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sINOPSIS

Several methods are avallable for stress
analysis of concrete gravity dams., In thig disgsertation
a comparative study of a few of thesevmethods, namely,
(a) Davis method (1) and (b) USBR method (2), has been
made. The stresses as obtained by.these methods are
also compared with theory of elasticity solution of
Zienkiewicz(a) for a triangular dam sectlon and with
the finite element stresses for Koyna dam®15) unger

static forces.

Static and dynamlc forces have been considered
in this study. The dynamlic forces are treated as
"equivalent static forces". Three different variations
of the seismic coefficient along the height of the dam
have been studied with a view to._investigate the most
appropriate variation to be considered in stress analysis
of conecrete gravity dams. Dams of different heights and
different upstream and down-stream sloves have been

analysed.

The study hereinjindicates that the stress
distributions as obtalned by the Davis and the USBR
methods differ considerably from both the theory of
elasticity(a).and the finite element analysis (15) for



the regions at and near the base of the dam where the
width of the dam is large, For h&drostatic pressure,
the Davis and the USBR methods glve different stresse§
as compared to those obtained by the finite element
analysis (15.). This'diffgrence is more significant at
‘and near the base of the dam. Under static forces the
theory of elasticity and the finite element method
indicate a definite tension at the U/s face on the base.
This fact is not revea;ed by the Davis and the USER
methods. The Davis ahd"the USBR methods differ signifi-
cantly from each other only at and near the base of the

dam.

The var»ying seismic coefficiert is found
sultable for stress analysis. 4 linear variation of
seismic coefficient may be used for preliminary design
purpcses. Under lateral forces a stress concentration
is observed at the elevations of the dam where the slope
of the dam face changes abruptly.
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HAPTER
JNIRODUCTION

Design and stability analysis of concrete
gravity dams require the knowiedge of the stress dis-
tribution within the dam. The state of stress at any
point within the dam is completely defined if the
three components of the stress namely, normal vertical
stress (Uy), normal horizontal stress (Gk) and shear

3

stress ( Txy) are known.

Several methods are available for computatioh
of these stress components (Ty, U and (xy). It is
aimed in thls thesis to carry out a comparative study
of a few of these methods namely, Davis method (1)
and USBR method (2). The static stresses as obtained
by these methods are compared with the theoiy of
elastieity solution (3) and.the finite element solu-
tion (18) for triangular dam and Koyna dam respectively.
The theory of élasticity method for stress analysis is
expected to give exact results as it satisfies the
compatibility of stress and strain besides satisfying
the boundary conditions everywhere within the dam and
the foundation Zone., But the effort invdlved in it is
too’much for each dam section. And therefore, this

method is generally not used for stress analysis and



-t 2 =

design purposes. The finite element method is expected
to give results fairly close to the theory of elasticity
solution. This method can account for any general vari-
ation in geometry and material properties. Too much
effort is involved in developing & general digital

computer programme for this method.

Dams of different heights have been included
in the present study. The stress analysis is carried
out for static and dynamic forces. The dynamic forces
are considered as equivalent static forces; The static
forces consist of the self weight, the hydrostatic
pressure and the uplift pressure., The dynamic forces
econsist of the hydrodynamic pressure and the inertial
forece due to the acceleration of the mass of the dam.
Three different variations of seismic coefficient along

the height of the dam have been studied.

Chapter II of this thesis deals with the
methods of stress analysis. The Davis, the USBR add
the fiﬁite element methods are diécussed in detail

while theory of elasticity approach is briefly discussed.

Chapter II1 deals with the évaluation of
loads. Sectional geometry of the dams analysed is also

given.
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Results aro discassed in Chapter IV ang

finally the conclusions arc glven in Chaptor V.

Tho study horein indicatos that the Davig
and the USBR methods give significantly different
stross distridbutions from those obtoined by the thoory
of elastieity method (3) and the finite clemont
analysis (18) for tho rogions at and noar tho bane of
the dom. For regions near tho top of the dum all the
mothods of stross analysis give similar stross distri.
butions. For the hydrostatic pressurs, tho stresses
as obtained by the Davis and the USBR nmothods ore ouch
different from the finite olemont streossos (16) parti-
cularly at and near the vage of thes dam; Purthor,
undsr stotic forces the finito olement analysis anid
the thoory of clagtieity wothod indlente & definite
tension at tho J/. fuee on tho bage. This fast is not
revoilod by the Davis and the USBR mothods. The Davis
and the USBR mothads give ciuiler stress distribution

exeopt for thoe regions at &nd necar tho base of the dam.

The varying soismic coofficient hased on tho
dynanie onualysis is found sailtadle for stross nnalysis.
Howover, fb§ proliminary stross analysis a linecar varise
tion of solomie coefficlient nay bo used. Under lateral
forcos a congontration of gtresses 1is obsorved at the
olovations of the dam whcere tho slopo of tho dam fuco

changos abruptly.



2,1 DAVIS METHOD (1)

This method presents a step by step compu-
tation of the three components of stress, namely normal
vertical stress 0y, shear stress ( Txy) and normal

horizontal stress 0x.

The concerete gravity dam is considered as a
iertical cantilever element of unit thicknessA(varying
thickness in case of Buttress dams). This method
assumes 11hear variation of normal stress on any horie

zontal plane of the dam.

| Based on this assumption the normal vertical
stress (0y), under direct force and a bending moment

combined, 1s givén by
H + N ,
O_yl’ 2 = A - I y ’ es s * e (20101.)

where,
Jy = Normal stress on any horizontal plane
of the dgm, Suffixes 1, 2 refer to the
end points on U/S and d/s faces on that

plane.
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W = Total vertical forcé above the plane under

congideration.

>
-

Area of the plane under conslideration
I = Moment of Inertia of the horizontal plane

(section) about its c.g.

M= Mbment of all the forces acting above the
‘plane under consideration and about the c.g.

of this plane.

y = Distaneerof most remote fibre from the c.g.

of the plane under considerétion

In order to compute shear stresses and normal
horizontal stresses, small prismoidal elements are
separated from the dam by dividing the section with
vertical an@ hqrizontal planes. Then the equilibrium
of these elements is maintained under unknown stress
functions. Equilibrium conditions enable to determine

the shear stress (xy and normal horizontal stress Jx.

Let the stresses are required at point F in
plane BB of the dam shown in fig. L. Draw planes CC
and DD above and below the plane BB at equal distances.
Next construct a vertical plane cutting these horizontal
planes in E, F and G, The elementary priém ECFB may now

be visualised as separated from the dam and to be held
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in equilibrium by forces acting on it. Normal stress
Uy can be calculated for planes CC, BB and DD by
equation (2.1.1).

Consider the vertical equilibrium of the
elementary prism ECFB. The vertical forces acting on

it are,

1. Total normal stress on face EC = py (say)

2. Total normal stress on face FB = p, (say)

3. Weight of block ECFB = wb (say)
4, Total shear across plane EF = Vgg(say)

Total stresses 1Y and Py are}given by,

P = g._bl Ty &
F .
Py = g by 0¥ O

The summation can be easily done, as the variation
of 0y is linear. The equilibrium of forces demand
that,

VEF = pl * Wp - pz *oe s 0e (20102)

S Average 1nténsity of shear on plane EF



e
~(bg x EF)

1]

Vi

Similarly equilibrium of prism FBDG will give average

shear intensity on plane FG, as

Vg
(b4 x FG)

Vo =
- how shear stress at the point F in plane BB will be
ginn as

i+ ¥
2

o4 sean (2.103)

Txy =

by, by b3y by are sectional thicknesses as illustrated
in fig. l.

When the point F falls on the d/s face of
the dam, only the equilibrium of the lower block is
considered (ppism FBDG) asg the upper block at that
point is absent. And therefore the stress ( Txy) will
be obtained by averaging over a single prisﬁﬁdal

element.

For computations of normal horizontal
gtress ( 0o%), the prism acde’(fig. 1) is separated from
the dam and is maintained in horizontal equilibrium.
As the horizontal and wvertical shear stresses are

equal,
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Total shear acting on plane‘ac = Vae

. .a
= ) by (xy A
C

andz total shear acting on plane de = vde

i

o MO
bbu‘
N
&
N g

The shear stresses on planes ac and de can be computed
for all pointg as outlined earlier. Horizontal equi-
‘1ibrium demands that if N, be the total horizontal force

normal to ad and acting on (ad), then

x de X xy (20104)

- 4 Average - intensity of horizontal stress on ad,

.Nx

G—' = t1 : L o-o
* sectional area between & and d « (2.1.5)

For'eOmputaticns of stresses on base, the dam ig
agssumed to extend in the foundation and normal vertical
 stress for two planes is calculated by egn. (2.1.1).
While the she@r stresses and normal horizontal stresses

are computed as outlined above.

- PRINCIPAL STRESSES
Once the three components of stress Ty, ¢i

and Gy are known, the principal stresses can be computed
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by the formulae

1/2

Jdy +0x & ' 2
- . 0x 0 + 4 (xy?
U", o 5 T 1/2|( x -0y) 4 (xy ﬂ

os e (20106)

and
tan 2« = 2% cee (2.1.7)
0x - 0y
where,
01 = Major principal stress
0o = Minor principal stress
A« o= angle of prinecipal stress from

vertical measured clockwise.

Shape of the dam profile and the size of the
elements (Dimension EF in fig. 1) influence the accu-
racy of this method. In the present study, the size
of the block is kept ag 1 foct vertical. The horizon-
tal points #n a plane are taken at a interval of 10'
to 20'. A computer programme is written in FORTRAN
language. Listing of this programme 1s given in .
Appendix B. |



Thic vothod aenumab a linear varlation of
narcal stroos and o parabslic diotribution of choap
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hnaﬁing and Sircet cnmpression'eonbinad§ og glven
by | | , |
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v = Distance of most remote fibre from
Cege 0of the sections.

