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SYNODS 1S 

Critical evaluatic.n of the ?xisting literature on 

dynamic and earthquake forces on pile foundations embedded 

in .soils, reveals the need for further studies on this subject 

This thesis presents the theoretical and experimental 

studies which were performed, to investigate the behaviour of 

pile foundations under dynamic loads, particularly earthquakes. 

The investigations have been carried out in a logical and 

sequential manner. 

The soil pile (physical) syst'm has been idealised as 

a lumped-mass-spring system. The vibration characteristics 

of this rrr)del has been determined with the aid of, a transfer 

s:olutif.>n appr?ach. Suitable numerical techniques and computer 

programmes, have hei evolved for this purpose. 

The performance of the mathematical ntdel and the 

method of analysis have been tosted,by predicting the dynamic 

resp, nse of piles embedded in soils in which : 

1. S.)i1 modulus can be considered to remaiT! c̀oonstant with 

depth. 

2. Soil rtr~dulus can be. considered to vary proportional to 

depth. 

Using - these approaches, several' pile cases of care-

fully varied soil=pile param t`o.r values have been analysed. 



Analysis of the dynamic response of such piles problems 

resulted in the development of seyeral n.)n-dimensional design 

curves, of practical value. 

Using these non-dimensional design curves it would be 

Possible, to: predict, upto significant modes of vibrations: 

(1) the natural frequencies of soil-pile systems. 

(ii) the normalised model quantities of deflection, 

rotation, bending moment and shear along the 

entire length of the piles, 

The non-dimensional curves have been obtained for the 

following cases of practical significance : 	 a  

1. Pile top free to rotate conditions, 

2. Pile top fixed against rotation conditions. 

3. Piles with non-  dimensional maximum depth factor, Zma X = 1,  
2, 3, 5, 10  and 15. 

For the case of piles embedded in soils with soil 

modulus remainirn, constant with depth, the soil-pile system 

has also bjidealised as a continuous system model. Using 

the above model, independent solutions and computer programmes 

have been developed, for evaluating the dynamic response of 

Piles 1der pile top free to rotate condition. Each of the 

pile cases analysed with lumped mass solutions, has also 

been studied with these procedures. Thus the adequacy and 



correctness of the lumped mass solutions were established. 

Also, the dynamic behaviour of piles have been studiel 

:thzough carefully co'nductpd lateral vibration tests..on full 

..`size prototype 'piles. These studies provide information on 

d fferent 'types,`Gf piles embedded in varying soil-types. For 

• in--situ determination of material constants under dynamic 

conditions, a logical method of interpreting the lateral vibrc 

tion tEast results has been give 	Certain guide lines for mat 

erial constant values for use in preliminary designs have been 

.. provided. 

The validity of the theoretical solutions have been 

verified by comparing experimentally observed quantities with 

the predicted ones*  

The use of non-dimMsional curves have been demons-

trated by solving two practical problems. Also, the short-

c omin,gs and further applications of the theoretical solutions 

and nt de'ls have been discussed in detail,. 

Based on these theoretical and experimental studies, 

the dynamic behaviour of the soil-pile sym and the factors 

which influence the dynamic response have been discussed in 

a detailed manner. Based on these studies, logical conclusions 

have been drawn and detailed, 

Thus for the first time (as of 1974) the dynamic 

behaviour of the piles have been investigated in a systematic 
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manner t benefit the practising engineer to the maximum. 

The non-dimensional solutions which are basd on logical 

idealisations and methods of analysis, c,-)uld be used to 

obtain Solutions, to practically, any type of pile embedded 

in any spoil type. 	By using these solutions, there is no 

need to enter the complexities of any dynamic analysis, 

since, they are backed up by realistic consideration of soil-

pile interaction mechanism, the advancements in structural`' 

dynamics and above all the available information „f soil_ 

pile interaction phenomena. 

All the qualifying variables which control the dynamic 

response of piles embedred in soils have been taken into 

account. 

Thus, the presented work provides a reasonable solution 

to this c :%mplex design problem and offers several advantages 

over those solutions which exist in the literature. 
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Note : The units are expres ed in units of force (F), 
length (L) 	and time CT). 

Symbol Units 

c Viscous damping coefficieit 

d Diameter of the pile  

ema x Ma Ximum  void ratio  

emirs Minimum void ratio 

f n Natural fret uency in cycl s per sec. 
subscripts, 	if used, 	denotes-  the 
mode numbers; with prime for identi- 
fying pile top fixed against rota- 
tion condition 

• 
g Aacc leration due to gravity LT-2  

i Denotes ith station or ith. 	mass - 
point 

j Denotes jth station or jth 	mass 
point 

k Soil modulus F - 2  

k Soil modulus at any depth, 	x FL`2  x 

m Mass of a segment ; 	subscripts, 	\ FL 'T 2  
if used, identify the mass location  

n Number of division points 

n h  Constant of horizontal. subgrade FL 3  
reaction 

p Circular natural frequency., in radians 
per sec.; 	subscripts, 	if used; 
identify the vibration, made number: 
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Symbol 

r Denotes rth. 	station or mass at 
any division point r. 

t Indicates time function 

U Particle velocity 

v Velocity 

v(t) Displacement variation 

w Forcing frequency 

W Circular natural fr1ucncy in 
radians per sec.; 	subscripts if 
used denotes the mode number with 
prime for identifying pile top 
fixed against r tati.on condition 

x Depth co-ordinate ; 	depth 	x 

d x Length of a segment 

y Total deflection 

yb  Deflection due to bending defor- 
mation 

z Non-dimesional depth factor; 	depth 
devided by relative stiffness factor 

A Area of cross section of the pile 

A Projected area of the pile per- 
pendicular to the stream velocity 

Projected area of the pile perpAndi- 
cular to the soil_.  reaction. 

B Width of the pile 

Units 

L 

L 

L 

L 

L2  

L2  

L 
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Symbol 	 Units 

CD 	Coefficient of drag 

CM 	Inertial coefficient 

C11, C21, Coefficients dependent on 'p' 

031' C41 

E 	Mdulus of elasticity of pile material 	FL-2  

F 	Indicates force 

F.) 	Maximum dynamic force under vibra- 	F 
tory loading condition 

i 
FD 	Drag force for piles embedded in a 

fluid 	 F 

FM 	Force due to inertial effects of 	F 
the roving fluid 

G. 	Nbdulus of rigidity of 'pile struct- 	FL-2  
ural material 

I 	MDment of inertia of pile section  

K 	Overall-stiffness of the soil-pile 	L 
system 

K1 	Iden tifi s the spring attached to 	FL"1  
the top mass and indicates the spring 
constant value 

K 	Identifies the spring attached to any 	FL-1  
r 	intermediate s to t it n or mass point, 

'r', can take values .from 2 tri n, it 
being any number. The notation also 
indicates the spring constant value 
at the defined •mass point 	. 



Un its 

L 

L 

FL 

FL'  T 2  

FL 

Symbol 

L 	Length -)f the pile 

L 	Embedded length of the pile s 

M 	ending moment at any sectio n 

Mt 	Miss lumped at top of the pile 
9 

Mmax 	Maximum earthquake induced wmq1ts 
considering root mean square addition 
of contributions from different rrr? des 

Earthquake induced bending moment 
of the ith point in the rth. mode 

Standard penetration t-st values 

R 	Relative stiffness facts r; - for the 
case of piles embedded in S,_' ils 
assuming sr it m-? dulus to remain 
constant with depth. Relative stiff-
ness factor is defined as.  

CI 

Sa 	Spectral acceleration 

Sd 	Spectral displacement; subscripts 
if used, identify the Sd  values, 
('rresponding to the period of the. 
indicated vibrati )n mode 

S 	Spectral velocity 

T 	Relative stiffness factor for the 
case piles embedded in soils 
assuming soil modulus to vary pro?- 
portional to depth; k =n1 x 
11- f 	 x h ` is defined as  

EI 
X51 n h  

FL 

• 

LT -2  

L 

L 
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T 

Symbol 

Ti 	Time period c._)rrespz nding to first 
mode ofvibrati-j n, pertaining to 
pile top. free to. rotate condition. 
Prime used t., identify pile top 
fixed against rotation condition. 

T2 	Time period do trespo nding to second 
mode f vibration, pertaining to 
pile top free to ,rotate condition, 
Prime used to identify, pile top 
fixed against notation condition. 

T 	Time period corresponding to third 
3 	mode of vibration 

V 	Shear force 

Smax 	Maximum earthquake induced 'shears 
considering rco t mean s eu,a re addi-
tion of con tribution$ from diff-
eren t nudes 

S i~ 	Earthquake induced shear of the. ith. 
p int in the rth. mode 

Safe load carrying capacity of piles 

Y 	Deflection`, co-ordinate perpendi- 
cular to pile axis 

Earthquake induced deflection oft 
the ith. point in the rth. rno d e 

Ymax 	Maximum earthquake induced deflection 
considering- r?ot mean square addition 
of-  contributions from different Eludes 

Zma x 	Non-dimensional maxi num depth factor. 
Defined  as L5, for piles embedded in 

.R 
soils assuming constant values of soil 
modulus with depth. Defined as , 
for assuming soil modulus to vary 
proportional to depth 

T 

T 

F 

F 

F 

F 

L 

L 

L 



Symbol 	 Un its 

List of Non-dimensional coefficients 
based on lumped mass analysis; app-
licable to piles embedded in clay 
type soils, assuming sc it modulus to 
emai n constant with depth, k x  = k 
constant). 

Note: 
(i) Subscripts, if used in a symbol, 

identif.i ;-ss the vibration mode 
number 

(ii) Symbols without prime have been 
used to identify - pile tip free 
to rotate Condition 

(iii) Symbols with prime have been used 
to identify pile top fixed 
against ratation conditions 	• 

	

Ayl 	Non. dimensional normalised modal 
deflection coefficient corresponding 
to first mode of vibration 

	

Ay2 	Non-dimensional normalised modal de- 
flection coefficient corresponding 
to second mode of vibration 

	

Ay3 	Non-dimensional normalised. modal deflec- 
tion coefficient corresponding to 
third node of vibration 

	

X81 	Nc> -dimensional normalised modal rota- 
• tion cuefficieht corresp)nding to 

first mode of vibrati ri 

	

Ae2 	Non-dimensional normalised -modal rota- 
tion corresponding  to second mode of 
vibration 

Non-dimensional' normalised modal rota- 

	

83 	'tion coefficient corresponding'to third 
mode of vibration 



Units Symbol 
:A m1 	N)n-dim(,nsi un?. norm..liskad t :Ddal 

. b nding moment coefficient carr-~s;-
. pending to first n0 de -)f vibrations 

Nc,n'di moht.t(~f a1 normalised rro dal 
b?n ding rm men t coa e f 1 ci en t cirrus-
pending to third n de of vibxatic:►n 

!A S1 	Nn-dimensii►riaj .notmalined r :)dal 
shear cr efficient Ge re sponding to 
first n de of vibr tion 

Asa 	Non-dimension 	wwi al nrmalisod modA1 
shear coefficient corresponding to 
third i de _nf vibrition 	, 

FeLl 	Dimensionless, frequincy fcto' 
corresponding to first nde of of bra-
tin. Pi14s embedded in clay type sc x.15. 
Solutions based on lumped'm<a ss analysis. 

Fc L2 	Dimensionless frequency factor corres- 
ponding to secr•nd rr 7de. of vibration. 
Piles embedded in clay type sc?ils, 
Scluti.. ns based n lumped mast anilysis 

FcLS 	Dimensionless frequency factor, . c )rres- 
pending to third m ode of vibz tine. 
Piles embedded in clay type soils. Solu- 
tions based on lumpod mass analysis. 

z 	Non.dimensL nal depth factor equrAls 
x/R ; 	;.._ ~ 

zmax 	Non•dimensir..na.i maximum depth factor 
equ a 1 s L5/R; L. 	embedded length of 
the pile 
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Symbol 
	

Un its 

List of non-dimes si :anal ccs off is .Fnt s based on conti-
nu,sus system analysis (rr del) I applicable to piles 
&bedded in clay type s Us, assuming coil modulus 
to terna1n t nstant with depth, k X - k (cinstant) 

A 	ton.. dimensional n-,, rma1iscad nodal 
def section coeff isz -)nt c'irr:asponding 
to first ft)de of vibrati:)n 

	

Ayc2 	Non-dimensional no fr lised rmdal def- 
lection coefficient corresp.nding to 
second made of vibration 

	

8 c1 	Non"dimensjona1 •n rmalised nidal rota- 
tion  co of f is iem t cis rrssp? riding to 
first rin d e of v fibra t t:, n 

	

8c2 	Nx►edi +ensiona1 normalised medal rota- 
tion coefficient corresponding ti 
second mode of vibration 

	

Arcl 	Non-dimensional normalised nt dal bending 
rn_)ment co efiicigt corresponding to 
first ride of vibration 

	

'mc2 	N'n-dimensional n.pzn11sed .^tidal 'ending 
moment coeffisim-nt corresponding to 
second mode of vibration 

	

~scl 	non-dimer si-~nal normailsed modal shear 
,coefficient corresponding t' first 
mode of vibration 

	

A SC2 	None-dimensional nol 	lised medal shat 
coefficient corresponding to second mode 
of vibratiu n 

	

pool 	Difensi: rises frequency factor corrns 
ponding t -, first rm de if vibration, 
Piles embedded in clay type sc)ils. 
Soluti,)ns based on Continuous system 
analysis 
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Symbol 	 Units 

Fce2 	Dimensionless frequmicy factor 
corresponding to second mode of 
vibration. Piles embedded in clay 
type soils. Solutions based on 
continuous system analysis 

List of non-dimensional coefficients based on lumped 
mass analysis; applicable to piles embedded in granular 
$=ails, assuming 5r:il modulus to vary pir:pprtional to 
depth, k = 'h" x . 

Note: 
(i) Subscripts, if used in a symbol, identifies 

. the vibration ri de number 

( ii) Symbols without prime have been used to 
• identify pile top free to rotate condition 

(iii) Symbols with prime have been used to 
1ddnt ify pile top fixed against r)tation 
con diti ;on. 

Byl 	Non -dimensional normalised .modal 
deflect k n coefficient corresponding 
to first mode of vibration 

By2 	Non-dimensional normalised m;dal deflec- 
tion coefficiit corresponding t F second 
mode of vibration 

B 	Non-dimensional, normalised modal rota- 
tion coefficient corresponding to first 
mode of  vibration 

B02 	Non.-dimensional normalised n )dal rota- 
tion coefficient corresponding to second 
mode of vibration 

B 	Non-dimen sioona l n:.irrnalised nodal bending 
moment coefficient corresponding to 
first mode of vibration 
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Symbol 

Bm2 	Non-dimer sirna1 normalised W dal 
bending moment coefficient corres-
ponding to second mode of vibration 

Units 

Bsl 	Nc,n-dimensional normalised modal shear 
coefficient corresponding  to first 
mode of vibrati__n 

Bs2 	Non-dimensional normalised modal 
shear coefficient corresponding to 
sec,;nd rrrde of vibration 

FSLl 	Dimensionless frequency fact:.)r corresi 
pen ding to  first rw,  de of vibration. 
Piles embedded in granular Soils. 
Solutions based on lumped mass analysis • 

FSL2 	Dimensionless frequency factor corres- 
ponding to second made of vibration. 
Piles embedded in granular type soils. 
Solutions based on lumped mass analysis 

z 	Noon-dimensional depth factor defined as 
x/T, where 	_____  

FI --- rs 

Zmax 	Nondimensional maximum depth factor 
defined . as 	'Ls 

Logarithmic decrement 

Weight density of the pile structural 	FL 3  
material 

1) d 	D•ry den sity of the s.)il 	 FL-3  

Damping co -efficIen t or damping ratio 

Mass density of the pile structural 	FL 4  T 2  
material 



Symbol 	 Units 
I 	Shape factor 

0 	Rotat ion at any point 

~ 	Earthquake induced rotation of the 
ith. p; int in the rth. mode 

Amax 	Maximum. earthquake induced rotation, 
c on si, derin g root mean sq u"re. addition 
of contribution from different modes 

Normalised modal bending moment in the 
rth. mode, without prime identifies 
pile top free to i otate condition; 
with prime idents f i as pile top fixed 
against rotation condition 

c(S( ) Normalised shear in the rth rode; 
without "prime identifi?s pile trop 
free to rotate condition; with prime 
identifies pile top fixed against 
rotation condition 

(D(y( r) ) Normalised modal deflection in the 
rth. mode. Without prime identifies 
Pile top free to rotate condition. 
With prime identifies pile top fixed 
against rotation condition 

(Dl6( r) ) Normalis d modal rotation in the rth 
mode; without prime identifies pile 
top free to rotate condition; with • 
prime identifies pile top fixed 
against rotation condition 

(r) 	M)de participation factor in the rth. mode 



NOTE 
Un it 

FL 

(r) 
	

O) s d( r) 
F 

ID (5(r) ) 	Sd(r) 

(Y(r)) 
	9d(r) 

L 

(D (© (r)) 	sd(r) 
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After Earthquake 291 

Fig • 2.1 Wave Forces on a Pile 292 

Fig. 2.2a Force Time Plot During Pile Driving 290 
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Fig • 2.3 El-Centro California Earthquake of May 18 91940 29.4 

Fig. 2.4a Vertical Vibration Test - Setup 296 
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Fig. 2.5 Resonant Frequency Under Vertical Oscillation 
of a Pile 29'6 

Fig. 2.6 	Chart for Vertical Frequency of Piles 	297 

Fig• 2.7 	Chart for Determining Horizont al Frequency of 
Piles 	 292 

Fig. 2.8 	Soil Pile Model for Determining Forces During' 
Pile Driving 29 

Fig. 2.9 Simplified Structural Systems Equivalent 
Cantilevers 300 

Fig. 2.10 Idealised Clay Medium 301 
Fig. 2.11 Idealised Structural System 301 
Fig. 2.12 Mechanical Model for Beam Column Idealisation 302 
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Fig. 3.5a Elastic and inertia Forces on an Element 308 

Fig • 3.5b Transfer Operation 309  

Fig. 3.6 Deflections and Forces in a Segment 310 

Fig. 3.7 Design Spectrum Curves 311  

Fig. 3.8 Non - Dimensional Frequency Factor Versus 
Relative Stiffness Factor - Pile Top Free to 
Rotate - First Mode of Vibration 312 

Fig • 3.9 	Non - Dimensional Frequency Factor Versus 
Relative Stiffness Factor - Pile Top to 	312 
Rotate - Second Mode of Vibration 

Fig. 3.10 Non - Dimensional Frequency Factor Versus 
Relative Stiffness Factor - 	 313 
Pile Top Free to Rotate - Third Mode of 
Vibration 

Fig. 3.11 Non - Dimensional Frequency Factor Versus 
Relative Stiffness Factor - Pile Top Fixed 314 
Against Rotation - First Mode of Vibration 

Fig • 3.12 Non - Dimensional Frequency Factor Versus 
Relative Stiffness Factor - Pile Top Fixed 315 
.Against Rotation Second Mode of V:ibr aL i pn 

Fig • 3.13 Non - Dimensional Fre quency Factor Versus 
Zmax - First Mock of Vibration 316 

Fig. 3.14 Non - Dimensional Frequency Factor Versus 
Zmax - Pile Top Fre 	To Rot ate.. - Second. 317 
Mode of Vibration 

Fig. 3.15 Non - Dimensional. Frequency Factor Versus 
Zmax - Pile Top Free to Rotate - Tiiird Mode 318 
of Vibration  

Fig. 3.16 Non _ Dimensional Frequency Factor Versus 
Zmax - Pile Top Fixed Against Rotation - 319 
Second :,'ode of Vibration 

Fig. 3.17 Modal Deflection Versus Depth - First Mode 
1 320 
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Fig• 3.21 Non - Dimensional Deflection Coefficient 
Versus Depth Factor - Pile Top Free to 324 
Rotate - First Mode of Vibration 
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Fig. 3.33 Non! _ Dimensional Rotation Coefficient 
Versus Depth Factor _ Pile Top 	i.x ed Against 
Rotation - First Mode Of vibration 338 
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Fig. 4.2 	Non - Dimensional Frequency Factor Versus 
Relative Stiffness Factor First Mode of 
Vibration  
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CHAP TE R _ I 

INTRODUCTION 

1,1 GENERAL 

There- is increased awareness . to-day (1974) , amongst 

en gin eering=professi on, of the imp ort ance of foundation 

support conditions in controlling the behaviour of struc-

tures - during earthquakes, Analysis of damages to 

engineering structures in the past earthquakes such as 

Bi he.r-N ep al (1934), Mexico (1958) , Niigata (19 64) and 

Alaska (1964) have, clearly demonstrated that, for safe as 

well as ,econcmical earthquake resistant designs, under-. 

standing of the behaviour of foundation_soil system as a 

primary consideration. Hence it i s obvious that the extent 

of damage to the structures are dependent predrminantly on 

the type of fcultdations and soil conditions; 

In this context, pile foundation is one of the cunmon 

type of foundation adopted in unf~.vr.urable soil conditinfs. 

Behaviour of such foundations under dynamic loads has not been 
fully studied and offers considerable scope for investigations. 

Considering increasing construction activities in seismic 

regions.,there is an emphasised need to understand the 

beha:u cu:r of pile foundations under dynamic loads through 

expe,rjmental and theoretical. investigations.. 

During earthquake excitations an element of soil -pile 

system in the g-round , is-. su-bj.ected to a ccmplex systeji. of 



stresses resulting from .the erratic sequence of ground 

motion. In many earthquakes the major part of the dynamic 

stresses and defornations may be attributed to the upverd 

p rcpagati on of shear waves fron the underlying soil '_'yers. These 

dynamic stresses are time-dependent and change in magnitude 

and 'reverse in direction many times daring an earthquake. 

Also, these dynamic stresses or loads caused by the 

earthquakes may vary along the embedded length of the pile. 

This would result in varying def onmati ons, sl cp es, bending 

me ents and shear forces 4th depth of embednent. 	The 

magnitude of these stresses, and deformations are controlled 

mainly by the interacts cn effects of soil vaf th the pile. 

1.2 CURRENT P RACTI CE S 

Currently, aseismic designs of piles are performed. 

at best by determining the natural fr?quency, of piles to 
_ ~~ h n___ 	

i
, 1__ - 	

a
1._.L .9 LL 	• J. 	.2 +dV i U `u d5 	t * i~c % 	 tl -'y 	 V~ ud tiii~ 	 LUU 	 d 	 t ...__,. resSes 

through pseudo-static analysis. The latter part would 

result in an easy and interesting solution. However, in 

order to achieve this effectively, at first there should 

be a clear knowledge of the effect of earthquakes on pile 

foundations. Unfortunately a solution to this problem is 

not available as yet (1974). 	Hence, the equivalent static 

loads are in general taken arbitrarily as same percentage 

of the sustained vertical loads. 
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Alternatively, the total lateral load applied to the 

fcund3 ti on is taken to be the base shear computed in the 

dynamic analysis of super--structure considering its fixity 4th 

the base. 

Deternination of the natural frequencies of soil- pile 

system was attempted by Hayashi et al (1965), Prakash and 

Shafrna (1969) and Gray (1964) through so called "equivalent 

cantilever" methods. Herein, the pile-soil systen is 

idealised as a massless equivalent cantilever wii.t h a single 

concentrated mass at the top. The natural frequencies of the 

cantilever Is dete3 pined' using Raleigh's theory. Different 

app ro21ches have been adopted to detenine the equivalent 

cantilever lengths: In general, they are taken to be the 

distance from the top of the pile to the first point of zero 

deflection when the pile is analysed as a beam on elastic 

foundation subjected to a horizontal static load. The 

frequency of the idealised system so determined is checked 
for resonance against the exciting frequency. '  

The current practice, based upon above concepts is 

more or less arbitrary and there is a' strong case for. 

scientific investigation, of the problem, which has been 

attempted in this thesis. 

• 1. 3 RJ JI R~4 :NTS OF SOLUTIONS 

,Unfortunately there are no recorded data of measure-
meets on pile foundations during earthquakes nor have 
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.. exhaustive vibraticn tests on piles been conducted. 

However, Fukuoka (1966) has provided a very interesting 

infornaticn regarding the deforned shapes of steel piles subject- 

ed to Niigata (1964) earthquake. The steel piles were of 

60 an diameter with a wall thickness of 9 to 6 mm. The 

piles were supporting Showa bridge, the profile of which is 

given in Fig 1.1. The. pile of pier no. P4 was taken out 

after the earthquake. Fig 1.2 illustrates the deforned 

shape of the pile, together vd th the soil conditions near 

the site. The de f o~rn a ti on as it can be se on i s of a ben d- 
ictg type . 	The above in fom ati on is perhaps the only 

recorded information on the mode of deformation of piles• 

during earthquakes 

(VTherefore considering such action of earthquakes, any 

logical solution of the problem, must include along the 

entire length of the pile determination of: 

(l) QeIVI111d1.1LJ11s namely lICLiet+t.iv 	and rotations.  

(ii) induced bending manent and shear forces. 

In other words it is necessary to dete3nine the total 

response of pile subjected to earthquake excitation. Now, 

as the f requ do cy of vibration cU xi n g an earthquake is a 

varying phenomenon it is also necessary to determine the 

above quantities fo.r.different - ;nodes of vibration. Further, 

in order to avoid resonance or quasi reasonance conditions, 

it is also necessary to deteirnine- the natural frequencies 
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of the soil-pile system under these modes of vibration. 

he response of the pile during earthquakes depends 

upon the nature and type of soil, and the restraints offered 

by the super structure at the pile tcp. 	Also, the load 

carried by the pile, the pile end conditions as well as the 

nature of the ground motion seem to control the behaviour. 

Critical evaluation of the existing literature on the subject 

emphasisethe importance of the following aspects 

Wil. Choice of a proper mathematical model to idealise 

the real system.  

2. To develop an easy but sufficiently accurate 

method of analysis for det.ernining the pile 

response So that they can be used conveniently 

by practising engineers. 

In his critical review On dynamic and earthquake 

forces on deep foundations Nair (1968  has also ci early 

emphasised the need for such an approach. )) 

For the problem of preserit nature there sees to be 

need for .;:dynamic analysis repeatedly, since piles are one of 

the c cmm on type - -,of foundati ons in use. Therefore it would 

be advantageous to devel ep non-dimensi onal solutions based 

on the determined response of vAde varieties of pile founda-

tions of different. characteristics. This, if achieved would. 

enable the designer to determine the response of the pile 

v4thout having required to perforn dynamic analysis at 
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every instant. Considering the complex nature of the 

dynamic problem foiniidable canputational effort may be 

needed for' tuch an approach. Herein, for such an attempt 

digital computers' have been used for ease in canputational 

efforts. 

1.4 SCOPE OF STUDY 

• Broad outline of the investigation carried cut on the 

dynamic behaviour of piles 1s  given below. Detailed dis-

cussions m various aspects would appear in the relevant 

chapters. 

(1) A lumped mass mathematical model for idealising the 

mass distribution of the pile has been chosen. The masses 

are connected by elastic 'weightless bars possessing the same 

elastic properties as that of the pile section. The 

interaction effects of the soil are considered by treating 

the soil as independent closely spaced elastic springs 

conne ed at mass points. In reality the soil idealisation 

is a V nkl -er mode.. Evaluation of spring characteristics is 

considered through concept of modulus of subgrade reaction 

theory. The vibration characteristics of the pile were then 

determined generating transfer solutions. For executing the 

analysis computer programmes were prepared. 

(2) The workability of the idealisation and method of 

analysis in determining the response of the piles have been 



tested for 
(i~ piles embedded in soils assuming soil modulus 

to remain constant 	th depth (typical of pre- 

loaded clays) 

(ii) piles embedded in soils assuming soil modulus to 

vary proportional to depth (typical of nomnally 

consolidated clays and granular soils). 

By., considering the above tv,.o foams of variation 

of soil modulus with depth, practically, information of 

response of piles, embedded in almost any type of soil can 

be obtained. 

( 3) V. .th the technique exhaustive parametric studies have 

been carried out to analyse the vibration characteristics of 

wide variaties of piles in the significant modes of vibration. 

Piles of different sectional properties embedded to different 
lengths in different soil types have been studied. The 

effect of variations in sustained loads has also been inves-

ti gated. 

( 4) The above param.-tric• studies have been -:carried out. for 

pile tap free to rotate conditions' and pile top fixed against 
rotation conditions. 

( 5) The effect of soil strength has been considered by 

way of carefully varied values of soil modulus in both the abov( 

types of variations. 

e 
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(6) For the case of piles embedded in soils assuming soil 

modulus to remain constant vii th depth, the soil-pile system 

has been idealised as a continuous system model. With the 

above model, independent solutions for pile top free to 

rotate conditions have been developed. Each of the pile 

cases analysed with the lumped mass solutions have been 

studied here also.- This enabled in assessing  the adequacy 

of lumped mass models as well as resulted in a better under-

standing of the pile behaviour. 

(7) Detailed experimental investigations on full scale 

fi el d piles .mb 2dod in clay and sand have been execute 

A method has been proposed for detezmining the material 

constants of soil-pile system as required in any dynamic 

analysis: 

( 8) 	A review of all pertinent literature in the field of 

pile f mild ati ̂via, Subject; ta to earthquakes and other dynamic 

loads Is also given.  

01'' 
1.  5 CU4 Q.UDI NG IIMARKS 

The direct result of the studies reported in the, 

thesis is a better understanding of the, dynamic charactexistics 

of soil-pile system. 

More imp ortantly, for the first time (as of 1974) , 

easy and practical solutions to this complicated problem, 



have been provided by way. of non-dimensional design cu xves 

for p redi'ctin g 'the dynamic characteristics cf soil -pil e 

systE S. 

._These non-dimensional solutions have been possible 

because of: 

1. the adopted logical and realistic math(Tnatical idealisa-

tion of the soil-.pile systems. 

2. the p erfozmed analysis and the adopted numerical ,,techniques, 

3. the` formidable c,cmputation effort for enoianous`pile 

cases vAth the help of digital canputer,.s. 

With the presented solutions practically any type of 

pile embedded in any soil could be analysed, 	thou t going 

into the complexities of dynamic analysis. 

Also, a procedure for determining the material 

constants of soil-pile system in-situ have be i..,' p rovided, 

In the reported study almost all the qualifying 

variables of practical significance, which control the dynamic 

response have been taken into account, .. 
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CHAP T.E R _II 

REVIEW OF LITERATURE 

2.1 I N ThODU CTI CN 

2.x.1 GENERAL 

Especially in poor soil conditions pile foundations 

are used to transfer effectively the loads of engineering 

structures to the surrounding soil. In general pile founda-

tions are subjected to vertical loads, lateral loads and 

moments. Sufficient information is available to understand 

and estimate the behaviour of piles subjected to sustained 

vertical loads, (l yerhoff (1951), Terzaghi and Peck (1967) 

and Mesio (1968) ). 

2.1.2 INF034ATION ON SUSTAINED LATERAL, LOADS 

While examining the effects of earthquakes and other 

types of dynamic loads on the 55il pile system, it would be 

advantageous to ,know the available information on the subject 

of pile foundations subjected to static lateral loads. Though, 

exhaustive information is available in this regard, herein, 

certain salient aspects would be examined . Informative 

review in this direction has been detailed by Davisson (1960) , 

Prakash (1962) and Srivastava (1970). 

When a pile is subjected to lateral loads there is 

reaction offered by the surrounding soil, commonly termed as 
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soil reaction. The soil reaction resisting the lateral load 

is  a function of deformations and influences the stressess 
),nn c-a

w  

developed in the pile section. The detrimental effects of 

the lateral load may not necessarily mean the failure of the 

soil, but may be dependent on the devel,cped bending and shear 

stresses along the pile length. 
. 	 r 

Different catagories -of', solutions are available for 

analysing the piles subjected to lateral loads. 

The procedure adapted by . Davisson and Robinson ( 1964) , 

Kosics ( 1968) 	is to assume the pile to be fixed at some 

point below the ground line. The point of fixity being 

dependont on the type of soil, and are computed based on the 

theory of elasticity... The soil above the point of fixity is 

completely ignored and the piles are treated aspure structu-

ral members. Different fixity conditions at the top are 

considered and non-dimensional curves for deflection, slope, 

moment and shear have been presented. Obviously these 

methods adopt unrealistic characteristics of the pile-soil 

system. 

Certain theories, are developed based on the ultimate 

resistance offered by .the soil. This ultimate resistance is 

presumed.t,o act against the pile. Investigations in these 

directions based on the pile behaviour have been presented 

by R rakas,h (1960)., Brons (1964 and 1965). These solutions 

. assume shear failure in the soil in the case of stiff rigid 
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piles; Lending mode in the case of long piles treated as 

fl e xi bl e on es. Certain equ ati ons have been p rep os ed to 

check the ultimate resistance of the soil and the develcped 

values of maximum bending moment, With •these methods it is 

not possible to determine deflections along the length of 

the pile. Further, it is presumed that the soil modulus 

remains constant vAth depth. . Though the main contention of 

the method is to determine the ultimate soil resistance, it 

is not possible to know whether they are fully mobilised or not. 

Yet another rata gory of solutions are based on the 

beam on elastic foundation theory proposed by Biot (197) and 

further developed by Hetanyi (1946). In these methods the 

pile is treated as a beam resting on an elastic bed. They 

essentially involved nkl er's assumption that the soil can 

be replaced by independant closely spaced elastic springs. 

The ;; 	of s„rh characterisation results in the definition 

of soil modulus while describing the reaction offered by the 

soil, for envisaged deflections of the pile under the lateral 

load. With such assumption equations for slope, deflection, 

bending moment and shear are easily developed. Non-Dimensional 

solution -  for the abore quantities have been proposed by 

Reese and Matlock (1956) and Davission and Gill (1963) for 

linear variation and constant values of soil stiffness with 

depth,. The above soluti ons have . been used very 4 dely by 

the practising engineer and has the -advantage of 'both 
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simplicity and,ac;curacy. But herein, non-linear effects 

are not taken into account. Detailed discussion on the 

methods based on beam on elastic foundation concept has 

been presented by Davisson (1960) , Prakash (1962) and 

Chandrasekaran (1967). 

3.1.3 PILE FOUV DAT ION SUBJECTED TO DYNAMIC LOADS 

Apart from the static loads pile foundations may be 

subjected cyclic and dynami.,c loads. These loads may act it 

addition to the, sustained loads which are imposed on them. 

Gcmpared to the subject of pile foundation subject cc 

to sustained lateral load -lesser information is available 

concerning dynamic loads. The discussion, herein, is classi 

fiel in the. following heads: 

1& Nature of dynamic loads and their estimation. 

2. Available procedures for cons. der.ng the effects 

of such loads. 

3. E )p erim Pn tal investigations  on the study of pile 

fouhdati ons under dynamic loads. 

2.2 NATURE OF DYNI C LOADS 

Non availability. o.f coherent,  iof ounation on the 

different type% of dynamic loads that could act on pile 

foundation has be,en,a concern of, the engineer. Attempt is 

made to discuss the different types of dynamic loads and 
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the literature available for estimating them. 

The nature of dynamic loads depends upon the problem 
under consideration. Nair (1968) has made broad classifi-

cations of the various types of dynamic loads which c cu l d 
act on pile foundations. 

The type of loads are grouped as follows: 

1. The loads applied directly to the piles as in the 

case of piles supporting machines and off-shore 

structures. The loads introduced during pile 

driving also fall in this catagory. 

2. The dynamic loads introduced cue to earthquake 

and blast occurances. 

2.2,1 MACkL[.NE I,OAD 

Depending upon the :characteristic's of the machines, 

~-_ subjected to periodic foundations supporting them may be, suu,~.._..~, 	periodic 

 forces along any of the co-ordinate axis. These 

may be either coupled or uncoupled motions. These perioc is 

dynamic forces may be created by virtue of unbalcnced 

rotating parts. 

In the case of rotating and reciprocating machines 

steady state vibrations are created. In the case of Forge 

hammer type of machines impact loads are applied. Normally, 

manufacturers of the machines provide data on these 
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unbalanced forces. - D hortog (1950) , Newcomb (1951), 

Barkan (1962) , Major (1962) have discussed at great length 

the principles involved in calculation of the dynamic -.l•oads 

for various types of machines. 	The force levels and their 

frequencies are well defined in each case so that the 

foundation designer could check the performance of fou ndati or 

against these forces. In the case of hammer foundation it 

would be necessary to base the data on actual measurements. 

Considering the huge varieties of machines in use the details 

are not discussed herein. 

2, 2 , 2 V VE FORCES 

In the case of pile foundations supporting offshore 

structures dynamic loads are applied directly by - virtue of 

the wave forces. Recent development in the off-shore 

technology permit the determination of these-farces using 

established hydrodynamic principles an,d empirical techniques 

Two methods are available for determining the forces 

exerted by waves on piles. The method proposed by Mori son 

et a1 (1954) presumes that two types of forces can be 

introdice`d by wave action. One due to inertial effects of 

the mass of  fluid participating in -wave,  action, 	and the other 

created due to drag effects. 	The drag forces are dependAnt 

on the viscosity of the fluid and roughness of the pile 

surface. 
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The total forces are obtained by . upe3p ositi on of 

the drag and inertia forces. 

Considering linear wave theory the e• ression for 

drag forces is given zs under: 

Fp - 2 CD \ u u 	 ... 2.1 

FD = drag force 	 i 

~=►p = projected area perp endi.cul a r to stream 

velocity u 

CD = coefficient of drag 

= mass density of fluid. 

The inertia force is considered proportional to fluid 

density, the volume of the object and the particle accelera-

tion. The egression for. inerti=a force given by Morison et 

al (1954) is 

FM = (Mo + M ). at 	 2.2 

~ o = mass of displaced fluid 

Ms = added mass dependant on shape and flow 

characters sti cs. 

The second me thod p rop o6 ed by Crooks (19 55) is based 

on the study. by Invers.son and Balent (1948) of the force 

exerted on a moving body through a fluid, Linear relation 

between velocity and acceleration is presumed. 
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dF = 	V a t + 2 CD 14. u u dz 	... 2. 3 

Herein, the force is a product of one coefficient, projected 

area of the body and square of particle velocity. 

•In . the above fornulae uncertainty exists regarding 

the values of CD and C. 

Several field and laboratory investigations have been 

carried alt by Morison (1951) , Morison et al ( 1954) Weigel 

et al (1965) to assess the correct values of CD and CM , the 
drag and inertial: coefficient. s. Of particular importance 

herein, is the work carried out by Weigel et" a'l (1965). 
. 

Pile sections of four different dia.of 6.625", 1I.75", 

2' -0 and 4' -O were tested by then in a wave trough. Precise 
el.ectroni;c inst.xunents were used for dete~nnining forces and 
strain.. 

-Based on such .studies the canmonly suggested values 

of C and CD lie  between 1. 5 and 2. 5 and 0,8 n d 1. 5 

respectively. 

:Pt fr4n selecting the coefficients of 	and CD, 
the wave velocity and acceleration should also be assessed. 

The e);ressions for total horizontal force on pile 

as. devel, oiled., by Mori son et al (1954) is given in equation 
2. A ' The vari 4us cQnp onents of the equation have been 

illustrated in Fig 2.1.. We have in these equations: 



horizontal ccmponent of water velocity, U given by: 

u - ,g HT 	C.0. 2:t t 	. cos 21t (L . - T 2L 	Cos h 21c d/L 

Vertical component of water velocity, V 	... 2.4 

V 

	

=
itH 	S n h 2m y+ aLLL . Sin 2n ( 	- 	) ... 2. 5 

	

T 	Si n h 2,t a/L 

Fig 2.1 illustrates the various quantities appearing in the 

force and velocity equations. The above procedures suffer 

from the foil owing drawbacks: 

1. The egressions are derived presuming steady state 

rectilinear flog. But wave action on a suLmerged 

body may fall under turbulant category. 

2. The flow may not be unidirectional as .assumed, 

3. The drag and inertia forces may act out of phase 
...i. be v a l 7 e d. and linear addition may not ,.~. .u.~_,.~. 

While utilising those fornulae for determining the 

wave forces it should be borne in mind that the wave action 

is esientiaily a statistical problem. Therefore ultimate 

force determination must carbine the use of foumulae, 
statistical deternination to-gether vaith engineering judgement, 

2.2.3 LOADS APPLIED DURING PILE DRIVING 

Enormous amount of literature is available discussing 

energy applied to the pile during driving. Majority of these 
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works concern the detezmination of pile- load capacity using 

dynamic formulae and wave equations. However, assessment of 

the acceleration time and force-time variations while deter-

mining the energy imparted to the pile during driving may 

be required for testing the perfoimance of the driven pile 
section S. 

The nornal practico of pile driving i5 through the 

force applied _by .way of impact of a hammer. Usually pile 

driving hammers are rated according to equivalent potential 

energy that is available at the begining of their stroke. 

The energy imparted to the pile is nornally equated to this 

potential energy. They are taken to be impulse loading. 
meaning thereby to act for infinitesimal length of time, 

But the force time measurements taken on piles during 

driving indicate the the force acts for sufficient length 

of time. Fig 2~c2a shows a typical force time plot as 

obtained by Davisson and M.C. Donald (1965) for diesel hammer 
driven .pile. Fig 2.2b gives a typical force-deft ecti on plot. 
The area under this curve gives the net and. gross energy. 

Nornaily the energy imparted to the pile curing hammer 

driving is considered., as per the of weight of the hammer and 

height of fall or as per the manufacturers energy rating. 
This may not result in actual estimation of the load quantiti c 

because many types of losses are incurred during the process 

of driving. In general it can 1 considered that at impact 



20 

steam hammers generate- 80 to 855 % of the rated energy. 

Whereas in the case of diesel hammers transmitted energy 

could be in the order of 100 percent of rated energy at 

cantustion impact event. The energy transmitted to the pile 

would be 73 percent of the manufacturers rated energy for 

near refusal conditions. J.J. Tcmko (1968) and Davisson and 

M.C. Donald (1968) have provided detailed discussion on the 

subject. 

