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SYNOPSTS

The behaviaur of cylindrical arch dams, has been
studied under static and dynamic type of loads. Different
geometrical parameters have been varied. Tn addition,
an actual profile of a dam in a non-symmetrical valley
has also been analysed. In all cases deflections and
stresses have been worked out. Finite element technique

has been used in the analysis. In the static analysis

‘hydrostatic and dead load have been considered.

Earthquake forces have been represented equivalent static
lateral loads having three different distribution along
the height namely, (i) Rectangular, (i3) Inverted tri-
angular, and (iii) Inverted parabolic. The fundamental
frequencies and corrésponding mode shapes have been

calculated for the two cases.
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INTRODUCTION

Considerable change has occurred in the design
of arch dams in recent years. The.trend now is toward
higher and thinner arch dams, more complex shapes, and
adoption to more difficult site circumstances.

Most recenfly designed dams are doubly curved,
that is, curved 3n both the vertical and horizontal
planes. By carefully proportioning arch thickness
along with proper shaping, efficient structural proper-
ties, and cconomy may be achieved. A number of compre-
hensive methods for the analysis of arch dams are
available. These include structural models, trial-load
method, shell theory, finite element method; dynamic"
relaxafion, energy method, etc. A brief review of all
the se methods have been given in Chapter 2 and their
comparison and suitability to adopt for a particular
site has been discussed. Tt is found that finite elemenf
method is a generalized method of structural analysis
and can take into account any form of geometrical shape,
thickness variation and boundary conditicns and hence

adoptedvin the present analysis.

In the present analysis, the dam profile has been
assumed to be the assemblage of flat rectangular elements.

Chapter 2 gives the details of the procedure adopted.

Because of the timz and expense required to

analyse arch dams in the past usually only a single



O
combination of loads was considered namely, self weight
normal full reservoir water, and minimum concrete
temperature. The use of computers has made possible the
investigation of various other combinations of loads which
may occur at any particular site. For example, many
reservoirs operate at 2 low level during late summer ‘or
fall. At this time maximum concrete temp. may oécur. This
combination of load often produces high tensile stresses
on the intrados of the arch along the abutments. The
possibility of resonance occurring in a dam as a result
of earthquakes has generally been ignored until recently.
Methods have been devised to estimate the natural freguency
of a dam, and if rescnance is a possibility, to compute

its effect on the structure.

ALl of these loading conditions and the capa-
bility to analyze their effects on an arch dam have a
direct relationship to the safe, and efficient design of

such structures.

One of the more recent trend in arch dam design
is to adopt these structures t» wider, the ncn-symmetrical
sites. The ideal configuration for an arch dam site is |
a narrow V-shape. As sites become wider.a greater prop-
ortion of the applied load is carried vertically to
the foundation in the central part of the dﬁm. To overcome
this tendency and to keep stresses within allowable limits,

the arches must be thickened or shaped to improve their
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load carrying ability. Increased vertical curvature
also assists in keeping.thé dam relatively thin and
contrelling 2 tendency for tensile stresses along the

abutment extrados.

Non~-symmetrical sites present a particularly
difficult problem for designers. There is a strong
tendency in such sites for the load to go to the steep~
est abutment. The dam must therefore be proportioned
s that the load will be unifermly distributed throughout

the structure.

Six cases of cylindrical arch dams with different
parameters have been censidered to evaluate deflections
‘and stresses. Deflectioné and stresses have been cal-
culated for hydrostatic and dead lcads. Earthquake
forces has been replaced by equivalent static load.

Tﬁree types of load variations along the height of the
dam has been ccnsidered keeping the free cantilever

base moment the same and type of load distribution whichv
will give worst results has-been discussed. Lastly, the
static and dynamic stresses have been combined for
different cases and the total stress distribution curves
have been drawn for some typical cases. Finite element
method has also been used to determine the fundament-l
frequency and corresponding mode shape for scme typical
cases. '

Because of the inherent safety and cutstanding
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aesthetic qualities of arch dams, prospects for the
future design and construction of these structures arc
unlimited. Continued and increased emphasis on founda~
tion investigations is essential. Arch dams may be |

built in wider and more difficult sites.

After studying the behaviour of cylindrical arch
dams in symmetrical as well as non-symmetrical valley
with different gecmetrical parameters we conclude that
for economical and safe design V-shapcd valley should
De preferred but it will be economical to construct
an arch dams in other shapesof valleysalso as compared
to gravity dams. Central angle cf dam shculd lie between
‘ 95°‘ta 110° and an inCﬁease in thickness vertically as well
well =s horizontallyl%;Yiionomical destgn. The weight
of an arch dam is émall in compariscn to gravity dam.
Therefore the inertia forces are also small ard cons-
equently the stresses due to earthquake load is very

small as compared to the stresses due to static loads

particularly in moderate earthquake zones.



CHAPTER 2

REVIEW OF THE METHODS OF ARCH DAM_ANALYSIS -

The use of the arch dam form for dam design has
increased considerably in recent times, about 500 of .
this type having been constructed in the last 25 year§§)
The first interim report on research into the Design
of Arch Dams was published in September 1963. A wide
variety of methods are available for tﬂe analysis of
dams of simple geometrical form. New methods were
continually being tried out. These would need to be
applied to the curved and doubly curved dams befofe being

recommended for general use.

There are sevéral techniques available for analysis
as given in second interim report(18>. The methods, both
analytical and model techﬁiques, will undoubtedly have
a much broader application in fields other than arch dam

design.

In any discussicn of a preposed method for the
anzlysis of a structure it is always very important to
4nvestigate the basic assumptibns_made. These assumptions
may be of a more or less matﬁematical nature but neverthe-
less they will also have a physical interpretation. It
is by the examination of the basic assumptions that

the similarities and divergencies of different methods

cf analysis can be found.
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Some of the following methods have been described

briefly and comparison of proposed methods has been

given considering various factors and suitability of
: 3 Y

methods.

1. The three dimensional solution,
2. Trial load method,

3. Complete adjustment method,

4., Msthod of Energy,

9. Shetl Thecry,

6. Fintte Difference Approach,

7. Finite Element Mzthod.

Three dimensional solution of arch dams

(3)

The relaxaticn process  for the stress anaiys*s

of arch dam was used in 1956. This process enables mathe-
matical equations to be solved numerically to any
~desired degreec of accuracv. The exact elastic equations
for the dam were formulated in terms of displacements
instead of the more usual stress functicns, and were
sclved by relaxation. Calculations were made of the
stresses dué to gravity loads and water pressure acting
separately and alsc of thgée due to variations in

tempe rature.

A cylindrical-polér system of co-ordinates, r,z,
and 8, was adopted and the displacements of'an? point
denoted by u(radial), v(vertical) and w(tangential), |
ecach taken positive in the corresponding positive -

direction of the.coordinates ryz,and 8 respectively.
[
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At any point the six components of stress can
be expressed in terms of the three displacements by
the relation (1) given in Appendix A. Thus, once the

\

displacements have been determined, values of the

stress components may be deduced directly from them.

The displacements themselves are found by solving
the three governing differential equations (2) which
result from substitution of the expression (1) for the
stresses into the equations of equilibrium for the point.
These equations have to be solved, subject to stated
boundary conditions to determine the values of Uy Vy and

w throughout dam and the adjoining rook ~foundation.

2. TRTAL LOAD METHOD'Y)

The trial load method considers the agreement between
‘radial (horizontzl) and tangential displaéements and
rotations of the vertical axis of the arches and cantilevers
but ignores the vertical displacements and the rotations
of horizontal axis. Conditions of equilibrium are taken
into account cnly for rad{al, tangent+al, and vertical
twist loads and for certain internal forces since not all
of these forces are considered. This method considers,
on the arches, rad+al, tangential, -and twist trfangular
unit loads not related to the position of cantilevers.
Thus, the conditions set at each 3ntersection of elements
are only approximate. The final value of such loads was

de termined by trial until equal defurmations were cbtained.
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3. COWPLETE_ADJUSTMENT METHOD'!®)

The complete adjustment method 3s based on the.
principles used in the theory of shells, %.e., the condit-
ions of equilibrium »f an element ( voussoir )limited
by tw> verticals and two horizontal planes and the
conditions of compatibility of deformations (displace=~
ments and rotations) undergone by that element. Tn those
planes the voussoir is acted upon by 10 internal forces

in its faces and mass by external loads.lThe equations
of equilibrium be‘ng six, four conditions of compatibility
will be necessary to find the internal loads. Since
shearing and twist forces are not independent, the
jnternal forces can be reduced to eight and the equations
of equilibrfum to five, only three equations of compati-

bility being necessary.

Tn the arches or cantilevers considered, the forces
in the horizontal and verticai farcas are assimilated to
external loads. The integration of the equations of
equﬁlibrium aﬁd compatibility is made by simply consider-
‘ng certain unit loads on the voussoirs of intersection
which préduce certain deformations of the.arches or
.cant4levers. The total internal loads are determined by
a systemn of equations involving all those voussoirs of
intersecﬁion, This methad makes the method completely
exact, allowing a correct determination cf 211 the
principal stresses in the dam. When the curvature of the

dam is different at each level, the cantilevers are



. ~9-
twisted elements generated by two horizontal (radial)
segments perpendidular to the level lines upstream and at
a unit distance at the upstream face. For double curvature
shells, arches and cantilevers could be takeﬁ as the same
type of twisted elements normal to the upstream face. The
arches could be a half element from each abutment to
the crown. For the analysis of displacement and deformat-
tons, effect of twist and shear, equations of equilibrium
and conditions of compatibility, and analysis of arches

(13)

and cantilevers, reference may be consulted.

4. METHOD OF EnERGY(l”)

This method ¥s based on by minimizing the functional
represeﬁt%ng the internal energy of stra’n diminfshed
by the work done by the external forces. Adopt cylindrical
coordinates. The stra’ns in a plane situated at a distance

z from the middle surface are then given by the relations

2 2
A A S vl A N

where R = radius of middle surface.

For a plane condition of stress, the strain energy

per unit volume E  at a distance Z from the middle surface

s given by:
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‘ 2
- Xz yzi\@ o (lvzT_axz vz
E, = »---—---}:2-~ (e +67 ) 2 (1-p) (77 -€™%e )]

where E is the modulus of elasticity and I thé.pogsson‘s

ratio for the dam.