A = Sectional area
At_ D/S Fagce

)X 6% |
o = - 23—

At U/S Fage
J 6IM .
Q—XU =—.1§—_ + .—%r_

s Stress at any interior point,

- 0x; 0%
12 IM
= (Ux, +
% T y
orfx = a + by ove v e (2.2.2)
‘where,
a = TiD
12 IM
b = 5
Shear Stresses :

As the distribution 1s assumed to be

parabolicy unit shear stress may be expressed by,

tﬂ = al + bly + cl ya e e (202.3)
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When y = 0O
Unit shear stress at D/S face
txyD' = a1
wheg y=1T

Unit shear stress at U/S face
. ‘ 2
nyu = a; +bT+C T
Add total shear stress is given by

Cxy ay = Resultant horizontal force

above section.

- IV,

These conditions yleld,

by - %[_,,,?__ZLT .+ 2 C’WU ﬁ.'r-é.CxYD]

op = +qe[L +3 Ty + 3 Tayp]

To compute shear stresses at D/S and U/S face
( ¢ xyu dig: t:t:;er) y consider the equilibrium of an
element of the dam, separated from the corresponding

face of the dam, as shown in fig, 3.
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AL U/

Vertical equillbrium of the element, demandss

tny = tny 2= «u((xV «p -PE) tan g U. ... §2.2.41

At D/S
Rotational equbm. about B, demands,
TxyD = (yxD
Vertical Eqbm. demands,
(xyD = (U‘xb - p' + p'E) tan @D ... (2.2.5)
Normal & a Ve al ane

Consider équ. of an element between two

horizontal planes A&x distance apart as shown in fig. 3.

~ Horizontal Eguilibr ma

0y dx =% Cxy oy = AWC ég_(zy - ayD) + (p'-p'E)Ax

O Mg

Yy -
-z C(xy &%
AyD
# for functions for a horizontal plane Ax
above the norizontal section under consideration.
Substituting for xyj replacing (= functions) by
{function - A functions) and neglecting differene
tials of 2nd and higher orders and simplifying we
get
| 8
Gy = ag +byy +ey% +4,5° o0 (22.6)
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where,
32 = (al tan ¢D + P' - p'E)
bo = by tan + 831 | Nw. -
2 1 tan fp + S e
- , ab
. bc |
da 3hx
> Lim  _a&
Using SX s aAx
x—> 0

Thesé constants can be expressed in terms of partial

differentials.
Partial differentials are evaluated ag (2)
., 23 _%gp | x
. ,b X bl x
. 3
AU XD opE
= tan ¢D ( >z W ?

otan ﬁD t i ] |
+ --3—-{—- (G—XD P i' P E) ev e (2.297)

¥*
W - §0 be omitted if tail water is absent.

_ %ﬁ* »%
o, a-g-ig—-u W+tanﬂg(lzaﬁ*'—¥ %p_ "%_) |
¥ .
+ tan Zn ( %Fw * 41) 42._}3 )
- .%.g.. -ee (2.2.8)

3 BE'E - E.E ".E'E > ® se s (2.2.9)
¢ DX Ax '
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X%
aw = tan ﬂD hd tan ﬁ D se 0 (2&2.10)

4. ox ' OxX
on (el DT [ 122V 4o lavrisal
5.  BX = - L 5—;—-( T +2 (xyU+4 xyD)]
atny . olxyD ]
- [ Q@ o + 4 —
soe (2.2.1}:)
6. >x (p = p' + AW, T & pE + p'E) ...(2.2.12)

7. gg_ = tan gy + tan gpt ... (2.2.13)

| £
DT HpE
g, (B = angy [ V- G- 105

B_sﬂ_n_m.. (p+ "PE - Tx) ...12.2.148

%
W to be omitted if resr. water is absent.

&
05 4 4pE _ 4IW X
9. baxg = Wc + tan ﬁU ( ’_rP_ + -%—- T L‘%ﬂu)
o, '
2p'E - 12ZM
+tan¢D<"%§‘ui' "ET"- % "'Ts'_)
6LV

-+ -.—fz. sa (2#2015)

*
QpE _ _pE - pE
10- '()x - AX ane e e (202016)

eoe (242.17)

*
Otan gy tan g, - tan g y
11' T ‘z U Ax
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* StxyD)J + L1 [3 55’59'-3;-

+3( 55.319’_.}:__9_)} vee (202018)

In all terms preceeded by #+ sign § + sign

is to be taken if the direction of horz. shock is U/S and

vicerversa,

The effect of earthquake shock can be neglece

ted by dropping all the terms preceeded by + sign.

A computer programme in FORTRAN language
has been written. Listing of the programme is given

in Appendix 'B',

Notations used
L = wt density of concrete
=z wt density of water

= water pressure at section due to
normal loading condition

hy = Horizontal seismic coeff.

PR = change in water pressure due to
Earthquake,

W = Dead wt of concrete above section

L

Moment of W about cg of section

L = Vertical component of water load



3V

IW -

! 17 e

= Moment due to Ww

= ,ﬁertical component of water lozd change
due to Earthquake,

= Moment of wwE

= Horizontal component of water lcad

& Moment of V

= Horizontal inertial force of concrete

1]

Moment of VE

Change in horizontal component of
water load due to Earthquake,

= Momemt of va

= MOMV*M‘ !PM + M! ;‘Q_'NE

¢t l
*> MwE-i M wE * M * M

pE = = pE

‘ |
N _
Take (+) if Horizontal accelaration is in w's

direction.

Take (=) if Horizontal accelaration 1s in w/s
direction.

(') represents the corrosponding quantities fbr
tall water.
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2.3

?inité olcocnt mothod 1o O pouorful nethod
of stractural analysis vhoroin s contingois ayoten is
considered to bo‘nn-asaembage of dloereto oiom@nta
1ntﬁrcahneatea ot & finite pumbor of nodal points, Two
-ﬂlmancionﬁl pléne atrass‘bﬁhaviaur of conecrete grnthy

dong 1o asoaned.

Dasie spsusgtions

Jontimiity bhetween adjacent oloments of ;ha
pysten ig mainta&ned‘by rcqiirlna that within cach
element, linsg initially straight reuain str&igﬁﬁ in
thoir digplaced position. Thic requircaent 1o catige
fio4 if the atsalng €y, €y and ¥ aro assumod o> bo
eonstant within caech olonont. Thereforo the siroasop
that aet on tho edges of 23:h olonont aro 0lso emnsianﬁ
for triangular plaote olcmontp. Theso otrescos afa in
turn roploced by Btroso recultants that ast at tho

esrnors of qloticnto,

Tho Linito diemcnt sethod in goneral has

throo .dglic phooces @

“his 1o vorely paubdivision of originsl systom

into coghionts of varlous sigos and shapos. In this
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dissertation triangular plate eclements have been
discussedl. Forces acting on actual structure are
replaced by equivalent static concentrated forces at

the nodal points of the finite element systems .

2, Eveluation of Element properties :

This is usually the most complex phase of
finite element analysis. Nodal forces and nodal stresses
are expressed in terms of nodal deflections and these
relationships are expressed in matrix form and are known
as element stiffness matrix and element stress matrix
respectively. This will be discussed later in thisg

chapter,

3. Structural Analygig ¢

This includes determination of stiffness
matrix and stress matrix for the entire assemblage.
This is done by systematic superposition of element
stiffness and stress matrices respectively.
e of element £ na
elepent giress matrix @

The derivations given here are based on

Wilson's approach (6).

Straipn 3721§g;ggemgg§ Relationship «~

The three components of strains within each

element are expressed in terms of six corner displacements.
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Geométry of & typical element and assumed displacement

field are illustrated in fig. (4).

field is expressed as

¥ =
V = Vi

ot G x*Cey 3 ver (2.4.1)

+ 33 X + Q4 y

Linear displacement

where U and Vv are the deflectlons in x and y directions

respectively.

These constants Cy, Cgy Cg and C, are

Cl’ Cz, Ca, 04 are arbitrary constants.

expressed in terms of corner displacements and geometry

of the element, as under

(Cq) bj-bk 0O
C2 ak-aj O
{ 1
Cy = (ajbk-akbj) 0

0

Strains within the element can be expressed in terms

bk O
«-ak O
¢ Dbk
0 =-ak

<bj 0|
aj o
0 -bj

0 aj

s0e(2:4.2)

of displacements at nodes, by eqn. (2.4.1)

U -
Cx = S
€y = LV -
Y oy
Xy oy 2 x

02 + Ca

LR ) 0204a3)
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From equations (2.4.2) and (2.4.3), strains can be

rewritten as

& x [bj-bk © bk 0 -bj O ] (UL

Vi

¢yt = 2 0 ak-aj 0 -ak O aj | Y

ajbk-akbj V)

yxy akea] bjbk -ak bk aj «bj | |Uk
j ! J 5

xR} (2-4.4)

or in symbolic form

(€} = [a]{u}

Btress Strain Relationship
For elastic isotrople material the stress
strain relationship for plane strdss case is expressed

as (4)

Ox 1 v 0 T, 4x
Ty ) = el e 1 0 £y
(1-,3)
1 -V
Cxy 0 0 z |\ Txy

or in symbolic form
fe"t= (¢ {82 cee  (2.4.5)

whers

E = modulus of elasticity of material
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Y = poissoins ratio
{T 3= stress vector
$€J = strain vector
()= connecting matrix

and St . Relationship -
Uniform strains along the edges of elements

result in uniform stresses along the edges of element.

“ These‘Stres$es are concentrated as stress resultants at

the nodal points. Fig. 5 shows the stress resultants.

Stress resultants are expressed in terms of

stresses for unit thickness of elements as,

—

" bj-bk 0 akeaj
0 akr-a,j bjﬂhk
= 1/2 Ux
bk 0 «ak
Ty
5 0 - ak bk T
xy
«bj 0 a3
0 aj =bj |

LN X (2.4.6) '

or in symboliec form

{8} = [B]{v}
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where, S represents the stress resultant. The subscripts
refer to the direction in which it is acting and super-
scripts refer to the nodal point at which it is acting.