Consequent to the available infoamation it is felt 

that stock of information on force and acceleration time 

measurements of  different pile driving hammers, while  d 4 vi - 
n g different piles in variety of soil conditions need be 

collected. Dgending upon the encountered situation such 

approprjate records may used to check the-detrimental effects 

on pile section. 

in recent years vibratory pile uiiving has berome 

canrnon practice. Under such cases piles would be required to 

resist the steady state dynamic loads. Accurate estimation of 

the force-time- relationships could be obtained from the 

vibrator specifications. The force equations are usually of 

the f orn 

•F (t) = Fo  Sin wt 	 ... 2. 6 
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2, 2. 4 EART1UAE LOADS 

Earthquakes introduce the most hazardous type of 

dynamic loads on an engineering structure. The shaking of the 

surface of the ground during an earthquake is produced by the 

passage of seismic stress from the underlying rock strata due 

to rel ease of stored strain energy. Detailed discussion on 

the mechanism of earthquake occurence, their measure eats and 

classifications are ,available elsewhere (Richter (1958) ; 

Allen :?t al (1965) ; Ryal , at al (1966) ; Hudson (1963).; Halverson 

(1965)). 

The ba si c data of earthquake en. n ee.ri ng are the 

recording of ground acceleration-time variations (Hudson 

(1963), Halverson 1965)) , a typical such record of the NS 

comp onent of El centro (19 40) earthquake is shown in Fig 2. 3. 

The intensity and strong phase of the shaking is'c.haracterised 

by the size and shape of the pu.1 ses and the number of pulses. 

These infoxmations have a special significance in deciding, 

the detrimental effects of earthquakes on the structures. It 

would be ideal, that for seismic regions of different countd es 

such records are ..accumulated. So that the design eatthqua'ka 

would involve selection of one such records considering the 

prop itety and ground conditions of the relevant site. Though, 

since recent times, many countries maintain a net work of 

seismographs, unfortunately rich supply of recorded ground 

accelerations of destructive earthquakes are not available. 
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However, enough data is,  available on the earthquakes to 

indicate the magnitude, the distance from fault and the 

maximum acceleration of past earthquakes. " Under these. 

circumstances the selection of design earthquakes should be 

based on the accumulated data of these types. 

Herein, the magnitude 1s defined as 

M  = 1 og1p Av  /Ao 	 ... 2.7 

where 	M is the magnitude of earthquake, ;1 W is the ma)d.mum 

amplitude recorded with a Wood .Anderson seismograph at a 

distance of 1CC) kn. from the center of disturbance and A0 

is. the amplitude of 1/icc th of a millimetre.• 

The magnitude of the earthquake depends 	on the 

length of the slippage fault, epicentral and focal depths. 

While deciding the -  size of the earthquake in a general 

area the frequency of .occurrence of the strong motion earth'-

quakes must be based on the seismicity and tectonic conditions. 

Also while deciding the form of motion the soil condition 

at and near the site must be carefully considered. At many 

instances the influence of soil conditions on the ground 

motion Is totally ignored. It has been observed that in a 

same seismicc region ,,,.thin a distance of 10 km the recorded 

ground motion at surface might vary by 2(0 percent. Methods 
are available Idriss and Seed (196g) for considering the 
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influence of soil condition on ground motion. 

Thus the actual earthquake design criteria must be 

based on the following (considerations: 

1. The probability of occurrence of strong motion, 

2. The nature of defornation to structures during 

ea rt hqua k es. 

3. Seismicity geology and tectonic activity of the 

regi on. 

4. Soil con di ti. ons at a site. 

5. Past records of earthquakes. 

2.3 METHOD OF, ANALYSIS 

2.3.1 ANALYSIS FOR MACHE NE LOADS 

Statifactory perfo3mance of foundations of high and 

low'speed machines requires their natural frequency to be at, 

1 east t4ce that of the operating f requ ency of the machines. 

When the foun da ti on is to -rest on a very soft soil the natural 

frequency of the foundation soil system could be increased to 

a certain extent by reducing the weight or by increasing the 

s ti f f n-e s s of the soil by chemical injection and c Qnp a c ti on. 

However, under all circumstances this may not be possible. 

Under these conditions often piles are u sed to provide 

the requi red stiffness Increase. 
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The main design requirement of pile response subjected 

to steady state machine loads is the determination of resonant 

frequencies and amplitude of vibrations. In order to achieve 

this piles are normally idealised as a single mass spring 

dashpot systems.. The amplitude of vibration and resonant 

frequencies are obtained using the procedures postulated by 

Barkan (1962) , Richart and Woods (1970, for shallow founda-

tons, 

Such an idealisation has .been utilised by Maxwel et al 
(19 68) for predicting the pile response under vertical vibra-

tion c onditi on, Fig '2. 4. 

The results have been ocmpa-red favourably 4th forced 

vibration tests conducted in field. 

The main features of the model are a lumped mass mo, 

constrained to move in a vertical direction xl  and subjected 

to cinusoi dally varying load 	The motion is resisted by 
'1 

linear spring and dasrp of in parallel. The phase angle 

relates the phase lag between peak force Ql  and displacement 

amplitude, x. 

The amplitude and resonant frequency equationsfor 

such a model are well known. 

Though the method of analysis is simple, difficulty 

lies in the selection of stiffness and damping properties of 

the soil pile system. For this the investigators suggest 
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forced vibration test on actual piles. 

Further they sugge=st the use of static stiffness 

values for predicting the natural frequency within 20% 

limits. 

Extending the solution of Timashenko (19 55) based.. 

on theory of elasticity Richart (1962) has asup7lied reference 

Fig 2. 5, to estimate the influence of length and load on the 

natural frequency of piles subjected to longitudinal vibra-

tions. 

For the analysis of 'piles subjected to machine loads 

under lateral direction, no established procedures are available. 

However many practical relationships are in vogue and they 

have bean utilised successfully. The success of those appro-

ximate formulae are the result of safe performance of the past 

foundation designed using these formulae. But no analytical 

proof could be put forward to 'underline their validity. 

Irish and Walker (19610) have provided appriximate 

: formulae and design charts for estimating the natural frequan-

cieS of piles for use in preliminary designs. These informa-

tions can be used to predict the natural frequencies under 

vertical and lateral direction. 

Using Fig 2.6 the natural frequencies of vibr=tition 

under vertical mode can be obt.a in ed. This :chart considers 

A 
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piles of different lengths and material properti:Ws. Using 

Fig 2.7 the natural frequencies of the piles under later-11 

vibration conditions can be predicted. 	Here also the 

material properties and the length of the piles have been 

varied. For the purpose of compiling these charts the 

dynamic modulus of elasticity, E for each material has 

been assumed to be: 

Steel : 30,000, 000 lb Per sq. in (2, 100,000 kg. per sq. cm.) 

Concrete: 3,000,000 lb. per sq. in (210,000 kg. per sq. cm.) 

Timber : 1,200,000 lb. per sq. in (64,000 kg. per sq. cm.) 

In Fig2.6, 

Stress = w a . 

Weight of foundation and mac hip e (lb o r ka) 
(Cross sectional area of one pile (sq. in. 

sq cm)) x (number of piles) 

In Fig 2.7, for fixed ends k = 

For pinned ends k — W  1 — 3 Ipn 

Where, I = Second mom;-nt of area of one pile (in4  or cm4) 

kl  = Coefficient (lb per in or kg per cm 4) 

2. 3.2 NALYS IS FOR LU.tiDS DURING PILE DRIVING 
The reported literature on the analysis of piles during 

driving concentrates mainly on the prediction of pile bearing 

capacities. 	For this Newtons laws of motion form the basis and 

resistance is equated to the energy ratings accounting 

for losses during driving. 	 - - 	- 

k 
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Equations developed on the above mentioned 

principles are catagoiieed as dynamic formulae and there 

are a number of than available in the published work. 

However little work is reported for predicting the 

pile response during driving. The analysis proposed by 

Issac (1931), Fox (1938) formed a basis for utilising the 

longitudinal impact and wave theory for analysing the 

response of pile during driving. 

But Smith (1962) was the first •to present a 

nun erical solution to the wave equ at! qr. by dividing the 

p!.le into discrete e1:..enents. Pile is divided into a 

spring mass system and the ram and dolly has been idealised 

as 	separate units attached to the pile systems. The 

side and the base resistance has also been acoeunted for, 

Fig 2. 8,  The basic: one dimensional wave equation (Smith 

(1962)) has been used to predict the acceleration response 

and ultimate resistonce of the pile. 

Finite difference solution has been adopted for 

easiness in computation. Lapay (1966) has tried a perimenta 

verification of Smith's analysis and obtained poor correlati 

between observed andpr-redicted quantities. The uncertaintie 

involved in thy; ,side and base restraint idealization and 

consideration of one dimensional solutions could be the 

reason for poor ca rrel ati. on.s. , .. 
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One of the exhaustive experimental and theoretical 

works on -piles during driving- has been reported by Tomko 

(1968) . Two types of theoretical solutions have been 

proposed. 

The first method assumes . the pile to be a rigid body 

and Newton's second law and P encelots resistance rule have 

been applied. 

In the second model elastic solution are assumed. 

Again the basic one dimensional wave equations are 

used but Laplace solution are utilised for solving thp. 

equations. 

• 4 AVAILABLE SOLUTIONS FOR CONSIDERING 
ZARTIAUAi $ i O' .DS 

Evaluation of the available* solutions for predicting 

the effects of earthquakes on pile fc nda ti ons is of 

greater concern to the present stidy hence, herein, more 

emphasis is laid on this aspect. 

2. 4l PSEUDO_STATIC SOLUTIONS 

For considering the effects of the earthquakes mainly 

stability of the piles to 4:thstan d the lateral loads are. 

investigated. The most v4dely used procedure to achieve 

this has been to replace the action of earthquakes by an 

equivalent static lateral load. The equivalent static loads 
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are taken as a percentage of vertical load. Scm etimes, 

they are considered to be a product of the seismic coeffi-

cient and the weight of the vibrating structure. The 

seismic coefficient values are fixed in different arbitrary 

ways in different countries. Normally the, seismic regions 

of the countries are divided into different zones and :the 

assigned values of the 5e3 smic coefficients are based on the 

past earthquake records and seismicity of the areas. 

Alternatively, certain times the total lateral load 

is taken to be the base shear, which can be canputed from 

the dynamic analysis of the super structure.. Herein, it is 

assumed that the structure is rigicll.y, fixed to the foundatior 

Once the value of these pseudo.;static loads are.. , 

evaluated they are presumed to actin addition to the e4stir 

sustained loads. Thereafter any of the static methods of 

analysis such as Reese and Matlock (1956), Daviss nn and. Gill 

(1963):  are used o to determine the .displacements.- and stresses 

under these combined loads. If these quantities are found 

to be within safe limits the piles are considered to v4th-

stand the, earthquake effects. 

Obviously such procedures have no rational basis. 

They ; fail to consider the, dynamic nature -of the problem. 

Such equivalent techniques are possible in a logical sense 

only if the total soluti on reg<ardi.ng the dynamic resp onse 

of the soil-pile systen subjected to earthquake loads are 
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well, understood. pti cn of such procedures would at 

best give false sense of security to the designer. 

2. 4.2 EQUI VALENT GkN TILE SIE R METHODS 

The next ca to gory of solutions for the analysis of 

piles contend in predicting the natural frequency of the 

piles-soil system in addition to checking the stresses with 

pseudo-static methods. 

Considering the complex nature of the problem very 

simple structural idealisations are resorted. t o. The most 

commonly used structural - idealisation is the massless ec~ui-

valent cantilever with or without a concentrated mass, at the 

free end, Fig 2.9. The length of the cantilever is nonnally 

taken as the distance from the top of the pile to the first 

point of zero contraflexure. The ccntrafle ire points are 

determined using static methods of analysis for the applied 

lateral load at the ground surface. 

P rakash and Sharma (1969) determine the equivalent 

cantilever length by equating deflections at the free end 

for a beam on elastic foundation and a cantilever under a 

static load. 

Certain deviations in these procedires treat, instead 

the. cantilever to be continuous structure having distributed 

mass. 
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Another model similar to the cantilever for deter* 

mining the response of single pile subjected to dynamic loac 
has been proposed by Hayashi et al (1965) . This is a nova] 

analytical sol uti on for predicting the na t.i ral frequency of 

piles. The actual soil-'pile system has been analysed as a 
pendulum model. The length of the pendulum is deternined 

as in the previous case. The idealised model is shoe in 
Fig 2.9. 

As the pile-soil vibration is considered to possess 

non-linear effects, they are accounted for with the help of 

spring and dash-pot system attached to the top. The mass 
di st ri btti on of the pendulum is similar to that of prototype  

pile. 

The equation of m oti on of the model is written as 

c•+ F (y, d ,Y) 	= G (t) 
dt2  

I 
c~ _ 7E 	where Io is the moment of inertia about 

0 
the hinged end. 

• y = di splacan ent of top. of pile 

Y =maximum displacement at top of pile. 

It is assumed that 

= F (y, Y) + 
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Io 	+ c 	+ F (y, Y) -,- G (t) 
L 2 	dt a 	dt 

e 

The restoring force displacent relationship is obtained 

f rare the alternating load t9st result. 

Neglecting the damping effects the ,resonant frequencies 

are obtained by solving the equation and are found to have 

good agrei ment with the observed test results. 

Ishi, and Fujita (1965) have attempted certain simpli-

fied procedures for determining the natural frequencies. 

One of their models treat the pile as an inverted 

single degree freedom oscillator with an attached spring and 

dash-pot. 	The natural frequency of this model can be easily 

determined. 

In their other model they consider the pile as a 

lumped mass sprinq system. The bottom conditions are assumed 

as fixed. 	Ishi and Fujita (1965) in th,eir.paper argue that 

for a distributed system as that of the pile it would require 

infinite number of m=iss idealisation. This would require 

infinite number of :equations to define the equilibrium of the 

complete structure. In order to reduce the analysis to prac-

tical proportions S the authors reduce the structure to four 

limited masses and springs attached to the bottan of the two 

masses. 
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The spring constant are detefrnined fran the cyclic 

load tests and damping from forced vibration tests. 

2.43 MI SCaL 1 N ECU S SOLUTIONS 

Saul (1968) has proposed an approximate method for 

finding out the natural frequency of pile groups. Resolving 

the forces of piles on the pile cap along three,, of the 

cO ordinate a i.s equilibxium equati on in. to?3:ms of these 

forces and i next i a. forces a re devel sped. Equating the forces 

along one of the co-ordinate axis to - the. inertia' force in 

that direction equilibrium equation are d6iive-d 
• 

Qi  _ m 01  

m 	- mass of the vibrating system 

A = acceleration 

Assuming ha3ltoric motion simple e)pressions for natural 

frequency  is given by the Saul. In reality herein, the pile 

group is reduced to. cantilever of defined length similar to 

the approach proposed by Davis son and Robinson (1965). Though 

it is argued that mass of the soil vibrating along va.th the 

pile must be taken into, account, no guide line .as such is 

given for this puzp ose. 

The prevelent practice of annalysis of,pile.s subjected 

earthquake loads; seems to be, assessment of the natural fre- 

quencies idealising the soil pile syst&ns t.o any of 'the -.above 
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mentioned simplified structural. systans. . !Cl~ce the natural 

frequencies are determined. they are compared with the 

exciting frequencies to check for resonance conditions. 

Though these procedures are the starting points in the actual 

requirement of the deign the validity of these p-r0cei res 

are not fully established. 

2. 4.4 OYP1;4v1I C ANALYSIS 

In the literature unfortunately,:very few methods are 

available for predicting the pile behaviour based on logical 
dynamic analysis of realistic idealisation. 

The method proposed by P en zi en at al (19 64) , fol lows 

this approach. A lunped mass-spxing dash-pot model has been 

chosen to idealise the soil-pile system. The response of 
this model for one component of earthquake acceleration 

applied to bed rock has been determined, based on advanced 

structural dynamics 'principles. 

The analysis consists of two parts: 

( i) 	to detennine- the dynamic response of the clay medium 

without the super-structure being present. Since-the defor-

mations produced in this medium by a horizontal excitation 

are essentially pure shear. The real system is idealised 

as shown in Fig 2.10. The response of the column of soil 

having unit cross sectional area and of constant depth 

equivalent to the depth of the soil-layer is detemuined, 
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The. linkage connecting ' the adjacent masses consists of 

bilinear hysteritic springs and non-linear dash-pot 

'connected in parallel. • ;3y the analysis of clay medium 

response the accel-eration variation with time at various 

elevations of the clay mediun are easily ccmpute4i. 

(ii) 	In the second•part the soil-pile response are 

determined. The idealisation and assumptions involved in 

determining the response of pile-soil system id done in 

three steps conceiving (1) Structural (2) Soil and 

( 3) Interaction effects. The physical model chosen by 

Penzien is given in Fig 2.11. 

The basic assunption in the structural idealisation 

is that the structural members display linear elastic 

behaviour. 

The mass of the bridge super structure and pil es 

are concentrated at various elevations and the elastic 

properties. of the system are obtained by standard structure 

methods which involve necessary stiffness and flexibility 

matrices. 

The interaction effects of the soil are taken care 

by idealising the soil as spring dash-pot system. The 

springs are connected to the descretised pile structure as 

a simple couple system. - The springs are presumed to have 

bilinear force displacement •characteristics. The dash-pots 
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includes non-linear time dependant quantities representing 

the damping characteristics of the surrounding clayey soil. 

.part from this the creep effects of the .cl.ay medium is 

also accommodated in the analysis. 

The spring constants at various elevations are 

deter'nined using the Midlin's elastic half space thaory with 

simplyfying assumptions. Considering certain characteristics 

of the elastic half space,the interaction, effects of the 

piles and clay medium is approximated to method similar to 

classical beam on elastic foundation theory. 

The stiffness p rop erti os of the soil -under such 

approximations are deterrnined based on cyclic static loading 

tests on clay samples. Based on such cyclic tests bilinear 

hys.terLtic representation of the non-linearity are accounted 

for. 

For deteTminina the damping characteristics of the 

soil certain approximate dynamic tests are carried cut. 

ICS these tests the acceleration, decay p.hencmenon 

under. sudden impact loading is recorded. With the help of 

such a curve the damping characteristics are detennined. 

The analysis of group of piles is no way different 

frcm that of - single piles except the stiffness. values are 

reduced depending on the pile spacing. The reduced stiffness 

of individaal piles are summed up depending upon number of 
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piles in  a row and the analysis is carried out as for a 

single pile. 

The analysis proposed by Pcnzien et al takes full 

advantage of the advancemc ►ts made in the field of structural 

dynamics. 

But it is not in general use by the p cacti sing 

engineers. This is mainly due to the c<mplexities involved 

in the analysis and the tedious iterative procedure which 

are requi red for obtaining t 1-  solutions. 

The performance: of the analysis mainly depends up on 

the tharactexisati on of soil •  interaction eff ects. The 

procedure adopted by Penzien utilising the earlier mentioned 

Mindlin-'s technique involves canpiicated mathematical solutions. 

But finally utilising Mindlins solutions the interaction 

effects` cf the soil are accounted for in a manner similar'to 

Winkler idealisation. By this idealisation the soil medium 

is replaced by infinite number Of closely spaced independant 

springs. While considering the characteristic behaviour of-..the 

springs, non-linearity is accounted for... 

For such characterisation the numerical values of 

stiffness depends upon the modulus of elasticity values of 

the clay median, the accurate determination . of which is 

required. The modulus of elasticity is not a unique p zop erty 

of soils. They are sensitive , to especially moisture content 



and type of soil. Further the determination of the 

material properties based on laboratory tests may not be 

app rop rate. 

The method of analysis as reported may be applicable 

to only one type os soil, namely soft sensitive clays. The 

variation in soil type and in each type, the variation of 

soil stiffness with dEpth cannot be considered pis ,such, without 

incorporating modifications in the analysis. 

Moreover the encountered strain level under sustained 

loading conditions has not been taken into account.: And as 

such principle of superposition may not be found valid. , 

Nair (1968), has discussed in detail the state of the 
art on Dynamic and Earthquake Forces on Deep Foundations. 

As. a concluding remark, he very rightly points cut` that it is 

extremely desirable to develop a simplified but sufficiently 
~~ nalyc~ for uce in routine design _-end the method accu:a ~~ a~,.~1 y ,,.~ 

proposed by Penzien is not widely used because of the can-

pl exi ties involved in conputati on and design. 

Another ma thanatical model used for representing the 

soil-pile interattion effects in the Discrete beam - column 

element idealisation Fig 2.12 shows the salient features of 

a typical beam column element as approached'by Matlock and 

Ingram ( 1963).. This model and. the analysis developed for 

determining the stresses and displacements along the pile 

length has been successfully used for static problems. 
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Tucker (1964) was first to try this model for 

dynamic anzlysis. .\grawal (1971) has extended this work 

for dete~rnining the response of single piles subjected 

ha,rnonic excitation. 

The physical model of the discrete-element beam-

column as utilised by the investigator is shoAn in Fig 2. 

The model consists of a number of infinitely stiff bars 

connected end to end with pin joints. It is assured that 

plane cross sections remain plane during and after bendinc 

The beam is assumed to have elastic behaviour. Considerinc 

free body diagram and the forces acting on the discrete 
el ements the equation describing the response of the model 

is derived,taking into account the continuity of the secti 

and the equilibrium of the various forces' acting on the 

elements. 

Mat ohiko Hakuno (1973) has p rcp osed a dynamic anal) 

of the pile based on wave dissipation theory. Lumped mas<, 

spring - da Ip o t idealisation as p rcp os ed by P en zi en has I 

used to determine the response of the pile. But herein ti 

effect of frequency on the spring stiffness and the dampir 

coefficient including a part of loss caused from the wave'' 

dissipation is considered. 

Mindlin's elastic half space solutions have been 

utilised. This has beci cone in two stages, 



In the first stage the displace ts.pr.oduced by 

one point sinus of dal force in an elastic. half space is 

evaluated. In the second stage the horizontal displacement 

produced by the vertical excitation on the surface of an 

elastic half space is determined. The vibration displacarent 

at each place was evaluated superposing the two. Chce the 

displacement matrix was evaluated the stiffness matrix was 

the inverse of the same. 

The fundamental fourth order differential equation 

of motion was a)Pressed by Hakuno (1973) in a finite differ-

ence form and solution for equation of motion of the pile 

was determined considexLng the effect of frequency of motion 

on the stiffness characteristics. 	 - 

The predicted displacement response was checked ,vAth 

the actual field tests carried out by the Hakuno (1973). 

For close agre cnen•t,he arbitratily assumes the shear wave 

velocity of the soil. 

Though consideration of effect of frequency on stiff-

ness seems to be logical analytically,there is no eperi-

mental evidence avail=able to prove this point and further 

the significance of this effect on'the response is debatable. 

A new approach for evaluating the seismic response of 

steel piles considering the restoring force characteristics 

upto yield point has been reported by Hayashi (197'3). The 

soil-pile system has been treated as a single-degree freedan 
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system and the general hysteritic restoring force character-

istics was a ressed in the manner proposed by P,C. Jennings 

(1965). The restoring force characteristics was defined based 

on actual static and dynamic tests carried out on piles upto 

yield point.. Based on these approach new safety factors 

resulting in the economy of construction is suggested. Though 

ec orn cmy should be the primary criteria in the earthquake 

resistant design, the idealisation of soil-pile system 

characteristics as those prcposed for buildings may not prove 

to be effective. 

2.5 ExPERIMBNT. L STUDIES 

Very few e)perimental studies are reported in the 

availabl e` literature discussing the. behaviour of piles sub-

jected, to dynamic loads. Therefore no conclusive contention 

regarding earthquakes and other dynamic loads can be drawn. 

Gaul (1958) reported for the first time the tests 

conducted cn model piles imbedded i,n:• bentonite clay. The 

tested piles were instrumented.-  with tm SR-4 electrical 

resistance strain gauges. 

.novel . e)p erime:n tel set up was used to apply the 

dynamic loads. For applying the dynamic lateral load a 

mechanical oscillator driven by a motor 'was used, 

controlled by a speed control unit. Suitable crank and 

guide arrangements were attached to the driving system for 
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applying the lateral dynamic load to the piles. 

The strain induced in the piles due to the applied 

loads were recorded using a suitable amplifiers and oscillos-

cope having photo-grap hic arrangements. 

From the tests it was concluded that 

1. The pile vibrates in the f orn of standing wave, which is 

in phase with the oscillating load. There is negligible 

amount of damping in the soil. 

2. At low frequency, maximum bending mcment is not altered. 

3. Under dynamic loads the soil modulus for montmoxillonite 

clay may be considered to remain constant with depth. 

4. Under static load applications the maximum bending moment 

is not dependent upon the magnitude of lateral loads 

unless pile deflection becomes large enough to stress the 

soil beyond its elastic range. 

5. Over-burden reduces bending moment but the shape and 

location of the, maximum bending man -it remains the same.. 

Though as a starting point the expezimental observation 

of Gaul (1958) are .valuable,it pertains to only one type of 

clay and the tests have been conducted at a particular fre-

quency. No general crnclusion _could be drawn from the study. 

Hayashi and Miyajima '(1965) report tests conducted on 

on 'vertical steel H -piles Embedded in sand. The dimensions 
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of the piles. were 3 	..x 305  x 15 mm and of length 14 m and 

16 m. Both free and forced vibration tests were .conducted, 

using mechanical oscillators. Frcm the results of the tests 

of the 	observed that damping coefficient, natural frequency 

and resonant frequency depends upon the soil conditions. 

Hayashi et al (1965) reported results of several 

static cyclic and dynavic load tests on H piles of width 

305 mm, embedded. in sandy soil to the depth of 10-15 m. Both 

forced and free vibration tests were conducted by then and 

acceleration measurements at the pile head was recorded by 

t hem. . 
Interesting conclusi ons were drawn from their test 

resul ts: 

1. •The natural frequency decreases as the initial displace-

ment increases under free vibration conditions. 

2. Sh ±p resonant peaks are observed under forced vibration 

conditions, 

3. With increase in N-value of the soil the natural 

frequency and resonant f requ ency increases. 

4. The comparison of predicted and pbserve'd qu anti eies 
_ 	 r  

reveal that natur a.l pe riods could be predicted to 

reasonable accuracy using .linear sub grade modulus 

theory. The test .results, of I shi an,.d Fujita (1965) also 

revealed sharp resonant peaks under forced vibration 



test conditions. The piles were of 1200 mm din 12 mm 

wall thickness and. 34,000 mm length. Not many details 

regarding the testing is reported by. then.' 

Both the above investigators - suggest the use of 

Hayashi (1965) model for determining the dynamic character-

istics of the soil-pile system. They state that determining 

the stiffness of the soil-pile systen based on static or 

cyclic load tests if substituted in the Hayashi (1965) 

analysis would be able, to produce the natural frequency and 

amplitude of vibration wwwlthin reasonable limits of accuracies. 

Prakash and Agarwal (1965) report one of the .detailed 

investigations studying the behaviour of vertical piles 

subjected to dynamic lateral loads. The tests were condicted 

on small sized aluminium piles of 15 mm outer diameter 2. 5 mm 

wall thickness. These piles were embedded in a tank contain-

ing uniform dry sand placed at medium density conditions. 

Steady state dynamic lateral load was applied with suitable 

connecting mechanism coupled to a horizontal steady state 

shake table. The steady state dynamic loads of varying 

amplitude and frequencies were applied to the pile at various 

elevations from the ground level, Acceleration, and dis-

placement measurements were made and the change in surface of 

soil around the pile was also observed. Apart fran this 

transient loads were. also, applied to the piles. 
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The study revealed that 

1, The soil around the pile gets compacted under the 

applied dynamic load, creating a depression around the 

pile. 

2. The displ acem ants depend upon the frequency of dynamic 

load application. 

3. Pile vibrates in, phase math the dynamic load. 

4. The •zone of influence of the dynan ically loaded pile 

• extends below that of_ statically loaded pile. 

• 
5. The transient strength of the pile is greater than 

steady state strength, whereas static strength is less 

than both, 

6, If mcment is applied along with shear the displacement 

under static and dynamic conditions increases. 

The, extensive model studies perforned by Gupta (196 

on small, sized aluminium piles embedded in uniform dry san,  

revealed the following: 

1 	The natural frequency of the piles are dependent on the 

length, of the piles. They. are increased as the length 

of the pile increases. 

2. The natural frequency is dependent on the sustained 

vertical load and decreases as the load level increase 



The natural frec:u Gn ci Ps in his  case.- wa s determined 

fr- m the free vibrati:►n records of piles displaced from 

initial 'equilibrium position. 

Prakash Chan dr=asekaran and Bhargava .(1973) have 

extended the study of Gupta (1967) in Order to investigate 

the varicus factors which ccntr l the natural frequency of 

isolated single piles and piles placed in clusters. 'The 

experimental work was performed on aluminium piles of 16 mm 

outer diameter with a wall thickness of 1.25 mm. The 'length 

of the piles were 70 cm, enabling them to be treated as lon.g 

piles. These piles were driven in a tank containing uniform 

dry sand placed in dense state of deposition. The piles were 

allowed to vibrate freely by displacing them from equilibrium 

position. 	 - 

On the basis of the study the following c inclusions 

were drawn : 

1. The natural frequency decreases with the increase of 

lateral deflection rapidly at first and very 'gradually at 

later stages. Beyond a certain-  value of deflection the 

natural frequency becomes constant, 

2. The natural frequency is dependent 	the sustained 

vertical load. As the sustained vertical load  increases 

the natural frequency decreases. 
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3. In the case of pile gr. )ups the natural frequency is 

dependent on the pile spacing. The effect of pile spacing 

is felt only upt) a spacing of six times the pile diame-

ter. 

4 The natural frequency of pile groups can be reasonably 

predicted on the basis of the behaviour of single piles. 

5. The natural frequency of an is..Jated pile can be predicted 

by assuming it as a single degree freedom system. The 

stiffness of the soil-pile system can be token to, be 

defined by the tangent modulus which is derived from the 

load, deflection plot of single piles. 

6. In order to consider the effect of spacing on the free 

vibration characteristics :)f pile gr ups, reduction in the 

coeff:ici t of horizontal sub-grade reaction, nh, is 

suggested. Consequently the relative stiffness factor T, 

is increased. ' The -  sugg-,sted matin of relative stiffness 

factor T, for a .pile. -in a group to that of an isolated sine 

..single pile is.as ::under z 

a. 1.25 at a spacing :f  four' pile width. 

b. 1. 30 at a spacing of three: pile width. 

c. At any other spacing linear interpolation -can-  be' 

made. 

7. The method, suggest'e'd 'by Saul (1968) with. th e,.above in-

clusions predict. the natural frequencies on a. higher:"side.. 



Max~..►A1 et al (.1968) have r. ported extensive field tests on 

full scale pr,totypa piles embeddd:ad in silty sand. 

Both static, cyclic and dynamic load tests were 

performed on single piles and pile groups with different 

sustained load levels. 

Acceleration, frequency and phase measurements were 

made u.sin.g acceleration pickups and suitable recording 

instruments. 

The shady revealed certain very interesting conclusion. 

1. It is possible to test single pile under forced vertical 

vibrations and obtain .information un der resonance condition. 

2. There is difference in the resonant frequency levels 

between piles., with caps resting on the soil and not 

resting on the soil. 

3. Settlement of piles take place when the dynamic load 

acts 	in addition to the static vertical load. 

4. The stiffness of the pile is increased when used in 

groups rather than when tested under isolated conditions. 

5. The stiffness and damping properties of the soil-pile 

are sensitive to frequency of vertical vibration. 

6. The resonant frequencies and -amplitude of vi brati'on can 

be detevnined based on the stiffness prcperties of the 

soil-pile system determined from static tests. 



The e erimenta. investigat;oris reported by Hakuno 

(1973) is of great significance. He has tested,  steel piles 

of 60 an dia,16 mm wall thickness and 60 m lengths. The 

piles were embedded in predominantly fine sand. Piles wer( 

subjected to lateral vibrations using machanical exciter, 

capable of producing a force of 40 T at 12 Hz and with a 

frequency range of 1.12 HZ. 

The vibration measurements were made using semi. 

conductor acceleration pickups placed on the surface and 

inside the ground at variouss distances from the pile. The 

tests were conducted at variouss force and frequency levels 

in order to get the resonant characteristics. 

The author derived the foil owing conclusions from hi 

-tests. 

1. The pile and the surrounding soil go into resonance 

almost simultaneously. 

2. Even to the extent of ten times the pile diameter the 

soil around the pile was vibrating in phase with the 

pile. This was true for measurements on pickups places 

at surface and below ground level. 

Hakuno (1973) categorically states that the content 

of soil mass participating in vibrations or any equivalent 

soil mass concepts are canpletely meaningless. He consider 

that in any dynamic analysis there is absolutely no need tt 
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consider the soil mass participating in vibration because 

as per the e>p erim ental observation, on the surface of the 
gr_nund and on thosA In si d-' sugg-st thr n is -ssity to consider 
soil mass enclosed upto a distance of 100 m, which in reality 
may lead to erroneous prediction. 

Dynamic response of buildings supported on piles w :s 

ecerimentally investigated by Ohata et al (1973). The 

vibration mode shapes plotted showed that in the first mode 

the super structure and the surrounding soil column are in 

same phase and of opposite phase in second mode. But in the. 

third mode,there is a rocking mode a>peri.enced. Very 
important infocnations regarding the shearing modulli of the 

soil has been presented by the authors. They suggest that 

the shearing modulli can be obtained fran dynamic triaxial 

compression tests and shear wave velocity measurements at 

the site. An interesting and useful result of shear modulus 

variation with N-values for different types of soils have 

been presented by the authors. 

The piles have been idezlised in the marrmer prcposed 

by P enzien et al (1964 ) and the authors conclude that the 

predicted and observed quantities have closer agreement. 

2. 6 C N 1U DI NG RB ARKS 

Based on the examination of the available literature 

on the behaviour of piles subjected to dynamic loads the 
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following  broad conclusions can be drawn: 

1. It is important to understand and estimate the behaviour 

of pile foundations subjected to dynamic 	loads. Pile 

foundations can be subjected to various typ, -s of dynamic 

lo a ds, the definition of the loads depend upon the type of 

situation. Estimation of these loads may be based on theo-

retical consideration of mechanism of load applications and 

weightage must be given to statistical informations.. 

2. The method of analysis to be adopted for predicting the 

dynamic behaviour essentially dcp ends up en the type of 

envisaged loads. 

3. The dynamic behaviour of piles enbedded in the soil is 

a soil pile interaction problc n. 

4., In the case of piles subjected to direct vertical 

vibrations reasonable estimate of their behaviour, if 

necessary, could be obtained through vertical vibration test4 

on the design pile sections. Estimation of dynamic amplitudE 

and frequencies of vibrations can be done idealising the soil 

pile systen as a single degree freedan system. The stiffness 

values of the soil-pile system could be based on static, 

cyclic load tests on the piles. Damping may be neglected. 

5. The reported work on pile behavi our during driving, seem 

to concentrate on the prediction of static bearing capacity 

from dynamic results. The fitting principle and the method 
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of analysis suggested by Tcmko (1968 ) seems to be a good 

procedure for predicting the capacities. 

6, There is a need for methods for estimation -)f the 

effects of pile driving load on the pile section. The 

discrete-element model offers the best scope for further 

work in this direction. The method proposed by Agrawal 

(1971) offers limited sccpe and may be suitable for loading 

frequencies below natural frequenci es of the system. The 

method needs experimental verification. 

7. Wave forces tend to introduce dynamic loads on piles. 

The long term dynamic fatigue stresses and the estimation 

of then- through proper model tests and method of analysis 

is much needed. The discrete-el anent model and the procedure 

putforth by Agrawal (1971) offers good scCpe for prediction. 

8. Earthquake forces cause one of the most hazardous type 

Vi. dynamic .Loads. The behaviour of pries ciefiniteiy controls 

the perfomnance of structures supported on piles. 

9. Winkler model seems to be an useful and practical tool 

for idealising the soil.pile interaction phenaninon. 

10, P enzi en's method results in useful solution for the 

analysis of structures (bridges) supported on long piles 

subjected to earthquakes. But the method is too complicated 

and may not be used by designer's concerned with analysis 

piles. The method may be suitable for only one type of soil. 
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11. ' There seems to be n need for easy •end orkable 

method of analysis and non dimensional solutions for 

predicting the dynamic characteristics of piles 

exclusively. 

12. Judiciously, conducted lateral forced vibration tests 

on piles could result in useful information concerning 

dynamic characteristics of piles. 

13. There seems to be a need for standard vibration testinc 

procedure and methods of - insitu deteiminati on of dynami 

prcperties of soil-pile system. 
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C H P T E R_ III 

LUMP MISS ANALYSIS , AND DYNAMIC GHaRACT2RIST ICS 
OF PILES EMBEDDED N SOILS ASSUMING SOIL MLDULUS 
CONSTANT WITH DEPTH 

3 1 iN TRODUCT ION 

.i,1 G Bpi ERAL 

Currently, aseismic designs of pile foundations 

are performed at best by evaluating the induced stresses and 

displacements through pseudo-static analysis and simultaneously 

determining their natural frequencies to check against reso-

nanCe. For determining the natural frequencies, the soil.. 

pile system  is  idealised as a cantilever. Though, this 

practice is recognised as unrealistic, the profession continues 

to follow the same, since no practical alternative solution 

is available to-day (1974) for predicting the dynamic response 

of piles. 

In this chapter an analysis for evaluating the dynamic 

response of the pile foundations has been presented. The soilr  

pile system has been idealised by a logical and realistic 

mathematical model. 

With the help of such an analysis, the dynamic 

response of a large number if pile cases of practical signi. 

ficance has been evaluated. Based on these results, design 

curves in non-dimensional form have been developed, with 

the help of which the response •)f practically any soil.pile 
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system can be easily determined. 

3.1.2 LUMPED-MASS SYSTEMS 

In. reality pile f -)undatiL)n s embedded in soils are 

continuous systems. Therefore, mathmatical idealisation of 

the soil-pile system as a continuous system -model would be 

more appropriate. 

However, in practice, pile cross sections, "soil 

conditions and loading .conditL-)ns vary to a great extent, But 

for these cond ti o?n s it:.may . be impracticable to obt, 	closed 

form Solutions ,for evaluating the dynamic response of piles. 

F•O.r such situations, reasonable approximations can -

usual ly be -made by lumping the mass of the piles . a t v . ric.us 

convenient points. The .interaction effects..of the surrounding 

soil- may also be •discretised. This reduces the number of 

degrees of freedom of the system and the dynamic characteris-

tics could be evaluated using suitable numerical techniques. 

3.2 CIWP,WCTER IS, T ION Or :,SO IL... PILE SYSTEM 

The charactdrisation of s i1-pile ,.system is d,-ne in 

twr) parts. one, structural idealisation of the pile section 

and the other characterisation of the interaction effects of 

soil with the pile. 

3.2. 1 PILE STRUCTU R kL IDFAL ISAT ION 

Herein, the pile structural unit is idealised as a 
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lumped mass system.. The pile is divided into convenient 

number of segments of lengths dx (say) , Fig 3. 1. If the pile 

secti.-)n is divided into 'n' such segments it is  considered 

that the-division would result in n+l number of masses, 

including the top mass. 

A single pile or a pile in a group. Ivo uld_ be required 

to carry sustained vertical loads. It is presumed that this 

sustained vertical load (generally the safe load carrying 

capacity of pile) would be concentrated at the pilo top. 

This vertical load concentrated at the top is crF nsidered to 

include 	(i) a part of super-structure load (ii) pile cap 

weight and ( iii) the weight •f half segment length of the 

pile. 

Thus the mass -concentrated at top, - M = g 	... 3. 1 

Where, W is the safe load carrying capacity of the pile. 

Th m--^ mr at any l to mediate division point T_ 

Comprises of mass included within half the segment on either 

side of the division point r. 

m 	g Ax 	 ... 3.2 

Where, V is the weight density of the pile material and A, 

area of pile cross section. 	At the last division point, n 

only,mass of half the segnent length would be lumped: 

rr 	= 	Ax/2 	 ... 3.- 3 9 
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Herein, it is recognised that the distribution of mass 

and flexibility above the pile cap would c -ntx n l the 

response of piles• However, this effect may not remain the 

same for the varities of structures in which piles may be 

used. In order to obtain generalised solutions, the 

primary factor mass is c :n sidered, by lumping at the pile 

top. 	Detailed discussi=on on this aspect appears in 

article 7. 

3,2,2 SOIL 3NTERCT ION 3DE1LIS:~TIGN 

3.2.2.1 Concept of Soil Modulus: 

When a pile is subjected to lateral movements, the 

surrounding s_> it offers s.%me resistance.,.. This interaction 

force acts at every point al,.ng the pile length. The rlost 
convenient way of handling this phenomena is to consider th 

pile as a beam resting on elastic medium (sz-?Il). Replacing 

this continuous reaction, with infinite number of closely 

spaced independent elastic springs, we have the Winkler mod 

Fig 3.2a.. The Winkler model presumes that the reaction at 
any point on the beam is proportional t.' the deflections of 

the beam at that point, The reaction of the soil per unit 

deflection over a unit area defines the soil modulus. Thus 

horizontal sojl modulu$, kx is defined as' kx 	ply ... 3 

Where y, is the lateral deflecti.,n of the pile and 

p represents the soil resistance expressed as farce per urs 



length of the pile, 	 f 

For a given soil type the soil modulus may assume 

any form of variation along the pile length. The probable 

and real form of variations in the case of stiff clays is 

shown in Fig 3.2b. 	In the case of granular Solis, 	the soil 

modulus increases almost directly with depth, Fig 3.2c. In 

the present investigations, only these tw forms of variations 

have been considered. 

3.2.2.2 Discretisation :)f Soil Interaction Effects: 

In the mathematical model used herein, the Winkler 

reaction offered by the sail is  discretised as springs 

connected et c.?nvenient points.. F')r discretisation and 

assigning the values of the spring constant at vari;us 

elevations, the concept of subgrade modulus has been utilised,. 

to-gether with the technique presented by Nevnark (1943). 

TM order to achieve this, the soil reaction is 

assumed to act as a distributed loading intensity. Treating 

these distributed lads t > be acting on a beam of length L s 
( equal to length of the pile), the reactions at the mass 

points are easily evaluated treating this beam to be simply 

supported at the mass prints. Herein, as assumed for con-

venience, the mass points are the division points and thus, 

the distance between the simply supported points would be Ax, 

the segment length. 



