complete structural 

system. The response of the superstructure to the applied 

loads, not only depends on its structural properti es, but 

the foundation also plays an important role, in the 

structural behaviour. 

The problem of such coupled systems was 

analytically studied by Fleming J, F, and Screwalla F. N0 

by considering a typical multistoreyed structure supported 

on a flexible foundation. The effect of the flexible 

foundations on the structural response was studied by 

analysing the system, assumin g the foundation to have 

different flexibllities. The flexibility of the foundation 

was found to have a significant effect on the inter- 

story displacements of the superstructures 

The model which was considered in the analysis 

is shov~n in figure 2.1. Figure 2.1( a) shows a two storeyed 
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•building frame resting on the ground. 	The mass 

of the foundation is assumed to be lumped at the 

ground floor level. The flexibility of the foundation 

was incorporated in the model, by assuming the super-

structure to be connected to the rock, by a massless 

flexible member, The rotational stiffness of the 

foundation is shown by a torsional spring at the ground 

floor level. 

The three humped weights discussed above 

were assumed to be 40,000 lbs e6ch. The flexible 

member was assumed to have the linearly elastic force-

displacement relationship for the lateral loads. The 

system was analysed for the different flexibilities of the 

flexible member as 1,000, 100,000, 1000,000 p. s. i. and 

for a perfectly rigid foundation condition. The results 

of the analysis with different foundation flexibilities 

are shown in figure 2,1(b), (c), (d). 

It is observed from the above mentioned 

figures that when the.foundation is sufficiently flexible 

to cause more or less a rigid body movement of the 

whole frame, the interstory deformations in frame are 

small, thus causing low stresses in the columns. Relative 

displacements of masses are small even though the 

absolute displacements are large. With the stiffening 

of foundation, the masses are subjected to higher inter-

storey displacements. It is interesting to note that 

\U 



the displacement of the masses are of the same order 

in the case of a rigid base and for the stiffness of 

foundation as 100,000 p. s. i• Therefore for this parti-

cular structure, the foundation stiffness of 100,000 p.s.i. 

represents a case of rigid base. 

From the above results it can be concluded 

that the flexibility of the foundation relative to 

superstructure in an implrtant factor to be considered 

in the analysis. any rigorous method adopted to analyse 

the structural. resposse, can lead to erroneous conclu-

sions if the interaction between the foundation and 

super structure is ignored. 

It is therefore important that the behaviour 

of the foundation to the dymamic loads must also be 

considered in the analysis of structural systems. A 

brief review of the behaviour of piles to the dynamic 

as well as to static lateral loads is discussed in 2,3. 

2.3  gehavi ou,g o .,p 1esU t1 r,.L4er1J4  orIs  

2,31 	Beiviour of_p, .g under ac 
L t.ezaA n d 

The lateral load on pile tends to deflect 

it in its direction of application. The response of the 

pile to lateral load depends on the relative stiffness 

of pile with respect to ground and the embedded length 

in the supporting media. Depending on the structural 

11 



behaviour of the pile, it can be classified in two,) 

groups, as described below. 

(i) 	Iii aid Pilgs 

The pile, when embedded to a small depth, 

behaves 	as a rigid pole. 	In such a case, the 

bending strains -do not develope and only the shear 

strains are predominant. A pile acting as a pole 

gffers a weaker resistance to the lateral loads, 

(ii) Flexible Piles 

As the embedded length increases, the 

bottom tip of the pile starts to develop restrain 

against the lateral displacement and rotations. The 

pile starts behaving like a cantilever (or beam) on 

elastic foundation, by resisting the strain by its 

flexural stiffness. With the increase, of pile length in 

soil, thrn fixity at the tip of pile increases and a 

stage is reached %hen further embedment of pile does 

not cause any change in the pile behaviour, This 

particul ar embeded length of the pile is termed as the 

characteristics length. 

Figure 2.2( a) shows the deflected shape 

and soil reaction in a laterally loaded semi flexible pile. 

12 
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Q d D ef. og_n 	~l.1 onhp_iQL. a 
L :araIlyJ Qadadj .e 

As explained above, the pile starts 

deflecting, when a lateral load is applied on it, 

compressing the soil, which comes in contact wL th i t0 

A typical load-deformation ourv.e for a point along the 

embedded length of the pile, is shown in figure 2.2(b) 

It is observed in general, that upto the limit of load 

less than about half of the ultimate load, the deflection 

remain almost in direct proportion to tho load acting at 

the particular location. The slope of this line is 

termed as "Modulus of subgrade reaction" with the 

further increase in the load, the oarve follows a non-

linear relationship. In this range'of non-linearity, 

the soil modulus is defined by the Secant modulus of 

the curve. 

Soil modulus is effected by the type of the 

soil and tl size of the loaded area, and the depth of 

the location considered. 

Terz aghi(16) found that the subgrade 

modulus remains almost oonstant in the over consolidated 

Clays. For sands this value may be taken to be linearly 

varying with the depth. Figure 2p 3 (a) , (b) , and (c) 

shows different cases of the variation of subgrade 

modulus with the dGpth of pile. In Figure 2,3( d) the 
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generally assumed and probable variation of subgrade 

modulus with depth is shown for the stiff clays. 

Figure (e) shows for the s ands, 

A general expression for the subgrade modulus 

at depth 	x is expressdd as 	 I 

K(x)=K(' )n 
s 

where K is the maximum value of K at the bottom 

tip of the pile. Ls is the embedded length of the pile 

n is an emperical coefficient. 

For stiff clays n may be assumed be zero 

hence the expression becomes as 

K( x) =K 

And for the sands n may be assumed to be unity, hence 
the expression may be taken as 

K( x) = K/L s x 

or 	K( x) = `r}Hx 

where 1 H is a constant and t erne d as 

"coefficient of modulus of subgrade reaction". 

Significant investigation 	for the laterally 

loaded piles under static loads, for subgrade modulus 

varying linearly with depth were made by Reese and 
Matl ock(l~) . They ignored the affect of vertical loads 

0 
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acting on the pile. A brief review of their work is 

given below; 

It was observed that the behaviour of the 

laterally loaded pile (under static loads) primarily 

depends on tI type of soil and its prop ernes, vari ati on 

of subgrade modulus with the depth, properties of .the 

pile, forces acting at the pile head and end conditions 

of the pile. 

Taking into account the above factors, a 

theory was developed for the computations of the 

deflections of a laterally loaded flexible pile,, 

As described above the behaviour of the 

pile depends on the relative stiffness of the pile to 

that of soil, a relative stiffness factor T 	was 

expressed as 

T = 5MI 	(For K linearly varying 
with depth) 

Further a nondi emensional factor (z) 

was defined as 

Z = LIT (for K linearly varying with 
depth) 

where 	Et 	is the flexural stiffness of the pile 

L is thedepth of the point along the 
. embedded length of the pile. 

