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SYNOPSIS 

The inelastic behaviour of Reinforced Concrete Structures 

subjected to lateral loads is studied. The values of the strain ductility 

of the reinforcement and lateral deflection ductility of the portal frame 

are obtained. An attempt has been made to show the relationship 

between two ductiliti es . 

The response calculations in the post elastic range are made 

for two Accelerograms (Koyna and El Centro). The reduction in 

response due to in-elasticity of the structure is worked out for these 

two earthquakes and for different deflection ductilitles . 
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CHAPTER I 

INTRODUCTION 

It is generally recognized that many structures have 

successfully resisted the actions of major earthquakes although 

designed to resist much smaller lateral force than those predicted 

by dynamic elastic -considerations . When the elastic response of a 

typical multistorey-multibay building frame to a major earthquake 

is calculated, it is evident that the stresses in some of the members 

are greater than the yield stress of the material. This is because 

many framed structures are designed on the basis that they will 

resist more frequent ground motion without damage, but will withstand 

the most intense seismic shocks without total collapse only by 

calling on the reserve strength existing beyond the yield deformation 

point in the individual members. Observation of buildings damaged 

in earthquakes support the contention that many structures possess 

an ability_to dissipate energy due to inelastic action and thus avoid 

catastrophic failure under strong motion earthquake loading.. 

It has been suggested. - and it is generally accepted at  

present - that a seismic design for a building can be .bas ad on an elastic 

analysis made for a reduced acceleration spectra corresponding to 

a selected value of ductility factor which can be mobilized by the 

appropriate choice of the structural system. This ductility factor 

has been usually recommended as 4 to 6 for typical ductile framed 
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structures. However, no attempt has been made to determine whether 

such a structure can actually achieve this ductility, and further, 

whether the strains in reinforcement and concrete in the section of 

the members are within allowable limits at this value of ductility. 

The present study is an attempt towards getting an insight into the 

strain behaviour of structural materials vi sa-vis ductility. 

A single storey - single bay portal frame is the basic unit of a 

multistorey - multibay building frame. Also, it is well known that 

any multi degree freedom system can be made up of number of 

single degree of freedom systems. For these reasons, a portal 

frame of the type shown in Fig. 2. 4(a) is used for analysis in the 

present study. 

In Chapter II, procedure for finding out the M - 0 diagram 

for the column section of the portal frame is outlined. Actual 

stress-strain relationship for concrete is used and steel is assumed 

to be elasto-plastic. Using the M - P diagram, a method is indicated 

to obtain the deflection ductility and the corresponding strains in 

the reinforcement. Computer programmes for obtaining M - P 
diagram as well as the ductilities of deflection and strain are given 

in Appendix A . Curves showing the relation between deflection 

ductility and the strain ductility are obtained. 

Assuming the structure to be elasto-plastic, in Chapter III 

response calculations of various structural systems to two actual 
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rocrodod strong-motion accelorograms (Koyna and El Centro) 

are made. Response reduction factors on account of inelastic 

behaviour and the associated ductility is examined for a variety 

of structures. 

Chapter IV is concerned with various assumptions and 

limitations of the present study. The scope of further work in 

this field is briefly discussed. 

Rt-sults and conclusions drawn from this study are 

summarized in Chapter V. 
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CHAPTER II 

COMPUTATION OF DEFLECTIONS 

In order to make a rational, nonlinear, dynamic frame 

analysis, it is necessary to imOw the appropriate END MOMENT NNT - 

END ROTATION diagram for the members. From the diagram 

lateral deflection ductility can be obtained. The strain 

behaviour of the material of the structure can also be Imown. 

2. 1 	Moment - curvature 'relationship 

When th- frame shown in Fig. 2.4(a) is subjected to a lateral 

force in one direction, the response may be idealized into three 

stages of behaviour : 

1, 	The first stage is terminated by cracking of concrete. 

Theoretically, it should occur when the maximum 

tensile stress in the section exceeds the modulus 

of rupture of concrete. Actually, however, cracking 

is influenced by differ ee ittal shrinkage stresses and 

stress concentration at the restraint corners. 

2. 	The second stage is terminated by yielding of the 

reinforcernent. A re=distribution of internal stresses 

after one critical section (in the present case there are 

four such sections) yields, causes almost immediate 



-v- 

yielding in the remaining cross-sections. 

3. 	The third stage is tei urinated when the maximum 

concrete strain in the section reaches the ultimate 

concrete strain: value to ' 	After this stage, 
Cu 

concrete is crushed and is not supposed to take any 

more strains. 

It is noted that the-first stage does not affect the M - _ 

relation hip to any appreciable amount. Therefore, for simplicity, 

only second and third stages maybe considered for drawing the 

i'IL - P diagram. Thus the portion of the M - (A curve between the 

initial stage and the stage when reinforcement yields is considered 

to be linear.. If cracking of concrete is also to be considered, this 

portion would become bi-li<near. Tie difference between the two 

is not much as can be seen from Fig. 2,1 in which, for comparison, 

two M - 5b diagrams have been plotted for a reinforced concrete 

section. First diagram is drawn considering the cracking of concrete 

and second, by ignoring it. 

The steel stress-strain relationship is assumed to be 

elasto-plastic as shown in Fig. 2.2(a).  Thy yield strain of steel 

esy  is taken equal to 0, 0012 and modulus of elasticity of steel Es  

is taken equal to 2 x 10G kg/crr.:2. It can be noted that this is an idealized 

relationship without considering the strain-hardening effect. 

Thy; concrete stress-strain relationship is assumed to be 
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parabolic given by the following equation : 

f 	f 	 4 2 	e }2~ -  e 
2,1 

in which 

f = 	stress in concrete at any instant 

= 	strain in concrete corresponding to f 

strain in concrete corresponding to the maximum 

. compressive stress f c of the concrete. 

Thy: plot of the equation is shown in Fig. 2.2(b). 

Two sets of computations of elastic deflections have been made 

for studying the effect of concrete strains ecu and eo . The values 

chosen are ecu = .004, eL = .003; acid ~,cu ° .003, eo = .002. 

In addition to the two assuraptions made above implicitly, 

namely, the assumptions regarding the stress-strain relationships 

of concrete and steel, following additional assumptions are made to 

simplify computations 

1. Strain in a cross-section is proportional to the distance 

from neutral axis. 

2. The difference of forces of compression and tension.  

in a section is equal to the axial force applied on the 

section. 
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3. Internal rriom_ent• of resistance of the section is 

equal to the external applied moment. 

4. Ccncrete"doas not carry any tension. 

5. Nc stresses el~ist iii. the concrete or in the 

• reinforcement prior to the start of loading. Hence 

shrinkage stresses are presumed non-existent. 

2.2 	Computation of internal forces- and moment in the column 
cross-section 	 - 

Instead of taking a triangular distribution of stress, the 

exact stress-strain-relationship of concrete based •on Equation 2.1 

is used to determine the force of compression in concrete. An 

expression for this force is given below 

Let ' e ' ,-.:note the strain in the top fibre of concrete. 

