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S Y N O P S I S 

The behaviour of cylindrical arch dams, has been 

studied under static and dynamic type of loads. Different 

geometrical parameters have been varied. In addit4  on, 

an actual profile of a dam i n a non-symmetrical valley 

has also been analysed. in all cases deflections and 

stresses have been worked out. Finite element technique 

has been used in the analysts.. In the static analysis 

hydrostatic and dead load have been considered. 

Earthquake forces have been represented equivalent static 

lateral loads having three different distribution along 

the height namely, (i.) Rectangular, (i;) Inverted tri-

angular, and (iii) Inverted parabolic. The fundamental 

frequencies and corresponding mode shapes have been 

calculated for the two cases. 
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CHAPTER 1 

IN'TR0DUCT10N 
1~n^1~1/~1~f~1~.'F~1~Y~I~r~l~l~~vrt tw+MrRirrs~rl~ 

Considerable change has occurred in the design 

of arch dams in recent years. The trend now is toward 

higher and thinner arch dams, more complex shapes, and 

adoption to more difficult site circumstances. 

Most recently designed dams are doubly curved, 

that i s, curved ; n both the vertical and horizontal 

planes. By carefully proport; oni.ng arch thi.cknes.s 

along with proper shaping, efficient structural proper-

ties, and economy may be achieved. A number of compre-

h en s7.ve methods for the analysis of arch dams are 

available. These include structural models, tr; al—load 

method, shell theory, finite element method, dynamic 

relaxation, energy method, etc. A brief review of all 

these methods have been given in Chapter 2 and their 

comparison and suitability to adopt for a particular 

site has been discussed. It is found that finite element 

method is a generalized method of structural analysis 

and can take into account any form of geometrical shape, 

thickness variation and boundary conditions and hence 

adopted in the present analysis. 

In the present analysis, the dam profile has been 

assumed to be the assemblage of flat rectangular elements. 

Chapter 2 gives the details of the procedure adopted. 

Because of the time and expense required to 

analyse arch dams in the pest usually only a s, ngle 
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comb,'nation of loads was considered namely, self weight 

normal full reservoir water, and minimum concrete 

temperature. The use of computers has made possible the 

investigation of various other combinations of loads which 

may occur at any particular site. For example, many 

reservoirs operate at a low level during late summer or 

fall.. At this time maximum concrete temp. may occur. This 

combination of load often produces high tensile stresses 

on the intrados of the arch along the abutments. The 

poss4 bili.ty of resonance occurring in a dam as a result 

of earthquakes has generally been Ignored until recently. 

Methods have been devised to estimate the natural frequency 

of a dam, and if resonance is a possibility, to compute 

i.ts effect on the structure. 

All of these loading conditions and the capa-

bility to analyze their effects on an arch dam have a 

direct relationship to the safe, and efficient design of 

such structures. 

One of the more recent trend in arch d:om design 

is to adopt these structures t' wider, the nen--symmetrical 

sites. The idear conf 4 guration for an arch dam site is 

a narrow V—shape. As sites become wider. a greater prop-

ort4on of the applied load is carried vertically to 

the f ounda,t1on in the central part of the dam. To overcome 

this tendency and to keep stresses wi_th 4 n allowable limits, 

the arches must be thickened or shaped to improve their 
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load carrying ability. Increased vertical curvature 

also assists  in keeping the dam relatively thin and 

controlling a tendency for tensile stresses along the 

abutment extrados. 

Non-symmetrical sites present a particularly 

difficult problem for designers. There is a strung 

tendency in such sites for the load to go to the steep-

est abutment. The dam must therefore be proportioned 

so that the load will be uniformly distributed throughout 

the structure. 

Six cases of cylindrical arch dams with different 

parameters have been considered to evaluate deflections 

and stresses. Deflections and stresses have been cal-

culated for hydrostatic and dead loads. Earthquake 

forces has been replaced by equiv .lent static Load. 

Three types of load variations along the height of the 

dam has been considered  keeping the free cantilever 

base moment the same and type of load di* stribu tion which 

will give worst results has'been discussed. Lastly, the 

static and dynamic stresses have been combined for 

different cases and the total stress distribution curves 

have been drawn for some typical cases. E4 nite element 

method has also been used to determine the fundament 'l 

frequency and corresponding mode shape for some typical 

cases. 

Because of the inherent safety and outstand; ng 

J 
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aesthetic qualities of arch dams, prospects for the 

future design and construction of these structures are 

unlimited. Continued and increased emphasis on founds-

ti on investigations is essential. Arch dams may be 

built in wider and more difficult sites. 

After studying the behaviour of cylindrical arch 

dams in symmetrical as well as non-symmetrical valley 

with different geometrical parameters we conclude that 

for economical and safe design V-shaped valley should 

ire preferred but it will be economical to construc-: 

an arch dams in other. shapesof valleys also as compared 

to gravity dams. Central angle of dam should lie between 

95 )  to 110°  and an increase in thickness vertically as well 
gives 

well ?.s hori.zontllyZ an economical design. The weight 

of an arch dam is small i,n comparison to gravity dam. 

Therefore the inertia forces are also small a.,-d cons-

equently the stresses due to earthquake load is very 

small as compared to the stresses due to static loads 

particularly in moderate earthquake zones. 



CHAPTER 2 

REVEW 0 _THg METHODS OF ARCH DAM ANALYSIS 

The use of the arch dam form for dam design has 

increased considerably in recent times, about 500 of. 

this type having been constructed in the last 25 year 

The first interim report on _research into the Design 

of Arch Dams was published In September 1963. A wide 

variety of methods are available for the analysis of 

dams of simple geometrical form. New methods were 

cont~. nually being tried out. These would need to be 

applied to the curved and doubly curved dams before being 

recommended for general use. 

There are sevoral techniques available for analysts 

as given in second interim report (18). The methods, both 

analytical and model techniques, will undoubtedly have 

a much broader application in fields other than arch dam 

de s4 gn . 

In any discu ssi cn of a proposed method for the 

analysis of a structure it is always very important to 

investigate the basic assumptions made. These assumptions 

may be of amore or less mathematical nature but neverthe-

less they will also have a physical interpretation. Tt 

is by the examintion of the basic assumptions that 

the similarities and divergencies of different methods 

of analysis can be found. 



-6- 

Some  of the following methods have been described 

briefly and compari son of proposed methods ha, s been 

given considering various factors and suitability of 

methods. 

1. The three dimensional solution, 
2. Trial load method, 
3. Complete adjustment method, 
4. Method of Energy, 
5. Shell Theory, 
6, Fin'te Difference Approach, 
v7. Finite Element .Method. 

Three dimensional solution of arch dams 

The relaxation process3)  for the stress analyst s 

of arch dam was used in 1956. This process enables 'mathe-

matical equations to be solved numer;cally to any 

desired degree of accuracy. The exact elastic equations 

for the dam wore formulated in terms of displacements 

instead of the more usual stress funct; cns, and were 

solved by relaxation. Calculations were made of the 

stresses due to gravity loads and water pressure act,* ng 

separately and also of those due to variations in 

tempo rature. 

A cylindrical-polar system of co-ordinates, r,z, 

and 8, was adopted and the displacements of any point 

denoted by u(radial), v(vert 4 c=al) and w(tangont 4 al), 

each taken positive in the correspondng positive 

d4rectIon of the coordinates r,z,and e respectively. 
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At any point the six components of stress can 

be expressed in terms of the three displacements by 

the relat;.on (1) given in Appendix A. Thus, once the 
k 

displacements have been determined, values of the 

stress components may be deduced directly from them. 

The displacements themselves are found by sole,  ng 

the three governing different'al equat,ons (2) wh;ch 

result from subst;tut4.on of the expresson (1) for the 

stresses into the equations of equilibrium for the po,nt. 

These equat; ons have to be solved, subject to stated 

boundary conditions to determ, ne the values of u,v, and 

w throughout dam and the adjoining rock-foundation. 

2. TRTAL LOAD METHOD 

The tr.eel load method considers the agreement between 

rad 4 al (hori.zont l) and tangential displacements and 

rotations of the vertical ax4 s of the arches and cantilevers 

but Ignores the vert 4 cal displacements and the rotations 

of horizontal axis. Conditions of e qu; l 4  brium are taken 

into account only for radial, tangent; al, and vert1cal 

twist loads and for certain internal forces since not all 

of these forces are considered. This method cons4ders, 

on the arches, radial, tangential, Sand twist tr; angular 

unit loads not related to the position of cantilevers. 

Thus, the conditions  set at each , ntersect 4  on of elements 

are only approximate. The f4  nal. value of  such loads was 

determi nPd by tr,  al until equal d`fcrmat 4  ens were obtained. 
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3. COMPLETE ADJUS ME ITT ri ETHOD(13 ) YMr•wwf—t—Arf.nP~1M1~ ~F+rw~wut+—P~1~'r~lA^'n 

The complete adjustment method ; s based on the. 

principles used in the theory of shells, .e., the condit-

ions of equilibrium of an element ( voussoir )limited 

by twi vert? c'l s and two horizontal planes and the 

cond~t;ons of compatibility of deformations (displace-

ments and rotations) undergone by that element. Tn those 

planes the voussoir is acted upon by 10 internal forces 

in 	its faces and mass by external loads. The equations 

of equilibrium be ,ng six, four conditions of compatibility 

will be necessary to find the internal loads. Since 

shearing and twist forces are not independent, the 

Internal forces can be reduced to eight and the equat;ons 

of equilibr;um to five, only three equations of compati.-

bi l 4 ty being necessary. 

Tn the arches or cantilevers considered, the forces 

in the horizontal and vertical forcos are ass.milated to 

external loads. The i.ntegrat 4 on of the equations of 

equili brium and compatibility i s made by simply consider-

ing certain unit loads on the voussoirs of intersection 

which produce certain deformations of the arches or 

cantilevers. The total internal loads are determined by 

a system of equations involving all those voussoirs of 

Intersection. This method makes the method cmpletely 

exact, allowing a correct determination of all the 

principal stresses in the dam. When the curvature of the 

dam i s different at each level, the cant; levers are 
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two sted elements generated by two hor4 zontal (rad; al ) 

segments perpend4dular to the level 1-nes upstream and at 

a unit di stance at the upstream face. For double curvature 

shells, arches and cantilevers could be taken as the same 

type of twisted elements normal to the upstream face. The 

arches could be a half element from each abutment to 

the crown. For the analysis of displacement and deformat-

ions, - effect of twist and shear, equat,ons of equilibrium 

and conditions of compatibility, and analys, s of arches 

and cantilevers, reference(13) may be consulted. 

4. METHOD OF ENERGY(17 

Th4 smethod 4 s based on by mi.ni_mi z; ng the functional 

representing the internal energy of stra , n diminished 

by the work done by the external forces. Adopt cyl 4 ndrical 

coordinates. The strains in a plane situated at a distance 

z from the middle surface are then given by the relations 

E xz 	_ Z ,~2w 
ax  ax2 

Eyz = ,.R_ d_v + V_ + z.- ( - aW) R+Z L dy R 	ay R 	dy ], 

rz = 	+ Z(1 , U _ ~2W ) + _L_(3   ~ _ 7z .s?2W~.. 
ax 	R ax 	ax ay 	R+Z ay 	ax ay 

where R = radius of meddle surface. 

For a plane condition of stress, the strain energy 

per unit volume Ev at a distance Z from the middle surface 

i s given by: 
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E v = ,-....  I~ 

where E i.s the modulus of elasti.c4.ty and p the. po; sson's 

rat; o for the dam. 

The energy per unit surface area of the middle 

surface ES is then given by 

j+h 

Ev (R+ ) dh 

-h 
where h is the half thickness of the shell and R+ 

represents the var, ation of the length of the fibres 

with Z. Substituting the expressions for the strains and 

mak 4 ng the approx4mat on that (1+ R)-1 = 1 - R 9 the get 

E = 	~( 4U )2(V + w )2 (l- ) (-8u + 4v_)+2 Su (c~v + w ) 
ay ax 	ax 8y 

[ 
2  2 2  2 
, )2+(~- )+2 (1-~ )(axay )2 3(i—p) 	ax 	ay 

_ Ru .v_ a2w  P ^ a/12w 
• 
~2w - R ax w/2z 2 	

V x7 	~y(, 	T • 	• tr 

	

1,, au d2w 	3 (1 ) 	6v 	 2~'~ 
+ 
	- 

 R ay 0 x Oy ~' 	~ 0x ' Ox Oy  

 

Ov 2 	OV +3(L~)(ax)_-7()2` 2w 	2w —+ 

R

.~21. 