1J 



It was suggested that for a flexible pile embedded 

in sand the minimum value of max  or (, Ls /T) Max  

where Ls  be the embedded length of the pile) should be 

greater than 5. 

i theory was developed to compute the 

deflections of laterally loaded pile (static loads) , 

by solving the flexural differential equation in terns 

of nondienensional parameters. This has been explained 

in greater detail in chapter VI, 

Very little literature is available on the 

experimental work on dynamically loaded prototype 

piles, probably because of cost considerations. Experi--

ments were perforned by Gaul 11)  on the dynamically 

loaded model of piles. The work was done on a di.men-

sionally scaled model of a vertical pile, embedded in 

— Bentonite clay. 

Gaul rep ort ed that 

(1) pile vibrates in a foam of tending wave, which is 

in phase wath the oscillating load. Velocity of the 

pile, and hence the damping capacity of soil was negli-

gi bl e. 

16 



(2) At relatively low frequency of load oscillation, 

no dynamic load factor is required to produce the same 

maximum bending mcment. 

( 3) Soil modulus is constant for Bentonite clay under 

dynamic loads. 

( 4) Location of the point of maximum bending moment is 

independent of the magnitude of lateral load, unless the 

pile displact nents are enough to stress the soil beyond 

elastic range. 

( 5) Over burden reduces bending mcanent, but the shape 

and the location of maximum bending moment remains the 

s ame. 

The above study was perfoemed on only one 

type of the clay (Bentonite) and the dynamic load was 

applied at only one frequency (1 cps), therefore no 

general conclusion can be drawn from this study. 

Further work  in this field was done by 

Hayashi and Miyajima(13). They conducted tests on 

steel H piles embedded vertically in sand and sub-

jected to lateral, verticall and static loads. Dimon. 

si ons of the piles used were 300x3O5xl5 mm lengths 

14 meters and 16 meters. Four kinds of artificially 

conditioned subgrade with different relative density 

1? 
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were prepared. Methods of loading were (i) Free 

vibration of pil'e caused by Sudden release of initial 

tension by cutting the wire rope (ii) Forced vibration 

by vibration generator installed at the pile head. 	 t  

From the experiments is was concluded that 

(1) Natural frequencies and the. resonance curve of 

single vertical pile could be calculated by conceiving 

a  simplified system of vibration and the results of 

calculations agreed with those obtained by the free 

and forced vibration tests. 

(ii) Damping co-efficient measured in free vibration 

tests depended on the relative density of the subgrade 

and length of the free part of pile. 

Aggarwal, S.L. (14)  conducted static and 

dynamic tests for a laterally loaded model piles. The 

piles were of aluminium pipe having 15 mm outer 

di ameter and 10 mm inner diameter, The soil medium 

was Sand.  Study revealed that; 

(i) The pile vibrates in the foam of 

standing wave probably in phase with the oscillating load, 

(ii) At lower pile displacements, increase 

in frequency results increase of load. As the pile is 

vibrated at different displacements, the soil vibrates 



in greater quantity, compacting the soil completely. 

After complete compaction of soil, the frequency does 

not have any effect on load displacement curves. 

(iii) The zone of influence of dynamically 

loaded pile extends to a considerable distance than 

that of a statically loaded pile. 

2.4 

A systematic and xi gores analysis of a 

coupled structure, subjected to dynamic lateral loads, 

was presented by Penzien(10)It  TID pile—structure 

system is assumed as continuous system. The interaction 

between the pile and soil has been taken into account 

by superimposing the pile displacements, which in turn 

are obtained by a separate analysis of the medium, 

exci tLng it by forced ground motion. 

The proposed analysis takes into account 

all the relevent soil properties, i.e. creep, damping 

and remoulding of soil due to the vibrations. 

One of the important findings of Penzien 

is that the effect of interaction between the soil 

and the pile is very small. There is negligible 

effect in the response of the system, by considering 

the soil mass participating in the vibrations. This 

19 



is mainly because of the greater stiffness of the 

pile material as compared to that of the surrounding 

media. 

Though the procedure suggested by Penzien 

is systematic and exact, it involves tedious mathoma-

tical operations and requires elaborate field testing 

arran gemen ts. 

20 
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CHAPTER III 

THEORETICAL MA.LYSIS 

3,1  pprobo  the  P roblee 

The exact analysis of a multistoreyed 

building resting on piles under dynamic load is a 

complicated problem. In practice the static design 

of multistoreyed buildings is carried by assuming the 

base to be rigidly fixed at the pile cap level,. vhile 

under static lateral loads, there is some displacement 

at pile cap level and is not taken  in account, since 

it complicates the problem to a great extents The 

dynamic load imposed on such system further complicates 

the analysis and the exact solution for such cases 

are not yet available. 

Such a system can be assumed to be divided 

in two components, one the superstiucture and other 

the foundation systen. Much of the work is available 

as far as the superstructure portion is concerned. The 

superstructure based on rigid foundations offers more 

or less well defined ph}rsical properties such as 

stiffness and damping and thus enables exact and 

rigorous solutions for its analysis. Hosever, the 

problem is not so simple in case of pile foundations. 

24 



The behaviour of pile under dynamic lateral loads is 

a complicated problem. A vertical pile under lateral 

loads- behaves as a boam on elastic foundations ( offered 

by assumed elastic foundation media supporting the 

pile). When subjected to dynamic loads, some part of 

the soil also becomes active in vibration with pile and 

thus changing the net effective mass and stiffness of 

the foundation system. Thus in true sense such a  

foundation system will be a problem of infinite degrees 

of freedom and shall involve the complex phenominon of 

interaction between the soil and pile. 

In the present studies an attempt has been 

made to analyse the problem in a simplified manner by 

assuming th whole system to be represented by a two 

degrees of freedom system. The superstructure has 

been assumed to be represented by a single degree 

freedom system, mounted on another single degree system 

representing the foundation of the structure. The 

problem of infinite degrees of freedom has been thus 

reduced to a  problem of two degrees of freedom system. 

The effect of different parameters on the 

interstorey shears has been studied. The parameters 

which effect the response, have been widely varied in 

normal range of such prototype systems. The different 

parameters studied are as below. 
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(i) Natural period of superstructure (when it is 

supported on rigid foundations) . 

(ii)Natural period of substructures system. (This is 

assumed to include foundation and soil system both). 

(iii)Mass ratio of superstructure to foundation. 

3.2 Po-  meal ati on of the P 	em 

An example of a multistoreyed building 

resting cn pile foundation is 	shown in figure 3.l(a). 

