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Several methods are available for stress 

analysis of concrete gravity dams. In this dissertation 

a comparative study of a few of these methods$  namely, 

(a) Davis method Si) and (b) USBR method (2) , has been 
made. The stresses as obtained bthese methods are 
also compared with theory of elasticity solution of 

Zienkiewicz 	for a triangular dam section and with 
the finite element stresses for Koyna damU 5)  under 
static forces. 

Static and dynamic forces have been considered 

in this study. The dynamic forces are treated as 

"equivalent static forces". Three different variations 

of the seismic coefficient along the height of the dam 
have been studied with a view to...investigate the most 
appropriate variation to be considered in stress analysis 

of concrete gravity dams. Dams of different heights and 
different upstream and down-stream s1oD s have been 

analysed. 

The study herein indicates that the stress 

distributions as obtained by the Davis and the USBR 

methods differ considerably from both the theory of 
elasticity(B)  and the finite element analysis (15) for 

Th 



the regions at and near the base of the dam where the 

width of the dam is large, For hydrostatic pressure, 

the Davis and the USSR methods give different stresses' 

as compared to those obtained by the finite element 

analysis (I5). This difference is more significant at 

and near the base of the dam. Under static forces the 
theory of elasticity and the finite element method 

indicate a definite tension at the U/s face on the base: 
This fact is not revealed by the Davis and the USBR 

methods. The Davis and the USSR methods differ signifi-

cantly from each other only at and near the base of the 

dam. 

The varying seismic coefficient Is found 
suitable for stress analysis. A linear variation of 

seismic coefficient may be used for preliminary design 

purposes. Under lateral forces a stress concentration 
is observed at the elevations of the dam where the slope 

of the dam face changes abruptly. 
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A P_ E.... I  

Design and stability analysis of concrete 

gravity dams require the knowledge of the stress dis-

tribution within the dam. The state of stress at any 

point within the dam is completely defined if the 

three components of the stress namely, normal vertical 

stress (Ty), normal horizontal stress (Tx) and shear 

stress ( txy) are known. 

Several methods are available for computation 

of these stress components (wy, UTx and rzr) . it is 
aimed in this thesis to carry out a comparative study 

of a few of these methods namely, Davis method (1) 

and USBR method (2). The static stresses as. obtained 

by these methods are compared with the theory of 

elasticity solution (3) and the finite element solu-

tion (15) for triangular dam and Koyna dam respectively. 

The theory of elasticity method for stress analysis is 

expected to give exact results as it satisfies' the 

compatibility of stress and strain. besides satisfying 

the boundary conditions everywhere within the dam and 

the foundation zone. But the effort involved in it is 

too much for each dam section. And therefore, this 

method is gene-rally not used for stress analysis and 
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design purposes. The finite element method is expected 

to give results fairly close to the theory of elasticity 
solution. This method can account for any general vari- 
ation in geometry and material properties. Too much 
effort is involved in developing a general digital 

computer programme for this method. 

Dams of different heights have been included 

in the present study. The stress analysis is carried 

out for static and dynamic forces. The dynamic forces 

are considered as equivalent static forces. The static 

forces consist of the self weight'  the hydrostatic 

pressure and the uplift pressure. The dynamic forces 

consist of the hydrodynamic pressure and the inertial 

force due to the acceleration of the mass of the dam. 

Three different variations of seismic coefficient along 

the height of the dam have been studied. 

Chapter Ii of this thesis deals with the 

methods of stress analysis. The Davis, the USSR add 

the finite element methods are discussed in detail 

while theory of elasticity approach is briefly discussed. 

Chapter III deals with the evaluation of 

loads. Sectional geometry of the dams analysed is also 

given. 
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Results are di se1000d in Chapter VT and 

finally tho conclusions aro given in Chapter V. 

Tho stud, herein indioatoo that the Da tø  

and the USBrI methods give significantly different 

carmen dictri'bu ionz from those obtained by the theory 

of elasticity method (3) and the finite element 

analysis (15) for the ro iono at and Hoar the bane of 

the darn. for regions near tho top of the dara all the 

notbods of strodearalyDis give similar stress d.istri . 

b tiong. Por the hydrootatio promstrev  the o.treese 

as obtained by the Dvi s and the C 13 zaotbods are ouch 

different from the finite oloitont otros000 (1) parti. 

outarly at uid near the CACO of the dam. Purtbor, 

under static forcer the finitz, o1onent analysis an  

the theory of elasticity tothod indicate a definito 

tension at the / tce on the n+ * 	is fat is not 

revealed by tho Dwvio and the I 24 c;ot odo. The Davis 

and the 1JS3R nothc-da give ot4.lar otraoo diotrih tion 

except for the regions at end near the bane or the dam. 

The vzrying seismic coottic .ent !'asei on the 

dynie an iysis is fo1. nd s itablo for stress analysis. 

flo over, for preliminary stress azi1yoie a Lacer varia» 

Lion of noiocaio coefficient ay be used. Jndor Lateral 

forces a concentration of stresses is observed at the 

elevations or the dam where tho slope of the dam f. co 

changes abruptly. 



CHAPTER IZ. 

2.1 DAVIS8,~,_1'H , (1) 

This method presents a step by step compu-

tation of the three components of stress, namely normal 

vertical stress Ty, shear stress ( Cr) and normal 

horizontal stress o-x. 

The concrete gravity dam is considered as a 

vertical cantilever element of unit thickness (varying 

thickness in case of Buttress dams). This method 

assumes linear variation of normal stress on any hori-

zontal plane of the dam. 

Based on this assumption the normal vertical 

stress (Q"y), under direct force and a bending moment 

combined, is given by 

~y1 ~ 2 ss± 	... 	... (2.1.1) 

where, 

Oy Normal stress on any horizontal plane 

of the dim. Suffixes 1, 2 refer to the 

end points on t7/S and d/s faces on that 

plane. 
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W = Total vertical force above the plane under 

consideration. 

A = Area of the plane under consideration 

I = Moment of Inertia of the horizontal plane 

(section) about its e.g. 

M = Moment of all the forces acting above the 

plane under consideration and about the c.g. 

of this plane. 

y - Distance of most remote fibre from the c.g. 

of the plane under consideration 

In order to compute shear stresses and normal 

horizontal stresses, small prismoidal elements are 

separated from the dam by dividing the section with 

vertical and horizontal planes. Then the equilibrium 

of these elements is maintained under unknown stress 

functions. Equilibrium conditions enable to determine 

the shear stress C xy and normal horizontal stress 0ic. 

Let the stresses are required at point F in 

plane BB of the dam shown in fig, L. Draw planes CC 

and DD above and below the plane BB at equal distances. 

Next construct a vertical plane cutting these horizontal 

planes in E, F and G. The elementary prism ECFB may now 

be vis-aalised as separated from the dam and to be held 
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in equilibrium by forces acting on it. Normal stress 

Or can be calculated for planes CC, 13B and DD by 

equation (2.1.1). 

Consider the vertical equilibrium of the 

elementary prism ECFB. The vertical forces acting on 

it are, 

1. Total normal stress on face EC = pl (say) 

2. Total normal stress on face FB = p2  (say) 

3. Weight of block ECFB 	= W (say) 

4. Total shear across plane EF 	= VET.( say) 

Total stresses pl  and p2  are given by, 

E 
.pl =E bl  cry 

C' 

F 
p2  w E b2  07Y 'fit B 

The summation can be easily done, as the variation 

of (Ty is linear. The equilibrium of forces demand 

that, 

y&  , = p1  + P .. p2 	..• 	•.• 	(2.1.2) 

: Average intensity of shear on plane EF 
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V 	.VET' 
1 	. . (ba  k EF) 

Similarly equilibrium of ' prism FBDG will give average 

shear intensity on plane FG'  as 

VFG 
(bo x 

-how shear stress at the point F in plane BB will be 

given as 

Z"xy 	VI +Vø 	... 	... (2.1.3) 
2 

b1, b2, b3, b4  are sectional thicknesses as illustrated 

in fig. 1. 

When the point F falls on the d/s face of 

the dam, only the equilibrium of the lower block is 

considered (prism FBDG) as the upper block at that 

point is absent. And therefore the stress ( ray) will 
0 

be obtained by averaging over a single prism.da1 

element. 

For computations of normal horizontal 

stress (off) , the prism acde (fig. 1) is separated from. 

the dam and is maintained in horizontal equilibrium. 

As the horizontal and vertical shear stresses are 

equal, 
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Total shear acting on plane ac w Vac 

a 
b3 txy Ax 

and, total shear acting on plane de = Vde 

d 
E 	b4 txy Ax 
e 

The shear stresses on planes ac and de can be computed 

for all points as outlined earlier. Horizontal equi-

librium demands that .f lax be the total horizontal force 

normal to ad and acting on (ad), then 

'x = Vac "` Vde 	.... (2.1.4) 

.0. Average- intensity of horizontal stress on ad, 

N 
crx = 	X 

sectional area between a and d 
.+. (2.1.5) 

 

For computations of stresses on base, the dam is 

assumed to extend in the foundation and normal vertical 

stress for two planes is calculated by eqn. (2.1.1). 

While the shegr Stresses and normal horizontal stresses 

are computed as outlined above. 

PRIN  CZPAL STRE, SLS 

Once the three components of stress (Fy , O~x 

and Cy are known' the principal stresses can be computed 
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by the formulae 

2 	1/2 r(Fx Q_y)2 + 4T 2)]1/2 
~ 	 L 

... (2.1.6) 

and 

tan 2 « = 2 t 
0-t o-Ut 

where, 

U'1 = Major principal stress 
0~2 = Minor principal stress 

angle of principal stress from 
vertical measured clockwise. 

Shape of the dam profile and the size of the 
elements (Dimension ] F in fig. 1) influence the accu- 

racy of this method. In the present study, the size 

of the block is kept as 1 foot vertical. The horizon- 

tal points on a plane are taken at a interval of 10` 

to 20'. A computer programme is written in FORTRAN 

language. Listing of this programme is given in 
Appendix B. 

n 
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Distance of most remote fibre from 
e.g. of the sections. 