Referring to Pigs. 2.2 (c), (d) and (e), we can write : 

C 
e = 	c .,x 

Nd 

The force- of compression in concrete Cc is then given by 

Nd 

C, = ). b.f.dx c 
0' 

Substituting for f, _integrating, and simplifying, Gfl 
2 

f 	e 	e E C., _ 	+ ' (1 - c )b.d 	 2.2 e8 ec ~s 	3® 
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u-i which 

maximum compressive stress of the concrete 

b 	width of the section 

Nd = 	depth of neutral axis from top fibr 

Referring to Figs. 2.2 (a), 	(c), (d), 	(e) and (f), 

the following relationships can be established by consideration of 

geometry and equilibrium 

Nd .d 2.3 
C 	S 

.aC+cs 24 

e (1_a)e_a....5 c 2.5 

C p'  E5  e 	.bd 	0 .e(. <e 2,6(a) 

C 	= p 	E5 . e 	bd 	es 	'Sy  
By 

2.6(b) 

T5  pE5.e9 .bd- 	0es  <e5  2.7(a) 

T5 
 

P. E,. e5 . bd e 	e y  2.7(b) 

in which, 

compressive strain in the top fibre of concrete 

a Sy = 	yield strain for the stol  

d 	 effective depth of the section 

b 	 width of the section 



a.d 	= 

i s 

distance from the tap fibre t:-,  thu centre: of 

compressive reinforcement 

modulus of elasticity of steel. 

•c's 	= 	strain_ in the tensile. Steel 

e 	 strain in the compressive steel 

curvature 

Nd 	= 	distance of neutral axis from top fibre 

Cs 
	= 	compressive force in the compression steel 

Ts 	tensile force in the tension steel. 

Referring to the Fig, 2.2(e), one can obtain the internal 

moment of resistance by taking moment of Cc  and C. about the 

centre line of tension steel. Thus, 

M = C. d •1:Cs. (1-a). d 
	

2.8 

In the normal .linear theory, a triangular stress block of 

concrete is assumed in which case d' is equal to ( 1 - 3 ). In the 

present -case, however, since actual stress-strain relationship of 

concrete has been used throughout the entire range of loading, an 

expression for d' is obtained as follows 

From Fig. 2.2(f), taking moment about N.A., the distance of 

centre of gravity of compressive forec from the neutral axis 'c' - 

is given by following expression 

itid 	 - 

f.x.dx 
U 

C - 
S 	f.dx 

U 
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Substituting for f, integrating and simplifying, 

2 	(1 - . . 	c ) 
„ _ 	Nd. 	'o 

2.9 
LC 

 
(1- 3 	

CO 

 

and 	d' _ (1+c.- T)d 	 2•1f) 

The moment M is the moment at the top of a column.. 

Transferring this moment to the centre line of the beam, we get 

he +db  
T ...b  = 	N. 	h 	 2. 1'. 

c 

in which, 

? b 	= moment at the centre  line of the beam 

he 	- clear height of the column 

db 	= total depth of the beam 

2. 3 	Equilibrium of Forces 

The difference between the compressive force and the tensile 

force must equal the vertical load plus (or minus in the case. of 'tensile' 

column) the effect of the moment in the top girder. That is, 

2Mb 
C + CS  - Ts  =W+ 	 2.12 

b 

in which Lb is the span of the portal frame and W is the axial 

force in the column. 
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2.4 	Yielding of Tensile Reinforcement 

Using Equations 2.2, 2.8(a), 2.7(b) and ^. 12 and replacing 

es. by ::sy , one obtains, 

fr 	c—=----- (1- 	) bd + p' bd E i -a }  
c 	,may 

2Mb 
- pbd Es. e = w± T 	 2.13 

~b 

This is a rather complex cubic equation in two interdependent unknowns 

and I`Arb , Iterative procedure is used to solve such problems. 

Id is assumed to be zero.; for the first cycle and the value of e is 

obtau_ed. 'With this value of :c and with the help of Equations 2.2 

and 2. 3, values ,f C c and C s are- obtained. Similarly, from Equation 

2:10'd' is obtained. Substituting the values of Cc, C and d' in 

Equation? 2. 3, value of M is obtained. From M, Mc is given by 

Equation 2. .1 This value of Mb is now used in Equation 2,13  to 

give now value of e,, and calculations are repeated till by the 

process of progressive convergence, final value: of e is obtained. 

This is thus the value of strain in the top fibre of the concrete when 

steel yields. This value has been denoted by ' ory ' to avoid 

confusion. 

In the calculations, minus sign is used for tensile column and 

W = 0 is used for the case when there is no vertical load on the columns. 
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If at any stage, it is found that the value of e. - as 

obtai:_ed from e has exceeded the value of esy  , Equation 2.2(b) 

instead Uf 2.2(a) is to be used in Eauati"on 2.6. 

From this value of ecy, 'by' the moment at yield, is 

obtained with the help of Equations 2.2, 2. 3, 2. 8 and 2. 11. Curvature 

at yield is given by 

e +e 
cI) = CY SY 

 

y   

Thus the yield point on the 1VM - 95 diagram is "established. 

2.5 	Ultimate condition 

In tihis case, the value of eA  is a known priori namely equal to 

cyu, while strain, in steel les ' is unkm;wn. Using ecu  in place of Lc  

in Equation 2.13  an equation quadratic in c: is obtained. Again this s 

equation is solved by iterative process putting Mb, equal to zero in 

the right hand side for the first cycle approximation. Identical 

procedure as explained earlier for obtaining the yield point is followed 

and the value of os  at ultimate is obtained. Denoting this value of es  

by esu  and using Equations 2.2, 2. 3, 2.3 and 2. 11, value of Mbu 

is obtained. Curvature at-ultimate is given by  

d
` ecu + esu 

u 
d 

This gives the point corresponding to ultimate condition on the M - 

diagram. 
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The three significant points namely, the origin, the yield 

point and the point corresponding to ultimate condition on the M - 

diagram are thus obtained. Other points on the diagram are found 

by assigning values to e, between zero and 	and between
CY 	 Cy 

and o .. Complete M - çt diagram is thus obtained.cu  

A computer programme is written for obtaining the lvi - 

diagram. The programme can accommodate variationin almost any 

parameter. Bsidcs giving the values of moment and curvature, the 

programme also gives values of strain in steel, both tensile and 

compressive values of strain in the top fibre of concrete, position of 

N.A. and the - values of Ij ! For reference purposes, a listing of this 

programme is given in Apndix A, 

2.6 	Thystructure chosen for study 

For the purpose of study, a 'portal frame of the dimensions 

shown in Fig. 2.4(a) is chosen. Different parameters and their 

values chben for study are as follows 	 - 

1. 	Both height h and span Lb  of the frame is taken 

equal to three metres. 

2.. 	Three square sections of columns are taken of sides 

20 cms, 25 cms and 30 cms. 
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3. The beam is supposed to be infinitely rigid in 

comparison to the columns. 

4. The section of beam is taker as a 20 x 30 rectangular 

section. 

5. Ratio of compressive and tensile steel is kept 

equal to unity as it is thee,,,  normal practice in an 

earthquake resistent design, the direction of the 

anticipated motion_ being unknown. 