A multistoreyed system of any number of degrees of 

freedom is shown to be resting on pile cap which itself 

is supported on a system of group @f piles. 	For the 

purpose of present studies this generalized form of 

complex structure (having infinite degrees of freedom 

and complex phenominon of coupling between different 

elemtns of the system) 	has been assumed to be repre- 

s ented by a simple system of two degrees of freedom. 

This assueed idealisation is shown in figure 3,1(b). 

The top mass-spring system is assumed to be representing 

the superstructure portion (above pile cap level), 	while the 

bottom oneis representing the foundation - soil system. 

The different parameters shown in the figure are as 

explained below 

ms  -Y is the effective mass of superstructure 



m f  - is the effective mass of the 

f oundati on-s oil system. 

Ks  - is the effective spring constant of 

superstructure for lateral movenents 

Kf  - is the effectivd spring constant of 

foundation-soil system for lateral 

movements. 

xs  and xf  are the absolute dynamic displacements of 

superstructure and foundation masses respectively, 

produced by superimposed ground displacement xg  at the 

particular instant of time. 

In figure 3.1( c) , the same superstructure 

system is shown to be idealised by a single degree 

mass-spring system, resting on a rigid- non flexible 

base. 

In order to study the effect of various 

parameters on the interstoreyed shears, a term Response 

Factor (0) has been defined as in equation 3.1. 

Response factor P 	= Z/Zs  ...(3.1) 

Where 	Z represents the root mean square 

values of maximum interstorey modal displacements for 

the mass ms  in fi gu•z 3.1( b) and Zs  the maximum 

interstorey model displacEment of mass ms  in figure 3.1(c). 
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The various parameters in the problem 

have been varied and thus their effect on the response 

factor 0 has been studied. The parameters are varied 

in ranges as explained below; 

(1) Natural frequency of soil-foundation 

system (when considered alone) is 

yarned between 	cps, and 12 cps.• 

(ii) Natural frequency of superstructure 

systen alone (when considered to be 

fixed with rigid foundation) is 

varied between 2 cps, and 10 cps. 

( iii) The ratio of effective masses of 

superstructures to substructure 

(defined as cC = ms/m f) is varied 

between 0.8 to 3.2. 

The response factor 0 would depend on the 

nature of ground motion applied to the system. The 

velocity spectra (suggested by Housner 3) has been 

assumed to indirectly represent the ground motion. The 

advantage of this spectral curve is that  it can be 

represented by a  simplified expovenfLal function of time 

period T in the follong manner, 

Sv  = 	(i-e-2T)  

Where Sv  is the average spectral velocity 
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of the system having time period T. A is the multi. 

plying factor which takes into account the damping .  effect. 

3.3 Anp1of the ModeL  

The systems shove in figure 3,1(a) and (b) 

are assumed to be excited by the ground motion as 

explained earlier. System shown in figure 3.1(a) 	has 

two degrees of freedom for -motion and therefore Shall 

have two modes of vibrations. For the computations of 

the maximum interstorey shears (or displacements) for 

this system, the meth-)d of modal analysis has been 

applied and thus the displacements in two modes have 

been superimposed on each other. For the system shown 

in figure 3.1(c) , which is a  single, degree freedom 

system, the maximum interstarey shear (or displacement) 

has been obtained directly from the spectral displacement 

equation, 

The complete analysis for the two systems 

and thus the method of computation of response factor P 

is explained below, 

For a two degree freedom system as shown 

in figure 3.l( a) are written as follov►s 

mf  xf+Kf  xf  + Ks(xf -xs) = 0 	... (a) 

ms  •xf  + Ks  (xs-xf ) = 0 	... (b) 
o ,. (3.3) 
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From the above free vibration equations, the 

modal frequencies are derived by obtaining the non-

trival solution of equation 3, 3, which is given by 

equation 3.4. 

W4 	f K + Ks + s i wa + KS K = 0  
mf 	ms . 	ms mf 

The equation 3.4 can be expressed as 

w4 - (F f a + Fs  2 (1+d)) w2 - F f 2 Fs 2 = 0 	... (3e 6) 

K 
where F. 2 = m 

f 

K 
and F 2 

=m s 

(F f denotes the natural frequency of foun)ation systan 

when superstructure is considered to be removed from 

it and Fs is the natural frequency of superstructure 

when it is considered to be founded on the perfectly 

rigid base) also 	denotes the ratio of effective 

mass of superstructures to that of foundation, 

Cc 	ms/mf 

The frequencies in the two different modes 

are given by the square roots of non zero solutions of 

equation (3.6), as expressed below 

(F f a +F~ 2 (1+c)) + 	f~~l+ 	4F 
w2= 

	F Ĉ'~ 
2 

o e s ( 17) 
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From the above equation nornalised modal 

displacements for the masses ms and mf are computed 

by substituting this (eq.3.7) in equation 3. 8. . 

(D(I 	_ (D( 2) 	= 1.0 	 ... . a) s 	s 

41) )Fs2  f +Fs 

2 	Fla ~'£) ` F a s + F a_ w
2 

2 	 ..% c) f 	s  
... (3.8) 

Relative modal displacements for the two masses 

in different mode of vibrations are obtained by su bsti- 

tuting equations 3.8 in equation. 3.9, 	given below 

s 
I-- m . (Dc r) 

. i= f `..~.... 	r) 	... 4 r) ` (r) ,.. s 	2
( 

r) 	Sd 	 3.9  

if 13.  

where 	is the relative displac rent to base of ith 

mass in rth mode. 

Sr) is the spectral displacement for rth 

mode obtained frCm the Housner's.velocity spectral 

equation 	quoted eaxli er. 

From the above equati on interstorey modal dis« 

placements for the super structures mass are computed 
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as given by equation 3,10, given below 

Zr = (r) - (r) 
s  f 

The resultant of the inter-storey displacements 

in two modes is assumed to be given by the root mean 

square value as shown in equation 3.11, v+hich is 

z = J~z 2 + (i(2))2  

In figure 3,1(c), which represents the super-

structure mounted on the rigid base, the maximum inter- 

storey shear (or displacement) Z 	has been computed 

directly from the Housn er` s spectra. 

TI response factor 0 is therefore given by 

equation 3.13, a s below 

,..(3.12) 
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GHPTER IV 

T H 	CAI._._RE SJ L TS 

4, 1' 	The effect of natural period of super- 

stxucture, natural period of foundation and mass ratio 

of super-stnacture to substructure on the response 

factor 0, has been studied for a model structure as 

explained earlier, when it is subjected to ground 

motion. The results and their interpretation are. 

presented here, 

4.11 Lggl of the natural Lqundatt~o 
frequencies on the re tae fitO  

Figure 4.1 is a plot between natural 

frequency of foundation vl'ich is taken to vary from 

2 cps to 12 cps' and the response factor of the system 

for man ratio a equal to 0.8. Each curve in the 

figure represents the variation of response factor 

for a particular natural period of the super-structure. 