Sectional area 

__!- 

t 	

6. 
,A, 	 T 

 Uf Face 

• :. Stress at any interior pointy 

OxU 
t7- s Ux +  D 	 ~ 

or{ix 	a + by 	... 	... 	(2.2.2) 

where, 
a =o~XD 

12EM 
b - Ts 

Sher Sirse 

As the distribution is assumed to be 

parabolic, unit shear stress may be expressed by, 

= a1 + b1y + C1 y 	... (2.2.3) 
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When y 

Unit shear stress at D/S face 
ZxyD = al 

Wheny=T 
Unit shear stress at ti/S face 

xy , 	= al + b1T + CZ Ts 

Add total shear stress is given by 

xy dy = Resultant horizontal force 

above section. 

w. E V. 

These conditions yield s 

al = C xyD 

bl = [ 	+ 2 CCU +4 C XYD 

Cl = + 2MT
Y- 
 + 3 t U + 3 	~ 

To compute shear stresses at D/S and U/S face 

t xyD) , consider the equilibrium of an 

element of the dam$ separated from the corresponding 

face of the dams as shown in fig. 3. 



ZXTU. = C'yXU 

Vertical equilibrium of the element, demands: 

t  yxcy = Z  xyU = .. (Fxti - p .. PE) tan 0 U. ... 12.2.41 

Rotational equbm. about B, demands, 

t xyD = TyxD 

Vertical Egbm. demands 

Cxyl) = (oxD - pI + p'E) tan OD ... (2.2.5) 

NormaL Stresses on a VetioaLPlane 
Consider egbm. of an element between two 

horizontal planes Ax distance apart as shown in fig. 3. 

;gri3i.qntal Eauilibr. ium demands 

07y dx = E z y' Ay - M 	_(2y •- AyD) + (p'-p"E)Ax 
o 	 2  

.. Z 	C SKY 
AYD 

K for functions for a horizontal plane Ax 

above the horizontal section under consideration. 

Substituting for xy; replacing ( functions) by 

(function . A functions) and neglecting differen-

tials of and and higher orders and simplifying we . 

get 

(3y = a2 + b2y + 0272 + d278 .. 	(2.2.6) 
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Where, 

a2 = (a, tan OD + pt .. p'E) 
b2 	b, tan OD + 1 - "a 

Ax 

o2 	cl tan OD + 1/2 
Ax 

• d2 = bcl 

Using a 

These constants can be expressed in terms of partial 

differential s. 

a$ a differentials are evaluated as (2) 
a~ 

• X 

• tan 	' a Cr 	_ W ` 	, 

c7 rp ~1t~ 
(oxD p 	#+ta 	D 	.. + ± p' E ) 	... (2.2.7) 

W 	be omitted If tail water is absent* 

Z. 	 ... 	.~.. We + tai. j T TZ + 	J 
ax 

• 121M a E 	, 	.gyp ' f 4p' E 
+tØDç T8 

___ .•._ 
T 

...  

a 	R E P T E 	p'E .. 	... (2.2.9) 
ax Ax 



• -c tan ØD 	tan 1 ~- tan ?D  .r ... 	(2.2.14) a x 	 Ax 

5. a- 	1 t-- 	.. ~6 T (k2-l:V +2 CxyU+4 txyD ] ~x 	T 	a x 	ax 	T 

~.... + XYD _ 	 4 ~....I 
a 

. (2.2.11) 

6. a 	* 	c ~ (p . P' + 7W.. T + pE + P'E) ...(2.2.12) x 	 ,.  

tan 	.` tan 	... (2.2.13) 

a zg~  
8. 	

,~ tan 6
U [ w. ~ 

 a U-  
ax T 	 a 	a 

+ tan' (p + t pE .. 	'Txu)  ax 

to be omitted if rear. water is absent. 

aoxu 9.  W. + tanRfU 4 	 4 	4Z: 	1E  ) 
+ 	x 	Vu 	T 	J au 

+ tan 2~pt . ± 	-- _ 	T 12EM ) T`~- I 
+ 	6..: 	... ((2 .2.16) 

10. = a x pW ax .,. 	... (2.2.16) 

tan Øu tan 11. 

 

n 	U ... (2.2.17) 
Ax 
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12.. C~__ 	i 	~~Et3 	aT 	TEV 	~ yU . 

*• 6 C yD) 	+ 1. 3 aZ 	--XYU '--- 	a X 
+ 3 ( 	) '.. (2.2l8) 

In all terms proceeded by ± sign ; + sign 

is to be taken if the direction of horn. shock is U/S and 

vice;»versa. 

The effect of earthquake shock can be neglec. 

ted by dropping all the terms proceeded by ± sign. 

I computer programme in FORTRAN language 

has been written. Listing of the programme is given 

in Appendix 'B'. 

NotatioU§ used 

roc = 	wt density of concrete 

w = 	wt density of water 

p water pressure at section due to 
normal loading condition 

Horizontal seismic coeff. 

pg = 	change in water pressure due to 
Earthquake. 

W = 	Dead wt of concrete above section 

M = 	Moment of W about eg of section 

Ww = 	Vertical component of water load 
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N 	_ 	Moment due to 'w  
0 

WWE 	= 	. Vertical component of water load change 
due to Earthquake, 

M 	= 	Moment of I ,E  

V 	= 	Horizontal component of water load 

Mp 	= 	Moment of V 

VE 	= 	Horizontal inertial force of concrete 

ME 	= 	Moment of V2  

V E 	Change in horizontal component of P 	 water load due to Earthquake. 
N pE 	 Momext of VVE  

N 	 i * I, + . I , + M p  + i ,  p  ►IBS  

MW,E  ► M t wE + MpE * M  , p E 

IV 	 v +V' 1rV E  1V pS  +Vf p  

L 	 +WowE- 

Take (+) if Horizontal accelaration is in 11/S 
direction. 

Take (w) if Horizontal accelaration is in u/e 
direction. 

) represents the corrosponding quantities for 
tail water. 
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dissertati©n triangular plate elements have been 

d.,scuss84. Forces acting on actual structure are 

replaced by equivalent static concentrated forces at 

the nodal points of the finite element system:. 

2. gyaluatjon of Eleme it prp,De es 
This is usually the most complex phase of 

finite element analysis. Nodal forces and nodal stresses 

are expressed in terms of nodal deflections and these 

relationships are expressed in matrix form and are known 

as element stiffness matrix and element stress matrix 

respectively. This will be discussed later in this 

chapter. 

3. S truc Gura .__. aly si s t 

This includes determination of stiffness 

matrix and stress matrix for the entire assemblage. 

This is done by systematic superposition of element 

stiffness and stress matrices respectively. 

The derivations given here are based on 

Wilson's approach (6) . 

Strait ~;DiSPJAZement Belationshi- 

The three components of strains within each 

element are expressed in terms of six corner displacements. 
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FIG. 4 -ELEMENT DIMENSIONS AND ASSUMED 
DISPLACEMENT PATTERN 
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Geometry of a typical element and assumed displacement 

field are illustrated in fig. (4). Linear displacement 

field is expressed as 

g= Ui + C1 x+ C2 y } 
... (2. 4.1) 

VL + C3 x+C4 y ) 

.where U and Y are the deflections in x and y directions 

respectively.. C1, C2, Cis C4 are arbitrary constants. 

These constants C1, C2, C3 and C4 are 

expressed in terms of corner displacements and geometry 

of the element, as under. 

Ci 

C2 
l 

C3 
, _~ ( a~ h.~ k 	jY 

C4 

•b3 0 1 lull 
VL 

a30 Lj Vj 
0 ".b j• V K 

0 ak..aj 0 -ak 0 aj 

b3 .bk 0 	,ij 

ak.aj 0 	..ak 0 

C 	b j -bk 0 bk 

... (2.4.2) 

Strains within the element can be expressed in terms 

of displacements at nodes, by eqn. (2.4.1) 

Ey = 	= C4 	...e2.4.3) 
ay 

IXy U + 	_. 	C2 + c3 
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From  equations (2.4.2) and (2.4.3), strains can be 

rewritten as 

	

x 	 bj •bk 0 	bk 0 -bj 0 	Ui 
VI 

k y _ 	1._ 	0 	ak..aj 0 -ak 0 	aj 	L'i 

	

aj bk•akb j 	 vi 

	

y XY 	 ak .a j bj -bk -ak bk aj -b j 	Uk 
Y~c 

...  (2.4.4 ) 

or in symbolic form 

[A] U1 

z' e s s 2t ra_i n R e_ j. . 
For elastic isotropic material the stress 

strain a relationship for plane strdss case is expressed 

as (4) 

c'x 	 1 	'd 	0 	-E x 

G-Y = - 	-- 	v 	1 	0 	. y 
(14.),$ ) 

y 
txy 	 0 	0 	 ~-2  _ '?XY 

or in symbolic form 

	

10-1 = CG 	? 	r.. 	(2.4.5) 

where 

E = modulus of elasticity of material 
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poissoins ratio 

{ E'} = stress vector 

= strain vector 

connecting matrix 

oda.1 Forcea&trss. Neiationsh . 

Uniform strains along the edges of elements 

result in uniform stresses along the edges of element. 

These stresses are concentrated as stress resultants at 

the nodal points. Fig. 5 shows the stress resultants. 

Stress resultants are expressed in terms of 

stresses for unit thickness of elements asp 

bj-bk 	0 	ak..aj 

6y'~ 	' 0 	aka-a,j 	b.  bk 
1/2 ~x 

5x3 bk 	0 	yak 
y 

Syj 0 	- ak 	bk  

6xk .»bj 	0 	aj 
Q.0 d 	aj  

a.. 	(2.4.6) . 

or in symbolic form 

.4.s3  
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where, S represents the stress resultant. The subscripts 

refer to the direction in which it is acting and super. 

scripts • refer to the nodal point at which it is acting. 

It may be noted that the matrices A and B 

of eqns. (2.4.4) and (2.4.6) are transpose:: of each 

other, if the constants of each matrix are not considered. 

Element stresses can be expressed in terms of 

nodal displacement by substituting .equation (2.4.5) into 

equation (2., 4.4) , i.e. 