The prrCedure that wAs f.'Uuwed in assigning the 

Spring ciinstant values, for the case .?f piles embedded in 

s>i3.s; assuming 5L1 m:udulus t ' vary linearly with depth, is 

illustrated in Fig 3. 3 ( i) ., 

P7r this linear fr..: rm of variation, the s.)11 modulus 

k x, at any d.pth x, i defined by kX n h x, where n h is 

the ,.3nst?tnt of horizontal subgrade reacti, in (FL 3). Thus, 

the c, -ntinuwus loading intensity, is bounded by a bpm 

parallel t::° the axis of the pile and the said variation if s; 
modulus, with depth, The reaQtions and hence the spring 
constant values at various mass p: int would be as older: 

n (ax} 2 

K1 = . 6 (2 x 0 + nh Q x) 	,. ,+ ---,~-,• 	 ... 3. 5 

K1 is the spring constant value at mass 	1' 

~C .(0+ 4 n h 4x+ n h 2 Ax) 

K2=n h lax~ 	 .., 3»• 

K3 	X 4 n h Ax + 4 n h 2 £)c+ n h 3Qx) 

n Axe 
(1 4 8 + 3) 

2 nh Ax$ 	 3.7 

K, thQ spring c n$tant value at any mass Pint r, 

K2 (r-1) nh AR 	 .. , 3,8 



The batt---)m most spring attached to the it mass, mn  would 

have a stiffness of: 

K = 6 tn h  n Ax 2 + n h(n..1) Ax) 

n h  pXa 
- 6 -- (2n+ n-1) 

n 1x2 n _ 	_._.__ (3n -1) 	 ..... 3.9 

where, n is the number of masses. 

In Fig 3. 3 (i) , the above steps have been illustrated. 

Herein, it should be noted that the spring constants K have 

the usual units of FL''. 

In the case of piles embedded in soils in which the 

form of variation of soil n ndulus are assumed t) remain 

constant with depth, k = constant, the adopted discreti-

sation pnw cedure' is as fo11)ws: 

The value of the spring c`nstant attached to the top 

mass Mt I  

Kl  - 2 . k X  Ax 	 • ... 3. 10 

for any intermediate location, r ( say) 

K =k Ax 	 ,..3.11 r 	x 

f 3r the last mass mn, again 

Krt 	 1  . k x .Ax 	 ... 3.12 
2 



A" 

her...in, the unit of k y, the soil modulus is, FL'2  and the 

spring constant K has the unit of Fid 1. The above steps 

are illustrated in Fig 3.3(u). 

3. 3 MkTHEMaT IG\L MODEL. 

3.3.1 COMPQNIVTS OF MODEL 

In Fig 3.4a the discretised mathematical model of 

the actual soil-pile systc-n is  shown, to-gether with the 

structur=al and soil-interaction idealisaticon. 

The parameters characterising this idealised syster 

are the following: 

1. 	Mass Mt, includes the superimposed safe load, 	the mass c 

pile cap and a portion of the pile mass at top. 

2. mr, the lumped mass at the intermediate division point, 

3. mn , the lumped mass at the nth or the last division po ir, 

4. K1, the linear spring, having stiffness Kl, 	attached to 

the t. p mass 	Mt  at one end and immovable support at the 

other end. 

5. K any inteunediate linear spring attached to the rth 

mass mr, at one did and immovable support at the ether 

end. 

6. K1 , the last linear spring attached to the mass 	mn  at o 

end and an immovable support at the other do d. 
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3. 3. 1. 1 Assumption s: 

The adopted mathematical idea ligation of the 

physical system involves the following assumptions. 

1. The soil-pile system is idealised as a one dimensional 

model. 

2. The pile material exhibits linear elastic behaviour. 

3. The springs exhibit linear force displacement character-

istics. 

4. The discretised model represents the overall Interaction 

mechanism of the physical (soil-pile) system. 

5. The superstructure influence is considered by lumping 

the safe carrying capacity to-gether with end condition 

at tOp. 

3.3.1.2 End Conditions: 

While using the mathematical model for evaluating 

the dynamic characteristics of the piles; it is necessary to 

adopt' proper end conditions. The adopted and conditions 

should be compatible with those existing in the physical system. 

Under the applied static or dynamic lateral loads, 

if no restraint is Imp->sed at the top of an isc,lated pile, it 

would be free to have lateral deflections and rotations. At 

the bottom, normally, the piles embedded in Il are known to 

experience negligible bending moment and shear. For the cases 
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of piles subjected t:-) sustained lateral loading conditiOras, 

ample evidence is available to corroborate this point 

(Prakash (1962) , Davisson (1960)). 

Therefore for pile top free to rotate condition , 

the f.-) llDwing end conditions have been adopted, Fig 3. 4b: 

( 1) Bending moment Mr and Shear VT are zero at top. 

(2) Bending rtx.)ment MB and shear VB are zero at the bottom. 

Fixity at the top of the pile member influences the 

pile behaviour under static and or dynamic load applications. 

In the case of pile gr- ups, generally the pile top is comple- 

tely or partially fixed against rotation. Lhfortunately, 

there is no definite way of deciding the degree of fixity at 

the Pile top.. 

• In this investigation, solutions have also been 

obtained for pile t: p fixed against rotation conditions ( 100 5 

degree of fixity at the pile tap) , Fig 3. 4b. 

For NO % degree of fixity at the pile top the e-nd 

conditions  adopted in the model are as under: 

1. Rotation 6 T and shear VT at pile, top are considered 

as zex~. 

2. Moment MB and shear VB at the pile bottom are consi.. 

dered as zero. 



For degree of fixity between O% and 1W % suitable 

interpulation may be made . 

3. 4 NUMERIC' L TECH\11Z UE FOR DYNAMIC ANALYS IS 

3.4.1 APPROACH 

The dynamic response of any system subjected to 

earthquake excitation depends upon the natural periods, mode 

shapes, damping characteristics and the form of variati)ns 

of acceleration with time. In  order to evaluate the elastic 

response of any structure under earthquake excitation two 

approaches are usually available: 

(i) Time wise or niodal superposition of response in vari:>us 

modes of vibration. 

(2) Direct integration of s imultan ex: us differential equation s 

of mot ion. 

The former approach has the merit because the first 

few modes have dominant contribution to the total response. 

The dynamic characteristics of the soil-pile system 

and the various fact -,  rs which c ontr-41 them are evaluated, 

analysing the ideal ised mathematical model, subj ected t-..i base 

motions. The approach adopted herein to determine the dynamic 

response,c:'nsiders the free vibration characteristics of the 

system With the free vibration analysis the time periods and 

mode shapes for different quantities are obtained. Then the 
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superposition of response in different modes of vibrations 

are carried out to obtain the overall resp.)nse of the syst 

3. 4. 1. 1 tis sum pt ions: 

While adopting such an approach the following 

assumptions are c )nsidered imperative: 

1. The pile vibrates in its own plane. Chly one dimension,  

vibrations need be considered.. 

2. The pile material exhibits linear elastic behaviour. 

3. B;)th shear and bending deformations take place. 

4. Plane cross sections remain plane during and after bend: 

5. Axial deformations are :f  negligible quantity. 

6. Def armatio-ons of the pile sections are small. 

7. The springs exhibit linear f -)rce displacement character: 

tics. 

8. The discretised model represents the overall interactior 

mechanism of the physical( s:,) iL.pile) system. 

3. 4.2 METHOD OF ANALYSIS: 

In arder to obtain the solutions,  let us consider 

the model to be displaced from the equilibrium position anc 

released. The system would then be vibrating in the cl; ssi 

normal mode with a form: 



y = y (x) Sin p t, where p is the circular natural 

frequency. 

Considering, an element in a segment of the model, 

as illustrated In Fig 3.5 and its equilibrium for the mta-

ti.,:anal and tr nslat ona1 elastic and inertia forces we gets 

V= 	.. d AG 	 ... 3.13 

d sy M 	EI  

Ip s 9h 	 ... 3.15 

mp$y- Ky 	 .,. 3.16" 

y 	= yb -~ 's 	 ... 3. 17 

Where, 

V 	is the $hear force, due to shear 

defo rma ti-' n in F un its 

ratio of the average shear stress on a section 

ti the pr- }duct o f shear modulus and the angle 

of sheat at the n utral axis , termed as shape 

factor t 1.10 for circular section, a dimensi.one-

less au ntity, 

Ip Nbment ::)f inertia of the section, with units 

Of L ~+ 

M 	Bending moment in a section, F1, 
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m 	mass of the element of a segment. 

y 	Deflecti-'n due toj shear deformation, L. 
s 

yb  Deflection due to bending deformation, L. 

9b 	Rotation due to bending. deformation . 

P 	Mass Density of the material, FIS 4  T2. 

y 	total deflection, sum of deflections due t, bendin 

and shear, L 

G 	Shear modulus of the structural material, FL"2  

8I Flexural stiffness, FL2  

A 	i%rea of cr3 ss section in La . 

p 	Natural frequency of vibration of the system  in 

any mode. 

Let us consider three mass locations and section. drawn 

at mass paint 1,- Fig 3.5b. 

A. finite change of shear force.._iccurs at each mass whic] 

is equal to the algebraic sum of the inertia force of the mass 

and the spring (soil) reaction. Each of these quantities are 

dependent on the deflection of the mass point, 

The.fPfor`e we have': 

eV 	= m p 2y - Ky 	 .... .-3.  i8 

Assuring that the quantities Vo, Mo, 8bo' Ybo and 
ys  ; are' 'Imown at the left f the section then, 
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V1 = Vo + m 0p ay0 - k y1 	 • ..3.19 

M1 	= MI)+v1(ox)-.( 	( Ax) 1pa obo 	...3.20 

Sl = ys _> 	oAG 	) 1 (Ax) 1 	 ...3.21 

NOW, bending moment M at any distance x, from the left 

side of sect io; n, 0, is: 

M M = M : + ,l) 	x 	 ...3.22 

S1pe eb = (EI)1
... 3.23 

(E 1 1 M;:~ x+ 	©x 1 , 	2 + 8 b O 	 ... 3.24 

and deflection 

	

yb = G dx + B 	 ...3.25 

a M__M 	fl 
= 	- (M i. 2 + Ax 	6v } ± B bo X + 'bo 	... 3.26 

For a distance x = (Ax) 1 

(Ax)1 	M ; 	Ml 
831 - 	El ( 	+ i-)  + eb 	 .... 3.27 

M and  y = El — 1 ( 	+ Ml ) (Ax)1 	 ..-. 3.28 bI 	3 	6  

+ 8b) (Ax)1 + y 	 I 	:..•. 3.29 
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These results cm n be generalisedd and the expressions for 

lhp jth section in terms of the (j•1) th section or mass as 
illustrated in Fig 3.6, would I es 

V 	= Vj-1 + 	p2 yj-1 _ K,j y j_.1 '.., 	3.30 

M. = M, 1 + + 	V (AX) •.'(P 1~ J .( tax) •P2 eb • J • • + 	3. 31 
J_ 1 

(©x) . 
e b = x (M. 1 +M) 2 	

J 
+ 

ji J J -1 

(x)2 • 
YbJ- EI 	(0 5 M. + Mj-1) ,!, 	3. 3~ 

+ 
b j- 

8 b 	
1 

. 	(Ax 3 + 	Y .~ 3.34 
J- 	 ~. 

y5J = d~1 ySJ - 	( 	S< <X 	) j -1 Vj ... 	3.35 

y j = Yb3 + y • 	 ... 3.36 s
J 

Where, 

V. 	- 	Shear force at any section j, 3*n h elemTt 

Bending ' oment at any division p-► nt 3 acting on J 	t 
the segment 

9 j 	-• Slope of the element at the division point j 

Yj 	- 	deflection of the mass at j 

Yb 	deflection due to ben ding of the mss at 5 
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ys 	~- deflection due to shear of the mass at j. 
3 

length of the element between points j-1 and 3 

A~ 1 	= cross sectional area of the element 
r 

13 1 	= moment of inertia of cross section of the element 

ZI 	= natural period of vibration of the system p 

From the above equations it is seen that for any 

frequency ' p' , 	once we know the values of V, M, 0b, ys, 	and 

yb 	at a particular section or mass point we can find the 

corresponding values at all other points. In order to ac hive 

thissthe aid of the defined end conditions are. taken. 

For the pile top fret to rotate condition, we know 

that the bending moment M.r and shear 	VT 	at the top of 

the pile are zero. Similarly at the bottom the bending 

moment 	MB 	and shear 	VB 	are also known to be zero. There- 

fore the unknown quantitites are deflection yT and rotation 

e T at the top of the pile and deflection yB 	and rotation eB 

at the bottom of the pile. 

Once we know the quantities at pile top, the unknown 

quantities at pile bottom may be determined by starting from 

the pile top and proceeding towards pile bottom. 

But at pile top yT and 8 T are also unknown. There-

fore, for convenience if we assume yT = 1 and 6T = 0 we 

get the other quantities at bottom for this assumed conditions 



in terms of yT and e T. 
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Thus 

YB ~ = 011 YT 

g B! = C21 YT 

VB t = C31 y T 

M I = C41 YT 

... 3.37a. 

... 3. 38 

... 3.3? 

... 3.40 

in which C11, C21, C31 and C41 are the constants depen den # 

on Pp?. 

Similarly for the condition of yT = 0 and e T 

top we get 

	

yBof = C12 e T 	 ... 3.41 

	

9B" = 022 'T 	 ... 3.42 

3.43 

	

B" = X32 e T 	 ...  

MB = C42 Q T 

In which C12, C22, C32 and C42 are constants depen dint on X 

Therefore in general for any translation yT and rotation 

9T, the quantities at the pile bottom would be: 

yB = ll 'T4 C12 8T 	 ... 	3545 

6B = 	C21 yT + C22 e T 	 ... 	3.46 

VB = 	C31 yT + C32 0T 	 ... 	3. 47 

MB = 	C41 yT + C42 e T 	 .. • 	3. 48 
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Now, at the pile bottom we knew that the quantities VB 

and MB  are zero. 

Therefore we have: 

VB = C31 yT + C32 @ T  = 0 	 ... 3. 49 

i = C41  yT + C42  e T  = 0 	 ... 3.50 

i. e. l_. C31 	0321  1 YT 	i o  I 
1 

C41 	C42 j 	E  T 	 ... 3. 51 

However, in the above equation, the condition for yT  and gT 

to be non-.zero, is the vanishing of the determinant. 

X31 C32 

	

=0 	 . • . 3. 52 
C41 	C42 1 

It can be noted herein, that the terms of the determinant 

involve quantities which have bearing on 'p' alone. Thus, 

if the assumed values of 'p'  is such that, it is one of the 

natural frequencies of the system then the determinant would 

be equal to zero. 

Knowing the natural frequency of vibration each of the 

quantities given in Eq. (3. 30) thzu ugh 6q. (3. 36) can be 

obtained starting from the top mass and pmeeeding success- 

ively to the bottom mass, By this the quantities : 	deflection 

( y), rotation (e), 	bending n )meet (14 	and shear (v) 	are 
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known at each mass 	iflt for didferent nrdes of vibrations, 

defined by different natutal frequencies of vibrations. Thus 

the variation of the Said quantities along the entire length 

the piles are established. 

For the case  of pile top fixed against rotations the 

procedure of obtaining the modal values are the same. However 

the required change in the end conditions would be 6T  = C 

and VT  = 0 at the top of the piles. Thus the unknown 

quantities at the top would be YT  and Mr. As before cental 

arbitrary values for these quantities could be assigned at 

the top and rest of the procedure remains the same. 

The change in the equations .45 to 3.4= would be: 

yB 	" C11 y ' + C12 MT 	 ... 	3.53 

8B ¶ 021- YT + 922  MT 	 .... 3. 54 

VB 	=. C31  yT *. C r 	 ...• 	3.55 

41 Y  i + c42 MT 	
... 3. 56 

. 3, 5 DYNAMIC RESPONSE 

1r! order to obtain the eakthquake response of the 

pile .soil system, (e4rtj quake) response spectrum techrlque 

was used (}sner 19641,;' Accordin to th g technique the 

response of a -  general 	1e degree of freedom system may be 

obtained by the application of Duhattei integral. The 
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integral expression for the earthquake response of a damped 

system is given by: 

t 	 ~ (tw,~ ) 
v( t) = p 	c vg (r) e 

p 
	Sin p( t_r) dt 	... 3. 57 

CY 

Denoting the integral by symbol V( t) , 

t 

V( t) = 	v9 (i') e 	p( t r) Sinp( t-T) dr 	... 3. 58  5 0 

Where, v( t) is the displacement variat-i.n with time, vg (r) 

acceleration variation, t time for which the random vibration 

acts'. NA t) velocity response , damping coefficient.. 

The earthquake response for a lumped mass system becomes 

v( t) 	p V( t) 	 ... 3.59 

T 	 7ii +inn ,hor~t.a~ai+-. tho .ai r~~a~am,-n+ roonnn,.c +,- nn.. v .4 ?S' •~j V-1 a- " 	-VI r/1 ~rV v• vJ 	•t. *s-yjr 	 -' -'r` •a   

ground motion input for which the earthquake response function 

V(t) is evaluated. In a similar manner the forces developed 

in the system during earthquakes can also be evaluated, 

The displacement response at any time t ti of any single 

degree system to earthquake excitation is defined completely 

by the equation. But for a pile-soil system assessment of 

such an entire time history of displacement and forces would 

involve a tedious computational problem to the design er, 
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Therefore in a preat ica l problem of the present type it is 

sufficient to determine only the maximun response quantities. 

The maximun displacement response can be obtained by intxroT 

during the maximum value of the response function V( t) 	into 

the equation. This maximum value of the function is commonly 

called as spectral velocity, Sv  

1' 
Sv 	I I v  (T) e-  'I p( t-T) S in p( t-r) dr 

g 	 ma x 

... 3.60 

The spectral. displacement ww. uld then be Sv/p and spectral. 

acceleration Sv,, •pa  

The relationship of Sd., Sv  and Sa  for any given 

earthquake,, for systems with different periods and damping 

is the response spectrum.. A typical Seib of design spectrum fc 

the above quantities with period has been given in Fig 3.7. 

It is  possible to evaluate the dynamic response of I 

multi degree system considering the combined equRtion of orotic 

However, herein, for the elastic system as adopted, it is 

considered that, once the mode shapes and frequencies of the 

system are knovrp the system could be treated as. uncoupled 

system, and the superposition of the individual modes could 

be done to determine the overall response. 

It is also c^nsidered that the total maximun is not 

given by the sum of the individual maximum. An approximation 
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to the total maximum was based on probability considerations 

as obtained by the rootmean-Square addition othezwiSe known 

as quadratic superpositi, )n which was proposed by 1-kbusner and 

Jennings ( 1964). 

In this process the c'?ntributin of each mode by 

considering their participation factors has also been incorpo-

rated. 

Therefore the adopted procedure for determining the 

dynamic response is as under: 

' 1, For each mode the dynamic deflection Y is calculated by 

Y( 1) = 	 () t ( Y ) Y( r) 	S d ( r) 	... 3. 61 ( 

Y( 1) 	the dynamic deflecti7n of the i th point 

in the 'r'th  m de. 

Y ( r) = The mode participation factor for the 'r'th 

mode given by 

l-n 
-~_ rn.1 y. 
i= _ 	1 

Y( r) = i=n 
mly. 2 

is1 

Sd( r)= The spectral displacement S  

where Sa( r) - Spectral acceleration co rres- 

ponding to the period T of the 'r'th mod©. 

O( r) (y) Y{ r) = Normalised modal deflection 
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p - the natural frequency of the i r' th mode. 

Now, for each of the made shapes there are associated 

values of shear, moment and rotati,)n.. The above equation 

( 3. 61) was used to calculate these by _replacing dT( y) by the 

desired quantities at various points. 

The maximum value of the modal quantities wa.s cal- 

culated by the root-mean Seuare addition. 	 I 

'' ma x 	y~ (1) .+ y( 2) ~~ + 	... 3. 62 

The variation of 'max at different points gives the dynamic 

deflected shape of the pile due to the earthquake considered. 

Similarly, the dynamic rotation, bending moment and shear 

can also be obtained. 

3.6 COMPUTER PROGRAMMES 

For detern ring the natural frequencies and mode shat 

at different frequencies of vibrations a generalised compute] 

programme was written in Fortran IV language. 

For the lumped mass-spring system idealising the 

Physical system, it would not be possible to guess the value 

of 	` p' correctly. - . 	In 	order to achieve this, 	a lower bound 

value of 'p1 	was initially assumed and for that assumed t pt 

value the free vibration analysis was performed to evaluate 

the value of the determinant. The programme incorporated 



the process of plotting 'p'  versus determinant, A' 

relationship. When this plot changed sign, suitable inter-

polation technique was adopted to catch the exact value of 

1  p' corresponding t the near zero value of the determinant. 

Once the exact t 1,t value corresponding to first mode fre-

GIuency was obtained, the node shapes were computed. 

Then a suitable increment to the first mode frequency 

was given, and in a similar manner the second and third mode 

frequencies and mode shapes were obtained. 

The other saliit features of the programme are as 

under: 

1. Piles of varying cross sections can be analysed. 

2. Any desired end conditions can be incorporated. 

3. The programn could get out-put for s)il modulus remaining 

constant or varying linearly with depth. 

4 

	

	The mode chanes and natural rs- u giiclPs  could be obtained 

ti any desired numbers. 

5. For the desired earthquakes the programme is capable of 

obtaining the dynamic response considering the combination 

of each rl)de and the probable maximun by it mean square 

addit ion. 

3,7 VARIABLES 

Using the computer prograne the dynamic resposse of 

variaties of soil-pile systems was determined. The response 

e 
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assessment was based on the analysis of thLm pr,p<)sed mathernati. 

cal model following the principles of dynamic analysis which 

was discussed in article 3.4 and 3.5. 

In this process to understand and estimate the dynamic 

characteristics of piles embedded in soil, the various 

factors which control the dynamic behaviour have been examined 

fn' the fo lLr)wing br:7adly classified cases. 

Information has been obtained for piles embedded in 
s=ails in which: 

( i) the soil modulus can be considered to remain 

constant with depth.. 

(ii) the soy li modulus can be considered to vary 
linearly with depth„ 

~n 

 

both the above sn i1 types the following two con 
dit ic> ns have been considered: 

( i) pile top free to rotate conditions(with 0% degre( 
of fixity at the top) . 

( ii) Pile top fixed against rotation conditions (with 

100% degree of fixity at the top) . 

In each of the above four cases the influence of the 

following factors have been ana ~.yseds 

1, The soil stiffness, 

2. The flexural stiffness, El of the pile. 



3. Sustained vertical loads. 

4. Pile 'lengths. 

	

a, 70 i ?B 	ci VZL 	L T1XN 

.'~. 

 

PI L finition of 4xin I ptl~ V4 o r 
For determining the pile response subjected to sus-

tamed lateral loads and moments, Reese and Matlock (196) 

and Davisson and Gill (1965) have pr~pc sed non-dimensional 

so lut ions. These solutions define, the relative stiffness 

factuars and maximum non.dimen signal depth factors as under'. 

( i) for the ease of piles embedded in soil in which 

the soil modulus remains constant with depth, 

relative stiffness factor.R, is defined as, 
R 	4 j 	k . Where EI is the flexural stiffness, 
k the so S.1 modulus, FL"2. 

( iil Fc the case of ;,o+ ; with linear variation of 
-  T 

soil modulus with depth, pelative Itif fn ess facto; 

T is defined as, 	T  
the constant of horizontal subg'Ode r..Oaq~~on, 

F L 3„ 

( iii) The factor Zmax; termed as maximum depth factor 

is obtained by dividing the embedded length LS 

by Relative Stiffness Factor (R or T) . This results 

in a dimensionless number which is indicative of 
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the flexibility of the pile member relative to soil. 

3.7.1.2 Adopted paectise: 

Before deciding upon the numerical values for the 

material constants of the soil pile system a systematic 

study of the adopted pi-ling practice in the country was rode. 

The study revealed the following: 

1. Nornally adopted pile diameters vary between Q25 m to 

0.75 m. 

2. The pile length range betweeri 5m to 60n. 

3. The area ratio of steel is between 0.2% and 4%. 

4. The generally adopted concrete mix is M150 or ?i200. 

3.7.1.3 Numerical Values and Pile Cases: 

In order t ,> obtain information of practical signi-

ficance, dynamic response of 180 pile cases was evaluated. 

In each of .these pile cases the soil-pile parameter values 

were carefully varied. For the cases of piles embedded in 

the type of soils, in which the soil modulus can be considered 

to remain constant with depth, the list of analy$ed pile cases 

to With their salient features has be -1n given in Tabie 3.1. 

From this table the f.11owing points can be observed. 

1„ The considered pile diameters are 

c3, Q4, c5, 0.6 and 0.7rr:. 



Table 3. 1 

Details of Analysed Pile Cases Considering 
Soil Modulus To Remain Constant With Depth 

} Relative TDiameterliSoil 
'Stiffness' 	In 	tModulus 
lFactor, R lmetres 	I T/m2  

TFlexural 
in ,S,,iffn ess 	+ 

'EI 	TmI 
Remarks  

1.0 Q 30 477.13 0, 477 x103 	1. In each case the 
ma ximum depth  

1.25 0. 30 19 5. 43 0. 477 xl Os  fa cto r, Zma x 1' 
2, 	3, 	5, 	10 arid 

L. 1. 5 0, 30 94.25  0, 477 x103  and 15 were con i' 
dered. 

1.0 0,40 107.96 0. 151 x104 	2. The sustained ver- 
tical load was 

1.25 0.40 617.66 0. 151 ' xl varied in each case. 
The value was 

1,50 0.40 297.87 0.151 x104 calcultaed 	consi- 
dering frictional 

x104  
and end bearing 

0 1. Q 50 3681. 55 0. 368. resistance  in  esi  9an 	 (  
1.25 0.50 1507.96 O 368 x104 theory. 

2.0 R 50 234 10 'q 368 x104  3. 	Each was analysed 
for both pile top 

C).60 y S r Oj 
.4 

XLv 
  rotate 

and fixed against 

x104  
rotation conditicons. 

2.0 Q60 477,13 0,763 

1.25 460 3126,92 0.763 x104  

1.50 0,70 2793. 69 0. 141 x105  

2.0 470  883,94 0,141 x105  

3.0 	0,70 	174.61 4141 x105 



2. In each of these diameters, the pile lengths have been 

varied to obtain information :-in cases with Zmax = 1,2, 

3,5,10 and 15. 

3. For each of these pile sectional prapejrti.es and lengths 

three 'different values of relative stiffness factors 

have been considered. 

4. Three relative stiffness factors, yielded information 

regarding piles embedded in soils of different stiffness 

In the case of clayey soils the above may be considered 

to cover soft to stiff consistencies. 

3.8 NEED FOR NON..DIM NSIOr' L SOLUT-ILNS 

The analysis of the dynamic behaviour :f  piles inclu 

1, Th:a examination of natural frequencies in different mod 

of vibrations.  

. Study of mode shapes at different modes= of vibrations. 

That is the assessment of variation of deflection, slop 

bending moment and shear along the entire 1c .gth of the 

piles at each mode :f vibrations. 

3. The analysis of various soil-pile parameters which 

influence the above two factors. 

Based on the results of different pile cases analyse 

it would be advantageous, to develop noon,.dim-nsional curves 

for logical explanation of the basic quantities of pile 



r$ pon se and the factors which influence them. In addition 

to this, if such $ Jutions are developed, it woU44 hjjp the 

designer fl pr dictng the response of any $`' 44.-pile system 

under the dynamic a 4s, 

3.9 NN..DIM NS1WAL CURVES FOR N,TUR'%L 
FadUSICIES 

The overall response of the system to earthquakes 

depends up_)n the natural frequencies in different m.~des of 

viba ti,}ns. - In order to obtain the significant assessment 

Of the various factors that influence the natural frQquencjeq$ 

each individual fact ,rs (of s.)i1..pica parameters) have been 

varied keeping the others as a constant. In this manr~Qr,, 

the overall picture as to hew the different variables influence 

the behaviour was )btained. Such an analysis of the results 

of pile cases embedded in clay ( given in Table 3. 1) resulted 

in._- a set of curve- bct"!/~IV'1 	
f 	t 	

TTliAl~. 

.. .~...co., a .ai.E. =r Vezziea a 	rRDcU~YVCJY 

FACIOR, FCL and relative stiffn ss factors of the pile 

The variables con~ itut~Apg4 	t~ i non,clA cgst-.r 4l 

f iFequepcy factor Under d~ft'grqnt 	dei o' '.ibiration? aTT 

def ip Pd below. 

First 	 FCL1 

Second 	 FC12 

Qompon nt~s 

W 
4̀nI• `~ g k R 

r 
wn2. \ gic, 



E 

Third 	 ))da 
n FCL3 	 w ;,' 	gk 

In the above llist, 

Wn , is the circular natural frequency of the systems in the 

subscript identified modes given in radians per sec. 

g , is the mass at top Mt (FT2Lr' 1) 

k 	, soil modulus values in FL~2 

d 	dia of the pile Section (L) 

R 	, relative stiffness factor (L) 

, weight density of t}-p pile (FL 3) 

FCL1, frequency factor a dimensionless number. Letter C 
denotes the clay case and L, identifies the use of 

lumped mass model. The numerals identify the mode 

number. Prime used for pile top fixed against rotation 
conditions. 
It is to be noted that the definition of frequency 

factors hold good fo:> r both, pile top free to rotate ( 0 

degree of fixity) and pile top fixed against rotation condi_ 

tins (100 % degree of fixity). 

In Fig 3. 8 the variation of FCL1 with relative stiff- 

ness factor, R has been drawn for different identified,Zmax 
cases. 

rn Figures 3.9 and 3. 10 the variation of FCL2 and FCL3 
is provided in a similar manner, 	for second and third modes 



respectively. For a particular 2ma  $ each of these curves 

cover sixteen pile cases of varying soil-pile parameters 

and vertical loads. 

The above plots pertain to the pile top free to 

rotate conditions. 

In order to indicate the uniqueness of the above plots, 

as an example, the dimensionless frequency factor values 

FCS, FCi  and 	FCL3 	as obtained have been tabulated in 

Table 3. 2. These results pertain to the case •-)f piles with 

zmax = 5  and for pile top free to rotate conditions. The 

soil piles parameter values and the sustained vertical loads 

pertaining to each pile case have been provided in this 

Table. Such tables were prepared for each 4max  cases 

Similar process was found to be valid for the condi-

tions of pile top fixed against r)tatioons. The variation of 

t `:e 'e f a cto rs (ideni if led asr' CLI , FCL2 with relative stiff  

Hess factors for piles with different 1 max cases are given 

in Fig 3.11 and Fig 3. 12 respectively. In Figure 3.13 to 

3.16 the variation of frequency factors with maximum depth 

factor Zmax  has been provided for different modes and for 

both pile torp free to rotate and fixed against rotation 

conditions. 



Table 3. 2".  

Fre1uency Factor Values For Different Pile Problems 
With 	1 	=: :5L- Pile Tp Free To Rotate 	or.dit ions 

max  ., 	. h..-. 	...... V  

a- 	Sus.- Sc1 5irneter First IVbje Frequency 
i-Ibtjve.'.ttaifled IM2dUlUs..k- of- --pile Natural Factor for 

I Stiff 'Verti n T/m2  in Frequency FirtJbde 
riess metres w 	in ofvibra 
Factor . load W, . . : 	radians t tions FCL1 
R 
metres Tonnes .t 

: 
: per sec 

.; 
W 	1 

W1 	
. . 

9: 6..._ 7 

1. 5 15.0 297.'87 0,4 14.27 	•. 0. 8347 

1,0 140.0 	. 368l.55 0.5 13,48. .. 0.8392 

1.25 7040 1507 • C) 6 0.5 13. 63 0. 83860 

2.0 20.,0 230.1 05 12.49  0.83132 

1.5 100. 1507.56 0.6 12.49 0.83846 

2,0 . 	40, .0 477 .  13 0.6 12.76 0.83408 

1.25 175.0 3126.9.1 0.6 m
.-  12. 42 ! 0. 83905 

1.5 25.,0 279. 0.7 t11,34 0,834 

2.0 90.0 883,94 0.7 11.61 0. 83635 

3.0 

1.0 

1.25 

1.0 

1.25 

30, 0 

10.0 

•5.0• 

45.0 

25.0  

174,61 

477.13 

19 5. 43 

9425 

1507.96 

617. 66 

0.7 10.75 

0.3  :18.12 

0.3 

0.3 13.8 

0.4 15.22 

0,4 	14.5? 	0.83822 

0.82136 
83752 

,.0•83i32 V. V-V. 

0.83858 

0.83943 

Contd -- 
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Table 3.2 (Contd.) 

Pr° 	,Second 	de , Frequicy fac- ; Third Mode ; Frequency 
.- ;na tural t..tor for second ;natural fre-', factor for •Nom 	~ f reauen cy ~ Node of vibra- qu ency' wn 3, Third Nb de 

tW n2 tions , t  in 	radians , , of vibrations 
radians ; 	_ 	dam- 

' FCL2^ n 2 
' per sec ; ~.. FCL3 `~n3 	k. per sec k. g t t g 

8 9 10 11 

36 98.39 1.12783 115.3- 	- 1..32166 

37 276.5 1.12654 324.09 8 1.321 

38 177.0 1.12641 207.3 .1. 3206 

39 69.18 1.12786. 81.16 1.32237 

40 147.5 1.12718 172.9 308 1.3215 

41 83. 01  1. 12752 97. 25 1. 3209 4 

42 212.4 1.12591 248.83 1.32058 

43 172. 10 1. 12722 201. 631 1. 32085 

44 96.83 1.127556 113.3 1.31934 

45 43.05 1. 1279 5 50. 57 1. 32498 

31 166.0 1.12707 194.31, 1.3200 

32 106, 3 1.12798 124.7 1. 3231 

33 73. 8 1.12795 86. 66 1. 32069 

34 221.0 1.12471 25).180 1.32048 

35 . 141.7 1. 12737 165.863 1.2046 



3, 10 NON_D11 ENSIGNAL CURVES FOR NORM\LISED 
MODAL QUANTITIES 

3. 1Q 1 NO LISED !v DL QU\NTITIES 

Each of the pile cases given in Table 3. 1 when 

analysed with the lumped mass analysis gave output of mod.1 

quantities of deflection, rotati:,n, bending moment and shear 

at the mass points along the pile length. As menti)ncd 

earlier the various modal quantities were obtained by giving 

a unit displacement to the pile top article 3.4,2. For each 

mode of vibration along with the modal quantities the values 

of mode participation factor ( defined in equation 3.61) was 

also obtained. Such factors when multiplied by the modal 

quantities at every point along the pile length take into 

account the vibration mass distribution effects at each point 

For each of the analysed pile roses the normalised modal 

quantities explained above have been obtained. In the subse-

quent sections the normalised modr4l quantities of deflection, 

rotation, bending moment and shear have been identified as 

(D( y) , ?(e) , 	O( M) and 	( s) 	respectively. 	Nunera is in subscriF 

have beon used to indicate the mode numbers. 	Primes have bee 

used to identify solutions of pile top fixed against rotation 

conditi;?ns. Con $Idering the en) rmouS am)unt of such infor-

mation non.-dimensional curves for these normalised modal 

quantities of deflection, slope, bending moment and shear 

were obtained for both pile top free to rotate and fixed 

against rotation conditi)ns. The procedure of obtaining the 
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non-dimensional curves for each of these normalises modal 

quantities has been explained below. 

3. 10.2 NCN-DIMS\JSIWAL CURVES FUR N0RML.LSED MODAL DEFLECTION 

In Fig 3.17 and Fig 3.18 the normalised modal values 

of deflection along. the pile length (i.e. at various absolute 

depths) have been plotted for different pile cases with 

Zmax ! 11  :and 5 respectively.. The particulars of each of the 

five pile cases are as under s 

No Dia in 
metres 

1 0.4t 
2 0.5 
3 	: .0.6 
4 0.6 
5 • 0,6 

1 :0.4 
2 0.5 
3 . 0.6 
4 0,5 
5 0,5 

Soil modulus 
k, in T/m2  

1507.96 
1507.96 
1 507 .96 
3126.92 

477...17 

1507.. 96 
1507.96 
15017.96 
3681. 55 
230.10  

Relative Stiffness 	z 
Factor, R in metres 	max 

1.00 1.0 
1.25. 	.. . 	1.0 
1.50 1.0 
1,25 1.0 
2,0 1.0 

1.0 5.0 
1.25 5.0 
1.50 5.0 1.0  5.0  
2.0 5.0 

In these curves the normalised modal deflection •ct)(y) is 
a dimensionless quantity. At any depth the values of 0(y) 

is dependent on the relative stiffness factor of the soil-

Pile system When the normalised nidal quantities are 
plotted against WR, the dimensionless depth factor, each 

of the five curves of Fig 3. 17 merges into a sin gle unique 

curve as shown in Fig 3.19. 	Similarly the curves in Fig 3.18 

results in,  curve shown  in Fig 3,..20. The above pile cases 

Pertaining to 2ma= 1 and 5 have been particularly chosen for 



pres~ntatioh, c:.:ns%der1 1 the w4de~.y d. (feting modes of 

deformations in these two cases, 	Thus it was observed that 

for a particular Gmax case ()f 1 and 5 at present) whatever 

be the piJ e_s-ail parameter, there exists a unique non 

dimgnsi!)na1 curve for normalised modal deflection.. Such a 

non-dimensional curve for Amax = 2, 3, 5 ,10 and 15 betw 

and x/R have be,-n presented in Fig 3.21. These curves 

pertain to the case of piles embedded in clay Under first 

Mode of vibrations with pile top free t.> rotate condition., 

It was observed that the above pr- cogs of obtaining nonce 

dimensional unique curves held valid for socc'nd and third mac 

of vibration also. Thus for any soil-pile system with a 

particular Zmax , a unique n.:i,n-dimensi )nal curve existed 

between x/R and the normalised modal deflection. For pile 

top free to rotate c,_onditi•?ns and for the second mode of 

vibration the variations of non-dimensional nozmalised modal 

deflection Ay2 against WR for different Zmax have been 

plotted in Fig 3.22. 

In Fig 3.23 and 3.23a sirmil 	such non- .L-a r.sional CUa 

between non.-dimensi.cnal n,,rmalised modal deflection ►y3 and 

depth factor x/R have been presented for Zmax = 2, .3, 5, 
10 and 15. These curves pertain to third mode of vibration 

for the pile top free to rotate conditions. 

F_Tr pile top fixed against rotation conditions the 

similar process of obtaining nondimensional.  curves was' fouz 



t.,) agree, 

Fig 3.24 gives the va riati.~n of n r n-dim en si:'nal 

normalised modal deflecti;)n ~~l yl with depth factor x/R , 

f".--r the first mode of vibrations in the above conditions. 

In Fig 3.25 the above curves for the second mode of 

°*vibrations have been presented as f 2 versus x/R. In all 

these plots it is rnphasised that for a particular  Amax' 
irrespective of the vaiiat ion s .5n soil pile parameter values 

and the sustained loads there exists a unique non_d.imensional 

plot. 

3. 10. 3 NC LpIME'1S ICNAL CURVES FOR NORALISED 
MORAL ROTATION: 

In Fig 3.26 and 3.27 the normalised modal values of 

rotation 0(e) have been plotted against depth factor x/R 

for first mode of vibration. The five curves in each of 

these figures Pertain to the pile c-.ses given in article 3.10.2 

for Zmax = 1 and max 	5 respectively. 

As shown in Fig 3,28 and Fig 3.29 the product of 

respective relative stiffness factors and the normalised modal 

rotation c (e) when plotted against x/R merges to a single 

unique dimensionless curve for each of the five curves of 

Fig 3.26 and 3.27. This process was found to hold good for 
any soil-pile conditions with a particular Z 	case. 
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The above process Was found to be valid for the 

second mode _of vibrations also.In Fig 3.30,3, 31,3.32 'and 3.: 

the non-dimensional normalised modal rotations A , A 

and A0 	have been plotted against x/R for first, second 
3 

and third mode respectively. These curves correspond to 

the pile top free to rotate conditions. The results have 

been plotted for Zmax ` 2, 3,  5, 10 and 15. Thus for 

any particular Zmax  whatever be the pile-soil condition, 

the normalised modal rotation can be easily read. Following 

the procedure for pile top free to rotate conditions, in 

Fig 3.33 and Fig 3.34 noxmalised non-dimens anal modal 

rotation values A`91  and A'02  for first and second mode 

have- been plotted against x/R. The above plots pertain to 

the pile top fixed against rotation conditions and the 

results are given for different identified 	zmax cases 

of 2, 3, 5, 10 and 15. As before for any given Zmax' 

whatever be the pile-soil parameter, the values of normalis 

modal rotation in fir-st and second mode could be obtained 

from these figures for the pile top fixed against rotation 

conditions. 

3. 10. 4 NON- D IMHVS IONAL CURVES FOR NORMALISED MODAL 
BENDING MOMENT 

For the same five pile cases with Zm  = 1 and 5 t 

values of normalised bending moment cD (M) at various x/R 

have been plotted in Fig 3.35 and Fig 3.36 respectively. 
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From these figures it is seen that at the same depth factors 

for a particular Zmax ( say Znax = 1, in Fig 3.35) the values 

of (T) (M) are In the ratios of the product of squares of the 

corresponding relative stiffness factors and the soil modulus, 

k. 

Thus a non-dimensional curve is obtained by plotting 

the products of fi (4 and 1/kR2  against x/R. In Fig 3.37 

and 3. 38 the quantity 0 (14/kR2  identified as Aril  has been 

plotted against x/R for the five different pile cases with 

Zmax = 1 and Zmax ` 5  respectively, As is seen, the five 

cases have converged to a single u? ique non-'dimensional curve 

for the respective Zma 	cases. 

The variation of non-dimensional modal bending moment 

Amt  with c/R for different Zmax  values, have been given in 

Fig 3.39 for the first mode of vibration and pile top free to 

rotate conditions. 