The energy per unit surface area of the middle
surface E, is then given by
+h
J E.(R+ 2)dh
Y R

-h
where b is the half thickness of the shell and R+

n >

'represenfs the varfation of the length of the fibre
with Z. Substituting the expressions for the strains and

making the approximation that (l+ %)‘1 =1~ % s we get

F.QU ., §M+.. %IF)(§!+§V)+P ._..+W)]

1 a"
Z
Eh” [ pwW\R . 5w W2
o BB R (e (1o ) (8 )
3(1—}1 ) a;g dy P ey
- 2u v W, 2 _afg % 2 A
B3y 52 ax° gy R O3X g
Lo lmadw J309) sy P
R 9y oxdy R 0x  dxoy
3(1 p) : 2~
Va2 1 ,0vie 2w dv 2w 3w
b e Ly - B 2y 2]
gre OX\ gy g3 OV TGP 'ayg

Work done by the external forces

The external frrces acting on the dam can be

resclved along the three directions of the axes. Supposing
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the three components at any point x,y to be X,Y,2
the work done can be written as Xu+Yv+Zw, since the
contribution of X,Y,Z themselves to the displacement

UyVv,w 15 very small.

e o ¥ P P

EUNCTTONAL AND ITS_EQUIVALENT EXPRESSION AS_A_SUM
The functional to be minimized thus becomes
[ [ By ddy-f [(u+Yv+zw)dxdy, the integration being
s 5

done on the entire middle surface of the dam,

We find that the eXpreés*on for E, contains w and
its second derivatives while the derivatives of u,v
are of the first order only. This suggested the use of
separate networks for u,v,w, the nodes fér v being placed
in the middle of the nodes for w in the x-direct?cn.
Now we define small surface areas with respect to the
networks. Two types of such unit areas are needed-Type A, .
having a wvnode at 3ts centre, the v node at the middle
of the two sides y = constant and the u ncdes on the
middle of the sides x = constant - Type B, having the w
nodes at the four corners, the v nodes at the middle of
the sides x = constant and the u nodes at the middle of

the sides y = constant (fig.1l).
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Type A is used for expressing the terms in Eg given by

ESA’ where
e [ o,y (&, W En° i o%w.e2
Egy = =g (42 Y w_)e .2 (&= + ~ﬂ+ =, | (-H)
VA )
-P gx &y V ax ay 3(1~V2) ~ax2
2. v 2 2 -2
oy ax Ly ax

L L (viR. 2wdyy, 2w, C o
L&) 3<@y> e ]

. !
while the type B ts used for expressing the rematning

terms given by Egps where
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Tt is supposed that the average energy in the unit
surface area is given by the energy at its centre,
where the derivatives are calculated in the finite
difference form. The E¢ s0 caléulated, when multiplied
by the grea‘of the unit surface gives the cpntributiqn
to the integral from the unit area. The sum total of
the producté of Eg with the areas, so obtained, gives the

equivalent of the first part of the functional:

Jf Edxdy = ¢ Eo,Oxly + ¢ Ean Dxby = S
s ¥ all unit oA all unit SB. L

areas of A " areas of B

The equivalent sum has the squéres of the displacements
u,vyw or the products of two displacements, the coeff-
tcients of the terms depending upen the values of E’P’

h, R, AX and Ay.

Similarly, three different unit areas will be needed
to express the work done by the external forces, these
having réspectively the nodes u,v,w at their centres
and denoted by type D, type C, and type A, giving the

equivalent relation:

[f(Qu+Yv+zw)dxdy = £ 7 Xubxby + I T Yvbxdy
s all unit all unit
areas of D areas of C
+ I  Zw Dxby = Sy
all unit '

areas of A
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Displacements and Stresses

The functional, mcdified by the elimination of some
displacements by the use of boundary conditions, can now
be dtfferentiated with respect to each reamining df s~
blacement, thus obtaining the required number of linear
simultaneous eguat*ons. The differentiation of Sl
gives the matrix while that of Sy gives the second term.
The matrix so obta‘ned is symmetrical. Once the dis~-

placements are known the stresses can be calculated.

Theory of shells for constant angle arch dams 1is
given in Appendix B. There 3s no doubt that the most
prec?se and comprehensiye_theory of thin arch dams can
be created on the basis of the shell theory. But for
thicker structures, shell thecry may not present the
reliable results. For such structures the moment theory
of shells is tc be used. However, in order to apply.such
a theory“slcceséfully to thicker structures of shell
dams it is necessary fer the equilibrium conditions of
the differential element of the arch~dam-shell to
‘nclude aiso the'transverse forces with their components
in directions both normal znd tangential to the shell.
Accordingto Lombardt, there s very good ground for
applying the shell theory to arch dams which have a
ratio of wall thickness to radfus d/r g 0.2.

This method 3s deduced by starting from the ccmplete

system of differential equations of the moment thecory
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The sum, so obtaﬁned,‘hasvthe displacements mulf*plied
by coefficients depending upon the values of X, Y,Z

and Ox and Ay,

We are thus able to replace the integralsby two
sums, one S having the second power of the displacements,
and the other Sy having the first power only. If the
three displacements are taken at the same node and the
derivatives found in the usual way, us*nglone unit area
only, the resultfng matrix §5 not unique, for certain

forms of the boundary.

Boundary Conditions

Boundary conditions at the free edge are autc-
matically satisfied. The conditions at the rock boundary
y W

will, in general, correspond to displacements u., v

T r

and rotations (ay)r at any point cn the boundary. 1f
node concerned tc be situated at the boundary, the

value of the displacement gets fixed. If the rock bound-
ary passes in between the nocdes, the displacements at
the two nodes located on fhe two sides of the rock line
can be interrelated with the rock displacements in the

following manner,

MYeeVy L. ovelveVy
Y12 = U yitvg v’
Wq Yo+WoV Wo =W

Y1 1Y2 r Y1+Ys oy’r
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of shells as devised by V.Z.Vlassov(zl)

s represented by
forces. A typical feature in this respect is that the
influence of the transverse forcestl and Qo is taken
into consideration both in the equilibrium condfticn
expressing the absence of forces in a direction normal

to the middle surface, and in the two directions which

are tangential to it.

Tn view of the fact that arch dams are complex -
shell like structures with varying thickness in beth
directions, with double curvatures ancd complex support-
ing contour, an admfssible simplification has been mada
of the system of differential conditions. This s§mpli—
fication consists in neglecting the jnfluence of the

tangential forces,

@S _ 8s .
0% ay 0

This makes it possible tc reduce the problem to the
solution of a single differential equation in partfal
derivatives for the sole unknown function of the radial

displacement w = w(x,V).

The analysis made of the differential equation
demcnstrates that 4t consists ¢f two basic group of
terms, Some of{fhem are' not connected with the curvature
of the shell together with the load term of the right
side of the equaticn. The other group of terms are

connected to the curvatures of the shell and cxpress the
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effect of the supporting actfon of an imaginary
elastically yielding fguqdatién. The strongest support-
‘ng effect so called Winkler's supporting effect which
is proportionate to the radial displacement of fhe

imagfnary plate w = w(x,y).

6. FLNLTE DIFFERENCE. APPROACH(L”)

In the finite difference approach the differential
equation defining the,unknowns‘in some system of simple
coordinates is established. Once this equation (or equations)
are known they are expressed in terms cof a finite number
| of the unknown values at fairly closely spaced points
of the co-ordinate network. Sim{lar treatment expresses
the boundary conditions in terms of a di screte number
of;values of the unknown functions. Having thus reduced
the continuum problem to the solution of a finite system
of simultanecus, linear, equations, solution of this
system is obtained by manual (relaxation) methods or by

use of the digital computers.

7. EINITE ELEMENT METHQD (Static Analysis)(8’17)

STIFENESS MATRIX

There are two different approaches to develop a
finite element method for general shell structures. In
the first approach, the shell is replaced by an
assemblage ¢f flat plate slements which are either

triangqular or quadrilateral in shape. Each plate element
|
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1s connected in some fashion to those surrounding it
and undergoes both bending and stretching deformations.
The second approach is to develop curved shell element
)

that permits exact geometrical representatives of a

structure.

ELAT_ELEMENT

Robert J. Me].osl'x(]'4 )

developed a stiffness matrix
for a thin flat-plate triangular element, capable of
stretching 5 bending, ;hear4ng, and twisting. The
tmplied deformation state insures that the matrix will
yield monotonic convergencé of strain energy préd*ctions
with gridwork refinement and lcwer bounds on strain
energy. Its successful application to pure bending and
pure shearing cases indicates that it is usefyl 4n
predicting §tru¢tural behaviour moderately thiqk plates,
S.e. those in which shear deformations may be important

but the ncrmal stress unimportant.

0.C.Zienkiewicz and Y.K. Cheung(22> derived
a stiffness matrix for a rectangular element. The
derivation is more general and can be easily extended

to cover any type of elastic behgviaur.

The quiding principle is to assume a displacement
system thrcughout the element, which wh*le satisfying
equilibrium cqndif4ons at all points can be determined
un%queiy in terms of nodal displacements. hce thss
displécemeﬁt system is known it is possible to relate

equivalent nodal forces to the nodal displacements
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The shell geometry is limited only by the conditions
that the surface equations be given in the parametric
form. G.Bonnes, G.Dhatt, Y.M. Giroux, and LnP.A.Rob%cha&%).
derived the curved,tr*éngular element for the analysis

of doubly curved shell. Gordon E., Strickland, Jr.wWwilliam

A-Ladenu?>

derived the stiffness matrix for doubly-
curved triangular shell element, suitable for the analysis
of general non-symmetric shells.

S.Ahmad, B.M. Irons and O.C.Zienkiewicz(l’z)

degenerated a general curved isoparametric thick shell
element of arbitrary shape. By introducing only some of
the usual Navier assumptions, these new shecll elements

can *nclude shear as well as bending deformations.

The analysis of an arch dam by the finite element
method involves the following steps.
(a) The actual dam is considered to be replaced
by an equivalent structure made up of a number
of elements, of finite size, connected together
in such a way that the contihu*ty in the actual
structure is preserved to an extent which

depends upon the kind cf assumptions made

in the finite element procedure.

(b) The load-deformation characteristics of each
element are found. This is usually in terms
of a stiffness matrix for the element referred

to coordinates local to that element.
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simply by application of the virtual work principle.

CUBVED ELEMENTS ,

The first attenpt to develop the curved thin shell
(5)

element was made by Bogner, Fox and Schmit
(10)

Gallagher y in his Ph.D, thesis, reports on a
(24x24 ) stiffness matrix constructed by the standard
"assumed displacement" method. Mervyn D., Olson and

Garry M. Lindberg(ls)

made an attempt to develop the
simplest possible non-conforming representétion for

é cylindrical shell element. The radial displacement
component w is assumed to be a twelve term polynomfal

tn x and y, the longftudinal and circumferential
coordinates of the element, respectively. The in-plane
displacement components u and v are each assumed +n
polynomial form upto linear terms in x and cubic terms
‘n y. The expressions for u,v and w are then subst:tufed
into the strain energy and kinetic energy integrals from

shell thecry yield’ng 28x28 stiffness matrix for cylind-

rical shell elementi.

(7)

Connor and Brebbia developed the stiffness matrix
for a doubly curved thin rectangular finite element.
Tahb*ldar,‘U.C.(20> had used the same element tn his
Ph.D. thesis for the static and dynamic analysis of

arch dans. B.E. Greene, R.E. Jones, R.W. Mclay and

D.R. Strome<ll) developed the stiffness and mass

matrices for shell elements on 2 doubly curved surface.
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(c) The s@iffness matrices referréd fo local
coordinate system are all transformed to relate
to a commen, global, coordinate system. The
individual stiffness matrices may tﬁen be
added together to form the stiffness matrix

for the whole structure.

(d) Load vectors are obtained for each glement for
water, gravity and temperature loading referred
te local coordinates. These are then transformed

to the global coordinates and added together
to form the load vecters for the whole

structure.

(e) From the structure stiffness matrix and the
load vectors, the global displacement components
at each node are cbtained. Stressés, either

local or global can then be computed.

2. Referring tc the first of the aﬁove steps, we have
to choose the shapé and size of the element, i.e.
triangular, rectangular etc. For cylindrical shell
structures, the rectangular shape will sbviously be

preferable.