It may be noted that the matrices A and B
of eqns. (2.4.4) and (2.4.6) are transpose. of each

other, if the constants of each matrix are not considered.

Element stresses can be expressed in termé of
nodal displacement by substituting equation (2.4.5) into
equation (2,4.4), i.e.

{0} = [c7rAT (U

or {07 = [S,J{U} e (204.7)
where,
[8,] = Element stress matrix
= [C)] [A]
{U} = nodal displacement vector
{cf = element stress vector

Substituting eqn. (2.4.7) into (2.4.6), we get a
relation between nodal forces and nodal displacements,
which is,

{87 = [BILCI LA]{U] ... (2.4.8)
or |

{8} [Kg] { Uf

it

where,

!l

(K] [BJLC] LA? ees (2.4.9)

il

stiffness matrix for an element.
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Element stiffness matrix is a (6 x 6) matrix.
The element stress matrix is a (3 x 6) matrix. Since the
element stress matrix relates stresses within the element
to the corner displacements, the nodal stresses can be
expressed in terms of nodal displacements by a (2 x 6)
nodal stress matrix. This nodal stress matrix is
obtained from element stress matrix. It may be noted
that the rows corresponding to each nodal points are

identical.

Equilibrium equations for complete structure @

Nodal point loads can be expressed in terms of

nodal point displacement for the entire assemblage, &s

{F?

(k] {ug vee (2,4.10)

where,
{F} = Nodal point load vector
K] = Stiffness for entire assemblage

(u7

]

Nodal point displacement vector

The stiffness matrix for the entire assemblage

i1s obtained by systematic superposition of element stiff-

ness matrices. This addition can be illustrated if
eqn. (2.4.8) is rewritten in terms of a typiecal element
qd
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s{® Ky (@ k@ O B
Sj(q) = Kji(q) K_“(q) _KjK(q? Uj
5,V E @ g @ ch(q)_j Lk

where in terms of arbitrary

nodal points 1 and m, Sl(q) aﬁd Uy are the vedtors

of the form
(q)

=

Sl(q)

x (q7

U

Y1

(q)
Klm

|

and the stiffness ccefficlent
submatrix of the form

kxx

kxy,
yy

kyx

(q)

This term Klm

R (204612)

L XY (2.4.13)

isa (2 x 2)

(q)
sae (204;14)

im

represents the forces

developed on the element 'qf at nodal point '1' due

to unit disvlacement at noedal point ‘m'.

Therefore,

the general term Kim for the complete structure is



-3 20 I %
giVen asg

Ky = 2 klfnq) ees (2.4.15)
q

It may be pointed out that Kl exists only if
m
1 equals my or if 1 and m are adjacent nodal peints in
the physical system. Again the stifiness matrix for the

entire assemblage 1s a sparse matrix.

i 41
For conecrete gravitiy dams, the base is asgsumed to be

fixed and therefore the diSplaceménts of the nodal points

that lie on the base, are zero. These displacement .

restrains at nodal points on the base of the dam, are

introduced in the total stiffness matrix. This is done

by eliminating the rows and the columns corresponding

to the restrained nodal points,

The modified stiffnezs watrix is a symmetric

sparse matrix.

ut ilib E t
The force displacement relationship for the

entire assemblage is given as,

(K1{u} = {F}]  +e. (244.10)
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Eqn. (2.4.10) répresents a set of linear
simul tanecus equations. The order of these equations
is usually very large. Several methods (13) aré avail-
able to solve such a large system of equations. Itera-
tion 'methods (6, 13, 16, 17} 18) have been discussed - :

hé're.l .

When Ganss siedel technique (13) is applied
to eguation (2.4.10), it involves repeated calculation of

new displacements from the equation (13, 6)

i . " n
i Ksq

j=1 =1+l
»ee (204616)

where, Ui refers to the 1% digplacemant, n is the
number of unknowns and S refers to the cycle of

iteration.

It may be pointed out that the modified
stiffness matrix is real, symmeﬁric and positive defi-
nite and hence the convergence of iteration techniques
is guaranteed (13, 6). Also since the stiffness matrix

is a gparse matrix the effort in solving such & system

of large equations is reduced.
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Since the stiffness matrix is a diagonally
dominant matrix i,e., the diagonal terms are considerably
greater than other terms, the initial gness for any dis-

placement may be obtained as,

Fi :
U ‘ = [ X} XX (2041;17}
1 K11 .

A scheme for the acceleration of convergence,
of the solution of the system of equations may also be
incorporated. This scheme for fast convergence is

applied after every few cycles of iteration,

Aletkin's and luisterkin's schemes for

aceelerated convergence (13, 18) are discussed here.

Aletkin's Convergence Scheme (13)
This requires the information about the

displacements during any three successive iterations.
The aeceierated value of any displacement is calculated

as, (13)
’ _(5+1) (s), 2
OB ) (U -0 )
ti = 4 - . ‘
Ui(si'z)-gm(ml)mi(s')

L N (204018)

where guperscfipts refer to the number of iteration
ecycles and subscripts refer to the 1th displacement.

Uti(S) is the true value of U; in sth iteration.
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Lujegterkin'g Convergence Scheme (13, 18)
The accelerated value of any unknown

(displacement) is calculated by (13),

(8+1) _ 4;(8)

S) uj- - e
ot ™ . T (2.4.19)
where,
+ ‘
So1g Uj(s 1) UJ(s)
p—
n j:zl,n UJ(S) - UJ(S-].)
n = total numter of unknowns

8 = number of iteration cycles.

Nodal point stresses

Nodal point stressss may Te calculated by
aVeraging the element stresses of all the elements
connected to the nodal point. This direct averaging
gives similar stresses, as obtained by taking a weighted
average {10, 12). Accuracy of these stresses depend
upon the fineness of the mesh considered in structural

idealization (6, 12).

THEORY OF ELgSTICITY 3
This method assumes two-dimensional plane
stress behaviour of the concrete gravity dam. In the

Davis and the USBR methods of stress analysis, linear
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variation of normal stress on horizontal planes of the

dam is assumed. This assumption is found incompatible

with the theory of elasticity for the regions at and

near the base of the dam (3). Therefore, a stress func-
tion (airy's stress function (4)) is so assumed that it
satisfies the compatihility of stresses and strains ana also
the boundary eonditions at the infinite limits of the

plane of the foundation. .

The method essentially consists in evaluating
the aforesaid stress functionn which is ohtained in terms
of partial differential equations (3). These equations
are solved by the Tinite difference appfoximation (3,13).

Details of this method are given in Appendix 'A'.

The method is expected to give exact results
as it satisfies the compatinility, the equilibrium and
the boundary requirements at all points within the dam
and the foundation zone. Bowever, the method is very
tedious and inveolves much effort for each dam section.
And tnerefore, it is generally not used for the stress

analysis.
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EVALU QAD;

The following statiéyand dynamic¢ forces have
been considered in this study. The dynamic forces have
been treated as equivalent static forces. Stresses have
been computed for each of the loads separatdly. The
total stresses under combined loading situation may be

obtained by linear superposition of these stresses under

individual loads.

3.1 SIATIC FORCES

3e.1.1 gelf Weight

3.1.2 Hydrostatic pressure

The reservoir is considered full and no tail
water is assumed. In finite element technique this force
is concentrated only at the nodal points that lie on the
upstream face of the dam. The horizontal and vertical

components of this force have been considered.

3.1.3 Uplift pressure |

Dﬁe to seepage of water through the foundation,
uplift forces act on the dam. In the present study only
one drainage gallery is considered. Half of the'water
pressure intensity at U/S face is assumed to be released

at drainage gallery line.



"I.8. Code (14) recommendation which is based on
Zanger's pressure distribution, has been followed to
calculate this force. This force is concentrated at the
nodal points that lie on the upstream face of the dam in

the finite element analysis.

| Due to horizontal earthquake there is an
instantaneous hjdrodynamic pressure exerted on the danm
in addition to hydrostatic pressure. Assuming water to
pe"incompressible the hydrodynamic pressure at depth y,.

below the reservoir surface is given by (14)

Pe = dh e W o h ewe (3.1)

where,

o
o
i

hydrodynamie pressure at depth y
(kg/m®) ' -

coefficient that varies with the
shape of the dam face and
depth Y.

<
2l
il

A}

density of water (kg/m®)

£
i

'h = depth of reservoir (m)

%

horizontal seismic coefficient
assumed unity in present analysis

I

For vertical U/S slope or constant U/S slope, the

constant C is expressed as (14)
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L

P

c = %—[—%(2- %)-&/%(2- L) ] eer (3.2)

where, Cnm is the maximum value of constant C, that can

be obtained from fig. 6.

For dams with a combination of vertical and
sloping upstream face, the equivilent sldope for detere
mination of value of coefficient 'C' is chosen as per

following criteria.

(a) 1If the height of the vertical portion
- of the water face of the gravity dam is equal to
or greater than one half of the total height of

the dam, equivalent slope is taken as vertical.

(b) If the height of the vertical portion
of the waterface of the gravity dam is less than

one half of the total height of the dam, equi-
valent slope line is obtained by joining the
intersection of the resérvoir surface with the
dam facey, to the intersection of ground surface

with the extreme point of the dam.