6. Studies arc r_ a' cl for four different percentages 

of steel in the section namely, equal to 1.0 %, 

1.5%, 2.0 % and 2.5% of the column section at 

each face. 

7. Three different types of concrete made use of in the 

study are 1/1 150, M 200 and M 250. 

The ultimate strain of concrete ecu  and the strain at 

which compressive stress is maximum. eo  , are also varied. The 

study is made using ecu  = 0.004 and co  = 0.003 but one set of 

computation has been made using e„u  = 0.003 and eo  = 0.002. 

8. The direct thrust on each column is kept equal to 

, 000 rigs. This value has been arrived at by 

assuming the live load equal to 400 kgs / crz2  and 

by keeping the slab thickness equal to 10 crr_s . The 

portal frames are assumed to be 4 metres apart. 
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2. 7 	Calculation of deftcottons 

Having obtained the M - 	relationship for a particular 

column section, the next step is to obtain the lateral deflctic, s of 

the portal fray e at each stage of loading. The deflection corresponding 

to a given curvature is found by integrating curvature over the free 

height of the coluarzn. This is done as fellows: 

The column is considered in two distinct portions. One 

which is always elastic and the other, which can yield. Taking both 

the column bases as rigid and assuming the beam to be infinitely rigid 

in comparison to the columns it can be seen, using the notations as 

defined in Figs. 2. 4(b) and (d), that the lateral deflection X of the 

structure is equal to 

= X2 [l2  s;,-_ (g1  + g2) - Y2  cos (g1  + P9) + Y 	:,. 4 

in which Q, 92, 11, 12, Y1  and `T2  are as shown in Figs. 2.4(b)  and (d). 

21  and Y1  are the only terms affected by .yielding: 

Assuming the bending moment distribution as shown in 

Fig.2.4(b), Y2  and Q2  can by obtained as follows 

®2  _ 	c 	(z). dz 
A 

B 
and 	''2  _ 	(z). z • dz 

A 

where z is measured from A in Fig. 2.4(d) . 
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9Z  is equal to the sure of all elemental curvatures 

occurring from B to C or, 

i 
(z) dz 

B 
and again 

C 
z. dz 

B 

whore z is measured from B in Fig. 2.4(d) . 

Substituting for P (z) from Figs. 2. 4(c) and (d), integrating 

and simplifying one can obtain the values of the above integrals as 

given below 
• 12 

92  = 	 2.1 

2 
y .12  

3 

a 	= 11 (f_+  9 ) 	 2.17 
1 2 y 

2 
and 	Y 	-1 (2 P, + f ) 	 2. i k, 

It shoulu be noted that in the calculations for 91  and Y1  

the variation of curvature from. PV  to Pu  is assumed linear as 

shown in Fig. 2.'(c). This is done for the sake of simplicity only. 

Actually, however, the variation in the curvature from 	to 
y u 

is asymptotic in nature as shown by dotted lines in Fig. 2.4(c). 

From Fig. 2.4(b), 

12  -  Tl 
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and 	 L 
-i = F -12 

With the help of Equation 2. 14 the value of lateral deflection 

X corresponding to any given moment can ;mow be obtained. They lateral 

force corresponding to this moment is obtained from 

4T  
P  = h c 

The M - P diagrams for the three sections chosen for 

study are given in Fig. 2. 3. 

A plot of load deflection curve is given in Fig. 2.5 for two 

representative column sections chosen. 

2  • 	Calculations of deflc: -tio` ductility and strain ductility 

Dividing the lateral deflections by the corresponding values 

at yield, deflection ductility ratio 'D' is obtained. Again, dividing 

the strains in the tensile steel by the yield strain of the steel, the 

strain ductility is obtained. 

A computer programme is writton to compute deflection 

ductility and strain ductility. The programme also gives the values 

of lateral load, lateral deflection, the ratio IMJI/I'.My  and the ratio 

P/Py  at each stage of loading. A listing of the programme is given 

in Appendix A for reference. 
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2. 	Presentation of results 

For a particular set of parameters, it is found that the tensile 

column always yields earlier than the compression column. Hence 

the computation of deflectioris is made on the basis of M - diagram 

obtained for tensile columns. 	- 

2. . 	It is readily seen from Fig. 2. 1 that the M -. diagram for a 

given cross section more or less remains unaffected by assuming that 

concrete does not carry any tc-f.sioil. This plot therefore, proves the 

validity of the corresponding assumption made L. the present study. 

2.9..2 	The effect of direct-thrust or the column moments is 

shown in Table 2. 1. It can be seen that the vertical load on the column 

has small but appreciable effect on the yield moment and ultimate 

moment of the column section. 

2. 9. 3{ 	In order to provide a clear picture of the yielding behaviour 

of a system, it is necessary to study the plot of deflection ductility 

of the system versus the stra7n ductility of the. steel of a critical R.C.C. 

section forming a part of the system. In the present study of portal 

frame, such a representative cross-section is of ~'.'_;=: t ns 1 ": t~ 	 tc.y._.,,1._._ 

column. The plots are gieñ in Figs. 2.6(a) and 2.7(a). 

In both the cases, it is seen that the plots are bilinear and 

that the ratio of maximum deflection to the yield deflection is of the 

order of 3. However, a glance at the abscissa reveals that at such a 
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TABLE 2.1 	EFFECT OF UUm ECT Ti-UST ON COLUMN MOME NTS 

p= p'in all eases 

ONLY DL ACTING 

p M -u 
(%) 

(x bd 	kg-ern) (x d2  kg- c3111) 
Tension 	pomp. Tension 'Comp 

0.5 11.32 	17.05 11.84 18.43 
1.0 21.22 	31.138 22.01 34.22 
1.5 31.16 	46.89 32.19 50.01 
2.0 41.15 	62.06 42.34 65.69 
2.5 51.17 	7.34 52.52 81.20 

DL+50%LL 

0.5 12.09 18.17 12.65 19.63 
1.0 21.98 33.00 22.83 35.47 
1.5 31.93 48.01 33.00 51.23 
2.0 41.92 63.19 43.17 63.37 
2.5 51.95 783.49 53.32 82.40 

DL + FULL LL 

0.5 12.85 19.23 13,46 20.96 
1.0 22.74 34.11 23,63 36.72 
1.5 32.69 49.14 33.30 52.44 
2.0 42.69 64.32 4.3.97 68.0 
2.5 52.71 79.62 54.12 83.53 
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value of deflection ductility, the strain ductility is between 20 and 24. 

This is indeed a very high value. The steel at this stage can not be 

trusted to perform its function (. f carrying the tensile stress) 

pn perly. The maximum value of strain ductility which can be 

tolerated is around seven. The ordinate at this value of strain ductility 

in both the cases is of the order of 1.5. This value therefore, appears 

to be the maximum value of deflection ductility which can be safely 

adopted for earthquake resistant design of the structures used in the 

present study. 

2. 9,4 	Figs. 2.6(a) and 2.7(a) also reveals effect of the percentage 

of steel on the X Vs. = plot. In both the cases, it is seen that ~y 

for the same value of =' 	the value of x dec= oases with the 
y  y 

increase in the percentage of steel. The non-linear behaviour and 

hence the ductility of the structure being an important criterion in an 

earthquake resistant design, it therefore, becomes imperative to 

have minimum amount of steel which can be used without affecting 

the strength of the section. In ether words, over reinforced sections 

are to be avoided. 