3.  The determination of the stiffness matrix of an

element alweys requires that some assumption shall be

made abcut its behaviocur, and from this assumpt?on

else follows. The displacement function throughout the
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element is assumed to be simple polynomial functfons
of the coordinate with, in additicn, certain assumptions
about the way in which each element behaves on its
boundary. Bending and in-plane actions are assumed nct
to be coupled, so that a bending stiffness matrix and
an in-plane stiffness matrix are obtained for cach

element.

4. The nodal ferces and nodal displacements, the
relaticnship between which constitutes the stiffness
matrix referred t» above, are initially de scribed with
reference to a set of Cartesian axes, which are - ,
peculiar to a single element. Before the forces at a
node can be added tcgether, s» that together with thé
external load they can be forced to satisfy equilibrium,
it 3s necessary tc resolve them into commoen direct%éns.
This is the process known ns transformation to global

coordinates.

5.  In obtaining load vectors it is advantageocusto
employ the principle of virtual work to obtain such
vectors in a manner consistent with the formation

of the stiffness matrix. Crude lumping of load on to
nodal coordinates results unavoidable error. Because

the load vector and the inertfa matrix, which is required
for the dynamic aﬁalysié, are obtained in a similar

\

wWaye. . _ )

6. The addifion of stiffness matrices, the imposition

of boundary conditions, and the solution of the equations



-23

of the equilibrium is a computational matter.

DYNAMTC ANALYSTS(8)

Restricting attention to the elastic range, the
complete evaluation of the effect of an earthquake on
a structure can be divided into three parts,
(a) The determination of the stiffness and mass
(inertia) properties of the structure,
(b) The calculation of the natural frequencies
and mode shapes of the structure.
(c) The evaluation of the response of the structure
to a given earthquake ground acceleration,
That is, the calculation of the time-dependent
displacements and stresses. This requires

knowledge of the damping present in the structure.

By employing the finite element method the %nf%nity‘
of degrees of freedom of the arch dam #s reduced to n,
where n is finite, and each degree of freedem has assoctated
with it a displacement component qi(i=l,...,n): The vector
q then represents the ordered array of nodal displacements,
and the simultaneous differential equaf*ons of motfon

can be written in matr*x form as '
MY + C§ + Kq = ~Ho+J

where M,C,K and H are referred tc as the mass, damping,
stiffness and hydrodynamic, or added mass, matrices,
respectively, and J s a forecing function. The first

three matrices are properties of the dam ttself whereas
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H is connected with the water in the reservcir. It is
assumed that the effect of this water is dependent

only upon the accelerations d of the dam.

ness, Load and Mass Matrices

Stiffness and load matrices are obtained as descr-
~3bed in the static case. The reason why load:matr=ces

are considered here s that the mass matrix is associated
with the dynamic load matrix, and, as will be scen, the

derivation of this follows from the static load matrix.

In the finite element method, externally applied
load can only be associated with the nodal displacement
components and these nodal loads must be so assigned that
during any virtual displacemenf the work.done by them
is equai to the corresponding work done by the actual

d+ stributed loading.

. Now consider the vibrating rectangular element.

~ The mass is distributed over the accelerating element and
the total inertia force is equal to this mass multplied
by the acceleration, integrated over the area of the
element. This inertfa load can only be associated with
acceleraticns of the nodal displacements. The problem

is to find the maéses,to be assaciated with the nodal
acceleraticns, and this can be sclved by noting that the
shape function of the acceleration will be the same as
the shape function for displacement if vibr@tién in

normal modes s assumed. Thus, if the coordinate j s
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given, Unit acceleration the inertia load function
.will be m(x,y)Yj(x,y), where m(x,y) is the mass per
unit area énd Yj(x,y) is the shape function associated
with coordinate j. By the principle of virtual work it

is now possible to write

myy = JIm06y)¥5 (Y)Y (% y) da
and M55 represents the inertia force acting at coordinate
i associated with a unit acceleration of coordinate j.
It will be seen that the mass matrix is square, and it

is also symmetric.

If the.effect of'fhe reseTvoir water on the dynamic
behaviour of an arch dam is thought of a2s an added
mass vibrating with the dam, the equation of motion are
given by eagn. (1) and the added mass, or hydrodynamic,
matrix éan be found in some cases by calculation but
more  satisfactorily, by an electric potential analogue
experiment. The effect of the reservoir water will be
to reduce the natural frequencieé of the dam as

compared with the reservoir empty values.

COMPARISON _OF DIFFERENT METHODS AND THEIR SUITABILITY

In the solution of three-dimensional equations of
elasticity, the finite difference formulation presented
has some disadvantages. Quite large errors apparently
develop with low order differences, and higher order
differences necessitating rather complex formulation,

are required to improve the solution. Alsc the boundary
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cquations are complicated whenever the finite difference
expressions for higher order differences are lacking
in physical significance. The amount of computational
work involved in a finite difference solution makes

it unsuitable for preliminary design purposes.

This method considers the agreement between radial

(horizontal ) and tangential displacements and rotations

of the vertical axis of the arches and cantilevers

but ignores fbe very importent vertical displacements
and the rotations of the horizontal axis. The three
adjustments radial, tangential and twist are necessary
which is a very labcrious task and invclves enbrmous A
calculations. Similarly in complete adjustment method,
it requires even larger calculations and consumes a
large amount of time. In trial load method, when the
dams are thin and have a pronounced dﬁwnstream overhang
the vertical displacements become very important not
oniy because of the influence of the Poisson's ratio

but especially because ~f the effect of the vertical

~——

component of the hydrbstatic pressure.

The energy formulation has the main merii in reducing
the numpber of independent parameters, required to solve
an elasticity problem if, for example, suitable distri-
buticn functicns are assumed. If the parameters are
the displacéments at discrete points and if further

more a . .finite difference formulation is used in evaluation
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of stresses the requirement of minimum total energy
will reduce precisely to standard equilibrium equations
of an clement. As such, therefore, the approach_is
identical to that used in other finite difference
representationssThe finite difference method is unsuitable
for preliminary design purposes as it involves largé
amount computational work. If the thicknéss and radius
of c¢ylindrical arch dam varies from point to point
the govefning partial differential equations become
quite complex. For a doubly curved shell or a dam

with variable radius the difficulties for formulation

of equations énd of the choice of a suitable coordinate
system immediately arises. |
The épplication of shell theory to arch dams is

difficult due t» its irreqular shape of the structure
and difficult boundary conditions. The complexities
involved are due to irregular shape of shell caused
not only by variable radii of curvature in the hori-
zontal and vertical directiocns and the varizble
thickness of the shell, but also by the foundation
abutment profilé comprising a spatial curved line and
the foundations which are of irregular elastic nature.
" The solution of the partial differential equations

is ccmplicated and tedious because of complex boundary

conditions. Therefore simplifying assumptions are
made to make the analytical and numerical solution

possible, in order to apply the shell theory successfully
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to arch dams it is necessary that the thickness of
the dam is relatively thin. This is true very of%en
with regard to the upper and middle sections of the
damy but for the lower portions of the dam this is

not always the case.

In finite element method a structure is divided in
several elements and these elements are assumed to be
connected at their junctions called nodal points.
Compatibility and eguilibrium conditions are established
at these points. This is a generalized method of
structural analysis ahd can take intc account any form
of geometrical shape, thicknéss variation and boundary
conditions.

Keeping in view of above methods énd their limita-
tions, finitevelement method is considered suitable

and adopted here for the analysis of the arch dam.
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CHAPTER 3

W s et Y OOt e B it Yo

METHOD OF ANALYSIS AND DESCRIPTION OF DATA

In the present work the behaviosr of cylindrical
arch dam with different geomerical parameters have
been studied. In addition to this, an actual profile
of an arch dam has been ahalyéed. In the analysis
finite element method has been used considering the
dan as an assemblage of flat finite clements. Provided
the arch is sufficiently thin it is reasonable to
assume that initially plane sections across the thickness
remain plane after loading and that the stresses corr-

espond to this restriction.

The complete analysis'of structure by finite element

method involves three separate phases.

1) Structural idealization,
2) Element properties,

3) Analysis of complete structure.

The selection of the finite element system for a
particular problem is completely arbitrary. Thercfore
structures with practically any shape boundaries may
be censidered. Here for cylindrical arch dams, rectangular
element is obviously convenient and therefore ccnsidered

in the analysis.

The evaluation of various element properties is
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;he most'critical phase of analysis and is described
below. The stiffness matrix of a typical element is
~ generated in local coordinate system. The stiffness
matrix of the whole structure is obtained by trans-
“forming the local coordinate system of an element into
global coordinate sySteﬁ and superimposing the
stiffnesses of various elements connected at varicus
nodes. Now the algebraic équations can be formed in
terms of applied load at various nodes, stiffness
matrix énd unknown displacements. By applying the
boundary conditions and solving the equations, the

unknown nodal displacements can be obtained.

S N oy

STIFENESS OF A TYPICAL ELEMENT

The surface of the dam is éssumed te be divided
into small rectangular elements connected tc each other
and carrying load at their corner points. Continuity
between the elements is established by finding at each
node six generalised displacement components (three .
linear displacements and threc rotations) such that

equilibrium at each node is satisfied.

Each element is subject to 'inplane' or membrane
stresses and to transverse bending and it is convenient
‘to establish the characteristic.stiffness separately
in the phases. Only when ccmbining the elements it

will be necessary to convert the directions of forces
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and displacements to some common coordinate system.

In-plane Stiffness of an Element

A displacement system is assumed throughout the
element which, while satisfying equilibrium conditions
at all points, can be determined uniquely in terms of
the nodal displacements. Once this displacement system
is known it is possible to relate equivalent nodal
forces to the nodal displacements simply by applicaticn

of the virtual work principle.

In the plane of the element only two displacements
need to be considered. Let these be Uy and ug in the
directions of the coordinate axes Xy and Xo as shown

in Fig. 20and be defined by the fcllowing polynomials.

e -

1

’ » 2
Ul r\l+A2xl+A3X2+A4 X1X2+A5X2 (1 )

i

2

The stresses at any point are defined by elastic

relations in terms of strains as

| f :
l} C”)'(l E aUl/aXl )
! 5’
ﬁ %%y & =D Jauz/axz $ oo (2)
o
I 0;(]—},”& ) iaul/6x2+6u2/6x1

[ . J

where w is the strain vector. The matrix fDl takes a
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simple form of
1 ¥ 0
D==2w 1y 1 g

0 0 (1-v/2

ol

in which E is the elastic mcdulus and > is the Poisson's
ratio. It is applicable for isotropic material.

For anisotropic materials if two dimensional

analysis is to be applicable a symmetry of properties

must exist, implying at most six independent constants

in the |D| matrix. Thus it is alwiys possible to write

r |
dyy dip 93
]DI = .o (4:)
doo  dog
(sym) dz

In a two directional plane behaviour, the well-
known equilibrium ccuations are satisfied given in the

absence of body forces, by

[
|
i
i

0%y % e, (5)
|

e SSawe |

ax2 bxl

which by substitution of (1) and (2) results in two
equations between the constants A.
Substituting now into equation (1) the eight

displacements and coordinates of the nodal points it
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is possible to evaluate all the constants A in terms

of these displacenents.

If the nodal displacements are written as a vector
-
)

uP =

o

<

jor

o
= D - DN N0 N

o

[

4
Yo

We have for the constants A

a0
ghl i
' !