For the third mode following the similar principles 

the variation of Ami  against x/R have been given in Fig 3.40 

and 3.40 a. These non-dimensional curves have been obtained 

for the pile cases with Z 	T 
max 

 2, 3, 5, 10 and 15. Herein, 

Am3  is the quantity obtained by the product of normalised 

modal bending moment with 1/kR2  for the third modes. 

Similarly for the pile top fixed against rotation 

conditions the non-dimensional normalised bending moment .  Arh1 
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in the first 	and "~►`m2 in the second modes of vibrations 
have been plotted in Fig 3.41 and Fig 3.42. 

From these figures for any given soil-pile system 

the normalised bending moment variation in the first and 

second mode can be easily assessed.. 

3. 1Q 5 NCN-DIMF3~SIU' AL CURVES FUR NORM' LISED MODAL SHE R: 

In a similar manner as for other modal quantities it 

was observed. that non-dimensional plots are obtained by 

plotting the product of normalised modal shear, c (S) with 

the quantity 1/k. R, , against xf R. The pro cess of non-

dimensional curves so obtained for the cases examined have 

been presented in Fig 3.43 to Fig 3.46. 

In Fig 3. 47, ^. 48 and 3,48a the quantity fi(3)/t R 

against WR, identified as AS, and AAS3 	•{have been plotted 

for the first and third modes respectively. 

In Fig 3.49 and Fig 3..50 the variation of A l S1 and 

A52 with x/R have been .plotted for the pile top fixed aga 

rotation conditions. The quantity 	sl ' 	 's2 identify 

the first and second mode of vibrations respectively. 

3. 10. 6 LIST OF NON_ D IMFJN S IUNAL CURVES FOR PILES 
EAIB EDDED JN CLAY 

For ready reference the various non-dimensional 

curves for different conditions have been listed below: 



1. Pile nbedded in clay -Pile Top Free to Rotate 

	

(.0% degree of fixity) - First Mode. 	- 

	

Processin 	. entification 
Normalised Modal Factors g 	of non dim- 

sional normali- 	Figure 
sed modal 	No. 

Deflection 0(y1) 	O(yl) 	Ayi 	 3.21 

Rotation 0 (e i) 	81) . R. 	Ae 1 	 3.30 

Bending 0 (M } 	1 
Mm ent 	i '( Mj.)  • R 	Am i 	 3,39 

Shear ( S1) 	O( Sl) I 	Asi 	 3. 47 

2. Piles Embedded in clay-Pile Top Free to 
Rotate (0%' Degree of Fixity) ..Second Mode 

Deflection c (y2) 	(D( y2) 
	

Ay2 	 3.22 

Rotation c1(e2). R 	c1(e2 ). B 	'e2 	 3.31 

3, Piles Embedded in Clay-Pile Top Fye* to Rotate (0% 
.;gree of - Fixity) - Third Mode 

Deflection 0 (y3)c>(y3) 	A v3 	 3.23 and 

Rotation 0(e 3) 	.(e3)•R 	A03 	 3,32 and 
30 32 a 

13 ending M m t( 	
- 	 and 

	

3)  k - 	m 3 	 3. 40a a 

Shear ( S3) 	O( S3) - 	A 3 	 3. 48 and 
S 3.48a 
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__.._._(1L._. 	 ) ... 	4).._.~._ 

4. Piles Embedded in Clays-Pile Top Fixed Against 
Rotation (100%  Degree of Fixity) - First Node 

Deflection '(y1) 	 yl 
	3.24 

Rotation 	 A'el 	 3.33 

Bending 	c c (M) 	).  fupm ent 	1 	J kR2 	.~ ml 	 3.41 

Shear 	o' (Sl) Q)' (S1) kR ~i' $1 	3.49 

5. Piles Embedded in clay-Pile Top Fixed Against 
Rotations-(100% Degree of Fixity) -Second Mode 

Deflection c5' (y2) cit (y2) - 	`~' v2 	 3.25 

Rotation 	cI (@ 2) c~' (e2). R  

Bending 	(M2) O' (M2) . 	 3.42 
lvbm ent 

Shear 	' ( s2) . ~' ( S2) kR 	'S2  

In the above list: 

( i). 	c (y) , cv(e) , (M) and d(s) 	are the normalised modal 

quantities of deflection, rotation, bending moment an 

shear at any point along the pile lengths 

( ii) 	The normalised modal quantities are the product of mo 

values and the mode participation factor in a particu 

mode, . 
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( iii) k is the soil modulus as defined for the case of 

soil modulus remaining constant with depth, having 

units of FL` 2. 

( iv) ''" R is the relative stiffness factor for the soil 

cond .t o,ns pertaining to ( iii) defined as  k 
having units ''o f length. 

(v) 	`~Y' rhe' `gym' A 	are the dimensionless normalised 

modal quantities. Each of these factors plotted 

against x/R result in a non.-dimensional curve. 

Primes are used to identify the case of pile top 

fixed against rotation. Nu"nerals in the subscript 

denote the mode "numbers. 

3. 10.7 S PEC IMH'1 OUT PUT 

The complete out-put of the dynamic analysis 

for assessing the response of an example problem, with 

Zmax = 3 has been provided in Appendix I. The results 

pertain to pile topfree to rotate conditions and the 

values of soil.. pile parameters and other details are 

mentioned in the table itself. 

Also, in Appendix 1, the computed values of 

~~ 'yl and ` 'ml for fifteen pile cases with Zmax = 3 
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have been provided along with the soil-pile parameter 

and sustained vertical load values. 

The above two information have been provided 

as exan.ples,ty bring out the effort involved in deter-

mining these non.,,d ens ona1 coeff cientg €Qr different 

modes of vibrations. Also, they show the un equip ess Of 

the computed values of non.dimersional quantities appli_ 

cable to any so il..pile systen. 

3. 11 DYNAMIC Ci-YURACTERIST ICS AND THt-
INFLUB'ICING CTORS 

3. 11„ 1 NATURAL F1 U4CIFES 

3„ 11. 1. 1 First Node of Vibration 

In Fig 3,8 and Fig 3. 11 the variations of 

frequency factor have been given for pile top free to 

rotate and pile top fixed against rotation conditions 

respectively. These curves have been drawn for different 

identified Zma~t cases. 
of FCL1 and F' GLI with 

In Fig 3,13 the variation 

mast have been given. 

each circle in these figure represent fifteen different 

pile cases of varying sc3.1.-pile param,~t-rs. 



Examination of these figures shows that the fre-

quency factors FCL1 and F'CL1 are mainly dependent on 

Z ma x, pile Irangth in relation to the relative stiffness factor. 

The absolute length does not govern the behaviour singularly. 

The is also increase in FCL1 and F'CL1 firm 

short pile range to long pile range. Herein, for piles with 

Zmax 5 there is no appreciable difference in the frequency 

factor values. 

Considering the analogy, of cantilever structural 

idealisation the frequency factor should increase for shorter 

Piles. However, the realistic end conditions and rigid body 

deformations of short pile ranges, disagree with such con.. 

tent ion $. 

From the examination of the above figures it is 

slen that for any particul.ary Zmax case there is not much of 

vatlation in th0 frequency far.+nI .ra I II^ - with change in 

relative stiffness factors. 

For both pile top free to rotate and fixed against 

rotation conditions we have the frequency factor defined as 

under. 

FCL1 	wn 1 A ' k, 	 ... 3.63 

CLl - wn 1 

~~_r' .~..._. 	
.... 3.64 ,4g 	tT: 



ir. 

where g = Mt, 'is the .mass lumped at top, k and • R are 

the soil-pile parameters. 

k0'5 R°. ri 
both, wnl and w1 are 	4 5 	 ... 3. 65 

Mt 

k°.375 E10.125 
M0.5 	... 3.66 
t 

From the above relationship the following points are seen 

to be of significance. 

1. Lnna k 1 Ban: 

( i) For a given pile section increase in k, results in 

increase in natural frequencies. Physically a pile 

section :embe ld d in stiffer soil would have greater 

natural frequency of vibration compared to the One in 
softer soil. 

-E--~- 	 L 

	

(ii) By definition R = '4., •--- 	andmax - --k 	Now 

	

k 	71 	R' 
increase in k would result in reduction in R and 

hence increase of Zmax values of a pile of given 

section and length. However, the change in FCL1 and 

FI GL1 for Zma x 5 is not appreciable. Therefore 

for long pile ranges practically the increase in 'k' 

results in increase of natural frequencies. 

( iii) For a pile of given length embedded in given soil, 

increase in flexural stiffness, that is, in the 
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pile section and reinforcements, would increase w n l  

by EI0' x"25 	times. This would be valid only if, 

despite of increase in El the Zmax  values fall in the 

long pile range. 

( iv) However for a given pile length if sectional properties 

are improved there would be increase in value of R, 

This may result in the reduction of Z ma x values. 

It is to be noted that with the reduction of Zm the  ma 
natural frequency also reduces. 

(v) 	The increase in top mass reduces w by 1/ I 
times. 

For practical significance it may be concluded that 

to increase the natural frequency of long piles the soil 

stiffness may be increased and top mass should be reduced. 

Increase in pile sectional properties may not result in the 

required appreciable increase of 'vvn1. 

If the piles are such that 2 i Zmax 5 the 

increase in stiffness of the soil does result in increase of 

wnl to an appreciable degree. • However in both these cases 

the increase in sectional prpperties ( and hence EI) may riot 

result in the increase of wnl  values to an appreciable 

extent. 

I 
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3„ 11. 1.2 Second Mode of Vibtation 

La dop ErpoTo ota±P~ 	iLtion : 

In Fig 3.9 and 3.14 variations of frequency 

factor FCL2 with relative stiffness factor and maximum 

depth factor, Zmax have been given respectively. 

The frequency factor in this mode has been defined 

as under: 

FCS = wn2 J kg 	 ... 3.67 

Therefore we have 

n2 	 , .. 3. 68 

• From these figures it may be seen that the values 

of FCL2 do not alter appreciably with changes in relative 

stiffness factor andZmaX In fact. the dynamic behaviour 

of piles in this mode under pile top free to xvtate conditior 

has been rigid body type of motion and has been separately 

dealt with in a later section of this chapter and in Chapter 

From the above relationship, it is see=n that:- 

1• 	The natural frequency wn2 increases 	times as 

the stiffness of the soil is increased. 

2. The natural frequency R2 decreases with increase of 

pile section because of increase in weight per unit 

length of the pile. 
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3. The second mode frequency is independant of flexural 

stiffness El of the pile. 

Pit Top Fi Yed' Against B..ptation Cnnr1ition: In Fig 3,12 

and 3.16 the variation of non..dimensional frequency FCL2 

with relative stiffness factor and Zmax have been given 

respectively. 

As per definition of Ft CL2 we have: 

Ft CL2 	= w' n2 	sJgk 
	 .....3. 69 

I.e., wf n~ 	is 	.. Vd2 	 ... .3.70 

From the above relationship and the figures the 

following points are of significance: 

1. In the second mode of vibrations F'C12 values decrease 

with increase in Zmax ,for same pile-sections. This 

is reverse of the trend under first mode of vibrations. 
t 

2. For piles with Zm~X - 5 there is no appreciable change 
in the F' GL2 values. 

3. For any Zmax .the natural frequency decreases with the 
increase of weight per unit length of the pile„ 

4. Maintaining constant Zmax , the increase in soil stiffness 

results in the increase of w'n2 values. 

5. For long pile ranges increase in soil stiffness results 

in the increase of w2. 
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6. For short pile ranges increase in soil stiffness would 
increase w'n2. However, the increase of Zmax by 

virtue of increase in t kt would offset the net increase 

of w' n2 values. 

2.11 l~ 3 Third Mode of Vibrations: 

2jL lop FrcA To 	 ndit on c: Each of the pile cases 
in Table 3.1 have been analysed upto third mode of vibrations 

for the pile top free to rotate condition. In Fig 3.10 and 

3.15 the variation of non..dimensional frequency factor FCL3 

with relative stiffness factor and ma ximun depth factor Z 
max 

have been given respectively. The factors influencing the 

natural frequency values, 	wn3 and the general trend in the 
analysed behaviour are similar to those for second mode 
vibrations under pile top fixed against rotation condition. 

Apart from the above,, presented, d.is us~ .ons, it 

fney also be noted that, for any soil pile con ditIon s the 

natural frequencies under pile top fixed agian st rotation 

conditions are always greater than pile top free to rotate 
condition S. 

3. 11.2 FACTORS INFLUENCING DYNAMIC DISPL\CEMB T 

3.11.2.1 - First Mode of Vibration: 

The variation of non-dimensional normalised modal 

deflection :~y1 and '`yl have been plotted against depth 
factor x/R in Fig 3.21 and 3.24. These results pertain to 
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pile top free to rotate and fixed against rotation conditions: 

respectively. 

From these two figures it is seen that piles with 

Zma 2 display rigid body defo rmation s,whereas piles with 

1ma ~5 display flexural bending deformations. Moreover in 

the case of piles with ZmaX~ 5 , there is no appreciable 

difference in the deformed shapes. The non-dimensional 

normalised rotation coefficients a.l and . g el plotted 

against depth factor x/R in Fig 3.30 and Fig 3.33 respect-

ively emphasise these points further. 

From these figures it can be concluded that the modal 

displacements are primarily dependent on the length of the 

Pile in relation to the relative stiffness factor (i.e. ,oma) 

It is also evident that the deflected shapes are similar to 

the deformed shapes of the piles subjected to static lateral 

loads apilied at the ground surface. The Zmax values 

govern the deformed shapes under the static conditions also. 
In the first mode of vibration, it is possible that the top 

mass controls the pile vibrations. The pile section acts as 

a massless elastic member deriving reactions from the surround-
ing soil depending on the movements at various points. In 

both these figures it is seen that at the bottom the dis-

placements suffered by short piles are more than those of 

long piles. Especially for the pile top free to rotate 

conditions greater rotations are experience by short piles. 
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From the knowledge of normalised displacement mode 

shapes it is easy to estimate the various factors which 

govern the dynamic displacements. 

We have from equation 3.61 the dynamic deflection 

as under: 

(r) Sd( r) 	 3' 6I 

	

where Y( r) 	- the dynamic deflection of the ith point in 

rth mode 

	

Y( r 	the mode . participation factor 

Sd( 	- the spectral displacement corresponding to 

the period in the rth mode. 

r) The product of 0~1) (y). 'Y ( r) is the normalised modal 

deflection. 

Now, from article 3.10.6, the processing factors of 
non.-dimensional deflection coefficients ,"~yl and ►; Yl are 

the novnalised modal deflection quantities corresponding to 

the respective cases. 

Therefo re, we have, :the dynamic deflection Y1 in the 

first mode a& 

Y1 = A1 Sdl f for pile top free to rotate) 

Y1 = Al 1 St d (for pile top fixed against rotation) 
Y 
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Therefore it follows that: 

	

Y oc Shc 	 ... 3.72 

Herein, for all practical purposes Sd can be considered 

to be proportional to the time period, Fig 3.7 (Newmark 1970). 

From article 3.9, we have: 

k 	(for pile top free to rotate) Wnl 	FCLl  

wt 	= F '  nl 	Gi1 
~ kRq 

 W 	 for pile top fixed against rotation). 

Thus we have for first mode of vibration the dynamic deflection 

Y} to be: 

	

Y1 °C 	 kR 	 ... 3.73 

t 3.74 

	

Yl ~c 	k 5 	- 5 	 .: . 

M 0.5 
d 

kq. 375 E1 2 4 	• • 3.75 
5 

From the examination of the above equations and Fig 3.21 and 

Fig 3.24 the factors incluencing the dynamic deflections are 

discussed as below. 

1. For piles falling under long pile ranges we have: 

(i) AS the top mass ine_r0!f%es the dynamic deflection is 

increased by 	times. 
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(ii) Increase in ' k' , stiffness of the soil results in 

reduction of dynamic deflection by k0.375 times. 

( iii) Increase in pile section or the flexural stiffne~ 

EI results in the reduction of dynamic deflection 
by EI06125 times. 

However, under border line cases it has to be borne in mine 
that increase of E ,though should decrease dynamic deflecti 

the reduction may not be appreciable because of reduction j 

zmax values and hence wnl. When wn1 is reduced the peric 

is increased to enhance Shc values. 

2. For piles falling under intermediate and short pile vane 
we have: 

(i) The dynamic deflection increases M ck 5 times wil 

increase of top mass. 

(ii) The increase of soil stiffness k results in 

reduction of dynamic deflection. 

However, in these length ranges it has to be kept in mind 

that increase of F-I may not result in appreciable reductic 

Of dynamic deflection. This is because of the reduction 

 max values which follow the increase in I. In these 

cases the most effective way is to increase the stiffness c 

the . soil because this has the additional advantage of incr( 

Ing the 1max value to increase 	wnl., 	Which in turn reduces 

the values of 	Shc and hence the 	Y1• 



From article3. 10.6 the n_n•dimensional rotation 

coefficients A e1 and 	el  are as under! 

A 1  = CD ( e l). R 	 ... 3.76 

A'01 	R. 	 ... 3.77 

Where 0 (e1) is the normalised modal rotation in the first 

mode of vibration. 

Therefore from equation 3. 61 we have the dynamic 

rotation under the first mode as under: 

= c (e'). Shc 

1 
e  1 - 	• Say. 

... 3.78 

.. 3.79 

That is 01 °f  

M 

. o . - 3.80 

... 3.81 

M  4,5 
k 2 EI 	3.82 

From the above equations and Fig 3. 30 and Fig 3.33,we see 

that the general trend of the factors influencing dynamic 

rotation are same as those of dynamic deflections discussed 

in the earlier article. 

However, the reduction in the dymamic rotation with 

increase in soil stiffness, 	k, is lesser compared to the 



Previous case. The increase of EI reduces the dynamic 

rotation by EIO.375  times. But as before the manifested 

in crease in time period, and hence Shc  need be borne 

in mind. 

3.11.2.2 Second Mode of Vibrations: 

pit Top--Fr.;--j---Tc Rotnte Condition: 	In Fig 3.22 the normal.' 

sed modal deflection has been plotted against depth factor 

for piles with Zma x 	2, 3, 5,10 and 15. The above 

curves pertain to the pile top free to rotate conditions. 

Under these conditions, as it is seen from the figure a unit 

rigid body type mode has been displayed.' In Fig 3.31 the 

normalised modal rotation coefficients have been plotted 

against depth factor x/R. As it is seen there is negligil 

slope difference between successive points. This type of 

unique mode shape has been a peculiarity of the piles 

embedded in clay with free head conditions. Irrespective 

of the Zmax values the form of mode shapes was similer. 

However the slope of the deformed shapes vary with Zmax 

The motion is Such that the  piles otate ' abo ut the top mass 

It is possible that in.  these modes the piles are excited b) 

virtue of the soil reaction forces and the flexural stiffnF 

of the piles are not brought into effect at all. In Fig 3. 

and 3. 14 the variations of frequency factors with R  and 

Zmax further emphasise these points. As it was seen in  the; 
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f igures, there is negligible variation in FCL2 with R and 

Z.  x Hereafter, this mode for 0% degree of fixity condi-

tions shall be identified as a rigid body mode. Considering 

such rigid body motion, it is seen that the dynamic bending 

moments are not flexural moments. They are simply over-

turning mom Fnts and need not be considered In the dynamic 

stress effects. 

• s 	 I! 	i • 	• ! 	• t • 	• • 	 • 	 - 

non-dimensional normalised modal deflection :coefficient A' 2 

has been plotted against depth factor. in Fig 3. 34 the non,' 

dimensional normalised modal rotation 'coefficient At 	have 

been drawn against depth factor. , These curves pertain to 

second mode of vibration for the case of pile top fixed 

against rotation. The solutions have been obtained for 

different identified Zmax cases of 2, 3, 5, 10 and 15, 

The fact lsi r. which Inf ~u A 	the yr ..L~ 	~,.. ~,.~~..oce ~~le ay~~amic displacements 

under the above 7 'pile.tDp fixity conditions can be assessed from 

Fig 3.25 and Fig 3.34 and the definition of A' y2 and A'02, 

article 3.10.6. 

3.11.2.3 Third Mode of Vibration 

Pil P Tn Fr p To Ro .atrn ndi#- nuc; I Fig 3.23,3,23a the non- 

dimensional modal deflection coefficient. Ay3 have be9n 

plotted against depth factor x/R for the third mode for 

pile top free to rotate conditions. These curves pertain 
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to Zmax = 2, 3, 5, 10 and 15. This mode has been of 

flexural deformations for piles with ZX,/ 3, unlike the 

earlier one where the deformations were purely rigid body 

type irrespective of the Zmax cases. As it is  seen from 

the above figuresthere is a nodal point for each of the 

2  max cases. The value of the coefficient at the pile top 

is far less than at the depths and maximum deflection is  e 

experienced at the pile bottom in each Zmax case. 

For a particular Zmax  case irrespective of the soil - 
pile parameter values unique mode shapes are obtained. 

In Fig 3.32 and 3.32a the non-dimensiona1 nbrmallsed 

tion coefficient A3with depth factor has been given. As is 

seen in these figures for a particular Zmax' unique lion-
dimensional curves are obtained. Considering the variation 

of slope between different points along the pile it can be 

concluded that flexural deformations does take place in 

these modes. 

Fromthe figures presented above the influence of pile 

length on the dynamic displacements can be assessed.  As it 

is seen both AY3  and A83  increase with the increase in 

1ma x values. Thus rest of the factors remaining same the 

increase of pile length results in the increase of A 3  and 
-at any  ,c/R. But the behaviour for Zmax =10 and 15 are sligh 
different. 

The dynamic deflection and rotation in the third mode 

of vibration for any particular earthquake is given by: 
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Y 	= A, -Sd3 	 +.. 3# 83 

	

R ~ . Sd3 	... 3.84 

In the above two equations Ay3 and A03 are dimensionless 

n umbers. 

There fo re, 

• Y3 cc. Sd3 	 ... 3. $5 

	

Y 4 --- 	 ....3.86 
3 	`"n3 

...3.87 ~  9 

From the above relation. we have: ;. 

1. The dynamic deflection increases with the increase in 
weight per unit length of the piles. 

2. The dynamic deflection is reduced. with the increase in 
Soil stiffness by 4T times. 

3. With the increase in pile length the dynamic deflection 

is increased, in two ways. As it is seen from Fig 3.23 

the coefficient ~►y3 Increases with increase in pile 

length, rest of the factors remaining same. Also as 
seen from Fig 3.10 and 3,15 with the increase in Z 

the wn3 also get reduced. This results in the increase 

of time period and hence Sd:. 
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4. However for piles with Zmax  - 5, the deflections rema 

practically unaltered. Hence for long pile ranges rest 

of the factors remaining same the increase in Zmax  woW 

not alter the dynamic displa0ements to any appreciable 

extent of practical significance. 

5. Therefore,for long pile ranges increase of soil stiffnE 

would reduce dynamic deflection. 

From equation 3.84 the factors influencing dynamic 

rotation can be assessed, as follows: 

	

e 3  cC 	1  . Sd3 	 .. 3.88 

	

CC 	R .. 	wn 3 	 ... 3« 89 

1r i g  k 	 ... 3, 9.0 

g 	k  .250 EIa.25 	V 	91  

From the above equation it is  seen that: 

1. The dynamic rotation in the second mode increases as tU 

weight 'per unit length is increased, 

2. For any particular Zmax  the dynamic rotation is redia 

as the soil stiffness and flexural stiffness are increa 

3. For long pile ranges increase in EI and k results in 

reduction of dynamic rotation. 
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3, 11, 3 FACTORS JNFLUENCING DYNAMIC BENDING MOMENT AND SHE R 

3,11.3.1 First bode of Vibrations: 

The variation of non-dimensional normalised modal 

bending moment coefficient Ami 	and 	A'ml  have been plotted 

in Fig 339 and Fig 3.41, respectively, These results pertain 

to pile top free to rotate and pile top fixed against rotation 

respectively. 

From these two figures the following points can 

be inferred: 

1. For pile top free to rotate conditions greater bending 

moments are experienced by long pile than short piles. 

2. Lhder the above conditions the difference in the maximum 

bending moment values between Z x  = 2 and Zmax - 3  
are greater, compared to those between Zmax  3 and 

3. In any pile case with Zma X  5  there is no appreciable 

difference in bending moment values. Therefore Zmax 

is practically a long pile case. 

4. In the case of pile top free to rotate the maximum bending 

moment for Z x = 2' Zma x = 3' Zma x 5 and 1, ma5 
occurs at depths of 0. 65CR , 1. 0 R, 1. 15 R and 1.20 R 

respectively. 
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5. After a depth of abc, ut 5 R the bending moment values 

are n egligt bl , 

6. In the case of pile top fixed against rotation the maximu 

bending moment occurs at the pile top. 

From'the knowledge of the normalised bending moment 

values it is easy to estimate the dynamic bending moment. 

We have from equation 3.61 the dynamic bending moment 
in the first mode as under: 

Ml = 0 (M1). Shc 	 .... 3.92 

where 0 (M1) is the normalised  bending moment (product of 

modal values and MPF). 

From article 3, 10.6,the processing factor for the non-

dimen sional bending moment coefficients Aml and r%' ml are 
as Ln der:. 

aml - kR 	••• 3.93 

r 
A r  ml = 	._ 	,. 	 ... 3.94 

kR2  

Therefore the dynamic bending moment is given by 

a 
M1 - ' ml x k R ' S d1 ...• ::395 

But' ml is dimensionless, hence we have: 

Ml  cc kR2Shc 	 .... 1.-96 
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Ml +~ k R w 	 ... 3.97 
nl 

M 0 
oC k 	, 
	o55 	 ... 3.98 

' 	M cf k4 .3 ,Rl. 5 M
t 
° 5 	 3.99 . 1 	 •'• 

c 1O. 125 	 10. 375k Mt a.5 	... 3.100 

From the Vcarnination of the above equations and 	Figs 3. 

and 3.41 the Factors influencing the dynamic bending moments 

can be discus$ed as below: 

J. Increase In the top mass Increase the dynamic bending 

moment 	times. 

2. For long p31es i. aLAX - 5 we have: 

( i) Increase in soil stiffness k, results in the increase 

of dynamic bending rroments . by k 125 times= This 

• is possible because at any pile section the dynamic 

bending moment is made up of Inertiarces and soil 

reactions. Now for same pile section for same 

movement the reaction offered bit stiffer soil would 

be greater than those of softer ones. 

( ii) Increase in EI results in the increase of dynamic 

ben ding moment in two eways. As per equation the 

dynamic bending moment would increase by El 375 

times. In addition the increase in FI results in 
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the decrease, of wn i and hence increase of Sd 

.values. .However herein, it should' be noted that as 

Zmax get .reduced the maximum bending moment values 

also decrease. 

In the above condition it has to be noted that though 

with softer soils the, dynamic bending rrnment may decrease 

the displacements would be greater. ' . 

3.. For piles falling under intermediate range lengths we 

have: 

(i) the dynamic bending moment. increases with increase in 

Soil stiffness, This occurs in two ways. Firstly by 

virtue of the influence of various parameters as 

shown in equation (3`100) and secondly because, 

increase in k results in increase in Z 	and hen c max 
greater values of Ami as seen from Fig. 3.39. 

( ii) However,. increase of EI causes M- values to reduce 

because. of. decrease in Zmax but at- the same ix crease 
in Ml may. also result as, given in Eq. 3.100, 

In Fig 3.47 and 3.49 the variations of non-dimensional 

n©rmal'ised modal shear coefficients fsl ~ 	and A'- 	with WR sl.. 
have 'be- provided. The 	curves pertain; to pile .top free 

to rotate and -fixed against rotation conditions respectively. 

For' the first mode of vibrations the dynamic shear is 

given by: 
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S1 = As1. kR. Shc ... ( 0% degree of fi xity) 

31 = A' $1. k. R. S dl -.. ( 100 % degree of f ixi.ty) 

From the above relation we have: 

S 	CC 	1 . k R 	 . 	3.101 1 	wnl 

cc t 	 I.R. 	 ... 3.102 kq 51114 5 

	

M 0. 5. k0. 5 Rl. 	 .. .1 103 t 

k0. 125 S1Q 375 	... 3.104  

The influence of the various soil pile parameters on the 
dynamic shear are similar to those of bending moments 

discussed in the previous articles. 

3. 11. 3.2 Higher Nbdes of. Vibrations: 
The values of non-dimensional normalised bending 

moment coefficients E~►m3 end. A t m at various x/R have 

been given in Fig 3.40 , 3.40a and 3.42 respectively; per.-, 

taining to pile top free to rotate (third mode) and fixed 
against rotation conditions (for second mode). 

The dynamic bending moment for these conditions is 
given by: 

M3 - Am30 k` R2. Sd3 ( pile top free to rotate) 
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N~ 	►' 	k. Ra S' 	(pile top fixed against 
rotation) 

Herein Ami and A m2 are dimensionless coeff;cients. 

Therefore,,we have for both these con dit iori s:  

Both M and M' 2 d k R2 –w -- 	 .. , 3.105 
W
2 

o( k. E- I----- 	d - V 	--- 	• , . 3. lc 7 
k4'5  

~ 
• 
«' Ea• 1Q., 	... 3.108 

g 	k 	k 

d iV-d 	EIQ5  ... 3.109 

From-the above relation...,an. ,.. the respective figures, we have: 

1. The dynamic bending moment increases with weight per un iF 

length. 	 .' 

2. Increase in EI results in increase of dynamic bending 

moment,which may be due to the increase of weight - densit, 

3. In ... the above conditions for a particular Zma x case 

dynamic behdflg•mormen.t is, independent of so ii stiffness. 
• However Increase in k results in increase of Zmax to 

reduce dynamic 'bending moment in second mode. 
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The.. variations of non-dimensional normalised modal 

shear coefficients .~s3 and r1' s2 have been plotted in Fig 3. 48, 

3.4gad 3.50 respectively. These curves pertain to pile 
top free to rotate ( third mode), and pile top fixed against 

rotation •.(.second mode) `conditions. 

We have the dynamic shear for these conditions as 

under: 

S3 - 	i..R. Sd3.. 	... 3.110 

S 3 	_ 	s2' . k. R. S' d2 	... 3.111 

Herein  ''s3 and A s2 are dimensionless coefficients. 

Therefore we have: 

S or S' 2 c( kR. Wwn2 	 ... 3.112 
n2 

cC k. R. 	'- 	..: 3.113 
g 

a k0.25 E10.25 	~h% 	... 3.114 
` g 

Herein it can be sewn -that: 
1. Increase in weight per unit length of pile increases the 

dynamic shear 
2. With the increase in soil stiffness dynamic shear is 

increased. 

3. With the increase flexugl stiffn -ss of the pile dynamic 

shear is increased. 
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3. 12 Rl-:X%RKS ON THE METHOD OF ANALYSIS 

It has been dennstrated that the physical( sAil-

Pile) system c -)uld be idealised as a lumped mass-spring sy; 

and that the dynamic characteristics of the physical systc 

c'~uld be conveniently assessed based on the dynamic analy; 

of such an idealised model. The procedure adopted for ids 

lising and characterising the soil-pile interaction mechar 

has proved to be an effective tool. The chosen model is 

versatile in the sense that any pile criss section and s:). 

type could be easily acc )mmodated. 

The adapted transfer solut1On approach for determ: 

the dynamic characteristics of the s) it-pile system has bj 

fund to be a convenient procedure. 

While performing the analysis there should be a p: 

choice of, lumping procedure and the number of division p_ 

for lumping the physical system. Fr different pile case; 

the mass points were located at the mid pints''of each sec 

division. The number of masses were more than thirty in 

case. 	The .above two. precautions, it is believed, 	had 

minimised the possibilities of errors in lumping (Duncan ( 

Karm:.>n and Bint (1940) ). 

The computer pro grammes were executed in IBM 360..E 

system and the executi,,n was performed under double preci<, 

For such beam on elastic foundations problems it is n eces: 
I 
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to work in double precis ')n to aVO id rooun ding of erro rs. 

All the computati-:,n works concerning the present investigations 

in this chapter and the subsequent ones were always executed 

under d auble precision. 

The adopted technique and the mathematical model 

could be considered to possess the following shirt comings: 

1. Considering the non-linear behavi'ur of the physical 

systems, Idealisati -)n of the interaction effects through 

Winkler n del may not be appropriate. 

2. The real systems has far coupled mechanism whereas the 

adopted procedures consider only simple coupled systems. 

3. The soil mass participating in vibrations has not been 

taken into account. 

4. Time wise response has not been evaluated. 

While adopting the presented procedure of analysis 

the above short comings have been fully recogonised but they 

have been ignored for the following reasons: 

1. The primary concern in the present investigations has been 

to propose an easy but sufficiently accurate method of 

analysis for determining the dynamic characteristics of 

piles. By this the practising engineer would be greatly 

ben efited. 

2. In the given discritised model non-linear effects could 

be incorporated. But development of non-dimensional 



123 

solutions based on the dynamic analysis of so many pile 

cases could have been difficult considering the amount 

of computer time by such c ~n sideratio ns. 

3. The comparison of lumped mass analysis and continuous 

system solutions have boen made (in Chapter IV) to asses! 

the significance of far coupled systems. . 

4. The soil mass participating in vibrations has not been 

considered based on the work of Penzien et al (1964) , 

Ha keno (197 3) and Pra ka sh et al (1973). 

5. Though time-wise response computations predict the over 

all dynamic response to a better degree, they fail to 

give insight to the contribution of higher modes in the 

overall response of the systems. The assessment of 

individual modal contributions has berm considergd to b 

a matter of greater significance. Because, the greater 

contribution of first mode response supports the adoptioi 

of pseudo-static design procedures. 

3. 13 CC NCLUD ING REMARKS 

In this Chapter it has been shown that the dynamic 

response of pile foundations could be predicted successfully 

by idealising the soil-pile systems and the interaction 

effects by discretised mathematical models 

The transfer solution 'approach and the numerical 

technique thereoff has been found to be a successful 
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procedure for predicting the pile response for desired 

end conditions. 

In this chapter based on such analysis non-dimensional 

solutions have also been developed for predicting the dynamic 

response of piles embedded in clay type so its, assuming soil 

modulus to remain constant with depth. 

These non-dimensional solutions cover the following 

broadly classified problems of practical significance: 

1. Pile top free to rotate conditions. 

2. Pile top fixed against rotation conditions. 

3. Piles with non-dimensional 	depth factor, Zmax = 
it  2, 3, 

5, 10 and 15. 

Using these non-dimensional curves, it is possible 

to predict the dynamic response of any given pile section of 

known length embedded in soils 'in which the soil modulus 

remain constant with depth. The pile can be subjected any 

desired sustained load along with desired fixity conditions 

at the top. 

These non-dimensional design curves have been deve-

loped for significant modes of vibrations and they facilitate: 

1. Determination of natural frequencies of vibrations. 

2. Determination of normalised modal quantities of deflection, 

rotation, bending moment and shear along the entire length 

of the pile, 
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$ased"on the investigations of the dynamic behaviour 

of piles embedded in soils, in which soil modulus.,remain 

constant with depth, the following points are considered as 

sign if icant: 

1. The dynamic behaviour of the piles are dependent on the 

( i) relative stiffness of the pile soil systei (struc-

tural stiffness of the' pile in'., relation to the soil 

stiffness). 

(ii) length of the pile in relation to the relative 

stiffness factor. 

The absolute length of the piles do.not--govern the 

behaviour singularly. The -above is  true for natural 

frequencies of vibrations as well as-.normalised modal 

values of displacements, bending moment and shear along 

the entire length of the piles. 

2.: Under first mode of vibrations the variations of normali 

modal deflection along the length of the pile follows th 

static deflection shape. 

3. The first mode of vibrations contribute significantly to 

the overall response. 

4. Under'dyna..mic conditions piles with Zma 	2 display 

rigid body deformations wheeea s piles with 1ma X 5  
display flexural bending. 



126 

5. For a given soil-pile parameters Zma  = 5  can be 

considered as a limiting value of long pile range. 

Increase in .pile length beyond this length loses signl-

ficance as far as dynamic behaviour is concerned. 

6. For pile top fixed against rotation conditions the 

envisaged dynamic displacements may be smaller than trader 

pile top free to rotate conditions, because of the smaller 

period of vibrations in the former case. 

7. For pile top free to rotate conditions the maximum bending 

moment occurs. at some point below the ground -surface 

whereas it occurs at top for pile top fixed against rota-

tion conditions. 

S. For long pile ranges under pipe top free to rotate con-- 

ditions the maximum bending 'moment occurs at a depth of 

1.20 R from the groun-c? surface. 

9 	With the increase in lumped mass at top or the super 

structure load: 

( i) the natural f reau en.ci es under first mode of vibra- 

tions are reduced by  1__  times. 
f Mt  

(ii) the induced values of dynamic displacem-rats, bending 

moments and sh.aar are increase; by:. 	times. 

10. Similar is the effect of weight per unit length of the 

pile under higher modes of vibrations. 
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11. 	For any mode the increase in soil stiffness results in 

the reduction of pile displacements. 

12. Thder pile top frDe to rotate conditions there is a 

possibility of a peculiar rigid body motion. The natura: 

frequencies for a given soil pile system,  during the 

rigid body motion, is independant of pile length and 

hence the alterations in Zmax• 

?long the pile length, under this mode the normalised 

modal deflection values vary in a straight line fashion 

and the, rotation difference between any two points are 

neap zero. 

13. The correctness of the lumped mass solutions need be 

checked by some other independent solutions such as 

continuous system analysis. 
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CHAPTER IV 
- 	•-'.''i' . 

11EHO 	C), 	-a WITh ;QONIiLOU 	SYS1M  V.DELS 
FOR PILES E?EDDED IN CLW 

j(f 	 I :-u 	( )1.T: vb'x  

4.1 I1QbUc1IøN'-' 	- 

t!3i! iI -  ofl 	d 	- .'E i 	hflL 	Jr ni 	1- 	1i 	no j  
pis chaqt q tti 

chteristicpo of th 	]e 	!e4ce d ifL soil 	.wtc h the 
soil modulus remain constant with depth have been ptsted, 

	

.Oi3 	jL 

treating the soil pile system as a continuous system model. 

In the previous chapter 111,  this problem has been solved by 

considering the system as na with lumped masses. Sinçe,no 

data is available on the actual behaviour of the piles 

subjected to dyramic loads, this solution shall serve as a 

check on the solution already obtained and vice versa. Herein, 

solutions have been presented only for the pile top free to 

rotate conditions, 

4.2 A PPRDI CH :; Nb ASS JMPT IN S 

The ad,opted mathematical model treating the 

piles as 'a continUoUs system Is ShQ 	in Fig 4 1, 

The dynamic qharactristics of soil-pile systems 

are determined considering the free vibration characteristics 

of such idealised model. The made of operation is similar 

to the lumped-mass model, but exact solution s  of the fr 

quency determinants, the various modal quantities and the 
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mode participation factors have been developed. The adopte 

end conditions have been .cbmpatible with those of the physic 

system. Numerical technique has not been resorted to obtain 

the solutions. The dynamic response has been evaluated 

treating the ground motions to be applied at the base of 

the model. The response of the various quantities in each 

mode has been considered separately,and. statistical root 

mean square addition has been performed,to assess the overal 

response. Such proposed procedures and the s' luti .n s involve 

the following assumptions: 

1. The pile vibrat s in its own plane. 

2. The pile material exhibits linear elastic behaviour. 

3. Plan ;; cross sections rema in plane during an .'after ben di 

4. Axial defo rmat.ion s are 1 IF n ~gligible quantity; 
5. The pilemass and the fluxural stiffness are considered 

to be distributed. 

6. The soil is treated as a homogeneous elastic medium. 

7. The soil stiffness is considered to be distributed uni-

formly and continuously along the pile length. 

8. The modulus, of subgrade reaction concept is considered 

to be valid..  

4. 3 DIFFERENT L L~ U%T ION AND SOLUTIONS 

The differential equation describing the flexural 

vibrations of piles embedded in s --i1 is given by: 
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cit 	y 	 •• + k = 0 	 4.1 8x4 	g 	 • 

where 

y , is the displacement perpendicular to the pile 

axis 

x , is the depth co-ordinate 

)) , is the weight density of the pile 

A , the uniform area of cross section of the pile 

EI , uniform flexural stiffness of the pile section 

k , soil modulus for k = k constant case 

Considering the system to be displaced from its equilibrium 

position, it would be ,vibrating freely in classical normal 

mode of vibration. 

Considering the free vibration to be of the form: 

y = X()) Sin pt 

Substit.vtion, in eqn. 4.1 results 

El 
~X .., 	1% ±' 	2 

d x4 

A e% 
• . • 4. G 

... :: 4...3 

where 'p' is the circular natural frequ~n cy in radians per 

sec. 

Assuming a solution 

X= At emx 	 . 4. 4 
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where m characteristic root and A1  certain constant. 

Substituting equation 4.4 in .  equation 4,3 the following 

characteristic equation is obtained: 

m4  - 	= 	- 	 ... 4. 5 

Where 	4  _ 	 EI'  p2  

Equation 4. 5 will give four values of root M. 

It is seen that the quantity X34  is a function of 

the frequency.. The deflected shape function would vary with 

the frequency under consideration. 

That is, depending upon the values of the natural 

frequencies of vibration the following three cases would' 

arise.- 

Case (i) 	4 7  =I ` , . resulting in two real and twa 

immagina ry unequal.  roots. 

Case (ii) 	
p 4 - =- , resulting in all four equal roots. 

Case  (iii) 

p 4 	EI  , resulting in four complex roots. 

The so lut ion. S, for each case has to be considered separately. 
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4. 3. 1 POS IT I G\S E SOLUT ION s. 