	

Y 	ay 	J 2R 	R 	R 	ay 

Work_dc}ne_by the_external_forces 

The external f ~rces act', ng on the dam can be 

resolved along the three directions of the axes. Supposing 



the three components at any point x,y to be X, Y, Z 

the work done can be written as Xu+Yv+'Ztnr, since the 

contribution of X,Y, Z themselves to the displacement 

u,v,w ;.s very small. 

FUNCTIONALAND ITSECQUIVALENT EXPRESSION ASASUM 

The functional to be minimized thus becomes 

f f E s  dxdy-f f (XU +Yv+Zv)dxdy, the integration being 
$ 	 s 

done on the entire middle surface of the dam. 

We find that the expression for E s  contains w and 

its second derivatives whole the derivatives of u,v 

are of the first order only. This suggested the use of 

separate networks for u,v,w, the nodes for v being placed 

I n the middle of the nodes for w n the x-direct ,  cn. 

Now we define small surface areas with respect to the 

networks. Two types of such unit areas are needed-Type A, 

having a w nod at its centre, the v node at the m 4 ddle 

of the two s;des y = constant and the u nodes on the 

middle of the sides x = constant - Type B, having the w 

nodes at the four corners, 'tho v nodes at the middle of 

the sides x = constant and the u nodes at the middle of 

the sides y = constant (fi.g.1). 
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unit area type A 

v -v 
ay -

I
`" Y 

du 	ua --u 2 
~X Zx 

62w = w4+w2-2wo 

ax ©x 

a2w wl+w5-2w~~ 
I y 

un4.t area type B 

v -v Ov p-wg 
cox Y 	4x 

au _ _ _ 	 ' At 0 aY py  

at 0 a2w 	WA'WB+"NC-WD 
axay 	x y 

Type A ;.s used for expressing the terms in E s given by 
E SA , where 

ESA - Eh 2 u )2+(~v_ + W)2 2 cu ~,3v + w) + --Eh3  
„ a x 	dy 	R 	ax ay 	R 	2 

1_ 	 3(1-~a )-ax 

c~2w 2 ov c.2w 	w ~2w 	2 au_ c2_w 

	

+ ( y' )- ~R' ~ 	+ 2 ax ' aye - R cox * ax7 

- L (Lv)2- 2W('~v)+ 2w• 2̀W 
R 	Y 	R ~'yR 	1y -I 

wh ,1e the type B ;s used for express4ng the rema;n-ing 

terms given by EsB where 
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E 
SB - 

_ 	
2 h_ 1(1- )( u + 	)2+ Eh3P_

i 
~2(1-- )(32WP)2 

2 
1-~  3(1-r )  c7xcy 

+ 1 	 . ~u . a2w - 	)  av .s_ + 3 (1 !-) (ay )2 
R 	ay 	axay 	R 	a c 	axay 	27 	ax 

It is supposed that the average energy in the unit 

surface area is given by the energy at its centre, 

,where the derivatives are calculated in the finite 

difference form. The E S so calculated, when multiplied 

by the area of the unit surface gives the contribution 

to the integral from the unit area. The sum t0tai of 

the products of E s with the areas, so obtained, gives the 

equivalent of the first part of the functional: 

ff E sd xdy = Z 	E SA©x~y + 	2 	E SB ~xay = S1 
s 	 all unit 	 all unit 

	

areas of A 	areas of B 

The equivalent sum has the squares of the d4 splacements 

u,v,w or the products of . two displacements, the coeff-

4 c ,ents of the terms depending upon the values of E,p, 

h, Ft, tx and Ly. 

Similarly, three different unit areas will be needed 

to express the work done by the external forces, these 

having r~ spocti.vely the notes u,v,w at their centres 

and denoted by -'ype D, type C, and type A, giving the 

equivalent relation: 

f f (Xu+Yv+Zw)dxdy 	2 	XuLx6y + E 	YvLxLy 
s 	 all unit 	 all unit 

areas of D 	areas of C 

+ E 
all unit 

areas of A 

Zw Ixty = S2 
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D1 spl 2cement s and Stre sse s 

The functional, modified by the elimination of some 

displacements by the use of boundary cond~.t. on s, can now 

be differentiated with _respect to each reamining di s-

placement, thus obtaining the required number of linear 

simultaneous equations. The di.fferenti ation of S1 

gives the matrix wh; le that of S2 gives the second term. 

The matrix so obta4 ned is symmetrical. Once the dis-

placements are known the stresses can be calculated. 

5. SHELL-THEORY( 17 ) 

Theory of shells for constant angle arch dams is 

given in Appendix B. There ; s no doubt that the most 

precise and comprehensive theory of thin arch dams can 

be created on the basis of the shell theory. But for 

thicker structures, shell theory may not present the 

reliable results. For such structures the moment theory 

of shells is to be used. However, in order to apply ,such 

a theory successfully to thicker structures of shell 

dams it i s necessary for the equ4l i.brium conditions of 

the differential element of the arch--dam-shell to 

~nclude also the transverse forces with their components 
i n directions both normal and tangential to the shell. 

Accord4 nggto Lombardi, there ' s very good ground for 

applying the shell theory to arch dams which have a 

ratio of we,11 thickness to rad; u s d/r < 0.2. 

This method is deduced by starting from the complete 

system of differential equations of the moment theory 
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The sum, . so obtained, has the d;. spiacements multiplied 

by coefficients depending upon the values of X,Y,Z 

and 6x and Ley. 

We are thus able to replace the integralsby two 

sums, one Sl hav; ng the second power of the displacements, 

and the other S2 having the first power only. if the 

three displacements are taken at the same node and the 

der4vat ves found in the usual way, us;ng one un ,t area 

only, the result;ng matrix is not unique, for certa4 n 

forms of the boundary. 

Bound a,rr_Cond t-ions 

Boundary _conditions at the free edge are auto- 

matcally satisf4ed. The conditions at the rock boundary 

will, in general, correspond to displacements ur, VrI wr 

and rotations ( )r at any po,nt on the boundary. If 

node concerned to be situated at the boundary, the 

value of the displacement gets fixed. If the rock bound-

ary passes in between the nodes, the displacements at 

the two nodes looted on the two sides of the rock line 

can be interrelated w4 th the rock displacements in the 

following manner, 

uly2+u9yl  vly2+v2yl - urn ~._yl+y2 .._.. - yr 

wly2+w2yl 
 w2-w1  w ....._..___ _.e = w and 	_ (,~~. ) 

y1+y2  r  y1+y2  ay r 
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• of shells as devised by V.Z.Viassov (21), represented by 

forces. A typical feature In this respect is that the 

Influence_of the transverse forces . Ql and Q2 is taken 

;nto considerate on both -in the equi_libr,um cond;ti on 

expressing the absence of forces in a direction normal 

to the middle surface, and in the two d4recti.ons which 

are tangential to -it. 

In view of the fact that arch dams are complex 

shell like structures with varying thickness in both 

directions, with double curvatures and complex support- 

ng contour, an adrn~ ssible s4 mpli.fi_cat4on has been mada 

of the system of differential cond7_ti.ons. This s4mpli-

ficat;.on consists in neglect 4 ng the influence of the 

tangential forces,, 

dS = 	= 0 
a x ay 

This makes it possible to reduce the problem to the 

solution of a s* ngle differential equat4 on in parts al 

derivatives for the sole unknown funct-1 on of the rad ,* al 

d; splacement w = w(x,y). 

The analysis made of the different; al equation 

demonstrates that i t consists of two bss-1 c group of 

terms. Some of them are' not connected with the curvature 

of the shell together with the load term of the r; ght 

side of the equat4 cn. The Other group of terms are 

connected to the curvatures of the shell and express the 



effect of the support 4 ng act4on of an imaginary 

elastically yieldnc foundati.cn. The strongest suppor.-

;ng effect so called Winkler's support4 ng effect which 

s proportionate to the radial displacement of the 

imaginary plate w = w(x,y). 

6. FINITE DIFFERENCE APPROACH(1?) 

In the. finite di..fference approach the differential 

equation defining the unknowns in some system of simple _ 

coordinates is established. Once th-.s equation (0? equations) 

are known they are expressed in terms of a fi_ni.te number 

of the unknown values at fairly closely spaced points 

of the co-card i.nate network. Similar treatment expresses  

the boundary conditions in terms of a discrete number 

of values of the unknown functi ons. Having thus reduced 

the continuum problem to the soiut , on, of a finite system 

of s;multaneous, linear, equations, solution of this 

system is obtained by manual (re l axat , on) methods or by 

use of the digital computers. 

'7 . FYNITE ELE IENT~METHCD, ~,St tic Anal~rsis) (8 917 ) 

STIFFN SSYMATRIX 
iY~+Y.A~i 

There are two different approaches to develop a 

finite  element method for general shell structures. In 

the first approach, the shell IS replaced by an 

assemblage of flat plate elements which are either 

triangular or quadrilateral in shape. Each plate element 



is connected in some fashion to those surrounding it 

and undergoes both bending and stretching deformations. 

The second approach is to develop curved shell element 

that permits exact geometrical representatives of a 

I 	structure. 

FLAT ELNT 

Robert J. Melosh(14) developed a stiffness matrix 

for a thin flat—plate triangular element, capable of 

stretching ; bend-, ng, shearing, and twisting. The 

implied deformation state -Insures that the matrix will 

yield monotonic convergence of strain energy predictions 

with gridwork refinement and lower bounds on strain 

energy. Its successful application to pure bending and 

pure shearing cases indicates that it is useful in 

predicting structural behaviour moderately thick plates, 

i.e. those in which shear deformations may be important 

but the normal stress unimportant. 

O.C.Zienki_ewlcz and Y.K. Cheung(22 ~ derived 

a stiffness matr x for a rectangular element. The 

derivation is more general and can be easily extended 

to cover any type of elastic behaviour. 

The guiding principle is to assume a displacement 

system throughout the element, which while satisfying 

equilibrium  ccndi.tl on s at all points can be determined 

uniquely in terms of nodal displacements. Once th; s 

displacement system is known it is possible to relate 

equivalent nodal forces to the nodal displacements 
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The shell geometry 4 s limited only by the conditions 

that the surface equations be given in the par~metr4c 

form. G.Bonnes, G.Dhatt, Y.M. Giroux, and L.P.A.Rob;chai 4d ) 

derved the curved .tr; angular element for the analysis 

of doubly curved shell. Gordon E. Strickland, Jr. illiam 

A.Laden (19) derived the stiffness matr'x for doubly-

curved tr? angular shell element, su?.table for the analysis 

of general non-symmetric shells. 

S.Ahmad, B.M. Irons and O.C.Zienk .ewicz (1'2) 

degenerated a general curved i.soparametri c thick shell 

element of arbitrary shape. By introduc , ng only some of 

the usual Navier assumptions, these, new shell elements 

can include shear as well as bending deformations. 

The analysis of an arch dam by the finite element 

method i nvolve s the following steps. 

(a) The actual dam is considered to be replaced 

by an equivalent structure made up of a number 

of elements, of f i.n 4 to size, connected together 

in such a way that the continuity in the actual 

structure is preserved to an extent which 

depends upon the kind of assumptions made 

in the finite elem=ent procedure. 

(b) The load-deformation characters sti.cs of each 

element are found. This is usually in terms 

of a stiffness matrix for the element referred 

to coordinates local to that element. 
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simply by application of the virtual work principle. 

CURVED ELEMENTS 

The first atte.npt to develop the curved thin shell 

element was made by Bogner, Fox and Schm; t(5  ). 

Gallagher(10), in h; s Ph. D. thesis, reports on a 

(24x24) stiffness matrix constructed by the standard 

"assumed displacement" method. Mervyn D., Olson and 

Garry M. Lindberg(15)  made an attempt to develop the 

simplest possible non-conform4ng representation for 

a cyl 4 ndri_cal shell element. The radial displacement 

component w is assumed to be a twelve term polynomal 

In x and y, the longff tud,  nal and circumferential 

coordinates of the element, respectively. The in-plane 

displacement components u and v are each assumed -*n 

polynomial form upto linear terms in x and cubic terms 

n y. The expressions for u,v and w are ton subst-tuted 

into the strain energy and kinetic energy integrals from 

shell theory yielding 28x28 st,  ffnes , matrix for cylind-

rical shell element. 