A= o4l =cuP .+ (6)
Ayl
&‘Aloi

From equation (2) it similarly follows that
P = D P = PP ()

in which C is a matrix of constant coefficients and B
a matrix involving the position coordinates x; and xg.
The matrix s is the stress matrix and will enable
the stresses to be determined at any point later when
the displacements are known. Complete stress matrix

is given in Table II.

* .



34~
Let it be assumed now that the only external forces

acting on the element are eight statically equivalent

forces at the nodes in the directions defined by

{u}p and let these forces be labelled {F}p.'Applying

now in turn unit virtual displacements.in the appro-

priate direction we have for the external work done by

the forces acting on the element

W, = IF | oo (8)
in which I is the identity matrix.

The internal work corresponding to the same virtual
displacsoment is given by integrating the product of
apprepriate stresses and strains throughout the element

as

Wy = I 60To-Pax dx, .. (9)

\
in which 80 is the strain system correspcnding to nodal

displacements I, or by (2) and (6)
sy = cf{1} = o ... (10)

Equating these two expressions and substituting (7)

17 = [1(ec)T profuf® dxqdx,
or Pp = [CT{BTDB XmdXZ} C‘ Up ces (11)

The expression in square brackets is the stiffness
matrix [Kp[ sought 2nd can be evaluated explicitly

giving the relation
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EP = kPP o ... (12)

TRANSVERSE PBENDING STIFENESS QF AN _ELEMENT

Considering now the behaviour of an element which
is subject to the action of transverse forces the
usual assumptions of plate theory can be made. As
ﬁo 'inplane' resultant fdrces exist the only nodal
 displacements of interest are a lateral linear movementA
Uz in the direction of xz and two rotations ug, and
uyz about the directions of X1 and Xo axes respectively.
Within the element these three components of
displacement are given by a function representing the
lateral displacement ug as the rotations are simply

the derivatives of this with respect to ¥ and Xo's

If ux is definéd as the following polynomial

v ' a2 b3
voo (13)

The constants A' can be determined uniguely in terms
of the twelve nodal displacements.

v
S

u- = f UéB i eoo (14)

B i

\
i
E
1
!

/

Writing the polynomial in the above form, it has
certain advantages. In particular , along any xl=constant

line, the displacement uz will vary as a cubic. The
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element boundaries or interfaces are composed of
such lines. Now a cubic is uniquely defined by four
constants. The two end values of slopes and displace~
ment at the ends of the boundzries will therefore
definé the displacements along this boundary uniquely.
As such end values are common to adjacent elements,
continuity of ug will be imposed all along any inter-
face. |

It will be observed th-t the gradient of ug nérmal
to any of the boundaries varies along it in a paraboiic
way. As on such lines only two values of the normal
slopes are defined, the parabola is not specified
uniguely and, in general, a discontinuity of normal
" slope will occur. The function is thus 'noh—conforMing'.

The constants.Ai 1y Aiz can be evaluated by writing
down the twelve simultanecus equations, linking
the values of uz and its slopes at the nodes when the
coordinates take ﬁp their appropriate values. For
instance,

6u3

(9x1>. = (- o o e

2
N WL RSy VY !
3 ax2)i (A3+A5x11+ A6x21+A8xli+2A9xlix2i

o 3 5
1 1 LZAY
3R] X3 AL 1 X4 TOA 0% 5 %04 )

B

1t

ou
...._é — ! 1 | P2

(9X2>i O0xy 71
' NI
+AgNg 3 +ORY 1 X X0 TR X0

! 1 ; 2 1 2 3

H

Uzy

3 R
TAg %) 1 X21tAg%1 1% 1A 0%

3 , 3
1% 1 %1 A1 %1%
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Listing all twelve equations we can write, in matrix

form

(wl® = fcl{ar] ... (16)

where |C| is a 12x12 matrix depending on nodal coord-
inates and {A'} a vector aof the twelve unknown constants.

Inverting
{ar] = eI Hu)® - e (17)

The curvature . and twist at any point of the
plate can now be determined in terms of the constants,

and therefore
N
f-.‘i_;.?z

w = axl

2

9 Uz

e

2
6x2

-
|

5 ¢ tuB ... (18)

BA'

2
5" u

axlaxz

-
N,

The internal maments are related to the curvatures
by kncown expressions fron the theory of plates. For
orthotropic materials this relationship is determined

in terms of four constants
2 2

0 ug 0 usz
Mg = = (D P Dy P )

X 1 %

agu3 62u5 oo (19)
My = = (Dyg == + Dy —=p=

3% 0xq

o 62u3

yxgT TP T
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or simply M = oy .o (R0)
where D stands for the appropriate Matrix of coefficients.
At this stage it is possible to establish the |
equivalent values of the nodal forces. By the principle
of virtual work, if these forces are statically
compatible with the internal forces (M), then, during
any virtual displacement, the external work done must
be equal to the internai werk. In particular, if the
displaccment is such that it is unity iﬁ the direction
of a selected external force and zero in the direction
of all other forces, the internal work will be the same
as the value of this selected force. Taking the virtual
di splacements sub as equal to I (The identity matrix)
and writing out the corresponding external work in matrix
form, wé have
W, = (5u)TEP = 188 = £P ... (21)
To each of these displacements corresponds an internal

work done by the moments equal to
Wy = S0 M dxpdxg ... (22)

where _

- -1 -
sy = icHew)B = (ro) 1 = B .. (23)
Substituting for 8§ and M and equating internal and

external woerk results in

FB

il

JF (e oBe By dx,
[}C—l)T{ffBTDdeldxg}C"l’ uB ... (24)

1}
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The ohly matrix dependent on tha coordinates x and Xo
in the cquation (24) is B and the integration of the
central part has to be carried out over the entire area

of the 2lement.

The whole expression in the square bracket 1is
simply tho required stiffness matrix [K| of ‘the element,
while obviously relations (18) and (20) define the

internal moments in terms of the nodal displacements

giving
M= (o )P e. (25)
N " i B B
e |
%MXIXQJ

where SB is the stress matrix and given in Table III.

and B° = kBB .. (27)

COMBINED STTFENESS MATRIX OF AN ELEMENT

o—— o sy

If both systems of nodal displacements are acting
simultaneously then at éach node five components of
force ére developed and thesec arsz given in the five
terms of components of displacement. However, as it will
be necessary to consider the general equilibrium with
respect to the six possible componants of force at a
node define the vectors of force F and displacement with

six components of each node or (24) compenents in all
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51 |
1 1
Fg U2
1 1
I:3 !UZ)
1 1
Fis Y13 -
F =1 7 and u = 1 T .o (28)
Fl ot
23 R3
| l ]_
Fe Ui
1 1
] ]
' 1
1 1

With the understanding that F%z = 0 etc.

Now F = K u ... (29)

where the element K; of the matrix is made up from

appropriate elements of the k? and KB matrices as

follows
Mle | * 000" d~§
rs t '
S —— -
] ]
,KT'S! Oo 1 b f 0 (50)
00 IKrS e |
00 ! o
——— e e e . P S
1 t
00 1 0 r Q

The full lK| matrix for an element after transformation

to glcbal coordinate system is given in Table I.
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TRANSFORMATION TO_GLOBAL COORDINATES_AND
ASSEMALY OF ELEMENTS .
&

N« ye

e e

/
/S

2.

Local and Global Coordinates

Transformation of coordinates to a common global
system (which now will be denoted by xyz, and the local
system by x'&'z') will be necessary t» assemble the
elements and to write the appropriate equilibrium
equations, |

The two systems of coordinates are shown in the
above figure. The forces and dispiacements of a node given
in the local system (x'y'z') tranform fraom the glcbal

system by a matrix L giving

= ul{ey) s fegl=lei{rt .. (31)
in which |L] = ‘—k O] | . (32)
0 A |

With |l being a three by three matrix of direction

cosines of angles formed between the two sets of axes,

l.e. I = ky'x kY'Y ky‘z .. (33)

- .t

in which A v = cosine ~»f angle bhetween x and x' axes,etc.
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Far the whole set of forces acting on the nodes

of an element we caﬁ therefore write
{112 = Itl{s)e ; {e']® = ITI{F}° ()

By the rules of orthogonal transformation the stiffness

matrix of an element in the global coordinate becomes
Ikl = 7Tk ] i1l .. ()

In both of the above equations IT] is given by

IT| = A .. (36)

a diagonal matrix built up of [L| matrices in a number
~equal to that of the nodes in the element.

It is simple to show that the typical stiffness

submatrix now becomes

T
Kool = LIl el .. (37)
in which ]K;S| is determined by eqn.(30).
The determination of local coordinates follows
a sinilar pattern. If the origins of both local and

globél systems are identical thén
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{xﬁ | (%!

o | |

v = JAH y .. (38)
]z“ § z

L i \ L

Direction Cosines for Rectanqular Elements

Vs T =

Such elements being limited in use to representing
a cylindrical or box type of surface it is convenient
to take one side of the elements and the corresponding
coordinates x' parallel to the global, x, axis. For
a typical element ijkm, it is now easy to calculate all
the relevant direction cosines.

Directicn cosine of x' arc, obviously

et =1y Ag=0, A =0 .. (59)

x! x xty xtz

The direction cosine of the y' axis have to be obtained
by consideration of the coordinates of the variopus nodal

points. Thus

Yj - Yi
}\y'y IE e e et et o Dol e et o Wt St e o > » (4:0)
Vf z ~z; +(YJ‘Y ) |
Z: = Z
3 _ J e e oot
Az =t . — -
l(Zj“'Zi) "'(YJ-'Y-_L) ‘

Simple geometrical relations which can be obtained
by consideration of the sectional plane passing vertically
through ij.

Similarly, from the same section we havekfor the z!

axis
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Moty T O w% f?
Ay =——-—ZJ-Zi-— - \\ ‘6" -
rARY et \
Vi, 8 R \
(2572 )y, ) p
Yi~Ys
f(Zj"‘Zi) +(Yj'yi) ' ..o (41)

The numbering of points in a consistentvfasﬁion
is important to‘preserve the correct signs of the
expression. | |

In order tc obtain the stiffness matrix of the
whole structure, the stiffness of the connecting
elements at various modes are superimposed. It is done
by first writing the stiffnesses of element in
local coordinate system (x', y'; z') and then transform-
ing it into the global coordinate system (x,y,z) as
explained in equation (35)

The equilibrium of the complete system of elements,
which is an expression for nodal point loads in terms
of nodal point displacements, can be expressed by the

following matrix équations:

Pl = [Kl|u] | o (83)
‘where the stiffness of the complete structure !Ef can
be found by a systematic addition of the stiffness of

all elements in the system.

BOUNDARY CONDITIONS

The dam is assumed to be fixed along the founda-
tion and abutment profile. As such the deflections of the
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nodai points lying on the profile are zero. In the
present analysis boundary conditions have been applied
by considering the elements with different edge condi-
tions (cither fixed or not fixed). There are eight

possible type of such elements as shown below

FR T R
/ 1 2 ; - 4 v
. . A .
e Lo el
Nodes i,J,k Nodes i,k,1 = Nodes i,] Nodes k,1
fixed and 1 fixed and fixed and fixed and
not fixed j not fixed ~ k,l not fixed 1i,j not fixed
F""A*"*“' T ff”“”“”@‘ [
I 5 6 7 ‘ ‘ 8 }
. . . | A

, e B K ' } T i1
Lﬂ??szzv e ~ e i
Nodes ik . Nodes i Nodes k Nodes all
fixed and ] fixed and fixed and not fixed
js1ly not fixed j,k,1 not iyj,1 not

fixed fixed

SOLUTION OF EQUILIBRIUM EQUATIQNS

i

For most practical problems ecquation (42) represents
a systém of several hundred equations. In equation (42),
IEI is a symmetrical band matrix i.e. it has non-zero
elements only near the diagonals and zeros at all other
Pl'aces°

For the solution of these algebraio equations two

subroutines ' LUMAT" and '' FOBACY have been used.