{~- = LC]LA1~uj 
or 
	= 

EBel f U1 	 ... (2.4.7) 

where, 

tBe] = Element stress matrix 

= LC] LA] 

JuJ 	nodal displacement vector 
= element stress vector 

Substituting eqn. (2.4.7) into (2.4.6), we get a 

relation between nodal forces and nodal displacements, 

which is, 

LB] [C] LA] jTJj ... (2.4.8) 
or 	

~S} 	= 	LKe J 4 U1 

	

where, LKeJ = LB7 t C I LA] 	... (2.4.9) 
w stiffness matrix for an element. 
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Element stiffness matrix is a (6 x 6) matrix. 

The element stress matrix is a (3 x 6) matrix. Since the 

element stress matrix relates stresses within the element 

to the corner displacements'  the nodal stresses can be 

expressed in terms of nodal displacements by a (9 x 6) 

nodal stress matrix. This nodal stress matrix is 

obtained from element stress matrix. It may be noted 

that the rows corresponding to each nodal points are 

identical. 

E ilibrium a ua.tions for Yom fete structure 

Nodal point loads can be expressed in terms of 

nodal point displacement for the entire assemblage, as 

fF'1 = [K] tUj 	... (2.4.10) 

where, 

JF} = 	Nodal point load vector 

LKJ = 	Stiffness for entire assemblage 

Nodal point displacement vector 

The stiffness matrix for the entire assemblage 

is obtained by systematic superposition of element stiff-
ness matrices. This addition can be illustrated if 

eqn., (2.4.8) is rewritten in terms of a typical element 



r-: 25 s- 

Sj(9) 	Kii(q) 	'i j(q) 	KJK (q) 	J; 

'k (q) 	Kki(q) 	Raj (q) 	K k (q) 	u k 

;0..; (2.4.11) 

where in terms of arbitrary 
nodal points 1 and m, 81(q) and tIm are the vectors 
of the form 

Si ( q) 	 ~} 	e~ 

• •.. (2.4.12) 

d 1 

tlx (q) 
(q) 	 . p. (2.4.13) 
m - 

UY 
i 

and the stiffness coefffCi.ent 	 is a (2 x 2) 
submatrix of the form 

(q) 
( q)xx 

. , 	m 	"' I 	•.. (2.4.74) 
Lyx 

This term Kid) represents the forces 

developed on the element 'q' at nodal point 'l' due 

to unit dis )lacement at nodal point 'm'. Therefore, 

the general term Kim for the complete structure is 
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given as 

.m 	£ 	k1 	.... (2.4.15) 

It may be pointed out that K 	exists only if 
lm 

1 equals m, or if 1 and m are adjacent nodal points in 

the physical system. Again the stiffness matrix for the 

entire assemblage is a sparse matrix. 

undarycondi 	~i 
For concrete gravity dams, the t ase is assumed to be 

fixed and therefore the displacements of the nodal points 

that lie on the base, are zero. These displacement 

restrains at nodal points on the base of the dam, are 

introduced In the total stiffness matrix. This is done 

by eliminating the rows and the columns corresponding 

to the restrained nodal points. 

The modified stiffness matrix is a syaietric 

sparse matrix. 

p1ution p 	ilimt 

The force displacement relationship for the 

entire assemblage is given as, 

[K] 	F 	0.• (2.4.10) 
fl 
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Eqn. (2.4.10) represents a set of linear 

simultaneous equations. The order of these equations 

is usually very large. Several methods (13) are avail-

able to solve such a large system of equations. Itera-

tion methods (6, 13, 16, 17 18) have been discWsea 

When Gauss siedet technique (13) is applied 

to equation (2.4.10) , it involves repeated calculation of 

new displacements from the equation (13, 6) 

p 3+1) = , 	ILFi 	I xij 	( l) i E 	Ki Tjj(6)  

..♦ (2.4.16) 

where, Ui refers to the ith displace rt, n is the 

number of unknowns and S refers to the cycle of 

iteration. 

it may be pointed out that the modified 

stiffness matrix is real, symmetric and positi a defi. 

nite and hence the convergence of iteration techniques 

is guaranteed (13, 6) . Also since the stiffness matrix 

is a sparse matrix the effort in solving such a system 

of large equations is reduced. 
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Since the stiffness matrix is a diagonally 

dominant matrix i.e., the diagonal terms are considerably 

greater than other terms, the Initial gness for any dis-

placement may be obtained ass  

U = 	... ... (2.4.1?) 
Kii 

A scheme for the acceleration of convergence,, 

of the solution of the system of equations may also be 

incorporated. This scheme for fast convergence is 
applied after every few-  cyc1es of iteration* 

Aietkin's and Luisterkin's schemes for 

accelerated convergence (13, 18) are discussed here. 

ibis  Cob ver,Ience Scheme (13) 

This requires the information about the 

displacements during any three successive iterations. 

The accelerated value of any displacement is calculated 

as, (13) 
(5+1) (S) 2  

Uti  _ Ui 	
(+13 () U  +2 M2Ui 	+Ui i 

I.. 	(2.4.18) 

where superscfipts refer to the number of iteration 
cycles and subscripts refer to the 1th  displacement. 

Uti(8)  is the true value'of Ui  in 5th  iteration. 
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Lui terkin' 	yerg enc a Scheme (13, 18) 

The accelerated value of any unknot*rn 

(displacement) is calculated by (13), 

 (+1) 	(8) 
AV  = Oi~S) + 1 	. • • (2.4.10 

where, 

n = total number of ur ao ram: 

S = number of iteration cycles 

N~dal,,,point_ stresses 

Nodal point stresses may bo calculated by 

averaging the element stresses of all the elements. 

connected to the nodal point. This direct averaging 

gives similar stresses, as obtained by taking a weighted 

average (10, 12) . Accur=acy cof these stresses depend 

upon the fineness of the mesh considered in structural 

idealization (63 12). 

2,4 ,B, IEF OU LIN +' F THEE METHQPB SEll ON 
T 1.E0RY ©F ELAS ICITY 3 +_ 

This method assumes trio-  dimensional plane 

stress behaviour of the concrete gravity dam. In the 

Davis and the USBR methods of stress analysis, linear 
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variation of normal stress on horizontal planes of the 

dam is assumed. This assumption is found incompatible 

with the theory of elasticity for the regions at and 

near the base of the. dam (3) . Therefore, a stress func-

tion (airy's stress function (4)) is so assumed that it 

satisfies the compatibility of stresses and strains and also 

the boundary conditions at the infinite limits of the 

plane of the foundation. . 

The method essentially consists in evaluating 

the aforesaid stress funs t .or which is obtained in terms 

of partial differential. equations (3) . These equations 

are solved by the finite difference approximation (3,13). 

Details of this method are given in Appendix 'A'. 

The method is expected to give exact results 

as it iatisfies the compatibility, the equilibrium and 

the boundary requ .rements at all points within the dam 

and the foundation zone. However, the method is very 

tedious and involves much effort for each dam section. 

And tderefore, it is generally not used for the stress 

analysis. 
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EVALUATION 

 

LUATION OFLOADS 

The following static. and dynamic forces have 

been considered in this study. The dynamic forces have 

been treated as equivalent static forces. Stresses have 

been computed for each of the loads separatdly. The 

total stresses under combined loading situation may be 

obtained by linear superposition of these stresses under 

individual loads. 

3.1 STATIC FORCES 

3.1.1 	lf Weight 
3.1.2 Hydrostatic pressure. 

The reservoir is considered full and no tail 

water is assumed. In finite element technique this force 

is concentrated only at the nodal points that lie on the 

upstream face of the dam. The horizontal and vertical 

components of this force have been considered. 

3.1.3 UDlift pressure 

Due to seepage of water through the foundation, 

uplift forces act on the dam. In the present study only 

one drainage gallery is considered. Half of the water 

pressure intensity at U/3 face is assumed to be released 

at drainage gallery line. 
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3.2 DYNiFORC  

3.2.1 Hirodyuamic ressure  

I.S. Code (14) recommendation which is based on 

Zanger's pressure distribution, has been followed to 

calculate this force. This force is concentrated at the 

nodal points that lie on the upstream face of the dam in 

the finite element analysis. 

Due to horizontal earthquake there is an 

instantaneous hydrodynamic pressure exerted on the dam 
in addition to hydrostatic pressure. Assuming water to 

be incompressible the hydrodynamic pressure at depth y,, 

below the reservoir surface is given by (14) 

Pe  = C 	° 	. w . b ... (3.1). 

where, 

Pe 	hydrodynamic pressure at depth y 
(kg /ms) 

Cq = coefficient that varies with the 
shape of the dam face and 
depth y. 

V = density of water (kg/ms) 

h 	depth of reservoir (m) 

=. horizontal seismic coefficient 
assumed unity it present analysis 

For vertical U/S slope or constant U/S slope, the 

constant C is expressed as (14) 



0' 

G 

C' 

P 

ti 
0 2 

"' 	h 	F;; '•* A ~ 

0i 
T  ' A, . x-1  

C 	4O 
	F' 	PC 

1 y 	 OF FA:' E 	Ek'':CAL (e) 

FIG. 6 _MAXIMUM VALUE OF THE PRESSURE COEFFICIENT(cni; 
FOR CONSTANT SLOPING FACES 



90' 

t 
rte- 10' +-I 
,,~ 	 6C 	___ 	-- _ 

FIG.6.1 _TRIANGULAR DAM 



48.5 
11 80 

38'  

197C 

184 

- 	 23028 

FIGE2_ KOYNA DAM 



RL 

2 8 H 
600 

C 

255 

230 

3  70/ 

FIG.6.3 _ NAGARJUNASAGAR DAM 



FIG. 6.4_ GANDHI SAGAR DAM 

12 

1120 

04' 



-: •33 :- 

C 	C - (2- ) /y 	) 	,.. (3.2) h 	h 	h 
where, Cm is the maicimum value of constant C, that can 
be obtained from fig. 46. 

For dams with a combination of vertical and 

sloping upstream facet  the equivalent slope for deter-

miriatio,n of value of coefficient 'C' is chosen as per 

following criteria. 

(a) if the height of.. the vertical portion 

of the water face of the gravity dam is equal to 

or greater than one half of the total height of 

the dam, equivalent slope is taken as vertical. 

(b) If the height of the vertical portion 

of the waterface of the gravity dam is less than 

one half of the total height of the dams  equi- 

valent slope line is obtained by joining the 

intersection of the reservoir surface with the 

dam face,, to the intersection of ground s xrface 

with the extreme point of the dam. 

