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SXNOF SIS

This investigation primarily deals with the
effect of soll characteristics on the ground motion.
A large number of earthquake accelerograms with varying
soil characteristics have been generated on digital
computer and corresponding ground acceleration spectra

vere studied.

A nonstationary process 1s used to éimulate the
bed rock acceleration. The bed feck acceleration is
then filtered through the soll deposit to get the ground
acceleration. The filter parameters depend upon the
characteristics of the soll deposit. -Statistical
characterlistics of the ground acceleratlion have been

studied with respect to the base rock acceleration.

It 1s observed that rate of zero crossings of
the ground motion decreases as the period of the soll
layer is inereased. Predominant period also increases
with the increase of period of soil deposit. The maxi-
mum ground acceleration varies with the fundamental
period of the soil deposit. The maximum ground accele-
ration shows a regular decrease, a&s the damping of the

- 8011 layer is increased,
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IHNTRODUCTION

Recordoed earthquake accelerograms aro often
used for designing important structures even though |
these might not have completely suitable properties
at another site. For example, the El-centro, 1940,
and Taft, 1962, accclorograms have boen used all
ovor the world even though its speeial ch.racter is
not really applicable everywhere. The statistical
fluctuations in intonsity, duration and frequency
content in the past recorded strong motions need
to defino adoquately. In absence of these informa-
tionsg, it 1s difficult to estimate the ground motion
and consoquently thc design of structures. In such
cages it bocomes necessary to use the probabilistic
mothods that provide the solution within some relia-
bility. Large number of recorded earthquakes on
similar condition (i.e. opicentral distance, soil
condition, intensity ctc.) are nceded for probabilistic
design. Unfortunately the number of recorded strong-
notion earthquakes are very few. In some seismic reglons,
not even & single record is available. This has motivae
ted simulstions of ensemble of ground motion on the
baglis of available sarthquake records. Simiiar process
could be adjusted to reflect tho local geology which

affects the ground motion.
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If dotailed seismic history'ar the region is
available, it 18 possible to predict for a given location,
the number and size of enrthquakes expected in future
during the service life of the structure. If the location
of the active fault relative to the site is known, magnitude
information can be ralated_to other ground parameters such
as duration, peak acccleration etc. (67) These in turn
could be incorporated in the simulation of gfound accelew

ration.

To perform & probabilistic analysis of the

" behaviour of structures to withstand strong motion earth-
quexe, different investigators have designed stochastic
model to generate artificial ground acceleration similar
to those of real earthquakes. The stochastic models of
earthquakes could be classified in two main groups, namely,

. on&
stationary models, nonstationary models.

The models are constructed by ineorporating the
statistical propcrtics of recorded ground motion, the most
significant of which are the duration, intensity, peak

acceleration, envelope function and the frequency content.

The stationary models could be represented by the
vhite noise. This model was proposed by Housner (33) and
hawe been used by several other investigators (14, 35, 54).

imite noise may be taken &3 a reagonable representation of
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ground acceleration at the bed rock (35). The effect
of tho soil deposit may then be incorporated by filterw

ing the bed rock acceleration.

Stationary models are not adequate for modellw
ing the tail of the large earthquakes (1, 43). Non-
stationarity in earthquakes enters primarily through
the envelopo funetion. Records of different earthquakes
are all differont in detail but have the features in
common i.c., the motion is highly osecillatory about zero
central 1ine and non-periodic. At the start of the
agcelerogran, the amplitude builds up rapidly to its
- maximun, then remeins almost constant over a certain
“period, this is followed by gradually decaying tall
upto the end of the record. Nonstationary models could

be constructed by using envelope function.

Engineors have not yet becen able to_agree on a
way of incorporating site effocts in design. The
various effects of tho site conditions, should be repe
regented in the records. 1In recent yecars, procedures
have beon developed for analysing and prediecting the
ground motion caused by an earthquake at different sites,
taking into account the characteristics of the soil
deposit underlying the site, magnitude and epicentral
distence (31, 67, 68, 74, 756). The method involves in
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assossing the bage rock motion at the site duo to en
ecarthquake establishing the proporties of tho overlying
soil layors and computing the rosponge at the ground

surface, using a lumped mass analysis.

Chaptor II briefly revicus previous work in
pinulation of earthquake records. Chapter III deals
yith the generation process of artificial ground
acceleration, In this dissertation, normally dise
tributed random mambers with meadn zero and varionw -
unity have been generated by a method sugpested by
Jo No Pranklin of the California Institute of Teche
nology (23). A éamputer programme has been made to
genorate random numbers on & digital computer IBM 1620
ag given in Appendix 'C’'. While noiso is obtained by
spacing these numberrs at uniform interval and joining
them by straight lin:s. Tho acearacy of white noise
deprnds upon the spaeing of the random nmumboers. Five
differont bed rock sccoleration have boon obtained by
multiplying the vhite noise with the envelope function.
This envelope function, deseribes the mannor in vhich
tho intensity of the desired nonstationary procoss
varies with time., By filtoring the bed rock accele~
ration through the soil deposits having different
soil characteristies, ground accelerations have been

genorated on a digital computer IBM 7044,
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It 1s assumed that the goil deposit acts as a
single degree of freedom system. The freguency and
damping of soil deoposit changes from site to site
and both of these are assﬁmed to vary over a wide
range. Finally the offect of soil characteristies
on the ground motion have been discussed. Chapter
IV discusses the effect of change in period and damp-
ing of soil layer on the ground motion spectra. Ave-
rage acceleration spactrés have ueen drawn for § per
cent damping and from these conclusions are azade
thereafter. Finally, the conclusions obtained from

this investigation are summérised in Chapter Ve



CHAPTER - I

HISZTIORICAL BEVIEGH

simlation of earthquake motions is done mostly
by digital computer, All these methods have a common
trend, to mateh the average pseudo velocity speetra of

- the generated process to that of rcal carthquake.