Using the symbol ,\= p4.._ F , for the case of 
P 4 k , we have h as positive quantity. Identifying this EI 
case as the positi case, we have the solutions as developed 

in ̀ the 'following sections„ 

Rewriting equation 4.5 we have 

m4 =P
.4 	k 

TO 

Noting ,\ as a positive real quantity we have four values 

for 'n': 
m192  _± , 	 ... 4,6 

m3, 4  = ± i r 	 ..:. 4.7 

Knowing the four roots of the characteristic equations, 	the 

general deflected shape can be expressed in the form 

X = Cosh am x + B S in h T7 x+ C Cos I5 x + D Sin 	x 

... 4.8 

Where, ? , B, 	C, D are the four undetermined coefficients, 

Replacing by c( we have 

X = 	Cosh cCx + B Sinh ax + C Cos dx + D Sin c x ... 4.9 
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4.3.1..1 Boundary Conditions and Frequency Determinant 

Ap'p'lying the four boundary conditions for the bending 

n ment and shear at the top and bottom of the pile, 	we have : 

(i) 	At 	x = 	o, fending moment = a ;  

	

4 d2 	) 	
= 	

= 

	

dx 	x 	o 

( ii) 	At 	x = L, bending ;roment = 0; (X)= L = dx 	x - 

(iii) 	At 	x= 	0, Shear force equals, the inertia force at the tc 

The inertia force at the top, is mass at top multiplied 

by acceleration. ; 	.... 

ax T hat i s, - El ( d xa  ) x = o = - Mtp 2 (4 _ o 	 t  

Where, Mt is the top mass. 

( iv) At x = L, the shear at the bottom is zero which gives 
.. 	 s  

These boundary conditions, when applied to the equation 4.r!", 

would result in the homogeno.u,s equations" in 'terms of the 

undetermined coefficients, the natural' frequency and the 

pile-soil parameters. 

It is easily seen that the :application of the boundary 

conditions results ;, iii '"the following two homogeneous, equations: 

  :( Cosh 	Co 	L + g Sin ofL) + B (Sieh ACL 	Sin.,4L) - o 
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A( S in h cc L +Sin d L + E Cos c(L) + B (Cosh cc L -Cos c(L) = 0 

... 4.11 

The determinant of the coefficients of ,a and B should 

vanish for the natural frec;uency of vibrati •ns of thy; m , del. 

Thus we have 

DT = ( Cosh ofL-Cos c(L +E SindL) (Cosh c(1- Cos °C L) 

(inh "c,L -Sin oft) (Sinh c(L + Sin c(L + COs c'Ci.) ... 4. 12 

where 

2
pa 

= EII 	and cC is a function of p' , and pile.- ~( 
soil properties. 

For a given soil-pile system of known, EI, E* ;A, L and soils 

modulus k, in equation 4.12 the determinant value could be 

obtained for any assumed values of p. If the assumed value 

of p, is one of the natural frequencies as mentioned. earlier 

the determinant   	 DT ,..,,1 i b 	
The v 	 +~ would &Je zero. 	tile' CU. Ve of 	P and 

DT could be plotted in a computr~r and, the various natural 

frequencies in different modes of vibration can be easily 

d et ermin ed.. 

4.3.1.2 Modal Quantities 

Chce the correct value of the natural frequencies 

are determined,the unknown quantity t CC t and the other constants 

are easily evaluated. Then the pile is divided into very 

small segments and the deflection, rotation or slope bending 
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moment and shear at each po int along the pile length is 

. easily, evaluated using the -following equations. 

4~ (y) = (Cosh OC x + Cos O x - 	Sin x) + M[ (S in h a x + Sin OC x) 

.. 4.13 

	

(e) _ (S i n h ^C x - Sin °C x - E COS o[ x) + 	(Gosh cC x 

+ Cos OC x) .00 	 ,.,. .4.14 

d.)(M) 	EI oC 2 , (Cosh a x _ Cos OCx +E Sin dx) 

+ 	(Sinh oCx - Sin x) 1 	.... 4.15 

0(S) 	-EI,aL(Sinhax+ Sin OCx+ e Cos OCx) 

+ , Co( 	s h oC x - Cos 4 x) 	... 	4.16. 

~h e r e fit, =- Co h a L .- Co of L+ E S .fin OC L 
Sinh o(L - Sin o(L 

In the above equation for the given pile length, known soil- 

pile parameters, the top mass and the natural frequencies 

each of the nodal quantities have be en evaluated. 

4. 3. 1. 3 Mode Participationl Factors 

The adopted procedure of assessing the dynamic 
f 	Y 

characteristics of the piles has the advantage of evaluatinc 

the individual contribution of each mode to the overall 

response of the pile-soil-systems subjected to dynamic load; 

In order to achieve this the mode participation factor has 

been determined in each mode of vibration. 

The mode participation factor is defined as under : 
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L 

_ çA  X d x + M (X)x t °--+- 	 4.1? 
(r) r L ~ A X2 dx+ Mt(X2)x 	C~ of 9 

For the positi case under consideration the mode partici.pa-

tion factor in any rth mode is: 

 

L 
-)
A X dx + 2 Mt 9 

o  
X2 dx + 4 Mt 

~

Ag _ 
 

... 4. 18 

Where, 

X= (Cosh dx + Cos ocx - e Sin 4x ) 

+ 4 (S .in h cc x + Sin CC X) 

x2 _ [(Cosh  CCx + Co-s ctx _.:-E Sin CCx ) 

+ 4 (S ie h c x + Sin cC xiJ 

. . . 4.19 

... 4,20 

The various integral quantities were separately evaluated 

and incorporated in the programme. 

4.3. 	A 3.2 EQUAL Rt)T CASE 

From equation 4.5 we see 

m4 = P 4 - 

There exists a possibility that for a particular ' p' value 

4 -- £ 	 ... 4.21 
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This means the roots of the characteristic equations to be 

as under : 

m1,2,394  - 0 

For such conditions of the four roots of the characteristics 

equation, we have the general deflected shape in the form 

Applying the boundary conditions we have 

dx B ± 2 Cx + 3Dx2  

2 
dx2  2 C+6Dx; 	) X=  0 0; C= 0 

X7
s  

o M P2 A 

A=  6 D 2 I 
tP 

(X 
 a  
) x._y= 0 ; D= 0;A= 0 

We have, therefore 

X = BX ... 4.23 

4.3.3 NEGATI c sB 

Th `this case the possible condition of  

considered.' 
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This results in 

m4 =—,\ 	where A. = ~ - 4 

Applying De M ,vi r's theorem and letting : 

r ( Cosa + i Sine) _ - ... 	4.24 

where r Cos 6 	= - /\ ... 	4.25 

r Sin e 	_ U ... 	4.26 

We get the mots of the characteristic equations for case (iii) 
as und'r 

m 	= /~l/4 (Cos it/4 + i Sin 7L/4) ... 	4,27 

1/4 
m2 	= (Cos 3n/4 + i Sin 3 'n/4) ... 	4.28 

1/4 
m3 	= (Cos 5n/4+  i S in 5n/4)  ... 	4.29 

in 	= ~l/4 ( Cos 7 n/4 + i Sin 	7' Tc/4) ... 	4.30 

Simplification of the above equations result in:.. 

M. = c (1+i) 	 ...4.31 

rn2 = cC (1- i) 	 ... 4.32 

m3 = -d (1+1) 	 ... 4.33 

m4 = -cf (1-i) 	 ... 4.34 

1/4 
Where, ct = 0.707 x 
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For the above four roots of the characteristics equations, 

the general deflected shape can be expressed in the form : 

X = A Cosh OCx Cos c(x + B Cosh OCx Sin OCx + C Sinh OCx Cos oCx 

+ D Sinh O'x Sin 4x 	 ... 4.35 

Where, A, B, C, D are the four undetermined coefficients 

4.3.3.1 Boundary Conditions and Frequency Determinant : 

Applying the four boundary conditions at :the top 

and bottom of the pile (as given under positive case) in 

equation 4. 35, the result is two undetermined coefficients, 

the natural frequency and the pile soil 'parameters. 

The two ho.mogenous equations are as under. 

	

B (Sinh dL Cos _cL - 	Sinh OCL Sin cCL) ^. 	E 

+ C ( 1  Sinh cCL Sin oCL - Cosh O{L Sin OL_ p ... 4. 36 

B (Cosh dL Cos OCL - •'Sinh OCL Sin OCL _ E Cosh OCL Sin OCL 

	

- 	Si.nho(LCosOCL) 

+ C. (-Cosh OCL Cos 4L - Sinh OCL Sin OCL + 	Cosh c(L Sin 

	

+ 	Sinh aL Cos cCL) = 0 	... 4.37 

Mt  pa 
where 	E = 2 1  E  OC  3 	 ... 4. 38 d 

and ,L = ,-the embedded length of pile. 
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Putting (Sinh aL COs aL - 	Sinh (L Sin dL) 

E Sinh  cC L Sin 4L - Cosh cC L Sin c(L) = Bl 

( CoshcLCosc(L - Sinh :L Sin oL - E Cosh c(L Sin ccL 

1 Sinh dL Cos cCL) =c1 
 

(-Cosh c( L Cos c(L - S in h a L Sin cc L 

+ 	Cash c(L Sin c(L + 	Sinh c(L Cos oCL) = Dl 

Putting the coefficients of B and C in equation 4.36 as 

Al and B1 respectively and the coefficients of B and C in 

equation 4.37 as Cl and Dl respectively, we get the deter-

minant as under : 

	

Al D1 - B1 Cl = DT 	 ... 4.39 

For a chosen pile in equation 4. 39 all the other quantities 

are known except the circular natural frequency, 'p'. If ?p`, 

is one of the natural frequicies the determinant would have 

zero value. As before the curve between p and DT could be 

plotted in a computer and the natural frequencies in different 

modes of vibrati~ins have been obtained. 

4. 3. 3.2 hbdal Quantities  : 

Once the correct value of the .natural frequency is 

determined for a particular mode, the unknown quantity D(, and 

the other constants are easily - evaluated. Then the pile is 
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divid.--d into very small segments ..a 	the quantities viz. 

' deflbction, rotation, bending moment and shear at each 

point along the pile lenth As easily evaluated for diffe: 

modes using the fo 11c~wing equations: 

Cosh ocx Cos cC x- µ Cash Ot x Sin OC x 

	

+ Sinh c'x Cos c(x) 	 ... 4.4( 

(e) 	{ - (µ+l) Sinh ocx Sin ocx + (1-~a,)Cosh OCx Ccs oCx 

Sinh Ocx Cos dx + µ 	Cosh ax Sin OCx) oc 
... 4.41 

(M) M (_ p.. S]nh ax Cos ocx - Cosh ccx Sin OC ) 

+ Ju'E JSinh Ox Sin O'x)(- 2E1 OC? ) 	... 4.42 

?(S) = ( .-(p+1.) Cosh dx Cos ocx + (µ.-1) Sinh dx Sin ocx 

Cosh dx Sin Ox + 	Sinh Ocx Cos ccx) (- 2E1 OCs) 
... 4.43 

where, 
( 	Sinh aL Sin -(L - Cosh aL Sin ocL) 	 4.44 
(S inh oCL Co s ccL - 1 Sinh ofL Sin qL ) 

In the above equation for the given pile length, known soi. 

pile parameters, the top mass and the predicted natural 

frequencies each of the rmdal quantities are easily evialuai 

4.3.303 Mode Pa rt i ci pa ti ori Fa c-to rs '; 

For the Negati case under consideration the mode 
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participation factor, 	in any rth mode is as under: 

g r X.dx - M. i1 
t . o __.---- 	--~-~--- 	... 4. 4 5 L 

g . Xa. dx + Mt ( 	) 
J 
0 

where X =-= 	Cosh -f x Cos c(x - µ Cosh aC x Sin cif x 

•+ Sinh dx Cos c(x) 	• ... 4.46 

4. 4 COM PUT E R PROGRAMMES 

The determination of the dynamic response of the 

soil-pile system with the above model and for the mentioned 

technique involve the following steps: 

( i) Evaluating the characteristic roots of the equation 

and checking whether the quantity 	is Positive or 

negative for the assumed natural frequency. 

(2) If positive, the solutions Suggested in positive case, 

case ( i) has been followed to obtain: 

(a) the frequency determinant and the natural frequency. 

(b) the model quentities at each of the natural fre-

quencies. 

(c) the mode participation factors at each mode of 

vibration. 
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(3) If the frequency levels or such that the quantity 	is  

negative, the solut ions suggested , in the negative has 

been followed to, obtain again the.dynamic characteristic 

Of the piles. 

All the above three operations have been programmed 

in Fortran IV language. The programme comprised of one 

main and two sub routines to do the operations of the positi 

and negati case when needed,.. The process was quite oompli-

cated because at each and every stage of frequency increment,1 

the applicability of the positi or negati solution have to 

be :checked. 

The convergence as well as evaluation of the modal 

quantities have been quite rapid. For one plile.' case the time 

taken was around 25 sec. 

As the process involves exponential and hyperbolic' 

functions and as the problem is a begrn on elasiic foundation 

problem, it is necessary to work in double precision. 

4. 5 NCN.. D IAENS ICNAL SOLUT IONS 

4.5.1 VARIABLES .. . 

The different pile cases which were analysed using 

continuous ,  system analysis (model) are listed in Table 4.1. 

The dynamic response for each pile problem was evaluated 

only for pile top free to rotate conditions. Solutions for 

these problems have also been obtained using lumped 
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Table 4. 1 

Details of Analysed Pile Cases Considering Soil Ntodulus 
To 'Rema in Constant With Depth 

i Relat ic_e f Dia- 	t Soil 	'r Flexural 
stiffness 'meter Modulus I Stiffness Remarks facto r, R ; in 	; 

!in mpt re 
 in T/m2 ; EI 	Tm2 	; 

ifl 	rntic ntrpci 

1.0 0.30 477.13 0. 477 x103  1. in each 	case the 
maximum depth fac- 

1. 2 5 0.30 195.43 0.477 x103  to r, Zma  x = 	19 2y 3, 5, 

1. 5 0.30 94.25 0.477 x108 10  and 15 were con-
s idered. 

R , 1.0 I  0.40 1507.96 0. 151 x104 2. The sustained vert i- 
1.25 0.40 617.66 0.151 x104 cal load was varied 

in 	case. 	The each 
1.50 440 297.87 0.151 x104 value was calcula-

ted considering 
1.0 0.50 3681.55 0.368 x104 frictional and end 

bearing resistance 
1.25 0. 50 1507,96 0, 368 x104 using Terxaghi' s 

(1943) 	theory. 
2.0 0. 50 230. 10 O. 368 x104  

3. 
x104  

Each pile was aria- 
1. 5 0.60 1507.96 0.763 lysed for pile top 

x104  
free iota to con di- 

2.0 0.60 477.13 0.763 tions. 

1.25 0.60 3126.92 0.763 xlO4  

1.50 0.70 2793.6) 0.141 x105  

2.0 Q70 883,94 0.141 x105  

3.0 0,70  174.61 0.141 x105 
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mass analysis and detailed discussions regarding 

these results has already been presented in Chapter III. 

The dynamic response of the different pile cases based on 

continuous analysis include: 

1. Determination of natural frequencies for significant 

modes of vibrations. 

2. Under these modes of vibrations assessment of normalised 

modal quantities of deflection, rotation, bending moment 

and shear along the entire length of the pile. 

In order to achieve the above, the derived solutionE 

( article 4. 3) of : (i) Fbsiti case, (ii) Equal Root case 

( iii) Negati case and the pertaining computer programmes, 

were utilised. 

4. 5.2   NCN_DIMENSICNAL CURVES FOR NATURAL FREQUHNCIES: 

The examination of the dynamic response of all the 

n in ety pile case of Table 4. 1, resulted in  the  definition o9 

non-dimensional., frequency factors in different modes of 

vibrations'. It was seen that the components of the frequency 

factors in different modes of vibrations were similar 

article 3.9 .f lumped mass solutions. 

For the casp, Of continuous system solutions,the 

.non-dimensional frequency factors have been defined below. 
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First 	Fccl 

Second 	 Fcc2 

! vu 	1 
wnl g ' kR 

wn2 ~I g ' 

In- the above list: 

wn, in radians per sec., is thecircular natural 

frequency of the systems as obtained using continuous system 

analysis. 	'Given subscripts identify the mode under considera- 
t ion. 

Fcc l Frequency factor, a dimensionless number. 

The first letter 'c' denotes the clay case and the second 

identifies the use of continuous system models. The numerals 

in the subscript indicate the mode numbers. 

Tn. Fig 4.2 and Fia 4.3 the var atior4s F 	and 

F0c2 with relative stiffness factor, R have been provided. 

The variations of these frequency factors with non-dimensional 

depth factor Zmax have been provided in Fig .4.4 and Fig 4, 5 

for first and second nodes of vibrations respectively. 

It is to .be noted herein, that the' frequency- factors 

Fccl and "Fcc2 are based on the soil-pile parameters (;Table 
4,1) - and . the solutions obtained with positi case and Negati 

case• 
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The natural frequencies which were .nbta~ined for the 

equal root case have been identified and treated as critical 

frequency -case. The:"frequencies under"this. condition has 

been treated separately. 

4.5.3 NONDIMENSIONAL CURVES FOR NCR ►USED 
MURAL QUANTITIES 

The analysis of each of the pile cases of Table 4.1 

resulted in the values of normalised modal: deflection, 

rotation, bending moment and sh ar along the entire length 

of the pile under different modes of vibrations. These 

quantities have been evaluated - for piles with Zmax = 1, 2, 

3, 5, lO and 15. 	It was observed that as in the case of 

lumped, mass ° solutions, the following quantities when plotted 

against 'depth factor, x/R resulted in a non-dimensional 

unique plot_ un-der any desired nde of vibration: 

1. The normalised modal deflection values. 

2. The product of .relative stiffness factor and the.,normalisec 

modal rotation values. 

3. The product of k.R2with the normalised bending moment. 

4. The product of 	with the normalised modal shear. 

The non-dimensional , curves as obtained using continuous 

system analysisF(y odel) for different modal quantities for 

first and secon d mode ::o-.f .vibrations have been 'l'isted :below: 



Normalised lbdal: 	Identi- 	Components. 
	

Figure 

Deflection (D (y1) 	A  Y cl 

Rotation 0 (91) 	A() c 1 

Bending Moment C( Ml) Amcl 

(yl) 	 4.6. 

( 1).R 	 4.7  

4.8 

Shear 	0 (S1) 	Ascl 
	 4.9 

Deflection 	( y2) Ayc2 y2} 4. 10 and 
4,lOa 

RotationO(e2) A oc2 '( e2) • R 4. 11 and 
4. l la 

Bending  Nbment 1?( M) AMC2 ~ ) • k Ra . 4 12 and 
4. 12 a 

Shear 	(s2) AMc2 ( S2) k'= 4. 13 and 
4.13a 

4. 6 COMPARISON OF CONTINUOUS SYSTEM 
AND LUMPED MISS SOLUTIONS 

4. 6. 1 N1~TUR,kL FR&UENCY OF VIBti\TICKS 

Comparing the definitions of frequency factors in 

different modes of vibrations based on continuous solutions 

(system analysis,, article 4. 5,2)'and those of lumped mass 

analysis ( article 3.9) ; it is seen that though the so lutions 

are based on two different approaches, the resulting definitions 

are identical. Similarly, the general trend in the variations 
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of Foci  and Fcc2  with R and Zmax (Figures 4.2, 4.3, 4..4 

and 4. 5) are similar to those of FcL1  and FcL3  with R and 

Zmax (Figures : 3. 8, 3, 10, 3. 13 and 3.15). .-..... 	.. 

Therefore, the discussions (appearin'g in article 

3.11. 1) regarding the factors influencing the natu-ral fre- 
quencies of vibrations, pertaining to solutions based on 

lumped mass analysi s; can also be considered, applic.ableto 

the corresponding solution based on continuous system arialysiS. 

In table 4.2 the comparison of frequency .factors 

FCLI  and FCL2  of lumped mass analysis with Fccl  and Fcc2 
of continuous system analysis has, been provided. I't' is empha- .. 

sised herein, that the identified second mode frequLncies of 

lumped mass solution corresponds t,) .the critical fr (u incies of 

continuous, system analysis (equal root case,  article 4. 3.2). From 

From Table 4.2 it can be seen that the percentage difference 

in the frequency factor values, for any, Zmax is ab.dut 1 % 

Eor first mode of vibration and a maximum of ' 8 % for second 

node of vibrations. Thus for similar soil-pile systems, 

)ractically, both the lumped mass and continuous system analysis, 

)redict identical values of na-tura_l frequ; icies. under different 

)odes of vibrations. 

.6.1.1  Critical Frequency Case 

From equation 4.21 of equal mot case (article 4.2) 

'e have : 
P 4 _ k 
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Table 4.2 

Comparison of Frequency Factors of Lumped Mass and 
Continuous System Analysis 

C Pilesase ~., 'Cont inuous 
. max, tive e ; Lumped Ma s s t System 

stiffr ~ Nbl , Remarks 
n ess ; FCLl ; FCL3 I' 

 
factor,, ; FCC2 	; FCC2 t 
Rin s I 

metres; i 

.0 1.0 0495 16. 40 O. 49 0 :. 17. 55 

.0 1. 5 0, 490 16. 40 0. 480 17. 55 

. 0 2. 0 CL 480 16. 40 0. 470 17. 55 

. 0 1. 0 0. 680 4. 55 0, 685 4. 50 

. 0 1. 5 0. 675 4. 55 0. 680 4. 50 

. 0 2.0 0. 670 4, 55 0. 675 4, 50 

0 1.0 0.795 2.25 0,790 2.15 
0 1.5 .0.790 2.2.5 0.785 2.15 
0 2.0 0,785 2.25 0.775 '2. 15 

0 1.0 0.840 1.25 0. 840 1.20  
1.5 0.835 1.25 0.835 1.20 

0 2.0 0, 830 1, 25 .0. 830 1.20 

0 1.0 0.8_40 1..25 0.840 1.20 
0 1. 5 0. 835 "1. 25 0. 835 1. 20 
o . 2.0 0.831 1.25 0.830 1.20 

C 1.0 0.841 1.25 0.840 1.15 
0 1.5 0.835 1.25 0.835 1.15 
0 2.0 0.830 '1.25 0.830 •1.15 

The third mode Frequency 
Factor, FCL1 corresponds 
to the second mode fre-
q uency factor FCC2 of 
continuous system analy-
sis. Because, the second 
mode frequency with 
lumped mass analysis 
has been identified as 
critical frequency.. in 
continuous system a na ly. 
sis 



Therefore we have:"""' ' 

• ))A a•_ 	k 
gEl 

p2 	_ 	k 
A 

••. 4.47 
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We have from equation 4.5: 

4 	 ____ 
= 	g.EI 

This equation is `similar to the one _resulting from the 

defiz ,-t;-ion of second mode frequency factor of lumped mass 

analysis (article-g). It is emphasised herein, that for. 

Plies embedded in clay type of soils (assuming soil modulus 

to remain, constant with depth) the natural frequencies at 

higher mode of vibrations ( except first mode) are .independent 

of flexural stiffness El of the pile member. However the 

change in pile section affects the values by way of change 

in weight per unit length of the pile. 

But the so•il..pile systems display an additional 

pecu iarity under the critical' frequency (and second mode 

frequency of lumped, mass analysis) of vibration conditions. 

That is the critical frequency values are idegnendnt 'ref 

change in length of the.piles and hence the maximum. depth 

factor, Zmax 	 • 

The results of the lumped ma s's analysis .in Fig 3~9. 

and 3..14 indicate such concl-unions, for second mode of 
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Table 4.3 

Comparison of Critical Frequencies as Obtained 
with continuous System Analysis with Those 	of 
Second Mode Frequencies Obtained by Lumped Mass 
Solutions 

Second Nbde ,~ Piggy Detail t Critical fre- 	; 
Relative Soil , Diameter f quency with frequency 

Z 	stiffness i Ivbdulus k ' in t continuous sys..; with lumped maxt factor R . in T/m2 ;metres o .tem analysis in; mass ana- 
in metres f f radians per sec; lysis in 

radian s 
!  r SPc 

1.0 1.0 477.13 0.30 166.10 164.70 
1.0 1. 5 94.25 0. 30 73.81 73, 54 
1.0 2.0' 230.10 0. 50 69.20 68.80 

2.0 1.0. 477. 13. ' 0. 30 166. 10 165.70 
2.0 1.5 1507.96 0.60 147.62 147.10 
2.0 2.0 2 30. 10 0. 50 69, 20 69. 10 

3.0 1.0 477.13 0.30 366.10 165.90 
3.0 1.5 94,25 On  0.30 73.81 73.78 
3.0 2.0 230.10... 0.50 f.20 x,10 

5.0 1.0 3681.55 0.50 276.80 276.50 
5.0 1. 5 297.87 0..40 9 8. 41 98. 39 
5.0 2.0 230.10 0.50 69.20 69.18 

1 Q 0 1.0 477. 13 0. 30 166.10 165.70 
10.0 1, 5 1507.9 6 0.60 147. 62 147.60 
10.0 2.0 230.10 0.50 69-.20 -77.20 

	

15.0 	1.0 	477.13, 	0.30 	166.10 	169.90 

	

15.0 	1. 5 	727.22 	0. 50 	123.00 	•123., 5. 

	

15.0 	2.0 	477.13. 	0.60 	83.04 	84.97 
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vibrations. The details of Table 3.2, the frequency factor 

values of lumped mass analysis for different pile cases 
with Z 	^ 5 also emphasise this point. If the tabulate d 

frequency factor values for second made of vibrations are 
examined it would be found that the maximum difference betwee 

any two. pile case is in the order of 2. 55 %. 

In addition to this in Table 4.3 the values of 

critical frequencies obtained by continuous system analysis 

for different soil-.pile conditions have been compared with 

those car' second mode frequencies bas©d on lumped-mass solu-

t ion s. 

Critical evaluation of this Table wc; uld revea 1: 

1. . For: any identical soil-pile systems the critical. fre-

quencies obtained by . continuous system analysis and the 

second mode frequencies ba-sed on lumped mass analysis are 

practically same. 

2. Ass.perunit.i.ength of the pile remaining same the 

.. critical frequencies are dependep t on soil- stiffness 
alone.  

3.. Changes in pile length d7 not alter the frequency values 

under these conditions. 

4.6.2 NORMALISED 1Uf~JD;AL QUANTITIES 

Comparison of the variations with depth factor, X/R 

of the non-dimensional normalised modal quantities: Aycl' 
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Ae ci, Amc1, Asc1 with, the corresponding quantities based 

on lumped mass analysis show that: 

♦ 1. At any x/R both lumped mass and continuous system 

analysis yield practically same values of the normalised 

modal quantities. This is true for any pile length of 

given soil-pile parameter values. 

2. Both these analysis yield similar mode of deformations 

for long and short pile ranges. 

3. The observed trend in the dynamic behaviour of the piles 

are the same. 

As an example, in Table 4.4 the non-dimensional modal 

quantities at different depth factors have been provided for 

piles with Z = 5. These values are based on the conti-

nuous system analysis. Comparison of these quantities with 

those obtained by lumped mass analysis would further emphasise 

that both these solutions yield practically similar results. 

Similarly, comparison of non.-dimensional normalised 

modal quantity values, for second mode of vibrations of 

continuous system analysis; with those for third node of 

vibrations of lumped mass analysis, indicate practically, 

similar form of results in both the appaches. 



-0.5585D 00 0.59181) 00 0.27931) 00 0.1910D 00 

-0.37771) 00  0.49121) 00 0.3161D 00 0.3925D-01 

-0.23161) 00 0.38571) 00 0.3114D 00 _0.5915D-01 

-0.1198D 00 0.28641) 00 0.28131) OC -0.1156D 00 

	

-0.3925D _01 0.19961) 00 0.23791) 00 	-0.1407D 00 

	

0.1496D -01 0.1293D 00 0.18991) 00 	-0.1440D 00 
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Table 4.4 

Table of Computed Non - Dimensional Coefficients 
From Continuous System Analysis 

DETAILS OF DATA SUPPLIED 
PROB NO = 36 	ZMAX = 5.0 R = 1.5 ALTH = 7.5 	DIA = 0.4 	k = 29? 
W = 15.0 NO OF MASSES = 30 	NO OF MODES = 3 	EI = 0.15080D, :4 
AREA = 0.12566D 00 
CRITICAL FREQ• = 0.98415D 02 
TABLE OF COMPUTED MODE SHAPES FROM NEGATI CASE 
MODE NO = 1 	P = 0.14251) 02 	MEQ = 2.26?58 PER IOD = 0.4410 
MiPF = 0.1005D 01 	XE = 0.250 DT = -0.461D-04 

PT 	xA Aycl A cl Amcl Ascl 

1 	0.0 -0.10011) 01 	0.70361) 00 0.0 	0.6953D 00 

3 0.333 _0.76981) 00 0.67071) 00 0.1816D 00 	•0.40691) 00 

5 0.667 

7 1.000 

9 1.333 

Ll 1.667 

L3 2.000 

L5 

17 2.667 0.4804D-01 0.7283D-01 

19 3.000 0.6515D -ol 0.3211D -01 

21 3.333 0.7086D-01 0.4062D-02 

23 3.667 0.6899D -01 -0.1376D -01 

25 4.000 0.6254D -01 -0.2391D -01 

27 4.333 0.5364D-01 -0.2875D-01 

0.14341) 00 

0.10201) 00 

0.6753D -01 

0.4071D -01 

0.2135D...01 

0.8768D -01 

-0.1333D 00 

-0.1144D 00 

_0.9199D..01 

-0.6902D-01 

-0.4748D -01 

-0.2849D-01 

29 4.667 0.4372D..01 -0.3040D-01 0.2009D-01 	-0.1260D-01 
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This:  would mean certa in modal, deflection values at the top 

of the piles. 

It is believed that = h the absence of continuous 

system analysis, the creditability of such mode of vibration 

could not have been established. In the available literatur 

(as 'hf 1974) on the dynamic behaviour of piles no indication 

to such possibilities has been provided, 

4, 8 CO NL.LUD'3N G REM RKS 

For, piles embedded in clay type soils  ( assuming soil 

mo.du.lus to remain constant ith depth) the dynamic analysis 

can be performed treating the soil pile system by a conti-

n ua us system'.. mo=del. 

For pile top free to rotate conditions, as an examplE 

it has been demonstrated that both lumped mass and conti. 

nu)us system analysis result in near identical solutions. 

Therefore the lumped-mass analysis approach, as giver 

in Chapter III can be considered as an effective tool in 

determining the dynamic response of piles. 

This check is considered as essential because, the 

soil-pile system in reality are continuous systems. But in 

practice, along the length of the pile the pile cross 

section and the soil conditions may vary. Therefore, under 
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these conditions it may -be impracticable to perform the 

continuous system analysis. Because of this demonstration, 

it is believed, that greater confidence can, be placed on 

the proposed lumped mass  solution which can be adopted to 

varieties of situations. 

Based on the discussions of cuntinuous system analysis 

and the results, there `if, the f011.00wing points are c•onsi-

dered as significant: 

1. Depending .:Jn the snit-pile parameter values and the 

natural frequency of vibrations of the system three 

different solutions are possible to define the mode 

shapes and the ,jther related parameters. While'predic-

ting the dynamic response, at each stage the applicability 

of the related so luti.on s need be checked. 

2. The proposed analysis and the ad:?pted end conditions 

perform well in predicting the dynamic behaviour of piles. 

3. More than the absolute lengths. The dynamic behagiour of 

Pile-soil system' is essentially dependent on the Zmax 

va lues. 

4. Piles having-' Zma X  2 display rigid body deformations 

whereas piles with Z ma 	5 display flexural-bending 

deformation. 



5. Increase in pile length beyond Z 	5 has 	lit. 

tl effect On the dynamic behavi)ur of piles: especially 

in the first mode of vibrations. Thus Z IMX = 5 may be 
c )n sidered as a limiting Long pile conditi )n. 

6. With the increase in super-structure load or the mass 

lumped at top 

(i) 	the natural frequencies under firts mode of vibra- 

tions are reduced by fI7Mt times. 

( ii) At any depth the induced' dynamic displacements, 
bending moment and shear are increased by 	times 

7. For any mode and any soil type increase in soil stiffness 

results in the reduction of pile displacements and 

increase in natural frequencies )f vibratio►,,. 

8, Fear pile top free to rotate conditions the maximum bendin 

moment occurs bel:)w the gr)und level. For long pile 

ranges they occur at a depth of 1.20 R from top. 

9. There is a possibility of critical frequency of vi.bra- 
tion S and a rigid body m)t ion under Such conditions. 

This may occur for 311 pi3L~-soil c.Mditions of any pile 

lcn gths. 

More importantly it has been demonstrated that it is 

possible to obtain non-dimensional S)lutions frl)r predicting 

the dynamic response of piles. 



With the help of these non-dimensional curves 

( i) the natural frequencies of vibrations and (ii) the n:)x-

malised modal quantities at every point along the pile length 

can be obtained upto significant modes of vibrations. 1i 

order to facilitate the ab')ve, series of non-dimensional' 

plots have been provided for piles with Zma X  = 1, 2, 3, 5, 

1O and 15. - With such S')Iution s, tyle ,dynamic behaviour of 

any Soil-pile system embedded in clay type soils ( assuming 

soil modulus to remain coinStant with depth) under pile top 

free to rotate conditions can be predicted. These solutions 

are based on continuous system analysis. 
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C HAP T E R .. V 

DYNAMIC CHARACTERISTICS OF PILES EMBEDDED IN 
SOIL ASS1J I NG SOIL TMODULUS TO VARY PROPORTIONAL 

5,1 INTRODUCTION 

The dynamic analysis of the piles idealising the  
soil-pile system as lumped-mass-spring systems have been 

successfully developed in Chapter III.' The performance and 

correctness of the solutions have been checked by an inde-

pendent technique considering the soil-pil.e system as a 

continuous model. It has been demonstrated in  Chapter IV tha 

both the above techniques result in near identical solutions 

for all practical purposes. 

Thus, having established the, performance of the above 

approach in soils, assuming soil modulus constant with depth 

(clay type soils) ; solutions have been presented in this 

Chapter for the case of piles 'bedded in granular type soils 

Herein, the soil modulus has been as"suMed to vary linearly 

with depth. The mathematical model and the characterisation 

of soil pile interaction effects for these types of variation 

have been discussed in article 3.2 of: Chapter III. The adopt 

numerical technique and the method of analysis to obt3Jn 

dynamic response,are the same as us din cL,.y case 

5.2 ' NON ..DIM ENSI ONAL SOLUTI ONS 

5.2„ 1 VAE,IABLES 
As in the case of piles embedded.  in clayey soil in 



162 

order to obtain infoimati or_ of practical significance, 

non•dimensi oval solutions have been obtained in, the present 

case also. For achieving this, solutions have been obtained by 
determLi ng the response of piles for the following condi-

ti ons: 

1. For piles with pile tcp free to rotate condition. 

2. For piles in which pile top is fixed against rotation 

3. In both the above cases the maximum non-dimensional 

depth factors considered are : 7.fi ax = 1, 2, 3, 5, 10 

and 15. For granular soils assuming soil modulus to 
vary linearly with depth Z a x i s defined as: Z 	Ls/T 

_. 
where T = 5 I nh 

In all the above three cases the following soil-'pile 

parameters were varied. 

1. Flexural stiffness El of the pile 

2. Relative stiffness factor and soil stiffness 

3. Sustained vertical loads 

4. Pile lengths 

The different pile cases for which dynamic analysis 

have been perfo~'ned are given in Table 5.1. As it is seen 

fran the table, a total number of 180 pile cases have been 

examined. 

From the Table 5. 1, the f o l l ovrrin g points are s e do to 

be of significance. 
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1. The considered . pile diameters Vary between 0.3 metr,.;, to 

0.7 metre. 

2. In each of these diameters ti:c iio :_En gt ;s considered 

in the study covered ranges of lengths to obtain infor-

mation. for cases with Z,max = 1, 2, 3, 5, 10 and 15. 

3. For each of these pile sectional properties three ranges 

of relative stiffness factors were considered. 

4. Those values of relative stiffness factors yield infor-

m a ti on on piles embedded in soils with different soil 

stiffness. For granular soils this covered ranges between 

loose to den s e.. s tate of depositions. 

5.2, 2 NON-DIMENSIONAL CEJ RVE FOR NATURAL  F RE~U EN CI E S 

Examination of the results of the analysis of all 

t:he . one hundred ei ghty pile cases of Table 5.1,. r.?suit :d in 

un d ' tn c ing the various factors which influence the 

natural frequencies of soil -pile c7: t --m. 	Analysis of 

each individual factors resulted in a set of non-dimensional 

curves to e>plain 'the vibrating frequencies of piles. Th0. 

i on-dimensional frequency factor FSL is defined as below', 
for different modes of vibration . 



f t(" fl 	0 	bq1  Mode 	J.   
.,n.+~+~r+.u•d.~iL.i::i i, c .i, ^[t'. 	 i 	n f 	_ di+7.,• 

Fi rs't w 	... 	 PZ1•e j Tfc. Free Ao SSL I r .~  	n 	, 	 _ ~ E. . 	-r. `; 	- '-~ 	;  	,r,.• ~ . _. 

~s 4 	.. 	;Ic • 	 r.:, 	r; 	,t 	rr~ 
	••..  

S,peond w F 	 n
. 	( 	, 

SL 2 	W2 , 	lie TPP ,..Fre e to .
Rotate w•. 

` 	r ~ in 	.f' i 	t 	_ 	sv +.•f. 	't 	'rA' t '.C~...~ 	r}..' 1 	s 	•i 
Z •S t ,. 	F 	 w , 	,••, .~.. ,.. ^ pts l;e top ; F ked ~ 3 

~ ~•,•.:,,. ~,, SL1 	' ~ _ 	; ,.g yrn h~e t 	ga 'ns•tRotati on• 

Secoria' K 	 SL2- ; Y~:.,.;t E;. ~~.» .. i`ie T'o 	Fixedr .. 
,,. 	 ~~ ; ". g 	n 3 T~ : - ga 3 ri s t 	of a ti ort 

ti . abpv':.11s'. : 	:a, 

- r ' 'isttie circular natural ,.- frequency rbf--w-the sv5'tr 

tin ra.d.ar ersecond.for the `subscript..identz'- 

	

r 	fled modes.  

is,the concentrjted•t as.s at tap', Mt . 	FT2 L 
9 

n  h' cons ant of 	 r xor ta?- su'bg'rade reaction 'FL 3 _f 	s  
d 	dter c.f 'pile lection 	

... 	L 

T 	relative stiffness factor 	L 

' Y 	weight density, of piles 	 FL~ 
FSL frequency 	t ''facorit' 
4 

,,Thenuuerals jn the "subscrip 
identify the mod enwnber and. prime used -for fixed head condi 
tions.'  

In Fig ..5.1 an.d -%,2• the vaHation of fre qu ,en cy 

	

factors FSL1 and F5 	v4th relative stiffness factor, T 
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ha ; ben provided. These figures pertain to pile top 

free to rotate conditions,for the first and second modes of 

vibrations respectively. The curves have been drawn for 

piles with different Z 	values. For each 2max  case in 

these figures fifteen pits cases of varying valu-:fs of soil- 
, 

pii p,1 ram=1tnrs - and sustained vertical loads have been 

considered. In Fig 5. 3 and 5.4 similar vaziati on of FtSL1 

and F'SL2 for first and second modes of vibration have 

been provided. These figures pertain to pile top fixed 

against rotation conditions. 

In Figures 5.5 and 5.6 the variations of frequency 

factor, FSL1  and FSL 2 with  max have been given for the 

case of pile top free to rotate conditions. In Fig 5.7 and 

5.8 the variation of 	Ft S  and F' L  v with 	Z_ 	for pile 
111aX  

top fixed - against rotation conditions have been given; 

5.2.3 NON DLME WS1 ON:;L W'kVE S FOR NORMALISED MODAL QUN TI TI E S 

The analysis of each of the pile cases in Table 5. 1 

(180 cases) gave output of the variation of nornalised modal 

qua nti ties along the pile length. It was observed that for 

any soil-pile syst4n with a particular Zmax  , unique plots 

exist between the depth factor x/T and certain non-

dim ensi onal coefficientsfor each of the nornali sed modal 

quantities, These quantities include nom►alised modal 

deflection, rotation, bendi.ng m anent  



The following quantities for a given Zmax when 

plotted against x,/T resulted in a non-dimensi onal unique 

plot under all modes of vibration: 

1. The n ornalised modal ..defl-ecti on values. 

2. The product - of relative ,st ffness factor and the nornali 

modal rotati on,. 

3 - The pro duct of 	th the  normalised bending 

m cinent. .: 

4. The procict of 1 	v4th the nornalised modal shear. 
h 

The above non• tmensi oval plots were found. to be 

valid for the first and second 5n Odes of vibrations for both 

pile tcp free to rotate and fixed against rotation .conditior 

The various .non-d:_mensi ohal cu --- 	 ryes for different, 

modal quantities for various conditions have-- been 13..s:ted 

below. 

P.iI es Embedded in granular Soils-Pile Top • Free To 
Rotate Conditions First Mode of. Vibration. 

Mod 1  Identa. - 	
-- 	

Fi 	I10. f.,: 

Deflection c( yl-)' 	
BY1 	?( yl) 	 5.9 

Rota ti on ?( 9) ..,. 	B01 	"'( 03 ) • T 	5.10 

BenclLng ManeratF3N~1 	~{t,gl ) nhT 	5.11 

S hea r 	(Sl ) 	BS 	.. •_m{ Sl ) n 	, - .... 	
1 



II Piles Embedded in granular Soils Piles Top Free 
To -Rotate Conditions-Second Mode of Vibration 

Deflection d_ (y2) 	By2 	(D( y2) 	 5.13 

Rotation 0 (82) 	B82 	0( 02)m T 	 5.14 

Bending Mcment 	BM 2 	O(M2) n' 9" 	5.15 
0002) 	 h 

Shear cD (S2) 	BS2 	(D( S2) n1 T 	 5.16 
h 

III Piles Embedded in Granular Soils Pile Top 
Fixed Against Rota ti on Condition- First 
Mode of Vibration 

Deflection (D'(y1) 	B' yl 	01(Y 1) 	5.17 

Rotation 4'(e1) 	Bt el 	'.(01) T 	 5,18 

Bending Moment 	Bt MI 

Shear 0' ( S1 )  

MI) n
hT 
 ~-- 	5.19 

0'( 31) nln T-- 2 	5.20 
h 

IV - Piles Embedded-in Granular Soils-Pile Tcp Fixed 
Against Rotation Condition-Second Mode of 'Vibretion 

Deflection ('(y2 ) 	B' y2 	 (Y2) 	 5.21 

Rotation x'(62 ) 	B' 82 	t`(82).T 	 5.22 

Bendinq M of git 	B'M2 	o' (.~; 	nom. ... 	5, 23 
OI( f42) 	 h 

Shear 0'(S2) 	. 	B' S2 	(Dy( S2' n—h Tom- 	24 



- 	- 
1.Lry 	 'j 	1UkI 	i 

• c 	r r -i 3i . 	L t . t'.L  

	

' 	 oTt3 of .frequency 

( f 	 and 	 tivesifthe aqrs T 

have bee)j9vn.. 	 rst m çde.of 
yrri 

:vIiD  rbion 	tp f 	M 	ah15dd att 

I 	ti o 	respectively. same 9dehe 

variations of ..F 1 and F 	, with Z,1 	. have been  shown 

	

£ r r dJ\a. 	 J L) 
r•\j', 

jr.-.<F 	5,5 and Fig 5.7. Ths figures have been Obtained 
. 	JJi f:) øri 

bj piOttin the analysed. results of fifteen ile cases for 

	

u 	 tc' 
each 	 a x shown i n Tabi e 5. ].. As seen f rcm the fj qu res 

for a particular ZMax  unique curves are Obtained between 

SL I and FSLl  with T and zynax Herein, FSLI  and F'SL1 

are dimnsi Ofliess numbers. 