Approximate total horizontal shear on a 

section is given by (14) 

Ve  y 0.726 P e  y (Kg/m)  ... (3.3) 
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Since the hydrodynamic pressure acts normal 

to the dam face, which may be sloping, therefore there 

shall be a vertical component of this load. Magnitude 

of this vertical component at any horizontal section is 

determined by (14), 

w = (V2 - V1.) tan 0 	... 	(3.4) 

where, 

W = Increase or decrease in vertical 

component of water pressure 

V2  = Total shear due to horizontal component 

of hydrodynamic pressure at the elevation 

of section under consideration 

Vl 	Total shear due to horizontal component 

of hydrodynamic pressure at the elevation 

of the dam at which the slope of , the face 

commences. 

angle of dam face with the vertical 

3.2.2 Iner tia_lf 

Due to earthquake excited ground motion, 

a lateral force is exerted on the dam because of the 

inertia of the mass of the dam. This force is in 

proportion with the acceleration of the •mass of the dam. 
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In the present study this force has been considered as 

equivalent static force. This equivalent static force 

is assumed to act in down stream direction. This force 

depends upon the variation of acceleration of the mass 

of the dam along the height and is obtained at any ele-

vation of the dam by multiplying the weight of the dam 

above that elevation with the corresponding seismic 

coefficient. Three different variations of seismic 

coefficient along the height of the dam have been. consi-

dered in this study. These variations are discussed 

below s 

(a) A uniform seismic coefficient along 

the height of the dam with unit ordinate is consi-

dered. I.S. Code (14) (1966) recommends a similar 

variation. 

(b) A linear variation of seismic coefficient 

along the height of the dam with top ordinate as 

unity and base ordinate as zero. This is similar 

to the recommendation of S.S. Code (14) revised 

version (1971) . 

(c) A, varying seismic coefficient along the 

height of the dam as shown in fig. 7. This is 

based on the dynamic analysis of few dams (16 1. 
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The top ordinate in each case has been kept 

as unity. It is expected that the varying seismic 

coefficient will give more realistic stress distribution 

as compared to linear or uniform seismic coefficient. 

Further it may be noted that the linear variation is a 

modification of uniform seismic coefficient. 

3.3 R9PERTIS 9.FTUE. - ANALYSED  

Stress analysis has been carried out for the 

following dam sections. 

1. Triangular dam 

2. Koyana dam 

3. Nagarjuna Sagar dam 

4. Gandhi Sagar dam 

The geometry for each of these dam sections 

is shown in figs. 6,1, b'2, 6.3 and 6.4 , The typical dimen-. 

sions are also presented in a tabular form for each 

of these dam sections. 

Dam 	I HeightQBase QGallery dis- QValue of 
Section 	I in ft.Owidth *tance from P'Cm' in 

I 	din ft. Ivertical it/S_ eqn. (3.2) 

Triangular 90.0 60.0 10.0 0.735 
Gandhi Sagar 204.0 165.0 10.0 0.67 
Koyna 338.0 230.28 25.0 0.735 
Nagarjuna Sagar 370+0 295.0 28.0 0.69 
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Following properties have been assumed, 

Poissoins ratio for concrete 

Weight density of concrete 
for Triangular dam 

Weight density of concrete 
for other sec=tions 

Weight density of water 

0.2 

140.626 lb/Cft 

165.0 lb/Cf t. 

w .62.5 lb/C ft. 

The weight density of concrete in case of 

triangular dam has been taken different from the value 

for other dam section because it corresponds to the 

value used in the theory of elasticity solution of 

Zie iewicz (3). 
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1 TSCUSSION OF RESULTS 

Comparison of different methods of stress 

analysis under different loading situations 

4.1 QPAROWITILTORYOFELABTICITY S©Li T ON (3) 

Figs. 8 and 9 show the stress distribution 

as obtained by the Davis and the USBR methods for a 

triangular dam. The loads considered are self weight 

and hydrostatic pressure only. The theory of elasticity 

solution of ZienkiewicZ (3) is also plotted. 

The Davis and the USBR methods give linear 

distribution of normal vertical stress (my) on all 

horizontal planes of the dam. The theory of elasticity 

analysis indicates that the variation is not linear 

particularly at and near the base of the dam where the 

width is large. Further the theory of elasticity 

analysis indicates certain tension at the U/S point on 

the base. While Davis and TJSBR methods do not indicate 

this fact. Thts it may be concluded that the assumption 

of linear variation of normal vertical stress ( Ty) in 

the Davis and the USBR methods is not justified for the 

regions at and near the base. 

The Davis method gives fairly linear distri-

bution of shear stress r xy (fig. 8) on all horizontal 
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planes. The USBR method gives parabolic shear stress, 

but for the top regions of the dam the shear stress 

varies almost linearly across horizontal planes. The 

theory of elasticity solution differs considerably from 

both the Davis and the USBR methods for the regions at and 

near the base. The maximum difference being at the base 

near U/S and d/S faces of the dam. 

Normal horizontal stress C Ox) (fig. 9) as 

obtained by the USBR and the Davis methods also differ 

signi.ricantly from the theory of elasticity solution (3) 

for the regions at and near the base of the dam. The 

maximum difference in stress values is observed near the 

ri/S face ' of the dam but not at the ti/S face. 

It may be seen from fig. 8 and 9 that for top 

2/3rd height of the dam all the three methods of stress 

analysis namely, the Davis] the USBR and the theory of 

elasticity; give similar stress distribution. But for 

the bottom 1/3rd height the theory of elasticity method 

gives a stress distribution considerably different from 

that obtained by the Davis and the USBR methods. Thus 

it may be concluded that the Davis and the USSR methods 

give relatively approximate stress distributions at and 

near the base  of the dam. 
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The Davis and the USBR methods give identi-

tally same distribution of normal vertical stress ay 

(fig. 8). But the two methods give different shear 

stresses and normal horizontal stresses. This differencd 

is significant only at and near the base of the dam. 

The USBR method slightly overestimates the shear stress 

as compared to the stresses obtained by the Davis 

method (fig. 8) . 

4.2 

only static stresses as obtained by the Davis 

and the USBR methods are compared with the finite element 

solution (15). Figures 10, 11$ 12 show the stresses for 

Koyna dam under dead weight; hydrostatic pressure and 

uplift pressure separately. 

For dead weight alone (fig. 10), a fairly 

good agreement in the stresses as .obtained by different 

approaches, namely'  the Davis, the USBR and the finite 

element methods, is observed. However, the finite element 

method does not give linear. distribution of normal 

vertical stress Oy at and near the base of the dam where 

the width of the dam is large. Further the minimum . 

direct compression (major principal stress) is under. 

estimated by the Davis and the USBR methods. The 

maximum direct compression (minor principal stress) is 

wPY UN/SIT/ OF pr 

ROORKEF. 
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underestimated by the Davis and the USBR methods at 

'/S face but the same is overestimated towards the d/s 

face on the base. Shear stresses ( r)r) as obtained by 

Davis and the USBR methods for dead weight only are also 

shown in fig. 13. The Davis and the USBR methods give 

zero shear stress at the vertical U/S face but the finite 

element method indicates a definite shear stress,value. 

The finite element stresses differ considerably from the 

other two methods at and near the base. The Davis and 

the USBR methods underestimate shear stress txr at the 

D'/S face and they overestimate shear stress at d/s face 

of the darn. The Davis and the USBR methods also give 

different shear stresses. This difference is more signi-

ficant at the base of the dam. 

Fig. 11 shows the stresses due to hydrostatic 

pressure alone for Koyna dam. The finite element analysis 

gives different stress distribution (15) as compared to 

the stresses obtained by the Davis and the USER methods. 

This difference is maximum at the base of the dam 

where the width of the darn is large. The finite element 

analysis (15) indicates that the bending stresses ( (Ty) 

under hydrostatic pressure are not linear particularly 

at and near the base of the dam. This fact can not be 

revealed by the Davis and the USBR methods. Fig. 13 shows 

the shear stresses for hydrostatic pressure alone for the 
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Koyna dam. It may be seen that the shear stresses as 

'obtained by the finite element analysis are considerably 

different from those obtained by the Davis and the USRR 

methods. This difference is also maximum at the base. 

The Davis and the TJSBR methods give almost similar 

stress distribution except for the difference at and near 

the base of the dam. For the hydrostatic pressure alone, 

the maximum direct tension (v'1, fig. -ii) is underestimated 

by the Davis and the JSBR methods. The maximum difference 

being at the U/S face on the base of the dam. The 

maximum direct compression (v-2, fig. 11) is overestimated 

by the Davis and. the USB 1 methods. 

It may be concluded that for hydrostatic 

pressure alone, the Davis and the USBR methods give fairly 

accurate results for the regions near the top of the darn. 

But for the regions at and near the base of the dam$  the 

Davis and 'USSR methods give highly inaccurate results. 

Fig. 12 .compares the finite element stresses 

(15) with the stresses obtained by the Davis and. the 

USBR methods for the case of uplift pressure alone for 

Koyna dam. The three methods of stress analysis give 

similar distribution of normal vertical stress may. The 
finite element analysis (15) indicates certain minimum 

tension on the base (minor principal stress o-2, fig. 12) 
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while the Davis and the USBR methods give small 
compression on the base. 

It may be concluded that for dead weight and 

for uplift pressure, the stress distribution as obtained 

by the Davis, the USBR and the finite element methods is 

solar except for the small difference at the base of 

the dam. However, for hydrostatic pressure there is a 

significant difference in the stresses as obtained by the 

Davis or the USBR methods from those obtained by the 

finite element analysis (15). Further it may be noted 

from figs. lo, 11 and 12 that the finite element analysis 

gives certain tension ( Oyu at the U'/S face on the base 

of the dam under combined Dead weight, uplift pressure 

and hydrostatic pressure. This fact is not revealed by 

the Davis and the USBR methods. It may also be pointed 

out that the theory of elasticity method also indicates 

certain tension ( Ty$  fig. 8) at the U/S face on the base 

of the dam where the width is large. 