Housner {33) used random pulses of the samo
magnitude and later sinuscidale, arriving randomly in
time. Stochastic characteristic Bf the process 1s
estimated by matching the expected spectrum to that
6f real earthquake,

Thomson (72) formed a ground acceleration
process as & series of random velocity pulses and
shoved that this process 1s almost white noise when
the duration of pulse is short as compared to the

natural périmd of typical structures,

Bogdanoff and Goldberg (27, 28) represented
earthquake type motion by superimposition of waves

with nonstationary amplitudes.

Byeroft (13) used an analog simulation of
vhite noige to represent ground acceleration during
an earthguake, Power spectral density has been esti.
mated by mateching the spectral respongse of a single

dogree of frecdom system to Housner's average
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spectra (33).

The next refinement to theo use of white nolse
is tho use of a filtered white noise, or a stationary
process with a preseribed power gpectral density funce
tion. This kind of pover gpectral density function is
strongly supported by the work of Kanal and his asso-
ciates (46, 46). How ground layer of different propore
ties affécted incoming waves have been investigated and
» then arrived to an amplification factor as a function

'-of the frequoncy content of the waves.

Tajimi (71) suggests that for firm ground the
damping and period could be taken oqual to 0.6 and 0.4
so:ond respoctively. These values change due to

loeal soil conditions.

‘Housnor and Jennings (38) used a digital
computer to gonerate a whito noise process taat was
later pagsed through & socond order linear filter. It
has been shown that the key central portion of the
strong motion acceleration can be modelled by sections
of stationary Ganssian process with power gpectral den

sity derived from average undeémped velocity spectra.

Arias and Petit Laurent (3) s.udied the
process generated at the ground surfage by a train

of shear waves passing through a soil layer
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vhich have boen produced by & white noise process at
bed roeck. It has been found that this >rocess could
be sim@latad using a dashpot in series with a gpring to
represent the soll layer.

Lin (52) showed that if a white noise is
passed through a linear filter, the output process
shows a stationary trend, thus, implying that this
simulation cannot be used to model the decay obser-
ved towards the end of real earthquake records, It
has been sug;ested that the filtered shot noise with
a variance intensity function that has & similar ’
shape to that of the oxpected output process, could

be used., N

Amin and Ang (1) using the above suggestion
used fiitered shot noise. Varlance intensity funce
tion with an initial steep rise, then a constant
value during the strong pari of the motion and finally
exponentlal decay towards the ond has been gelected.
The eoméuted variance function of the filtered process

resulted very similar to the selected variance shape,

Shinozuka and Sato (62) formulated a gencral
form to simulate a Ganssian nonstationary random
process. It has been suggested that either a filter
shot noise or a filtered vhite noise multipliecd by
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a determiniatic shaping function after filtering could
be ased as nonstationary process. In both cases it has
been tried to represent general earthquake churécteris-
tics with the nonstationary features. It has been
showed that under certain condition the gimulated
process is equivalent to a filtered polsson process
thus providing a more physical 1ntarprétation to sie

milation,

Patrico Ruiz and Joseph Penzien (56) proposed
a method of investigation using a nonstationary rane
dom process obtained from filtering a shot noise thr-
ough a second order lincar filter, Both the filter
and the shot noise are gelected so that, on the ave-
rage, simalated aaeeleragfams generated with this
Bodol will simulate the most relevant features of
strong motion earthquakes recorded on firm soil at
moderate epicentral dlstance. A Ganssian nonstatie-
onary shot noise has been used to represent the acce-
leration at bed rock during an earthquake, ihe soil
above the bed rock is replaced by a dashpot and a

gpring of known value,

The filtering parameter and variance inten- -
sity function ol the shot noise are estimated using

the available sarthquake records. Ground accelora
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tios of the overlying soll layer and computing the
response at the ground surface using & lumped mass
apalysis prosedure. A method of analysis which ine
corporates strain dependent soil characteristics obe
tained from the laboratory tests, appears to provide
adequate moans for assaésing the selsmic response of
soll deposif. Yigegine (74) made a study of over one
hundred strong motion records in investigating the
effect of soll conditions on the intonsity of ground
shaking. S&trong motion instrument records at a
mumber of locations developed at different sites in
the same gensral area but undorlain by different

site conditions.

Duke and Associates (22) « Dynamic model of
sub-surface conditions has been developed and Fourier
spocetra methnd has been uséd for isolating the effect
of site conditiéns. A modiflcation of earthquake
motion at the base of structurs due to soil structure

interaction is also given.
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tion has been gensrated by filtering the bed rock acce=

leration through ths second order linear filter.