Fran the ex1natiOnof!these figures the following 
• -L•v 	c 	; 	': 1 	 .c 
points may .  béconcluded: 

•;:r 

l ;  fhere is..a recticti on in f r-e-  q-u* endy. factor value with 

increase in T values, The reduction is more pronQiflced • • 	 ,•,•_ 
'patti l 3oa 	here - T  i's' reat:e than 

,2. For a particu:1.ar T. increase-jo length results 

3. nc rea se,  pfequency factor va:Lue. Hpwèver,f or 

- 	Zmax 	the change is insignificant.. 	rl 

For any T, thevariati-on•.qf frequèn9y. r,grsth11 1 

Zmax is a straight line. - However.  for 'ma?  5 the 

variation is negligible. 	- 	• • 
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Frcm the above Figures for a particular ZS.nax 

for both pile top free to.rotate and fixed against. rotation 

C on di ti on we have: 

I n T2 
wnl 	FSr. l 	M~ 

n 0,5 T 
wnl cc 	---h ---0-5 	 ... 5.1 

Mt 

n 0,3 EI0. 2 
a 	b 	 ... 5.2 

t 

Fran equation 5.2 and the related figures we have: 

1. For any given soil-pile case the firstnaturai fr~quncy 

deduces with increase of sustained vertical load* 

2. For long pile ranges increase..in sail stiffness results 

in increase of first mode frequency. Also, increase in 

flexural stiffness E[., of pile, results in increase of 

wnl' 	However, increase in El, results in increase of 

T, which would offs..t the said increase in wnl_ values. 

3. For piles other than long pile ranges increase in sail 

stiffness would result in increase of wnl values. 

But , the increase of EI may not result in absolute 

increase of . wnl ,because of increase in T and reducti on 

in mad Hence under these conditi ons careful 
consideration.. of theser affects are necessary. 



171 

In Fig 5.2 and 5.4 the variations of frequency 

factors F 2 and F'SL2 4th relative stiffness..factors 

have been given for pile top free to rotate and fixed again; 

rotation conditions respectively. For the same conditions 

the variation with Zmax has been given in Fig 5.6 and...Fig 

5.8. 

For a given 	nax the n, tural fry= uj cy this 

mode has been defined as. 

n T 
wn2 - F~ 2 

0.1 n 0.4 
Int 	d (2.5 	... 5,4 sf 

F.rcm the 'above relati on and the pertaining figures 

we have: 

1, For any 'ZM ax , unlike in first mode the value of fre. 

quency factors is not altered appreciably 4th changes 

in relative st3ffn.ess factor values. 

2. The frequency factor values increase with increase of 

zm a x„ However for max 5 there is no appreciable 

change. 

3. The conclusion 2 is contrary to the clay case wherein, 

in the second mode of vibration, v4th increase in Zmax 
thore was reduction in frequency factor values. 
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4,' 'The increase of soil stiffness results in increase of 

s ec on d. m ode frequencies. 

5. Compared to the first mode frequency the influence of 

fle)aaral stiffness of the pile is greater in the present case. 

6. Increase of weight density results in reduction of'natural 

f requ enci es. 

5.4.1 FACTORS INFLUENCING  DYNAMIC DI SPLAG~VI ENTS 

5. 41 FIRST MODE OF VI BRATI ON 

In Fig 5.9 and 5.17. the variation of non.-dimensional 

normalised modal deflections Byl and Bt yl has been plotted 

against depth factor x/T. These results pertain to pile 

top free to rotate and fixed against rotation conditions 

respectively. In Fig 5.10 and 5.18 for the same conditions 

the non.. dim ensi oral noxmalised rota ti Orr coefficients B81 

and B'61 have been plotted. 

Frim these figures the following points are s :en 
t be of significance: 

1' Piles with Zmax 2 display rigid body type deformations. `. 

2. The displacunents are primarily dependent on Zmax rather than 
the absolute lengths.  

3. For piles With 7.m.a X~ 5, the f -o.m1 of variation of di. s- 

placements are practically tAi;, same, indicating that piles 
with Zma 	5 may be traatpd as infinitely long. xim 



173 

4. At depths greater than 4T insignificant displacements 

are experienced by long piles. 

5. The rotation at bottom ends are greater for short piles 

ranges than for long piles. 

Fran the knowledge of n ofn a.li s ed modal di spl ac en en' 

it is easy to estimate the various factors which influence 

the dynamic displacements. 

We have f rcm equation 3. 61 the dynamic deflection 

as under, 

Y( r) _ (r), 	S Y) Y (r): 	d( r) 

The explanation to the various quantities of the above 

equati on has already been defined in article 3.:.5. 

For the Li rst m 4d.e= of vi brati on this we have: 

Yl  = Byl  , Shc  ` 

... (_ 	pile top _free to 
rotate) 	... 5.5 

Y I  1 

 

B. S t  d1 ( 	pile top fixed 
against rotation) 	... 5. 6 

Therefore it f oll'ows that: 

Y d Sa 

Fran article 5. 3 we have: 
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n h T2 
wnl T SL,1 h~~ t 

' 

 

I nhT 2  nI = 	$L 1 jet 

... 	 (pile top free to r 
ota e ) 

(pile top fixed 
against rotati on) 

Since spectral displacement is proportional to 

the time period we have: 

M Os 5 
Mt Yl ~f 	0. 3EI 0.2 	... 5r 7 

h 

Fran the above relation and Fig 5.9 and 5.17 it can be 

concluded that: 

1. As the top mass is increased, dynamic deflection is 

increased by 	times. 

2. Increase in soil stiffness results in reduction of dynamic 

def1ecti on. 

3. Though there is apparent reducti on in the dynamic deflec-

tion vuith increase of flexural stiffness of piles, the 

increase may be offset by reduction in • m aX , bncausE: as Zma> 

reduces the natural 	period and hence Sd increases to 

enhance the values of dynamic deflection. 

4. Rest of the soil-pile parameter values remaining same 

reduction in pile length increase dynamic deflection. 
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The non-dimensional rotation., coefficients BA1 

and B'®1 have been defined as under:. 

B81 = cp(el ).. T •., (pile- top fre&to rotate) 

B'01 = 0'(A1) T ... (pile top fixed against 
rotati on) 

where cD (el ) is the nonnalised modal rotation in the fir 

mode of vibration w 

Theref ore we have: 

Dynamic rotation el = c (A1) Shc 	... 5.8 

B 
9 l'= - L. S dl 	 ... 54 9 

.Herein, both B01 and B`.1 are dimensionless numbers 

Therefore; 
l 

Dynamic rotation 01 cc " S T 
M 0.5 	 n 0.2 

or61 d h 	 0.2 	... 5.10 
n h 	EI 	 EI  

M C.5 	;. 

or 	t 	 5.11 81 °~ Q FIC, 4 	 ... 
h 

Fran -the above relation and the non.mdim ensi oral rotation 

curves we have: " 

1. For any given pile the dynamic rotation increases with 

increase in top mass. 
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2, With the increase of soil stiffness dynarrac rotation 

is reduced. However, the effect here is lesser compared 

to the influence of nh  on Yl. 

3. There is greater influence of .EI on dynamic rotation. 

5. 4.2 SECOND MODE OF VI BR TI ON 

In Fig 5.13 and 5.21 the variations of non- 

dimensional normalised modal deflections By2 and B' 2  y  4th 

depth factor have been provided. These curves correspond to 

second mode of vibration for pi1.e top free to rotate and 

fixed against rotation conditions. For the same conditions 

the variations of noirnalised modal rotation B82  and B'e2 
have been provided in Fig 5.14 and 5.22. 

As 	is seen fran these figures,the displacenents 

in the second modes vary vAth the increase of 7max'  For 

piles vA th,,> 5 the variations are negligible. 
uian- 

The dynamic deflection and rotation in the second 

mode of vibrations are given by: 

Y2  = By2  Sd2 	 ... 5.12 

B _  8 
82 T Sd2 ... 5.13 

In the above equations By2  and B02  are dimensionless 

numbers. 
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Therefore, the factors-influencing dynamic 

deflections can be assessed based on the definition of y2 

in article 5.2.3. 

Therefore we have 

Y2 cc Sd2 

ie 2 w-  Y d 
n2 

d 	dd 
g nhT 

... 5.14 

..  5.15 

.90 -%1b 

The above relation has been fcund to agree for both, pile 

top free to rotate and fixed against rotati on conditions. 

Theref ore we have: 

1. The dynamic deflection (i) increases vuith weight per 

unit length of the pile (ii) decreases with increase i 

soil stiffness. 

2. Rest of the factors remaining constant dynamic deflecti 

increases' vaith increase in pile length. 

3. For long pile ranges wr.th increase iri pile length the 

dynamic deflecti on ra`ain practically unaltered. 

The dynamic rotation in the second mode of vi bra. 

tion is given by 

82 	S 	 ... 5.17 2 ~ d2 
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82:oC 1 	T 	 00v 5.18 
n2 

da d 
A j g nhT 	T 	 '' • 5,19 

a  a !fid 1 ~ g n o 1 	 .. 5 
T. 	

. 520 
h 

	

Ti- ~--- 1 	—1~-3- 	... 5.21 

	

h 	 . 

Fran the above relation it is seen that 

1. The dynamic rotation increases as weight per unit length 

is increased. 

2. For any particular Zma x the dynamic rotation is reduced 

with increase in soil stiffness and fle*iral stiffness EI. 

3, . For long pile ranges increase in EL and soil stiffness 

results in reductionn of dynamic rotati on. 

5. 5 FACTORS INFLUENCING DYNf\1viIC BENDING 
MOMENT AND SHEAR 

5. 5. 1 Fl RST. MODE OF VI BRATI M.  

The variation of non-dimensional nornilised bending 

moment coefficients ml and B'mi have been plotted in 

Fig 5,11 and Fig 5.19. These figures pertain t o pile top 

free to rotate and fixed against rotati on conditions 'res- 

pectively. 
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Prcm these two figures the following points can 

be inferred: 

1. For pile top free to rotate conditions greater bending 

manent coefficients are applicable for long pile ranges 

than for short piles. 

2. Under the above conditions the difference in maximum 

bending moment values between Zmax  = 2 and Zmax  = 3 

are greater canpared to those betWe&n l a x - 3 and 

3. For any condition for piles with 1max 5 there is no 

appreciable difference in the bending manent values. 

Hence, Zmax' 5 is practically a long pile case. 

4. In the case of pile top free  to rotate condition the 

maximum bending moment for. 1max — 2'  3 and Zmax> 5  
occur at depths of Q. 8T, 1.15T and 130T respectively. 

5. For pile top fixed against rotation condition maximum 

bending m an ent occu rs at top. 

With the knowledge- of noxmalis.ed modal values of 

bending moments it is :easy to assess the various factors 

which ihflu ence the'- dynamic. bending moment. 

We have from equation 3.61 the dynamic. bending 

m cn ent in the first mode as under: 

M 1  = 	(M 1 Shc  . 	 . 4 ' 5.22 



Now from article 5.2.3 the non-dimensional bending monent 

coefficients for the cases of pile top free to,rotate and 

fixed against rotation condition are defined as: 

B 	_ 	 5.23 ml 	n.`_h"  

ml 	n  ... 5,24 

Therefore the dynamic bending mtment M1 is given. by 

M1 	- 	ml x n 	T.3 x Shc ... 	5,25 

M1 I 	a 	nh 1 S  d1 ... 	5.26 

cC 	n h T8 =- 
wn 1 

... 	5.27 

O.6 M 
t 

d nh n 6 	' ©.3 	.2 n ' .~ 	5 28 
h h 

cc 	Mt V• 5 	ET"•'' n ".z  
h .., 	5.2929 

The examination of the above equation reveals that: 

1. Increase in top mass increases dynamic bending moment 

by R times. 

2. For long piles ( ax 5) increase in soil' stiffness 

increases dynamic _bending moment. However the displace-

m ents are recbced. 
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3. For any piles increase in EI results in increase of 

dynamic b en cii ng moment, However both deflect' ons and 

rotation are reduced.: - 

In Pig 5.12 and 5.20 the variations of non• 

'dimensional noxmali'sed modal shear BS1 and BS1 	.th 
depth factor have been provided. These curves pertain to 

pile top free to rotate and fixed against rotation conditior 

The non-dimensional modal shear is defined as the 

product of . c( Sl) or ~? '( s1)  vui t h 	n 	Both BS1 and 
h 

B'Sl are dimensionless numbers. Therefore dynamic shear 

S1 in the first mode is given by:  

S1 - BS1. nhTa Sd 

...., _ (pile top free to rotate) 
... 54,30 

S ti 	B'S1 nh T2, S1, 

...(pile top fixed against rotation; 

... 5.31 
We have 

S1 	d -- ----  n hT s 	 ... 5.32 
wn1 

M Q~ O' 4 	~. 33 _  ... d 	
El 0.2 

 . n if  
h 	 h 

d 	I't ' S. 	n h
. 3 :- E102 	. , . 
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The influence  of various factors on the dynamic shear 

are similar to those of dynamic bending moments discussed 

earlier in this article. However, the quantum of influence 

of both nh  and EI vari es as,,. 	n h' 3  and LI©̀  2  respectively. 

5,. 5,2 SECOND MODE OF VI BRATION 

The variations 'of non-dimensional normalised 

bending moment vAth X/T, the depth factor have been provided 

in Fig 5,15 and Fig- 5.23. 	These curves pertain to second 

mode of vibration for pile top free to rotate and fixed 

against rotation conditions. 

The definitions of Bn2  and B'm2  are as under. 

B 2  = 0(M2). nh T3 	 ... 5.35 

B1
m2 = ,t(M2) nh  T3  ; - 	 ... 5.36 

Therefore the dynamic bending manent is given by: 

3 
M2 = m2' nhT Sd2 

... (pil•e top free to rotate) ... 5.7 

M12 = Brm2 nh Ts S' d2 

,., tpileti)p fixed against 
rotation) 	 ... 5. 38 

Herein Bm2  .and :B;m2,, are dimensionless coefficients. 

Therefore we have for both pile top free tQ,rotate 

and. fixed against 'rotation Conditions we have: 
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M2 d nh T3 1- 	 ... 5► 39 
r~2 

CC nh Ts f Yag 
EI i:;. 

z o 4 	... 5. 40 
n • h 

0,6 /)_2d 1 d n h ---h g 	G. 1 n O, 4 ... 
h 	 h 

CC F 	j0..5 	 ~, 42 
g

... 

The above relation is same as for piles embedded in clay 
type soils. From the examination of these relations We can 
conclude that: 

I 

1. For a particular Zmax, dynamic bending manent in 

second mode of vibration is independent of soil stiff. 

n ess. 
2. Increase in EI results in increase of M2 values. 

3. Increase in Weight per unit length of pile results in 

increase of dynamic bending manent. 

For the second mode of vibration the variations 

Of non-dimensional modal shear coefficients BS2 and B'S2 
with x/T have been provided in Fig 5.16 and Fig 5.24.. Thes4 

figures pertain to pile top free to rotate and fixed against 

rotation conditions respectively. 

The dynamic shear .coefficients have been defined 

as the product of n oimali s ed shear and nl 	, Therefore 
h 



for both pile top free to . rotate and fixed against rotation 

conditions we have: 

	

Dynamic ,shear S2 a nhTE -S 	 ,,. 5.41 
.. 	 d2 

	

S cc n hT a .~ 	 544 
wn2 

K n hT a ~-- . —=—$;  

	

g 	Ez 	n h 

EI__ -4 as 	5, 46 
• h -n 0. 4 	g 	EI0.1n 0, 4 

h 	 h 

	

a EE  4 
	1 	... 5.47 nh ---a 4 g 

EI0.1n 0 4 
h 	 h 

	

 

h'2 	 ... 5, 48 g 

Frq these relation it is seen that: 

D'namic shear in the second mode increases with 
increase in 

1. Weight per unit length of pile. 

2. Increase in soil stiffness. 

3, Increase in fle)aaral stiffness of piles. 

5.6 CON CLUD  CONCLUDING REMARKS 

In this chapter the dynamic behavi-)ur of piles 

embedded in granular so T1s has been predicted using lumped 

mass analysis, which was developed in Chapter III and 
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checked by continuous system analysis in Chapter IV. These 

Solutions are applicable to the type of s°ils- in which the 
soils-modulus can be considered to vary in proportion to 

depth. 

In ' order to get a clear picture. of •the dynamic 

characteristics of the piles, the s:- lutiôn5 

 

have been obtain 

for the fo 11cwing cases of practical significance: 

1. Pile top free to rotate conditions. 

2. Pile top fixed against rotation c,,')ndition s. 

:3. Piles having n. -'dimensional depth factor, Zmax = 1, 2, 
3, 5,,_ 1O and 15.,: 

In each of the, above cases the Soil and pile .stiff-

n ess,, the pile length and the sustained vertical loads have 

been carefully varied to obtain s.) lutioh s. of practical sig-

nificance. 

Based on the .solutions of several such pile problems 

non-  dimensional design curves have beer' developed._; .'These.; 

nons.dimensional curves are capable, of 'predicting_ the dynamic 

resp~a.nse upte significant modes of vibratiinS. 

With these non-dinsional cury-es- 'it" ts possible to  

assess: 	;  

1. the natural frequencies of -vibrations under. first two 

modes of vibrations. 
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2. the normalised modal quantities •)f deflection, rotation, 

bending moment and shear at every point *al')ng the pile 

length. 

Based on these studies concerning the dynamic beI - 
viour of piles embedded in granular snn'ils, the following 

conclusions may be drawn: 

1. Lumped - mass analysis is an effective tool in predicting 

the dynamic behaviour of piles embedded in granular soils. 

In fact any. form of soil- modulus variation can be handled 

with this  approach.  

2. The dynamic behaviour of the piles .are depend6nt on the: 

( i) relative stiffness of, the pile and soil. 

( ii) length.of the pile ;in relation t•) the relative 

stiffness factor. 

The absolute length of the pile does not govern the 

behaviour -singularly.: 

3. Under first made of vibrations the variations, of pile 

displacements, bending moment and shear along the length 

of the pile follow the pattern under static l lading con-

ditions. 

4. First mode of vibrations contribute significantly to they 

overall response, 
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5. Under dynamic conditions piles with Zma  2 display 

rigid` body deformations whereas piles with Z' 

display bending deformations. 

6. For a given soil-pile system Zmax 1-  5 can be considers 

as a limiting value of .long pile range. Increase of pil 

length beyond this value 	)ses significance as far as 

dynamic behaviour is concerned. 

7. Forsimilar pile-s-)11 systems for pile top fixed against 

rotation conditions the envisaged dynamic displacements 

may be smaller than under pile top froe to rotate condi- 

tiDn s, because of the smaller period of vibrations in th 

former case. 

8. For pile top fixed against rotation conditions the maxim 

bending moment occurs at top. But under free head condi 

t i_m s, for long piles, it occurs at a depth of 1. 30 T 

from the ground surface. 

9; With increase in lumped mass at top we have: 

( i) the natural freauencies under first mode of vibra- 

tions are reduced by 	times. 
t 

(ii) the values of dynamic displacements and bending 

moment are increased by 	times. 

1Q The increase in soil-stiffness results in the reduction 

of pile displacements. 
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Thus, ba=sed :;n the present investigati:)ns it can 

be c -included that the dynamic characteristics of the pile-
soil systems are better underst.)od. Further, utilising • the 

results of the investigati:rns on piles: embedded in soils, 
in which soil modulus can be considered to vary in proportion 

to depth; the dynamic behaviour -) f any soil-pile system 

embedded in granular soils can be determined .without entering 

into the complexities of dynamic analysis. 



C 	PT E R VI 

EXPEAIMEiNTAL ' STUDIES 

6. 1 INTRUDUCT ION 

Only very few experimental studies' a re reported 

in the available literature, discussing -  the behaviour of piles 

Subjected to dynamic loads. Majority of them deal with the 

performance of small size piles tested in the laboratory under 

dynamic loading conditions. Out,,, of this,,  greater stress has 

bean paid to natural frequency of pile vibrations as a result 

of sudden pull and release.: 

The available informations on vibration testing 

of prototype piles are meagre. . Nbre importantly, till 

to-day. (.,1974),no; logical in..-situ testing procedure is availabl 

for. determining the material constants of the soil-pile system 

which is required in any dynamic analysis dealang_...with th.e 

assessment of .;pi. a response. 

In' , this Chapter the details .of ' the dynamic tests 

_nn ;fulfil scale prototype piles have.;-.been - reported. 

The experimental `studies were carried out with the 

following objectives: 

( i) - to - understari'd the dynamic behaviour of pile's. 

(ii) to evaluate a logical procedure for determining the' 

material constants of the soil-pile systems under dynamic 

conditions. 
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( iii) 	to compare the observed quantities with the predicted 

ones using the techniques given in Chapter III, 	IV 

and V. 

6.2 TESTS PERFORMED 

The experimental studies comprised of the following 

tests. 

1. Static lateral load tests. 

2. Lateral free vibration. tests. 

3. Lateral forced vibration tests. 

The tests were executed on different types of full 

scale piles embedded in  varying soil types. In Table 6. 1 

the details of the tests conducted have been explained. 

6.2.1 SITE LOCATION 

The piles VTP1 to VTP4 were a part of the foundation 

systems of the Haldia refinery project. The site is located 

on the west bank of river Hoogly at 40 km downstream from 

Calcutta, India. 	The site is situated in an esturian deltaic 

environment and consists'of alluvial and marine deposits of 

soil. 

The piles VTP5 and VTP6 were embedded in a loose 

silty sand =area at the CBRI campus Roorkee:, .,India. 
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Table 6. 1 

Tests Performed 

I STATIC LATERAL LOAD TESTS 
Pile 	, Lateral ; Incre-  

51• 	Identi- ; Load 	; merit of ;Rotation 	_.,; 	Remarks 
Nom Q fication I Level in I load 3.n 

Kg 	; k g  

1. VT Pl 3000 2.O 
2,  VTP2 3000 250 
3,  VT P3 3000 250 
4 VT P4 3000 , 25. 
5. VTP5 900 100 

Permitted 
Permit ted —   With a Sustal 
Permitted vertical load 

of 55T 
Pe rmit ted 
Permit ted 

6. VTP6 900 	100 Permitted 

II 	FREEVIBRATION TESTS 

Serial N 
Pile..  
Id~tifzcation , Remarks 

1.  VT P1 .. 	VT.Pl. 1. A particular pull 
2.  VTR. VTP2 'Was applied and 

load released suddenh 
3.  VTP VT P3 

VTP4 	 2. Each test was repeate 
4. VTPS 	

three times 
'  

6. 	VT P6 

III LATERAL VIBRATION TESTS , 
S1. Pile ,.: 

Idents- 
No' 

Acceleration Rotation :,Remarks 
fication  .MPa gu 	,mp; 	at „_ 

1. VTPl 'Pile cap and Permitted 1. Observations were 
ground level taken for eccent: 

2. VTP2 Pile cap and Permitted cities of 8o to c 
ground : level in steps of 80 

3. VTP3 Pile..cap and Permitted 2. Acceleration mea; 
ro un d level meats were taken 

4. VTP4.~_ Pile 	cap and Permitted each eccentricit: 
ground level at 20 different 

5. VTP5 Ground level Permitted frequencies. 
3. 	Sufficient time 

6. VTP6 Ground level Permitted allowed to reach 
steady state con• 
d it ions. 
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6. 2. 2 	T EST-  PILE AND SOIL- 

In Table 6.2. the details of soil-pile systems 

have`fbeen given. 

The piles VTPl, VTP2 and  VTP3 were Franki. piles 

with enlarged bulbs at bottom. A typical Franki pile section 

is shown in Fig 6. la. These piles were of 40 cm diameter 

with six 12 mm bars and nominal stirrup placing. In Fig 6. lb 

the soil conditions n e-ar._the pile locations have been given. 

The soil upto a depth of 8m, consists of soft clay . having 

N-value of -baro to four.. Below 8 th' upto 14m is a loose 

deposit of clayey silt.-  Again, form 14 m to 18 m i.s __5oft clay 

deposit which is underlain by stiff to very stiff clay upto.. 

22m. Below the stiff clay layer the dense sand strata has 

been encountered. Normally the piles were set at the sand 

deposit. The driving record of a typical Franki pile is given 

in Table & 3. 

The VTP4 pile was a Simplex friction pile of 50 cm 

diameter having six bars of 16 mm diameter as reinforcemen,.ts. 

The soil around the piles .were medium to stiff clay. Fig 62a 

and 6.2b ' show the pile section and the soil d.etai.ls. 

The piles -VTP5 and VTP6 were hollow steel casing 

pipes of internal diameter 10.2 -cm and wall thickness 1.2 cm. 

The piles were driven t o a depth" of 6 m. 	The soil condition 

n ear the` pile locations have been given in Fig 6. 3. The soil 



193 

Table 6.2 

Details of Soil and Pile  

Pile 
Ident i^- 	Details o)f Pile Section 	Soil type 
f ica.tio.n . 

VT Pi 	40 cm (D. Franki pile of 	Soft clay 
25 metres length with six 
bars of 12 mm dia. 

VTP2 	40 cm ct'. frank! pile, of 	Soft clay 
24 metres length with six 
bars of 12 mm dia 

VTP3 	40 cm (D franki pile of 	Medium clay 
22 metre length with six 
bars of 16 mm dia 

VTP4 	50 cm ct simplex pile of 	Stiff clay 
16 metre length with six 
bars of 16 mm dia 

VTP5 	12.6 cm 0 steel pipe o 	Silty sand 
six metre long 12.6 cm 
0 steel pipe 5 metre 

VTP6 	12.6 cm steel pipe 	 Medium silty 
5 metre .long 	 sand 
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'Table 6.3 

Driving Results of Test Piles VIP, and VIP2 Carried 
Out At I. 0.0. Site 

Drop 	of Dept1i- of Nature of Blows Settlement in mm 
Hammer in drive in VIP1 VIP2 VIP VIP 

f.. m p s~? f 

Self wt 
4'..0" 0-1  

1-2 4 4.  
2-3 4 4' 
3-4 3 3 
4-5 3 4 

" 5-6 3 4  
6-7 3 4 

" 7-8 3 5 
4 5 

9-10 14 15 
10-11 13 17 
11-12 15 	' 16 
12-13 13 16 125 

ft 13-14 17 13 
" 14-15 10 19 

15-15 ^` iJ 

" 16-17 11 11 
It 17-18 13 11 44 90 

18-19 16 18 20 15 
" 19-19. 5 11 25 18 

19-19-20 29 9 16 21 
20-20. 5 10 22 

" 20.5-21 25 16 15 14 
" 21-21.5 23 17 19 14 
" 21.5-22 20 22 10 11 

" (22-22.25) 
" 22-22.5 25 23 9 8 

22,5-23 29 27 6 17 
23-23.5 28 8 



195 

near pile locations consists of silty sand deposits. The  

top l.Om layer was a dessicated soil, There was a large 

reduction in the strength characteristics during rainy seasor 

6.3 TEST PROCEDURE 

6. 3. 1 STATIC  LATERAL LOAD TESTS 

The lateral loads were applied at the ground level 

by jacking the piles with the help of a Suitable hydraulic 

jack. The lateral displacements were measured with dial 

gauges, placed in' the lateral load direction. Fig 6. 4 

illustrates the test set-up for piles VTP1  andVTP2. In 

this. case the piles VT' P1 was loaded with a. vertical load 

of 55T and VTP2 was without any vertical load. ''One pile 

served'as' th'e reaction for the other. In each case the 

lateral load was' applied in suitable increments. I  Each load 

increment was maintained till the rate of m vement was 0.002 

per hour. In a similar way rest of the piles were also test e 

6. 3.2 LATERAL FORCED VIBRATION' TESTS: - . 

The set-up for the:: lateral forcecj vibration, tests 

is hown in Fig 6. 5. The desired-  lateral. vibration was 

generated with a Lazan type mechanical oscillator. -The 

oscillator was driven with the help of a variable',speed; D.C. 

motor using pulleys and belt drives. Using a specially 

fabricated fixing arrangement the oscillator-motor assembly 
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was mounted rigidly along the central axis of piles. The 

position of the oscillator was such that, only lateral 

vibrations were generated. 

The oscillator consists of two equal eccentric 

masses rotating at the same angular frequency but in opposite 

directions. Thus a sinusoidal force is generated perpendi-

cular to the plane passing through the twoaxes of rotation. 

In the Lazan type oscillator which was used, the eccentricity 

is altered by changing the relative positions of two semi-

cylindrial equal masses. . When the masses are in phase, the 

eccentricity setting (e) is  referred as 18a, and the force 

developed is maximum. On the other han,.d zero eccentricity 

means that the masses are exactly opposite to each.other 

on the shaft. 	In this case the angular eccentricity .as well 

as the unbalanced force equal zero values. 

The oscillator is driven by a D.G. motor. The 

speed of the motor is contro lled , by an independ.ent'-speed 

control unit. 	The oscillator is capable of developing forces 

over - wide ranges of frequencies and eccentricities.. The 

dynamic force generated by the oscillator (Purl (1969)) which 

was used is given by: 

Dynamic Force 	= 4. 52W 2  Sin e/2 	... 6.1 

where, 	w 	is frequency in cps and e 	eccentricity settings 

in degrees.. 
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In each pile case, in order to develop a constant 

force. over :,a wide range of frequency, the eccentricity and 

frequenci'e's were varied. in a broad range. The adjustment 
of the eccentricity was done in steps, of 8° (two complete 
revolutions of the eccentricity adjusting knob) : and the 

frequency was varied by adjusting the control turns in the 

auto-transformer of the speed control unit_. 

Each pile was tested under eccentricities of 8° to 
960 in steps of 80. The vibration measurements were made 

under each eccentri~.ity for twenty different frequency level 

or more. 

The vibrations were sensed with two acceleration 

pickups ( inductance type) mounted. on the plane of vibration. 

one pickup was. , mounted on the pile cap and the other to the 

pile at ground level. The pickups were securely attached to 

the concrete sections using chemical resins. 

The time-history of acceleration Measurements 

(varying sigial response) were fed to a self. recording 

oscillograph through suitable pre-amplifiers. 

In Fig 6.6 the block-diagram of the instrument 
assembly has been illustrated. 

While executing the lateral vibration test,at each 

instant care was taken to allow sufficient time for the 

system to reach steady state. 
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6~ 3, 3 FI EE VIBF'TION TEST$ 

For executing the free vibration tests,the set-up 

shown in Fig'6.7 was used,to apply the necessary pulling 
force.: By rotating the pulling screw, certain load Is 

applied to the pile at the ground level. Then the, load 

is released suddenly with the help of the clamp. The pile-

soil system which has been displaced from the equilibrium 
position, when released,oscillates under its natural fre-
quency of vibration. The vibration..time signals are sensed 

with the 'acceleration pickups and are recorded. Each of the 

pile was tested different times applying different level of 

pulls and the free vibration record was obtained for each 
test conditions. 

6.4 TEST DATA 

6. 4. 1 STATIC TESTS: 

The lead deflection characteristics of VTP2 through 
VTP6 have been plotted in . Fig 6.8 and 6.9. The. pile VTPl 
which was tested under lateral load along with a vertical 
load of 55T experienced no lateral movement at all. 

The static lateral load tests were carried out 
to determine the stiffness of the soil. -pile systems under 
sustained load 'applications. The soil stiffness values= have. 

been determined based on .the relationship provided by 

Reese and Matlock (1956) and Davisson and Gill (1963). 
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These solutions have been explained below. 

The differerlti3l equation governing the deflection 

Is given by 

• 4 	ky d 	x 	 p) 
4 	El 60  

dx 

Where 	El - flexural, stiffness of the pile in kg cm2  

y 	is the deflection in lateral direction 

x 	is the depth co-ordinate. 

The variation of the modulus of subgrade reaction would dep(  

upon the type of so Il, For granular soils and normally 

loaded clays the soil modulus varies linearly with depth, 

i. e4 k = x , where h 	the constant of horizontal 

subgrade sreaction, FL. Solutions in terms of non-dimen-

sional parameters, are available for this differential 

equation (Reese and Matlock (196)) 

Using the notation: 

	

5J El 	where T Is called relative 
\ nh  

stiffness factor having uriits.of. length ('defined: in Chapter 

III), The ,non-djmehsionai depth fact,--)r 1= )c/T:Wherex 

is the distance below the ground- level along the pile axis. 
L 

The maximum depth" factorZ= 	where, L 	is the.  is 
embedded length of the pile. 

The solution for deflection Yg  due to horizontal 

sher, 	hg at ground level 'is obtained as: 
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K• 

Qom...._,. yg = 	E I 	x Ax ... 6.3 

Where 	Ax is the non-dimensional deflection coefficient. 

Ax = 2.435 at ground level for a long pile (Z  max/ 

For piles embedded in pre loaded clays, Davisson 

and Gill (1963) have given the solutions. For such soils 

the soil modulus values remain constant with 	depth, 	kx = k, 

where, k and 	kx 	are having units of FL"2. 

For such conditions the solution for deflection y 9 
due to horizontal shear Qhg at ground level is given by 

y g = 	--h--~~- I 	x. A z 	 . . . 6. 4 

Where 	R - f\4J 
	' 

R is the relative stiffness 
k °  

factor having length units. The non-dimensional deflection 

coefficients Az at the ground surface has the value of 

1.40. Using the above solutions, the soil constants for 

static loading conditions have been computed. These values 

for diff erit piles have been given in Table 6.4. The soil 

surrounding the piles VTP1 to VTP4, have been considered to 

have constant - values of soil rrdulus with depth. 	For VTP5 

and VTP6, (granular soils) the soil modulus is considered 

to vary linearly with depth. 

6, 4.2 FREE VIBRATION TESTS: 

Typical free vibration records for piles VTPl to 

VTP6 have been shown.: in fig 6. 10. Knowing the paper speed 
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Table 6.4 

Soil Constants Under Static Loading 
Condit ions 

Pi1e .; Load Def` 	i i n . , 	Code 	, 
lection t EI , 	R 

kg cm a kg 	cm2  ' o cm ' t  kg/cm2  k , 	g;/cm2  

7 $_........ 

VT 2 3000 0.063 	' 0.151 x1011  '61 1033.0 .. 

VT P3 3000 0.099 0: 151 xlO 70. 8 599.0 - 

VTP4 3000 0.021 0.36816x10'1  56.8 3516.0 - 

VTP5 750 1.0 6.21x108  (9.8 - 0.375 

VTP6 950 0.65 &.22x108  56 - 1.135 
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Table 6. 5 

Free Vibration Test Results 

Identi- 
NO' 

Natural Damping 
fication frequency 

ins p s 
coefficient 

_ 	~... 
1 	2 .. 	3 	_  ...... 	

4 

1 	VTPl 6.25 15 % 

2 	'11P2 6.40 1C' 

3 	VTP3 	10.0 	16% 

4 	VTP4 	31.2 	 12%  

5 	VTP5 	2.38 	12% 

VTP6 	2.4 	 10% 

I 
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in the o sc illo script recorder, the. time period and hence 

the frequencies for one complete cycle is easily evaluated. 

Using the logarithmic decay principle the, damping 

coefficient 	, is given by: 

=3C3 A1 	
... 6, 5 2n • 10 A2 

Where, Al and A2 are the amplitude of vibrations in 

successive cycles and 	is the damping factor. 

Sn Table 6.5 the values of natural frequencies 

and damping coefficients for different piles have been pro 

vided. 	These values are based on the average test results 

of the several free vibration tests on each piles.' 

6,4. 3 LATERAL FORCED VIBRAT ION TESTS:  

A typical acceleration time record for each of the 

tested pile is given in Fig 6.11. 

For sinusoidal motions, from the knowledge of 

acceleration and f reguency ,the amplitude of ' motion is given k 

A~Ssatic n __ implitude = ,: .. 	 2 	... 6, 6 2n'x frequency) 

For each eccentricities the acceleration of 

vibration and hence the amplitude were recorded for differenr 

fr-eauencies of vibrations. Under each eccentric setting and 



204 

frequencies of vibrations the imparted dynamic force Was 

also" calculated knowing the characteristics of the oscillator. 

From the amplitude-frequency data the response of 

piles at few eccentricities have been plotted in Fig 6.12, 

for typical pile test. Similar such plots have been obtained 

for piles VTP1, VTP2, VTP3, VTP4, VTP5 and VTP6. Each of the 

piles were excited at resonant ranges. In fact the test data 

is so much,that they are not tabulated, herein. 

6. 4, 3 DYNAMIC BEHAVIOUR OF PILES 

From the observed behaviour of piles under lateral 

vibration conditions ,the dynamic behaviour could be quanti- 

tatively assessed. With the increase in frequency the 

dynamic force and hence the acceleration should increase. 

However, the increase in amplitude under resonant _conditions 

is greatly indicative in the amplitude frequency plots. 

Greater amplifications under resonant"conditions have been 

indicated since the forced vibration was of sinusoidal 

characteristics. 

From these figures it is also seen that as the 

eccentricity level (the dynamic force) is increased the 

resonant frequencies get reduced. 	This indicates the strain 

softening phenomena which is typical of non-linear system 

The natural frequencies under free vibration 

conditions have been greater than the resonant frequencies 
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under forced vibration conditions. 

During testing it was observed that when the 

forcing frequencies were at or near the resonant frequencies 

there was a sudden increase in the amplitude of vibrations. 

However,` When the vibration was maintained for sufficient 

time, even without any change in the forcing frequencies, 

the amplitude of vibration died down suddenly. The above 

phenomena was displayed in each of tested piles. The record 

of such oba ervation s for different piles have been given in 

Fig 6.13. 

At each eccentricities despite of increase in the 

frequency of vibration beyond resonant range's , there was an 

observed reduction of amplitudes,though with the increase in 

frequencies the force levels also increase., 

6.5 DETERMiN ATION OF THE SOIL.. PILE 
CCNSTAN TS 

6. g, 1. - THE EXPERIMENTAL CASE 

In any dynamic analysis proper assessment of the 

values of the basic material constants of the soil-pile 

system is required. Nair (1968) has clearly emphasised the 

importance of the determination of material constants espe- 

cially from the soil enginers point of view, 	so that there 

is a realistic estimate of pile-soil interaction mechanism 

under dynamic loads. 
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In order to determine the material constants, a 

logical interpretation of in-situ lateral vibration tests 

has been proposed. As shown earlier in Fig 6. 5, the piles 

have been excited for lateral forced vibration conditions. 

The lateral dynamic loads have been applied to the pile 

top or the top mass. 

The experimental case is shown in Fig 6. 14( 1) . This 

experimental situation is idealised by treating the soil pile 

system as a single-mass-spring-dash pot system. The ideali.. 

sation is given in Fig 6.14( ii). Herein, it is to be noted 

that the lateral forced vibration,Fo  Sin wt is applied 

directly to the mass. 

But lithe actual case the :piles-soil systems are 

subjected to a'1 vibrations by virtue -of base rock 

motions or the dynamic loads can be considered to be applied 

at base. The actual case and the single degree-mass-spring.- 

dash pot idealisation with motions applied at the base have 

been shown in Fig 6.14 ( iii) and Fig ;6.14 (iv). 

Now, the differential equation of motions govexin in g 

the idealised experimental case an-d. actual case are given 

below: 

Actual Gas 
y = Y Sin wt 	 ... 6.7 

.= Yw2  Sin wt 	 ... 6.8 
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+ k (x-y) = O 	 •.. 6.9 

...6.1O 

int+ cz+ kz= mY 4 w 2 Sin wt 	 ... 6.11 

where z = x-y 

my + ky. + cy 	= Fo Sin wt 

It is seen that the differential equations governing 

the motions are the same. 	Therefore it is appropriate to 

determinA the.materail constants. based on the basis of latera 

forced vibration tests as performed. 

6. 5.2 SOIL PILE STIFFNESS: 

The overall spil-pile stiffness under dynamic 
loading conditions - was determined based on the observed 
'dynsmic'behaviour of piles under- lateral vibration condition 

For the idealised single degree freedom system 

subjected to sinusoidal forced vibration at mass point we 
have: 

~Cdyn 	= , 	1 	Fo : K µ ... 	6.12 

where 	I 	= 4100 	6, 13 _ ( 	) [1- W [2çW a 

F 
K° 	= 	p. 	Xdyn .  ... 	6.14 
F. 

K° =• st 	 ... 6.15 



herein, 	w - 	is the, forcing frequency 

w - 	is the resonant frequency 

- 	is the damping coefficient 

Fo  - 	is the dynamic fo rc e 

K - 	the overall stiffness of the system' 

For each of the tested piles,the observed pile 

response has been plotted as 

(i) Amplitude versus  Frequency plots. 

( ii) Dynamic Force versus Dynamic Amplitude plots. 

The dynamic force versus amplitude plots for piles 

VTPl through VTP6• have been plotted in Fig 6.15 through 

Fig 6.20 fo`r different indicated forces frequency levels. 