Figs. 14 and 15 show the static stresses 

under dead weight only for the Gandhi Sagar and the 

Nagarjuna Sagar dams. The normal vertical stress 9-y 

is identically same for the to methods. This is because 

the two methods involve the same assumption for the 

calculation of this stress component. The maximum direct 
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compression  ,(minor principal stress fig. 15) is almost 
linear on all the horizontal planes of the dam. Further 

the Davis and the USBR.methods give almost similar 

stress distribution, except for the small difference 

at and near the base. The Davis method gives slightly 

less stress values. The difference of the stresses in 

the two methods is due to the fact' that the TJSBR method 

assumes parabolic shear stress distribution while the 

Davis method calculates shear stress based on actual 

distribution. The shear stresses as obtained by the 

two methods are compared in figs. 8 and 13 for Trian-. 

gular dam and the Koynna dam. As may be seen from figs 

8 and 13, the Davis and the USBR methods give almost 

similar stress distribution except for the regions at 
and near the base of the dam. 

Fig. 16 shows the stresses under hydrostatic 

pressure alone for the Gandhi Sagar dam. Only major 

and minor principal sttesses have been presented. This 

figure also confirms that the stress distribution as 

obtained by the two methods=  i.e., the Davis and the 

USBR, is similar except for a small difference which is 

significant only at the base. The USER method gives 

slightly .higher values. 
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DYN, IIC $ SEES 

Stresses for the dynamic forces have been 

computed by trdating dynamic forces 'as equivalent 

static forces. 

Figs. 17, 18,, 19 and 20 show the stresses due 

to hydrodynamic pressure alone for Nagarjuna Sagar, 

Gandhi $aga.r, Koyna and triangular dam sections respec-

tively. The two principal stresses have been compared 

(fig. 17) by the Davis and the USBR methods. The USSR 

method gives slightly higher stress. For Nagarjuna 

Sagar dam (fig. 17) at base, no compression is indicated 

by 'CSBR method for regions at some distance from U'/S 

face on the base. While the Davis method indicates 

certain compression. The diffdrence in the stresses 

as obtained by the Davis and the USSR methods is insig-

nificant at and near the top of the dam. 

For other dams, namely, Koyna,  Gandhi Sager 

and Triangular dams, the two methods give similar " stress 

distribution except for the little difference at and 

near the base of the dam. 

Fig. 23 to 30 show the stresses under 

inertial force with three different seismic coefficient 

namely, a uniform seismic coefficient, a linear seismic 

coefficient, and a varying seismic coefficient. 
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Stresses as obtained by the Davis and the 

USBR methods compare in a manner similar to that for 

hydrodynamic and hydrostatic pressure loading. eases, 

The two methods give similar stress distributions near 

the top of the dam. Near the base of the dam$, the to 

mothokis give different stress distributions but the 

variation of stresses is not very much different. The 

USBR method gives stresses slightly higher than those 

obtained by the Davis method. 

Fig. 31 shows the variation of normal vertical 

stress (j)  along the height of the dam for different 

dams. The force is only Inertial force with three diffe- 

rent variations of seismic coefficient along the height 

of the dam as discussed in Chapter III. 

It may be seen from fig. 31, that the three 
variations of seismic coefficient give considerably 

different stresses near the base of the dam. If the. 

base stresses as obtained for the three different varia- 

tions of seismic coefficient are kept equal to those 

obtained for varying seismic coefficient $ the uniform 

seismic coefficient underestimates the stresses near 

the top of the dam. 

In order to have a comparative idea of the 

stresses for the different variations of seismic eoeffi- 
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dent, the ratio of stress (4') as obtained for uniform 
seismic coefficient to the stress for linear seismic coeffi-

cient is shown in fig. 32, The ratio of the stress ( 0 y) for 

uniform seismic coefficient to the stress (C7) for varying 

seismic coefficient is also shown in fig. 32. 

it may be seen frob fig. 32, that if the base stress-

es as obtained for the three variations of seismic coefficient 

are kept equal to the stress as obtained for varying seismic 

coefficient$  the stresses near the top of the dam,, as obtained 

for uniform seismic coefficient are about half the stresses 

obtained for varying seismic coefficient. The : linear variation 

of seismic coefficient gives stresses almost 2/3rd of the 

stresses obtained for varying seismic coefficient. It may be 

pointed out that the IS Code 1893 (1966 & 1971) (14) recommends 

that the ratio of stresses obtained for uniform seismic coeffi-
cient to the stresses obtained for linear seismic coefficient 

Is 1*5. The same ratio Is found as 2.0 In the r)resent study. 

As discussed above l  If the criterion for comparison 

of stresses obtained for the three different variations of 

seismic coefficient is chosen as the equal base stress (or 

equal base moment) $ the uniform seismic coefficient under-

estimates the stresses near the top of the dam. Theaefore, 

the Uniform seismic coefficient should not be used for design 

purposes. A varying seismic coefficient should be adopted. 
Further the ratio of the stresses as obtained for uniform 
seismic coefficient to those obtained for linear seismic 
coefficient is not 1.5 .  (as suggested by IS Code (14)) instead 
it is found as 2.0 
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It may be concluded that the linear variation 

of seismic coefficient gives stress distribution close 

to the one obtained by varying seismic coefficient, as 

compared to the stresses due to uniform seismic 

coefficient. And therefore, a linear seismic coefficient 

should be used in preliminary design purposes# However, 

for detailed stress analysis, a seismic coefficient based 

on the dynamic analysis should be used. 

CQNCINTRATXOJ 	STRESSES JNECKS 

In fig. 31, variation of normal vertical 

stress ( 'may) is plotted .long the height of the dam for 

Koyna, Gandhi Sagar and Nagarjuna Sagar darns. The force 

is only inertial force with different seismic coefficient. 

For Koyna dam and Na ;arjuna Sagar dame  concentration of 

stress occurs at the eleva.tionsof the dam where the slope 

of the dam face changes abruptly. This concentration is 

even more significant for the linear and varying seismic 

coefficients. It may be concluded that during preliminary 

design of the concrete gravity dam, this concentration of 

stresses should be checked for lateral forces. And proper 

care should be taken for the same. 



C A TER V 

,g.ONCLU$IDNS 

The Davis And the USBR methods give linear 

distribution of normal vertical stress (6'y) on all hori-

zontal planes of the dam. The theory of elasticity 

approach (3) indicates that the variation is not linear 

for the regions at and near the base of the dam where 

the width of the dam is large. Other stress components, 

namely, normal horizontal stress (6`x) and shear stress 

(C' xy), as obtained by the Davis and the USBR methods 

also differ considerably from the theory of elasticity 

solution at and near the base of the darn. 

For the dead weight and uplift pressure the 

finite element stresses (15) are in good agreement with 

the Davis and the-USBR stresses, except for the small 

difference at and near the base. However, for the 

hydrostatic pressure the finite element analysis indicates 

that the bending stress (6y) is not linear particularly 

at and near the base of the dam where the width of the. 

dam is large. The Davis and the USBR methods do not 

reveal this fact. 

For static loads, the theory of elasticity 

method and the finite element method indicate a definite 

tension (my)  at the t'/S face on the base of the dam. 
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This fact is not revealed by the Davis and the USBR 

methods of stress analysis. 

The Davis and the USBR methods give identically 

similar distribution of normal vertical stress (6y)  on 

all horizontal planes of the dam. But the two methods 

give different shear stresses. This difference is signi- 

ficant at and near the base of the dam. Further both of 

these methods give relatively approximate stress distri-

butions for the regions at and near the base of the dam 

where the width of the dam is large. For preliminary 

design purposes either of the Davis and the USSR methods 

may be used. However, for detailed stress analysis the 

finite element analysis should be used. 

For calculation of the lateral inertial force, 

a varying seismic coefficient along the height of the 
dam, based on the dynamic analysis is found suitable. 
However, for the preliminary design purposes a linear 

variation of seismic coefficient along the height of the 

dam may be used. For detailed stress analysis, the 

dynamic stress analysis using finite element technique 

is recommended. 	 I] 

Due to lateral inertial forces a stress 

concentration occurs at the elevations of the dam where 

the slope of the dam face changes abruptly. This stress 
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concentration should be properly checked during 

preliminary stress analysis of concrete gravity dams. 
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Met pd beLoJi2heory of Elasticity (3) 

Since the assumption of linear normal stress Is 

found Incompatible with theory of elasticity for the regions 

at and near the base, therefore, the stress function is so 

assumed that it satisfies compatibility of stress and 

strain and also the boundary conditions at the infinite 

limits of plane of the foundation. 

Consider a dam as shown in Figure (33a) 

Fig. 33a shows the type of loading when 

reservoir is full. If the dam is out along AD, the 

equivalent static loading can be, represented as in 

Fig. 33b. 

Then by St. Venant.s principle (4) stresses at 

distances far from the boundary will be same for the 

two cases of loading (Fig. 33a and 33b). 

Taking origin at A, and the axes as shown 

consider the equilibrium of an element inside the dam. 

Positive direction of stresses on an element 

are shown in Fig. 33. 
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Assume Airy's stress function '0' (4) such that 

Xx 	r -3-~- 	... 	... 	(1) 

Y= y fi.Hi' ... 	(2) ~$2 

0 	... 	... 	(3) x 	— 
r 

.,. 
ax y 

where, 

w 

b 

Xx aid Yy 

density of water 

Sp., density of material 

acct. due to gravity 

Normal stresses, first letter denote 

direction of normal stress and subscript 

denote the direction of normal to the 

plane on which these stresses are acting. 

xy =Y 
	Shear stresses 

f 
	 Stress function 

This stress function satisfies eqbm. equations 

for the case of plane stress. Eqbm. Equations are (4) 



C 

a 

ax 
ax 	ay 	X 

0 

where, (F. & F1) are body forces. 

Compatibility of strains requires (4), 

c3j 	c~Xc y 	a.r$ 

	

1 	 r0♦ 	5) 

Now if 0 satisfies Equation (5) and also the 

b..c6 at boundary EABCDFNN, the assumed stress function 

will be correct. 

BOUNDARY, CWWITI©NS (4) 

The value of stress function along boundary 

AFM'NFA can be found from the usual formulae (4) . These 

are due to the three types of loading as shown. 

0 



(iv) 

• (A) An inclined concentrated line load R, gives 

a stress function (4) 

	

= - . 	r 4 Sine 	.. (6) 

r and a polar coordinates measured from 

line of action of load. 

(B) A distributed uniform pressure Wgh starting at 
A and going to infinity (4) . 