Five curves have been drawn for the natural period 

of the super-structure varying from 0.1 sec to 0.5 sec. 

These curves show that the response factor 

P initially increases as the natural frequency of 

foundation increases and then attains maximum value 

at some particular foundation frequency, and after 

it, it starts dimnishing. The natural frequency of 
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foundation at which P attains ma d.murn value is 

different for each natural period of sup er-structure 

and also the maximum value of P is different in 

each of the above mentioned cases  

As the natural period of sup er-structure 

increases the maximum value of P decreases. The table 

shown below is reproduced from the figure 4.1, which 

illustrates how the natural period of super-structure, 

natural frequency of foundation and the maximum value 

of response factor are inter-related quantitatively.. 

Natural period of 	Frequency at 	Optimum value 
super-structure 	which optimum 	of 
in seconds 	 value of P  

____ _...0 .ur j n..ss.l..______ 

0.2 7.5 1.221 

0,3 5.5 1.220 

0.4 4.0 1.188 

0.5 3.75 1.108 

Similar plots are dracne from figure 4,2 to 

4.5 for the mass ratio 1.10, 1.40, 1.70, 2.0. The 

nature of these curves is also in exact similarity 

to the curves in figure 4,1. 

It is observed from these curves,, that with 

the decrease of the natural period of super-structure, 

the foundation frequency at which the maximum value 
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of (3 occurs 4ecreases i. e. 	maximum response of 

the structure occurs in the lower ranges of the natural 

frequencies of the foundation system. In each case it 

can be noted that the natural frequency at which maximum 

response of super-structure occurs are comparable with 

the natural frequency of substructure. 

In the lower ranges of mass ratio the 

curves exhibit a sharper increase or decrease in the 

response factor P.  Smaller value of 	means higher, 

overall effective mass of the foundation participating 

in the vibrations It indicates that the role of 

foundation in the dyn nic case becomes significant with 

the increased foundation mass. 

It may be observed from the curves, that 

fora structure foundation system, having the natural 

frequency very less than that of super-structure, if 

the natural frequency of foundation is increased, the 

response factor increases. However in case when the 

base frequency is very high as compared to that of 

super-structure an increase in foundation frequency 

shall cause a decrease in the response factor. 

Hence it may be concluded from above that, 

when the foundation is very flexible (small natural 

frequency than super structure) the stiffening of the 

foundation, in general shall cause an increase in the 



inter-storey shears in the super•stzucture. However 

for a system having foundation to be very rigid than 

the super-structure, the stiffening of the foundation 

shall decrease the inter-storey shears in the super-

structure. 

4.12 	ec of tie Ratio of 	e Freauenci e,_ ss of 
S gl,-stgIctu to that of Fou ti on 
tj e Zesp ens a factor 

Curves shov~n in figure 4.6 illustrates the 

variation of response factor tP with the ratio of natural. 
frequencies of super-structure to sub-structure. Each 

curve is ' for different mass ratio d, i.e. for 	equ al 

to 0.8, 1.1, 1.4, 2.0 and 3.2. The natural period of 

super-structure has been kept as 0.3 sec, Similarly the 

curves in figure 4.7 are drawn for the natural period of 

super-structure as 0.4 seconds. 

These curves also exhibit a. well defined 

peak, simil ar to as in ," frequency curves i.e. in each 

case maximum response of the structure occurs at a 

particular frequency ratio of super-structure to sub-

structure. 

The curves become steeper in the lower 

frequency and mass ratios. In the sane frequency ratio 

ranges, curves tends to flatten for higher values of cc. 

Therefore an intersection is obtained between the curves 
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for different mass ratios. 

It was found by Gupta Y.i~ (2.0) that with 

the increase of mass ratio cC, response factor 

decreases. However present studies reveal that with 

the increase in -t, a decrease in 	is observed, only 

in the ranges of higher frequency ratio, i. e,, in the 

case when base is very flexible as compared to the 

super-structure. However in the range of lower frequency 

ratio, P increases wi.th the increase cc. 

4,2 WMEEI 	OF THE RE SUL TS VWI TH StMILAA 
TYPE OF AVAILABL E  

A rigorous analysis of two degree freedcm 

system has been performed by Gupta Y.P. 2
0

) in the limited 

range of the periods of p arent and vibration absorber 

systems. The analysis was carried out primarily to 

observe the effect of mounting parent system on the 

absorber. A single degree linearly elastic freedom 

system was considered to be mounted on a similar type 

of vibration absorber, Viscous type of damping was 

considered in both the systems. eA modified fourth order 

Runge-Kutta's procedure was used for numerical solution 

of the equations, Shear response of the parent system 

was studied for the follov~+.ng two digitalised earthquake 

data$,, 



3 9  
(a) El Centro, May 18, 1940, North South c anp onen t 

( b) Traft, July 21, l93, S21W carp onent. 

Response factor was defined as in the present 

studies. 	0 	was defined as the maximum shear in parent 

systemn when  mounted on the absorber to the shear when 

without absorber. 

a.os 

Lt -li b 

p  _  

Where suffix a is for absorber and p is for parent 

system, mass ratio OC was varied from 4 to 20. 

In figure 4.9 curve A illustrates the variation 

of 	.th 1/a for ElCentro ground motion, while curve B 

is for traft earthquake. 

In the present analysis, the damping has been 

considered same in the two modes of vibrations. Thus to 

compare the results from the presented theory, the 

system of similar characteristics as analysed by. , 

., 
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Gupta, Y.P. (l0)  is considered, and the damping is 

separated for the two modes by assuming the damping 

matrix of the coupled system as linear canbination of 

the mass and spring coefficient matrix( li)  as explained 

b el ow. 

In using th s procedure, one implicitly 

assumes that the model columns for the undamped systems 

remain valid for the damped systems as well. This 

assumption leads to completely uncoupled equation for 

this case. 

Expressing damping matrix as the linear ccm-

bination of mass and spring matrix. 

(B) = d (A) + r (C) 

Where (B) is the damping matri x 

( ,) is the mass matrix 

(C) is the stiffness matrix 

is constant of dimension T and r is a 
of 

constantLdimensi on T. 

Substituting this equation to the equation of 

motion, the danpings in the different modes are obtained 

as 

k 	= 

CC + r Aa 

2v 



Where 3k  is the damping present to the critical 

damping in k th  mode and wk  be the modal frequency in 

th  k mode. 

It is obvious from the study of figure 4.9 that 

the results obtained from the spectral analysis presented 

are comparable to that obtained from the rigorous  analysis. 

A significant conclusion is drawn from this comp a- 
is 

risen Lt iat through the shear response factor Leffected 

by the characteristics of the dynamic load, but not 

significantly. The results obtained for the three 

different loading characteristics are comparable, for 

the practical purposes. 