Approximate total horizontal shear on a
section is given by (14)

Ve = 0.726 P, ¥y (Kg/m) ... (3.3)



Since the hydrodynamic pressure acts normal
to the dam féce, which may be sloping, therefore there
shall be a VQrtiéal component of this load. Magnitude
of this vertical Eompongnt at any horizontal section is

determined by (14),
W = (V2 - Vi) tan ¢ ses (3.4)

where,
W = Increase or decrease in vertical

component of water pressure

Total shear due to horizontal component

of hydrodynamic pressure at the elevation

of section under consideration

Vl = Total shear due to horizontal component
of hydrodynamic pressure at the elevation
of the dam at which the slope of the face

COmmernces.

it

] angle of dam face with the vertical

3.2.2 Jnertial force

Due to earthquake excited ground motion,
a lateral force is exerted on the dam because of the
inertia of the mass of the dam. This force is in

proportion with the acceleration of the ‘mass of the dam.
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In‘the present study this force has been considered as
equivalent static'force. Thid equivalent static forece
i1s assumed to act in down stream direction. This fdrce
depends upon the variation of acceleration of the mass
of the dam along the height and 1s obtained at any ele-
vation of the dam by multiplying the weight of the dam
above that elevation with the corresponding seismic
coefficient. Three different variations of selsmic
coefficient along the height of the dam have been. consi-
dered in this study. These variations are discussed

below ¢

_(a) A uniform seismic coefficient along
the height of the dam with unit ordinate is consi-
dered. I.S5. Code (14) (1966) recommends a similar

variation.

(b) A linear variation ofAseismic coefficient
along the height of the dam with top ordinate as
unity and base ordinate as zero. This is similar
to the recommendation of I.S. Code (14) revised

version (1971).

(c) A varying seismic coefficient along the

height of the dam as shown in fig. 7. This is
based on the dynamic analysls 6f few dams ( 18 ).
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The top ordinate in each case has been kept
&s unity. It 1s expected that the varying seismie
coefficient will give more realistic stress distribution
as compared to linear or uniform seismic coefficient.
Further 1t may be noted that the linear varlation is a

‘modification of uniform seismic coeffiecient.

Stress analysis has been carried out for the

following dam sections.

1. Triangular dam
. 2.‘ Koyana dam
3. Nagarjuna Sagar dam

4. Gandhi Sagar dam

The geometry for each of these dam sections
is shown in figs.61,62,6:3and 64 « The typical dimen-
sions are also presented in a tabular form for each

of these dam sections.

Heightwase fGallery dis- [value of

Dam ]
Section I in ft.jwidth {Jtance from §'Cm' in
i jin ft. jvertical U/S ieqn.(a.z)
_ 2 g Jface_ tid
Triangular 90.0 60.0 10.0 0.735
Gandhi Sagar 204.0 165.0 10.0 0.67
Koyna 338.,0 230.28" 25.0 0.735

Nagarjuna Sagar 370.0 295.0 28.0 0,69
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Following properties have been assumed,

.Poissoins ratio for concrete 0.2

Weight density of concrete
‘for Iriangular dam

140.625 1b/Cft

i

Weight density of conecrete

165,0 1lh/Cft.
for other sections ‘

(4

Weight density of water 62.5 1b/Cft.

The weight density of concrete in case of
triangular dam has been taken different from the value
for other dam section because it corresponds to the
value used in the theory of elasticity solution of
Zienkiewicz (3).



CHAPTER IV

DISCUSSION OF RESULTS

Comparison of different methods of stress

analysis under different loading situations @

4.1 COMPARISON WITH THEORY OF ELASTICITY SOLUTION (3)
Figs. 8 and 2 show the stress distribution

as obtained by the Davig and the USBR methods for a
triangular dam. The loads considered are self weight
-and hydrostatic pressure only. The theory of elasticity
' solution of ZienkiewiceZ (3) is also plotted.

_ The Davis and the USBR methods give linear
distribution of normal vertical stress ( Iy) on all
horizontal planes of the dam. The theory of elasticity
analysis indicates that the variation is not linear
particularly at and near the base of the dam where the
width is large. Further the theory of elasticity
analysis indicates certain tension at the U/S point on
the base. While Davis and USBR methods do not indicate
this faet. Thiis 1t may be concluded that the assumption
of linear variation of normal vertical stress ( 0y) in
the Davis and the USBR methods is not justified for the

regions at and near the base.

The Davis nmethod gives falrly linear distri-
bution of shear stress Txy (fig. 8) on all horizontal °
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planes. The USBR method gives parabolic shear stress,

but for the top regions of the dam the shear étress

varies almost linearly across horizontal planes. The
theory of elasticity solution differs considerably from
both the Davis and the USBR methods for the regions at and
near the base. The maximum difference being at the base

near U/S and d/S faces of the dam.

Normal horizontal stress ( Ox) (fig. 9) as
obtained by the USBR and the Davis methods also differ
significantly from the theory of elasticity solution (3)
for the régions at and near the base of the dam. The
maximum difference in stress Qalues is observed near the

U/S face of the dam but not at the U/S face.

It may be seen from fig. 8 and 9 that for top
2/3rd height of the dam all the three methods of stress
analysis namely, the Davigy the USBR and the theory of
elasticitys give similar stress distribution. But for
the bottom 1/3rd height the theory of elasticity method
gives a stress distribution considerably different from
that obtained by the Davis and the USBR methods. Thus
it may be concluded that the Davis and the USBR methods
give relatively approximate stress distributions at and

near the base of the dam.
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The Davis and the USBR methods give identi-
cally same distribution of normal vertical stress Oy
(fig. 8). But the two methods give different shear
stresses and normal horizontal stresses; This differencd
is significant only at and near the base of the dam,

The USBR method slightly overestimates the shear stress
as compared to the stresses obtained by the Davis
method (fig. 8).

4,2 QQ.QQKL_QﬂhﬂiLIJL#__EiﬁLEQQhﬁnﬁﬁﬂﬁﬁﬂ
methods with the finite element method -

Only static stresses as obtained by the Davis
and the USBR methods are compared with the finite element
solution (15). Figures 10; 113 12 show»the stresses for
'Koyna dam under dead weight§ hydrostatic préssure and

uplift pressure separately.

For dead weight alone (fig. 10), a fairly
good agreement in the stresses as.obtained by different
approaches, namely, the Davis, the USBR and fhe finite
element methods, is observed. However, the finite element
method does not give linear distrihution of normal
vertical stress 0y at and near the base of thé dam where
the width of the dam is large. Further the minimum
direct compression (major principal stress) is under.
estimated by the Davis and the USBR methods. The

maximum direct compression (minor principal stress) is

1o <70 U7
GCHTRAL J/BRARY UNIVERSITY OF ROGR!.™
ROORKEE.
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underestimated by the Davis and the USBR methods at

U/S face but the same is overestimated towards the 4/s
face on the base. Shear stresses ( Txy) as obtained by
Davis and the USBR methods for dead weight only are also
shown in'fig. 13. The Davis and the USBR methods give
zero shear stress at the vertical U/S face but the finite
element method indicates a definite shear stressevalue.
The finite element stresses differ considerably from the
other two methods at and near the base. The Davis and
the USBR methods underestimate shear sfress Txy at the
U/s face and they overestimate shear stress at d/s face
of the dam. The Davis and the USBR methods also give
different shear stresses. This difference is more signi-

ficant at the base of the dam.

Fig. 11 shows the stresses due to hydrostatiec
pressure alone for Koyna dam. The finite élement analysis
givés different stress distribution (15) as compared to
the stresées obtained by the Davis and the USBR methods.
This difference is maximum at the base of the dam
where the width of the dam.is large. The finite element
analysis (15) indicates that the bending stresses ( Oy)
under hydrostatic pressure are not linear particularly
at and near the base of the dam. This fact can not be
revealed by the Pavis and the USBR methods. Fig. 33 shows

the shear stresses for hydrostatic pressure alone for the
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Koyna dam. It may be seen that the shear stresses as
‘obtained by the finite element analysis are considerably
different from those obtained by the Davis and the USBR
methods, This difference is also maximum at the base.

The Davis and the USBR methods give almost similar

gtress distribation except for the difference at and near
the base of the dam. For the hydrostatic pressure alone,
the maximum direct tension (07, fig.'11l) 1s underestimated
by the Davis and the USBR methods. fhe maximum difference
being at the U/S face on the base of the dam. The
maximum- direct compression (Jg, fig. 11) is overestimated

by the Davis and the USBR methodse.

1t may be concluded that for hydrostatic
preésure alone, the Davis and the USBK methods give fairly
accurate results for the regions near the top of the dam.‘
But for the regions at and near the base of the dam, the

Davis and USBR methods give highly inaccurate results.

Fig. 12 compares the finilte element stresses
(15) with the stresses obtained by the Davis and the
USBR methods for the case of uplift pressure alone for

Koyna dam. The three methods of stress analysis give

similar distribution of normal vertical stress 0y. The
finite element analysis (15) indicates certain minimum

tension on the base (minor principal stress oy, fig. 12)
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while the Davis and the USBR méthods give small

compression on the base.

It may be concluded that for dead weight and
for uplift pressure, the stress distribution as obtained
by the Davis, the USBR and the finiﬁe element methods is
similar except for the small difference at the base of
the dam. However, for hydrostatic pressure there is a
significant difference in the stresses as obtained by the
Davis or the USBR methods from those obtained by the
finite element analysis (15). Further it may be noted
from figs. lo, 11 and 12 that the finite element analysis
gives certain tension ( Jy) at the U/3 face on the base
¢f the dam under combined Dead weight, uplift pressure
and hydrostatic pressure. This fact is not reveaied by
the Davis and the USBR methods. It may also be pointed
out that the theory of elasticity method also indicates
certain tension ( Uy, fig. 8) at the U/S8 face on the base

of the dam where the width 1s large.