Y 2.9.5 	The plot of 	Vs. 	give in Figs. 2.6(a) and 2.7(a) 
Y  "Y 

shows that the relationship between them is also bilinear and that 

an increase iii the amount of steel. decreases the value of X for 
y 

the same value of- P 
y 
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2. 

 

a . % 	Depicted on Figs. 2.6(b) and 2. 7 (b) are plots between 

curvature ductility 	and strain ductility 	. These two 
y 	 Y 

plots are also bilinear. However, the deviation from linear is 
X  

less pronounced than in the case of 	Vs . 	an.d 	Vs. 
y 	`y 	y 

plots. Increase in the percentage of steel decreases the value 
P37 

of 	for the same value of Ty   

2.0 • 7 	Fig. 2. 8 shows the effect of change of maximum 

X 
compressive stress of concrete on the plot of 1i  Vs. 	.. The 

y 	`y 
curves are given.for three types of concrete namely, M 150, ' M 200 

and M 250, and for four percentages of steel of 1 %, 1.5 %, 2.0 % and 

2.5 % on each face of the cross-section. The section chosen for 

the comparison is square of side equal to 30 ems. It can be noted 

from these .plots that richer the mix, more is the deflection ductility 

for the same value of strain ductility and for the same value of steel. 

%. 9 . 3 	The effect of change in the values - of eo  and ecu  on 	VS. y  

plot can be seen from Fig. 2.0. The plots have been made taking 

ecu = .004, e J 	0.003 and ecu  = 0.003, eo  = 0.002. 

Percentages of steel are kept 1 %, 1. 5 %, 2 % and 2.5 %. Section 

chosen is square of side 30 cms. It can be noted that for p = 1.5'% 

and p = 2.0 %, the two curves belonging to two sets of values of e,.,u  

and e0 are almc.st overlapping. For  p = 1.0 To and 2.5 %, the two 

curves differ very slightly. It is, therefore, infered that the value of 

cu and e do not affect the x Vs. 	plot to any appreciable 
y 	y 

amount 
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CHAPTER III 

RESPONSE OF ELASTIC AND EldiSTO-PLASTIC SYSTEMS TO 
EARTHQUAKE EXC ITC AT I©N 

A structural system may fail in two ways viz, functional 

failure and structural failure. If the system though structurally 

sound, is no longer able to perform its function for which it is 

originally designed, it is said to have failed functionally. On the 

other hand, if the system is unable to take the design loads, it is 

said to have failed structurally. 

It has been noted during-past earthquakes that many 

structures, in the event of an earthquake, were able tc withstand, 

without much damage, much higher earthquakes than what they were 

originally "designed for. The reason is not far_ to seek. Tho structures 

generally are designed assuming them to be linear. During an 

earthquake, the reserve potential of strength which lies in the 

ion-linear range, cones to the rescue of the structure. in other 

words, keeping the non-linear behaviour of the structures in mind, 

it is possible to design th-em elastically for reduced forces. In the 

evert of an actual earthquake such a structure, though it may fail 

functionally, vJ 1I at least, not collapse. Non-linearity thus ensures 

economy in design, as well as safety of life,  and property. It is 

important, therefore, to study the behaviour of structural systems 

in non-linear range. In what follows, an attempt has boon made 

to examine the dynamic response of elastic and elasto-plastic 
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structural systems subjected to ground motions. Two different 

earthquakes viz. Koyna earthquake of December 11, 1967 and 

ElCentro earthquake of May 18, 1940 have been chosen for the purpose 

of this study. 

3.1 	Equation of motion for a S.D.F. non-linear system 

The equation of motion for a single degree freedom non-

linear system is 

m +cx+R(x) =-m(t) 	 3.1 

in which, 

m 	- 	mass of the system 

x 	= 	relative displacement of the system with 

I 	 respect to ground 

c 	- 	damping 

H 	= 	restoring force function 

y 	- 	ground displacement 

t - = 	time parameter 

and dot denote differentiation with respect to time. 

Dividing Equation 3. 1 by m, we get, 

+2 -f px+ 1 .H (x) - „y (t) 	 3.2 

The restoring force versus deflection curve has been 

assumed to be ela~to-plastic'in nature and is shown in Fig. 4. 1(b). 
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With this form of restoring force characteristics it is possible to 

describe the system by its frequency p damping f and the 

maximum force level Ry  Also it is convenient to express the maximum 

force level in terms of acceleration 'a y  = _m : a expressed as a 

function of 'g is called the yield level of the structure. 

The Equation 3.2 is solved on a IBM 360/44 model digital 

computer, using Runge-Kutta fourth order procedure of numerical 

integration. 

3.2 	Reduction factor 

At-this stage, it is possible to introduce the concept of 

REDUCTION FACTOR. As the name suggests, the term reduction 

factor, hereafter demoted as R.F, for brevity, is the ratio of the maximum 

force attracted by a linear system and the maximum force reached 

In the same sy. ' 	if it were to become plastic at a particular yield 

level. In other words, reduction factor is a factor by which the 

intensity of the earthquake motion may be scaled down so that a 

linear analysis with the reduced ground motions corresponds to the 

ncn-linear analysis with actual ground motions: Therefore, if a system 

goes into the inelastic range then R.F. is given by 

RF = any ay  
where, 	a 	= maximum acceleration for the system if m 

it were linear. 
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3. 3 	Response computations 

Six different systems are analysed for response to two 

acceler ograras viz, longitudinal component of Koyna earthquake and 

N-S component of ElCentro earthquake. The systems chosen have 

periods equal to 0.10, 0.20, 0.50 and dampi sgs equal to 10 % and 

20 % of critical damping. Th;; computer programme works out the 

values of maximum relative displacements, ductility, and the maximum 

accelerations for a particular system defined by 'f , T, and q 

The value,  of qv  is varied from 0.05 to 1.0. 

The accelerograrns for two earthquakes selected for study 

are given in Figs-. .and 3.2. 

3•4 	P sentation of results 

Figs. 3. 3 to 3.6 gives a plot for ductility ratio versus 

reduction factor for two accelerograms viz. Koyna earthquake of 

Dcember 11, 1967 and ElCentro earthquake of May 18, 1340. Following 

inferences can be drawn from these figures. 

3.4.1 	The reduction factor always increases with an increase in 

ductility for a given damping and given time period of the system. 

3.4.2 	The rate of increase of HF with ductility is larger for larger 

periods of the system. In other words, for a given damping and given 

accelerogram the plot between ductility and reduction factors becomes 

less steep for larger periods. 
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3.4.3 	Figs. 3.3 to 3.6 also gives plots between RF and period 

of vibration of the system fk.;r different dampings and for different 

ductility ratios for both the earthquakes. It is noted that for the Kyona 

earthquake, the reduction factor increases with period in the low ranges, 

of period and. decreases with period in higher ranges of period.. 

For FiCentro earthquake however, such is not the case. 

Here, the redo ction factor increases with: .n increase in the period. 