Connor and Brebbia (  ) developed the Stiffness matrix 

for a doubly curved thin rectangular finite element, 

Tahbildar, U.C.(20)  had used the same element in h s 

Ph.D. thesis for the static and dynamic analysis of 

arch dams. B.E. Greene, R.E. Jones, R.N. Mclay and 

D.R. Strome (11)  developed the stiffness and mass 

matrices for shell elements on a doubly curved surface 
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(c) The st4.ffness matrices referred to local 

coordinate system are all transformed to relate 

to a common, global, coordinate system. The 

individual stiffness matrices may then be 

added together to form the stiffness matrix 

for the whole structure. 

(d) Load vectors are obtained for each element for 

water, gravity and temperature loading referred 

to local coordinates. These are then transformed 

to the global coord4  pate s and added together 

to form the load vectors for the whole 

structure. 

(e) From the structure stiffness matrix and the 

load vectors, the global displacement components 

at each node are obtained. Stresses, either 

local  or global can then be computed. 

2. Referring to the first of the above steps, we have 

to choose the shape and size of the element, ;_0e. 

triangular, rectangular etc. For cylindrical shell 

structures, the rectangular shape will :,bvi_ously be 

preferable. 

3. The determination of the st ,  ffness matrix of an 

element always requires that some assumption shall be 

made about its behaviour, and from this assumption 

else follows. The d-, splacoment function throughout the 
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element is assumed to be simple polynomial funct; on s 

of the coordinate w4  th, in addition, certain assumptions 

about the way In which each element behaves on its  

boundary. Bonding and in—plane actions are assumed not 

to be coupled, so that a bending stiffness matrix and 

an -in—plane stiffness matrix are obtained for each 

element. 

4. The nodal forces and nodal displacements, the 

relationship between which constitutes the stiffness 

matrix referred t' above, are initially described with 

reference to a set of Cartesian axes, which are 

peculiar to a single element. Before the forces at a 

node can be added together, si that together with the 

external load they can be forced to satisfy egui li brium, 

it ; s necessary to re sr lve them into common directi cns. 

This _s the process known :,.s transformation to global 

coordinates. 

5. In obtaining load vectors it is advantageousto 

employ the principle of, virtual work to obtain such 

vectors in a manner consistent with the formation 

of the stiffness matrix. Crude lumping of load on to 

nodal coordinates results unavoidable error. Because 

the load vector and the inertia matrix, which Is required 

for the dynamic analyse s, are obtained in a similar 

way. 	 - 

6. The addition of stiffness. matrices, the imposition 

of boundary conditions, and the solution of the equations 
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of the equilibrium is a computational matter. 

DYNAMIC ANALYSIS(8  ) 

Restricting attention to the elastic range, the 

complete evaluation of the effect of an earthquake on 

a structure can be divided into three parts, 

(a) The determination of the stiffness and mass 

(inertia) properties of the structure, 

(b) The calculation of the natural frequencies 

and mode shapes of the structure. 

(c) The evaluation of the response of the structure 

to a given earthquake ground acceleration. 

That is, the calculation of the time-dependent 

displacements and stresses. Ths requires 

knowledge of the damping present in the structure. 

By employing the finite element method the infinity 

of degrees of freedom of the arch dam ; s reduced to n, 

where n is finite, and each degree of freedom has associated 

with it a displacement component q i .(i=1,...,n). The vector 

q then represents the ordered array of nodal displacements, 

and the simultaneous differential equat; on s of mot; on 

can be written in matr,  x form as 

Mq + Cq + Kq = -Hq+J 

where M,C,K and H are referred to as the mass, damping, 

stiffness and hydrodynamic, or added mass, matrices, 

respectively, and J is a forcing function. The first 

three matrices. are properties of the dam Itself whereas 

0 
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H s  connected with the water in the reservoir. Yt is 

assumed that the effect of this water Is dependent 

only upon the accelerations' q of the dam. 

Stiffness,~_L,2.,d, nd_Mess M„~atrices 

Stiffness and load matrices are obtained as descr- 

ibed in the static case. The reason why load matrl'ces 

are considered here is that the mass matrix is associated 

with the dynamic load matrix, and, as will be seen, the 

derivation of this follows from the static load matrix. 

Tn the finite element method, externally applied 

load can only be associated with the nodal displacement 

components  and these nodal loads mu st be so assigned that 

during any virtual displacement the work done by them 

I s equal to the corresponding work done by the actual 

di stri buted loading. 

Now _consider the vibrating rectangular element. 

The mass is distributed over the accelerating element and 

the total inertia force is equal to this mass multpli.ed 

by the accelerat4on, Integrated over the area of the 

element. This inertia load can only be associated with 

accelerations of the nodal displacements. The problem 

i s to find the masses to be associated w~th the nodal 

accelerations, and this can be solved by noting that the 

shape function of the accolerat ,on will be the same as 

the shape function for displacement if vibration in 

normal modes is assumed. Thus, if the coordinate j is 
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given. Unit acceleration the inertia load function 

will be m(x,y)Y5 (x,y), where m(x,y) is the mass per 

unit area and Y5 (x, y) is the shape function associated 

with coordinate i. By the principle of virtual work it 

is now possible to write 

m~i = ffm(x,Y)Y~(x~Y)Y(x1y) dA 

and m~ i represents the inertia force acting at coordinate 

i associated with a unit acceleration of coordinate 5. 

It will ,be seen that the mass matrix is square, and it 

is also symmetric. 

If the - effect of the reservoir water on the dynamic 

behaviour of an arch dam is thought of as an added 

mass vibrating with the dam, the equation of motion are 

given by eqn. (l) and the added mass, or hydrodynamic, 

matrix can be found in some cases by calculation but 

more satisfactorily, by an electric potential analogue 

experiment. The effect of the, reservoir water will be 

to reduce the natural frequencies of the .dam as 

compared with the reservoir empty values. 

CQMPARISON OF DIFFERENT METHODS AND THEIR SUITABILITY 

In the solution of three-dimensional equations of 

elasticity, the finite difference formulation presented 

has some disadvantages. Quito large errors apparently 

develop with low order differences, and higher order 

differences necessitating rather complex formulation, 

are required to improve the solution. Also the boundary 
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equations are complicated whenever the finite difference 

expressions for higher order differences are lacking 

in physical significance. The amount of computational 

work involved in a finite difference solution makes 

it unsuitable for preliminary design purposes. 

This method considers the agreement between radial 

(horizontal) and tangential displacements and rotations 

of the vertical axis of the arches and cantilevers 

but ignores the very important vertical displacements 

and the rotations of the horizontal axis. The three 

adjustments, radial, tangential and twist are necessary 

which is a very laborious task and involves enormous 

calculations. Similarly in complete adjustment method, 

it requires even larger calculations and consumes a 

large amount of time. In trial load method, when the 

dams are thin and have a pronounced downstream overhang 

the vertical displacements become very important not 

only because of the influence of the Poisson's ratio 

but especially because ,)f the effect of the vertical 

component of the hydrostatic pressure. 

The energy formulation has the main merit in reducing 

the number of independent parameters, required to solve 

an elasticity problem if, for example, suitable distri-

bution functions are assumed. If the parameters are 

the displacements at discrete points and if further 

more a -finite difference formulation is used in evaluation 
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of stresses the requirement of minimum total energy 

will reduce precisely to standard equilibrium equations 	 ' 

of an element. As such, therefore, the approach is 

identical to that used in other finite,difference 

represent ations.The finite difference method is unsuitable 

for preliminary design purposes as it involves large 

amount computational work. If the thickness and radius 

of cylindrical arch dam varies from point to point 

the governing partial differential equations become 

quite complex. For a doubly curved shell or a dam 

with variable radius the difficulties for formulation 

of equations and of the' choice of a suitable coordinate 

system immediately arises. 

The application of shell theory to :arch dams is 

difficult due to its irregular shape of the structure 

and difficult boundary conditions. The complexities 

involved are due to irregular shape of shell caused 

not only by variable radii of curvature in the hori--

zontal and vertical directions and the variable 

thickness of the shell, but also by the foundation 

abutment profile comprising a spatial curved line and 

the foundations which are of irregular elastic nature. 

The solution of the partial differential equations 

is complicated and tedious because of complex boundary 

conditions. Therefore simplifying assumptions are 

made to make the analytical and numerical solution 

possible, in order to apply the shell theory successfully 



to arch dams it is necessary that the thickness of 

the dam is relatively thin. This is true very often 

with regard to the upper and middle sections of the 

d am, but for the lower portions of the dam this is 

not always the case. 

In finite element method a structure is divided in 

several elements and these elements are assumed to be 

connected at their junctions called nodal points. 

Compatibility and equilibrium conditions are established 

at these points. This is a generalized method of 

structural analysis and can take into account any form 

of geometrical shapes  thickness variation and boundary 

conditions. 

Keeping in view of above methods and their limita-

tions, finite element method is considered suitable 

and adopted here for the analysis of the arch dam. 
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CHAPTER 3 

METHOD OF ANALYSIS AND EESCRIPTION OF DATA 

In the present work the beh ~vio~-r of cylindrical 

arch dam with different geome'.:rical parameters have 

been studied. In addition to this, an actual profile 

of an arch dam has been analysed. In the analysis 

finite element method has been used considering the 

dan as an assemblage of flat finite elements. -Provided 

the arch is sufficiently thin it is reasonable to 

assume that initially plane sections across the thickness 

remain plane after loading and that the stresses corr- 

espond to this restriction. 

The complete analysis of structure by finite element 

method involves three separate phases. 

1) Structural idealization, 

2) Element properties, 

3) Analysis of complete structure. 

The selection of the finite element system for a 

particular problem is completely arbitrary. Therefore 

structures with practically any shape' boundaries may 

be considered. Here for cylindrical arch dams, rectangular 

element is obviously convenient and therefore considered 

in the analysis. 

The evaluation of various element properties is 
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the most critical phase of analysis and is described 

below. The stiffness matrix of a typical element is 

generated in local coordinate system. The stiffness 

matrix of the whole structure is obtained by trans-

forming the local coordinate system of an element into 

global coordinate system and superimposing the 

stiffnesses of various elements connected at varicuzs 

nodes. Now the algebraic equations can be formed in 

terms of applied load at various nodes, stiffness 

matrix and unknown displacements. By applying the 

boundary conditions and solving the equations, the 

unknown nodal displacements can be obtained. 

STIFFNESS OF A TYPICAL ELEMENT 

The surface of the dam is assumed to be divided 

into small rectangular elements connected to each other 

and carrying load at their corner points. Continuity 

between the elements is established by finding at each 

node six generalised displacement components (three 

linear displacements and three rotations) such that 

equilibrium at each node is satisfied. 

Each element is subject to ' inplane' or membrane 

stresses and to transverse bending and it is convenient 

to establish the characteristic stiffness separately 

in the phases. Only when combining the elements it 

will be necessary to convert the directions of forces 
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and displacements to some common coordinate system. 

In elane, Stiffngs.s_of. an~Element 

A displacement system is assumed throughout the 

element which, while satisfying equilibrium conditions 

at all points, can be determined uniquely in terms of 

tho nodal displacements. Once this displacement system 

is known it is possible to relate equivalent nodal 

forces to the nodal displacements simply by application 

of the virtual work principle. 

In the plane of the element only two displacements 

need to be considered. Let these be u l and u2 in the 

directions of the coordinate axes xl and x2 as shown 

in Fig. 20 and be defined by the following , polynomials. 

U1 = 	2 1 	1 2 1 3X 2 4 1 2 5X2 	 ...(1) 
U2 = A6+A7 x1+A8X2+A9X1 X2+Al0x1 

The stresses at any point are defined by elastic 

relations in terms of strains as 

COX 	 au l/ a xl 	I  

=D 	dug/ a x2 
2 i 	j 	 r 

I 
x ; 	I ui/ox2+2/oxi 

L, 	 J 

or in matrix notation simply, 

cr = Dt 

where $ is the strain vector. The matrix f D1 takes a 



-32- 

simple firm of 
0  

1_v 	?) 	1 	0 

0 0 (1-)/2 

in which E is the elastic modulus and )> is the pnisson's 

ratio. It is applicable for isotropic m terial. 