4.3 COMPARISGN OF THT DAVIS_AND THE U
METHODS FOR OTHER LOADS

Figs. 14 and 15 show the static stresses
undeé dead weight only for the Gandhi Sagar and the
Nagarjuna Sagar dams. The normal vertical stress 0y
is identically same for the two methods. This is because
the two methods involve the same assumption for the

calculation of this stress component. The maximum direct
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compression (minor principal stress fig. 15) is almost
linear on all the horizontal planes of the dam. Further
the Davis and the USBR methods give almost similar
stress distribution, except for the small difference

at and near the base., The Davis method gives slightly
less stress values. The difference of the stresses in
the two methods is due to the fact that the USBR method
assumes parabolic shear stress distribution while the
Davis method calculates shear stress based on actﬁal
distribution. The shear stresses as’obtaine& by the
two methods are compared in figs. 8 and 13 for Trian-
gular dam and the Koyna dam. 'As may be seen from figs
8 and 13, the Davis and the USBR methods give almost
similar stress distribution except for the regions at

and near the bage of the dam,

Fig. 16 shows the stresses under hydrostétic
pressure alone for the Gandhl Sagar dam. Oniy major
and minor principal sttesses have been presented. This
figﬁre alsoc confirms that the stress distribution as
obtained by the two methods, i.e., the Davis and the
USBR, is similar except for a small difference which is
siénificant only at the hase. The USBR method gives

slightly higher values.
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Stresses for the dynamlc forces have been
computed by trdating dynamic forces 'as equivalent

statiec forces.

| Figs. 17, 18, 19 and 20 show the stresses due
to hydrodynamic pressure alone for Nagarjuna Sagar,
Gandhi Sagar, Koyna and triangular dam sections respec-

tively. The two principal stresses have been compared
(fig. 17) by the Davis and the USBR methods. The USBR
method gives slightly highef stress, For Nagarjuna
Saéar dam (fig. 17) at base, no compression is indicated
by USBR method for regions at some distance from U/S
face on-the base. While the Davis method indicates
certain compression. The différence in the stresses
as obtained by the Davis and the USBR methods is insig-

nificant at and near the top of the dam.

For other dams, namely, Koyna,'Gandhi Sagar
and Triangular dams, the two methods give similar stress
distribution except for the little difference at and

near the base of the danm.

‘Fig. 23 to 30 show the stresses under
inertial force with three different seismic coefficient
namely, a uniform seismic coefficient, & linear seisnmic

coefficient, and & varying selsmic coefficient.
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Stresses as obtained by the Davis and the
USBR methods compare in a menner simllar to that for
hydrodynamic and hydrostatic pressure loading cases.
The two methods givo similar stress distributions near
the top of the dam. Near the base 6f the dam, the two
nethous give different stress distributions but the
variation of stresses is not very much different, The
USBR mothod gives stresses slightly higher than those
obtained by the Davls method.

OMPAKRISON OF RESS
0

25 OBTAINED FOR THRER
FFMARNT SEISUIC COE |

JEEFICTANT S

Fig. 31 shows the variation of normal vertical
stress (0y) along the height of the dam for different

| dams. The force 1s only inertial force witn three diffeav

rent variations of selgmic coef:icient elong the height

of the dam as discussed in Chapter III,

It may be seen from fig. 31, that the three
variations of seismic coefficient glve considerably |
different stresses near the base of the dam., If the
bagse stresses as obtained for theg three different variag-
tiong of seismic coef{leient are kept equal to those
obtalned for varying seismic coefficlient, the uniform
selsmic coefficlent underestimates the stresses near
the top of the dam.

In order to have a comparative idea of the

stresses for the different variationg of selgmic coeffi-
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cient, the ratio of stress (Uy) as obtained for uniform
seismic coefficient to the sﬁress for linear seismie coeffi-
cient'is shown_in7f1g. 32. The ratio of the stress (Ty) for
uniform seismic coefficient to the stress ( Uy) for varying

seismic coefficient 4s also shown in fig. 32,

It may be seen from fig. 32, that if the base stress-
es ay obltalined for the three varliations of geismie coefficient
are kept equal to the stress as obtalned for varying selsmic
coefficlient, the stresses near the top of the dam, as obtalned
for uniform seismic coefficient are about half the stresses
obtalned for varying seismic coefficient., The:linear variation
of seismic coefficient gives stresses almost 2/3rd of the
stresses obtained for varylng seismlic cocefficient. ;t may be
pointed out that the IS Code 1893 (1966 & 1971) (1i4) recommends
.that the ratlo of stresses obtalned for uniform seismic coeffi-
clent to the stresses obtained for linear seismic coefficient

is 1.5. The same ratio is found as 2.0 in the nresent study.

As discussed above, if the eriterion for comparison
of stresses obtained for the three different variations of |
seismic coefficient is chosen as the equal base stress (or
equal base moment), the uniform geismic coefficient under-

estimates the stresses near the top of the dam. Themefore,

the uniform seismic coefficisnt should not be used for design

purposes. A varying seismic coefficient should be adopted.

Further the ratio of the stresses as obtalned for uniform
selismic coefficlient to those obtained for linear selsgsmie

coefficient 4s not 1,6 (as suggested by IS Code (14)) instead
it 1s found as 2.0.
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It may be concluded that the linear variation
of seismic coefficient gives stress distribution close
to the one obtained by varying seismic coefficient, as
compared to the stresses due to uniform seismic
coefficient. And therefore, a linear seismic coefficient
should be used in preliminary design purposeé¢ However,
for detailed stress analysis, a seismic coefficient based

on the dynamic analysis should be used.

CONCE TIO F _STRESORS AT NECKG

In fig. 31, variation of normal vertical
siress (Jy) is plotted azlong the height of the dam for
Koyna, Gandhi Sagar and Nagarjuna Sagar damss The force
is only inertial force with different seismic coefficient.
For Koyna dam and Nagarjuna Sagar dam, concentration of
stress occurs at the elevationsof the dam where the slope
of the dam face changes‘abruptly. This concéntration.is
even more siénificant ﬁbr the linear and varying seismic
coafficients; It may be concluded that during preliminary
design of the concrete gravity doam, this concentration of
stresses should be checked for.lateral forces. And proper

care shounld be taken for the same,



CHAPTER V

NCLUSIONS

The Davis and the USBR methods give linear
distribution of normal vertical stress (¢ y) on all hori-
zontal planes of the dam. The theory of elasticity
approach (3) indicates that the variation is not linear
for the regions at an& near the base of the dam where
the width of the dam is large. Other stress components,
namely, normal horizontal stress (€ x) and shear stress
(T xy), as obtained by the Davis and the USBR methods
also differ considerably from the theory of elasticity

solution at and near the base of the dam.

For the dead weight aqd uplift pressure the
finite element stresses (15) are in good agreement with
the Davis and the USBR stresses, except for the small
difference at and near the base. However, for the
hydrostatic pressure the finite element analysis indicates
that the bending stress (6 y) is not linear particularly
at and near the base of the dam where the width of the.
dam is large., The Davis and the USBR methods do not

reveal this fact.

For static loads, the theory of elasticity
method and the finite element method indicate a definite
tension (“y) at the U/S face on the base of the dam,
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This fact is not revealed by the Davis and the USBR

methods of stress analysis.

The Davis and the USBR methods give identically
similar distribution of normal vertical stress (sy) on
all horizontal planeé of the dam. But the two methods
. give different shear stresses. This difference is signie
ficant at and near the base of the dam. Further both of
these methods give relatively approximate stress distri-
butions for the regions at and near the bage of the dam
where the width of the dam is large. For preliminary
design purposes either of the Davis and the USBR methods
may be used. However, for detailed stress analysis the

finite element analysis shoﬁld be used.

For calculation of the lateral inertial force,
a varying seismic coefficient along the height of the
dam, based on the dynamic analysis is found suitable.
Hdwever,,for the preliminary design purposes a linear
variation of seismic coefficient along the height of the
dam may be used. For detailed stress analysis, the
dynémic stress analysis using finite élement technique

is recommended. ' ‘ '

Due to lateral inertial forces a stress
concentration occurs at the elevatibns of the dam where

the slope of the dam face changes abruptly., This stress
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concentration should be properly checked during

preliminary stress analysis of concrete gravity dams.
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Method based on Theory of Elasticity (3)

Since the assumption of linear normal stress is
found incompatible with theory of elasticlty for the regions
at and near the bage, therefore, the stress function is so
assumed that 1t sétisfies compatibility 6f stress and
strain and alsoc the boundary conditions at the infinite
limits of plane of the foundation,

Consider a dam as shown in Figure (33a)

Fig. 33a shows the type of loading when
reservoir 1s full, 1If the dam 1s cut along AD, the

equivalent static loading can be represented as in

Fig. 33b.

Then by Sﬁ. Venants prineiple (4) stresses at
distances far from the: boundary will be same for the
two cases of loading (Fig. 33a and 33b).

- Taking origin at A, and the axes as shown

consider the equilibrium of an element inslde the dam.

Positive direction of stresses on an element

are shown in Fig. 33.
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(11)
Assume Airy's stress function '¢' (4) such that

| D .
Xx = —'_a';'él" s e .ee (1)
| _ g |
Yy = * axz '\‘o@f%\j’ es e (2)
= =2 .. (3)
¥y oX ¥y
where,
w = density of water

p = Sp. density of material

g = acel, due to gravity
Xx'ahd Yy = Normal stresses, first letter denote
direction of normal stress and subscript
denote the direction of normal to the
plane on which these stresses are acting.
Xy =Yy = Shear stresses
g = Stress function

Thils stress function satisfies eqbm. equations

for the case of plane stress. Eqbm. Equations are (4)



s ‘ (111)
e, 2X
°x. ‘. _
S x + oY + Fx = 4]
| | e. (4)
dy A, | N
>x + -—L,ay + Fy = 0'

where, (F, & Fy)'are body forces. -
Compatibility of Strains requires (4),
o4 Q._L , _.___g_ 0% _
" g + +
' ax ax ay4

eee (5)

Now it d satisfies Equation (5) anhd also the
. b.c at boundary BABCDFMN, the assumed stress function

will be correct.

BOUNDARY. CONDITIONS {4)

The value of stress function along boundary
AEMNFD can be found from the usual formulae (4). These

are due to the three types of loading as shown.