The increase is low in the lower ranges of period and high in the higher 

ranges of the period. 

This shows that reduction factor is very closely associated 

with ground motion.' 

	

3.4.4 	Pt can be seen. from Fig. 3.7 that for a particular period and 

damping, the ductility ratio is higher for lower yield levels. Also it 

is noted that the ductility ratio does not vary with the period in the 

same mariner for two accelerograms. For EL Centro the duotcUt y 

ratio increases with period for short perils and decreases for long . 

periods. For Kyona, ductility ratio decreases with increasing periods. 

Thus no uniform pattern can be established. The choice of the 

ninimum yield levcl chosen for design will, therefore, depend upon 

the particular accelerogram and particular ductility chosen for 

design. 
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CHAPTER IV 

- J  ~ 

C'.fl fITTr, n'lr1 T n̂ TTDT"r —MT TSTfl.r T> 'MT MTTT T) T1 L: T.iTT1Tl Cr1 TT'rTTT 

The primary idea behind the present study being 

undertaken is to get an insight into the strains behaviour of the 

structural material with increasing load. A relationship between 

deflection ductility and strain ductility is indeed, obtained. However, 

there are many other aspects of the problem which are yet to be 

studied. In the following pages, a discussion of these is presented. 

C 1. 	! In the present study, the behaviour of a rigid jointed, fixed 

base si: gle storey portal frame is examined, The beam is supposed 

to be infinitely rigid. It implies that the moment at the top and 

bottom of a column is always equal and therefore there is simultaneous 

yielding at both of these points. Is it always the case ? The 

answer is no. In practice, ratio of moment of inertia of bean 

and the column denoted by Ib and Ic respectively, is seldom equal 

to infinity. 'Referring to Fig. 2.4(a) and using slope deflection 

equations, one can arrive at the following expression 

2 2 

MBA 	18k1k2+3k1• k2 
4.1 

i; AB 18 'i k2 + 9 k1. k2 + I 

in which, 

k1 = Tb 

Ic 

k2  

-b 
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moment at the top of .column AB 

MAB 	moment at the bottom of column AB 
t 

As an example, let us take k2 = 1 and l~l = 2. 

Substituting in Equation 4.1 and simplifying, we get, 

1 BA_ 	6 	= 0.8571 
MAB 

.' . 	MBA = 	0.8571 MAE 

With the increase e in lateral load, there shall be. a stage 

when MAB will become equal to the yield moment of the column 

section M . At this stage, though the point A has started yielding, 

at point B, moment is less than M and is equal to 0.8571 M. On 
Y 

further increasing the load, MBA will ultimately become equal to Mu , 

the ultimate moment of the column section. The moment at B at this 

stage may or may not reach M, depending upon the ratio k1. But 

its value can be assessed. 'Similarly, the values of the moments 

at points C and D at each stage can also be assessed. 

As soon as any of the four critical sections has yielded, 

Equation 4. 1 is no longer applicable. Since, however, the values of 

My and M for a section can be precisely estimated, a. new equation 

of the form of Equation 4. i can be written using the, slope-deflection 

method. With the help of this equation and by giving incremental 

t 



increase in the moment of the yielded sections beyond l~~y and 

upto M, complete moment diagram history for the column at u 
each stage of loading can be drawn. From the M - 	diagram, 

the corresponding curvatures can be obtained. Then using the 

method indicated in Chapter II, expressions for calculating the 

lateral deflections at each stage of loading can be obtained. 

4.2 	In addition to the contribution of curvature to displacem ent, 

wr thir other affects which c:oitributi to t:? displacement 

1. displacement arising from shear deformations, 

2. displacement caused by the "indentation" of the concrete 

stress block in the bottom and top girders, and 

3. displacement caused by the concentrated rotation which 

takes place at the "fixity" points of the columns due to 

the slippage of the reinforcement along the anchorage 

length. 

In the following, expressions will be given for each one of these 

effects: 

1. 	The deflection caused by the shear deformation is given 

by 

1 . x _ 2 C 

2AG 
4.2 

in which 
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P 	- 	4 M/h :, shear force acting on both columns 

A 	- 	gross sectional area 

= 	shear,modulus of concrete assumed equal to 

E0/2.30. 

2. 	The meaning of "indentation" of concrete 

2t1':.s block is illustrated i x Fig. 4. 1(a). T1 z: ti!~'_.e', the 

bottom and the top girders as elastic half spaces 

and replacing the triangular stress block by an 

equivalent uniform distribution and assuming that the 

indentation does not cxtnd beyond the tensile reinforce-

ment, the following expression gives the value of the 

vertical depression at the middle of the equivalent 

uniform distribution (Timoshenko and Goodier, 1951, 

pp. 96). 

2q c 	d-c/2 c 	d-c/2  1-v -  v= .E (~-1°g c 2 + log c 2 )+1 E a c c 	 c 

4. 3 

in which 

q 	 equivalent uniform stress 

v 	- 	Poisson's ratio for concrete. 
r 	 , 

The angle ® can then be found from 

v 4 A 
d-c 2 
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The contribution of the indentation to the total deflection 

then becomes 

x2  - he 9 	 4.5 

3. 	ThQ: final additional component of the oa.lculatod 

defl ection_- is assumed to have been caused by the slip 

of the tensile reinforcement along its embedded 

length. The slip is calculated based on the assumption 

of a linear distribution of bond stress along the 

development length as indicated in Fig 	1(a)  The 

development length is found from the expression. 

Df 
T 

1 	4u 	 4.6  

in which 

D 
	

diameter of the bar 

U 
	 unit bond stress. 

The elongation at the location of the crack then becomes 

if 
dl = '- 	 4,1 

in which 

dl 	= 	elongation of the bar at the level of the horizontal 

crack. 

It is assumed that the width of the crack at-  the same location 

is equal to dl, than angle 8 (Fig. 4.1(a)) is given by 

dl 
9 = d-c 	 4.8 
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th coint ~ibttion of the slip to the total .deflection then 

becomes 

.x3 - h` 	 4.9 

The total displacet%ierit is then found from the following 

expression 

xy = xb +x1 +x2 + X 3 

in which 

xb 

	

	- deflection contributed by the bending evaluated 

by integrating the curvature due to bending 

over the height of the column; 

In the present study above mentioned three effects are not 

included. It should be noted that first and second effects are directly 

proportional to the moment of the section. It means that by including 

these e&,cts the value of displacement in the post elastic range will be 

affected more than the value of displacement at yield ; And, 

therefore, the actual value of ductilities will be somewhat higher than 

those obtained in the present study. 

4. 3 	Lastly, it is clear that the presont study is purely theoretical 

in nature. There is a strong need to examine the validity of the 

conclusions drawn in this study. Unless that is done, 

designers would be sceptical in applying these results directly to 

buildings.. 



- 50 - 

CHAPTER V 

SUMMARY OF RESULTS AND CONCLUSIONS 

Following conclusions are drawn on the basis of present 

investigation regarding the inelastic behaviour of reinforced concrete 

frames during earthquake. 

1. MJl - 0 diagram for a given cross-section remains more 

or less, unaffected by assuming that concrete does not 

carry any tension. 