0 = -~ 	[x2  + y2) + tan 1 ( W- X ) + xy 	... (7 ) 

(C) Weight of the Foundation Material giving (4) 

F' -• 	wg 	6 	... 	... 	+(8) 

a = •poissions ratio. 

Total value of stress is sum of these three 
values, as each of these is ,linear 

i.e. 0 = 0' + 

When Reservoir is empty 

(i) On ' = 0 

(ii) Load R in 0' is vertical. 
J' and its gradients a1on dani surfpcAB jC 

A- 

KA 
Pit, A•I 



(v) 

Let x.andy represent the component boundary 

forces per unit length of the boundary 'S'. Consider 

the Egbm. of an surface element bounded by dx, dy and 

ds. 

Along x dL,.rectLons, 

x ds + X~.dy - X1.dx = 0 ... (9) 

Along Y - direction : 

Y ds - Yy dx + Xy dy = 0 ... (10) 

Substituting for X m X and Yy in terms of 

0 from equns. (1) , (2) and (3) 

	

Xds + a— 2 	dy + 	LA dx = a 

	

ay 	c x y 

and, 

	

2 	 2 
Yds = a - + w P gy) dx a 	dy = 0 

x 

or 

Xd s =. - ( 2 dy + 	dx j 

	

ay 	o x y 

	

=..d( 	I., 	... 	(ll) 

and, 
Yds = d( 	-) 	+ w f g y dx 	• • . 	(12) 



(vI) 

Integrating (11) and (12) from I to 11 on boundary 

17 	I 	~i 
 

!ds - 	wig y dx 	... 	(14) 
z  ~  i 

Ij 	 f 

- J'x  ds 	... 	(13) 
I ay 

Thus the value of a 	and 	can be 

determined for all points along boundary as these are 

known at A. 

Note that RUS of (13) represents the total 

horizontal force acting between points I and Ii of the 
boundary, and the RkIS of (14) represents the total 
vertical force between the points I and II of boundary, 
and the weight of portion under this boundary but above 

X axis. 

In order to determine the changes in ' ' 
between points I and II, consider M, the clockwise moment 

of all the boundary forces between these limits and about 

point II. 

From Fig. (A• l ) 

dM=.X (yY11) ds~-Y(x-x11) ds ... (15) 

Using (11) and (12) , we get 

dM = - d ( a ) (y - y11) - d( 6-1) (Xi-x11) 

w {' g h ( x - x11 ) dx 	...(16) 



Integrating (16) by parts between limits I and II we get, 

M ` 	t VII"Y) + 	dy + 

fe (XII - x) + a dx +wFg y (x11-x)dx 

or, Since 
lj 

ax 

11 

J 	` Y 
L 

11 

Jd4 	10]
1

L 

I 

LMJ 	 ~ YI 	YII ) + 	) (xI - xIS) YZ 	I 
u 	u 

L] + ]w (D g h (x1I -x) dx 

Rearranging, 

1L 	 ~, 

1 -~ 	( *i I 	YI ) + ( 	) (x11 -= xI) + [MJ 

	

+ jar (' g 	y (x - x1I) dx. ... (1?) 
r- 

So that the value of 0 and all its derivatives 

along the boundary ABCD, can be found as value of 

and 	- are already known. 

It may be noted that the last two terms in 

equn. (17) represent the clockwise moment about point II 



due to the boundary forces between points I and II and 

the weight of the material bounded by the x-axis and that 

portion of the boundary. 

Equations (13) , (14) and (17) take on a simple 

form if the boundary between I and II is a straight line. 

So that if the curved profile of a dam is divided into .a 

series of short straight lines, close enough to represent 

it to any degree of . accuracy desired, the value of 0 and 

its gradient can be determined at all points by a step by 

step process. 

Initial values of these functions are known at poin 

A and p. 

i.niDIfference 	roximation 

Having determined the boundary values and 

gradients of 0, it now remains to find their function 

at all points inside the dam such that governing equa-

tion (5) Is satisfied. 

For this purpose a square mesh (fig. 33) is 
drawn and the values of function is considered only at 

mesh points. 

Taking 0 as origin 0 can be explained in 

double Taylors series. 



+ , ' + ;3,0 	+ 42*1 X 7 + Al. Ya 

A0,3 y* + , 	A8 0 + . 4,1 *1 A3 2 xbyu 

A23 I Al,4 a r' 10 	r+ • higher 

decree tsrs 	.«* (18) 

oc!rtiCiOOt r' O of ^' :d etauds for 

bstitutiu . p ropr to oordiztoa, an 

r*e oc ti 	that deoo ter c, it tan ;tee shown 

% 'h f4 + 	+ 	.. 4 	of A .10 + t, 

'4(A *Q + A04) 	 (1$) 

09 + 010 +013, 401' w 4% 	8a (2,0 + A0,2) 

55 4106 + 07 + 08 ~» 400 91  



(x) 

Governing Equation : 

	

v4  0 = 24(A4,0  + A0,4) + 8 A292 	... (22) 

using (19:  209  21) 

0 = a4  120 0o  + 2 (05  + 06  + 0 7  + 08) + 

(06 +010 +011 +012)  

	

8 (f l  ' f 2  + d3  + 04) ]... 	... (23) 

which is a finite Jiff. approximation to equation (17). 

Approx. can be made as good as desired by takifg smaller 

value of 'a'. Errors Involved being of the order of a 6. 

Similar equation can be written for all the 

mesh points i& the region. 

A solution can now be obtained by solving the 

system of 'h equations, obtained for n points considered=  

in the interior of region. 

Method of relaxation developed by Prof. 

Southwell, enables a rapid solution of such system 

of equations. 

Method, of, Relaxation  (13, 3) 

Suppose some initial values to be given to 0 

at all points of the mesh, chosen as a rough guess of the 



solution$  then equation (23) takes as a form 

20 00 + 2(05 + 06 	7 ' Ys) + ($ + 
010 + Oil + 012)  

"" 8 (if1  + 0  + 03 + øj ) = F0  y ... (24) 

in general is different from zero and is called 

residual at 0. If Qfo  is changed by unity ,residual is 

changed by 20 and at other points as shown in fig. 33« 

if the correction Is applied at the point 

where largest residual occur so as to cancel it; the 

residual at surrounding points will change by smaller 

corresponding amount. This process of continual correct-

ion is convergent and desired accuracy can be obtained. 

Orders of gxrors involved 

:Approximations made are »• 

(1) Stresses on the line MF, which'is at 

a fixed distance from the dam, are fixed. 

(2) The finite difference equations are not 

solved completely$  as some small resin- 

duals usually, remain. 



(3) Finite difference equations do not 

represent exactly he differential 

equations.. 

These sources of errors can be reduced as 

much as desired by taking the line EF farther away 

and taking the small mesh size. 
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SI®JOB 
SIBFTC 

C  THIS PROGRAM CALCULATES THE INTERNAL STRESSES IN CONCRETE 
C  GRAVITY DAMS. THE METHOD OF ANALYSIS IS USBR METHOD. SIRES— 
C 	SES ARE CALCULATED FOR DEAD WT.* HYDROSTATIC PRESSURE, 
C  UPLIFT PRESSURE, HYDRODYNAMIC PRESSURE AND INERTIAL FORCES 
C  SEPARATELY. 
C  THE INPUT INFORMATION CONSIST OF THE MATERIAL AND GEOMETR- 
C  ICAL PROPERTIES OF THE DAM. 
C  THE OUTPUT INFORMATION CONSISTS OF ELEVATION OF THE PLANE 
C  AT WHICH THE STRESSES ARE DESIRED,THE THREE COMPONENTS OF 
C  STRESSES WITH THE PRINCIPAL STRESSES AT DIFFERENT POINTS 
C  ON THAT PLANE. 
C 	THE PROGRAM CAN BE USED ON EITHER OF THE IBM--1620 OR IBM-70144 
C  THE OUTPUT FORMATS MAY BE CHANGED TO SUIT THE COMPUTER. 

DIMENSION Z(2OOl.E(200),F(200),BW(200),ALt200) 
READ1d1,IL>JL►INDEX 
READ 140, TW,DC.DW,HsFB.DD, ALS.CM,YYI 
READ100►(Z{Il.Ia2rIL) 
READ100, (E( I ), I=2.I L) 
READl0Oa(F(I)'I=2,IL) 
READIOO.(AL(I),I=2.IL) 
PRINTIO1sIL,JLsINDEX 
PRI NT1O3,TW.DC,DW,H,FBs00,ALS.CM.YY1 
PRINT1O3,(Z(I) ,I2, IL) 
PRINT1O3,(E(I ),I=2.IL) 
PRINT 103%(FCI),I=2,IL) 

C 	CONSTANTS 
AT=x.666666667 
BT=Q.33333333 
PIv3.141592653589 
PA=94./PI 
PSI=1,./144. 
DEE=4.5*DC 
ALPS'.5*CM*ALS*DW*(H.F8) 

C 	INITIALIZATION 
80 AM*D. 

A L. 11) 1.O 
GbaDD 
WHO. 
SIGH*O. 
SIGHHcO. 
SIGHI xis. 
SIGMDaO. 
SIGMI=O. 
SIGWDcO. 
SIGWH*O. 
S IGMH=D. 
SZGHD*D. 
SIMD'0. 
WU*o. 

—BMUfta. 
P=O. 



PFH1**fl• 
PEH=fl. 
HHT*O, 
VHIP0. 
HHY=O. 
VHY zO. 
ALHaO, 
DPHn0.. 
E('l.) =0s 
FED.)=4• 
Z(1 )u0• 
BW(1)''TW 
DO1Ta2aIL 
ZZ.Z(Z)—ZU 1) 
EI&E(I) 
FI*F(I) 
BWt If-E3W(I-4)+ZZ*(Ei+FI) 

W1wD *ZZ*BE3 
GO TO (41.1x412s413.,A14,415,416,4l8f1234'4) rdNDEX 

C 	DEAD wErGfiT 
411 AM1 Bi*DC*ZZ**3*Et *2 

AM2=Z7*DC* 3wc I-1,*(.5*awt i ==I,)+LZ*EI) 
AM3zDEF*FI* (T—AT*ZZ*FX) *7z**2 
AM=AM+AM1+AM2+AM3+5i GwD*ZZ*F I 
$16 WO S I GWD+W 1 
FCC:=s5*T »AMfS!GWD 
S!GMD SIGWD* CC 

C  MOMENT IS CLOCKWISE AND FORCE 1 S DOWN WARS 
Go TO 500 

C  INERTIAL FORCE UNIFORM ACCLN, 
.12 A,LH-AL.S 

GO TO 417 
C 	!NFRT!AL FORCE WITH LINEAR VARIATION OF ACCLN. 