Iyengar and Iyengar (40) The ground accelerae
tion i8 reprosonted by nonstationary process. Fourier
Series is used to represent stationary process and
varisnee function is determined by past record earth-
quakes. An expression is also found out for variance
function. The strength of ocseclllation or violence is

exhibited by the mumber of zero crossings and extremes.

Aousner, Jennings and Tsal (43) simulated
various type of earthquakes with different character-
istics. Nongtationary process has been obtained by
multiplying a filtered white noise by @ shaping func-
tion. The shaping funetion has been sslected depend-
ing upon duration and magnitude, according to the type
of earthquske that is to be simulated. Finally, the
process is pasgsed through o filter to determine the low
frequency content of the process according to observed

records.

Scod and Idriss (67, 68) - Ground motion at
several sites are evaluated using rocently developed
techniques whieh involve assessing the base rock motion

at the site due to an earthquake establishing the proere
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tics of the overlying soll layer and computing the
rosponse at the ground surface using & lumped mass
analysis prozedure. A method of analysis which in-
corporates strain dependont soil characteristics obe |
tained from the laboratory tests, appears to provide
adequate means for aaseésing the selsmic response of
soil deposif. Wiggins (74) made a study of over one
hundred strong motion records in investigating the
effect of soil conditions on the intensity of ground
ghaking. Strong motion instrument records at a
number of locations developed at different sites in
the same general area but undorlain by different |

gite conditions.

Duke and Assoclates (22) - Dynamic model of
sub-surface conditicns has been developed and Fourier
spocetra moethnd has been ased for isolating the effect
of site conditidna. A modification of earthquake
motion at the base of structurc due to soil struecture

interaction is aleo given.
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GENERATION OF ARTIFICIAL ACGELTROGRAMS

¥hite noise medified by nonstationary function

is used for generation of pseude accelerograms,

3.1 GENERATION OF WHITE ROISE

Several investigators (35, 42) have modelled
carthquakes accelerograms by white noise. White noise
is a mathenmatical idealization of & stationary random
process 1in which all the rrequenéies contribute with
eqmgl intensity to the mean square value of the proe
ceés; such 8 process is characterised by a constant
. frequency range. A white nciée that has a flat power
spectral density'over the range of frequencies of

interest 18 constructed as follows (23).

A sequence of independent randocm numbers
xl, 32, xa, sesvesssse With uniform distribution in
the interval (0, 1) could bo obtained by computing

the~f§&etional part from the expression
X = On ) n= 1, 2¢ 3’ sames

vhere G.is some trancendental number greater than

unity i.e. ® > 1. The fractional part of the above
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expression is computed as agcurately as possible.
Fractional part means the part beyond the decimal.
One of the value of 8 may be taken equal to w. Unia
formly distributed iandom numbers are calculated upto
eight decimal places as accurately as posgsible, whal
calculating these numbers corresponding to higher
povers of 0, the term 62 bocomes very large and also
further caleculations become very combersome, s0 some
simplification is done whieh causes small error in
calculating the fractional part due to the overflow
of integer part. Thus falrly accurate random nuMm

bers of uniform distridition could be calculated.

Given the sequence x, of independent samples
from the unifoérmly distributed on 0 < x < 1, & nev
sequence of independent random numbers wp with a
genssian distribition having zéro mean and unit vae
riance is obtained using the following transformae
tion (23) |

1)1/2

Uppy = (=2 log xg, Cos 2r X5, § 071y 2y 34 4.

i

Yen
These random numbers have been generated on digital

computor and are listod in Appendix *C’', together with

-~

(-2 log xzn,l)l/z 8in 21 Xgn § n=l, 24 3y ee

(1)

(2)
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tho eomputor prograrne. Dy opacing thase manbers at
cquol iatorval of $imo and thon joining thea Dy otroe
ight linoge on cagcnblo of those sandon wavo forno
t{t) ecould bo obdtainod. Tlo wavo foro approxicatos
waito noige, tho dogroo of Cpproxication boing dopone
dont on tho timo sptolng &t ond the fundonontol £r0e
qucney of o3l dopooit. Ao 4% OpproGehics zoro, thio
vavo forn oppradchos whito nolpo.  Tho powor opoetrnl
denoity fanction of tho wavo forn for £o2l) valuao of
uAt hog tho form

e
5(1) u%.. (1 . ‘f"m ) R )
waoro 6 40 tho varianco of tho thito aunbors. This
poucr opoctral domsity io opproxzicitoly constont ovor

o cortoin rapgo but follo €0 coro oo w tondo te infi.
nity. Thuo tho froqueacy, vy, 0id tho tino opbeing, A,
10 co choocn that powor gpoetrol domoity rc2oing conos
tont ovor tho range of intorost. Pousr ppcetral donpity
ic conotont vithin looo thon throe por 2cné error for
wAb € 0.42 ond vithin looo thon 86 por comt orroy for
wab € 1,85, It 1o ovidont that ag tho frequoney L0
insronsod lttooping tho tino spﬁa&nﬁ conptont tho opror
ineroisos. In tho prosont imvootigation tho tioo

opaeing io kopt eonotont ond frogqueney io changod ovor



" ws 15 te

a vido rongos Tho values of timo spaeing and tho fre-
qucney aro doeidod such thot orrors aro withia roagonablo
ranges Pe Cy Jonningg and Pengin and Ruis have toblon
cpaeing tioo 4t ogqual to 0,025 ond 0.03 posond rospoce
tivoiy. 1In tho prosemt inventigotion 4t 10 takem ogual
to 0.04 corond., Froguoncy ic assuned to vary fron G3

to 10.6 rallang por socon! eorrcouonding to poricds 0.1
an? Q.0 soconie For pordodn 0.2 to 0.6 socond tho corror
io vithip 26 por cont vhorcap for poricl 0.1 soeond the
gr0cing time 1p rofuecd oo thnt the orror rouning within

reasanablq 1imit.