)]
w rRra s " -



(iV);

(4) An inclined concentrated line 1oéd R, gives
a stress function (4) '

g' = -f“g—— ro Sine | ses  (6)

At

r and 6 polar ¢oordinates measured from

line of action of load.

(B) A distributed uniform pressure Wgh starting at
A and going to infinity (4).

o

a = - %g;‘b[(xz + Yz) + tan‘.l( - %) + XY]’ ona(?)

(C) Weight of the Foundation Material giving (4)

» 3 ' .
ﬂl-n“w—-— - ~ \ F
g = . 1-9 Wg f -—%—n— ‘..‘. se (8)
Y = poissions ratio.

Total value of stress is sum of these three

values as each of these isklinear
. /ﬂ
1.6., g = g' + @" + ﬁl"”

When Reservoir is empty
(1) g =0
(11) Load R in @' is vertical.
g’ i ‘ 0 , c
3 A

Fia A1 .




)

Let x andy represent the component boundéry
forces per unit length of the boundary 'S', Consider
- the Eqbm. of an surface element bounded by dx, dy and
ds. '

Along x - durections .

X ds + Xx‘dy - Xy‘dx = 0 enae (9)

Along Y - direction ¢

v and Yy in terms of

@ from equns. (1), (2) and (3).

Substituting for Xxm X

- o2 32
de«»*"‘éﬂ* ay + —Lax=0

dy OoxX y
and, .
2 4 : 2
=il ] . L2°g "
Yds = (éxg + wpfgy ) dx 5X dy =0
oF 2 2
){ds=--~--(—a'§-'ﬂ dy+-——g—dx)
oy ox y
e w g (28
d (Oy) L er e (ll)
and,

Yds

d(%‘f—’;) + wpgy dx oo (12)




(vi)

Integrating (11) and (12) from I to II on boundary

i I o

[_a__g]‘ = fvas - [weyax ... (e
' 1

2 x4 ,

2 gt :

: = - _ ' ‘oo 3
[ay}l {de (13)

| D
Thus the value of =&~ and —5-%-  can be

determined for all points along boundary as these are

kKnown at A.

Note that RHS of (13) represents the tofal‘

' horizontai'force aéting between points I and II of the
boundary, and the RHS of (14) represents the total
vertical force between the points I and IIIcf boundary,
and the weight of portion under this boundary but above

X axis.

In order to determine the changes in '¢!
between points I and II, consider M, the clockwise moment
of all the boundary forces between these limits and about

point II.
From Fig. (A1)
dMyz-X (y = Yyq) ds - ¥Y( x = XII) ds ... (15)
Using (11) and (12), we get ».
a=-a(2) G-y - add xgp

“ng h(x-xII)dx se e (16)



{(vil)

Integrating {16) by parts between limits I and II we get,

A - ~24¢
M=oy lygp-¥ Ty @

[
2L (xp-0+ Fhaxswpey (roa

or, Since

)

ot o
st fate s fupy
1 L

L i

i ' o
. > ¢
[M]L = %?% Cygr=vyrp) + > Xy ) (xp = x17)

0 L
+[¢]l+jwf>gn (x;7 = %) dx
' 1

Rearranging,

! L
| _Llg . 28 .
U’]L =avp (Yrrcr) v Ogg) (ppexp o+ (M)

I

+ ‘Iw fe v (x- xII) AX. ooo (17)
£

~ So that the value of # and all its derivatives
along the boundary ABCD, can be found as value of %%%—

and %%%— are already known,

It may be noted that the last two terms in

equn. (17) represent the clockwise moment about point II



(viii)

~due to the boundary forces between points I and II and
the weight of the material bounded by the x~-axls and that
portion of the boundary.

Equations (13), (14) and (17) take on a simple
form 1f the boundary between I and II 1s a straight line.
So that if the curved profile of a dam ig divided into a
serles of short straight lines, close enough to represent
it to any degree of accuracy desired, the value of ¢ and
its gradient can be determined at all points by a step by

'step process.

Initial values of these functions are known at poin

A zand D,

Finite Difference Approximation

Having determined the boundary values and
gradients of ¢, it now remains to find their function

at all points inside the dam such thal governing equa-
tion (5) is satisfied.

For this purpose a square mesh (fig. 33) is

drawn and the values of function is considered only at

mesh points,

Taking O as origin ¥ can be explained in
double Taylors series,



{1ix)
oo v0150 x +Aly ¥ag 50 %Ay Xy
| B D 4 2 @
$hg,p VP A50  *dpy XY 4 A LW
» ﬂaga xaya * Al"; ﬁ:f“ ¥ 130’5 35 ¥ ose ¥ higher

dogroe terns , sse (1B}

Joefficient Ap.m of P8 stands for

e BB @
na 6&”;?“

Substitating appyupriata-aoqrdimataﬂ, ang

negloating higher d@gﬁaa terms, 1t cam Le shown
9 ‘g vy rd a0 = 2a%(Ag,0 * Ag,2)

+ Batlng o ¢ LY (19)
By + tho v B, + . ag,, = 8a%(0g,0 + 8 5)

#3zad - a0 * Bgg) eee (200

B + g + fy * ﬁa"" i, = wag o * 4 g)

L 4
*4atla, o * Ag.q) * ANz 08 ses  (21)



(x)

Governing Equation ¢
4 e
Vo # =2a(hy o+ dg ) * 8 A, ese (22)

using (19, 20, 21)

'V4¢ = a‘g‘lzc g, + 2 (-.ﬂs + 0’6 + ¢7 +¢8) +
(Bg + F1p + Fqq + P30
- 8 (ﬁl + wz +¢3 +¢4) ]6-; 'R (23)

which is a finite diff. approximation to equation (17).

Approx. can be made as good as desired by takipg smaller

value of 'a'. Errors involved being of the order of g 6.

Similar equation can be written for all bhe

mesh points 1 the region.

A solution can now be obtained by solving the

system of n equations, obtained for m points considered,

in the interior of region,

Method of relaxation developed by Prof.
Southwell, enables a rapid solution of such gystem

of equations.

Method of Relaxstion (13, 3)

Suppose some initial values to be given to #

at all points of the mesh, chosen as a rough guess of the



(x1)

solution, then equation (23) takes as a form

-8 (d +Uy+03+€,) = F e (28)

F, in general is different from zéro and is called
residual at 0. If Go 1s changed by unity residusl is

changed by 20 and at other points as shown in fig. 33.

If the correction is applied at the point
where largest residual ocecur so as to cancellit; the
residual at surrounding points will change by smaller
corresponding amount. This process of continual correct-

ion is convergent and desired accuracy can be obtalned.

Org of Erro Q d
Approximgtions made are :
(1) Stresses on the line EMNF, which'is at

a2 fixed distance from the dam, are fixed.

(2) The finite difference equations are not
solved completely, as some small resi-

duals usually, remain,



(xii)

(3) Finite difference equations do not
represent exactly bhe differential

equations.

These sources of errors can be reduced as
much as desired by taking ﬁhe line EMNF farther away

and taking the small mesh size.
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C

C
C
C
C
C
C
C
C
C
C
C
C
C

80

THIS PROGRAM CALCULATES THE INTERNAL STRESSES IN CONCRETE
GRAVITY DAMSe THE METHOD OF ANALYSIS 1S USBR METHODe STRES-
SES ARE CALCULATED FOR DEAD WTes HYDROSTATIC PRESSURES
UPLIFT PRESSUREs HYDRODYNAMIC PRESSURE AND INERTIAL FORCES
SEPARATELY. o

THE INPUT INFORMATION CONSIST OF THE MATERIAL AND GEOMETR~
ICAL PROPERTIES OF THE DAM.

THE QUTPUT INFORMATION CONSISTS OF ELEVATION OF THE PLANE
AT WHICH THE STRESSES ARE DESIREDsTHE THREE COMPONENTS OF
STRESSES WITH THE PRINCIPAL STRESSES AT DIFFERENT POINTS

ON THAT PLANE,

THE PROGRAM CAN BE USED ON EITHER OF THE IBM~1620 OR I1BM-7044
THE QUTPUT FORMATS MAY BE CHANGED TO SUIT THE COMPUTER.

WU BT I U 3B U B 35 I I6 U I 3 I T8 I U I 36 I I AT T I3 K S I3 3 F I3 I3 K3 4 WA

DIMENSION Z(200)+E(200)sF(200),BW(200) sALL200)
READ101sILsJLsINDEX '

READ10C» TWeDCoDWaHsFBsDDsALS»CM, YY1
READ1COs (Z(1)sI=241L)

READ1CGOs (E(I)eI=2,1L)

READIOOs (F(1)el=241L)

READICOs (AL(I)9I=241IL) : '
PRINT101sILsJLsINDEX )
PRINTI03sTWeDCsDWoHsFBIDD9ALS 2CMeYYL
PRINTYIOB.(Z(1)s122,1L)
PRINT1039(E(1)sI=2,1L)
PRINTIO034(F(1)sl=241IL)

CONSTANTS

AT=0.666666667

BT=0,33333333

P123,141592653589

PA=904/P1

PSI=le/lb4,

DEE=Q «5%DC

ALP=o 5#CMAL S*DW* (H-FA )
INITIALIZATION

AME0,

AL{l)=1.0

GBsDD

WH=Q,

SIGH=20,

SKGHHEOQ

SI1GHI=0,

SIGMD=0,.

SIGMI=0.

S1GWD=0,

SIGWH=0,

SIGMH‘OQ

SIGHD=0.

SIMD=0,

Wu=0,

BMUeO,
P=0 .



.