413 ALI4 =1.— Z(r)/H 
AL142=1 a°-2` I I—I) /H. 
CG1 BT*ZZ* (ALH1+2.*ALH2) / ( ALHHI+ALH2 ) 
AL.H=ALS* (H+CG1—Z (I) )/H 
GG TO 417 

C 	INERTIAL FORCE VARRY)MG SEISMIC COEFFit 1ENT 
418 ALHlttAL (I-1) 

ALH2=AL C I ) 
CG1 rBT*ZZ* (2.*ALHI+ALH2I / (ALHI+ALH2 ) 
ALH =AL 2+CG1/ZZ 

417 WHI W1*ALH 
CGI-8T*ZZ*(68+BW(I—I))/8B 
SIGMl=SIGH!+WHl*C(I+SIGH1*ZZ 
SiGHi SIGHI+WH1 

C  HORZ. FORCE ACTS IN D/S DIRECTION s MOMENT IS CLOCKWISE 
GO TO 500 

C 

 

 HYDROSTATIC PRESSURE 
414 ZBF=Z (I) —FB 

IF(ZBF)302s302►303 
303 PoDW*ZBF 

ZRFIaZBF—ZZ 



IF(ZDPI)304,304.305 
304 HHY=. S*P*ZBF 

VHY*tHHY*EI 
AMHY=0T*HHY*ZBP-VHY*1 .5*T—EI*ZBF*BT I 

C 	MOMENT IS CLOCKWISE 
GO TO 302 

305 HHY ¢.5*DyGZZ* I ZUF+ZDP I; I 
VHYQHHY*EI 
CGHHcBT+ZZ* ( Z!P+Z.*Z&F1) /1 ZDf +ZBF1 I 
CGHV*I.5*T—E I *ZZ *L7T 
AIHYeHHY*CGHHHVHY*CGHV 

302 CG2=.50ZZ*CPI--EI ) 
5I GMHr S I GMH+AMHY+; I GHH*Z Z+S i GWH*CG2 
SIGHHCSIGHH+HHY 
S I GWHcS I GWH+VHY 

C 	4O 4ENT 15 CLOCKVUSE, FORCE IN 0/S DIRECTION  
60 TO 500 

C 
C 	UPLIFT PRESSURE 

415 G©a GO+E I *ZZ 
ZDF Z(I) FB 
IF (60—.5T) 306,307, 307 

306 1 UnDW*ZOF* 1 . 5*GD+a255*T I 
OMU1t,.75*GD*ZE3F*I .5*T-4.* D/9. ) 
CMU2=.25*ZBF* I T«`GD) * ( 5*T—AT* (. T—GD ) ) 
OMU=DW* I MU1BMUZ )  

C 	M01€NT IS CLOCKWISE , FORCE IS UPWARDS 
G0 TO 500 

307 WU= «5*DW*ZBP+ T 
6MU=WU*T/6,, 
G0 TU 500 

C 	HYDRODYNAMIC PRESSURE 
416 ZBFZ(i)FO  

ZBF 1"ZUF—ZZ 
IFIZBFI300,3.00,309 

309 IP (ZDF1) 310,310,311 
310 EHY aZGF* (2*—ZBF/ t Fa ) / (H—P8I 

PEHiALP*CEHY+ ARTIEHY)) 
DPHi (PEH—PCH2 ) /ZZ 
HDYa,5*ZBF*IPEH+PCHl$ 
PENTtPEH 
AMHDCHDY*ZZBF*DT 
GO TO 308 

311 EHYvZQPGI2.«~Z8F/4H ►FB I/(H-RB) 
PEHe41P+ t CHY+$OR Ti EHY I I 
HDYa.5*ZZ*( PCH+PEH1) 
CGHD* I3 T* ZZ* (PEH+2,*PEHI) /1 PCH+PEH2 I 
AMHOrHDY*CGHD 
CPHc(PEH PEHl)/ZZ 
PEH1tPEH 

C 	MOMENT I5 CLOCKWISE, FORCE IN DS 
300 S DftS I MO+At1HD+$ IGHD*ZZ 

SIGHD&SIGHD+HDY 



C 
C 	SUMMATION OF FORCES AND MOMENTS 
C 

500 SIGW=SIGWD+SIGWH—HU 
SIGHz—(SIGHT+SIGHH+SIGHD) 
SIGMuSIGMD-S!GMI—SIGMH~-OMU -SIMD 

C 	MOMENT IS POSITIVE ANTICLOCKWISE AND IS ABOUT C:Go OF THE SECTION 
C 	HQRZ. FORCES POSITIVE IN UPSTREAM DIRECTION 
C 	VERTICAL FORCES POSITIVE DOWNWARDS 

TT=T**2 
TTT=T**3 
SIGZUOSIGW/T+6.*SIGt1/TT 
SIGZDrSIGkt/T-6.*SIGM/TT 
A=SIGZD 
8=12.*SIG?/TTT 
A1=A*FI 
TAUZU=—E I* (S I GZU-P—PCH ) 
81 IE.#SIGKJT+2.#TAUZU+4.*A1I/T 
C1= (6.*SIGH/T+3.*TAUZU+3.*A1) /TT" 
A2rA1*FI 
X1=DC+( 12.*SIGM/TTT4'2e*SIGW/TT-2**P:/T. **P.EH/T)*EI 
X2=FI*IA-~4.*SIGW/T'T)-~6.*SIGH/TT 
X3* (X1+X2l*FI+SIGZD*(FI- F4I -1).)/ZZ 
82=B1*FI+X3—ALH*DC 
X4A nDC+E I *4. * ( P,/T+PEH/T—S I GW/TTY-.25*B ) 
X4E~- 'I*(2.*SIGW/TT—G)+6.*SIG..#/TT 
X4eX4A+X4B 
X5_EI*(DW'.X4+D.PH) 
X5 X5+(P+PE —SIGZU)*IFI—E(I-1,))/Z2 
X6EI+FI 
X7v—tP+ALH*DC*T+PEHI 
X40=-(6.*X7—X6*(12.*SIGH/T+2.*TAUZU+4.*A1) )/°T 
X8=XC—t2.*X5+4,*X3)/T 
C2-C1*FI+0.5*X8 
X9: (6.*X7—X6*6 *( 3.*SIGH/T+TAUZU+A1) ) / TT 
X9=X9+3e*CX5+X )/TT 
D2-BTDX9 
PPINTZO6#X1sX2,x3,X4,X5.X6,X7,X8,X9 
PRINT2A1,A,G,A1,G1,C sA2,82,C2,D2 
PRINT215,Z(I ) 
Y*—YY1 
DO 2 ,J 1,JL 
YaY+YY1 
IF(Y.GT.T)YOT 
YY=Y**2 
YYY&Y**3 
SIGZ +(A+B*Y3*PSI 
TAUZY=A1+#31*Y+C1*YY 
TAUZYaTAUZY*PSI 
SIGYmA2+B2*Y+C2*YY+D2*YYY 
SZGYnS I GY*PS I 
QQrSORT(({ (SIGZ--SIGY)*.5)**2f+TAUZY**,2 ) 
Q=O.5#(STGY+5IGZa 
IF(SIGZ--STG )30,30,31 

30 SIGPItO—QQ 
S IGP2=Q+QQ 



I 

GO TO 60 
31 5IGP1 O+QQ 

SIGPZuQ—QQ 
60 DIFF SIGZ-5IGY 

IF( QIFr-4.00041)61,61,62 
61 PHIP1e90.0 

GO TO 63 
62 PHIP1=PA*ATAN(-2.*1AUZY/D fF) 
63 PRINT200sY*$ZGZ,TAUZY*SIGYsSIGP1,SIGP2,PH1P1 

I F (Y. EQ. T) GO TO 1 
2 CONTINUE 
1 CONTINUE 

I NDEX* I NDEX+1 
GO TO 80 

1234 STOP 
101 FORMAT(2014) 
100 FORMAT (BF1O.4 ) 
206 FORMAT (1X97HXVALUES,9E11.4 ) 
200 FORMA` (1Xr7E13.6) 
201 FORMAT(1X,i8HCQNSTANTSA*BsCETC.f9E11.4) 
103 EORMAT(1X,9Ej3.6) 
215 FoRrAT(40X,3HZv ,F10.4) 

END 
$ENTRY 



SIDJOB 
$ I I3F TC MAIN 

C 	THIS PROGRAM CALCULATES THE INTERNAL STRESSES IN CONCRETE 
C. 	GRAVITY DAMS, THE METHOD OF ANAL8SI S IS DAVIS METHOD. THE 
C 	STRESSES ARE CALCULATED FOR DEAD WT., UPLIFT rPRESSURE* HY— 
C 	DROSTATIC PRESSURE, HYDROC N M. PRESSURE, AND INERTIAL 
C 	FORCE SEPARATLY. THE PROGRAM CAN BE USED ON IBM 1620 
C 	AND IBM7044 COMPUTER. 
~i}l~S~#iit,~~'rrifr ~ #{'ri€i~#iF#il#i'r##~#$S!?#•~##3E3'r#i~~S•~##o'l~rR~#'l~4i'sif######°P~~-~Ir#3~t~#3f ~fi1f'####ik3~##Pr3i 

DIMENSION DS(400)►US(400),6t400)s.E(4O0>,Ft40O),M(100) 
SORTF(X)tSQRT(X) 

40 READ1.AB►HsQ►DC•Dw►X,VsDD.CM►ALPHA 
REAb2,Nti(►NS,INOU 

READ2. (M(J) rJ=1,NS) 
READS.,fC(I)►Iw3►N) 
REAb1,tF(I)►I=3►N) 
PRINT I,l1 •NtK►t'45►INDU,AB,H,QsDDC,D%',X,Y, iD,CM►ALPHA 
PRINT112,(M(j?►J*3sNS) 