2. The axial thrust affects the column moments. Whether 

the axial thrust will increase or decrease the column 

moments will depend upon the range of the thrusts and 

moments considered in the thrust moment interaction 

diagram. 

3. Deflection ductility of the order of 5 is never achieved. 

The maximum ductility achieved by the structure is of 

the order of 3. However, even at this value of deflec-
I 

tion ductility, the corresponding strain ductility in the 

reinforcement is of the order of 20. 

4. - For the same strain ductility, deflection ductility 

decreases with increasing percentage of steel. 	~~ 	Ro 

jL 
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5. Richer the mix, more is the deflection ductility attained 

by a structure for the same amount of strain ductility. 

6. A change in values of ,thy: ultimate strain of concrete 

and the strain at which compressive stress is maxi-

mum do not affect the deflection ductility of the 

structure to any appreciable amount. 

7. The reduction factor always increases with an increase 

in ductility for a given damping and given time period 

of the system. 

8. The effect of ductility on reduction factor is large for 

larger periods. 

9. The reduction factor is very closely associated with 

the ground motion. 

10. For a particular period and damping , the ductility 

ratio is higher for lower yield levels. 

The present study brings out the fact that there is a strong 

need to examine the strain behaviour of the structural materials 

while recommending a particular value of ductility. In practice, a 

ductility of the order of 5 will probable never be achieved as the 

concrete will be crushed at a value of ductility of the, order of 3. 

Even at this value of deflection ductility the strain in the reinforcement 
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will be about 20 tin-yes its yield strain. It is, therefore, concluded 

that for a strap-1 ductility of the order f 7 in reinforcem ent, the 

value of deflection ductility is of the order of 2 for the structures 

examined in the present study. 

From the study of dynamic response of structures in 

inelastic range, it is concluded that for obtaining the value of 

minimum yield level and reduction factor for designing a 

structure for a particular earthquake, the actual accelerogram 

of the earthquake should be analysed. , 
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APPENDIX A 

PROGRAMME FOP NOMM:ENT—CURVATURE DIAGRAM 

DIMlEi'JSICON C(4) 
675 READ 201,ECAF59FCBAR,ECULT,EN0T,ESUBY,ACURY9A,P 

Rr,AD 299,M,R D,HBYS,HHC,D ,G 
201 FOR;"'.AT (8E10.4) 
29R FORMAT(8F10.3) 
202 F0R`»AT (6HECAP5=9E10.4/6HFCBAR=,E10 4/6HECULT=,E1,0.4/5HEiNOT=,E10.4/ 

12HP=,F8.4/2HG=,F804/2HA=,F804/2H!-J=,E10o4/7HB BY D=,F804/2HD=,F8.4/ 
212HHT. BY SPAIN=,E100 /7HHEIGHIT=,E10.4/3HDB=,F8.4/9HACCURACY=,E10o4 
3/6HESUBY=,EiC•'.4) 

301 F pMAT (//37HP.?OGRES5I':!E ROOTS FROM CUBIC OF ESUBC ) 
302 FORMAT (15HVALJE5 AT YIELD) 
303 f:7,0R`!IA.T (6HE.5UEC=,E 10,Lfl7H)'Oi'1EPNT =,E 10.4/4'HPHI=,E10o4/ 

16HE5BAR= 9E1P.4/5HN.A.o=,E].0.4/2'-IJ==E10o4) 
301. FDR^-1 ,AT (6HF;ACT0R,5X,5HESUBC,5X,5.HESlJBS, 5X,5HESBAR,4X96HM0MENIT 95X, 

13HPHT , 5X.,4HN!o,A.,7X, 1H 1) 

305 FORMAT(F6.2,7E10o4) 
306 FQRMA.T (22_HFACTOR IS FOR DIVISION) 
307 FORTV1,AT(2BHFACTOR IS FOR MULTIPLICATION) 

308 FORMAT ( 26HRESJLTS FOR TENSION COLUMN) 
309 FORMAT (30HRESULTS FOR COMPRESSION COLUI iN ) 

PUNCH2O29ECAPS,FCBAP9ECULT,ENOT,P,G,A,M;d,R,D,HBYS,HC,DB,ACURY, SIUBY 
L=1 

82 PUNCH 309 

GO TO 578 
8]. PUNCH 308 

678 ECOLD=l. 
RHS=O, 

ESUBC=0. 
ESUBS=ESUBY 
TSBAR=P*ECAPS-=ESUPY 
CSB4R=G*TSBAR 

PUNCH 301 

 

1008  CALL CO1 (FCBAR, ENOT , G 9 P, ECAPS -.A , ESUDS, TSBA.R ,C ) 

C(4)=C (4) —RHS (ESURC+FSU0S ) 
C  Cal GENERATES 7_FRC RHS 

CALL CUBIC(C,IC,RCOT) 
IF( IC) 1028,100,1028 

100 ESUBC=ROOT 
KODE=1 
ESBAR= (1.—A) ESUBC—A*ESUBS 
IF) ESB:AR—ESUEY)1.2,2 

2 KODr=O 
CALL CO2(FCE AR,ENOT,CSEAR,TSBAR,ESUBS9C) 

CC )=C(4)—RHS*(ESUBC+ESUBS) 
CALL CUBIC( C,IC,ROOT) 

IF(IC) 1028 101, 1028 
101 ESU3C=00; T 

 

I  CALL CClQQ(FCSAR,ESUBC,El',IOT,ESUBS,KODE,G,P,ECAPS,A,ESUBY,HC, 
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1DB, if, R ,D ,  HBYS, L, EN , 7J, RHS , ZPJIB 
PUNCH201 , EsUE: 
PCTG=((ESUBC-SCOLD)/ESUFC) 
PCTG=A.BSF(PCTG) 
IF( PCTG-ACURY)1001,1001,1002 

1002 ECOLD=ESUBC 
GO TO 1000 

1001 PHI=(E-SUBC+ESUBS)/D 
RHSYD=RHS 
ECY=ESUBC 
PUNCH 302 
PUiNCH303,ESUBC,ZNIB ,PHI ,ESBAR ,EN ,ZJ 

C  PRESCRIBING VALUES OF ESUBC 
IF( ESUBC-ECULT)1009,1016,1016 

1009 READ299,FLAST 
PUNCH 306 
PUNCH 304 

1010 READ299,FA.CiR 
• ESOLD=O. 

ESUBC=ECY/FACTR 
RHS=O. 
ESUB S= 0 . 
CC=FCBAR"ESUE: ESUBC/ENOT  - 
CC=CC-, (1 O-ESUBC/ (3• "EN\JOT) ) 

 

1004  CALL CC'3(P,ECAPS,A,G,CC,ESUBC,C) 
C (3) =C (3) -RHS* (ESUBC+ESUBS ) 
CALL QUAD(C,IC,ROOT) 
IF (IC) 1028,1;•2,1028 

102 ESUBS=ROOT  
• 	

V 
KODE=1 
ESBAR=(l.-A) ESUBC-A'ESUBS 
IF( ESBAR-ESUFY)10,11,11 

11 KODE=0 
CALL C04(P,ECAPS,CSBAR,ESUBC,CC,C) 

C(3)=C(3)-RHS*(ESUBC+ESUBS) 
CALL QUAD(C,I:,ROOT) 
IF( IC) 1028, 103, 1028 

103 ESUBS=ROOT 

 