Jonninge (41) has choun that tho contral
portion of strong maticﬁ carthquako necoloronrin ¢an

bo codollod by tho stationn:y procoss J(t). Further it
hap ucon ghown that gho rodtponso gpostra resonvlod |
clopoly with corrosponding rosults for real oarthgiolte
pations. 7Tho froqucncy contont of tho procoss chould

bo so soloetod thot tho avorago sjpoetra of tho real

and artifisiol oarthqualte cateh closoly.

thito nolec vhon multiplicd by nomstotionory
function roprosont certhqaoke like motion (1, 3, 36,
62, 69)s @inflar typo of motion 1o token for bod rock
accoloration duo to om carthgiakos Tho nonptationory |

function or onvoloyc finection Gogeribos tho mannor in
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wvhich the 1ntansity.of desired earthquake type motion
varies with .time. For selecting the envelope funetion
it is necessary to determine the time history of
motions in the rock like .ase muterlal., By studying
the characteristics of the base rock motions, it is
possible to develop a reasonable assessament of the
time history of the motion by eithar generating a
synthetic earthquake motion with the desired charace
toristics (1, 35, 42, 43, 43) or by modifying an

earthquake record.

The envelope function, INV(t), specify how
'tne intensity of acceleration wvarises with time, from
an initial bulld up of inten:ity to the final decay
to a8 negligibles value. The envelope function, ENWV(t),
is chosen for 20 seconds duration of the type shown
in fig. 1.

where
04y ENV(L) = t3/6
AB, = 1.0
BC, EXP(«0.268(t-9))

4]

Consider a stationary random proccss W(t) which can be
takoan to be normally distributed with mean gero and

variance unity. The nonstationary process is obtained
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by multinlyins tho vhito noisoy E{(t), vith onvolopo
mnetion, WV(t)g 100

Ob(t) - m(ﬂ.iﬁ'(t) 'Yy “ae (4)

vacro op(t) 4o bod rosk sceoloration

o proportics of op(t) will also bo normolly distrie
batod with goro meon and vnrianéu IVe(t)s Tho froe
qucney contont of nonatatlaudry procons will dopond
1pon iha vhito noisc. PFive dlffnrant.;auo_vack rotion
oro touseny to btudy’tbo statistical pfapertiou of tho
pocido necolerogran. Piguro B ahcuq o paople of bod
rack acecolorations Thoce Lol rock cotions have boon
dovoloped for tho gane Guration ond cnvolope function,
The nunioy of zoro crofsingse cozigum accclordtion ond
tio~ period to tho comimin aceoloration of cach rocord
hove boon tabulated as bolow 2 |

Fablo 1 « fTuble showing tho number of roro eroosings,
Homximum ocecaolcration and tino poriod to tho
ranigun deecloradion of tho bod rockt
aceolorotiong.

A————

Sample JDumber of £OFo JLOFAZAD OCCOloe §Fdme -  to
Mumbor § ecroosinge {rotion ens/Ooe’ Imixinan docoloe

1 18.6 £30.0 8,2
2 11.5 220.0 8.6
3 12.0 270.0 2.0
4 14,0 28040 8,0
6

13.0 260.0 2.0
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From the table it may be inferred that those
boad rock acccluration represent the Similarchairactore

istics.

2,3 GIOUND ACCHIERATION

Ground motion develeped during an earthquake
may be attributed due to wpward propagation of shear
vavos from the underlying rock formation. The dynamic
charactoristic of soil layer eould be defined by a
filter. The filter characteristics are defined by
equivalent spring constant and equivalent damping
constant as presented in Appendix 'B', Thorefore
ground motion during an earthquake could be treated
as the response of the soil deposit equivalent to
ringle derres of freedom system whose support is

excited by bed rock accel-ration, 8y(t).