For anisotropic materials if two dimensional 

analysis is to be applicable a symmetry of properties 

must exist, implying at most six independent constants 

in the IDI matrix. Thus it is always possible to write 

d ll d12 d13 
IDS= 

	

	 ..(4) 
d22 d23 

( sym) 	d33 

In a two directional plane behaviour, the well-

known equilibrium equations are satisfied given in the 

absence of body f. orc os, by 

`ao-X 	ao"xl 2  -  ax l  + i 	_aX2  

aoXc 	ac X x  
ax2 	axl 

which by substitution of (1) and (2) results in two 

equations between the constants A. 

Substituting now into equation (1) the eight 

displacements and coordinates of the nodal points it 

... (5) 
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is possible to evaluate all the constants A in terms 

of these displacements. 

If the nodal displacements are written as a vector 

r I 
u 
1 

~zl u2 

!I 2 

~ ul 
2 

i u2 
3 

u 1 
3 

U
2 

4' 
Ul 

U2 2 

We have for the constants A 

p 

=: =Cup 
i nl0 

From equation (2) it similarly follows that 

tr p = DEC u p = SIDUp 	 ., (7) 

in which C is a matrix of constant coefficients and B 

a matrix involving the position coordinates xl and x2. 

The matrix sp is the stress matrix and will enable 

the stresses to be determined at any point later when 

the displacements are known. Complete stress matrix 

is given in Table II. 

4 
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Let it be assumed now that the only external forces 

acting on the element are eight statically equivalent 

forces at the nodes in the directions defined by 

°{ulp and let these forces be labelled •i F. Applying 

now in turn unit virtual displacements in the appro-

priate direction we have for the external work done by 

the forces acting on the element 

Ilie = I Fp  

in which .I is the identity matrix. 

The internal work corresponding to the same virtual 

displacement is given by integrating the product of 

appropriate stresses and strains throughout the element 

as 

WI = If 8sTo-pdxldx2 

in which fitjJ is the strain system corresponding to nodal 

displccments I, or by (2) and (6) 

Equating those two expressions and substituting (7 

IF = ff (BC)T DP:Cf u}p dx1dx2 

or Fp = [CT 13 T DB dxldx2} C up 	 •.. (11) 

The expression in square brackets is the stiffness 

matrix ~1,r' sought =,.nd can be evaluated explicitly 

giving the relation 

i 
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Fp = Ku p 	 ... (12 ) 

TRANSVERSE BENDING STIFFNESS QE AN ELEMENT 
I.r I.~M.•M l~l~.lw+~/r W I~YI~.w F~1ww F~R11.F/Miles Y~l.~ I~.~i M.W I~ A.Ir IM~.~1~ 1~•1~1~ IAV.1~11~ 

Considering now the behaviour of an element which 

is subject to the action of transverse forces the 

usual assumptions of plate theory can be made. As 

no ':i_nplane' resultant forces exist the only nodal 

displac,~ments of interest are a lateral linear movement 

U 3 in the direction of x3 and two rotations u23 and 

u13 about the directions of xZ and x2 axes respectively. 

Within the element these three components of 

displacement are given by a function representing the 

lateral displacement u3 as the rotations are simply 

the derivatives of this with respect to xi and x. 
N 

If u 3 is defined as the following polynomial 
• r 	 , 	3' 	2 	3 

1.1 3  = Al +A2 xI+A3 x2 + ......+ A10 x2+A1 I xl x2+A l 2 xl x2 
... (13) 

The constants A' can be determined uniquely in terms 

of the twelve nodal displacements4 

u~ 

(14) 

t  i 

Writing the polynomial in the above form, it has 

certain advantages. In particular , along any xl=constant 

line, the displacement u3 will vary as a cubic. The 
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element boundaries or irate rf ac^ s are composed of 

such lines. Now a cubic is uniquely defined by four 

constants. The two end values of slopes and displace-

men t at the ends of the boundaries will therefore 

define the displacements along this boundary uniquely. 

As such end values are common to adjacent elements, 

continuity of u3 will be imposed all along any inter-

face. 

It will be observed th^t the gradient of u3 normal 

to any of the boundaries varies along it in a parabolic 

way. As on such lines only two values of the normal 

slopes are defined, the parabola is not specified 

uniquely and, in general, a discontinuity of normal 

slope will occur. The function is thus 'non-conforming'. 

Tho constants. A' t) Ail can be evaluated by writing 

down the twelve simultaneous equations, linking 

the values of u3 and its slopes at the nodes when the 

coordinates take up their appropriate; values. For 

instance, 

(9 	) • 	(-~ du 3 	- (A' +A' x +2 A' x + ' x2 +2 A' x xl z = 	8x2)i = 	3 5 li 	6 2i 	li 	91161 
+3 ~ZO x2i+A1lxli+3Al2xli.x2i ) 

(9x2 )i)i= A2+2A4 x1 i+A5x2i+3A7xl ifi2A81 xlix2i 

	

2 	, 3 +A9x2 i~ 3A11 xl ix2i+Al2 x2i 

u3i 	= Ai+A2xli+A3x2i+Agxli+AS xlix2i+A 6' x2i+A '~ xil 

3 	, 	, +A x i x2 i+A9 xl i x2 i+A10 21 

 

t 3,  3 
+Al 1 xl i x2 i+Al 2 xl x2 i' 
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Listing all twelve equations we can write, in matrix 

form 

[u J F~ = IC HA' }- 

where ICJ is a 12x12 matrix depending on nodal coord- 

inates and 	a vector of the twelve unknown constants. 

Inverting 

I'A' I = IC I-I fuPA 

The curvature . and twist at any paint of the 

plate can now be determined in terms of the constants, 

and therefore 

a2u  
ax 

1 a2u3 

2 a x2 

~a2u3 
a xi a x2 

= Bay _ B c"zu B 

Tho internal m^ments are related to the curvatures 

by known expressions f r 	the theory of plates. For 

orthotropic materials this relationship is determined 

in terms of four constants 

	

C2u 	3 	a2u 	3 
si x, = - (Dx1 a 	) -- + Di a7 

	

1 	y ̀2 

	

82u 	au 
YIx2=- (Dx2 -- 	+D1 --) 

	

2 	1 
au 

M y,lx2 	Dx1x2 0xl0x2 

. (19) 



U 

or simply M = D' 
	 ... (20),  

where D stands for the appropriate matrix of coefficients. 

At this stage it is possible to establish the 

equivalent values of the nodal forces. By the principle 

of virtual work, if these forces are statically 

compatible with the internal forces (M), then, during 

any virtual displacement, the external work done must 

be equal to the internal work. In particular, if the 

displacement is such that it is unity in the direction 

of a selected external force and zero in the direction 

of all other forces, the internal work will be the same 

as the value of this selected force. Taking the virtual 

displacements 8u B  as equal to I (The identity matrix) 

and writing out the corresponding external work in matrix 

form, we have 

we  = (Su B )T FB  = IFB  = FB 	 ... (2k) 

To each bf these displacements corresponds an internal 

work done by the moments equal to 

crJi = ff ()T  M dx1dx2 	 ... (22) 

where 

= (BC) I = BC 	 ... (23) 

Substituting for 8q and M and equating internal and 

external work results in 

F B  = ff(BC-1)T DBC~lu Bdx,dx2  

= [(C-1  )T J-ffBTDBdx1dx2}C_l   u B 	... (24) 



-39- 

The  ohly matrix dependent on the coordinates xz and x2 

in the equation (24) is B and the integration of the 

central part has to be carried out over the entire area 

of the clement. 

The whole expression in the square bracket is 

simply tho required stiffness matrix IK 1 of the element, 

while obviously relations (18) and (20) define thf 

internal moments in terms of the nodal displacements 

giving 

M = (DEC-1 )uB 	 ... (25 ) 

or 	 ,vi xl 	
- 
_ B B 	 (26) x2 ... 

M 	1~1 	~ 	u 

' M x1x2 

where SB is the stress matrix and given in Table III. 

and FB = KBu B 	 ... (27 ) 

COMBINED STIFFNESS  MATRIX OF AN, ELEMENT 

If both systems of nodal displacements are acting 

simultaneously then at each node five components of 

force are developed and the st area given in thi five 

terms of components of displacement. However, as it will 

be necessary to consider the general equilibrium with 

respect to the six possible components of force at a 

node define the vectors of force F and displacement with 

six components of each node or (24) components i.n all 



1 f u: 

Fl 
2 

( u l 
2 

1 
F3 

1  I 
u 3 	f 

1 FZ3+ ( ui3 

F2 31 
and u 	=:4 	1 	{ 

23 1 

~Fl~l a u12 

't 1' 

F= ... (28) 

-40- 

With the understanding that F~2 = 0 etc. 

	

Now F = Ku 	 ... (29) 

where the element Kid of the matrix is made up from 

appropriate elements of the K and KB matrices as 

follows 

	

JKps 1 	0 00 	0 

JKrs! 	
0 0 	b 	{ 0 I 	 .. (30) 

 

00  IK
rs 

1,0 '  

	

100 	' 	'0 
f 	 f 

	

0 0 	t 	0 	'O 

The full IKI matrix for an element after transformation 

to global coordinate sy stam is given in Table I, 



-41- 

TRANSFORMATION TO GLOBAL COORDINATES_ AND 
ASSEMBLY OF ELEMENTS  

Local and Global Coordinates 

Transformation of coordinates to a common global 

system (which now will be denoted by xyz, and the local 

system by x'y' z' ) will be necessary t) assemble the 

elements and to write the appropriate equilibrium 

equations. 

The two systems of coordinates are shown in the 

above figure. The forces and displacements of a node given 

in the local system (x'y' z`) trenform from the glcbal 

system by a matrix L giving 

= JL{oi) 	F-LiFI 	 .. (31) 

in which ILI = 	Q 	 •• (32 ) 
Q x 

with IXI being a three by three matrix of direction 

cosines of angles formed between the two sets of axes, 

Xx' x 	 x'y 	 x` z 

i.e.  XI =  Xyx 
X
y'Y XY'z  .. (33) 

Xz ` x X z 

in which Axx ~ = cosine ?f angle between x and x' axes,etc. 
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For the whole set of forces acting on the nodes 

of an element we can therefore write 

e 	(TI {she ; (`fie = ITI{FIe 
	 .. (34 ) 

By the rules of orthogonal transformation the stiffness 

matrix of an element in the global coordinate becomes 

IKI = IT IT IK.' I ITI 	 .. (35 ) 

In both of the above equations ITI is given by 

L 0 

o L 
Ti _ f 0 	0 

0 	. 	. . . 
o 

L 	. 	. . . 	I 
.. (36) 

a diagonal matrix built up of. I L I matrices in a number 

equal to that of the nodes in the element. 

It is  simple to show that the typical stiffness 

submatrix now becomes 

IKrsI = IL IT  IKrsI IL I 	 .. (3?) 

in which IKr 5 I is determined by eqn.(30). 

The determinat5-on of local coordinates follows 

a similar pattern. If the origins of both local and 

global systems are identical than 
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'x~~  

_ 	 ~l 	y > 	 . (38) 

z t ~ 	j z 

D rec ion_Co~s nP S„f or Rect~ngu l , r _Element;s 

Such elements being limited in use to representing 

a cylindrical or box type of surface it is convenient 

to take one side of the elements and the corresponding 

coordinates x' parallel to the global, x, axiso For 

a - typical element ijkm, it is now easy to calculate all 

the relevant direction cosines. 

Direction cosine of x' are, obviously 

x xi x = 1 	Axt y=0, 	X xt z = 0 	 .. (39) 

The direction cosine of the y' axis have to be obtained 

by consideration of the coordinates of the various nodal 

points. Thus 

INy ~ x =0 

y j — yi 
-------------- 	 , . (40) 

(Z -z.)+(yv )2 I 

z.. — z.. 

I -(Zj`zi )2+(Yj— 1)2 

Simple geometrical relations which can be obtained 

by consideration of the sectional plane passing vertically 

through i j . 

Similarly, from the same section we have for the z' 

axis 



X , zx= 	
z - z.  

z Y 	_..~....~..~.._......~..,...~:,... 	1 
~I (ZJ-zi)2+(yJ_yl ) I 

E 	(z•-zi)2+(Y•-Yi)2 ~ 	.. (41) J 	J 
The numbering of points in a consistent fashion 

is important to preserve the correct signs of the 

expression. 