Based on such' results using equation 6.12 it is 

possible to obtain a plot of Sst  E= = x 	7 µ} with 

dynamic force Fo. 

The dynamic force Fo is a function of  

settings in the oscillator and the forcing frequency. Also, 

depending on the eccentricity the resonant frequency varies. 

Therefore,utilising the. amplitude-frequency and dynamic force 

plots and considering - the variation of resonant frequencies 

at each eccentricities, it is possible to obtain the Est 

values at different 'Fo and 'WI  values. The number of such 

calculated 8st  values for different 'F' and •'w' values 
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when p.1;, tted result in -Fig 6.21 to Fig 6.24. Herein, the 
values of damping coefficient have been based on the logal 
thmic decay record of free vibr~tion tests. 

It is seen from these figures that,for all practi 
purposes there is a uni+ Ue, 'variation of 6St with. F, , 

irrespective of variations in forcing frequency w, and 

resonant frequency wn. 

The tangent modulus of this plot gives the overa] 
stiffness 'K',  in FL', of the so i1- pile system under 

dynamic conditions. 

6.5.3 SOIL STIFFNESS 

The soil-stiffness values under dynamic conditio'r 
are evaluated based on the knowledge of overall-stiffness, 

of the soil- pile systems. 

Idealising the soil-pile system with a similar 
mechanical model as proposed by Reese and Matlock (1956) v 
have the deflection at the .ground surface given in articlE 

as under 

Q T3 h Yg 
_ .0 	qX 

For long piles in the case of granular soils, A = 2. 435, 

ground surface.Qhg/ 9 y is the ,overall stiffness 'K' of 
soil-pile system under.. dynamic loads. 
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Substituting the values of overall-so il_pile 

stiffness, ' K' in the above equation we can assess the 

values of. soil constants under dynamic conditions by 

following the procedure given below: 
_  M 

1. We have 

Ts = 	I . K 	 ... 6.16 
x 

2. After determining the value of T, the constant of 

horizontal subgrade reaction, nh is-calculated from 

the relation : 

~= T _ ,5, 
r 

Hence, the soil constant value under dynamic 

condition is established. 

For piles embedded in clay type soils, with soil 

modulus remaining constant with depth we have the deflection 

at ground level given by equation 6.4 reproduced below 

Qhq 
R9 

Yg =ElAz 

For long piles and at ground surface, Az = 1.40 

under free head conditions. 

For piles embedded in clayey soils, knowing the values 

overall-soil-pile stiffness IK', they may be substituted 
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in the above equation to get the value of relative stiffness 

factor, R under dynamic conditions. 

We have by definition : 

R 	4  rr  
Using the above relation for dynamic conditions, the value o; 

soil.-modulus k, can be determined,. 

Thus, based on the lateral vibration tests and 

logical interpretation of the resulting test data, the value; 

of the relevant soil-constants under dynamic conditions can 

be easily evaluated. 

In Table 6.6, the soil-constants under dynamic 

conditions, have been provided for the test piles VTP1 throu ,  

VI P6„ 

In tha same table comparison of soil.-Pile stiffness 

and soil-constants under static and dynamic conditions have 

been provided. 

Now, knowing the values of soil modulus, k  under 

dynamic conditions, the discretisation procedure of article 

3.2 may be used, to evaluate the spring constant values at 

various mass. locations. 

Thus, with the knowledge of, soil modulus k ,the 

damping factor T5 , flexural stiffness EI and modulus of 

rigidity G the required material constants for use in 
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any dynamic analysis are considered as evaluated. 

6.6 COMPAI ISON OF OBSERVED AND PREDICTED 
QUANTITIES 

The performance of the mathematical models and the 

methods of analysis, which are discussed in Chapters III, IV 

and V, have been checked herein, by comparing the observed 

and predicted quantities. 

As discussed in articles 3.4.2 and 4.3 the entire 

response computations are primarily dependent on the predict 

values of the. natural frequencies of the soil-pile system. 

Th " relationship between frequency factors and rela,  

stiffness factors,  givi in Figures 3.8, 4.2 and 5.1 are bas 

on the proposed models and methods of analysis. 

The natural frequ en cics of the soil-pile systems we 

predicted using these design curves so that their validity 

also could be established. 

In Table 6.7 the observed and predicted quantities 

of test piles VTPI, VTP2, VTP3 and JVTP4 have been compared 

Fig 3.8 has been used for predicting the natural frequencies 

of piles under first mode of vibrations. The pile top is 

considered as free.,to rotate. Since the frequency factors 

of lumped-mass analysis and those of continuous system analy 

are practically the same, the predicted values using continu 

ous system analysis have not been tabulated separately. 



214 

In Table 6. 8 the observed- and predicted' quantities 

of piles VTP5 and VTP6 have been tabulated. The predicted 

quantities are based on the Fig 5. 1.  

In addition to the above, the observed natural 

frequencies of single_pilas of Prakash et al (1973) have been 

compared with the present solutions. 	Detailed, rwdel tests 

on single piles and pile groups have been ;carried out. by the 

investigators to understand the vibration characteristics. 

The free vibration characteristics of the piles were 

observed by applying,. a desired pull. (lateral load) , and 

suddenly releasing the same. 

The relevant soil-pile pro peri es in the above 

studies are as under ; 	 . 

1. Soil Type 

2.  Ma xi mum. void ratio 

3, Minimum void ratio 

,4. Relative Density at test 
Condition 	i. 

5. Angle of internal frictdon 
at 80% RD  

6. Embedded length. of the- 'pile 

7, Pile 'Material 

8, . External Dia 

9.:'Wall -thickness 

10. Flexural stiffness, EI 

SP-  poorly graded san d 
with little fines.  

0,93 

055 

-• 80;% 

42.6 

: 70 cm•._ 

Aluminium (Al) 

: 16-  mm 

1 25..mm  

:x 105. kg- crna- 
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: 	: 

Comparison of Observed and Predicted 
uantities  max. i 

,Soil' Seas- f Fre-; 	r Natura-1 Frequenc' 
t iv a . 	r- Nb.du-. 	s to in d t q uenvy ' ►, 	in 	cps 	._.., 

Pile ,: 	+stiff- 	"1 1us 	k, ; vert ice. I Fac-,: Obser- Predi 
cede 4n e 	s 	1 r:in 	..t ' cal 	'~ ; tot ved ; 	ted 

Factor, 	i kg/cma ; load 	., ~ t f 
r 	TR 	its 3n kg 

1 	 I 	r y 	! f f 

iKr 	VT P1 .. - 153. 18 	; 21. 42 1750 , 0.83~ 6.25 6. 40 
VTP2 119.95 	72.9.5,• 

t 

3500 0.84 6.40 6.60 
VT P3 

• N 

141.60 	37.5S 1000 - .Q835 10,00  9.77 
VT P4 119.20 	181.97 f 500 0.84 31.22 27.56 

Table 6.`8 
Comparisonrn f Observed and Predicted 
:Quantities 

.Re1a .. 	_ , SuS= a F°r ` 
Ire" Na turn 1 Freau et c 

ti v e 	i n h, 	jn I tamed  ' a u 	cy 1,,.1 	an..'..._._ 
= 	pile , 	stiff- 1k/cm verti- t Fac- 

code 
pact r ved ted r, 	; 'load ; r 
T 	in 	; 	l an kg ; 
cm 	' 	' x ' ' 

' VT P5 111. 63 ' 	0. 036 800 O. 65 2. 38 2. 42 
I 

VTP6 	78.00 	Q 215 800 	O.65 	4.80 	4.14 
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In Table 6.9 and 6.10 the observations of praka; 

et al ( 1973) have been tabulated. This particular a,spec 

of the study has been perfo ru ed. 

( i) to investigate the effect of sustained verti 

load on the observed values of natural frequ 

( ii) to investigate the 1nf lug  ce of lateral load 

on the observed values of natural frequencies 

In the same tables the predicted vai ues of ,the n 

frequencies of these. pila.s., under the given•. conditions, i 

the present analy51s have been. provided. Fig 5.1 his be 

used for predicting the natural frequ en ci es. 

Critical rexamination;of the observed and predictE 

quantities of Tables 6.7, 6.8, 6.9 and 6.10 reveal :the 

following 

( i) the proposed th ory predicts the natural frecp 

ties to a reasonable degree of accuracy • 

: (ii) the proposed design curves for predicting the 

natural frequencies, can be used with confider 

since the predicted quantities are close: to t 

observed quantitie$. 

(iii) Solutions to practically any so7il«-pile system 

is possible with the presented methods of anal 

and the desigrr curves. Zn fact the pile types 

so i1 types have been varied and *even rrodel p11 
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Table 6.-.~. ,. 

comparison of Observed and Predicted 
Quantities using Prakash et al (1973) 

T ]4.80 cm , nh = 0.176 ,'Zmax- 	4.735 

Sus- 	f Natural Frequency in 
tamed  F re- .~.. ap..-_-._..- 	.-11 
verti-' 	; qu ency.. Obser-. 	Predic-. 	Remarks 
cal - load factor `ved 	+ • ted 

kg 
3 t

1. 

4 0.64 12.0 9. 4 1. Lateral Load 
Level 	= 5 kg . 

8 0.64 8.8 6.61 2. Fig 5.1 has been 
12 0.64 7.0 5.45 used for comparis<;r 

3. With the increase 
16 0,64 5.8 4.7 in sustained ver- 

tical load the 
20 Q.'64 5.0 	. 4.42 natural frequency 

is reduced by 
24 0.64 4.5 4.0 t imt s T Mt 

Table 6.1..0 
Comparison of Observed and Predicted 
Quantities using Prakash et al (1973) 
T.= .15,875 cm nh = 0.1239 'max 4 41 

to i~'i- d 	i FrP_ - 	
Nftt 	Frequ cy 

.ed  - 	f qt f: cy 	 ....5~..~.. 	Remarks 
cal load 	facto. 	

pb 	
Predic

- 
r 	F 	'f .. ted in k a 	1 	t  

	

4 	0.64 	11.0 	8.91 	1, Lateral load level 
_ 10 kg.. 

	

8 	Q 64 	9.0 	6.30 	2. Fig 5. 1 has been use 
'3.-With the increase in 

	

12 	0.64 	6.3 	5.14 	sustained vertical 
load the natural fre 

	

16 	0.64 	5.2 	4.45 	qu ency is reduced by 
1 : t im es 

	

20 	0.64 	4.5 	3.°45 

	

24 	0.64 	4.0 	3.64 	4.A same sustained. ve 
(fc)lload,Eoni~69~o 
n 6.10 ( 1239) 
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have been covered in these comparisons. 

From Tables 6.9 and 6.10 the following points are 
Spin to be of significance. 

3. For a .particular lat' ral load, the nitural frequencies, 
at different sustained vertical load levels Mt; are 

varying as 1 	times. The Experimental values of 
Zvi 

Table -6.9 a shotwn that: 

If the natural frequency, f 	at a sustained verti- 

cal load M 	is knovn. 	. 

he natural frequency fny  at any other "increased 

sustained vertical load level of _M 	is given- by: 
M  

fny  = fn  x •y 

In a" similar way the predicted quantities also show 

reduction in natural frequc'ncies with increase in lumped 

mass at top. 

2. In Table 6.10 the observed and predicted quantities of 

natural' `frequencies of the same pile system (of Table 

6.9) with a di€ferent lateral load level have been 

tabulated. The eff:oct of lateral load level has been 

investigated tu see the influgnce of deflectic-ns and 

hence flexibility defined by relative stiffness factor, 
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and f soil stiffness (defined by, nh) on the natural 

frequency characteristics of soil-pile system. 

Comparison.. of the exp?rimental natural frequencies 

for a particular sustained load level of Tables 6.9 and 6.. 

show that : 

_ 	q,3 

6.9  (nh)6 N 

(fn 6:10  h) 6.10 

where. 

fn) 6.9 - 	experimental natural frequency corre4 

ponding to Table 6.9 at any sustainer 

vertical load 	M 	• 

~ f n) 6. 10 experimental natural frequency corre; 
Ponding to Table 6.10 at the same su; 

tamed vertical load of 	M 

nh) 6.9 

 

0.176 kg/cm3  

( n 	) h  6. - 	0. 1239 kg/cm3 	:. . 

It may be recalled herein! . that in article 	.2 the 

factors influencing the first natural frequency' has been 

defined as under by equation 5.2,,. 

r~ 

 

h
0.3 	: I0.2 

wnl 	' d M0.5 
t 

Thus the above verification further emphasises the 

correctness of the approach. 
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6. 7 CONCLUDING R F-W RKS 

Based on the limited experimental tests on full size 

prototype piles the following conclusions may be drawn : 

1, By cr"nducting lateral forced and free vibration tests,, 

it is possible to assess the fr,1LL,wing material proper- 

ties of the soil-pile system under dynamic conditions 

( i) 	overall soil-pile stiffness. 

( ii) soil Modulus yalu?s at any depth.. 

iii) damping characteristics of the soil-pile systems. 

2. The suggested method of testing and the, material proper-

ties thereoff could be c.~nsidered realistic since they are 

based on. vibration tests on actual test piles. 

3. The suggested testing and interpretation techniques could 

be standardised..toA collect useful data on varieties of 

soil-pile systems. 

4. Under steady state vibrations quasi-regonant conditions 

are possible. 

5. For preliminary des g'i purposes the soil-pile properties 

suggested in Table 6.6 may be used. 

It. has also been demtn st rat ed that the method of 

analysis presented 'in Chapter III and IV and the design curves 

of Chapters III, IV and V may be used with confidence for 

predicting the dynamic response of soil-pile systems. 
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C. H. A P ,  T E R.. VII 

USE OF DESIGN CURVES FOR ASSESSING DYNAMIC RESPCTISE OF 
PIKES AND DISCUSSIONS ON THE PRESENTED TECHNIQUE 

7, 1 Al TRODU CT ICN 

In this chapter the uses of - the various ncn- dimen-

sional curves for practical problems have been explained,by 

solving two typical problems. In one of the cases the pilE 

has been embedded in a soil in `which the soil modulus can 

be considered to vary in proportion to depth. In the secor 

case the pile is embedded in a soil in which the soil modu] 

has been assumed to remain constant with depth. The dynami 

deflection,rotation,bending moment and shear along the lent 

off' the piles have been obtained using the proposed non-

dimensional curves. The adopted spectral displacement vale, 

are based on the, design spectrum proposed by Housner (1970) 

Fig .:7..1.: For any specified earthquake:: the calculated 

response spectrum may not be same as this design spectrum. 

If results . for a specified earthquake is required' the 

computed response spectrum of the specified earthquake .:.,must 

be. used in the computation. However, the procedure outlinE 

for calculating the dynamic response - remains same. Also, a 

the end ; of the chapter the salient features and the limita-

ti on s of the t chn iqu~ s p .e5 en t sd have been brought out. 
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7.2 METHOD OF USING NCN-DIMENSICNAL CURVES 

7.2.1 PILES EMBEDDED IN GRAN UTAR SOILS: 

7.2.1.1. 	k r:'bl~.;m 

A multistoreyed building shown in Fig 7..2 is to be 

constructed at New Delhi in a predominantly sandy area. 

The details of the soil at the site are given in 

Fig 7.3 and Fig 7.4 and Tables 7.1 and 7.2. 

The details of the chosen pile sections and loading 

are as follows:. 

1. Piles are used in groups of four, five and six. Arrange-

ments of different pile groups are shown in Fig 7.5a. 

2. The details of the pile sections are given in Fig. 7, Sb. 

The piles are 48.2 cm in diameter with reinforcements of 

six bare of 18 mm dia and nominal binders. The piles 

are driven to a depth of 25 metres from the ground 

surface. 

3. A typical heavily loaded column is subjected to a vertical 

load of 257 tonnes, 

4. The safe vertical load carrying capacity of piles is 

150 Tonnes. 

5. The static lateral load test results of a single pile 

is given in Fig'- 7. 6. 

Since New Delhi is in a seismically active zone, 
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earthquake resistant considerations of the chosen pile 

sections are to be examined. 

7.2. 1.2 D >s gn Steps 

1, From the chosen pile group arrangements it is seen that 

the critical case would he that Of four pile - groups. 

Therefore it is required to examine the safety of pile 

sectiens of the four pile- groups. (E, . , f. ) 

2. The maximum vertical load in a column -equals .257 tonnes. 

Neglecting. group action,the load perp le = ,.,257  
4 

64.25 tonnes. Since this load is a sustained vertical 

load it shall be taken- for 	top mass, Mt,_ .lumped at 

top of the ..pile. I' 

3. For the given sectn IXx is calculated. 

~c I54 	 d4-- 
Ixx — 	+ (rr .1) n. 'a d 	+ 4. Ax1 s 64  64  

-For  the given pile section we have. 

 
64 

~-2 + 17 x 6 x . 1. 8 + 4 ?~ . 1.8 a( 17. 24 
xx  64  4 

31, 50, E 

Ec IXx = 3.71 x lO Kg cm2. 

Where Ec I is the flexural stiffness Of the pile. 

4. No dynamic test data has been given for determining the 

material, constants under dynamic conditions. Therefore, 
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the' static test result values are utilised for assigning the 

soil-constants under dynamic condition. Fran Fig 7.6,the 

static lateral load deflection plots,we have, for a load of 

3000 kg the deflection of pile at ground surface 1O. 15 mm. 

Using the ncn..dimensional solutions proposed by 

Reese and Matlock (19 56), for soil modulus varying propor-

tional to depth, we have: 

yg 	 x 

• herein, qhg 	3000kg 

• Yg 	= 0.15 mm 

Ax 	= 2.435 at ground surface 
El' 	= 3.71 x l0 °  kg cm2  

Therefore relative stiffness factor, T = 76.74 cm 

	

A8 per definition ' i = 	5,J n=-- , where n h  is the 
h 

constant of horizontal . subgrade reaction; Fir-3•  

Therefore, nh  - 13.964 kg/cm8. 

For the dynamic conditions, we have: 

1 
nh)  dynamic 	10 	n h)  static 

Hence, (nh dynamic ) 	= 1. 364 .kg/cros 

Relative stiffness factor, T, under dynamic conditions' 

= 121.60 cm. 
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5. The four pile group given in Fig 7. 5a is capped with 

a pile cap, and the columns are connected in a fairly 

•rigid fashion to the above. The pile top may not be 

free to rotate. Hence,it is required to obtain solution, 

for pile top fixed against rotation conditions as well a: 

free to  rotate conditions 	Linear interpolation for 

partially fixed case is suggested. 

6. The subsequent steps involve the determination of dynami+ 

response for the following condition 

(I) 	pile top free to rotate 

(ii) pile top fixed against rotations. 

(iii) pile, top partially., fixed agairigt. rotation. 

7.2, 1. 3 Pile Top free To Rotat Can diti ons: 

a) , termination Qj iy 

For the given problem, we have: 

Embedded length of _pile, L•, = 25.0 m. 

Relative stiffness factor, T = 1.216 m. 

Therefore maximum, depth factor, Z'  max  

The pile can be considered to bean infinitely long 

pile, s ince Zma  x 15.0. Therefore, the solutions pertaining 

to  max = 15 would be used for obtaining the dynamic respons 

for the given 1 problem;  
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Therefore we have: 

i) Fran Fig 5.1 for :T:  1.216, and Zma 5, FSL1  =O.6  

By definition: 

wn1 = FSL1  W nh T2 

herein, 	- 

W = 64.25 Tonnes 

T = 1.216m. 

nh  = 1396.4 T/m3  

g = 9.81 m/sec 2  

0• 65 	64.25 x 1396. 4 x 1.216 x 1.216 

11.5411 radian/sec.  

f 	_ 	= 1.836 cps. 

Peri,d f vibration ...3n.. first 	Tl  = f 
mode, 	 nl 

= 0. 5446. sec. 
From Fig 7.1, correspondinq to the period of 

vibration in first mode we have the spectral dis-

placement value, Shc  = 1.24 cm 

from Fig 7.1 

ii) Using Fig 5.2 in a similar manner we have: 

FSL2 = 1.71. 
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nh • T 	9 
By definition wn2 = FSL2 

d2 x2~ 

herein 2.4 T/ma 

d 	t. 482 m 
e 

1396.4 x1216 x9.85 Therefore: n2 - 1.71.. 
2. 40 x O 482 x 0. 482 

-, 29 3.8341 radian/sec. 

46.742 ,cps 

SJ 	period of vibration - 4. 021 3 sec. 

The spectral displacement, Sa2=-, corresponding"tb this period 
equals Q 0 .......__ . 	 4 

b) D t R n la j ola of Dyri m i.t D is lac .am cin t : • 

At various x/T values the non dimensional normalised 

modal•> -deflection values Byl and By2_ can be read from Fig 5. 

and Fig 5.13 for fd.rst and second modes respectively, using tl 

curves pertaining to  Zmax ' 15. 

Similarly from Fig 5. 10 and 5.14 the non-dimer sional 

modal rotation Bel and Bet a e read for various WT values. 

By definition (article 5..2.-3)the dynamic displacements 

are as under. 	 . 
Dynamic deflectioc,' 1 in the first mode = B 1, S9} 

Dynamic deflection, 2 in the first mode = 	~ S 
 4 d 
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Dynamic'-.rotation, 81 in the first mode = $1- x Shc T 
Be 

Dynamic rotation, 82 in the second mode = - 	x Sd2 

For the given problem the dynamic displacement values have 

been tabulated in Table 7.3 and Table 7. 4, for first and 

second modes of vibration respectively. 

Table, 7.3 

Dynamic Displacements Durin g First Mode of 
Vibrations - Pile Top Free To Rotate Condition 

Depth  	f 	?Dynamic Def- I 	!Dynamic R~ 
in , 	x i 	, B 1 	,lection 	, BB,tion B 
cm 	T 	t y 	I Y1 =Shc. Byi 	81 	~61 ql 

s ' 	t in cm 	' 	' in radian t 	 i 	 t 

O 	0,0 	1.0 	1.24 	-.0.63 	- 4Q)63 

I( 	O.8223.:.. : -448 	,©.',:59 4 	-.0.52 	.0.c052 

2(X). 1.6447 Q 16 0,198 -©. 28 -O.0028 

300. 2.4671 0,00 0. OO -0. 00 •0.0009 

400. 3,2894 -.0.02 -0.0248 0.0 4 CO 

5 4,1118 _O, Ol -0.0124 +0.02 +Q 0002 

600 4.9142 --0t 01 X. 0124 +C. 01 +O, CCC1 

7(X) 5.7565 Q CO 0.0c 0. CO C, CO 
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Table 7. 4 

Dynamic Displacements During Second Made of Vibrations-
Pile Top Free To Rotate Conditions 

Depth 
T 

By2 
; 

iY2= By2 . Sd2 f 
1 	i Be 2 o = 	. S T { 2 	d2 

0,0 0,0 0,0 0,0 _1,0 0,0 

100. 0.8223 -O.79 0,0 -0, 67 0.0 

200. 1. 6447 -1. 1 0.0 0, 0 CZ 0 

300. 2. 4671 .-0,9 1 4.0 -0. 43 0.0 

400, 3,2894 _ 0. 47 0, 0 +0. 44 0,0 

500. 4, 1118 -0, 15 0.0 +0,26 0.0• 

600. 4.9342 0.08 0,0 +0,20 q,0 

.700. 5.7565 0.0 0.0 	Q0. 	0.0 

c) Dtrminion of E) nr3mic Br__•ndir~g MAn:L acid Shp r: 

At'. various WT values the non-dimensional normalised 

modal bending moment Bml and Bm2 are read from Fig 5.11 and 

5. 15 for first and second modes of vibrations respectively, 

using the curves pertaining to max = 15. 

Similarly the normalised modal shear values are read 

from Fig 5.12 and Fig 5.16. 

By definition, .(,article x.2.3) at any,. point the dynamic 

bending moments are` as ..under: 

Dynamic bending moment, Ml = B x n TsxS 
in the first mode: 	 ml h 	dl 

I. 
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Dynamic bending moment, M2 
in the second mode 	 r Brn2 xnh V xSd2 

Similarly, the dynamic shear is given -by 

Dynamic shear, S1 
in the first mode 

Dynamic shear, S2 
in the second mode 

BS1 x n T2 x Sd1 

Bs2 x n T2x Sd2 

For the given problem the non-dimensional coefficier 

the dynamic bending moments and shear values have been tabu] 

ted in tables 7.5 and 7.6 respectively. 

Table 7. 5 

Dynamic Bending Nbmant and Shear During First 
M!Dde of Vibrataorks-Pile 'Top Free To Rotate 
Conditions.  

	

Depth , 	1~., 	, 	,Dynamic Bend- ; 	 Dynamic .. 	 i in 	3 	T 	Bml 	n g Moment ..5J.B1. Shear 
cm 	.;°.-.;_- 	

tin kg 	
h i l;. 	sS1cBS1~_nl 

g cm x 	 j 	; X Sa y us 1 	 ,. 	
x 104 

0O. 3 0.0 	Q O 	0.00 	0,46 	1.1776 

100.0 ' 0. 822 3 	0.262 	81. 57 	0.22 	0. 5632 
1.30 	(0,314) max 97.76 " 	0.0 	0,0 

200.0 	1.. 6447, 	0.294 	91. 53 	-,0.07 	-0. 1792 

300.0 	2. 4671. 	0.160 	49. 81 	..0. 16 - 0.4O 6 

400.0 3.2894 	0.046 	14. 32 	-0. 1 	-0.2816 

500.0  	4.1118 	0.00 	0.0 	-0.03 ' ..0.0768 

600.0 4.9 342 ..0.008 2. 48 	- -0.005 -0. 0128 
700.0 5.7565 0.0 0.0 0.0 0.0 
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Table 7.6 

Dynamic Bending Ik ment and Shear During Second 
Mode of Vibrations - Pile Top Free To Rotate 
Conditions. 

De th` + Dynamic Bend  Dynamic rhea: 
p 	, -- 	; B 	; ing Abment- 	 ' =B 	. 	n T Ss  2 	h . 	h 	; 	S2 2 m2 cm 	I : t 	,. . S 	•in 	kg 	: S 	in  d2 : , 

cIDd 
g 	4 

.. _.._. 

0.0 0,0 0.0 	0 	1.,4 0.0 

100. ,0. Q 8223 O,. 82 	0. 0 	0. 55 0.0 

200.0 1.6447 0.73 	0.0 	-0.25 0.0 

3110.0 2, 467.1 0. 32 	0,0 	-0. 55 0.0 

400,0 3,2894 -0.15 	0.0 	-0.22 0.0 

500,0 4.1118 -0.26 	0.0 	+1.0 0,0 

600.0 4.9342 0.16 	0.0 	+0.06 0.0 

700.0 5.7565. ;.._ 0.0 	4O 	0.0 ' 	0.0 

d)  
_ tea P f t h y 	't P~ : 

The ' Overall response of the pile foundations for the. 

design { ea rthqua kq is given by the root-meati square addition 

Qf the individual modal responses. 

Thus' for the given problem for pile top free to 

rotate conditions we have: 

i) 	
The deflection, ''max suffered  

the pile.. :.. 
	

by - 	Y, • 1 	2 
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( ii) The rotation, 8ma x experienced 
by the piles, 	 _ 	B2 

( iii) The bending moment, Mmax on 
the pile section 	 = Ml + M2 

( iv) The shear force,' Smax of the. 
piles 	 = Sl + S2 

In table 7.7'the overall dynamic response. of the 

piles in the first two modes have been tabulated. 

-.-Table 7.7 

The -Maximum Response of the .System -Pile Top -Free 
to Rotate Condition s. 

Depth' r e max ;M i Smax k ~ g' Y 	f , 	max i 1 	in 
I max 
, 

I 
1 	4 t . xld Remarks 

-cm Jradian kyg cm ; 

0.0 0,00 1.24 .-0.0063 0.00 1.1776 The contribu= 
00_a. Q 0.'O052' 81. 57r .. 	 632 tion of second 

mode iS inSic 	i_ 
1. 30 -97.76 0,0 ficant. 	First 

mode frequency 
200.0 1.6447 0.198 ..0.0028 91.53 -0.1792 = 	1.836 cps.. 

First mode time 
300.0 2.4671. 0.0 -0.0009 41.81 -0.4096 period= Q5446 

sec. * Second mode 
400.0 3.2894 -0.0248 0.00 14.32 -0.28166 frequency 

46.742 cps. 
500.0 4. 118 -0. 0124 +0.0002 0.00 -0.0768 Second, mode time 

period =0.0213 
600.0 4.9342 0.00 +0.0001 -2.48 -0.0128 sec. 

700.0 5.7565. 0.00: 0.0 0.00 0.0 
--- 

(e) fir, mina ion of f th InducPrl Soil RR r .ion,s.: 
For pile top free to rotate conditions the deflections 
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suffered by the piles during the given earthquake have been 
tabulated in Table 7.7. 	 . . 

In the given problem the piles have:, been enbedded i 

granular soils.  For these types of so ils the soil modulus 

is considered to vary Linearly with death. 

At any depth, x , the soil modulus is given by: 

X 
	_ n h* X 

where nh is the constant of horizontal subgrade reaction. 

The soil reaction, p at any depth is given by 

p 	k x 	'max a t ~x 

where, '"max is the def lection of the pile at depth .... x. 

The--resistance which the soil can offer. to the 'pile 

in lateral direction at :.any depth depends upon the-.. pa;ss iue 
resistance of the soil. 

At a.- depth x, the passive resistance p is given b- 

Pp = K , L. A.,, 

where y i) K is the passive pressure coefficipnit and is egua. 

to 	l+sue 0 	e Li) (D the angle of internal friction,,afcL..4i 

the projected area .•Qf ,pile Pet "unit width. 

For the given problem the variation of the induced 

soil reaction, and the soil resistance at different depths 

have been tabulated in Table 7.8. 
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Table 7. 8 

Induced Soil Reaction and Available Soil 
Resistance. 

Maximum In du.. 	~i Maximum Aa i- ; 

	

Depth 3 	 I ced - Soil Reac- 	i' lable Passive 
T 	,tion P 	 Resistance P =, Remarks 

Cm 	 h 	max at x 1 pK. d  
• ....,...... + _.... kms.... 	I 	kg___ _ 	...:_.. 

0.00 q 0 0.00 

100. 0 q 8223 82.9 461 

200.0 1. 6447 55.2974 

300.00 2.4671 0 

400.0 3,2894 -13.8522 

500.0 4.1118 - 8.6576 

600.0 4.9342 0.0 

700.0 5.7 56 5 0.0 

0,0 K = 1+ 
p 	1-Sir e 

25.164 1+Sin~30 
46.329 1-Sin 30 

=3 
69,* 49 l) d = 1, 602 

92. 65 

115,82 A= 48.2x1 cm2 

138.99 

0.0 

7.2.1.4 Pile Top Fixed Against Rotation Conditions 	V 
( a) Dptpm,inatinn of Nn+ii,,a i F,•~t tonri o~~ 

From Fig 5. 3 and 5.4 we have: 

( i) The natural frequencies in . the first and second 

mode are 	= 2.8529 cps and fn2 ' = 53.8597 cps 

respectively. 

( ii) The time _period for the above two natural frequencies 

are ~'1` = 0.351 sec and T2` = 0,018 sec respectively. 

( iii) From. the design spectrum Curves , in Fig 7.-1 we -have 

the spectral displacement Values for the above 
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periods as S ` dl = 0.635 cm and Sd2 = 0.0 

( i) For the first mode of vibration, the non-dimensional 

displacement coefficients B' y1 and . B'C)1 are easily 

read for various x/T values from Fig 5.17 and 5.18. 

The dynamic displacements Y'1 and e' 1 are calculated 

from the definition. The above quantities are tabulatec 

in Table 7.9 

Table 7.9 

• Dynamic Displacements During First ode of 
Vibration - Pile Top Fixed Against Rotation. 
Conditions. 

Depth 	 Dynamic Def- i 	ynamic~ Rotation 
in 	X 	f B~ 	~ect~ os x< t 	B 	{ = s_ ~1_ yl 	TY1 =Sd1...yl 	e l 	e l - 	T 	s dl 

i 	cm 	i 	; 	radian 
- 	 ,~...-ice......-~.w.~.,..,. 

0,0 	0. 0 	1.-0 	0,635 	0.00 	0.0 

100.0 0. 8223 0.75 	0, 4762 	-0. 45 	-0.0023 

2 00.0 	1. 6447 	0. 37 	0.2349 	-0. i1-2 	-0.0021 

300.0 2. 4671 0. 10 	0. 0635 	-0.21 	-0. Colo 

400.0 3.2894 0.0 	0.0 	.-Q05 -0.0002 

500.0 4.1118 0.02 -0.0127 +0,01 	0,0 

600.0 4.9342 ..0.04 	-0. 00635 	+0.02 	..0; 0001 

700.0 5,7565 0..00 	0.0 	+0.02 	-0.0001 
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( ii) For the second mode of vibrations since "the'-Sd2 = 0. 0 

the dynamic displacement values have not. been. _tabu•lated. 

( c) 	 }  n ding Abmcint an&Shc a: 

( i) For the first mode of vibration the non-dimensional 

bending moment and shear coefficients at various T 

values are easily read from Fig 5.19 and 5.20, 1=r •; 

the definition, the dynamic bending* moment and shear 

Mi` and Si? are calculated. The above quantities are 

tabulated in Table 7.10. 

Table 7. 10 

Dynamic Bending Nbment and Shear During First 
Mode of Vibrations-Pile Top Fixed Against 
Rotation Condition 

	

Depth ; 	~T 	i Dynamic ben-d- 	T Dynamic , shear 
in 	 t -ml 	ing m°m t 	t B! 	tBt =n Ta Sl 
cm  e  t 

 II  ui 
r " 

I nhT~ 8 1. Shc 	f x B'1 x104 kg 

	

t 	t x10 k Oi  m 	_____ 
00 	0,0 	-0.93 

100.0 0. 822 3 -0.22 

200.0 1,6447 +0,20 

300.0 2. 4671 + 0.2 5 

400.0 3.2894 +0,12 

-1.4827 1.15 1.507 

-0. 3507 0,90 : 1.1799 

+ 4 3188 
3 

0. 33 0. 4326 
. 

+0,386  -0.02 	••- 0.0262 

0. 191 -O, 16 0,20)7 

500.0 4.1118 +0,02 0,0318 -0.10 0.1311 

600.0 4,9342 0.0 0,0 -0.02 0.0262 

700.0 5,75€f5 0.0 0,0 0.0 0.0 
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( ii) For the recond mode of vibration since •S' d2 = 0.0 

the dynamic bending moment and shear values have 

not, been tabulated. 

( d) Dptp ja;tion of Overs 11 R ponce: 

Since there is no contribution from the second mods 

of vibration the overall response is given by tables 

7.9 and 7.10. 

(p) Determination of induced soil reaction and check again; 

the available soil resistance: 

The induced soil reaction. -and the available soil 

resistance for pile top fixed against rotation condition ha 

bei given in Table .7. 11. 

Table 7. 11 

Induced Soil Reaction..Ava ilable Soil Resistance 

Depth in ; 1 a ximum Induced I Maximum available 
cm , 	X 'Soil Reaction ; passive resistanc 

F= n h. x 	'1 	at x PP 	p' \'d. , t 
k/crn 	— 

0.0 QO 0~0 	. 0.0 
100.0 0. 8223 66. 49 65 -; 23. 164 
200.0 1, 6447 65. 603 46.29 
300.0 2; 4671 26. 60 69. 49 
400,0 3.2894 „ . 0.0 92.65 

4.1118. 5004 0 -8.867 115.82 
6(0.0 i 49.342 -5.278 138.99 
700.0 5.7 565,. 0.0 
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7, 2. i; 5 . For Partial: Fixity Condition 

Depending on the discretion of the designer the 

degree of fixity at the pile top, may be assigned. 

Herein, the pile top is considered to have 50% degree 

of fixity. 

Linear interpolation between the obtained results for 

pile top free to rotate and fixed against rotation conditions 

ir- suggested. The values for partially fixed conditions 

have not been eseparately tabulated. 

7.2.1.6 Design Check 

1. The maximum earthquake induced displacements are as under: 

(i) Maximum deflection at top pile 
top free to rotate conditions 	- 1.24 cm 

(ii) Maximum deflection at top for  
the conditions of pile top fixed 
aga -nst rotation 	 - 0.635 cm 

(iii) Maximum deflection at top for 
'5CK degree of fixity 	 - 0.9375 cm - 

( iv) Maximum rotation at top for 	 - 
Pile top free to rotate condi- 
tion s 	 .. 0, 0063 radian $ 

(v) Maximum rotation( at a depth of 
0.8223 T) for pile top fixed  
against rotation condition 	-. 0.0C723rathan 

vi) Maximum rotation (at a depth of 
0.8223T) for 50% degree of fixity - 0.00375 radian 
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The -permissible displacements are to be checked agains 

the worst case. - Herein, the maximum induced displacements a rE 

seen in case and and case (iv) , 	as shown above. 

The earthquake induced displacements are seen to be 

within permissible limits. 

2. The maximum earthquake induced bending noments and are 

as under; 

( i) The maximum induced bending rroment 
for pile top free to rotate condi- = 97.76x104  kg cu 
tion (occurs at a depth of 1. 30' ) , 

(ii) The maximum induced bending moment 
for pile top fixed against rotation = 148.27x104  kg c 
condition (occurs at top) 

(iii) The maximum induced bending moment 
for 50 % degree of:.fi xjty (occurs 	= 74.135x104  kg < 
at top) 

The worst case in the above list i5 case (ii). 

Therefore the pile section safety need be checked for the 

induced bending moment of 148.27 x 106  kg cm. 

From the structural des•i -gn- details of the building the total 

vertical reaction per pile during. the earthquake has been 

obtained as 134. 3 x 103. 

Induced stress in concrete = P  ± I .. y 

For the given pile section we have s 
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Effective area A 	 = 23 cm2  

Moment of inertia Ix x 	= 31, 50, 00 cm 4  

Distance of neutral axis, y = 24.1 cm 

Compressive stress in condrete f l  - 

= 134.3 x103  + 
2. 08 3 x103  

is  48  x106 x24, 1 
0, 315x106  

64.47 + 101.9068 

= 166. 37 kg/cm2 

Tensile stress in concrete 	= 64,47 - 101.9008 

= -37.4368 kg/cm2  

It is seen that the concrete section is subjected to large 

induced tensile stresses. ' Therefore the pile section may not 

be safe. 

7,2.1.7 Recommendations: 

If four pile groups are used the earthIluak.e induced 

bending stresses on the pile section exceed safe values. 

Therefore it would be safer to use six pile group arrangements. 

However, the .earthquake induced stresses and displacements 

under these groupings are to be rechecked. 

7.2.2 PILES EMBEDDED IN S0ILS, SO IL MODULUS REM 1N ING CONSTANT 
WITH DEPTH: 

7.2.2.1 Problem 

Examine the earthquake resistant considerations of 

pile foundations supporting storage oil tanks of a refinery 
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area zn an active seismic zone. In the absence of design 

earthquakes use any suitable design spectrum curves. 

The details of loading, the chosen pile sections ar 

soil conditions are as follows: 

1, Design pile s ectidn s --a-re c.ircu lA r on es..P f 50 cm diamet 

with six bars of 12 mm diameter as reinforcements. 

2. The piles are driven to a depth of 20 m. 

3. The safe load carrying capacity of the piles are 90 

tonnes. 

4. From structural design it is seen that during the earti 

quakes the maximum vertical reaction per pile works oul 

to be 120 tonnes. 

5. The soil at site is Uniform deposit. of , 	 preloaded clay 

with unconfined compressive strength of 1.8 kg/cm2. 

6, The static and dynamic lateral load displacement curve; 

are given in Fig 7.7. The dynamic tests were conductec 

a series of lateral forced vibration tests applied to 

pile at 	ground surface. 

7. A total humber-of 40 pile's are supporting the oil tank 

and are. capped with a pile. cap. 

7.2.2.2 Deign Steps 

Since the ..fixity . conditions at pile top can not be 

assessed properly the solutions are obta in ed for both pile 
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top free to rotate and fixed against rotation conditions 

separately. 

Drptarminnficin.: f Soil_Moclulua ind Rplativc 
St1ffnçc Fa . .n_ 

The dynamic load, F. and 	st plot shows the 

overall stiffness of the pile as 15,500 kg/cm., using the 
non-dimensional solutions given by Davisson and Gill (1963) 

we have 

Q~ R3xA  L 
yg =  EI 

where ~' Z = 1. 40 at ground level. 

Rs 	 0. 3681 x 1011 w  
15. 500 xl. 40 

R 	119.2 cm 

 EI and R = 

kdyn = 181.97 kg/cm2 

Z _ 2 C. 00 16.779 ma x 	T 	1.192 

For the given pile -sections :the natural frlu encies 

in different modes are obtained using the appropriate non-

dimensional design curves given in Chapter III. In each of 

these figures, curves identified for Zmax = 15 have been 

used. The computed natural frequencies are tabulated below 
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in Table 7. 12. 

Table 7..12 

Natural Frequencies at Diff erent. Conditions 

Fixity ;Frequ- ,Natural 	Time 	tSpectral 
de fcondi- iency 	;Frequ- 	period in idlspla- 	Figure 

tions ' factor ' ency in _ sec 	v
c 
alueS
ement 	, used ! 	 ; Sat top 1dimen- , cps 	f 	 ,  

. 	 tifl cm 

One Free 	Q 84 	3.0818 	Q 32 5 	0.635 	3.8 
Two Free: 1.l3 '31.008 0.03 0.005 :3.9 

Three Free 	1. •30 	35. 674 	0.028 - 	0.0048 	3. 10 

One Fixed 1.18 4.3298 0.23 	0.33 	3.11 
Two 	Fixed 	1. 14 	31. 30 	Q 0319. 	0 005 	.3. 12 

7.2.2.3 Pile Top Free To Rotate Conditions 

Detarmina.  io n_pj P1,a D.'sp. Pmt 

The n©n^dimensional deflection and ,rotation coeffi- 

c Tents and the -maximum induced displacements for the design 

earthquake have been computed, 

The above quan1ti ti..es :for-- pile top free to rotate 
condition are tabulated in table 7.13 and 7. 14-, at diff erew 
depths. 
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It is neceaary to check the earthquake induced soil reaction 

against the available soil resistance. For purely cohesive 

so ils the available passive resistance is given by: 

Passive resistance p = 2c x projected area of pile 

The induced soil 
reaction at any depth, x = kX. X • 'max at x. 