SALIENT FEATURES OF DIGITAL COMPUTER PROGRAM
Asonly five degrees of freedom (three translation
and two rotations) have been considered at cach node, it

is a 20x%0 symmetrical stiffness matrix for a rectangular

A
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element. Only the upper half has been considered

and named as shown in the sketch below.

ii ij ik il
Dy B Re By
33 - Jk jl
Dy By  Bs
kk kil
Dy Bg

T

Dy _

20%x20

The above sketch censtitutes two types of system i.e.

(1) the triangular system which is along the diagonal
(Dys Dy, Dy Dy) and contains 15 values each in different
directions at the four nedes of the element and (ii) the
rectangular system (Ry, Bgs Rzy By, Ry, Rg) and contains

25 values cach.

To generate the stiffness matrix of the whole
structure, three subroutines i.e. (i) TWEFY, (ii) FIFTN,
and (iii) GENER have been written. Subroutine 'GENER!
generates the values of submatrices Dy, Dgs Dgy Dy
Rys Ros Bz By, Bg, By for all the elements of the
" structure and 'TWEFY' and 'FIFTN' stores the elements
of submatrices in such a way that the diagunal becumes

the first cclumn »~f the element and s> on.

The assembled matrix !R| nf the whcle structure
7 4
is symmetrical and a bend matrix. By storing the matrix

in the above menticned form it results in saving of
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memary space and computaticn time.

ANALYSTS_OF_ARCH_DAM
SIATIC FORCES

* The following cases with different parameters have

been considered for the analysis in the present problem.

1. Variation of Base Width to Crest Length Ratio
~ Three different ratios have been considered keeping
the other parameters constant. The details of different

parameters are given below.

(i) Type of dam- Singly Curved Constant
Thickness Cylindrical Arch
(ii) Height- 99 ft.
(1ii) Thickness 10 ft.
(iv) Radius- 150 ft.
(v) Central Angle- 106°
(vi) Base width to (a) 0.432,
crest length (b) 0.379
ratio (c) 0.333

2. Variation of Central Angle

Three different central angles with constant crest
length have been considered. Details of parameters are

given below,

*

(i) Type of Dam - Singly Curved Constant
Thickness Cylindrical Arch
(1i) Height - 99 ft.
(iii) Thickness - 10 ft.

(iv) Base Width -114 ft.
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(v) Radius -

(a) 150 ft.
éb) 175 ft.
c) 200 ft.
(vi) Corresponding (a) 106°
Central Angle (b) 92°
(c) 80°

(3) variation of Height

Three different cases have been considered with

the following parameters.

(1) Type of Dam- Singly Curved Constant Thickness
‘ Cylindrical Arch.
(i1) Thickness -~ _ 1o ft.
(1ii) Radius- 150 ft.
(iv) Base Width - 114 ft.

(v) Central Angle- 106°

(vi) Height~ (a) 99 ft.
b) 120 ft.
c) 135 ft.

e g

Three cases with different thicknesses in horizontal
direction have been considered. The details of parameters

are given belcw.

(i) Type of dam- Singly curved cylindrical Arch
(ii) Height- 99 ft.
(1ii) Radius- EC ft.

- (iv) Central Angle- 106°
(v) Base width- 114 ft.

(vi) Thickness- ~ (2) Constant thickness thriughout,10'.
(b) Thickness increases gradually
towards abutments with 1:20 slope.

(c) Thickness increases gradually
towards abutments with 1:15 slope



<f thickness in Vertical Direction
Three cases have been considered with different
thicknesses in vertical direction. The details of para-

meters are given below,

(i) Type of dam~ Singly curved cylindrical arch
(i1) Height - 99 ft.
(iii) Radius- 150 ft.
(iv) Central Angle- 106°
(v) Base Width- 114 ft.
(vi) Thickness- (a) Constant thickness throughout, 10 ft.

(b) Thickness increases gradually
towards base with 1:16.5 slope -
keeping water face vertical.

(c) Thickness increases gradually
towards base with 1l:ill slope
keeping water face vertical

(6) an_pctual Profile~

An actual profile of an arch dam in a non-symmetrical

valley have been considered with the following parameters.

(i) Type of dam~ Singly curved cylindrical
Arch.
(ii) Heioht - 520 ft.
(iii) Radius- 720 ft.
(iv) Central Angle- 92°
(v) Base width- 270 ft.
(vi) Thickness- Varies horizontally as well

as vertlcally.
The radial deflections and stresses of the dams
considered for analysis due to external loads at various

points have been calculated using finite element method.
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The procedure for the same has been described earlier.
To calculate stresses, 3 'STRESS! subroutine has been
written. The stress matrices for 'inplane’ as well
as 'bending' forces have been given in Tables II and
III. The clement idealization of the dam along with the
developed surface for the typical cases are shown in
figs. 1,2 and 3. With 'STRESS' subroutine for bending
analysis internal moments are obtained. Stresses are

M _ £

calculated by using flexural formula i.e. T=9°

The various profiles have been divided into a
number of finite rectangular elements §f various sizes.
The number of free nodal points multiplied by five
(number of degrees of freedom considered at each node)
will give us the number of algebraic equations. Hydro-
static load is assumed to be acting on the nodal points
statically equivalent to the pressure acting on half
the width of element on either side of the node. The
above algebraic equations have been salved tc get the
deflections and rotations at various nodes by using
digital computer and hence the stressss can be calculated
' by multiplying deflections with the stress matrix. The
following datas have been used for the analysis of the
arch dams |

Modulus of Elasticity of the

material E 2,6x106 psi.

il

0.20

i

Poisson's ratio P

Unit weight of water w = 62.5 lbs/cft.
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Density of concrete mass o = 144 1bs/cuft.
Water level is assumed upto the top of dam. In the
static analysis hydrostatic lcad as well as dead load

have been considerecd.

EARTHQUAKE TYPE_FORGES

Estimation of dynamic forces due to earthquake
depends on so many factors such as location, type, form
and material of structure. It is always possible to express
the dynamic forces as equivalent static loads. As the
dynamic forces vary along the height of the structure,
it is important to know that variation of forces along
the height of structure which may produce the maximum

stresses and deflections for the same intensity of shock.

Generally the design practice is to assume a
uniform ioading along the height. For gravity dams the
triangular type of loading and for multistoried buildings
a parabolic type of loadino is adopted. Keeping in view
of the above type of lcad distribution, three types of
1oad distribuﬁion, viz., (i) Rectangular, (ii) Triangular
and (iii) Parabolic, have been considered in the present
analysiss In order to find the effects of different form
of loads for the same shock,base moment as a free
cantilever in all the cases has béen kept constant and
the corresponding seismic coefficients have been calculated
as below.

Generally to estimate the dynamic stresses an
equivalent static lcad of 10 percent of gravity acceler-

ation is considered. The same has been considered in the
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present analysis. ' /

CALCULATIQN QF SEISMIC COEFEICIENTS

S v

(1) Rectangular Type of Loading. .

Assuming unit rectangular boad
acting on the dam as shown. The

base moment My becomes, i.e.

wL2

MB = (x -ghu-g}'_‘ /2

(ii1) Triangular type of loading

Vod -
e S
T |
/.I ,‘ { T‘
-7 ’ (1=
j ! J‘ } l S '
27 A/% 4 4 T ¥ — W.L

at "

. . o :
The unit trlangular load has bheen 1pp11ed as shown in
‘the figure above. To calculate the bending moment at any
section consider a sectinn a-2 at a distance x from the

free end A. The hending moment at this section

, 2 2 5
sz—(l-%)%—+%—ﬁogz
2
My = %"(l_ %f) o
L

Therefore base moment Mg = 7=

Keeping the base moment same as that of the rect-
angular type of loading, the seismic coefficient comes out

to be 0,15 g or o = 1.9 0o
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(1ii) Parabolic Type of Loading

AN
N,
\
A
i
!
3

?)/

| : L : .
A unit parabolic type of loading has beéh’applied as
shown in figure above.
Let the equation of parabola be v = K xz»

where K is a constent

at x=L, vy =1
Therefore K = l/L2
xz |
o.oyz”
LZ
The moment at any section at a distance x from B is given
by | |
Z2
Mep = =5 dz (z=-x)
L
1 IL
= = z -~z x|dz
Lg X [
=;l._"z.‘f‘_._.2.f ]L
2LaT T
RN A A
=Tz 4 3
L |- o'
N A
= TRl 4 3 12
L -
M =LE-L-Z+2S‘4-2
2

Base Moment MB = %—

Keeping the base moment same as that of the
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rectanqular type of loading, the_seismic coefficient

comes out to be 0.20 g. or oAy = 2.0 d,

After knowing the seismic coefficients for all
the types of loading , the load véctor has been
calculated by mutliplying the total load lumped at
nodal points with the seismic coefficient at different
elevations for each type of loading. Deflections and
stresses have been calculated as explained in static
case. A comparison of deflections and stresses has been -
made between all three types of loading. The deflections
and stresses have been calculated for the dam im which
the thickness increases vertically towards the base whibh
is generally the case in actual pracfice. In addition
to thié an actual profile has been studied with-:such type
of loadings. For the different datas of dams analysed for
such loadings, Cases 5 and 6 of static analysis may be

referred,

DYNAMIC ANALYSIS

For the analysis of the arch dams, finite element
methad has been employed. By employing this method the
infinity of degrees of freedom of the arch dam is
reduced to n, where n is finite, and cach degree of freedom
has associated with it a displacement component.

An arch dam can vibrate in many modes. Practi-
cally, only few low frequency modes of the dam are
considered for earthquake loading. The fundamental mode

of the dam will be excited primarily by the upstream-
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down~strcam components of the earthquake ground motion.

In the present work, finite élément method has
been ﬁsed; In addition to the stiffness métrix, the
mass matrix for rectangular finite element has been
derived and the fUndamentallnatural frequencies and
vorresponding mode shapes have been calculated for empty
reservoir condition for some typical cases just to have .
én idea of the range of frgquency of the assﬁmed singly
curved cylindrical arch dams. The>details of the deriva-

tion of mass matrix have been given subsegquently.

The equation of motionffor‘free vibration system
can be written as

IM[{§} + IK'{X} =0

- which is of the form ng X = K x
To determine the fundamental frequency and corres-

ponding mode shape the following cases have been considered.

}

(1) Type of dam Singly curved constant thickness

cylindrical arch in a symmetrical

valley.
Height, ~ 30 m.
Radius ~ 43.25 m
Thickness - 3.0m
Central Angle ~ i06°
‘Base width ~" 35 m :
Crest length ~ 80 m. | .
. .' ' y 4?
(2) Singly curved constant thickness cylindrical Arch 4
in a U~shaped valley with the fcllowing parameters, meG)

Height, 99 ft., Radius = 150 ft., Thickness = 10 ft.
Central Angle = 106°, Base Widih = 264 ft.
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Fundamental frequencies and mode 'shapes have
béen calculated by using matrix iteratioézz)procedure
for the two cases and a comparison has been made by
consi@ering coarse and fine meshes for the first case.