The ground acceloration ag(t) is obtained as
the absolute acceleration of the nass, which could be

ocbtained by the differential equation
.Z + 2?"’2 L 4 Waz L= ab(t) ses oo (5)

whore Z is the relative displacement of beil rock and
the ground surface. w and ¢ are the equivalent free
qucney and damping of soll dopesit. Tho relative dis-
laccment is given by tho e egsion

4 G 4 w§( tf‘H

ap(T)e Sin wy(t-0)aT ... (6)
Z(t) = -.‘.}.
4

0
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Two differentiation of equation (6) gives the absolute

acceleration of the ground

‘ L ™ tv - ‘
Z v ap(t) = v d2R85 ( ap(T)e 9908 <O ug(tet)dr
V1l « 9%
()
t
+ 2r:9g &b(r)e"”ﬁt'ﬂc) Cos wa(t-1)dT +os (7)
[+]

The artificial esyrthquake accel.ration could be calecu-

lated from the expression
ag(t) =2+ ap(ty = » (29 w2 + wZ)

The initial condition of Zand Z are taken equal to zoro.
The solution'of equation(6) could be obtalned by using
ste) by step nrocedure with pilece~wise linear, taking
the interval of 0.02 second. |

Tajimi (71) has suggested that damping fuctor,
§ = 0.6 and perlod of the soll layer,T = 0.4 Sec., based
on past earthjuake records for the firm soil strata.
To study the effect of various type of soil conditions
on tho ground motion, the damping factor is assumcd to
vary from Q0.1 to 0.6 and the period of the soil deposit

vary from 0.1 second to 0.6 gecond, to cover the wide



o

NOILYY3IT32DOV ANNGCHMH 1Y

L™ 3T1dWVS

SI31LYVY T €914

338 /8w

e 214 I AL
91 vl 2 0. 8 7 v ; ooov
i ' . ,
| s
* | J ! _A___ __T b —coz
Oy . ! .
L T AT 1 .
f ! _ p o ' [ v _. | 7 -
_:_;_# _..:3 e, :;:a :~ I ﬁ_m_ R I L i
‘e ,;xr‘x fe.LLﬂ.Ar T ..t.,,;i“;..t St st I - ‘fxﬁsxn.*ilﬂ*».&f?bﬂ?s}lo P
T i ;1? :___ W | ‘ | ! L _ I | : I _:_ 5
. h X ‘ vy by A —
I ' & ._ T mm_._m,#r“__ _ __ ”. ;__: o #g Z
A _ _
c : b _ _ ,_ _,_ 1752



NOILOW ANNOYS WIRISILEY = v 914

L= 3TdWVS

{o2¢) 3wiy

o2 9 v i o 8 : :
id . -~ ~~ i
i
. .
) __ h
; O ! '
o . . a_ ' ' U . f 7
I 1
_ , ! [ | , ] _ _ \ w Ll ] 34. 7 Ll
. ) ,.a .ng \, N [ ] 1 ) n { 3_ ..r.. wl ” ] * t ___ —-..- e
o B Riarar it St A ARl e :lt.v..l&*ﬂ.bls 10;«/.10. R e el Tt - ;m 4 . v_..\.._ 1..,.«J .“F.wnvﬂﬂ i
by oy r‘_ ' v b I _
" L v/ \ ¢ ' iy Yo _hc..
. (. : ) o b 1
{ _ i _ ) ' ~ t
_ i \ | _ i
1
_ _ * | : h
] b I
i _ -
PRELNEIVE i
AV
Y PRI SO

<y
(@]
[aY}

<
0.y H3N3IIIVY

30¢2




N B P Y AVAS
NOILOW dNNOYD VIDI4ILYV

S 914 ,
' 4
»
. ' ey 0
- ¥4 .
/o ) ” Lo ! .
g N A A
N N A T T N S U S A Tl Ay ! g , \.\ r AR
- A i } 5 ey PO Y . . PR )...,__.P\(fc S ' NIEA FERN i «\.. \\\af\\/\\\"
/I\ .\ (\A ¥ r\‘ <1, . r\ / ¥ ﬂ( W ' ../J... t " /\ N\
o . \ . ~
Y i v i | , ' i ¥ 7
v v i
¥ o b
-0 = Q0IH3d | ! h
< 10 = 9NIdWVY( i} ¢
o~
i E
{338’ 3IwmwiL
4
N gL 9L vl 2% ot 8 S e
r - - - v - -
S 914 ﬁ
;
' J + . L
t .o _ L : i
4 . " ! ! ! 2 4
L] L} F
~ 4 - " n ‘ [ ’. " "
R N e . s PR S S
LUV SR VU I P R Y ) o v b ¢ ot e IR R VAN WS
v ¢ ) : - ~ B v ;
. . : N M
' M i <.., ___ r
. U *
i ¥
SR 2

cOov
oo I
0
NS o4
>
3
SV~
n
-
-
SO T
»
-4
3
z
lge
237



{~ATdNWVS

NOILOW GNNOYWD 1VIDIHILYY .

8 ‘9ld 1 {502

/ !
; ’ _
_~) _.? .), ,7, ” ) n M 2 i N * e
~o - AT AN AT ._ b : o
e AR . L A reo
A ,_f\‘,,\\/\_\,,\,,\«\/\ﬁ\/hl,...;\,*...,,*.*.._.*,._.,I.,.,..m.‘<.@.\(/r?>>k\/\/\|u {o
vy (a U . ._. ’...‘ , 11
v A% Y / &. h . ! ' .d_ - 4
9 o= QOM3d v ; oy v
L°0 = 9INIdW ¥a voovo _ A
, {102
V
muwhv I H.N
az 8L 9t o 21 oL 8 9 v 2 jeorm
e Y Y T Lo v j v I v M
420>
=
o
L '9ld | - Z
. " N o0z
..p \. .), wr .7 i , A -
\,p > ,\ \/ \/\\/ ) i L._ A U R
. co by 1 [ . \ oA : , -
/\.,K\/x/i.))\/\/. \.,,_\,.Z),\/,n(,:,f;:_.l\/\/. :;:._f _h,i.,\..._._::fﬁWz?).\.,,\/\/\(‘,o
! I VIR ] N [ ' ¢ . i ! ’ A
% v ,C._‘ _;,__ v \J /\,_\N S R Vot
¥ C ._c M_ v \ By v ; f\ _ B
" ’ LY v ,\
v
v v .
S0 = cOM3d Y 1-¢0¢
L0 = 9NIdwivQ