In order to obtain the stiffness matrix of the 

whole structure, the stiffness of the connecting 

elements at various modes are superimposed. It is done 

by first writing the stiffnesses of element in 

local coordinate system (x', y' , z') and then transform-

ing it into the global coordinate system (x, y, z) as 

explained in equation (35) 

The equilibrium of the complete system of elements, 

which is an expression for nodal point loads in terms 

of nodal point displacements, can be expressed by the 

following matrix equations: 

p1 _ IKHuI 
	 .. (43) 

where the stiffness of the complete structure 1KI can 

be found by a systematic addition of the stiffness of 

all elements in the system. 

BOUNDARY Ca\DITIONS 

The dam is assumed to be fixed along the founda-
tion and abutment profile. As such the deflections of the 
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nodal points lying on the profile are zero. In the 

,present analysis boundary conditions have been applied 

by considering the elements with different edge condi-

tions (either fixed or not fixed). There are eight 

possible type of such elements as shown below 

__l Lii  
i
I

1 	2 	 #. 4 
 f 	 K~ 	 ~~  

Nodes i,j,k 	Nodes i,k,l 	Nodes i, j 	Nodes k,I 
fixed and 1 	fixed and 	fixed and 	fIxed and 
not fixed 	j not fixed 	k,1 not fixed i, j not fixed 

1 	5 	6 	8 

// i /  

Nodes i,k 	Nodes i 	Nodes k 	Nodes all 
fixed and 	fixed and 	fixed and 	not fixed 
j,1, not fixed j,k,I not 	i,j,l not 

fixed 	fixed 

S GLUT IQN OF_LWjLjBR SUS EQU~T I ONS 

For most practical problems equation (42) represents 

a system of several hundred equations. In equation (42), 

I1 j is a symmetrical band matrix i.e. it has non-zero 

elements only near the diagonals and zeros at all other 

pl ace so 

For the solution of these algebraic equations two 
(6) 

subroutines " LUMAT" and " BGBAC'f 	have been used. 

SALIENT FEATURES OF DIGITAL CCEPUTER PROGRAM 
~1~ ~~til~tr~ t~la+ `w.~w+vw ~r~ wYi f~r+~ ~r*1+1~ rr'• w+~ ~+r wir'mnru~.nvwirn ver~.~ Wa'leaw~~Mw++ 

As only five degrees of freedom (three translation 

and two rotations) have been considered at each node, i'L, 

is a 20x20 symmetrical stiffness matrix for a rectangular 
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element. Only the upper half has been considered 

and named as shown in the sketch below. 

ii ii ik it 
D1  R1 R2 R3 

jj 	jk j1 
D2 	R4  R5  

kk kl 
D3  R6  

11 
D4  

20x20 

The above sketch constitutes two types of system i.e. 

(1) the triangular system which is along the diagonal 

(D1, D2, D3, D4 ) and contains 15 values each in different 

directions at the f.-,ur nodes of the element and (ii) the 

rectangular system (R1, B2 , R3, R4 , R5, R6 ) and contains 

25 values each. 

To generate the stiffness matrix of the whole 

structure, three subroutines i.e. (i) TWEFY, (ii) FIFTN, 

and (iii) GENER have been written. Subroutine 'GENER' 

generates the values of submatrices D1, D2 , D3, D4 , 

R l , R2, R3, R4 , R5 , R6  for all the elements of the 

structure and 'TWEFY` and 'FIFTN' stores the elements 

of submatrices in such a way that the diagonal becomes 

the first c:lumn of the element and so on. 

The assembled matrix IKI of the whole structure 

is symmetrical and a bend matrix. By storing . the matrix 

in the above mentioned form it results in saving of 
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memory space and computation time. 

ANALYSIS OF ARCH DAM 

STATIC,-FORCES 

. The following cases with different parameters have 

been considered for the analysis in the present problem. 

1. V,ri tion of_Ba se Width to~Cre st Length~,Rt o 

Three different ratios have been considered keeping 

the other parameters constant. The details of different 

parameters are given below. 

(i) Type of dam- 

(ii) Height- 

(iii) Thickness- 

(iv) Radius- 

(v) Central Angle- 

(vi) Base width to 
crest length 
ratio 

Singly Curved Constant 
Thickness Cylindrical Arch 

99 ft. 

10 ft. 

150 ft. 

1060 

(a) 0.432, 
(b) 0.379 
(c) 0.333 

2. V',~ri tion pf Central Anc~Ie 

Three different central angles with constant crest 

length have been considered. Details of parameters are 

given below, 

(i) Type of Dam 

(ii) Height 

(iii) Thickness 

(iv) Base Width  

- Singly Curved Constant 
Thickness Cylindrical Arch 

- 99 ft. 

- 10 ft. 

-114 ft. 



(v) Radius - 

(vi) Corresponding 
Central Angle 

(a)  150 ft. 
(b)  175 	ft. 
(c)  200 ft. 
(a)  1060 

(b)  92°  
(c)  go o 

(3) Variation of-Hoight 

Three different cases h,.ve been considered with 

the following parameters. 

(i) Type of Dam- 	Singly Curved Constant Thickness 
Cylindrical Arch. 

(ia) Thickness - 10 ft. 

(iii)  Radius- 150 ft. 

(iv)  Base Width 114 ft. 

(v)  Central Angle- 106 0 

(vi)  Height-- (a)  99 ft. 
(b)  120 ft. 
(c)  135 ft. 

(4) Variata.on,.,,< f,-Thickne ss~in horizont,i_diregton 

Three cases with different thicknesses in horizontal 

direction have been considered. The details of parameters 

are given below. 

(i) Type of dam- 	Singly curved cylindrical Arch 

(ii) Height-  99 ft. 

(iii) Radius- 	150 ft. 

(iv) Central Angle- 106° 

(v)  Base width- 114 ft. 

(vi)  Thickness- (a) Constant thickness thr:.ughout,10' . 
(b) Thickness increases gradually 

towards abutments with 1:20 slope. 

(c) Thickness increases gradually 
towards abutments with 1:15 slope 



4. 

(5) Vari<~tion cf thickness in Vertical Direction 

Three cases have been considered with different 

thicknesses in vertical direction. The details of para-

meters are given below, 

(i) Type of dam- 	Singly curved cylindrical arch 

(ii) Height - 	99 ft. 

(iii) Radius- 	150 ft. 

(iv) Central Angle- 1060 

(v) Base Width- 	114 ft. 

(vi) Thickness- 	(a) Constant thickness throughout, 10 ft. 

(b) Thickness increases gradually 
towards base with 1:16.5 slope 
keeping water face vertical. 

(c) Thickness increases gradually 
towards base with 1:11 slope 
keeping water face vertical 

(6) An Actual Profile- 

An actual profile of an arch dam in a non-symmetrical 

valley have been considered with the following parameters. 

(i) Type of dam- 

(ii) Height - 

(iii) Radius- 

(iv) Central Angle- 

(v) Base width- 

(vi) Thickness- 

Singly curved cylindrical 
Arch. 

520 ft. 

720 ft. 

920 

270 ft. 

Varies horizontally as well 
as vertically. 

The radial deflections and stresses of the dams 

considered for analysis due to external loads at various 

o 	 points have been calculated using finite element method. 
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The procedure for the same has been described earlier. 

To calculate stresses, a 'STEESS' subroutine has been 

written. The stress matrices for ' inplane' as well 

as 'bending' forces have been given in Tables II and 

III. The element idealization of the dam along with the 

developed surface for the typical cases are shown in 

figs. 1,2 and 3. With 'STRESS' subroutine for bending 

analysis internal moments are obtained. Stresses are 

calculated by using flexural formula i.e. z = f 

The various profiles have been divided into a 

number of finite rectangular elements of various. sizes. 

The number of free nodal points multiplied by five 

(number of degrees of freedom considered at each node) 

will give us the number of algebraic equations. Hydro-

static load is assumed to be acting on the nodal points 

statically equivalent to the pressure acting on half 

the width of element on either side of the node. The 

above algebraic equations have been solved to get the 

deflections and rotations at various nodes by using 

digital computer and hence the stresses can be calculated 

by multiplying deflections with the stress matrix. The 

following datas have been used for the analysis of the 

arch dam: 

Modulus of Elasticity of the 
material E 

Pof ssont s ratio p 

Unit weight of water w 

= 2.6x106  psi, 

=0.20 

= 62.5 lbs/cft. 
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Density of concrete mass e = 144 lbs/cuft. 

Water level is assumed .upto the top of dam. In the 

static analysis hydrostatic load as well as dead load 

have been considered. 

EARTd(,LUAKZ TYPE~FORCES 

Estimation of dynamic forces due to earthquake 

depends on so many factors such as location, type, form 

and material of structure. It is always possible to express 

the dynamic forces as equivalent static loads. As the 

dynamic forces vary along the height of the structure, 

it is important to know that variation of forces along 

the height of structure which may produce the maximum 

stresses and deflections for the same intensity of shock. 

Generally the design practice is to assume a 

uniform loading along the height. For gravity dams the 

triangular type of loading and for multistoried buildings 

a parabolic type of loading is adopted. Keeping in view 

of the above type of load distribution, three types of 

load distribution, viz., (i) Rectangular, (ii) Triangular 

and (iii) Parabolic, have been considered in the present 

analysis. In order to find the effects of different form 

of loads for the same shock base moment as a free 

cantilever in all the cases has been kept constant and 

the corresponding seismic coefficients have been calculated 

as below. 

Generally to estimate the dynamic stresses an 

equivalent static load of 10 percent of gravity acceler-

ation is considered. The same has been considered in the 
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present analysis. 	 0 

ZL JL;ITIC,t OF SEIS~'~IC COEFFICTENTS 	A.  ~Cv 

(i) ectangular_ 	 ,_fp Loadin. 

Assuming unit rect-ingular Lo-Ad  

acting on the dam as shown. The 

base moment MB becomes, i.e. 

L. 
	 2 MB = a 	 — 

	

u 	,~,. 2/2 	 i- w2 

(ii) Trianagular~t pe—of tilo2ding 

The unit triangular load has been applied as shown in 

the figure above. To cplculate the bending moment at any 

section consider a section a—s at a distance x from the 

free end A. The bending moment at this section 

2 	2 _ x x_ + x e 2x 
M x 	(Z 	L ) 2 	2L 	3 

2 

L2 Therefore base moment MB = 3 

Keeping the base moment same as that of the rect-

angular type of loading, the seismic coefficient comes out 

to be 0.15 g or a.T — 1.5 au 
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(iii) Paraboolic_TyLDe ~of Load ng 

?J 

0 

A unit parabolic type of loading has been applied as 

shown in figure above. 

Let the - equation of parabola be y = K x2 

where K is a constant 

at x-L, y-1 

Therefore K = l/L2 

x 
2 

The mment at any section at a distance x from B is given 

by  2 

M x_z = z7 dz (z-x) 
L 

_ 1 fL z3_ z2 x]dz 
L~ x 

3_ Xx 

4 - 1 IL- L3x- Z- + 3- 
L 

	

4 	_I 

L 

 

r4  2 

2 	4 • 
M 	- 	L3 x + x_ 

12L 
2 

Base Moment MB = 4- 

Keeping the base moment same as that of the 

G 
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rectangular type of lo~{.ing, the. seismic coefficient 

comes out to be 0.20 g. or a.p = 2.0 au 

After knowing the seismic coefficients for all 

the types of loading , the load vector has been 

calculated by mutliplying the total load lumped at 

nodal points with the seismic coefficient at different 

elevations for each type of loading. Deflections and 

stresses have been calculated as explained in static 

case. A comparison of deflections and stresses has been 

made between all three types of loading. The deflections 

and stresses have been calculated for the dam it which 

the thickness increases vertically towards the base which 

is generally the case in actual practice. In addition 

to this an actual profile has been studied with , such type 
of loadings. For the different datas of dams analysed for 

such loadings, Cases 5 and 6 of static analysis may be 

referred. 

DYNAMIC ANALYSIS 

For the analysis of the arch dams, finite element 

method has been employed. By employing this method the 

infinity of degrees of freedom of the arch dam is 

reduced to n, where n is finite, and each degree of freedom 

has associated with it a displacement component. 

An arch dam can vibrate in many modes. Practi-

cally, only few low frequency modes of the dam are 

considered for earthquake loading. The fundamental mode 

of the dam will be excited primarily by the upstream- 
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down-stream components of the earthquake ground motion. 