The deteils of calculations for the frequencies are

given in Chapter 4,

MASS MATRIX

Plane Stress and Strain .

Fiane-2Lress and- il o (o

The figure given npposite ! Q

shows the typical rectangular b

element considered, with nodes l_'“fv Kife, -9
7 L PR 3

iyJ,ky1 numbered in Ehe manner ' },
shown.
The displacements of a node have two components

{o;} = {ui } | | v (43)

Ve
i
and the eight components of element displacements are

listed as a vector

5} = 14 | | oo (44)

The displacements within an element have to be
uniquely defined by these eight values. The simplest
representation is clearly given by two linear polynomials,

u = Cl +C2X + CBY -+ C4X\/ (45)

L}

\'4 C6 + C6X + ClY + CBXY
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The eight cqnstants C cah be evaluated easily by
solving the tws sets of four simultaneous equations which
will arise if the nodal coordinates are inserted and the
displacements equated to the appropriate nodal displace-

ments. Writing the equations,

uy = Cy=Cpa-C4b+C,ab
vi = Cg=Cga=CobICgab
u; = C1~C28+C3b—C4ab
v; = Cg=Cga+Crpb~Cgab co
Uy = Cl+C2a—C5b-C4ab e (46)
Vi T C5+Cga-c7b-68abA

uy = Cl+Cga+C5b+C4ab‘

vy = C5+C6a+C7b+C8ab |

We can easily solve the above eight equations and

constants Cy to Cg can be evaluated in terms of nodal

displacements. Finally,

ol ox_ vy | Xy 1_ox .Yy _x
u = us(z za 4p * 4ab)+uj(4 Ia *Ip  Zap)
1% ¥ _oxy_ Lox.¥ . X
**uk%ﬁ'4a 1P 4ab)“ﬁ(4+4a+145*4ab) ’f(473>
_ L_ox._y. Xy I _x ¥y _xy
v=vi(E - I3 gt ian T3 t 0% T Lap
1 x Y _Xxy Lox .y Xy
Wi G Lo = op " a1 G I3 Y Iyt Tap) coo (470)

The equations (47a) and (47b) can now be represented in

the standard form,

{ ! :
i.e. [N ={U%= T Ny, INY, TNy, INf||6|e | ol (48)
v ’
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| i 6
in which I =
| 0o 1
X_ _ Y '
il il N ) ete.

If the thickness of the element is t and this is
assumed to be.constant within the elément,:we have for

the mass matrix

Inl® = o t f7IN]TIN]ax dy

. - o I _x. .
e Ny =t [b f_a(4 43 5+ 4ab)dx dy
= @ t ab
=W
z
Since W = 4ab@t |

Similarly Nj, Ni» Ny can be calculafed, .
‘Thus if the mass had been lumped at the nodes in
four equal parts the‘mass matrix contributed by the

element would have been,

10 00 00 00 |
e y |01 0000 00
m "= Z]/100 10 00 0O
00 01 00 00
00 00 10 0C

00 00 01 OO0
00 00 00 10
00 00 00 O1

-

Bending of Plates

Consider a rectangular element ijlk as shown in



-59- D//;,;,@ (Foy)
. 4 >
the figure given opposite. NS (Fox)

At each mode displacements J o ()

"Forces and Corresponding

{ém}’are introduced. These di spl-cements’

have three components, the

first a displacement in z direction, w,s the second a
rotation about the x axis, (8,)., the third a rotation
about y axis (ey)n. Positive directions of the rotation
are deternined by the righ*hand screw rule and are

shown by vectors directed along these axes.

Clearly the slope of w and the rotations are

identical (except for sign), i.e.,

ow

B o= -

X ay

= oW
9Y ox

.o (49)

The nodal displacement vector can therefore be definped

as follows at a node 1

] W, ' Ws |
{s.} " o [ (50)
. = . = W LR )
ot il 17 ay>iJ
oW
Oyi) L ax)i

The slope function is considered simply as the scaler w
must be definable in terms of ]6|e9 ise. in terms of
twelve parameters.
A polynomial expression is conveniently used.
. 2 2 3 2 2 3
5 3
nllx y+n12XY
* e (51)
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The constants «; to oo ¢an be evaluated by
writing down the twelve simultaneous equations linking
the values of w and its slopes at the nodes when the

coordinates take up their appropriate values.

Listing all the twelve equations we can write,

in matrix form,

{st¢ = lcl{a} .. (52)

where |C| is a 12x12 matrix depending on nodal coordinates

and {a} a vector of the twelve unknown constants. Inverting
-1 .
{o} = IcI™{s}° | .. (53)

It is now possible to write the expression for
the displacement within the element in a standard form

iwe. w= IN{8)° = [pllcIT s} .. (54)

where, . .
Pl = (Lyxeys 0 s ¥or ks oy 7%y, 68, 50y, xy)
v (55)
An explicit form of the above expression was
derived by Melosh. If the corordinate origin i{s taken at
the centre of the element and equation (54) is written
2s

= I g, e

Then,

BENg= XY 120X Y =XgYp )0 XpmaY] Yol bY | Yy, =422 X, }
52N 5= X Vo {2 (% Vo=Yp ¥y )+ X) Xg#hY) Yo, +4bY, Y, +42X X, |
BENy = Xp¥o 2 (Xo¥gmX; Yy )=AX XgmaY) Yo, 44bY Yo, +4aX X |
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BEN =KoY, {2 (0] =X Vo ) 44X Yo 44V Yo, +41Y, Vo, 4axlx21
with xl (x = a)/a Y, = (y=b)/b

= (x VEI)/B Yz (y+b)/b

If a3 distributed loading q is acting pér unit

B

area of an element in direction of w then the contribution

of these forces ts each of the nodes is

lFlg = “ﬁfJNi?q dx dy .. (56)
or  [F} = {-lcI™Fyr IR0 Ta ax ay . (57)

The integral is again evaluated as shown below.
It is noted that in general, all three components of

external force at any node will have (non-zero) values.

-u—-mv-n—

Ay 12 or s pima Yexy

32N = XY, [2 (Y XY ) -4 % o4 Y; Y |

a

- ..(z.:@géx;m_@[,(x?)(M%Q)»(z;gé)(z%b)}_ét (582 (X2)
-0 (Y22) (2B)

it

(Zizgg:éliéb)[.EE{xy—xb—ay+ab-xy~xb—ay-ab}
- 4 2 2\ 4 , 2.2
- 25(x"-a%)~ “p(y“~b ;]
22 b§ a
—4(-Xvufg~§Xi32)(xb+ay)— ég (xy-xb-ay+ab\(x2-ag)
a’ b ab

2,2
- %—g(xy-xb~av+ab)(y -b”)

ab
' b a o _
B2F, = o f |- -%—2(xgyb—x“b2*2xyab+xab2+xy2a~azy2+a2by)
-b-a ab

- 4%—(x3y-x3b-xzya+x2ab~xya2+xbé2+a5y-35b)

4/b3 (xy - Xy b—ay +aby2—xyb2+xb +avyb -ab5>]ﬂx dy
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FWi = qab

I

g (since 4gab=W)

Rotations
b a
- ~b -a :
4 2
=~qx8x§ab
- - Laap® = - Wb
Fexi - Bqab 12
Similarly
32Feyi = 4aXlX2 q !
2
g 2h e
Foyi = 473 = 138
Node

32N, = X Yoi2 (X YomXoY, )+ X Ko 34 Y, Yp |

J
b a ‘
32F,; = af bf | ‘iggg(xzvb+x2b2-2xyab—xabz-xvzawzazwazb)
. . - ,__a a
+ ésb(x3y+x3b—x2ya~x¢ab-xyag-xa2b+yas+a5b)
2
2
+ %ns(xy5+xy b-yga~y28b~xybz*xb5+yab2+ab3)]dxdy
ab
- - W
ij = qab = 7
Botation
b a
5% Foxs = q_fb{w &b Y)Y, dxdy
F = .a.,}-:.E = :.A.l.-b
oxj = 973 12
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b a
Similarly 32 Fey, =qf [ aa xixé dx dy
3 b ta v
F . = q 'a"?'b - -.Wg..,.
6yJ 5 12

Similarly for
Node K
32 N, = XYy {2(XY =¥y Yp )44 %) o4V, Vo |

* = = w:m
« o FWk = qab = 4 :? ,
Rotgtions

.
— a »
32Pexk'— 4 {b'[ 4b Y, Yodxdy

-2

W

F@ Xk~ 12

Similarly |

a
32 Fgyp =4 {b.iﬂ-égxlxzdxdy

_ _ Wa
Foyk =~ I3
Node 1

Translation

' - g =¥
¢« e F\:‘Vl = qab - 4
Rotations
: b a
- y
32 Fyq = 4 fbf tb Yy Yodx dy
-b ~a
(o]
E = o.q b _ Wb
exl q 3 = 4

Similarly
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b a
32 F@yl = q,{b‘fa 4aXlX2dxdy
F —-‘3-—2--}2 =.._\_/_V_<'l
oyl = 3 12

Thus the table given below shows the nodsl load vector

for a uniform loading q.

Load.vector for a rectanqular element under uniform load 'g!

PR ' I( .
Fsi 1Fwy 1/4
Fo il —bélz
-Feyi 1 a/le |
F, Fys 1/4
Fy s b/12
| xJ /12
Feyj a
A I r=4qab
Fy Fuk s 1/4 b «v. (58)
F(—)xk E ?/12
Fayk 3_8/12
Fl -Pwl 2 l/4
Feylf 3—.-a/12‘

Usually'direct strains in the plate are introduced
additicnally, and the complete problem can be solved
ohly by consideration of the plane stress problem as well

as that of bending.

The complete load vector for the elcment will 'be as

shcwn on the next page.
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i
vi
wi
0 xij
Ov]

I e W

T}

uj

T3

V]

0x]j
0yJ

e AL

uk

ka
Foxk
FOyk

u

vl
wl
0x1
gyl

. P =4gab 1

vk
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1/4

1/4
1/4
~-b/12

a/12

1/4
1/4
1/4

b/12
a/12

X

1/4

1/4

1/4
b/12
-a/12

1/4

1/4

1/4
~b/12
~a/12

(59)
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CHAPTER 4

BESULTS _AND_CONCLUSIONS

The constant thickness, constant angle dam can be
satisfactorily represented by an assembly of plane
rectanqular elements except in the region of the slop- -
ing valley sides. Here a stepped boundary has been
used as shown in the developed surface of the air

face of the dam wfth the real valley profile sh own by
the dashed line in figures\l,z, and 34+ In case the
thickness varies horizontally, vertically, or_in both
directions, it has been assﬁmed that the dam is an
assemblage of finfte elments of various thickness and
the thicknessfor each element is taken as the mean

thickness of the element.

"STATIC ANALYSIS

DEFLECTIONS -  'Figures 4a, 4b, 46, éd and 4e shows the .
radial deflecticns of central cantilever due to hydro-
static load for different cases. The following conclu-
sions can be made. |
a)lAs the base widtﬁ tn crest length ratic decreasés,
:tho maximum deflections which occur near about
0.6 height, decreases.

b) As the radius increases or central angle decreases
" g ’

the deflections increase.
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c) As the helght increases without any change in

the thickness, the deflections 4ncrease,

d) As thickness increases horizontally from the
centre towards the abutments, the deflections

decrease.
e) As the thickness increases vertically towards

base, the deflection decreases.