D ; e X



8 £5 e

FORl0. lorgo nusbor af‘carthqiano ground cotiong havo

boon gonoratod on o digital compiator I 7044 using a

sooputor prograrme (16), for vorious domping foector and

poriod of tho coil donooits A fov ortificial acccolorss

grono arc chovn in figuron SeB.

3.4 DLCJOOXON

It hop boon obpopvod that 0o tho poriod of tho

coil dosopit 1o inercasod tho mto of soro erossingse of

optificiol acaclorosran chovw 8 dofindtc doeredscy oneodt

for 0.1 pocond porie. vhore L1t ohows high rato of sero

erogoinrs than tho rato of zofo eropoingo at tho od

rock ecoloration 0o eoald bo pocn 4n Toula 1.

3ablo I1 - Tablo shouving tho variation of auncer -7
zoro eroooingo with dacping ond Hroriod

dc .
dacping ¥ ] T 1 ] o

\,ﬁ Ol B 0.2 | 0,318 0,4 io.s I 0.6

Pogsag - Bl 3
0.1 16,0 12,0 11.0 12.6 12,1 13,1
0.2 2.0 BeB 7475 946 B0 10,5
0.3 5.6 GeT6  6e25 GeO 640 7:6
L ¢ I Qe P 8478 470 G756 G40 500'
0.5 380 440 3,75 476 3,78 3.6
0.6 3.0 2,756 BeB5 4eTB 3475 3,76
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From actual earthquake record it could be seen
that as the softness of soll increases the number of
zero crazsings reduce. Therefore it may be concluded
that ag the gsofiness of soll deposit inersages, the
period of the soil depocsit goes on inereasing as evi-

dent from the tahle above.

Period of th: goil deposit less than 0.3
sacond show very high rate of zero crossings and
perioi greater than Q.4 second ghow slow rate of
zZero crossings. It may be recomménded that périods
graater than 0.4 second may be attributed to soft
soil and period less th.n 0.3 sesond for hard soil
strata or rock like matarial. It ean also be obser-
ved th.t for the same period, as the damping is
increased thers is no appreciatle change in the rate
of zero crossings, or in other words damping has

insignificant effect on the nupber of zero crossings.



CHAPTER .

4.~ BESPONSE SPRCTRA

Repponsze spectra hag been used ag a check for

artificial accclerogram with the real eczrthquake records.
Spectral rosponse roproaents tho response of single
degree of froodom systems, having diffoerent periods
and damping, to strong ground motion. The response
may be evaluated either as the maximum value of re-
lative displacemont or as maxipum relative veloelty
or as maximin 8bsolute aceoleration of mass. The
determination of spectral response involves an evae
luaﬁion of maximum value .of an integral for a series
of values of poricd and demping, 7The integral is
given by equation (6) in Chapter II1I. Response apec;
tra for all the five bed rock acceleration has been
caleulated for 5 per cent damping and 20 different
periods. Then acceleration average spectra has been
calculated as shown in figuro ©, The time to the

maximum acceleration occurs at 0.05 socond.

The response 8pectra for groind motion has
becn caldulatod for 20 different pericds. These specs
- tras have b.:en ~alculated for throe différent dampings,
“i.e. 2y 65y 8nd 10 por cont of eritical damping.

A fou speetrum 1 showm in figures 10-14. These .



S

- 8pectras are then normalised b& making the area equal
under tho curve for ouly 6 per cent dazmping. Then
averago spoctras huve boon drawn and are shown in
figures 15 througn 17. To show the accuracy of ave-
rage spectra, the normalised spectra of various earth-
quaikas are also drawn alongwlth the average spectra,
It could be obgerved that the deviation is not very

rnuch significant.

4.2 2IgCJHoI0N

The wvariation of maximum Acceleration devee.
loped for different fundamental period of the soil
layer for the came damping is shown in figure 18. It
is apparent that the maximum acceleration induced
varioa 7ith the fundamental period of the soil depo-
sit., For the sam: poriod of the soil deposit, the
neximum accolerction shows a definite deereass with
the inasroase of damping which 1s evident from theo
table IIi. fho variation of maximum acceleration

vith damping is also shown in figure 19.