Figure (4.9) also varify the applicability of the 

presented theory for the analysis where, such systems are 

involved. 
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SUPER— STRUCTURE PERIOD = 0.3 sec 
c = MASS RATIO 
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CHAP TE H V 

5.1E RERIMT ,STUDIES 

Experimental studies have been conducted to 

verify the theoretical approach developed in the previous 

chapters. A model was fabricated consisting of an alur 

minium pile supporting a mass spring system representing 

a model of the single degree superstructure system. The 

pile was embedded in a sand filled tank v~hich was mounted 

on a shaking table. The response of the model structure 

was slit died experimentally by giving horizontal vibrationss 

to the table. Various constants for the system have-

been evaluated experimentally and then the. system is 

analysed by a theoretical approach. 

A detailed description of the experimental 

part of the work is presented in this chapter. 

5, 2 M0 D.L 	 " 'WRAL k RY UWNFRSITY or 
ROORKFr, 

The model consisted of a mass spring system 

mounted on a flexible aluminium pile. A sketch of the 

model fabricated is shovr in figure 5.1. Figure 5,1(a) 

shows a cross section of the model which is shown to be 

embedded in the saand, which is filled in a tank. A 

wooden pile cap of size 2.5 x 6 x 1 ems is fixed on the 

treaded pile head 	th the help of two nuts. 	Two 

flexible steel strips are then screwed to the pile cap 



which supports a cast iron block as shove in figure. 

This. steel block has a arrangement for varying the mass 

as show-n in figure 5,1 (b). Specifications. for the 

different elements of the model are given. below, 

Aluminium pile is 26" (66 cms) with following 

characteristics. 

( a) Outer diameter 	15 mm 

(b) I m e r diameter 	10 mm 

( c) Modulus of elasticity Oo 714x106  kg/cm 2  

(d) Moment of inertia 	180x10-3  cm4  

( e) Stiffness (El) 	13,7x104  kg/cm 2  

The structure consists of a weight of cast iron 

connected to pile cap by two flexible steel strips. The 

weight of cast iron block is 0.480 kg,, 

5.3  TEST SET UP 

As explained earlier the pile carrying the 

super-structure was embedded in the sand, which was filled 

in the tank. The tank was mounted on a shaking table 

fitted with an oscillato:.to give it horizontal vibration. 

The details of the various components of the test setup 

are given below 
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5.31Steady,_ tale Hint,, .°h 1 ing T 1 

The vibration table is able to move horizontally 

giving sinusoidally varying oscillations. Table has 

platform of size 6.4'x4'. Steady state vibrations were 

given to table by L azen type oscillator, which was 

centrally mounted on one of its edge. The oscillator 

was driven by a 3 H.P., D.C. motor. Speed of the motor 

was controlled by an independent speed control unit. This 

separate unit consists of rectifier and a D.C. Transformer 

I, e. potential divider, to change D. C. motor input power, 

Rectifier converts {A. C. supply to direct current. 

The oscillator motor assembly is capable of 

developing frequencies from 0 to 25 cps, and the amplitude 

up to 2 mm. Oscillator can develop different sinusoidally 

varying forces, with different eccentricity settings. 

5.32 Vibration RecorcinpDevices 

Vibrations were recorded by mounting Mill er 

acceleration pick ups to the vibrating object in the 

plane of vibrations. Varying signal response of the 

system was fed to the oscillograph, through universal 

amplifiers. 

5.4 SAND USED 

The sand used in the experiment was Ranipur 

sand. The grain size distribution of sand is shovnn in 
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figure 5.2. This belongs to SP Group according to 

Indian Standard Specification. 

The other properties of the sand are as follows, 

( a) Specific gravity of sand grains - 2. 60 

(b) Uniformity coefficient 	- 2,28 

( c) Grain size D10 	 - 0.1.4 

(d) Minimum void ratio ernin 	- 0. 54 

(e) Maxi mam void rtio %ax 	-0,89 

5. 5 "e„ mentalResponseof the Mode1Underr 
Statate Vi b ri Qn s 

As explained earlier, the model Was  given 

steady state vibration, by mounting it on the shaking 

table. In order to study the affect of flexibility of 

foundation on the response of the stzucture, two type 

of tests were conducted. In one test the complete 

coupled system was given steady state vibrations by 

embedding the pile in the sand and in the other one 

the superstructure was removed from the pile and was 

mounted on the shaking table, giving it again the 

steady state vibrations, The two tests are eypl ained 

below. 

5.51 E-,ex gn. Ath th G .edJjIe-sxjcture__ ystem  

The model was placed vertically in the tank 

by clamping the pile head by a suitable arrangement 
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mounted at the tcp of the tank. Sand was filled in 

the tank leaving 2" of free length of the pile above 

the surface of the s and, 

One of the important requirements of the test 

was the control of the density of the sand. Therefore 

a similar method for the compaction was adopted in 

every test so as to get the same density of sand. 

It was observed that during vibrations when sand  

particles starts moving, maximum possible density on 

this table was obtained after stopping the vibrations. 

After placing the model in the empty tank, sand was 

poured in it in 6" layers, Each layer was c anp act ed 

by the vibrations of the table. Speed of the motor 

was so adjusted, so as to get the resonence in the 

sand particles, and thus the maximum density was 

obtained. Density was obtained by dividing the 

weight of the sand by the volume measured. 

After filling the tank upto 2" below the 

pile head, the clamp was removed. Three Miller 

acceleration pickups were mounted one Qach on the 

super structure mass, pile cap and on tYe shaking 

table. 

In the first experimental set up the eccentri.- 

city of the oscillator was kept 350. 
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Speed of the motor (and hence the frequency 

of the oscillation table) was slowly increased by giving 

one round to the speed control whel each time. Records 

from the three acceleration pickups were recorded by 

the automatic pen recorders, connected to the pickup 

by amplifier channels,, 

Tests were repeated for the oscillator eccen-

tricity settings of 700, 105°  and 1400 . 
Analysis of the re,c o Kds 

The records obtained from the steady state 

vibration tests were analysed to obtain the response 

of the structure mass for the different forcing fre-

quencies. The method of analysis is explained below. 

A typical acceleration record obtained from 

the test is shovn in the figure 5, 3, The variation 

of acceleration has been recorded on a paper moving 

with a speed of 25 mm per second,, In order to compute 

the displacements from this record, variation of the 

acceleration is assumed to be sinusoidal; and hence, 

represented by the following equation, 

X = a Sin (wt) 

where 	x is the second .differential of 

displacement x at any instant t, with respect to 

time t, a  is the maximum acceleration in a cycle 
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and w be -the frequency in radians per second. 