In the present work, finite element method has 

been used. In addition to the stiffness matrix, the 

mass matrix for rectangular finite element has been 

derived and the fundamental natural frequencies and 

corresponding mode shapes have been calculated for empty 

reservoir condition for some typical cases just to have 

an idea of the range of frequency of the assumed singly 

curved cylindrical arch dams.. The details of the derive-

tion of mass matrix have been given subsequently. 

The equation of motion for free, vibration system 

can be written as 

IMI{x} + JKJ'JxF = 0 

which is of the form p2   x = K •x 

To determine the fundamental frequency and corres-

ponding mode shape the following cases have been considered. 

(1) Type of dam 	- Singly curved constant thickness 
cylindrical arch in a symmetrical 
valley. 

Height, - 30 M. 

Radi.0 s - 43.25. in 

Thickness - 	3.0 in 
Central Angle - 1060  
Base width - ` 35 m 
Crest length - 80' M. 

(2) Singly curved constant thickness cylindrical Arch  
in a U-shaped valley with the following parameters,  
Height, 99 ft.,  Radius = 150 ft., 	Thickness = 10 ft. 
Central Angle = 106°, Base Nlidth =264 ft. 
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Fundamental frequencies and mode -shapes have 

been calculated by using matrix iteration(22} procedure 

for the two cases and a comparison has been made by 

considering coarse and fine meshes for the first case. 

The details of calculations for the frequencies are 

given in Chapter 4. 

MASS M,n,TR IX 

plane Stress and Strain 

The figure given opposite 

shows the typical rectangular 

element c:)nsidered, with nodes 

i, j,k,l numbered in th4 manner 

sh own. 

The displacements of a node have two components 

{S } = u. 	 ... (43) i 
vi 

and the eight components of element displacements are 

listed as a vector 

f s .~'e =

` 	

.. (44 ) 

sl 

The displacements within an element have to be 

uniquely defined by these eight values. The simplest 

representation is clearly given by two linear polynomials, 

U = Cl +C2 x + C3y + C4 xy 
... (45) 

v= C5 +C6x+Ciy +CCxy 
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The eight constants C can be evaluated easily by 

solving the two sets of four simultaneous equations which 

will arise if the nodal coordinates are inserted and the 

displacements equated to the appropriate nodal displace-

ments. Writing thr equations, 

u i = Cl-C2a-C3b+C4 ab 

v i = C5-C5a-C7b~C8ab 

u J = C1-C.2a+C3b-C4 ab 

v J = C5-C6 a+C,7 b-C8 a b 

uk = C1+C9 a-Cab-C4 ab 

vk = C5+C6a-C7 b-C8ab 

ul = C1 +C2a+C5b+C4ab 

vl = C5+C6a+C'?b+Cgeb 

We can easily solve the above eight equations and 

constants Cl t CB can be evaluated in terms, of nodal 

displacements. Finally, 

U = u i(- - 4a- 4b + ab)+u•(4 	4a + 4b 	4b ) 

Uk (4+ 4a 4 b 4ab )+u (4+ 4a+ 4b+ 4ab) 	.. 	( 4?a) 

v - vi(4 	4a - 4b + 4ab )+v J (4 - 4a + 4b 	4ab 

+vk(4+ 4a - 4b ab)+v l (4+ 4a + 4b + 4ab) 	... 	(47b) 

The equations (47a) and (47b) can now be represented in 

the standard form, 

i.e. INI =t u ~>= 	II Ni , INS, INk, IN 	1s 1e 	 ... (48) 
lv, 
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1 	0 

in which 1 
0 1 

Ni 	(4 4a 4b + 4ab) 	etc. 

If the thickness of the element is t and this is 

assumed to be.constant within the element, we have for 

the mass matrix 

• Iml e 	t ff INI T INIdx dy 

4 

b a  

_b _e 

Since W 4ab?t 

Similarly Nj, Nk, N1  can be calculated. 

Thus if the mass had been lumped at the nodes in 

four equal parts the mass matrix contributed by the 

element would h ay.e boon, 

1 0 	0.0 00 0 0 
01 	00 00 00 m eW  

1 0 0 0 0 0 0 0 
0 0 	0 1 0 0 0 0 
00 	00 10 •0C 

...0O 	00 01 00 
00 	00 00 10 
0 0 

	
00 00 01_  

Bending_of Plate s 

Consider a rectangular element ijlk as shown in 
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th figure given opposite. 

At each mode displacements 

 (- are introduced. These 

,/ z CFOY) 

rx `fox 

'Forces and Corresponding 
displ-,cements' 

have three components, the 

first a displacement in z direction, wn , thi second a 

rots t . on about the x axis, (ex )m9  the third a rotation 

about y axis (e). Positive directions of the rotation 

are determined by the righ-hand screw rule and are 

shown by vectors directed along these axes. 

Cla 3riy the slope of w and the rotations are 

identical (except for sign), i.e., 

A x  = 	aY 
aw 	 .. (49) 

6y  = 	ax  

The nodal displacement vector can therefore be defined 

as follows at a node i 
w. 	w. 

o1} _ 	- (aw). 	 .. (50) 
xi 	0y1 

ey1 	(ax)i  

The slope function is considered simply as the scaler w 

must be definable in terms of 1S 1 e , i.e. in terms of 

twelve parameters. 

A polynomial expression is conveniently used. 

W = al+a2  x+r.3Y+(y4  x2+a5 xy+a6Y2+(Y?  x3+cr.g x2y+(Y9  xy2+r.10y3+ 

rr l l  x3y+rv12  xy3  

.. (51) 



The constants al to a12 can be evaluated by 

writing down the twelve simultaneous equations linking 

the values of w and its slopes at the nodes when the 

coordinates take up their appropriate values. 

Listing all the twelve equations we can write, 

in matrix form, 

.1s}P = lcl{(4 
	

.. (52 ) 

where ICI is 	12x12 matrix depending on nodal coordinates 

and {a.' a vector of the twelve unknown constants. Inverting 

~a } = ICI-1 js le 	 .. (53) 

It is now possible to write the expression for 

the displacement within the element in a standard form 

i.e. 	w = e = IPI ICI-1{&}e 	 .. (54) 

where, 
2 	2 3 2 2 3 3 3 3 

I Pt = (1, x, y, x , xy, y ,x ,x y, xy ,y ,x ,x y, xy ) 

.. (55) 

An explicit form of the above expression was 

derived by Melosh. If the c )ordinate origin is taken at 

the centre of the element and equati,.n (54) is written 

as 

= I N1, Ny N1, Nk l 

Then, 

32N1= X1Y1 -12 (X1Y1-X2Y2 )-4X1X2-4YIY2,+4bY1Y2,-4 aX1X2 ' 

32N3= X1Y212 (X1Y2-X2Y1 )+4X1X2+4Y1Y2 ,+4bY1Y2 , ±4aXIX2 I 

32N1= X2Y2 42 (X9Y2-y1Y1)-4X1X2-4Y1Y2 ,-F4bY1Y2 , +4aX1X2 } 
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32 Nk =X2Yi 2 ( Y1-X1Y2 )44X JX2+4Y1Y2., +4bYlY2 9 -4aX1X2 _~. 

with Xl = (x - a)/a 	YI = (y-b)/b  

X2 = (x +. a)/a 	Y2 = (y+b)/b 

If a distributed loading q is acting per unit 

area of an element in direction of w then the contribution 

of these forces t:, each of the nodes is 

IFIe = -ff .INI Tq dx dy 	 .. (56) 

or 	(Flo = {.- I01-1}Tjf IpI Tq dx dy 	 .. (57) . 

The integral is again evaluated as shown below. 

It is noted that in general, all three components of 

external force at any node will have (non-zero) values. 

patgrmination,~of translatiga and r~tation,_contribution 
a,_e ach_node 

1. Translation 

Node i 

32Ni = X1Y1 I2 (X1Yi-X2Y2 )-4X1X2-4Y1Y2 

_ 

-c~ (±b) (Yb) 

(yb) I
S 

{xy-xb-ay+ab-xy-xb-ay-ab  
- 4 2(x2-a2 )- '- (y -b 

a 	b 
_ -,~ (_xy-xxbb--aytnb) (xb+ay )- 	(xy-xb-ay+ab) (x2-a2 ) 

ab  ab 

- -- 3 ( xy- xb- ay+a b) (y2- b2 
ab 

b a 	 2, 
32Fwi = cif f 	- -4-2(x2yb-x~b2-2xyab+xab2+xy2a-a2y2 +a2by) 

-b -a 	ab 

- -4 --(x3y-x3b-x2ye+x2ab-xya2+xba2+a3y-a3b ) 
ab 

-4 ab3 (xy3- xy`~b-ay3+aby2- xyb2+xb3+ayb2- ab3 )~ x dy 
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Fwi = qab 

= 	(since 4gab=W) 

Rotations 
a 

32F81 = q f f 4b YlY2 dx dy 
-b-a 

=-q x 8 x3ab2 

1 2 Wb 
Fe. - 3gab = - 12- 

Similarly, 

32Feyi = 4aX1X2 q 

2 
a b  Na 

F©yi = q 3-= 1 

aa i.  
Translation 

32N j = X1Y2{2 (X1Y2-X2Y1 )+4X1 YlY2} 
b a 4 32Fwj = q f f I 	7(x2yb+x2b2-2xyab-xab2-xy2a+y2 a2 +ya2b) 
-b-a ab 

+ 4 (x3y+x3b-x ya-x2 ab-xya2-xa2 b+ya3+a3b ) 
a b 

+ ab3(xy3+xy2 b-y3a-y2ab-xyb2~-xb3+yab2+ab3 )]dxdy 

Fwj = qab 

R o~ tion 	 . 
b a 

32 Fe xi 	q-b f 4b Y1Y2 dxdy 

ab2_Wb  
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Similarly  32F8 = q f f 43 X X2 dx dy 
y~ -b -a 

	

F 	= q a2 b = Wa,.. 
8  3  Y~ 

Similarly for 

Node K 

32 Nk = X2Y1 {2 (X~Y1-X1Y2 )+4X1X2+4Y1Y2 ~- 

. ' . FWk = qab = 4  

Rotations 

32F8xk q b 	4b YlY2dxdy 
-a 

Wb 
FO xic~ 12 

Sim;_l tryly 
b a 

32 FByk = g f 
-b 

f c -4aX1X2dxdy 

_ INa 
fiO yk 	- 	I7 

Model 

Transl=,.tion 

32N1 = X2Y2 {2 (X2Y2-X1Y1)-4XiX2-4Y1Y2 J 

... fi l = qab = w aw 	4 

notations 
• ha 

32 F9 xi = q f f 
-b  

4b YIY2dx dy 
-a 

2 

	

a b~ 	Nb 
F8 x1 

 = -q 	= - 

Similrly 

0 



b a 
32 Fe y1 = q f f 4 aXl X2d xdy 

_b- 
2b _ Wa ` 	12 

Thus the table 'given below shows the nodal load vector 
for a uniform loading q. 

~,o~d~vectgr for,_ rect UUj r_plPment.ju_dnr uniform_load_'1' 

f F 1. I.  Fw i 1/4 
FA x. 

+ 	
1-b/12 

Fey. i a/12 

F~ Fwd 1/4 

FA x
j 

b/12 

Fe yJ t a/12 

Fk D Fwk =4gab 
1/4 ... 	(58) 

FOx  b/12 
F e y~ '-a/12 

Fl Fwl 1/4 

FAxll ~—b/12) 
~ FAyl' 2 r a/1 j 

Usually direct strains in the plate are introduced 

additionally, and the complete problem can be solved 

ohly by consideration of the plane stress problem as we l l 

as th et of bending. 

The complete load vector for the element will 'be as 

shown on the next page. 
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1 

Fu 	 ! 1/4 

Fri 1/4 
Fwi  

i 
~t 

FA xii  -b/12 
FGy a/12 

Fui 1/4 
Fv~ ! 1/4 

FWD =4q&b 1/4 

F b/12 
FGyi a/12 

Fu k 1/4 
Fvk 1/4 

FWk I 1/4 

F0 xkI b/12 ~ 
Feyk -a/12 

Fu 1 1/4 Fvi 1/4 

FW1 1/4 

Fn xl 

 
—b/12 

... (59) 
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CHAPTER 4 

RESULTS AND CONCLUSIONS 

The constant thickness, constant angle dam can be 

satisfactorily represented by an assembly of plane 

rectangular elements except in the region of the slop-

*ng valley sides. Here a stepped boundary has been 

used as shown in the developed surface of the air 

face of the dam with the real . valley profile shown by 

the dashed line in figures 1, 2, and 3, in case the 

thickness varies horizontally, vertically, or in both 

directions, it has been assumed that the dam is an 

assemblage of f 4 ni to elments of various thickness and 

the thicknessfor each element is taken as the mean 

thickness of the element. 