In table 7.17 the two quantities have been compared. 

Table 7. 17 

Induced Soil Reaction and Available 
Soil Resistance 

Depth , Induced soil Available ;Soil 
} Reaction in j Resistance in 

0. C 0, C 115. 55 lCCJ. 0 

5C. C C, 4194 82.80 100. C. 

100.0  0.8 3811 53.15 100.0 

150, C' 1.2582 28.88 100, G 

2 CC. 0 1. 677 6 , 	13.866 100. C) 

250. C' 2. C47C 3. 4574 100.0 

300,0 2.5164 .2.3110 IOC.() 

350.0 2,9358 ..6.92  100+  0 

400.0 3.3552 -9.244 100. C 

450.0 3.7741 -8.01: 100.0 

500.0 4194 ..6.9330  ICU. 0 

550.0 46134 -3. 4574 1CC. C 

600.0 5.032q -2.2928 100.0 
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7,2.2.4 Pile Top Fixed: Against Rotation 

The earthquake induced displacements , 	biding 

moments and shears along the pile length have been obtained 
f 	 ' 

for pile top free to rotate conditions also. 

The natural frequencies in first two modes of 

vibration have been tabulated in Table 7.12. 

The other - response quantities have been tabu1at.ed 

in Table 7. 18 for first mode of vibration . The contribution 

from the second mode of vibration have been found to be 

negligible. 

The maximum earthquake induced pile response 

the same as given in Table•7.16 since there is no contri.. 

bttion from higher-. modes. The induced soil reaction is 

lesser than the free haad ca-se hence not tabulated. 

7.2.2.5 .- Design Checwk.. 	'. 	•_ 

The safety of the piles in the group, supporting 

the tank is 'to be .che.c'ked against the permissible values. 
The earthquake effects are as below: 

Aarth{uake induced t deflection = C.635C cm 

Earthquake induced rotations 	= C. CL 37 radial 

Ea rti-1 ua ke induced• bending moment = 78.5 x .1C kg cm. 

It is seen that the pile displacements are quite small. 
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The compressive stress in concrete = 61.22 +' 63. 34 

124.56 kg/cm2 

The tensile stress in concrete 	= 2.12 kg/ cm a 

The above tensile stress can be permitted since 

the pile top may not 	xhihi t 	1CC % degree of fixity 

conditions. Hence the chosen design may be considered safe. 

7, 3 DISCUSS IONS UN THE METHUD OF ANALYS IS 
,kND THE DES Int CURVES 

7, 3.  1 LUMPED MASS AT TUP 

As shown in Tables 3. 1, 4. 1 and; 5. 1 for each Z ma x 
fifteen numbers of-pile cases of varying pile sections, leng 

and soil conditions have been analysed. In each case the 

assigned sustained vertical loads were based on the safe 

vertical load carrying capacities worked out by static formu 

proposed by Terzaghi (1943). For calculating the bearing 

capacities, the soil strength parameter ,values were based on 

the soil modulus table provided by Davisson (197U) . Leonard 

(1970) has advocated use of these values for design purposes 

As seen from the results..of: the analysis and the 

non-dimensional curves presented, , the normalised mode shapes 

are independ^nt ;o;f the sustained vertical .loads acting on tF 

system. For each pile case of a.;particular Zmax  though 

the assigned vertical loads (lumped at top) have been variec 
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unique plots of-non-dimensional normalised modal quantities 

were obtained, 

However, the vertical load influences the natural 

frequency in the first made of vibration. The natural fre- 

quencies were inversely proportional to 	Mt  . Because of this, 

th3 spectral displacement values and hence the maximum response 

during earthquakes are altered. 

The safe load carrying capacity of the pile has been 

lumped at the top, with the view that any pile ( isolated or 

in a group) would be deslgnod to carry this load. 	Normally,' 

this would be transmitted from the super-structure and would 

be acting at the top of the pile. However, if the actual 

transmitted loads are lesser, these may be lumped, instead of 

the safe load per pile. 

Normally for engineering structures resting on piles 

the mass and the flexibility are distributed above the pile 

cap level. For particular super-structure - foundation-soil 

system, such distributions, if considered may result in a 

slightly different response computation. Though, the above 

factor is recoc ised, lumping of super structure mass at pile 

top, has been -'adopted to obtain generalised solutions, exclu- 

sively for pile foundation res`ponSe. Considering the range 

of structures'which can be supported on piles, 	it may not 

be possible to consider such distributions and also obtain 

solution's of practical significance. 
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The interaction between superstructure and founda- 

t ion is however considered by obtaining solutions for to 

fixity conditions, namely pile top frre to rotate and fixed 

against rotation condition. 

If exact solutions are needed, instead of using the• 

design curves, separate analysis may be performed incorpora-

ting these -distributions in the model. 

7.3.2 REDUCTION IN VERTICAL LOAD CAPACITY: 

Determination of pile foundation stability under 

lateral vibration conditions has been a primary concern in 

the analysis and the solutions thereoff, However, an indirect 

answer to the reduction in vertical load carrying capacity 

seen to be available. This is evident from the two worked 

out examples. From the results of which it is seen that 

though the mass lumped at top have been lesser than the 

carrying capacities, still, the induced bending stress values 

workout to be larger. For the safety of the section it 

becomes imperative to increase the number of piles thereby 

reducing the mass lumped per pile.- This result may be 

viewed as the resulting reduction in the vertical carrying 

capacity. 

7„ 3. 3 .LOSS OF CONTACT BETWEEN SOIL AND PILE 

During lateral vibration conditions there may be 

loss of contact between soil ah d pile under the following 
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( i) Due to liquifaction of the upper layers of soil in the 

case of piles embedded in saturated granular soils. 

( ii) In the case of piles embedded in clay type soils, air 

gap or loss of contact between soil and pile may be 

developed. 

At certain times these factors may assume consi- 

derablh! 	importance since the piles may fail due to non.. 

availability of sufficient soil support. With the solutions 

presented it may be possible to safeguard the foundation 

stability against these two conditions. 

For granular.  soils prone to liquefaction hazards, 

it is possible to estimate reasonably, the depth upto which 

the liquefaction may propa gate (Seed (1971) ). While using 

the solutions provided herein, the length of the pile, should 

be considered as the ljgth of embedment below, this depth. 

For this modified pile length and the soil condition below 

the maximum depth of possible liquefaction ), the relative 

stiffness factor T, andZmax . value need be determined. 

The new .ground surface thus becomes the depth upto which 

complete liquefaction is  expected. 

Neglecting the pile length above this elevation 

and lumping the imposed vertical load and the neglected nth 

weight as the top mass of the modified pile, analysis is done 
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in the Usual manner for the condition. o.f pile top free to 

rotate. 

With the knowledge of displacement at new ground 

level linear interpolation for pile cap level may be made. 

This would enable the designer to assess as to whether the 

depth of embedment in the dense soil is 'sufficient or not. 

If still better solutions are warranted, instead of 

using the design curves, in the soil-pile model, the inter-

action effects may be ten to be '#rc upto the zone of 

4xpec; .e.d liquefaction. Below this depth appropriate soil 

Springs may be connected and the analysis performed. 

Similarly in the, case of clayey so ils if assessment, 

is possible, of depth upto which separation takes place; 

the influence may be studied with the presented solutions. 

7. 3. 4 CGN S IDERA.T ION OF SOIL PILE INTERACT ION EFFECTS 

In order to consider the effect of dynamic loading 

on th:e soil-pile int eract:iori effects, it is  .suggested that the 

estimate of the soil modulus must be made based on the latera, 

vibration test,results. In the absence of lateral vibration 

tests with the limited 'information..avaliable, ratio of 

static to dynamic  soil modulus values have been. suggested. 

In the case of clay type soils considering the 

increase in strain due to pulsating load applications 
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reductions in dynamic soil modulus compared to static values 

are considered necessary. 

However in the case of granular soils, if p-y 

relationship at various depths are known, the convergence 

technique suggested by : yaticck -'n (j Rees.sa (1962) may be 

adopted. In this case the first trial value should be the 

one obtained from dynamic test result or it th static 
values. 

7.3.4.1 Other Forms of Soil Modulus Variations: 

The solutions for the dynamic response of the piles 
have been obtained only for constant values and linear 

variations of soil modulus with depth. These two forms of 

variations have been adopted; considering their wide usage 

In solving problems of piles, subjected to. sustained lateral 

loads. 

~wever, ane su yyes i.eu imat.iitaiia 	 A 

Chapter III is of a general nature. In this model any form 

of variation of soil modulus with depth can be incorporated. 

Chce the exact form of variation of soil modulus 

with depth is defined, the procedure of discretisation is 

simple. This would mean a continuous loading intensity over 

a beam of length L, equal to the length of the pile. The 

piles may be divided into several segments as before. At 

the division points they may be considered to be simply 
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supported. The reaction at the support points are easily 

evaluated by using the technique suggested by Nevimark (1941).  

7. 35 ]NFI.UBVCE OF SUSTAINED LOADS 

Since the solutions have bei obtained for linear 

systems superposition of static and dynamic loads is consi-

dered to be valid. The pile displacements and bending moment 

under static conditions may be estimated using a suitable 

technique. The pile response during earthquakes should be 

estimated• with the suggested 'procedures. The design should 

then be checked for superimposed values of the two. 

7„ 3. e EFFECT OF GROUP ACT 1W 

The proposed solutions are applicable more to i5a-

lated piles than those in a group. Because, the action of pi1E 

in a group are affected due to the influence of one pile over 

the other. Prakash (1962) has suggested that for static 

lateral loading conditions group effect would be present, if, 

in the direction of loading, the spacing is less than 8.-times 

the pile diameter and in the perpendicular direction 3-times 

the pile diameter. Even for static loading conditions exact 

estimation of the group effect has not been possible till 

today (1974) and the adopted procedures consider only 

individual action of the piles. 

For considering the group loading effect recently 

Davisson and Sally (1970) suggest a reduction in the values 
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of constant of horizontal subgrade reaction n h  and 

increase in the relative stiffness factor T. 

The ratio,  of T, for piles in a group to that of 

individual piles are: 

1. 1.25 at a spacing of four pile widths, 4d. 

2. 1.30 at a spacing of three pile widths, 3d. 

For spacings other than the above,linear interpolations 

are suggested. 

Prakash et al (197:3) have utilised the above sugges-

tions for predicting the natural frequencies of pile_ groups. 

Therefore, it is suggested that, if required, while 

analysing the individual piles in a group,the above said 

increase in flexibility may be adopted.. Similar variations in 

flexibility may be adopted for clayey soils also. 

However, it is emphasised that so lutio% presented 

in this thesis do 	not consider group effect in an exact 

mann er, 

7, 3.7 SOLUTIONS FOR DYNAMIC LOADS OTHER THAN EARTFQUAKES 

With the presented model and the solutions it is 
believed that with reasc:h able adjustment solutions of Pile 

response under the following loadings- are possible: 

( 1) Dynamic loads imparted tri the top of the piles as in 

the case of piles supporting machines. 
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(2) Dynamic loads imparted by wave forces. 

For the latter case spectrum curves for wave force 

are available.  

7, 3.8 SOLUT IONS FOR STATIC LOADS 

With the same mathematical model and the suggested 

numerical techniques solutions for sustained loading condi-

tions are easy to obtain. 

For this, on ly top mass is t o be considered and the 

rest of the masses are assigned zero valuer,,treating the pi, 

sectionAs .a massless flexural member. The mathematical 

model becomes a' mass resting on a massless flexural member 

to which soil springs are connected at various elevations. 

The dynamic response of this model f if evaluated gives the 
variations of displacements, bending moment and shear along 

the entire length of the pile. Convergence of solutions fo: 

such conditions have been found to be extremely rapid. 

In Fig 7.3 (for a typical pile) the deflected 

shape obtained by the present technique has been compared 
with the static deflected shape obtained by Reese and Nletlo~ 

(19M). The lateral load applied at the gicund surface 

equals the inertia force at top. The results agree very 

closely, this further emphasises the correctness of the 

model and the method of analysis. Because the solutions 

Presented by Reese and Matlock (19( l) has been supported by 
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by several field tests, Prakash (1962). 

7 , A CON CLUD TNG REMARKS 

For predicting the performance of pile foundations 

subjected to dynamic loads, including earthquakes, non-

dimensional charts which are simple to use and of practical 

significance have been made available. 

With the n3n-dimensional charts, mathematisral model 

and the method of analysis, realistic estamat©.-)n ( engineering 

Solutions) of Seismic stability of soil-pile system supporting va 

>3s types of structures is possible. 
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C HA P TE R . VIII 

SUMMARY AND CCNCLUS IQNS 

The matter embodied in this thesis essentially 

deals with the prediction and understanding- of the behaviour 

of pile foundations embedded in soils and subjected to dynamic 

loads, particularly earthquakes, This was achieved through 

theoretical and experimental studies. 

Throughout the studies the singular persistant 

concern and objective had been to provide the practising 

engineer a simplified design. procedure. Such a proc eedu re 

had to be backed up by consideration of soil-structure 

interaction phenomena, advancements in structural dynamics 

and •the available Iv  ledge of soi,l..pile interaction mecha-

nism about which the designer_ is familiar. 

The discussions in various preceeding Chapters 

describe as to he ry effective solutions based., on such approache 

were made possible. 

Chapter -III describes the soil-pile .system idealised 

as a lumped mass-spring" system. The masses are connected by 

elastic weightless barb puss ess in.g . the .same elastic properties 

as that of the, pile section. The interaction effects of the 

soil are considered by treating the soil as independant 

closely spaced elastic springs ( Winkler model) connected 

at the mass -points; Di s c r et'i s a ti ori . of the s oil- p i l e 
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interaction effects was achieved by considering the modulus 

Of subgrade reaction. concept. The vibration characteristics 

of the pile was determined with the aid of a transfer 

solution approach. 

The performance of the idealisation and the method 

of analysis was tested by predicting the response of piles 

embedded in soils in which: 

1. Soil Modulus can be considered to remain constant with 

depth. 

2. Soil modulus can be considered to vary linearly with depth. 

Then using such an approach the dynamic response 

of ninety pile cases was studied ,  These problems consider 

the variations of (i) pile flexural stiffness (ii) length 

of piles ( iii) soil stiffness and ( iii) sustained vertical loads. 

For each of these above ninety pile cases solutions 

were also obtained for pile` top (i) 	Free to rotate conditions 

and (ii) fixed against rotation conditions, 

The different pile cases were chosen in such a 

manner as to obtain response of piles with maximum depth 

factor, 1 max = 1, 2, 3, 5, 10 and 15. 

The above studies thus included information on 

piles embedded in granular soils and silts of various rela-

tive densities, peat and cohesive soils of normally and 

preloaded condition of varying consistencies. 
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Based on the results of such analysis, for diff ereri 
modes of vibrations it was. possible to define: 

( i) 	Certain dimensionless frequency factors 

(ii) Non-dimensional factors for normalised modal quanties 

of deflection, rotation bending moment and shear. 

The frequency factor variation has been provided 

with (1) the relative stiffness factor for different identi-

fied 1max  cases (2) non-dimensional maximum depth factor 

Zmax 

The variations of the various non-dimensional 

normalised model quantities with dimensionless depth factor 

( x/T or x/R) have also been made available. 

In Chapter III the above mentioned studies for pile 

foundations embedded in soils considering constant values 

of soil mocblus "with depth have been discussed. Discussions 

for piles embedded in soils assuming linear variation of 

soil modulus with depth appear in Chapter V. 

For the case of piles embedded in soils with constar 

values of soil modulus with depth, the soil.-pile system has 

also been idealised as a continuous system model. In  ChaPte: 

IV with the above model independent solutions have been 

developed for pile top free  to rotate conditions. Each of 

the pile cases analysed 'with lumped mass solutions has been 

studied here also. This enabled in assessing the adequacy 
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of the earlier approach as well as resulted in a better 

understanding of the pile behaviour. 

These studies showed that the adopted model and 

technique Ware sufficiently accurate and that they could 

predict the dynamic response of piles effectively. Whil e 

utilising such approaches the importance of incorporating 

realistic end conditions compatible with the physical system 

behaviour has been brought out. 

Based on these theoretical investigations, for any 

pile section with desired pile top conditions,and for piles 

embedded in any soil type ,the following findings may be con-

sidered of particular significance. 

1. The dynamic behaviour of piles are essentially dependent 

on the length of the pile in Telation to the relative 

stiffness factor, Zma )e  The absolute length  of the 

pile does not govern the behaviour singularly. Tithe above 

is txue for natural frequencies Of vibrations as well as 
{ 

values of displacem€nts, bending moment and shear along 

the entire length of the pile. 

2. The first mode of vibration has a significant contribu-

tion to the overall response of the piles. 

3. The for: of variations of modal quantities under first 

mode of vibrations essentially follow the investigated( Reese 
and Matlock ( 1956) , Davisson and Gill ( 1961)) , behaviour 
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of pile foundations subjected to sustained lateral loading 

conditions. 

4. Piles embedded in , any soil types and having Zma 2 
display rigid mode of deformations. For Zma x2 5  
flexural bending deformations are displayed. For Zma x 

values between 3 and 5 mixed modes are evidenced. 

5. Especially under first mode of vibrdtions for piles with 

Zma 	5 there is no  appreciable difference in the 

deformed shapes as well as values of normalised modal 

quantities of deflection, rotation, bending moment and 

shear along the pile length. 

As such Zmax ` 5 can be considered as a limiting 

case of infinitely long piles. Increase of pile length 

beyond this value loses-  significance as far as dynamic 

behaviour is concerned. 
6 

6;, With the increase in lumped mass at. top or the super-

structure load: 

Ci) the natural frequencies under first mode of vibra- 

tions is reduced by 	times. 

( ii) the induced dynamic displacemiits bending moment and 

shear are increased by 41ç  times, 

7. Similar is the effect of increase in the weight per unit 

Length of the pile at higher modes of vibrations. 

4 
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8, For any mode and any soil type increase in soil stiffness 
results in reduction of pile displacements and increase 

in natural 'frequencies of vibrations. 

9. Increase in flexural stiffness of the pile does not have 
similar effect on the pile behaviour mainly because of 

the resulting alterations in Z max values. 

10. The natural, frequencies under first mode of vibrations 
incrdase with increase in Zmax values. However for 
Z-5 no significant difference is observed. 

11. Since displacements are the governing parameters in 
design, it is seen that for any given, soil-pile system 

the induced dynamic displacements get. reduced when „ the 
pile length is increased. This is true upto limiting 

case of long pile ranges. 

, 	~, 	~; systems the induced dynamic. deflec- 7 

	For 12. FOr .s~yfil."ar ply e-s,d i ~, 	,...... 

tions under fixed head conditions are smaller than those 

under free head conditions. Whereas the natural fre-

quencies and bending man ent values are greater in the 

former case. 

13, For pile top fixed against rotation conditions the maximum 

bending moment occurs at top but for pile free to rotate 

conditions the maximum bending moment occurs at some 

depth below the ground surface. 
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14. In the case Of clayey type soils for long pile ranges 

the maximum bending mcment occurs at depths of 1.15R 

compared to depths of 1. 30 T in . granular soils. 

15. For piles enbedded in clay and under pile top free to 

rotate conditions a unique rigid body mode . irrespectiv 
of the pile-soil conditions has been observed. 

Both lumped mass and continuous system models 

support the above. 

As a sequence to the above studies it has been 

argued as to how the present model as well as method of 

analysis is capable of obtaining solutiefls of: 

1. Piles subjected to machine loads and wave forces. 

• 2, Piles nbedded in Soils with soil modulus having any 

generatised form of variations with depth. 

3. Pil es embedded in layered sO1ls. 

4. LQss.of.:  con„tact between soil and pile as a result of 

• vibration. of piles.. 

5. Piles subjected to.>sustained loading conditions. 

In the experim enta 1 'studies described in Cha pter VI 

the dynamic behaviour of piles have been investigated throug 

lateral vibration tests on full, size.prototype Piles. Each 

pile has been tested under resvn nt . conditz, pn.s to record the 

increase in amplitudes of Vibration despite Of force 
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reductions.- This underlines the possibility of quasi. 

resonance state under dynamic conditions. 

A logical procedure for in-situ determination of 

material, constants under dynamic loading conditions has been 

presert.t-ed. Thus such a procedure, if standardised would 

lead to useful informations. 

With the limited information available the following 

material constant values are suggested for use inroutine 

design:.:  

The damping coefficient of soil-pile system equals 10 %.- 

2. In clay type soils the ratio of static to dynamic soil 

modulus 'need be 15. 

3. In granular `soils the ratio of static to dynamic values 

of n h, need be 10  

The- solution 	 the ih.. • very c
ffccti- s presented =~1 ~,►~~ thesis veer ~~..L.- 

vely bring out the drawbacks and inconsistencies that exist 

in the prevelant design, practices such as pseudo-static 

methods and the equivalent structural system approaches of 

Prakash and Sharma (19w) , Haya.shi et al (1965) and Ishii 

and Fujita (1965). 

The presented solutions are believed to have 

advantages compared . to the rigorous one proposed by Penzi en 

et al (1964) for the following reasons: 



1. By providing exclusive solations for predicting the 

dynamic behaviour of piles applicable to any pile-soil 

system. 

2. By proVidin j a simplified design procedure (engineering 

solution) considering in a realistic manner the soil.- 

pile interaction mechanism. . The practising engineer cou. 

freely use these solutions.  

3. By providing- a logical and realistic testing procedures 

for in-situ determination Of material. constants, 
. 	 t 

0 

Thus for the first time (as of 1974) the., dynamic 

behaviour of the -piles have been investigated in a logical 

and sequential manner. For the firt time non-dimensional 

solutions of practical significance are made available to the 

d'esigne,r for predicting the dynamic response of piles. With 

these solutions practically any type of pile embedded in any 

soil type could be analysed, more importantly, without going 

into the complexities of dynamic analysis. All the qualifyir 

variables which control the dynamic response has been taken 

into account. 

Thus, the procedure of analysis and:  the other .studies 

described in this thesis, should be construed as a procedure 

effecting an approach that offers several advantages and it 

believed . that the work presented provides a reasonable solut: 

to this complex design problem. 
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C H A P T E R_ IX 

SUGGESTIONS FOR FURTHER RESEARCH 

The following aspects of the dynamic behaviour o 

piles may need further investigations. The suggested areas,  

of research have been divided into three groups. 

1. Theoretical Investigations : 

(i) - The soil-pile system may be idealised a:s a 

., 

 

discrete-beam-co lurm model and the dynamic 

behaviour may be;-  investigated through suitable 

methods of analysis. 

(ii)- In the lumped mass idealisation, while idealising 

the soil-pile interaction phenomena, far coupled 

springs may be considered and dynamic analysis 

may be performed. 

(iii) -Suitable-  mathematical model can be selected to 

include non-linear and creep effects. 

(iv) The effect of variation of ground motion along 

the length of the pile may be considered.  

(v) Time wise response computations may be attempted. 

(vi) "Influence of different types of super-structures 

may be considered. 

(vii), Dynamic analysis of pile groups considering the 

influence of group action may be attempted. 
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2. Experimental Investigations 

(i) Dynamic .re,sponse of model piles subjected to shake 

table motions. may be investigated. 

(ii). Latea.l vibration tests on instrumented piles may 

be performed. 

(iii) Dynamic flexibility of different piles in group 

of piles may be studied. 

(iv) Response of piles subjected to blast loading may 

be attempted. 

3. Determination of Material Constants : 

(i) Lateral vibration tests on piles enbedded in 

different soil types must be attempted to-gather 

information, on dynamic properties of varieties 
V 

of soil pile systems. 

(ii) Correlation between modulus of elasticity and 

shear modulus with foil modulus may be attempted. 

(.ii) Influence of sustained load level, pulsating load 

level and frequency of load applications on soil 

• properties may be investigated. 

(iv) Use of pressero-meter. and cyclic plate load tests 

for determining dynamic properties may be studied. 
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AP P END I X 

S PEC INE N -OUT PUT 



0.10721) 00 

0.1796D 00 

0.22270 00 

0.24190 00 

0.2420D 00 

0.2275D 00 

0.4725D .0~ 

0.3111D 0{ 

0.1764D 0( 

0.6669D..o: 

_O .1987D..0: 

_0.8533D _0: 

0.2024D 00 -0.1317D - 0( 

G.I04D 00 -0.1609D 0C 

0.1349D 00 _0.1744D OC 

0.9873D _01 -0.1737D OC 

0.64 ?8D-01 _0.1599D OC 

0.3563D-01 	_0.1336D OC 

0 .137 9D .-O 1 	-0.953 5D _0] 

0.1662D...02 	-0.4542D0] 
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S PEC IMEN OUT PUT 

RESPONSE OF PILE IN CLAY 

ROB 10J8 ZMAX = 3.00 R = 1.50 - L ,LTH = 4.5 DIlL = 0.30 
= 94.24778 ' W = 3.0 NO OF MASSES = 30 NO OF MODES = 3 

I = 0.477130 03 AREA; =;O.70686D_O1  
ABLE• OF COMPUTED MODE SHAPES 
DDE NO = 1 p = 0.1683D 02 FREQ = 2.6?794 PERIOD = 0.3734 
PF = 0.10081) 01 X = 0.155172 DT = -0.3048D_05 

PT 	X,4t Ayl A1  

'1 	0.0 0.10001)01 , -0.6895D 00 0.0 	0.0 

3 0.207 

5 0.414 

7 0.621 

9 0.828 

.1 1.034 

.3 1.241 

.5 1.448 

.7 1.655 

9 1.862 

1 2.069 

3 2.276 

5 2.482 

7 2.690 

9 2.897 

0.85770 00 

0.?200D 0.0 

0.59QOD 0.0 

0.4695D 00 

0.3593D 00 

0.2595D 00 

0.1694D 00 

0.8804D _01 

0-1392D-01 

-0.54430-01 

_0.1185D 00 

_0.1799D 00 

-0.23970 00 

-0.2989D 00  

_0.6786D 00 

...O.6479D 00 

_0.6059D 00 

-0.5576D 00 

_0.5073D 00 

_0.4586D 00 

-0.4140D 00 

-0.3753D 00 

_0.3437D 001 

_0.3196D 00 

-0.30270 00 

_0.2924D 00 

_0.2874D 00 

-0.2859D 00 
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PROB NO 18 
TABLE OF COMPUTED 'TE SHAPES 
MODE NO 2 	p = 0.737D 02 FREQ = 11.74258 PERIOD = 0.0852 
MPF = 0.1619D _03 

PT x/R Ayl A 1 Ami £sl 

1 0.0 0.1000D 01 0.3141D 04 0.0 0.0 

3 0.207 0.6510D 03 0.3142D 04 0.8107D 00 0.1175D -02 

5 0.414 0.1301D 04 0.3142D 04 0.1598D 01 0.1161D 02 

7 0.621 0.1951D 04 0.3142D 04 0.2339D 01 0.1136D 02 

9 0.828 0.2601D 04 0.3143D 04 0.3010D 01 0.110 0D 02 

11 1.034 0.3251D 04 0.3143D 04 0.3588D 01 0.1052D 02 

13 1.241 0-3902D 04 0.3144D 04 0.4050D 01 0.9931D 01 

15 1.448 0 • x 5 T`~.D 04 0.3145D 04 0.4373D 01 0.9231D 01 

17 1.655 0.5203D 04 0.3146D 04 0.4533D 01 0.8499D 01 

19 1.862 0.5854D 04 0.3147D 04 0.4507D 01 0.7495D 01 

21 2.069 0.6504D 04 0.3148D 04 0.4272D 01 0.6459D 01 

23 2.276 0.7157D 04 0.3149D 04 0.3 804D 01 0.5311D 01 

25 2.483 0.7808D 04 0.3149D 04 ..0.3082D 01 0.4050D 01 

27 2.690 0.8460D 04 0.3150D 04 0.2080D 01 0.2678D 01 

29 2.897 0.9112D 04 0.3150D04 0.7775D 00 Q •1193D 01 
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TABLES OF 
COMPUTED NON w DIMENSIONAL COEFFICIENTS FOR DIFFERENT PILE CASES 

WITH Zmax = 3 
PILES. EMBEDDED IN .CLAY;. ASSUNIN T'SOI'L MODULUS TO REMAIN- CONSTANT 

WITHT DEPTH 
PILE TOP' FIXED AGAINST ROTATION CONDITION..... 

R=1.0 L~=3.0 DIAO.3 k=477.1294 R=1.25 LS =3 •?5. DIA 0.3 k195.4322 
W=F •0 EIO.47713D 03 	 W=3.0 EI=o •47713D 03 

PT 	x 	At t 	4 	 A+ 
Yl 	 1 . 	 yl 	'Al 

1 0.0 	0.1000D. 01 _0 -9450D 00 	0-.1000D 01 	-ø'.9237D 00 
3 0.207 0 •.9794D : 00 _0.7019D 00 	0.9806D 00 	_0.6899D 00 

5 0.414 0..92.89D 00 _0..4991D 00 0.9317D 00 _0.4943D 00 

7 0.621 0 .S572D O0. ; _0-.3346D 00 0 e 8617D 00 '-0-3351D : 00 

9 0.828 0.7714D ;00 -0.2055D :00 . 0.7774D 00 -0.2096D 00 

11 1.0.34 0.6769D 00 ,.0 i-1081D, 00 0 •.6842D 00 .0.1145D -00 

13 1.241 0.5779D 00 .~0`.3866D-0-1  0.5861D 00 _0.4603D_O1 
15 1.448. 0.4774D 00 -.6939D..02•' ' 	0.486.1D 00 _0-.5234D -03 

17 1.655 0.3772D ; 00 0.3284D..01 0.3861D 00 0.2598D -01 
19 1.86.2 042785D 00 0.4317D_01 0-2872D 00 0.3738D -01 
21 2.069 .0 • 1817D 00 0.4201D -01 0.1899D 00 0.3755D _O 1 
23 2.276 0.8680D..01 : 0.3334D..01 0.9420D,»01 0.3029D -01 
25 2.483 _0.6704D_02 0.2108D-01 -0.1652D-03 0.1935D_01 

27 2 690  _0.9931D _01 0.9101D 02.. 0.9370D...01 0.8405D _02 
29 2.897 _0.1915D 00 0.1216D-02 -0.1869D 00 0.1126D -02 
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•5 LS T4.5 DIAD •7 k=2793.690 	R=2.0 LS =6.0 DIAD •7 k=883.941 
35.0 El 0.14143D 05 	 W=54•0 EI=14143D 05 

T x/R Ayl A~ Ayl il 

0.0 0.1000D 01 _0.9453D 00 0.1000D 01 _0.9391D 00 
0.207 0.9762D 00 -0.6999D 00 0.9787D 00 -0.6979D 00 
0.414 0.9232D 00 -0.4967D 00 0.9279D 00' _0.4967D 00 
0.621 0 ..8497D 00 _0.3304D 00 0.8561D 00 _0.3335D 00 
0.828 0.7626D 00 -0.2010D 00 0.7703D 00 -0.2053D 00 
1.034 0.6675D00 ' -0.1038D 00, 0.675'9D 00 _0.1086D 00 

3 	. 1.241 0.5684D 00 _0.3470D -01 0.5771D 00 ' _0.3951D -01 

i 1.448 0.4682D 00 0 =1035D -01 0.4769D 00 0'.5892D_02 
1.655 0.3689 

L 

00 0.3562D -0i 0.3770D 00 0.3177D -01 

1.862 0.2713D 00 0.4531D-01 0.2786D 00 0.4220D..01 
L 2.069 0.1759D 00 0.435x_01 0.1821D 00 0.4121D_O1 

2 276 0.8242n -01 0.2431D_01 0.7836D-01 0.3277D-01 

5 2.483 -0.9502D -02 0.2160D_01 0.5900D -02 . 	0.2074D-01, 
7 2.690 -0.1005D 00 0.9300D -02 0.9827D _01 0.8957D_02 
D 2.897 -0.1912D 00 0.1241D-02 _0.1903D 00 0.1194D-..02 
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R2.0 LS =6.0 DIA=0.6 k=477.13 	R=1.25 L2=3.75 DIL 0.6 k3126. 
W=24•0 EI 0.76341D 04 W=105.0 EI=0.76341D 04 

PT x/R Ayl ... l.nil Ayl. Am1 

1 0.0 0.1000D 01 _0.9291D 00 0.I000D 01 _0.9456D 0 
3 0.207 0.97970 00 _0.6926D 00 0.9759D 00 _0.6999D 0 
5 0.414 0.9300D 00 -0.4950D 00 0.9227D 00 _0.4954D 0 

7 0.€23. 0.85920 00 _0.3343D 00 0.84890 00 _0.33000 0 
9 0.828 0.77430 00 ...0.2078]Y00 0.76170 00 ...0.2005D 0 

11 1.034 0.68060 00 -_0.1121D 00 0.66650 00 _0.1033D 0 

13 1.241 0.58230 00 _0.43 51D'_Ol 0.56740 00 , -0.3423D -C 
15 1.448 0.48220 00 . 0.19230-02 0.46730 00 -0.1077D..0 
17 1.655 0.3823D: 00 0.2815D_01 0.36800 00 0.3597D.~0 
19 1.862 0.2836D 00 ' 0•39190-01 0.27050 00 0.45580_C 
21 2.069 0.1867D 00 0.38910-01 0.1752D 00 0.4372D -C 
23 2.276 0.9142D01 0.31210-01 0.81930-01 ' - 0.34440-C 
25 2.483 :.0.2463D _02 0.1986D-01 -0.9818D02 0.21680-C 
27 2.690 _0.95500_01 0.8603D_02 _0.10-06D 06 0.9329D_C 
29 2.897 _0.1882D 00 0.11480-02 _0.19120 00 0.12450-C 
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R2.0 LS =6.0 DIA O.5 k=230.097 R=1.5 LS =4.5 DIA=0.6 k= 15Q7•964 
W=12.0 EI=0.36816D 04 W=60.0 EI=0.76341D 04 

PT X/  f'r~.l Ay1 	4 n1 

1 0.0 0.10001) 01 _0.9191D 00 

3 0.207 0.9806D 00 _0.6871D 00 

5 0.414 0.9318D 00 -0.4930D 00 

7 0.621 0.8620D 00 _0.3349D 00 

9 0.828 0.7 780D 00 -0.2101D 00 

11 1.034 0.68501) 00 -0.1154D 00 

13 1.241 0.5871D 00 -0.4726D_01 

15 1.448 0.48 ?2D 00 -0.1828D-02 

1? 1.655 0.3872D 00 0.2474D -01 

19 1.862 0.28841) 00 0.36321) -01 

21 2.069 0.1911D 00 0.3672D -01 

23 2.2? 66 09543D-01  0 97, 

25 2.483 0.1022D -02 0.19011) -01. 

27 2.690 _0.9257D -01 0.8268D -02 

29 2.897 ..0.1858D 00 0.1108D -02 

0.1000D 01 -0.9460D 00 

0.9777D 00 -0.7013D 00 

0.9257D 00 -0.4975D 00 

0.8530D 00 -0.3324D 00 

0.7664D 00 _0.2029D 00 

0.6715D 00 -0.1055D 00 

0.5725D 00 -0.3624D -01 

0.47211) 00 0.90 ?OD _02 

0 .3724D 00 0.3461D-01 

0.2743D 00 0 .4455D-01 

0.1782D 00 0.4300D -01 

	

0.8414D -01 
	

0.3398D..01 

-0.8483D -02 0.21431) -01 

_0.1002D 00 0.9233D-02 

	

-0.19151) 00 
	

0.1232D-02 
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R1.0 LS =3.0 DIS,=0.5 k=3681.554 	P=1.25 LS =3.75 DIA=O s5 k=1507•' 
W=84••0 E1X0.36816D 04 W=42.0 EI=0.36816D 04 

PT x Ayl ~`'l 
,&1, 

1 0.0 0.1000D 01 -0.9454D 00 0.1000D 01 -0.9477D 60 

3 0.207 0.9754D 00 _0.6995D 00 0.'9776 00 -0.7023D 00 
5 0.414 0.9218D 00 ..0.4948D 00 0.9256D 00 .-0.4979D 00 
7 0.621 0.8478D 00 -0.3293D 00 '' O'.8528D:- 00 . -0.33246 00 

9 0.828 0.7604D 00 _0.1998D 00 • 0.7661D 00 0.2026D 00 
11 1.034 0.6651p O0 , 0.1036D 00 0.6711D QO -0.1051D 00 
13 1.241 0.5660D 00 _0.3367D_01 0.5720D 00 _0.35716..01- 

15 
J  . 

1.448 0.46596, 00 0.1124D -o1 0.4716D 00 0.9616D..02 
17 1.655 0.3668D 00 0.363511.01 ' 0.37186 00" 0.3512D -0.1 

19 1.862 0.2695D 0.0 0.4587D -01 0.2733D 00 ' 0.4498D -:01 

21 2.669 0.1,744D 00 0 .43 92D -01 0.17776 00 0.4333D-.,01 

23 2•276 0.8133D-01 0.3457D-01 0.83 67D -01 0.3421D-01 
25 2.483 _0.1017D -01 Q.2179)-01 _0.8905D -02 0.215611.01 

27 2.690 -0.1008D .00 0.93586 -02 _0.100€D:00 0.9288D..02 

29 2.897 -0.1910D 00 0.12496 -02 _0.1919D 00 0.1240D _02 
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=1.25 L5 =3.75 DIJ =0.4 k= 617.6G2 
=15.0 EI=0.15080D 04 

f=1.5 LS =4.5 DIAOO.4 k=29'7•8695 
W=9.0 EI0.15080D 04 

.PT x/`R Ayl 4ml ~iyl drnl 

1 0.0 0.1000D 01 0.945AP 00 0.1000D 01 _0.9340D 00 
3 0.207 0.9791D 00 _0.7022D 00 0.9801D 00 _0.6958D 00 
5 0.414 0.9283D 00 _0.4990D 00 0-.9305D 00 -0.4967D 00 
7 0.621 0.8564D 00 _0.3342D 00 0-•8597D .D0 _0•3350D 00 

9 0.828 0.7704D 00 _0.2049D 00 0.7747D 00 -0.2077D. 00 

L1 1.034 0.6758D 00 _0.1075D 00 0.6808D 00 _0.1115D 00 
L3 1.241 0.5768D 00 _0.3803D_01 0.5823D 00 _0.4257D-01 
L5 1.448 0.4762D 00 0.7523D-02 0.4820D 00 0-.2994D--02 

L7 1.655 0.3761D 00 0.3335D-01 0.3819D 00 0..2922D--01 

_9 1.862 0.2776D 00 0.4358D_01 0.-2831D 00 0.4012D~--01 

;1 2.069 0.1809]) 00 0.4231D-0i 0.1870D 00 0.39671)-Cl 

3 2.276 0.8614D_01 0.3354D...1 0.9064D-01 0.327. D 01 

5 2.483 _0.7196D_02 0.2119D._01 - 0..3345D--02 012)171p'01 

7 2.690 _0.9962D. -01 0.9144D-02 -- 0.964 	.Gl CJ735DO2 

9 2.897 -0.1917D 00 0.122.D_02 _0.1892D 00 0.1169D_02 

S 



11 1.084 0.6870D 00 

• 13 1.241 0.5891D 00 

15 1.448 0.4893D.00 

17 1.655 0.3892D 00 

19 1.862 0.2902D 00 

21 2.069 0.1928D 00 

23 2.276 0.9681D-01 

25 2.483 0.2121D-02 

27 2.690 -0.0176D-01 

29 2.897.  -0.1853D 00 

-289.". 

R=1.5 L$=-4+5 DIL=Oy3 k=94.2478 R=1.0 LS=3.0 DIA=0a4 k=1507.9 
W=3.0 EI 0 47713D 03 W=27.0 E1=  015080D 04 

A3t1 
Arnl f yl A n1 

1 0.0 0.1000D 01 _0.91741) 00.. 0 1000D -01 -0.9494D 00 

3 0.20? 0 9811D 00 _0.6864D 00 0.97?6D 00 -0.7033D 00 

5 0.414 0.9329D 00 _0.4930D 00 0.9255D 00 -0 •4983D 00 

7 0.621 0 .8635D 00 -0.3355D 00 0.8526D 00 -0.3324D 00 

9 0.828 0.7798D 00 _0.211QD 00 0.7658D 00 -0.2024D 00 

-0.1165D 00 0.6707D 00 ..0.1046D 00 

_0.4839D-01 0.5715D 00 .0.3519D..01 

-0.2892D-02 0.4711D 00 0.1015D01 

.0.2382D-01 0.3713D 00 0.3561D-01 

0.3557D.01 - 0.2732D 00 0.4540D_01 

0.3616D-01 0.1773D 00 0.4366D_01 

0.2935D-01 0.8321D-01 0.3443D-01 

0.1882D-01 -0.9314D -02 0.2169D-01 

0.8197D-02 -0.1009D 00 0.9342D-02 

0.1102D_02 -0.1922D 00 0.1247D-02 
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R3'.0 LS=9.0 DIE}=-0.7 k=174.606 
W=18.0 EI=0.14143D 05 

PT x/R Ayl nl 

1 0.0 0.1000D 01 _0.8011D 00 

3 0.207 0.9816D 00 _0.6645D 00 

5 0.414 0.93471) 00 _0.4825D 00 

7 0.621 0.8672D 00 _0.3335D 00 

9 0.228 0.7855D 00 -0.2152D 00 

11 1.034 0.6946D 00 -0.1245D 00 

13 1.241 0.5984D 00 -0.5841D-01 

15 1.448 0.4997D 00 _0.1345D 01 

17 1.655 0.4004D 00 0:1385D -01 

19 1.862 0.3018D 00 0.2699D -01 

2.069 0.2043D 00 0.2947D -01 

. 23 2.276 0.10 81D 00 0.2472D -01 

25 2.483 0.12 94D _01 •0.•1614D -01 

22 2.690 0.8151D01 0..7110D_02 
29 2.897 -0.17 57D 00 0.9562D -03 
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