(Contd.)
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Table I1I « Table shows the variation of maximum
‘accetoration with damping and period

Damping} Meximiz aceelcration in
2t f g
€ C’ _ 3 . i \e » 6

0.1  0.1808 0,1322 0.1063 0.0916 0.0810 0.0782
0.2  C.22032 0.13629 0.1031 0.0883 0.07948 0.07460
0.3  0.18976 0.10206 0.0777 0.,06628 0.05951 0.05483
0.4 § 041451  0.09223 0.0716 0,06070 0.05180 0.0439
0.5 ™ 0.,1407 0.09678 0.0727 0.0632 0.0537 0.0472
0.6  0.12417 0.05414 0.05327 0.05163 0.04494 0.03817

The response spectra changes in re.sonable
consistent fashion depeniing uson t:-2 softness or
hardness of the soii. For tho soft deposlt of solls,
the peak oriinates af the accel ‘ration response spec-
tra tend to occur at a rather hishsr value of the fun-
damental pariod. Therafore, the structires of long
period rosting on soft seoll deposit will be severely
affected and those resting on hard soil strata will
be less affected.

As the period of the goll layer is 1ncreased,
the timé:z:lthe maximum acceleration is also incrcased
as could be geen in the figures 10-14. This may be

due to the fact that the frequency characteristics of



-l 42 $m

the ground motions and thus the form of the response
spoctra is prquundly influenced by the nature of the

soll conditions underlying the site.

Velocity and displacement response spectra
for only one accelerogram have been shown in figures
13-14, which look like actual earthquake spectras.

It has been obgerved that %1m;j:: the maximum velo«
city also increages 8s the period of the soil deposit
1ndreases. The maximum velocity also changes as the

periods of the soil layer change.
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In the present analysis the effeet of soil
characteristics on the ground motion during an earth.
quake and corresponding forms of response spectra
have been studied. Soil characteristies of a deposit
have great influence on the response spectra of the
ground motion. This response spectra is used to
determine seismic force on a structure, hence the
design of a structure is very much affected by the
type of so0il deposit., Therefore in désigning a struc-
ture aseismically the soil éharactaristic of the

underlying soil should be taken into consideration.

To study the effect of various type of soil
conditions on the ground motion various combination
of damping coefficient and period of the soll layer

have baen studied and following conclusions are made.

Period of the s0il layer is an lmportant
parameter, as the period of the soil layer increases,
there is a definite decrease in the fregquency of the

motion.



ot 44 1t

Soil layer period greater than 0.4 second
shoy slow rate of zero crossings vhich may be attri-
buted to soft soil and period less than 0.3 second
show high rate of gero crossings. Hence, period less
than 0.3 second could be recommended for hard soil

strata.

Damping hasg ingignificant effect on the

number of goro erossings or frequency of motion.

The maximum acgeleration induced varies with

the fundamental period of the soil deposit.

The maximum acceleration decreases as the
damping of the soil layer is increased, period of
the soil deposit remaining the same,

As the softness of soil deposit increases
tho poriod of the soll layer is also lncreaéed. It
may be inferred that long period structures resting on
soft soil deposit would be affected most while on hard
strata the long period structures would be less
affected. |
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BASIC CORCEPT OF GROUND MOTION GENERATION
PROCESS v »

. Here, the basic concept that will be useful for
an underatanding‘of the generation, of artifiecial earth-
quake are driefly summarisged e
A.1 Random Process

A function x(t) such that for each valie of
t = t, behaves like a random variable X; = X(t;), the
engemvle of all possible form of x(t) is a member of
the process. The existing'reeorda of actual earthquakés
can be corisidered to be members of random process.
RanQQm process is deseribed by itc mean or statistical

averages (expectation) and covarience funetions.

E{xﬂt)}, denotes the expected mean value of
x(t) and R(ty, tg) = E{ x(ty) x(tg)} denotes covarience
funcgion deseribes the interrelationship between x(tl)
and x(tg). If x(ty) and x(ty) are independent then

R(tl’ tg} s 0

Tae statienamgl characteristies of the random
process x(t) are reflected in that, the covarience
function is not a function of both time t;, and tp but
only of their differcnce

= t2 - tl
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A2 Hite Noise |

thite noise is a mathematical idealization of
a gtationary random proc¢ess in wvhich all the fregquen-
eles contribute vith equal intensity to the mean square
value of the process, Such a process is characterized
by a constant power spectral density 8,, over the |

entlre frequency ranges

A vhite noise process can also be interpreted
as superﬁosition of random pulses arriving randomly in
time accoriing to homogeneous poissong process. If
he time interval betwoen pulses tends to zero, the

white noige tends to Ganssian Procéss,

A.3 Shot Nolse

The nonstationary counterpart of the vwhite noige
is e¢alled shot noige. The physical interpretation of
the chot noise process is as a superposition of random
pulses arriving randomly in time according to a non-
homogencous polsson procegs. This characteristic allows
the inclusion of an initial builld up and a decay towards
the end in the intensity of the arriving pulses. The
shot noige process can be described mathematically as
the product of a vhite noise and a deterministic funce
tion of time.



«} 60 1e

A.4 jStochastic Model
| A Ganssian nonstationary shot noise is used
to roepregent the acceloeration at bed roek during an

earthquake. Thia,stoehéstic process is completely

characterised by the yarignge intensity factor.
A5 SE RDER_LINEAR FILTR |

The second order linear filter is used to
represent a damped single degree of freedom gystem
formed by a mass supported on & spring and dashpot
in parallel. The accel: ration at the bed roeck 13
uged as the acceloration of the support and the abso-
lute acceleration of the mass simulates the accelerae
tion of the ground surface, the behaviocur of the
mechanical model 1is completoly defined by the paraew

meters ¢ and w.