Displacement x is obtained by intrigating 

acceleration twice with respect to time t, i.e. 

x = - (a/w2) Sin (wt) 

Thus the amplitude of oscillation is a/wa 

~~S.: Qf 1h2_5t Sture ~0 b Di. ran 
Forcing Freaum ci eg 

The computed results from the records of the 

above tests are shown in fi ga res 5.4, 5. 5, 5.6 and 5.7. 

In figure 5.4, forcing frequencies are shows 

on the absciss a line while curve B is for the anpli-

tudes of the structure mass, curve C , for amplitudes 

of table., 

Curve A shows a definite peak at frequency 15.5 cycles 

per second . This is the resonence state of vibration, 

where the mass vibrates with the maximum amplitude. 

Similarly in figures 5. 5, 5.6, and 5, 7, curves 

are drawn for the amplitudes of structure mass 

and shaking table for eccentricities of 700, 1050 

and 1400. 

A detailed discussion of the above curves shall 

be presented later. 
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5.52 	e ntJhe_4uQ - uc tre 
Mount d on the Sh~kinq TIabl, 

The superstructure system was removed from 

the pile along with the pile cap and was mounted on 

the shaking table by glueing the . pile cap to table 

with Areldite Solution. Miller type acceleration pick- 

ups were fixed one to the mass of the model and one 

to the shaking to table. 

Speed of the motor was slow.by increased by 

givirmg one round to the speed control wheel each time, 

similar as in the earlier test with the pile-super 

structure model. 

Tests were repeated for the eccentr ci ty 

setting of oscillator at 700, 105° and 140°. 

Records obtained from the tests are the steady 

state vibration records and thus the iiiplitude is com-

puted in a similar way as described 5, 51. 

Curve A in figure 5,4 is the plot between 

the forcing frequency and the amplitude of the structure 

mass. Similar to the curve B in the figure, this has 

also a rising limb and a descending limb. M aximum 

amplitude of the mass is observed at the forcing 

frequency of 16 cycles per second. Similar curves are 

drawn for the eccentricity setting of 70°, 105° and 

140° shown in £iguie 5. 5, 5.6 and 5.7. respectively. 
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5. 53 	al Resu l 

AS illustrated earlier, the experimentally 

recorded responses of the structure pile system Ath 

pile embedded in the sand and the structure alone 

mounted on the shaking table are shown in figures 

5.4 to 5.7. 

A study of these curves reveals that in general 

the absolute displaconents of the superstructure mass 

when mounted on the pile are larger than the displace-

merits when fo ner has rigid base. A well established 

peak is the characteristic feature of the curves A 

and B. This peak represents the resonance stage of the 

systems. Resonance occurs, in the coupled foundation 

structure system at an average frequency of 15. 5 cycles 

per second, which represents the natural frequency of 

the system. Resonance in the super structure occurs at 

an average frequency of 16.02 cycles per second, which 

is the na W ral frequency of vibrations of the system, 
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CHAP TER VI 

THEOk UC1 L ANALYSIS OF EXPEFLMENTAL 
MODEL OF .$TRUCTURE PILE 	1 

6.1 General 

The experimental model described in 

previous chapter and shwwi in figure 5.1 is analysed 

theoretically and thus th- results obtained are 

compared with the actually observed response of the 

system on the shaking table. A detailed description 

of the theoretical approach and the experiments con-

ducted is presented in this chapter. 

6.2 The ore cg1 A l ~_ofthe Mocll 

As explained in Chapter III, the .analysis 

of the structure pile model system is done by assuming 

it to be reresented by a two degrees of freedom system. 

The super structure is a mass spring dashpot system 

of single degree of freedom. The soil pile system 

which has infinite degrees of freedom is converted 

into a single degree system by evaluating the various 

constants experimentally. 

The theoretical approach is similar to as 

described in Chapter III except that in this case 

the damping effect has also been considered. Figure 

6.1( a)- shows idealised single degree mass-spring- 



das hp of . Sys ten for the soil -pile system. 

In the figure, UJf  is the net effective weight 

of the soil pile system taking active part in the 

vibration. It includes the virtual mass of the soil, 

• vibrating with the foundation. 

Kf  represents the net effective stiffness of 

the foundation for the lateral loads. 

Gf  represents the damping present in the 

foundation system. 

Figure 6.1(b) is a idealised two degrees of 

freddom system for the structure -pile model. 	Subst,iucture 

and the superstructure units are marked in the figure. 

In the figure, 

Ws  represents the weight of the cast iron block 

of the superstructure. 

Ks  is the net stiffness of superstructure for 

the lateral loads. 

Gs  is the damping present in the systems 

The motion of the shaking table was found to 

be sinusoidal to a  fair degree of accuracy.  It is 

therefore assumed that the system shown infigure 

6. 1( b) is excited by a sinusoidally varying motion 

at the base. 



Assuming that; 

Xf and Xs are the absolute displacements at any instant 

t, of the foundation and superstructure mass respec-

tively y is the sinusoidally varying base motion aid 

expressed as y = y o Sin As y o be the amplitude of 

motion and w be the radial frequency of vibrations, 

The equations of m@tion for the system shove 

in figure 6.1 (b) are written as follows; 

ms xs +c$ xS + ks xs -cs xf - ks xf 	0 	••, (a) 

m •xf +(cf+cs) xf+(kf+ks)xf -cs xs 	s - kxs 

= cf y + kfy 	 .., (b) 

.ee (6o1) 

Non trivial solution of the equation (6l) 

gives the amplitude x of the superstructure mass as 

follows 

XS 	(K f 2 + c a ).( K 2 + c w2 ) 
 

Y o 	(m f ms w4-m f kswa -ms k f w2 -csc f wa + k f ks ) 2 

+(Kf cS w~Ksc f w -m f csw3 -msc f w3+mscsw3) 2 

e.e(6o2) 

r-1 
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By substitot? ng 

Mass ratio cc = ms/m f 

Damping in foundation Cf = mfpf 3f 

	

Damping in superstructure Gs = mSS 	S 

Where p f and ps are the natural frequencies of 

foundation system alone and superstructure systgn above 

resp ectively. 

The equation 6.2 can be expressed as follows 

xs 

 

I
( pia+(2 S fp ) a ) fps 4 + 4 	2 ps a w2) 

yo 
 

w4"ps w2_
pf w2_4 .s f pfps w pf sa } 

+ (p f a. 2 spsw +ps 2 2 ?f p fwM2 3 spswa 

-2 fpsws +2°c 	spsws 
	2 

... (6.3) 

where 3 f and 	are the damping ratio to critical 

damping of the foundation and superstructures respectively. 