10  CALL CO100(FCBA~,ESUBC,ENOT,ESUBS,KODE,G,P,ECAPS,A,ESUBY,HC 
1DB,'tWJ,R,D9HBYS,L9EN,ZJ ,RHS 9ZMB) 
PCTG=(ESUBS-E3OLD)/ESUBS 
PCTG=ABSF(PCTG)  V 
IF(PCTG-ACURY)lO03,1303,1005  - 

1005 ESOLD=ESUBS 
GO TO 1004 

1003 PHI=(ESU3S+ESUBC)/D 
PUNCH 305,FACTR,ESUBC,ESUBS,ESBAR,ZPIB,PHI,EN,ZJ  V 
IF(FACTR-FLAST)101O,i011,1011 

1011 FACTR=1. 
ESOLD=O. 
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PUNCH 307 
• PUNCH 304 

RHS=RHSYD 
ESUBS=ESUBY 

1015 ESUBC=ECY', FACTR 
IF( ESUBC—ECULT)1_025,1026,1026 

1026 ESUBC=ECULT 
1025 CC=FCBAR*ESUEC*ESUBC/ENOT 

CC=CC- (l.—ESUBC/(3.*ENOT)l 
103c CALL C005(G,P, ,ECAPS,ESUEC,TSBAR ,CC ,C) 

C( 3 ) =C (3) —RH.5* ( ESUBC+ESUBS ) 
CALL QUAD(C,IC,ROCT) 

IF( IC) 1028, 104, 1028 
104 ESUBS=ROOT 

KODE=1 

ESSAR= (1—,^ )*ESUBC—A* ESU3S 
IF(ESCAR—ESUBY)15,16>-16 

16 ESU3 S= CC/ (RHS—CSB.AR+TSBAR) —ESUDC 
K ODE =0J 

15  CALL CC100(FCE:477,ESUBC,ENOT,ESU3S,K0DEaG,P,ECAP5,A,ESUBY,HC, 

1D(3 a''JV, R , C), HSYS, LEN, ZJ, RHS , Z iiE 
PCTG=(ESUBS—ESOLD)/ESUBS 

PCTG=ABSF(PC1G) 

IF(PCTG—ACUR`r)1021,1021,1022 
1022 ESOLD=ESUBS 

GO TO 1030 
1021 PHI=(ESUBS+ESUBC)/D 

PUNCH 305,FACTR,ESUBC,~SUCiSgESEAR,Zf1~3,PHI,EN,ZJ 
IF(ESUBC—ECULT)1027,1029,1029 

1027 FACTR= FACTR+O 5 
GO TO 1015 

1016 PUNCH1017 
1017 F0R" AT (55HC0NC STRAIN IS ULT buHEN STEEL YIELDS  

GO TO 1029 
1028 PUNCH 1031 
1031 FORMAT (1 4HROCT IS ABSURD) 
1029 L=—L 

IF(L)81981,84 
84 GO TO 675 

676 STOP 
END 

SUBROUTINE CUBIC(C,IC,ROOT) 
DI'iENSLON C(4),R(1) 
IP=2 

AO=C(4)/C(1)' 
Al=C(3)/C(l) 
A2=C(2)/C(1) 
EX=10/3. 
IF(C(4))30,29,30 

29 R(1)=00 

GOTO 1034 
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30 Q=(A0—A2- A1/?a+2.*A2*A2,A2/27.) /2. 
IF(0)1010,100S,1014 

1008 Z=0 
GO TO 1032 

1010 Q=—Q 
IP=1 

1014 P=(A1—.A2*A2/3®) /3. 
P3=P-*P*P 
Q2=Q-`Q 
PQ.=P3+Q2 
IF (P0)31,32,33 

31 Z=-2.-SQRTF(—P)*C0SF(ATANF(S RTF(—PQ)/Q)/3.) 
GO -  TO 1028 

32 Z=-2.::Q:C*EX 
GO TO 1028 

33 SPQ=SQRTF(PQ) 
IF(P)34,35,36 	- 

34 Z=—(y+SPQ)*;;EX—(Q—SP0);;:EX 
GO TO 1028 

35 Z=—(2.;;Q)**EX 
GO TO 1028 

36 Z=(SPQ—Q)*%SEX—(5PQ+Q)**EX 
1028 GO TO (1030, 1032),IP 
_030 Z=—Z 
1032 R(1)=Z—A2/3o 
1034 C(2)=C(2)+R(1)-=C(1) 

C(3)=C(3)+R(])*C(2) 
CALL QUAD(C,IC,R00T)' 
IF(IC)61,62,61 

61 IF(R(1))63,64,64 
64 IC=o 

ROOT=R"( 1 ) 
GO TO 63 

62 IF(R(1))63,65,65 
65 IF( ROOT—R(1))63,63,66 
66 ROOT=R(l) 
63 RETURN 

END 

SUBROUTINE QUAD (C,IC,ROOT) 
DIME NSION C(3)" 
A=C (1) 
B=C (2) 
AC=C(3) 
IF(A)81,82,81 

82 ROOT=—AC/B 
GO TO 44 

81 D2=3^B-40*A*PC 
F=-6/(2.*A) 
IF( D2)45,42,4i3 

42 ROOT=F 
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GO TO 44 
43 D=SQRTF(D2)/(2."A) 

ROOT I=F+D 
:OOT2=F-D 
1F(ROOT1)51i52,52 

51 IF(ROOT2)45,62~62 
52 IF(ROOT2)6U EU,63 
63 IF(ROOT1-ROOT2)60,5U962 
60 ROOT=ROOT1 

GO TO 46 
62 ROOT=ROOT2 

GO TO 46 
44 IF(ROOT)45,4546 
45 IC=1 

000T= 10009 
GO TO 47 

46 IC=O 
47 RETURN 

END 
5UBR0UTINE CC1(FC6AR,ENGT,G,P,ECi PS,A,ESJb3 TS6AR;C) 
D1klENS10N C(4) 
C) 1 ) 	FC13AR / (3. *Ef`IOT* ERO T ) 
C(2)=(FCBP-,R/ENGT+G*P;;ECAPS) (!.-A) ) 

.C(3)=r; P;;EC FS- ( 1«-2.0 „A) "ESUBS-TSBAR 
C) 4 	TSBAR-` ESUB5-G^ P%; ECAPS* A*ESUES ' ESUBS 
RETURN 
END 
SU3ROUTINE CO2(FCBAR,ENOT,CSBAR,TSBAR,ESUES,C) 
D1~(Ei'1SI0N C(4) 
C(1)=-FCBAR/ (3. EN0T-*EN0T ) 
C(2)=FCBAR/SNOT 
C(3)=CSBA.R-T55AR 
C(4)=C(3)*ESL.S3 
RETURN 
END 
SUBROUTINE CO3(P,ECAPS,A,G;CC,ESUBC,C) 