411

418

517

414

303

PEHI“O.
pEH“O.
HHT =0,
VH=Q,y

HHY =04

VHY‘O.
ALH=0,

DPH=0,

Et1)=0. Vo
F(I)QOQ

Z‘l’"Oov

BW(l)y=aTwW

DO1I=2.1L

22=2(1)=211=1)

E1=E(1)

Fl=F(I

BW{T)=BWlI=-1Y+ZZ¥(EI+F1}

T=BW{T1)

BR=BW{I-1)+T

Wl=DEE#*Z22+8B

GO TO (ﬁllp&lZyélSsﬁléo@lﬁy@lég&lB;lZBerINDEX
OEAD WETGHT

AML =BT#DCRZZRuFRE 5442
AM2eZ7a0CHBH ([-1 )% (o SH#BW( =1V +ZZ%ET)
AMI=DER*FI (T=ATHZZHF ) %22%%2
AM=AM+AMI+AMZ +AMA+SIGHDRZ 2 #E ]
SIGWD=SIGWD+W]

ECC=,5%T-AM/SIGUWD

SIGMD=SIGUR#ECC

MOMENT IS CLOCKWISE AND FORCE IS DOWN WﬁR@S
60 TO 5G0

INERTIAL FORCE UNIFORM ACCLN.
AlLH=ALS

GO TO 417

INERTIAL FORCE WITH LINEAR VARIATION OF AC’LN.
ALHI=l,~Z(1)/H

ALH2=),,~2(1=1)/H

CGlaBT*#ZZ¥ (ALHLI+24#ALHZ) / (ALHI4ALHZ)
ALH=ALS# (H+(CGY=Z{ ) /H

GO TO 417

INERTIAL FORCE VARRYING SEISMIC COEFFICIENT
ALHl=AL(I-1)

ALHZ2=AL(I)
COL=BTRZZ2¥ (24 #ALHYI+ALHZ2Y / CALHLYALHZ)
ALH=ALH24CGl/22 '

WHl=aWl*ALH
CoI=pTHZZ#(BB+BW(I~1))/88
SIGMI=SIGMI+WHL*CGI+SIGHI#Z2
SIGHI=SIGHT +WH]

HORZ, FORCE ACTS IN D/S DIRECTION » MOMENT IS CLOCKWISE

GO YO 500
HYDROSTATIC PRESSURE
IBF=sZ(1)~FB

IF(2BF 130243024303
P=DW*2BF

LBFls/.BF=27



IFLZDF1)304453044+3089

304 HHY=,54PRZ0F
VHY = HHYBE]
AMHYoOTEHHY# ZBF=VHYS{ o 54 T-EI#ZBFERT)
MOMERT 1S CLOCKWISE
GO TO 302

305 HHYe S5uDW022e(Z0F+2ZBFY)
VHYeHHY®2E ]
CGHHeD TR ZZu (INF42.#ZBF1) /(ZBF+ZBF1)
COHVE 56 T=EI02ZalT
AMHYeHHRY BCGHM-VHY #CGHY

302 CG2=483022n{FI~EIl}
SIGMH= S IGMH+AMHY +S I GHHY Y 24 ST GHH®C G2
SIGHH=S I GHH+HHY
S1G6YMH=51GlVH+VHY
MOMENTIS CLOCKWUSEs FORCE IN D/S DIRECYION
GO TO 500

. UPLIFT PRESSURE
415 GDeGD+E]42Z
ZBF=2(1)~F8
IF(GD-458T) 30693074307
306 WUSDUBZDFH(e58GD+e254T)
DMU 194 758GDBZBF#1 o50Twb 48 GD/ 9 )
BMU25 4 255 2ZBF#{ T=GD ) { o 56 T=ATS (T=GD))
BHU=DW® ( BMU1-BMU2)
MOMENT 1S CLOCKWISE » FORCE 1S UPWARDS
GO TO 500 -
307 U= 58DWAZBFET
BMUSHUBT /6.,
GO TO 500
HYDRODYNAMIC PRESSURE
416 2BF=Z(1)=F0
ZBF 12Z0F~22
IF(2ZBF)300,300+309
309 IF(ZDF1)310+3105311
310 EHY=Z0F®(2,=2BF/(H-FB))/{H~FB)
PEH=ALP# (EHY+SQRT(EHY))
DPH=(PEH-PEN1)/22
HDY =4 582BF ¢ { PEH+PEH1 )
PEH1=PEH
AMHDEHD Y& 2BF #0T
GO TO 308
311 EHY=Z0F0(24~ZBF/(H<FB))/(H~FB)
PEH=ALP# (ENY+SQRT{EHY ) )
HDY =4 58224 { PEH+PEH])
CGHDaB T 22% (PEMH+2,8PEHL) /{ PEH+PEH]L )
AMHD=HDY #CGHD
DPHa (PEH-PEH1) /22
PEH1=PEH
MOMRNT 1S CLOCKWISEs  FORCE IN D/$
300 SIMDaSIMO+AMHD+SIGHD?2Z
SIGHD= SIGHD+HDY



ann

onn

500

30

SUMMATION OF FORCES AND MOMENTS

SIGH=51GYD+SIGHWH=HU
SIGH=~{SIGHI+SIGHH+SIGHD)
SIGM=SIGMD~SIGM] =5 GMH~BMU~STMD

MOMENT IS POSITIVE ANTICLOCKWISE AND I35 ABOUT CsGe OF THE SECTION

HORZe FORCES PGSITIVE IN UPSTREAM DIRECTION
VERTICAL FORCES POSITIVE DOWNWARDS

TT=Tou2

TTT=T#e3

SIGZU=SIGH/T+64#S1GH/TT
SIGZD=51GH/T~6oHSIGM/TT

A=$1GZD

B=12.#S1GM/TTT

Al=ASF]

TAUZU=~E 1% (SIGZU=P-PEH)

Ble=(6e# SIGH/T+2e #TAUZU 4o #ALY /T

Cl=(6e#SIGH/T+3#TAUZU+34 %A /TY

A2 Al14F]

X1sDCH+{ 124 HSIGM/TTT42 *SIGW/TT*Z.*?/T‘?Q*PEH/T,*EI
X2=F It (B4 4#SIGW/TTI=6e#SIGH/TT

X3a (X14X2)RFI4+SIGLDR(Fl=Fil~1)})/22
B2=B1#Fl+X3=ALH®#DC
XQABDC+EI*QQ”‘P/T+PEH/T*SIGWITT“&ZQ*B)
X4D=FI#{ 2ot 5ICGU/ TT«Bl464#SIGH/TT
Xa=XGA+X4B

X6 EI#{DW=Xa+DPH)

X5=X84+ (P+PEH=-SIGZU)H{EI-E(1I~1)) /22
X62ET+F]

X7=={P+ALH#DCHT4PEH)
XB‘“(bo*X7*X6*(12o*SIGH/T+2;*TAUZU+4.*A13)/’T
XB=XB~{28%54L,%X3)/T

C2=CluFI+0,5%X8

X932 (0eHXT=XE6462 0 {3483 ]0H/T+TAUZU+ALYI/ITTT
X=X+ 3, ¥ {XH+X3)}/TT

D2=8T#X9
PRINT2069X19X28X3aX49X54X69XTsX89X9
PRINTZ013AsBsAlsB1sCilsA2,B29C2,D2
PRINT215+2(1)

YmeYY]

DO 2 Jsl,eJL

Ya¥Y+YY)

IF{YeGTaT)YmT

YY=Y##2

YYY=Y#%3

S1GZu( A+BHYIH#PS]

TAUZY=Al+BleY+CloyYY

TAUZY=TAUZY®#PSI
SIGY~AZHB2uY+C2uYY+D2#YYY

SIGY=S16Y®PS]

QASORTI({(SIGZ~SIGY)#e5) H42)4TAUZYRED)
Q=0 5% (SIGY+51G2)

IF(SIGZ-SIGY)130+30,31

SIGP1=Q=-QQ

S5I1GP2=Q+QQ



31
60
61

62
63

1234
101
100
206
200
201
103
215

SENTRY

GO TO 60

SIGP1=0+QQ _

$16P2=Q~0Q o
DIFF=S1GZ~SIGY “
IF(DIFF-0400001161s6162
PHIP1=90,0

GO TO 63 . | o
PHIP1=PA#ATAN{~2 4 #TAUZY/DIFF)
PRINTZOOQY:SIGZ:TAUZY,SIGY,SIGPI,SIGPZ;PHIPl
IF (YoEQsTIGO TO 1

CONT INUE

CONTINUE

INDEX=INDEX+1

GO TO 80

sTOP

FORMAT (2014)

FORMAT (BF10¢4)

FORMAT { 1Xs THXVALUES »9E1144)

FORMAT (1Xs7E1346)

FORMAT (1Xs18HCONSTANTSA»B ¢CETCos9ELLo4)
FORMAT (1Xs9E1346)

FORMAT (40X s3HZ= »F10e4)