The amplitudes for the different forcing frequencies 

w can t h~ ref ore be obtained from eqa ati on 6.3, by obtaining the 

the value of dif f ertnt constant for the system, which are 

involved in the above mentioned equation. The various 

constants involved are as follows. 
7 

a) PS - natural frequency of free vibration for the 

superstructure system 



(b) p f  - natural frequency of free vibration for 

the soil-pile system 

(c) is  - value of damping ( as a percentage of critical 

damping) in super-structure system 

(d) 3 	value of damping (as a percent of critical 

d,inping) in soil-pile system 

( e) c( - Ratio of the effective mass of super-structure 

. to that of substructure. 

The various properties of the two elements of 

the model were determined experimentally. The different 

tests conducted are described below. 

6.21 
of free  yib,  ati on  (p5L  for super-sti cture 

Natural frequency of free vibration for the 

super structure system was computed by carrying out 

free vibration tests on the model. The superstructure 

system was ramoved from the pile and was mounted on a 

film base. One Miller type acceleration pickup was 

mounted on the cast iron block of the model, which was 

connected to automatic pen recorder, connected through 

a universal amplifier. Acceleration records were 

taken by giving an impact to the superstructure mass, 

and thus allowing it to vibrate freely. 
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, 	s .s  Of the 

A typical record of the free vibration is shown 

in the figure (6.2) . The frequency of free vibration 

is found by the following expression, 

Frequency = NXS/L  

where L is the length of the record for N 

number of cycles and S be the speed of paper. Average 

frequency of free vibration of the superstructure. was 

found as 16.2 cps. 

6.22 Det ei on of 	in L _, gpgZJzu ctu 

Damping is deteamine d as a prrcentage of the 

critical damping •of the superstructure from the free 

vibration test records as described in 5.21. 

the damping as 	a percentage of the critical 

damping is given by the following expression 

10 2  0 	2.303 log10   (, 2/t, ) 

Where Al and ;' are the amplitudes in the 

successive cycles of vibration„ 

For small dampings  the above expression can be 

written as, 

100 x 2.303  ±a)  Ali ) 



11 

The average value of the duping in superstructure 

model was found to be 1. 5. 

6.23 	ni ti on of the N to 	Fr~gu 	! 
g~_F ,ae Vibrations (n f for the Soil-
kilo le system 

Natural frequency of free vibration for the 

soil-pile system was obtained by carryang out free vibration 

tests on the model. Superstzucture model was removed 

from the wooden pile cap by unscrewing the steel strips 

from the wooden cap. The pile (fitted with the pile 

cap) was placed vertically in the center of the tank, and 

clamped at the top by a suitable device fitted at the 

top of the tank. Sand was poured in the tank in 6" 

layers and was compacted by vibrating it on the shaking 

table to get same density in each test as described in 

5.51. A Miller type acceleration pickup was mounted 

on the wooden pile cap and connected to the autanatic 

pen recorder, through a universal amplifier. 

Free vibrations to the pile were given by 

displacing the pile fran its mean position and then 

releasing it. 

Frequency from the free vibration records is 

computed in a similar way as described in 5.21. 

The average frequency of free vibration for 



the soil-pile systan is found to be 60.2 cycles per 

second. 

6.24 Deternin,atior of Damping in Soil-pj,,~, 	tc , 

The damping in the soil-pile system was obtained 

from the free vibrations test record on the model., in 

a similar way as described in 5.22 for the super - 

structure case. 

The average damping as a percentage of the 

critical damping is found to be 7o. 

6.25 Determination ,off ht e Miss Ratio a 

The mass ratio c( is defined as the ratio of 

the effective mass of superstructure to that of sub-

structure. Therefore the evaluation of mass ratio shall 

require the effective mass of the superstructure and 

substructure systems. 

Superstructure is a single degree of freedom 

system and therefore the net effective mass participating 

in the vibration is directly obtained from the weight 

of the cast iron block. However in case of the soil-

pile system it is a canplex problem to evaluate the 

net effective mass of ti'o foundation participating in 

the vibrations, since there is some virtual mass of 

soil which vibrates along with the pile. This aspect 
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of the problem has been discussed in great detail in 

Chapter II. 

In the present case, the net effective mass 

of tha foundation is computed by a se i'e aerimentai 

method. The characteristic ength of the pile waS 

found e)perimentally and then the net effective mass 

of the foundation was obtained by a theoretical approach 

and with the help of the observed natural frequency of 

pile under free vibrations, 

A detailed descrijbti on of the experimental tests 

conducted and the computations done are given below, 

T es,ts Conduct ey for_ h_gv u a ti on of ho 
Chinn t 1 s •i cs le na h of th,-~ We 

Characteristic length of the pile was obtained 

by cair ng out free vibration tests on the different lengths 

of the pile. The pile was placed vertically in the tank 

and clamped at the top, by a sui table lampin g device 

fitted at the top of it, Tank was mounted on the shaking 

table. 

Sind was poured in the tank in 6" layers. Each 

layer was so compacted by the vibrations of the shaking 

table, so as to obtain the same density in each test, 

as descri bed in det all under 5, 51, Sand was poured 

up to the top of tank, leaving a free length of pile as 2" 



above the surface of the sand, 

A Miller type acceleration pickup was mounted 

on the wooden pile cap, which was connected to the 

automatic pen recorder through a universal amplifier. 

Free vibration are given to the pile by displacing 
it from its mean position. 

Feom the record natural frequency of free-

vibration is found as described under 5.21. 

Tests weree conducted for the different embedded 

length of the pile as 14", 17", 208 , 23", 26", 28" and 

29". Test with the each length of the pile was repeated 

with four different surcharge weeiths as given below. 

Wl  = 0.144 kg ( only pile cap) 

W2  = 0.262 Kg 

0.670 kg 

W4  = 0.914 kg 

The results obtained from the above tests are shown 

in figure 6.3. Figure shows four different curves 

for different surcharge loads plotted between embedded 

length of pile and the natural frequency of the pile, 

It is observed from the curves that as the 

surcharge load on the pile is increased, the natural 
reduces. The natural frequency 

frequency increases initi ally with the increase in the 

embedded length of the pile. For the each surcharge 



load, beyond the embedded length of 20 inches, no 

further increase in the natural frequency is observed. 

Therefore, on the b§sis of the discussions, in 

Chapter II, the embedded length of 20" is taken as the 

characteristic length of the pile, which is the minimum 

length of the pile when it starts behaving in a  perfect 

flexible manner. 

The length of the pile used in the model is 
26" long against tI minimum required 1 igth for its 

flexible behaviours  as 20". Therefore the theory of 

fIe xi ble piles applies to the experimental model. 

Simulating t1 embedded pile in sand, to the 

beam on elastic. foundation and assuming the subgrade 

modulus along the dephh, to be linearly varying i.e. 

K( x) = )t 'H  x 

Where K( x) is the su bgrade modulus at depth x 

and 1-H  be the coefficient of su bgrado modulus. 