Vertical Stresses due to hydrostatic Load

Figures 5a, &b, 8¢, 5d and He shows the vertical
stress distribution due to hydrostatic load oh the
central cantilever on upstream and downstream sides
~ for the different cases. The following conclusions can
~be made.

a) As the base width to crest length ratio
decreases, the compressive and tensile stresses on
both the faces go on reducing.

b) As the radfus of the dam ‘ncreases, the conp-
ressive and tensile stress on bc£h the faces
.ihcreases.

 _0) As the h¢ight pf the dam increases, the

u compresgive and tensile stress on both the faces
increéses.

d) As the thickness of the dam increases heori-
zentally towards the abutments, the compressive
and tensile stress on both sides increases.

@) As the thickness of the dam increases verti-

cally towards the base, on upstream face the
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tensile stress increases and compressive
stress reduces while on downstream face the
compressive stress increases and tensile

stress reduces.

Hoop-Stresses due to Hydrostatic Load

Figures 6a, 6b, 6¢c, 6d, and 6e¢ shows the distrib-
ution of hoob stresses due to hydrostatic load on the
central cantilever on upstream face for different cases.
From the results it has been concluded that the hoop

stresses go on increasing in all the five cases considered,

Vertical Stresses due to Decad Load

FiguregAVa, b, Tc, 7d and 7e shows the vertical
stress distribution due to dead load =n the central
cantilever on the upstream and dewnstream sides for the

different cases. The following cenclusicns can be made.

a) As the base width tc crest length ratic decreases,
the stresses geces on reducing on both the faces,

b) As the radius increases, there is no marked
variation of stresses on upstream side while
on downstream side the stresses go on'reduc%ng
slowly.

¢) As the height increases, the stresses on both
the faces go on increasing.

d) As the thickness increascs horizontally or

vertically, the stress cn both faces reduces.
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Hoop-Stresses due to Dead Load

Figqures 8a, 8b, 8¢, 8d and 8¢ shows the hoop
stress variation for different cases on upstream and
downstream sides ¢n central cantilever. The follow'hrg

can be concluded.

a) As the base width tn crest length ratio decreases,
(1) On the upstream face the tensile stresses
~in the lower third region increases slightly,
(%3) The compressive stresses in the middle
third region increases, and (1ii) the
compre ssive streséesnin the top third
region decreasesy, while on the downstream
face the tensile stresses occur andvgo on
decreasing.
b) As thg rad{us increases the stresses go c¢n
reducing slowly on Both the faces,
c) As the hefght increascs, the maximum stresses
- go on_*ncreas{ng on both faces.
d) As thickness inc¢reases in horizontal direction,
the stresses go on increasing on beth faces.
e) As the thickness of the dam increases vertically,
the maximum stress reduces on both the sides.
An_Actual Profile
Figures 92 shows the deflections of the longest
cantilever of the dam in a ncon-symmetric valley. The

problem has been solved for twn differentlmeéhes,
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(*) Coarse mesh, and (1) Fine mesh. The comparison
of the two has been shown. The maximum deflection is of

thes order of 11 cms. at the crest level.

Figure 9c¢ shows the distribution of vertical and hoop
stresses due to hydrostatic loed on both the faces. The
distribution is more or less symmetrical. Maximum hoop

stresses are about 5 times of the maximum vertical stresses.

Figure 9{d) shows the distribution of dead loaé
stresses (vertical as well as hoop) on both the faces. In
tﬁe'middle third portion heop stresses are maximum and
about 1.5 times as that of the maximum vertical stresses.

Figure 10 shows a comparison of radial deflections,
and stresses due tc hydrostatic load.and dead load due

to coarse mesh and fine mesh. A good agreement is obtained.

Equivalent Static Earthquake Load

Since the acceleration due to earthquake load
varies along the height of the structure, the load wiil
also vary. To determine the shape of lo~ding which may
produce the maximum stresses in the structure for the
same intensity of shock, three cases of loading, viz.,
(#) Bectangular, (#1) Triangular, and ($31) Parabolic
have beenvconsidered in the'anaIVSis. The dynamic loads
can always be represented by a certain percentage of
static loads. A dynamic load of 10 percent gravity accel-
eration has been considered for different types of.

loéding.. Two profiles in which the thickness gradually



71—

increases vertically, have been analysed.

Deflections. Figures 1lla and 1llb show the radial
deflections of central cantilever due to the three types
of loading for the dam considered. The following

conclusions can be made.

(2) The maximum deflection occurs due to parabolic
type of loading in the upper third region and
minimum by the rectangular load while in the
lover 2/3rd region, reverse is the case.

(b) More the rate of increase in thickness, lesser

are the deflections.

Vertical Stresses

Figures 12a and 12b shows the vertical stress
di stribution on the central cantilever due to three types

of loading on both the faces. The following can be

concluded,
(a) The maximum stresses occur due to parabolic
type of loading on bafh faces.
(b) As the thickness increases vertically, the

maximum stress reduces.,

Hoop Stresses

| Figures 12¢ and 12d show the variation of hoop
stresses ¢n the central cantilever due to three types
of loading con both the faces. The following can be

concluded.
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(a) The maximum hoop stresses occur due to rectang-
ular type of loading in the lower third region
on both the faces while in the upper third
region it is due to barabolic type of leading.

(b) As the effect of thickness reduces, the parabolic
type of loading produces the maximum compressive

stresses cn the upstream face.

An_Actual Profile

an actual profile in an unsymmetrical valley has been
analysed for dynamic loads alsc. Figures 13 and 14
show the distribution of VerticalAstresses and hcop
stresses on both the faces cn the longest cantilever.
‘Fiqure 9(b) shoWs the radial deflection of the same
cantilever due tc dynamic loads. The following ccnclusions

- can be made.

lections

[~

Def
(a) Deflection pattern is same as in other cases.
(b) Maximum deflection at the crest due to parabolic

loading §s of the order of 18 mm..

Vertical Stresses

(a) The stresses on Both the faces are more or less
symmetricel. | . }

(b) The maximum stresses are due to parabolic loading
throughout the hefght of the cantilever.

(¢) The maximum stréss due to» parabolic type of loading
s about 1.6 times of the maximum stress due toc rect-

angular type 0f loading.
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Hoop=Stress

(a) The_stresses on both the faces are more or
less symmetrical.

(b) The maximum hoops are produced due to rectang~
ular type of loading in the lower half region. In the

top region it is due to parabolic loading.
: ‘

Combined Stresses

Combined static and dynamic stress.variation on
both faées are_shown in the figures 15,16 and 17 for
three cases, viz., (1) Variation of thickness in
vertical directicn fn the gat?o_l:l§.5, (11) Variation
of thickness in vertical direction in the ratic 1:1l1,
and (iii) An actual profile. In all the cases the
vertical and hoop stress variations are sh own for,

(i) static stresses due to hydrostatic and dead
loads, (i1) static loads plus rectangular lcad, and,
(141) Static loads plus parabolic load. Ffom the
vcurves it is _found that- |

(a) Maximum vertical stresses are due to static

loads plus parabolic load.

(b) Maximum hoop stresses in the lower 2/3rd region

is due to static plus rectangular loading with

a slight variation with static piusﬂparabolic
loading, while in the upper region it is due
to static plus parabelic loading.

(c) As the thickness increases , the verticsl

stresses are reduced while the hocps are
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slightly increased.
(d) 1In case of an actual profile the maximum hoop

is about 5 times the maximum vertical stress.

/

ral Period of Vibration and Mode

e _of the Dam *

Natu
Shap

Figuresls(a) and 18 (b) show the fundamental mode
shape for (a) symmetriéal sloping side valley and (2)
(b) U~shaped valley. Figure 18(a) shows the effect of

fine mesh also. It is seen that

(a) In sloping side symmetrical valley, the funda-
mental mode is a symmetric .one while in the
U-shaped valley it ié antisymmetric.

(b) There is only 2 small variation between fine
mesh and coarse mesh results.

(¢) Frequency in case of U-shaped valley is slightly
less than the frequency due to sloping side
valley.

DETAILS OF CALCULATIONS OF FUNDAMENTAL FREQUENCIES

Gase I EINE MESH

Data Assumed

Modulus of Elasticity E = 2.6x106 psi

Wt. density p = 144 1bs/cu.ft.

2 Eg
p::a—--

e

= _ 1 2.6x107x32.2x144
VEg/C 'Aj 144




G-

10%(558

1

"
el
I—-l
o
O

2 .
Therefore p = Q-é%%%gém__ X Eg

= 0.000B4 6x %9

{

e p = 0.0235x ~2kE0x30.28 _ o p33.0790

65.00 rad/sec.

or p =
Therefore, f = %E = ggégg = 10.30 c/ sece
Coarse Megh
p = 0.0248x2790

69.30 rad/sec.

or £ = %%égg = 11.00 ¢/ sec.

it

Case II - U-Shaped Valley

D = 0.0226x2790
= 63 rad/sec.

Q? f= %%28 = 10.00 ¢/ sec.
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CONCLUSIONS

Based on the results obtained from the analysis
of various profiles with different parameters, the
following conclds*ons may be drawn for safe desigh of
an arch dam~ ‘ .

1. Though V-shaped valley is generally preferred
for construction of an arch dam, arch dams are econcmical
to construct in Valleys.of other Qhapes also. This stud?
has indicated that the stresses do not increase very

rapidly with the shape of valley , other parameters remain-
ing same. | | ' |

2. Central angle of the cylindrical arch dam may
die between 95° to 110° for economic consideration.On
- reducing the angle, stresses go on increasing while
on increasing it, more volume of concrete mass is requ-

ired in the dam.

3. Increase in thickness of dam vertically towgrds

the base gives less vertical stresses but more hoops while
an increase in thickness horizontally towards the abutments,

more vertical as well as hoop stresses are developed in
the dam.-

4. As the weight of the arch dam §s small as comp-
o ared to the gravity dams, the dynamic stresses in arch
dams are very small as compared tou the static stresses

particularly in moderate earthquake zcnes.

5. In case of lateral seismic loadings, inverted

parabolic type of load distribution produces more vertical
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stresses and crest deflections while uniform load

distribution produces more hoop stresses and the deflect-

fons in the lower 2/3rd region of the dam.