455 PRINTS►iE(I)►Iv3#Nl 
PRINT3,(F(I) #Ir3sN) 
B(1)00.0 
B(2)AB 
P51=1. 11440 

2013 AM=0.0 
GD DD 
t1H=0. 
SXOO fi0 
Ww0,0 
HHT sO.0 
VH' 0. 
OMHtoo 
BMVHV0. 
BMc0o.O 
Do 1001 39N 
SXr SX+X 
B(I )SC I-1)+X#(Etl)+F(I)) 
XI~$~t1~~3fI.~oQ 
GD=GD+X*E(I) 
C+~SX+Q—H 
CI=C—X 
GO TO (,201,202x203s204#205►207),XNDU 

C 	DEAD WI. 
201 tl1 .5#AC#X (B(I) w t 	)) 

AM1 x.3333*DC* X*'i3) *E (1) **2 
AM2 uX*DC*B (I —1) * .5*8 ( I--1) +X*E (I) ) 
AM3$.5*DC*F(I f *t8 (I) '.661*X*F(1 3 )* €**2 
AM*API+AMI+AM2+AM3+W*X*E i ) 
WeW+W1 
ECCn.5*B(I )—AM/W 
$MW wtd* ECC 
BMa--BMW 

C 	MOMENT IS ANTICLOCKWI$E  
6© TO 206 

C 	INERTIAL FORCE 



202 #l.5* C #(3(i)+8(I Z)t 
CGID.333 *X#(6#It+2. UI-1))IB(II+t.(14)) 
WH1 aW1*ALPHA 
BMcBM+UHI, *CG I+WH*X 
WHOWH+WHI 

C 	MOMENT IS CLOCKWISE 
GO TO 206 

C 	HYDROSTATIC 
203 IF(C)101s101,102 
101 VH=U.0 

8MHa0• 
CleO+O 
8M'O.0 
GO TO 65 

102 IF(Ci)103,104,104 
103 Cleo• 
104 VH10.5*X E U)*(C+C1)*DW 

VHS*VH+VHI 
VECCa.3333*x*E(I)*(2e41C1+C)/(C1+C) 
9MVHO8MVH+VH1D(s546 (I)—VECC)+VH*(E( I)*X+*S* (0(l)-8(I-1 a) ) 

C 	MOMENT 'IS ANTICLOCKWISE 
HH=*5*D OC**2 
8Mi1a•333'3^ HH*C 
BM+~BMHi-5MVH 

45 CONTINUE 
C 	MOMENT iS CLOCKWISE 

Go TO 206 
C 	UPLIFT . 
204 	(G —,S B(I#)ZO,1i 11 

11 W=-0W*C* t.5*GD+.Z5 B(I) ) 
C 	W ACTS. DOWNWARDS BUT SIGN IS TAKEN NEGATIVE FOR UT 

UH1T.' 5#G0* C.54 B(I )-4.*GOI9, I 
#3M2 •25*C*C+i3{IEGD)*ta5*8('I).66 7*(atI)GD 
(3McDW* (8M1-8M2 ) 

C 	MOMENT I5 CLOCKWISE 
Go TO 12 

10 We—DW*C*B (I)*,5  
BMc—W*C(I)/6.O 

C 	MOMENT CLOCKWISE LOAD DOWNWARD$ 
12 CONTINUE 

GO TO 206 
C 	HYDRODYNAMIC 

205 I F (C)10S,10'5.106 
105 Cleo. 

8M 0. 
GO TQ 108 

106 IF(CI)107#107#108 
107 C1=0. 
108 EHYcC1*(2.-C1/Q) 

FHYaSORT( ABS CEHYI3 
GHYi.5*CM*(EHY+FHY) 
HHY*GHY*ALPHA*DW*Q 
AHY+ C* (2.-.0/O) 
8HY=SORT( ABS {AHYI ) 
CHY t * 5*CM* (ANY+BHY 
QHYwALPHA*CHY*DW*O 
HMH=.5*(DHY+HHY)*(C-C1) 
HCGo*3333*(DHY+2.*HHY)*tC—C1)/(AHY+HHY) 
BM=BMt+HHH*HCG+HHT*X 
HHT tHHT+HHH 

C 	MOMENT CLOCKWISE 



206 DS(I)mWIS(I)+.5*BM*5(I)/XI 
US I)rW/8(I) -.5*BM*ta( i)/X•I 

100 CONTINUE 
GO TO t71Or711,712,713+714),INOU 

710 PRINT7©I 
GO TO 715 

711 PRINT7O2 
GO TO 715 

712 PfINT7O3 
GO TO 715 

713 PRINT704 
GO TO 715 

714 PR I NT705 
715 CONTINUE 

COIF =. 5*DC*X 
IF(INDUwNE.1)CMF O. 

800 Dg200JJCI,NS 
IuM(JJ)+2. 
VUt I 
SX* (VU-2, )*X 
BIB(I) 
81=8(1-1) 
82=8(1-2) 
83=8(I+1) 
B4=8(1+2) 
EI=E(I) 
E1vE(I.1) 
E2=E 1-2) 
E3 E(I+1.) 
E4=E(1+2) 
F!=F(I) 
Fl F(i -1) 
F2=F (I--2 ) 
F3-E(I+1) 
F4nF(I+?i 
X1=X*EI 
X2$X1+X*E1 
X3=X*E3 
X4=X3+X*E4 
Y1zX*FI 
Y2=Y 1+X*F1 
Y3sX*F3 
Y4=Y3+X*F4 
BXzBI—Y2 
OSI=DS( I) 
USI=U5(I) 
DS1=OS(I-1) 



USIatS(1-i) 
DS2=DS(1-2) 
US2 US(I-2) 
DS3eDS(I+1) 
US3 US(1+1) 
DS4rDS(1+2) 
US4*US(1+2) 
DLt 1aC1iF*Y1 
DLti2'Ct1F*Y3 
DLU3*CMF* I Y4-Y3 
DLW4aCMF*X3 
AID(DSI-US!)*(1..-Y118ik+U5t 
A3D (DS3.4U$3 )O( 1e-Y3f03)+US3 
A3Un (DS3-uS3)*X3/83+tJ$3 
A#Dz f DSO -US4 )* (1.-Y4/84 )+U$4 
FIDi.5*Y13ZtAID+DSI ) 
FSD*.5*Y3*(A3D+0S3) 
F3U'a5*X3*(A U+U S9) 
F4Dr.50CY4-Y3)*(A40+0S4) 
TXYID=(DLWI -FID?!X 
TXY1D iDL I2-F$D)/'x 
XxY IU +(DLt14-F3U)/x 
TX? 3D= (DLW3-F4U) /X 
SYwO, 
DO 3OO.J i pK 
f~aa8I-Sy 
DUI?CHEF* (01+82-2,*$Y+)(]+ 2 ) 
DWZOC fF* (0I+81-2 **SY+X1 
Dl13eC lF*{DI+0 -2**SY °X3) 
Dk14+ CMF* (83+84-2 s*SY-X4 .X ) 
AI (DS!-USI )*SY/8I+t1SI 
A1c(DS1-USj)*(SY-Xl)/Bj 
A1iA1+USA. 
Ala(0$2-US2)#4SY-X )/a2+US2 
A3*(DS3-US3)*(SY+X3)/83+US3 
A4a(DS4-U54y*(S'Y+X4)/D4+US4 
FSim.5*(AI+QSI )*48 
FS1w.S*( DO-vi )*(AI+DS1) 
FS2 .5*C CS Y2)*(A2+D$2) 
FSS=s5 (OD+Y3)*('AS+Day ! 
FS4=«S*l138+Y4)*(A4+854) 
Vl=FS2+Ovl2-F$I 
V2*FSI+DWI-F'SI 
V3nFSI+Dt13-F ,3 
V4=FS3+DW4-FS4. 
TXY1a.5*(V2+V3)/x 
TXY 1=w 5* 4 Y1+V2I 
TXY 3zi.5* (V3+Y4) /x 



SuM1a• +' (.TXYID+TXY2)* U 1—SV+X2 ) 
St}MM3=.5* (TXY3D+TXY3 )* (83-ASV—X3 ) 
TX=.5*(.SUMI-SUM3)/X 
IF(SY)211,211+212' 

211 TXYIzTXY'U 
SUMI-•5*(TXYID+TXYI)*(SI—SY) 
TXm (SUMI—SUM3) /X 
60 10 220 

212 IF(SY.LT.X2)SY=X2—Y 
217 IF(SY.EQ.(X2—Y) )GO TO 300 
213 IF(SY.LE.BXIGO TO 220 
214 IF(SY-31)215,216,215 
215 SY=BI—Y 

GO TO 300 
216 TXYI-TXYID 

TX=—SUMS /X 
220 AImAI*PSI 

TXYI=TXYI*fP5i 
TXvTX*PS I 
/IMIs(AI^TX)**2+4.*TXYI**2 
VAM-.5*$0RT(VIMI 
SAM.3*,AI+TX) 
PfMAJ*SAM+VAM 
PM IAI=SAM—VAM 
At4GLE=.5*ATA 1(2.*TXYI/(AI--Tx) ) 
ANGLErANGL.E*18C. /3.14.159265 
PRINT59SX,SY,AI,TXYI3TXvP AJ,PMIN,ANGL.: 
IF(SY.CE.BI )G0 TO 200 

300 SY=SY+Y 
2.00 CONTINUE 

INDU=TMOU+1 
GO TO 208 

207 STOP? 
1 FORMAT (8F10.4) 
2 FORMAT(20I4) 
3 FORMAT(IX,32F4,2) 
5 FARM AT(1X,8E15.6) 

111 FORMATfjX,4I4,j0F14.4) 
112 FOR,MAT(1Xv3014) 
701 FORMAT( * STRESSES DUE TO SELF WEIG 	ONLY 41) 

702 FORMAT(* STRESSES DUE TO INERTIAL F*)f :ti ONLY 41) 

703 FORMAT(* STRESSES DUE TO HYDROSTATIC ^3ESSURE ONLY-) 
704 FORMAT(* STRESSES DUE TO UPLIFT ONLY*) 
705 FORM T(* STRESSES DUE TO HYDRODYNAMIC 'RESSURE ONLY *) 

END 
SENTRY 
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