Following differential equation is written for 

the embedded pile 

dY k x 
dx 	El 	— 0  
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where y be the lateral deflection of the pile at 

depth x, 



El be the fl e ral stiffness of the pile. 

Solution of equation (6. 4) are available in terns 

of non-diam.ensional parameters, 

Using the notation 

T =5 -7 H  

T be the relative stiffness factor for the 

pile and 	Z = X/T  

max = L/T 

Where L is the embedded length of the pile. 

Solution of the differential equation (6.4), 

for the deflection at ground level is obtained as 

y g  = Qha T3/EI A 
J 

- ... (605) 

where y g  is the deflection at ground level. 

Qhg is the lateral force at ground level. 

rA is the nonrdimensional deflection coefficient, 
y 

For long pile (maxim 5) embedded in cohe- 

sionless soils <1_ = 2. 435 ( Rees and Matlock) 

From equation 6.2 the overall effective stiffness 

of the soil pile system works out as 

K = El /T 3A 	 -,TkAL L7 IIRV U I!V RS!TY ?F POO1?I'<' 
y9 	 y 	 RQORKE 7 



The value of relative stiffness factor T, is 

m-rked out from the Matlock.. criteria for the flexible 

length, which has been established by Prakash, S. and 

Aggarwl S.L. (15), Therefore max  for 20" depth of 

embech ent of pile is taken as  5, 

Therefore 

Z 	 5 m a x  = L/T   

Where Ls  is the embedded length of the pile 

Hence T = Ls/5 = 4" (10.16 cros) . 

The overall stiffness of the soil pile systan 

is obtained as 

K  ` EL / 3  = 13.7 x 104 	= 53.6 kg/an 
T 	(10.16) s  x2. 43 5 

The overall effective mass of the pile soil 

system is worked out from the frequency, mass and 

stiffness relationship, as follows. 

Frequency of vibrations (in radians) is given as 

wr = 

or W = g. K/w  a 
r 

...(6 6) 

Where W is the weight participating in the 

vibrations, g be the acceleration due to gravity. 



Substituting t1 values of g, K, and wr in 6.6 

effective mass of foundation (W) works out to be 

0.368 kg. 

The effective weight of the superstructure 

( weight of the cast iron block) = 0. 480 kg. 

Therefore the ratio of effective masses of 

supe rstra cture to the substructure is evaluated as 

4 = 0. 480/0, 368 = 1.3 

6.26 
o keout above in 

( a) e rstzu cttj,~ej r,Zyh,,, n mounted oa 
i~ d bes e 

Natural frequency of free vibration 

=16.02cps 

Damping (percentage to critical damping) 

1. 

( b) 5  oil-pil,~,.. Uterri t 	P'.1~ ~. Embedded 
in 

Natural frequency of free vibration 

60.2 cps 

Damping (percentage to critical damping) 



c)  Effect_iVe  IBS  Ratio of  p 	utQre  
t 

d = 1.3 

6.3 	e Ln aop of  j.be oLem l Resioa  s g 
,j the xi e rim ent al Mosel„ 

The response of the stxu cture-pile model is 

worked out from the equation 6.2, by substituting the 

various coefficients as given in 6.26. 

A computer programme to suit IBM 1620 was 

developed for the solution of equation 6.2. Results 

of the analysis are shove in figures 6.4 to 6.7. 

In figure 6.4, curve A is a plot between the 

forcing frequency and the actually observed response 

of the model, for eccentricity 25°. This is reproduced 

from the figure 5.4. Curve B is the plot between the 

theoretically computed inplitudes of the model from 

the equation 6.2 and the forcing frequencies. 

It is observed from figure 6.4 that the experi-

mental curves A and the theoretical curve B, in general 

show a striking similarity. The maximum amplitude 

observed in the experiment is 2,U6 mm and occurs at a 

forcing frequency of 15.45 cps where as the computed 

maximum amplitude is 1.84 mm and occurs at a forcing 

frequency of 15 cps. The rising and the decending 

limbs of the two curves resembles well for the practical 



purposes. 

A similar agreement between the two ecerimental 

and theoretical curves is exhibited in figures 6. 5, 6.7 

and 6.7. 

It may be noted however that a slight disagreement 

is observed between the computed and observed curves for 

the model. In general the theoretically computed 

amplitudes are slightly smaller than the actual ampli- 

tudes of the superstructure mass. A probale cause 

of the above phenominon may be explained as below. 

The natural frequencies of the soil pile system 

were obtained before and after the experiment and were. 

found to be canparable. The density of the sand also 

remained same before and after the experiment. It may 

therefore be assumed that the lateral stiffness of the 

pile was not changed. Hence this disagreement between 

the two curves may be due to the change in the 

virtual mass of the soil during the vibration. This 

change in the virtual mass of the soil may have uccured 

due to comparatively lower frequency of vibration 

during the experiment, than the natural frequency of the 

soil pile system. The effective mass of the foundation 

system was calculated frcan the natural frequency of the 

vibration, which is 60,2 cps. However during the 
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steady state vibrations, the model was vibrated in 

the frequency range of 10-20 cps, which is quite low 

as compared to the natural frequency of 6U.2 cps. 

Hence it is possible, that there is some added mass 

of the soil, which becomes active, during tYe steady 

state vibrations, resulting in the reduced response 

of the structure. 
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FIG. 6.1 

FIG.6.2_ A TYPICAL FREE VIBRATION RECORD 
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C H AP TER  VII 

CUNQ,USIONS 

From the discussions presented in the previous 

Chapters, the following conclusions are dravi, 

(1) The response of a structure supported on 

a flexible piles can be theoretically obtained, •by 

representing it as an equivalent two degree freedom 

system i. e. a single degree freedom system representing 

the superstructure, coupled with another single degree 

system representing soil medium and foundation. The 

computed results compares well with the actual observed 

results, when the structure pile system is subjected 

to the lateral dynamic forces, varying sinusoidally. 

(2) When the foundations are very flexible than 

the superstructure, the farces developed in the super' 

structure are small under earthquake type of ground 

motion. For a particular range of substructure natural 

frequencies, forces developed in the super-structure 

are large at a particular natural period of super-

structures  

(3) When the foundations are very flexible 

than the super-structure, the forces in superstructure 

under earthquake type of ground motion, increases .th 

the increase in stiffness of foundation system. However 



if the super-structure is made sufficiently flexible 

as compared the foundation, an increase in foundation 

stiffness decreases the forces in super-structure. 

(4) When the foundations are very flexible than 

the super•stzucture, the forces developed in super-

structure, under earthquake type of ground motion 

increases with the increase of mass ratio of super" 

structure to sub-structure. However, if the super-

structure is made sufficiently flexible as compared 

the foundation, an increase in mass ratio decrease the 

forces in super-structure. 
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