STATIC ANALYSIS 
1~__l~lr f~l~v~~_YFY1wY~HM+ 	 - 

DEFLECTIOI~S - 	'Figures 4a, 4b, 4c, 4d and 4e shows the 

radial deflections of central cantilever due to hydro-

static load for different' cases. The following conclu-

sions can be made. 

a ). As the base width to crest length ratio decreases, 

the maximum deflections which occur near about 

0.6 height, decreases. 

b) As the radius increases or central angle decreases, 

the deflections increase. 
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c) As the_. bellght increases without any change in 

the thickness, the deflections Increase. 

d) As thickness increases horizontally from the 

centre towards the abutments, the deflect-lons 

decrease. 

e) As the thickness increases vertically towards 

base, the deflection decreases. 

Vert`cal Stresses,due_to~hydrostati.c„~Load_ 

Figures 5a, 5b, 5c, 5d and 5e shows the vert{cal 

stress distribution due to hydrostatic load ors the 

central cantilever on upstream and downstream sides 

for the different cases. The following conclusions can 

be made. 

a) As the base width to crest length ratio 

decreases, the compressive and tensile stresses on 

both the faces go on reducing. 

b) As the radius of the dam -.ncrrnases, the coup-

ressive and tensilte, stress on both the faces 

increases. 

c) As the height of the dam increases, the 

compressive and ten si.le stress on both the faces 

increases. 

d) As the thickness of the dam increases hori-

zontally towards the abutments, the compressive 

and tensile stress on both si.de.s increases. 

e) As the thickness of the dam increases verti-

cally towards the base, on upstream face the 
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tensile stress increases and compressive 

stress reduces while on downstream face the 

compress4 ve stress increases and tensile 

stress reduces. 

Hoo Stresses due___ to Hydrostats c~Load 

Figures 6a, 6b, 6c, 6d, and 6o shows the distrib-

ut on of hoop stresses due to hydrostatic load on the 

central cantilever on upstream face for different cases. 

From the results it has been concluded that the hoop 

stresses go on increasing in all the five cases considered. 

Verttc al Stre ssse s dug to Deed~,Load 

Figures ?a, ?b, ?c, '7d and 7e shows the vertical 

stress distribution due to dead load on the central 

cantilever on the upstream and downstream sides for the 

dafferent cases. The following conclusions can be made. 

a) As the base width to crest length ratio decreases, 

the stresses goes on reducing on both the faces, 

b) As the radius increases, there is no marked 

variation of stresses on upstream side while 

on downstream side the stresses go on reducing 
slowly. 

c) As the height increases, tho stresses on both 

the faces go on increasing. 

d) As the thickness incre.~.sos hortzontolly or 

vertically, the stress on both faces reduces. 



Hoop-Stresses due to Dead Load 

Figures 8a, 8b, 8c, 8d and 8e shows the hoop 

stress variation for different cases on upstream and 

downstream sides en central cantilever. The follow~thnjg 

can be concluded. 

a) As the base width to crest length ratio decreases, 

() On the upstream face the tensile stresses 

in the lower third region Increases slightly, 

(4j) The c :impressive stresses in the _middle 

third region increases, and (iii.) the 

compressive stresses in the top third 

rogion decreases, while on the downstream 

face the tensile stresses occur and go on 

decreasing. 

b) As the radius increases the stresses go on 

reducing slowly on both the faces, 

c) As the height incres, the maximum stresses 

• go on increasing on both faces. 

d) As thickness increases in horizontal direction, 

the stresses go on increasing on both faces. 

e) As the thickness of the dam increases vertically, 

the maximum stress reduces on both the sides. 

An Actual Pr--fi.Ie 

Figures 9a shows the deflections of the longest 

cantilever of the dam in a non-symmetric valley.. The 

problem has been solved for two different meshes, 
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(~) Coarse mesh, and (4 4) pine mesh. The comparison 

of the two has been shown. The maximum deflection is of 

the order of 11 cms. at the crest level. 

Figure 9c shows the distribution of vertical and hoop 

stresses due to hydrostatic load on both the faces. The 

di str;buti_on is more or less symmetrical. Maximum hoop 

stresses are about 5 times of the max;mum vertical stresses. 

Figure 9(d) shows the distribution of dead load 

stresses (vertical as well as hoop) on both the faces. In 

tho middle third portion hoop stresses are maximum and 

about 1.5 times as that of the maximum vertical stresses, 

Figure 10 shows a comparison of radial deflections, 

and stresses due to hydrostatic load and dead load due 

to coarse mesh and fine mesh. A good agreement is obtained. 

Egui.y~l~nt_St,~t,~c E,~rth„~u,ake_L~d_ 

Sf.nce the acceleration due to earthquake load 

vare s along the he ,* ght of the structure, the load will 

also vary. To determine the shape of load; ng which may 

produce the maximum stresses *n the structure for the 

same intensity of shock, .three cases of loading, viz., 

() Rectangular,. (it) Triangular, and (li i) Parabo1;c 

have been considered in the analysis. The dynamic loads 

can always be represented by a certain percentage of 

static loads. A dynamic load of 10 percent gravity accel-

erat;on has been considered for different types of, 

loading .. Two prof;les in which the thickness gradually 



increases vertically, have been analysed. 

Deflections. Figures ha and lib show the radial 

deflections of central cantilever due to the three types 

of loading for the dam considered. The follow-Ing 

conclusions can be made. 

(a) The maximum deflection occurs due to parabolic 

typo of loading in the upper third reg; on and 

minimum by the rectangular load while in the 

lower 2/3rd region, reverse i's the case. 

(b) More the rate of increase in thickness, lesser 

are the deflections. 

Vertical Stresses 

Figures 12a and 12b shows the vert4  cal stress 

di stri bution on the central cantilever due to three types 

of loading on both the faces. The follow,' n g can be 

concluded, 

(a) The maximum stresses occur due to parabolic 

type of loading can both faces. 

(b) As the thickness increases vertically, the 

maximum stress reduces. 

Hoop Stresses 

Figures 12c and 12d show the var,ation of hoop 

stresses on the central cant;.lever due to three types 

of loading on both the faces. The following can be 

concluded. 
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(a) The maximum hoop stresses occur due to rectang-

ular type of loading in the lower third region 

on both the faces while in the upper third 

region it is due to parabolic type of loading. 

(b) As the effect of thickness reduces, the parabolic 

type of loading produces the maximum compressive 

stresses on the upstream face. 

An Actual Profile_ 

An actual profile in an unsymmetrical valley has been 

analysed f;.,r dynamic loads also. Figures 13 and 14 

show the distribution of vertical stresses and hoop 

stresses on both the faces on the longest cantilever. 

Figure 9(b) shows the radial deflection of the same 

cantilever due to dynam,c loads. The following conclusions 

can be made. 

Deflections 

.(a) Deflection pattern is same as in other cases. 

(b) Maximum deflection at the crest due to parabolic 

loading is of the order of 18 mm,, 

Vertical Stresses_ 
(a) The stresses on both the faces are more or less 

symmetricrl. 

(b) The maximum stresses are due t, parabolic loading 

throughout the height of the cantilever. 

(c) The maximum stress due t-: parabolic type of. loading 

is about 1.6 times of the maximum stress due to rect-

angular type of  loading. 
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Hoo2-Stress 

(a) The stresses on both the faces are more or 

less symmetrical. 

(b) The maximum hoops are produced due to rectang-

ular type of loading in the lower half reg4on.. In the 

top region it is due to parabolic loading. 

CmbneStresses oid 
Combined  static and dynam-i.c stress variation on 

both faces are shown in the figures 15,16 and 17 for 

three cases, viz., (i) Variation of thickness in 

vertical direction 1n the ratio 1:16.5, (ii) Variation 

of thickness in vertical direction in the ratio 1:11, 

and (i_ii) An actual profile. In all the cases the 

vertical and hoop stress variations are shown for, 

(i) static stresses due to 	hydrostatic and dead 

loads, (ii) static loads plus rectangular load, and, 

(iii) Static loads plus parabolic load. From the 

curves it is found that- 

(a) Maximum vertical stresses. are due to static 

loads plus parabolic load. 

(b) Maximum hoop stresses in the lower 2/3rd region 

is due to static plus rectangular loading with 

a slight variation with static plus _ parabolic 

loading, while in the upper region it -is due 

to static plus parabolic loading. 

(c) As the thickness increases , the vertical 

stresses are reduced while the hoops are 
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slightly increased. 

(d) In case of an actual profile the maximum hoop 

is about 5 times the maximum vertical stress. 
0 

Natural Per ,od_,,of~Vibration~and Mode 
S~iaQe othe Dam_ 

Fi.gures18(a) and 18(b) show the fundamental mode 

shape for (a) symmetrical sloping side valley and (2) 

(b) U-shaped valley. Figure 18(a) shows the effect of 

f4ne mesh also. xt is seen that 

(a) In sloping side symmetrical valley, the funda-

mental mode is a symmetric one while in the 

U-shaped valley it is antisy:nmetri.c. 

(b) There is only a small variation between fine 

mesh and coarse mesh results. 

(c) Frequency in case of U-shaped valley is slightly 

less than the frequency due to sloping side 

valley. 

DETATI.S OF CALCULATIONS OF FUNDAMENTAL FRE,~UENCIES 

gee I FIN JAESH 

Data Assumed 

Modulus of Elasticity E = 2.6x106 psi. 

Wt. density e 	144 lbs/cu.ft. 
2  Eg 

p 

yE7g e _ 2.6x10'x32.2x144 
144 
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= 
= 9140 

Thereforep2 0.491976 	x  Eg  -- 	 _  
= 0.000646x 

• 9140x30.48 = • p = 0.0233x — 104 	0..C233x2?90 

or p = 65.00 rad/sec. 

Therefore, f =2rt  = 65200  = 10.30 c/sec. 

Coarse Mesh_ 

p=0.0248x2790 

= 69.30 rad/sec. 

or f=6930 =11.00c/sec. 

Case 
 

_L- -- U- Sh aped Va l ley 

p = 0.0226x2'790 

= 63 rad/sec. 

or 	f = 6328  = 10100 c/sec. 
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CONCLUSIONS 

Based on the results obtained from the analysis 

of various profiles with different parameters, the 

following conclusions may be drawn for safe design of 

an arch dam- 

1. Though V-shaped valley is generally preferred 

for construction of an arch dam, arch dams are economical 

to construct in valleys of other shapes also. This study 

has indicated that the stresses do not increase very 

rapidly with the shape of valley , other parameters remain-

;ng same.  

2. Central angle of the cyl&.ndri_cal arch dam may 

li e between 950  to 1100  for economic consider?tion.0n 

reducing the angle, stresses go on increasing whole 

on increasing it, more volume of concrete mass is requ-

ired in the dam. 

3. Increase in thickness of dam vertically towards 

the base gives less vertical stresses but more hoops while 
an increase in thickness horizontally towards the abutments, 
more vertical as well as hoop stresses are developed in 
the dam. 

4. As the weight of the arch dam is small as comp-

ared t the gravity dams, the dynamic stresses in arch 

dams are very small as compared to the static stresses 

part4cularly in moderate earthquake zones. 

5. In case of lateral seismic loadings, inverted 

parabolic type of load distri.but; on produces more vertical 
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stresses and crest deflections while uniform load 

distribution produces more hoop stresses and the deflect—

on s 4.n the lower 2/3rd region of the dam. 

6. Combined static and dynamic (paraboli.c load 

distribution) loads give more vertical stresses wh-1 le 

static plus rectangular. load distribution give slightly 

more hoop—stresses. 