END



$10J08
SIBFTC MAIN '
€222 232 00 F12-2-2. 5.8 -2.2. 5. 2 228 202 882 0 L2 20 2 2 Log- 2R 2 2o T 2 T2 2 R R R 2 2T 23 B
C THIS PROGRAM CALCULATES THE IMTERNAL STRESSES IN CONCRETE
C GRAVITY DAMSs THE METHOD OF ANALSSIS 1$ DAVIS METHOD. THE
C STRESSES ARE CALCULATED FOR DEAD WTes UPLIFT PRESSURE, HY=-
C DROSTATIC PRESSUREs HYDRO( N M. PRESSUREs AND INERTIAL
C FORCE SEPARATLYe. THE PROGRAM CAN BE USED ON IBM 1620
C AND IBM7C44 COMPUTER.
CﬁﬁﬁﬁﬁﬁﬁﬁC*Q%u&ﬁ**ﬁ%&ﬁﬁ****%ﬂ%*ﬁ**ﬁ&%%ﬂ*ﬂ**ﬂ‘%**ﬁ*%ﬁﬁﬁ*ﬁ%*ﬁﬁﬁﬁ******%**ﬁ#
DIMENSION DS(400}yUS(400) 9B{L00)+ECL00)sF(400)M(100])
SQRTF{X1=S8QRT{X)}
40 READIyABsHsQsDCoDWeXsYaDD o CMaALPHA
READZ sMsKaNSsINDU
READZ2s (MU} sJ=1s NS}
READIS(E(I)9I=39N)
READLIS{F{I)»1=3sN)
PRINTlllQN’KQNSpINDU;AB;H;G’QC;ﬂpr|Y905;CMpALPHA
PRINYL1Z29iM{JeJ=1sNS)
455 PRINT3,(E(I)elm3sNN)
PRINT3s(F(I)sIn34N)
8‘1’”0.0
B(2)=AB
PSl=le/144,
208 AM=0,0
GD=DD
wHQG.
SX”0¢C
YO0
HHT20.,0
VHHOQ
BMH=0,
BMVH=0,
BM=0,0
BO 1001=34N
SXe5X4X
BIIN=B{I-1)+XH(ELTI)+F (1))
, XI1=B{1)%#3/12,0
GD=GDEXHE(T])
CeSX4Q~H
CleCwX
GO TO (201+202+2039206+2055207) 4INDY
C DEAD WT.
201 Wl S#DCHX#(BII)+B(l«1))
AMlE,33338DCR (X083 )RE(T)ne2
AM2=X#DCHB (11 )# (58D (I=-1)+X#E(]))
AMIz o SHDCHF(II# (Bl ) ~eGOTRXBEF{T ) HXEX2
AME AMEAMIHAM2 4 AM 34X BELT)
telWsl
ECCna 5B (] )~AM/Y
BMY=W*ECC
BM=w-BMW
C MOMERT 18 ANTICLOCKWISE
GO YO 206
C INERTIAL FOR(E



, 202

203
101

102
103
104

45

204
11

10

12

205
1u5

106
107
108

Wz 54DCHIB(I)4+B(I~1))
CGIme3333a)Xe(B(])+42.88(]~ 1)1/(8(13*&(1‘1)’
WH1 W1 #ALPHA

BMeBM+WHI#CC T +WHEX

WH2WH+WH]

MOMENT 1S CLOCKWISE

GO YO 206

HYDROSTATIC

IF(C)Y1015101,4102

VH=0.0

BMHa0,

Cl1=20,0

BM=0,0

GO TO 45

IF(C1)103,5104,5104%

CIaOQ

VHl= SEXEE( T )2 (C+C1)BDY

VH=VH+VH]
VECCu,o33338XRE(])#(2:#C14+C)/(C14C)
BMYHEBMVHeVH1O( o 5B (1) =VECCI+VHB{EL L 1 #X4,54 (B )=BlI~12))
MOMENT 185 ANTICLOCKWISE

Him ¢ SuDuWRCHEH2

BMH=a,33338HH2C

BM=BMH-EMVH

CONTINUE

MOMENTY IS CLOCKWISE

60 TO 206 ' |
UPLIFT Y
IF(GD~s52B(1))10411911

Ha=DURCH (,S4GD+,2948( 1))

W ACTS DOWNWARDS BUT SIGN IS5 TAKEN NEGATIVE FOR UT
BUle, T5RGDH (4 B58B( 1) =0s#GD/9q)

BM2u 252 CH (DI} ~GDI# L o 58R{] ) =~ab6b66TH(B(1)-GD))
BMsDyR(BM1-BM2)

MOMENT 1S CLOCKWISE

GO TO 12

We=DHeCaB(1) 5,5

BMe=-waB(1)/640

MOMENT CLOCKVISE LOAD OQwNHARﬁﬁ
CONTINUE

GO YO 206

HYDRODYNAMIC

IF(C)105+1054106

C120,

8Ms0,

GO TO 108

IF(C1110Te107510C8

Ci=0,

EHY=C1#(2,~C1/0)

FHY=SQRT(ABS(EHY)}

GHY =y 5HCME{EHY+FHY)

HHY =GHY#ALPHARZDWEQ

AHY=C¥(24,-C/Q)

BHY=SQRT(ABS(AHY ))

CHY = 58CME( ARY+BHY)

DHY =sALPHARCHY#DW#Q

HHH = o 58 {DHY*HHY ) #(C=C])
HCG2433330(DHY42 o #HHY ) # (C=C1 ) / { DHY+HHY)
BOM= DM +HHHEHTGAHHT # X

HHT sHHY+HHH

MOMENT CLOCKWISE



206

100
710
711
712
713
714
715

800

DSCI)aW/BI1)+43%BMEBIT)/XT
USTTII=W/B(I)~e5%BM*BIL) /X1
CONTINUE

GO TO (71097119712s713s714)+INDU
PRINTT701

GO TO 715
PRINT?C2

GO TC 715
PRINTT03

GO TO 715
PRINTTOSG

GO TO 715
PRINTT70S
CONTINUE

CMF =4 5%DC%X
IF{INDUSNES L ICMF=O,
DO200JJs14NS
TaMiJdJ)*+2
Vy={

SXm (VU~2 4 ) %X
Bl=B(I)
Bl1=B({I~1)
B2=B(1~2)
B3=B(1+1)
B4=B(I+2)
Ef=E(I)
El=E(I-1)
E2=E{1=2)
E3=E(I+1)
EazE(1+2)
FilsF(1)
Fl=F{1=1)
F2=aF(I=-2)
Fa=F{1+1)
FasF {142}
X1=X%EY
X2aX1+X*EY
X3=X%E3
X4sX34X%E4L
Y1=X%#F]
Y2=Y 1+ X¥F]
Y3uX#F3
Ya=Y34+X%F 4
Bx=B1-Y2
DSI=DS(1)
UsI=UsS(l)
DS1=DS(1-1)



USlaustI-1}

D52=DS({1~2)

US2aysil=2)

D83=DS(141)

US3=US(T+l)

D56=DSt1+2)

US4sUSLT+2)

- DLW 1=CHFeY1

DLW 2=CHF2Y3
DLY3sCMFE{Y4=-Y3)
DLY4=CMFEX3
AlDe(DSI-USI Ve (1e=Y1/BI)4UST
A3D=(DS3-US3)19(1~Y3/B3)4US3
A3U=(DS3-US31#X3/03+US3
A4D={DS54-USE )8 (1e~Y4/B4 ) +USH
FI1D=eStY1#(AID+DSY)
F3D=e58Y35(A3D+DSS)
F3Us,58X30(ABUIUSSH)
FaDeo50(Y4~Y3 )5 (AGD+D54)
TXY1D=(DLW1~FID} /X
TXY1D=(DLY2~F3D) /X

TXY [Ue( DLUG~F3U) /X

TXY3D=s (DLYI~F4UY /X

SY=(0,

DO 300J=14K

BR=Bl~SY

DUL=CMFe (B1482~2455Y+X14X2)
DH2sCHF® (B 4B1~2nS5Y+X1)

DU aCHF& (BI4+D3~2¢#5Y~X3)
CHA=CHFE (DI4B4=2 o #5Y<Xb4~X3 )
Al=(DSI-USI)I#SY/BI+US]
Al=({D51~US1}In(SY=-X1)/81
Al=sAl+U5]
A2=(DS2-US2) 81 SY=X2}/B24US2
A3={DS3-US3 )R (SY+X3)1/B3+U53
AG=(DS4-USH) & (SY4XS) /BE+USSE
FSIe 54 (AL+DSI 288
FS1=e58(0B~Y1)H{A1+D51)
FS2=450(0B~Y2) 8 {A24D52)
F530454(0D+Y3)4(A34D53)
FS8s,58{DB+Y4) #{AL4DS5G)
VisF3S2+Du2~F51
V2=FS14DW1~F5]
V3eFS1+DY3-FS§3
VA=FS3404H4~FSG
TXY1=e 5% (V24V3) /X
TXY1=e 58 {VI4V2} /X

TXY 32,58 (V3+VH) /X



211

212
217
213
214
215

216

220

SUM1= 5% (TXYID+TXY2) ¥ (B1-3V+X2)
SUM3me 5* (TXY3D+TXY3) #(B3~5¥~X3)
TX= 5% ( SUM1=5UM3) /X

IF(SY) 21142115212
TXY1=TXYIU ,
SUMI=oS#% (TXYID+TXYI)I#(BI~SY)
TX= {SUMI=SUM3) /X )

GO TO 2290
IF(SYelLTeX2)SY2X2-Y
IF(SYeEQe(X2=Y))GO TO 300
IF(SY.LESBX)IGO TO 220
IF(SY-B1)215+2165215

SY=BI-~Y

GO T0 300

TXY1I=TXYID

TX=~SUM3 /X

Al=AT#PS]

TXYI=TXY[#PS]

TX=eTX#PEL
VIMI=(AI-TXIRR244 4 TXYI8%2
VAM= S%#SQRT(VIMI )
SAM= 5% {AT+TX)

. PidA U= SAM+VAM

300
200

AR EL R I

111
112
701
702
703
704
705

PMIN=SAM=YAM

ANGLE= ¢ B¥ATAN( 24 #TXYI/(AI-TX))
ANGLE=ANGLE#18Ce/3414159265

PRINTS 2SXoSYsATsTXYI s TXsPMALyPMINJANGL 2
IF{SY.CEBIIGO TO 200

S5Y=SY+Y

CONTINUE

INDU=TNDU+1

GO TO 208

STCP

FORMAT(8F1044)

FORMAT(2014)

FORMAT(1X932F442)

FORMAT(1X%+8E1546)

FORMATUIXs6164910F10e4)

FORMAT({1Xs2014)

FORMAT{ # STRESSES DUE TQ SELF WEIGHT ONLY )
FORMAT(* SYRESSES DUE TO INERTIAL FORES OWLY #) ,
FORMAT(# STRESSES DUE TO HYDROSTATIC P{ZESSURE ONLY#*)
FORMAT(* STRESSES DUE TO UPLIFT ONLY#) '
FORMAT(# STRESSES DUE TO HYDRODYNAMIC JRESSURE ONLY #*)
END :

SENTRY
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