6. Combined static and dynamic (parabolic load
distribution) loads give more vertical stresses while
static plus rectangular load distribution give slightly
more hoop-stresses. '

7. In the finite element method, even a coarse

me sh gives fairly accurate results in determination of

fundamental period and mode shape.
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"Z2 A .. (3b)

Stress-displacement equations

N;:DU+FW-+?-HﬂUdH] oo (43)
Ny = DEIO+ = (Lap)aTy ] o (4D)
Ny= Ny D %Hw[g%yj o (4¢)
My = Bl g W= (Lapa ‘Zé_'] : ¢ (44)
M, = B[w°'°+ pw" "(“P)“'@j , .. (4e)
My = My = B(l—}J)W'o .. (4f)

With the help of the above equations we obtain finally

the thref_basic equations, 1~ .
LR e R o R
| .. (53)

i;t[DuO]'+PfDu O, —~Eva + [V J [D

1% (1+p)a [DT11°+Y=0
. (8b)

[Du‘z'}i+ i%t[DuOZG]'+P[Du'ZO]O+ L%g [Duoz']'"P =4 -—E[Dv z" ]
+P[?v°z' r+£~—-E-~I'Dv'z']o+'[Dv°zo]°— gvo+[Bw“]"+P[BNOO]”
+2(1-P wa'OJ +PIBW"] 4 [Buw® ] °+H[D g z']'

¢ T
+[p %27 B (uap)sad 107,27 4 o1y 2% he

1
+[BQ] +[B@]O

O'+Z= O ’ ) (50)

Boundary Conditicns

For the abutments and the base of the dam the boundary

conditions, for cases without perimetral joints are,
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| APPENDIX 'B'
Assumptions \, |

Besides the usual assumptions of the classical
theory of thin elastic shells we can assume that for ‘
ease of construction double curvature arch dams of cons-
tant anglzs type ars usually designed in such a way that

vertical curvature and twist of their middle-surface are
i

not very accentuated i.e.

O
TR, 2174, 1% «1

Fig.l Shell-Element in Cylindrical

Coordinate
(a) Stress_resultants
N, = [o3, dh, N, = [ oy dhy, .. (la,b)
%ff&ﬁh=%;f%ﬁm oo (1c)
QX = f (‘—deh, Qy = fzﬂyzdh 3 . oc(ld’e>
MX==f oh mumyz‘fquh . (1F,9)
MxY =J nyhdh . MYX z‘ff§xhdh .+ (1h)
(b) Equations of equilibrium
0 — .
N;+ny+x = Q, .. (23)
o} - \
Ny+N;X+y = Q, | .. (2b)
o4 O- - ’
Q&‘QY Ny/z +Z = Q, .o (Re)
@ ' oLy =
M;ﬂﬂxy+Nxz +nyz Q, = 0, .. (24d)
QO ' 0 . - .
My+Myx+Nyz +Nyxz Qy 0. .. (Re)

(¢) Variation of Temperature

T(x;ysh) = T]_(Xs\/)"‘h?é(x’\/) oo (33)
[vI499
¢NRHLBBWwVwWWJSUVOFﬂmnwp
ROORKEE.
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u=0, v=0, w=20 oo (7a=c)
w'= w'= 0. .o (7d)

and for cases with perimetral joints,

u=0 v=0, w=0, | ~ .. (8Ba-c)
My =M, =0 .. (8d)
For the crest of the dam the boundary conditions are,
M,=0, N, = —;%V = Q .« (9a,b)
My, =0, QX+M3X_ =0 - : . (9¢,d)
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APPENDIX "Al
The analysis was made in terms of the three component

displacements at any point in the structure. The six

compenents of stress are glven,

l+o- ' :

STmomL s @ Lo

E- TN =% lﬂr(ar+r+r'ae+6'z)’
liogs - Low . u_ oo 9w U . law. av

E 0 e TRt -2cﬁ or Tr PPt ez )y
ligom Qv . _oo(Qu U L 3w  gv

£ %2 9z 1~§516r Tr YT 6 +az)’

t LN 2 (l)

livgz = LA oy, ow

E 2 r 90 9z’
lig=- _logu Qv

£ 2(62 4 ar)’ x
x5 Le@w w1 vy

where partial differential Young's mecdulus and o Poissen's
ratio. ' '

The partial differential equatichs which govern the
displacements are,

2 2
0 gu U Lﬁwl__gy Juy  3-40- 1 dw
(1~ )(-—-—+—- Woouy, LRl » Ay a0l v
r ror rz o . { 9r62 622 @ r2 ro
2 Broez” 2'vr oro8 0 %
2 . 2 |
-~ ‘Q- l- 2\ —--va -J-'u wQM. -J:- .vgw -];.\--,,'Qm J;Qn]-'vuv—aa—w
(1=g )Z=o+ < i 6r2 3 * rf aeg)* 5 r s .t 8 h 30 oz
o .
* ST
(1-o )3 o N l.:@ﬂ"(ﬁi",& Lok, QW Lo Q?.‘QLH Szhon L2
. ;i 60g et T ar2 r’ 8z “© o 09
2
e 0 -+ (2)

Thesé equations must be solved subject to certain boundary

conditions.
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Table -1

Stiffness Matrix, IKl of an Elevent in
global coordinate system
k| = Dy B Bg By
D2 RA R5
D3 Be
% |
ro 2 -1 ) ,
|Dl1 = |(Ap “+Bp)cos’® DFcos® ~(Ap ~+Bp) -GFsin®. HFsing
+FF sinze sinfcosh cosP
+FFsinBcosh
(Ap ¥Bp L) -DFsing 0O 0
(Ap_l+Bp) —GFcoé% HFcos® |
sin 9+FF '
2
cos 6 5 5
RFcos '8 =15yt
cosh
VF

|D2|= kAp-l+Bp) ~DFcost -(Ap"l+Bp) GFsinfcos® HF sind

sinfBcosb
cos 9+FF +FFsinBcosh

!
sine i
|
Ap+Bp"l +DFsin® 0 0
-1 2
(Ap “+Bp) GFcos ™8 HFcosh
sin’f
+FFcos 0

RPc0526 15Vt2cose

VF




ID51=

(Ap-l+Bp) ~DFcosf
cosR0
+FFsin<H
Ap+Bpml
-1
(Ap “+Bp) DFcos8
c0s%0
+FFsink6
Ap+Bp—l

‘Rl’ =

(cpl-Bp) EFcos
c0S%H
+IFsin®e
-EFcosh 'AP+BP_1
—(Cpul—Bp) -EFsind
sinBcosb
+IFsinBcosh

+JFsinBcosh 0

KFsin® 0
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~(ap teBp)
sinBcosd

+FFsinfcosh

DFsin®

-1
(Ap
sin<h
+FFc o828

+Bp)

=1
-(Ap “+Bp)
sinBcosh

+FFsinfcosH-

-DFsin®

(Ap_t+Bp)
sin?e+
FFcosko

~(cp t-Bp)
sinfcosh

+IFsinBcosh

EFsin®
(Cp_‘-Bp)
$in%e
+I1Fcosee

JFcos29

KFcosb

-GFsinBcosd

~GFcos ©

RFc0529

GFsinBcosh

0

GFcosze

RFcosze

-JFsinBcosh

0
-chos2e

SFcosze

.

~-HFsin®

0

-HFcost

150?20036

VF

~HFsing

0

~-HFcosh

~15¥t5cosh

VF

KFsing

0
KFcosB

WF
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|R2| = g +Bp) ~-EFcosh —(—Ap_l+Bp) MFsinfcosd +NFsing|
COo B sin6cosh
+LFsin®s +LFsinfcosh
- |
EFcosb Cp~Bp ! ~-EFsing 0 0
¥
~(-Ap L4+Bp) EFsin® (-ap t4Bp)  MFcos20 NFcosd .
sinfcosh 5in<%e+LF
+LFsinfcoso ‘ c0s28
MFsin6cosb o MFcosze TFcosze 0
~NFsing 0 ~NFcos® o  XF
IR31= 8 l_Bp) =-DFcosd -(-Cp -Bp) PFsinBcosd QFsind
cos 8 sinBcosd
+OFsin&e +OF sinBcosh
~DFcosd ~Cp-Bp © DFsing 0 0
- 2
-(-Cp l—Bp) DFsind g —Bp) PFcos 6 QFcose
sinfcosh 51n 8
+OFsinfcosh +0Fcoseo
~PFsingcosh 0 ~PFc0s-0 UFcose8 0
-QFsin0 0 -QFcosh 0 YF
_ —
|R4|= (—Cp-l-Bp)- DFcosh —(—Cp—l—Bp) ~PFsinBcosd QFsind |
| cosRe+ sinfBcosh ;
| QFsincg +OFsinbcosh
DFcos® —Cp—Bp_l -DFsin® 0 0
(9]
~(—Cpfl-Bp) ~-DFsind ~Bp) ~PFcos 6 QFcosh
sinfcosH ' 51n p+0Fcoseh '
%+0Fsinecose '
2 2
PFsinBcosd 0 PFcHns O UFcos © 0
~GFsind 0 ~QFcosh Q) YF
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]RS] = 5 +Bp EFco s ~(—Ap“l+Bp) -MF sinBcosd NFsinél
cos e $inBcosb .
+LFsin2g +LF sinbcosh
~EFc0s0 Cp-Bp - EFsind o 0
-(-Ap-l+8p) ~EFsind ( g +Bp) -MFcosR8  NFcosh
sinfcosd 31n 6+LF00528 -
+LFsinBcost
~MF sinfcos6 0 -MFcoss TFcos“e 0
~NFsind 0  ~NFcosf 0 XF

ENE fg(Cp »Bp) ~EFcosd -(Cp t=Bp)  -JFsinBcosd ~-KFsind
c05%8 : sinBcosh
+T Fsin<o . +IFsinfcosh
EFcosd ~Ap+Bp L ~EFsing 0 0
—(Cp_l—Bp) +EFsind (Cp—l~Bp) -JFCos26 -KFcosH
sinfcosh ~ 5in<e
+IFsinbcoso +1Fco0s28
JFsinBcosh 0 JF00529 SFcosze 0

-KFsin® . 0 -KFcosh 0 ‘NF
where, _
-1 30\72 50\72
p=a/by, p "=b/a, A=60+ 1oy ° B=22.,5(1~v) , C = 30~ =%
. - .

DF =22.5(1+9), EF=22.5(1-3v), FF=(42-120+60p°+60p ~)t°/ab

GF =(30p+3p“1+120p"1)t2/b, HF:(aop“l+5p+120p)t2/a,

IF= (-42+129-60p2+30p"2)tz/ab, JF=[50p+5(1-0)p'l]t2/b

KF=(15p 1=3p-12vp)t3/a, LE=(-42+12V-60p ~+30p°)t"/ab,

= (~15p+3p L+129p 1)t%/b, NE= [zop*l+3(1-0)p]t2/ a,

OF = (42-129-30p°~30p °)t%/ab, PE=[-15p+3(1-v)p *]t%/b

QF = [15p'1—3(1-0 p]tz/a, RF=20p+4 (1-¢)p "lj g

SF=[10p-(1-v)p 11t , Tr=[10p-4(1-9)p 1]t"

UFL[5p+(1—v 1142, ve=[20p tea (1-9)p]t?

we=[10p -2 (1-1)p]t%, xE=[10p 1-(1-v)p]t?, YE=[5p L4(1-v)p]"
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(l-lﬁ)ab

3.

Forces.
i -b ~ V2 0 va b
—b -a 0 3 Vb
-ma-nb -mb-na ma+nb -mb+na  -ma+nb
0 -}a -b *a 0
0 -2 ~vb a 0
-ma+nb -~mb-na ma-nb  ~mb+na  ~ma-nb
-b 0 0 0 b
-vb 0 0 0 Age
rma-nb ~mb+na ma+nb -mb-na  -ma+nb
0 0 -b 0 0
0 0 ~b 0 0
~ma-+nb -mb+na ma-nb -mb-na =-ma-nb
m= L2l on o= v/2
P PP
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Table 2. Stress Matrix for 'In Plane!

~a

mb-na

0
0

ma~-nb

Vb

ma+nb

ma~nb

Vb

ma+nb

0
0

mb-na

mb~n3a

va

mb+na |

“}a

mb+nb)
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