7. In the finite element method, even a coarse 

mesh gives fairly accurate results in determination of 

fundamental period and mode shape. 
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2T2 
L2 = t-  .. (3b) 

Stress-displacemeent e ugti on s 

N X= D~u`+p(v°+ )-(1+~a)aT1 	 .. (4a) 

Ny = DCv°+ '+?U t -(I+p)aT1J 	 .. (4b) 

NJ= Nyx= D 12 GF-u 0+v' 	 .. (4 c) 

Mi x = B[w" -j w00-(l+i)a `~ 	, 	 .. (4d) 

My = BEwo°+ iw" -(1+)c. Z] , 	 .. (4e) 

Mx = MyX = B(l-p)w'° 	 .. (4f) 

With the help of the above equations we obt ,in finally 

the three basic equations,  

CDu'~ + —~ [DuCFJ-  +ya IpDv©1 +  

.. (5a) 

17t[Da°i'++rDu' .) o+ 124[Dv' I +[Dv°i °+f D zi°—(l+p)a[DT1)°+Y=O 
.. (5b) 

[Du' z ]' + 1It [Du °z °]' + IDu' z~3 ] °+ 12P- [Du °z' ] °-~a Du' + 12- [DV' z ' fl 

+fa  [DV°z' ] 	12-iDv z 'J °+ [Dv°zo] o- Dvo+ [Bw") "+u [a,001 , t 
z 

+2 (I-p) [Bw' 01' `'+p fBw"1°+ [Bw°°] °°+ 1D 	z' 

T 
+[D Zz0 ] 0— D~w—(l+~a)X4CDT1z' +`DTl z°]°—D  '+ 

z 

t ' 	0 0 	
.. (5c) 

B©unda y— and tIons 

For the abutments and the base of the dam the boundary 

conditions, for cases without perimetral joints are, 



APPENDIX 'B' 

assumptions 
f~esi.des the usual assumptions of the classical 

theory of thin elastic shells we can assume that for 

ease of,construction double curvature arch dams of cons-

taut angl type arty usually designed in such a way that 

vertical curvature and twist of their middle-surface are 

not very accentuated i.e. 

iv R o y 	<<1, z°2 <(1 
 

vl .  

Fig.l Shell-Element in Cylindrical 
Coordin;ite 

(a) Stress resultants 

Nx = fcr& dh,  

N xy= f xydh = Nyx= f /Y Xdh, 

Q x` f?xzdh, Qy = fryzdh, 
M x = f ch dh,MY = f cryhdh 

M xy = I xyh dh = My x 

(b) Er~untions~of eujlibrium 

N'-3-N0 +X = 0, 

Ny+Ny x+y = 0, 

Q H-Q°-- Nty/z +.G = 0, 

NX+fv O +Nxz' +N xy z°-QX = 0, 
M +MY x+NY z°+Nyxz'-thy = 0. 

.. (la,b) 

.. (lc) 

...(ld,e) 

... (lf, g) 

.. (lh) 

.. (2a) 

(2k) 

.. (2c) 

.. (2d) 

.. (2e) 

(c) Va„ ra tion of_Temperatnre 

T(x,y,h) = T1(x,y)+h T, (x,y) 
1v 4o9 

' III 1lFW#Y UNIY S/1Y OF O0,0* 
ROORKEE. 

.. (3a) 



u=0, , V =O, w=O 	 •. (7a—c) 

w' = w0= 0. 	 .. 	(7d) 

and for cases with perimetral joints, 

u=0, V =0, v)=0, 	 •• (8a—c) 

M=My =0 	 .. (8d) 

For the crest of the dam the boundary cc_'nditions are, 
M 

Yl 0, NT 	—.. XY =  0 	 .. (9a,h) 

M = 0, Q X-i-M10 	= 0 	 .. (9c,d) 

11 
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APPENDIX `A' 

The analysis was made in terms of the three component 

displacements nt any point in the structure. The six 

components of stress are given, 
l+o-   :t 

-E`r`r="a +i`~-( ar+ 	+r'ae + az ), 
1 +~r 	_ ( au + 1. , w + av_ ) 

r' a0 	r 	1-2 o Or 	r 	r a0 	az 

E 	dz 	1–crar + r + r' a8 az 

+ aw) 
2 r a0  az '  

1 aU 	„v E zr' = 2 ( az + Or" I 

1 ±fir — 	1(4w – w_, 	1 Ou 

	

E r8 = 	 + . 
° 2 Or 	r 	r ae ) 

where partial differential Young' s modulus and crPoisson's 
ratio. 

The partial differential ecuatichs which govern the 
displacements are, 

2u 1 Ou _  
1–~ ) ( ^2+r ar –2 )+ 2 (_2–  

	

ar 	r 2 	r 2 rG 	DZ 	r 
1 ~~V Z 1 Ctv 	p 

+ 2 Graz 2'r3  r30 

(1_ T ) 2v-2,~ a2v 	1 av_ 	i a2v) 1 1u 	1 I a2w az2+ n"" ~ar2 
+ r ° ar + r '~ a0 " `+ 2 ° r ° d:: •+ 2° r" a0az 
2 

2 Graz 

(1_~ )1 , 32 + ,-2~' (̀ 	+ 1~ Ow _ W + a2Ur~ + 3-4 .1~ au 
r•ar 	 sae r aG 	 ar 	 r az 	 r 

 
+ 	

= O 	
" (2) 2 ° r araO 	2 	00az  

These equations must be solved subject to certain boundary 

conditions. 
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Table -1 

Stiffngss_M~trix,=„_JKI_2f an_E1~~ent a n 
global~coord,inatc system 

IKI  ;D1 R1 2 3 

D2 R4 R5 

i  D3 R6 

D4 ... 

r 
1D11 = + (Ap -1+Bp)cos20 	DFcose -(Ap 1+Bp) -GFsine. HFsin6 

28 	 sinecose 	cos8 +FF sin 	 +FFsinBcos6 

(Ap 4-bp ) -DFsin9  0  0 

(Ap-1+Bp) 	-GFcos28 HFcose 
sin28+FF 
cos2A 

RFcos2e -15t2 
cosB 

VF 

a,. 
+D2'= ;Ap-1+Bp) -DFcos6 -(Ap+Bp) 	GFsinecose HF sine 

2 	 sin©cos8 :os B+~F 	 +FFsinecosO 
singe 

Ap+Bp~1 +DFsin8 	 0 	0 

(Ap-1+Bp) 	GFcos20 	HFcose 
singe 2 
+FFcos A 

RFcos2a 	15Vt2 cos@ 

VF 



D31= (Ap 1+Bp) 	-DFcose 	-(Ap-I+Bp) 	-GFsin@cos8 -HFsinB 
cos2e 	 sinecose 
+FFsin2e 	 +F F sinec ose 

Ap+Bp-1  DFsine 	 0 	 0 

(Ap 1+Bp) 	-GFcos20 	-HFcose 
singe 
+FFcos2e 

R Fc o s2@ 	15Vt2c o se 

VF 

- (Ap 1+Bp) 	GFsine cos8 	-H FsinB 
sin0c'os8 
+FFsinecos@ 

-DFsine 	0 	 0 

(Ap I+Bp) 	GFcos2@ 	-E Fcose 
singe+ 
FFcos2e 

RFcos28 	-15-Ot2cos8 

VF 

D4 1 _ [( Ap-1+Bp) 	DFcos8 o s2e 
FF sin2e 

Ap+Bp-1  

R1  1 	` (Cp I-Bp) EFcose 
cos28  
+IFsin

2 
 @ 

-EFc ose 	-,A,p+Bp 1 

- (cp 1- Bp) -EFsinO 
sinecos8 
+IFsinecose 

+JFsinecose 0 

KFsine 	0  

-(Cp-I-Bp) -JFsinecose KFsine 
sinecose 
-IFsinOcose 

EFsin@ 	0 	0 

(Cp 1-Bp) 	-JFcos2@ 	KFcose 
singe 
+I:Fcos29 

JFcos2 A 	SFcos2e 	a 

KFcose 	 0 	`.NF 



2 	
= r(-A -1+Bp) 

cos~A 
-EFcoso -(-Ap 1+Bp) MFsinecose +NFsin0l 

sin9cos6 
+LFsin28 +LFsinecosO 

EFcoso Cp-Bp -EFsine 0 0 

EFsin8 (-Ap 1+Bp) MFcos2e NFcose 
sinecose singe+LF 
+LFsInecosO cos29 

MFsinecose 0 MFcos2e TFcos2e 0 

-NFsine 0 -NFcose 0 XF 

1B31- 	(-0p 1-Bp) -DFcose -(-Cp 1-Bp) PFsinecose QFsine 
cos e sin0cose 
+OFs?_n2O +OF sinecose 

-DFc o sO --Cp-Bp 1 DF sine 0 0 

-(-op 1-Bp) DFsinO (-c 1-Bp) PFcos20 QFcosO 
sinCcoso 
+OFsine co sO 

singe 
+O Fco s2A 

-PFsinBcose 0 -PFcos2e UFcos20 0 

-QFsinO 0 -QFcose 0 YF _J 

g4 1= 	(-Cp 1-Bp) DFcose -(-Cp-1-Bp) -PFsinecose QFsinO 
 2 C05 O+ sinec ose 

OFsin20 +0,Fsinecose 

lDFcose -Cp-Bp 1 -DFsine 0 0 

-(-Cp. 1 _Bp ) -DFsine 1 (-C 	Bp) p 	- -PFcos2e QFcose 

{ 	sinecos8 sin O+OFcos26 
+0FsinBcose  

PFS1n0005e 0 PFc,)s2 0 UFcos2e 0 

-GFsine 0 -QFcose 0 YF 



B5 _ (-Ap 1+Bp) 	EFcos0 -(-.Ap +Bp) 	-MF sinecose NFsine 
cos2e 	 sinBcose  
+LFsin2g 	 +LF sinecose  

-EFcosO 	C -B -1 EFsin9 	 0 	0 P p  

-(-Ap+Bp) -EFsine (-Ap 1+Bp) 	-MFcos2e 	NFcose 
sinecose 	 sin20+LFcos20 
+L Fsine c o se  

-MFsinOcos0 0 -MFcos20 TFcos2e 	0 

-NFsine 	0 -NFcose 	0 	XF 

JR6I= i 	(Gp-1--Bp) -EFcose -(0p 1-Bp) -JFsinecos8 -KFsin9 
cos28 sinecose 
+I Fsin28 +IFs necos0 

EFcose -Ap+Bp-I -EFsi nA 0 0 

-(Cp-1-Bp) EFsinO (p 1-Bp) -JFcos20 -KFcose 
sinOcos8 sin28 
+IFsinecos© +IFcos2e 

JFsinecose 0 JFcos2e SFcos20 0 

-KFsine 0 -KFco.se 0 WF 

wh e re, 
2 	 2 

p=a/b, p-1=b/a, A=60+ 301) 	B=22.5 (1-1) , C = 30- 

DF =22.5(1+J), EF=22.5(1-3~), FF=(42-124+60p2+60p-2 )t2/fib 

GF =(30p+3p 1+12,)p-1)t2/b, HF=(30p 1+3p+12Jp)t2/a, 

IF= (-42+12J-60p2+30p-2)t2/ab, JF= [30p+3(1-v`)p 1 t2/b 

KF=(15p-1-3p-12\Ip)t2/a, LF=(-42+12 -60p-2+30p2 )t2/ab, 

MF = (-15p+3p-1+12#p 1 )t2/b, NF=[30p-1+3(1-~)p]t2/a, 

OF = (42-12J-30p2-30p-2)t2/ab, PI'= [ 15p+3(1-v')p~1]t2/b 

QF = [15p-1-3(1-3)p]t2/a, RF=2Qp+4(i-1)p-1lt2 

SF=[10p-(1-~)p-1]t2 , TF=tlOp-4(1-v')p-1]t~' 

UF= [5p+(1-V )p-1J t2, VF= 20p-1+4 (1-\) )pJt
2 

`"IF-110p 1-4(1-J)p]t2, XF= 10p 1-(1-~')p]t2 , YF=LSp 1+(1-1)pZt2 



Table 2. Stress Matrix for 'In Planet 
Forces. 

-b - 0 b 0 0 

-a 0 a >b 0 0 0 

-ma-nb -mb-na ma+nb -rnb+na -rna+nb mb-i-na ma-nb mb-na 

0 -%a -b 0 0 b 0 

0 -13 	. -4b a 0 0 b. 0 

-ma+nb -mb-na ma-nb -mb+na -ma-nb mb+na ma+nb mb-na 

-b 0 0 0 b -va 0 

-b 0 0 0 ib -a 0 a 

ma-nb -rnb+na ma+nb -mb-na -ma+nb mb-na ma-nb mb+na 

0 0 -b 0 0 b 

0 0 -)b 0 0 - 'Yb a 

-ma+nb -mb+na ma-nb -mb-na -ma-nb mb-na ma+nb mb+nb 

p pp 
Cr =S  
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