A.G WLM

It glves the distribution of the power of the
signal or 8 noise with regpect to frequenecy. It is
represented by a curvey area under which gives the

total power.

If x(t) represents a complex wave form, Lot

x(t) be represented by Fourier series



a1 6L 3-

. oQ
x(t) =2 a einwbt

2r
’ w - -
n=-A n

where w, is'frequency and n 18 a counter. T is the
time period and

T

. L
a, = %’ g x{t)e
¢ . '

nat
4t

Parsoval's thoorem gtates that the average energy in
the signal is equal %o the sum of the average energles

in each frequency component iees

£ anl® = e ST x’(ﬁ)dt

n=-o
4]

The time average of energy i.eo. power is
ekual to a4 sum of terms, each term associated with
one frequency in the Fourler ssries expansion. Tach
term, in fact, can be intérproted as the time average
6t the energy of one pérticular component, fragquency.

Thus we define power spectral density

S(w) = I ” lan|® 8w = w,)

n =-o
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S(w) consists of a series of impulses at the
component frequencies of x(t), =ach impulse having a
strength equal to the power in that component free
quencyy and ciearly is a measure of the distribution

of the power in x(t).
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As such gite pérametgrs; intensity, opicentral
distance, duration &and magnitude are not casy to assess
accurately for a localiti. Even then a rough estimate
could be made by the past history of that locality or
by using emperical formulas bBased on past earthquake

records.

The maximum value of the ground aceeleration
will be used to define the intensity of the process.
Faults are detocted by micro uaves.' Nearest active -
fault will cause gevere earthguake. Seismological and
geological investigation fix the fault whieh will cause
earthquake in near future. From the past history of
the region eipacged magnitude of earthquake could be
egtimatéd. Then the expected maximum acceleration as
a fraction of gravity could be related to the magni.-
tude, M, and the eplcentral distance in milesy D, of
real earthquakes, using an emperical relation given
by Rosenblueth

0.8 M/D2

a = 0.8 ¢

risc o
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The duration of the ground acceleration
procoss could be estimated from tho ecmpirical expre-

ssion
§ m 0.48 D + 0,02 e0° 74 H

vhere 5 1s the expescted duration of the records in
scconds. Having éstimated the magnitude, duration
and maximum acceleration, the envelope function as

given by Amin and Ang (1) can be fixed.

s T TERISTIC

Small earthquake and microtremors could be
used for evaluating the sito characteristics. Res=
ponse of soll deposits to the base excitations is
‘determined by the etfective shear moduli and damp-
ing characteristic of socil deposit. 8t§ess strain
behaviour of soil is quite different for small and
large earthquake motions. Hence, the shear modulil
and damping factor very much depend upon the ampli=
tude of induced strains. Therefore prediction of
strong motion earthquake based on'small earthquake
or microtremors will not be true representation.
The nonlinear stressestrain relationship is approe
ximated to oquivalont bilincar stress-strain system

as showns
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Equivalent damping and equivalent shodr moduli are
chosen to correspond to the average strain developed.
Bquivalent shear modulus, G; would be determined by
the slope of the line OA and equivalent damping face
tor by the expression (Jacobsonnleao)

0= Areas of hytercosis loop AA'
47 x Area of OAB
The equivalent stiffness of the soll layer is detere
mined by

¢ = K(<X')l/3

wvhere Jo = effective over burden pressure., From
the known stiffness and masgs, frequency, v, could be
determined. Hysteritic stress.strain relationship
for different gtrain amplitudds may be determined by
means of cyelic simple shear test or cyclic triaxial

compression tests.
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TABLE OF NORMALLY DISTRIBUTED RANDOM NUMBERS

Cel PROGRAMME-GENERATION OF WHITE NQISE
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C < _ RANDOM NUMBER GENERATION OF UNIT VARIANCE
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DESCRIPTION OF VARIOUS TERMS
SHRHHRHLBY PRG54
IN PUT DATA
As3.  B=041415926564 Cel,. D=0.0

C
C
C
C
¢ OuT PUT DATA
C SBUII=UNIFCRMALLY DISTRIBUTED RANDOM NUMBER OF UNIT VARIANCE
c WM pM2N1=WHITE NUMBERS 70 BE GENERATED
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#0810

DIMENSION S8(2})
READIOs I
READZ20sAieBaCeb

10 FORMAT(L6)

20 FORMAT(4F 10«87
PH» 34141592654
SivI=10300000G,

14 DOT3.0=1,2
Al=BaD4Bag
NX1leX1
ANX1eNXL
AKX 2= { X1=-ANX1)
DE={DEDI+ANK2
1DB=D8
ATDRB=1D8
SB(J)={DB~AIDB)}
SAm(ARCHANXI©ALOBY ZDIV]
15A=SA
DISAnTISA _
Sa={SA~BISA#+DIVI
CmbA

75 DuSD(Y)
Y1o=2e#LOGF(S1B(1))
Yimde WPH#SR(2)
WANLI=SAQRTF(V1I%COEFLY2)
W2N=LORTF{Y1IRSINF(YZ)
PUNCH30s 1o W2ZNI s W29 {SBLI) pJ=192)

30 FORMAT(15¢4F15410}
(2142
GO 10 14
END
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