DIi'•1.ENISI0N C(S) 
C(l)=-P*ECAPSV (1.+*G) 
C (2) =P * ECAPS" — SUDC" (C -2,*A (3-1. ) 
C( 3 )=CC+GP',ECAPS-*( 1.-A) * ESUBC `ESUUC 
R E T U R I`) 
END 

SUBROUTINE C04(P,ECAPS,CSBAR,ESuBC,CC,C) 
DIi4EN!SI0N C(3) 
C(1)=-P*ECAPS 
C( 2) =C SBAR-P;*ECAPS- ES'JBC 
C( 3) =CC+CSP AR.*ESUBC 
RETURN 
END 
SUBROUTINE CC5(G,P,A,EC;';PS,ESUEC,TSBAR4CC,C) 
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DI"ENSION C(3) 
C(1)=—G;;P;;A*ECAPS 
C (2) =G P-1 ECAPS* (1 .—Z. *A H ESU6C--TSBAR 
C(3)CC—TSBAR-~ ESUEC=G"P:,ECAPS'l (1.—A) * ESUBC*ESUBC 
RETURN 
END 
SUBROUTINE CO100(FCBAR,ESUBC,;SNOT,ESUBS,KODE,G,P,ECAPS,A,ESU5Y,fHC- 

1DB,N,R,D,HBY ,L, EN, ZJ,RHS,2MB) 
CC BAR =FC BAR -'FSUBC*ESUBC 
CCBAR=CCBAR * (1 .—ESUBC/3. *ENOT ) 
CC3AR=CCBAR/ (EN0T* (ES''JBC+ESUB5) ) 
AL= L 
_IF(KODE)3,4.3 

3 CSBAR=G*P;; ECAPS-* ( ( 1. — A) ^ ESUDC—A* E5UBS ) 
•GO TO 5 

4 CSB.AR=G%; P"ECA°S*ESUBY 
5 EN=ESUB~/ (ESL'BC+ESUBS ) 

CNUMi=1. — (3.*ESUBC/(8.*SNOT) ) 
CDEN=1.—(ESUEC/(3o*ENOT)) 
EC=0. 666667* E,N"CNU1M/CDEN 
ZJ=1.+EC—EN 
1/II=CCBAR*ZJ+CSBA.R-* (1.—A ) 
Z=(HC+DB)/HC 
ZM3 =ZM 4" Z 
RHS=(WJ/ ( R -=D%- C, ))+Z --=;L --Zi,)B --D --HBYS/HC 
RETURN 
END 
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PROGRAMME FOR OBTAINING DUCTILI T IES OF STRAIN AND DEFLECTION 
C C CALCULATION OF DUCTILITY CURVES  RAV PRA:  16030 

DIMENSION ZH(10),PHI( 10),STN(10) 
READ 1 C , N'DATA 
DO 1 N=1,NDATA 
PUNCH 15,N 
Rc-D li.,P',G,f~,D,HEJS,HC 
PUNCH 16,P,G,'R,D,HBS,HC 
READ 10,NX 
READ 11, (ZN(I),I=1,NX) 
READ 11,(PHI(I),I=1,NX) 
READ 11 , ( STN (I) , I=1,NX )- 
READ 11 , ZMY, PI-1IY,STNY 
PUNCH 19,ZMY,PHIY 

10 FORMAT( 15 ) 
11 FORMAT(8E10.4) 

PY=(7 IY*R*D*D*D)/(250.*HC) 
DEFY=PHIY*HC-' -IC/12a 
PUNCH 17,PY 
PUNCH 18,DELY 
PUNCH 14 
DO 1 1=1,iNX 
A=ZfMI( I) 
fH=PHI (I ) 
ZMR=A/ZMY 
P=PY*ZMR 
PHIR=B/PHIY 
STNR=STN (I) /STNY 

CALL DELTA(HC,ZMMMIY,A,PHIY,B,DELY,DELR,DEL) 
PUNCH 12,P,DEL,ZMR9PHIR,STNR,DELR 

1 CONTINUE 
12 FORMAT (6(E10.4,3X) 

.1,4 FORMAT(4X,1HP,8X,1QHDEFLECTION,3X,3HZi,'iR,10X,4riPHIR,9X,4HSTNR,9X, 
14HDELR) 

15 FORMAT (///12HDATA SET NO. , I2 ) 
16 FORMMAT(2HP=,E1-0.4,1H-,2HG=,El0.4,1H„2HR=,E10.4,lH„2HU=,E10.4, 

11H, ,4HHBS= , E 1 .4 , 1H , , 3HHC= , E 10.4 ) 
17 FORMAT(/11HiP AT YIELD=,E1G04,6HTONNES ) 
18 FORiMiAT (2DHDEFLECTION AT YI `LD=, E1394,4HCIM1S5 ) 
19 FORM4T(4HZHY=,E10.4,1H,5HPHIY=,E10.4) 

STOP 
END 
SUBROUTINE DELTA(HC,ZiM'iY,A,PHIY,B,DELY,DELR,DEL) 
0L2=HC*ZiMY/(2.' A) 
OL1=u.5*HC-0 L2 
TH2=0.5 *PHIY*0L2 
Y2=PHI.Y* 0L2* oL2/3. 
TH1=0.5*OL1*(B+PHIY) 
Y1=QL1*QL1*(2.*B+PHIY)/6. 
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TT=THl+T H2 
DEL=2.*(0L2*SINF(TT)-Y2*COSF(TT)+Yl) 
DELR=DEL/DELY 
RETURN 
END 



62 

NOTAT IONS 

The symboles used in the present text are deed V.iheru they 

Eirst appear, For quick reforence the notations are given below in 

alphabatical order: 

cc 	Compressive force In the colrote 

Ccmpressive force, In compression steel -

B. 

 

Modulus of elasticity cf 8teol 

Ib 	Moment of inertia of the beam 

Moment of inertia of the column 

M 	Moment 

= Moment in the beam 

Nd 	Depth of nutral axis 

P 	Lotoral load at the top of th.p portal frame 

R 	Restoring force function 

T 	Time period of the system 

Ts 	= - Tensile force in the tensile stool 

W 	Direct thrust in the column 

X 	Lateral dzflection 

a 	Acceleration 

ad 	Depth of compression stool from top 

b 	= 	Width of the section 

C 	 Damping 

Distance of the C.G. of compressive force cf concrete 
from neutral axis 
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d 	= -, Effective depth of the section 

d' 	- Distance between compressive and tensile steel 

db 	= - Total depth of the beam 

e = Strain 

CAC 	- 	Strain in the top fibre, of concrete 

20 	= Strain in concrete: at which compressive stress is maximum 

E? 	= 	Strain in steel -

e 	- 	Strain in compressive steal s 

f =. Stress 

f~ 	= Maximum compressive stress in concrete 

g 	= 	Ac c l:.rati n due to gravity 

he 	= height of the column (clear) 

l 	- Ratio of moment of inertias of beam and column 

k2 	- Ratio of height and span of the frame 

m = IViass 

p 	- _ Percentage of tensile steel 

p' 	_ 	Percentage of compressive steel 

q 	= 	Yi-id level 

t - 	- Time parameter 

x 	= R •jative displacement of system with respect to ground 

y 	= Ground displacement 

= Curvature 

= Damping as a p6rcentago of critical. 
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