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ABSTRACT 

World's climate which had been observed over the past several decades is consistently 

associated with changes in a number of components of the hydrological cycle and 

hydrological systems such as: changing precipitation patterns, intensity and extremes; 

widespread melting of snow and ice; increasing atmospheric water vapour; increasing 

evaporation; and changes in soil moisture and runoff. 

The Intergovernmental Panel on Climate Change (IPCC), an authoritative international 

body predicts that global temperatures will rise by 1.1 to 6.4° C by the end of 21 

century and this will head to negative influence to the nature in some cases. Thus it is, 

very important that scientist make prediction of the future climate as the first step of 

mitigation planning and adaptation. 

Global Climate Models (GCM) are considered to be the best tool to predict future 

climate with resolutions of hundreds of kilometers whilst the spatial resolution of 

regional climate models (RCM) which can give input data required for hydrological 

application as finer spatial resolution of the order of tens of kilometers. Further, many 

impact applications require the equivalent of point scale climate variations that are 

parameterized in coarse-scale-models. 

In view of the above, the output from a GCM has to be downscaled to obtain the 

information relevant to hydrologic studies. Statistical downscaling method is based on 

the view that the regional climate is conditioned by two factors: the large scale climate 

state and regional/local physiography. The large-scale output of GCM simulation is fed 

into this stastical model to estimate the corresponding local and regional climate 

characteristics. In this study, Multi Linear Regression (MLR) and Support Vector 

Machine for Regression (SVR) method approach were applied for statistical 

downscaling for precipitation and temperature variables in Roorkee area. 
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The 30 years (1981-2010) observed data of precipitation, minimum and maximum 

temperature were collected and as the predictants. The predictors were extracted from 

Scenario IS92a data of Coupled Global Climate Model (CGCM2) in Canadian Center 

for Climate Modeling and Analysis (CCCma) website. The values of the climate 

variables at pressure levels of 850 mb, 500 mb and 200 mb are found to be 

representative as the predictor variables. 

The best combination of predictors for downscaling precipitation among the available 

variables are temperature, geopotential height, and specific humidity at 200 mb. V 

(vertical) or Meridional wind is found influences the computations when downscaling 

the minimum temperatures whereas U (horizontal) or Zonal wind influences the 

computation of the maximum temperature. 

The result of downscaling shows that SVR are better computation than the MLR as 

seen by the improvement of error measurements. For precipitation SVR shows a 4.678 

% improvement for r, 10.931 % for NSE and 5.447 % for RMSE. For minimum 

temperature SVR shows a 4.331 % improvement in r, 9.243 % in NSE and 16.504 % in 

RMSE and for maximum temperature SVR shows a 14.440 % improvement in r, 

31.437 % and 19.541 % in NSE and RMSE respectively. 

The future projection by SVR model until 2040 for precipitation shows that there will 

be little increase of precipitation and for temperature shows that there will be not much 

change of temperature in Roorkee area. 
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I.1 GENERAL 

Warming of the climate system is unequivocal and is already impacting a range of 

human and natural systems. Scientists have observed changes in the timing of seasons; 

the range of plant and animal species; regional pattern of precipitation, flooding, and 

drought. Sea levels are rising and glaciers and Arctic sea ice are forging a steady retreat, 

as is now evident from observations of increase in global average air and ocean 

temperatures, widespread melting of snow and ice, rising sea levels. Since 1980, eleven 

of the last twelve years (1995-2006) rank among the twelve warmest years in the 

instrumental record of global surface temperature (IPCC Summary, 2007). For instance, 

the Antarctic peninsula has experienced a major warming over the last 50 years, with 

temperatures at Faraday/Vernadsky station have increased by 2.5°C since the 1950s 

(Turner et.al 2005). 

The Intergovernmental Panel on Climate Change (IPCC), an authoritative international 

body has concluded that this warming is primarily the result of human activities 

(Downie, 2009). Since the time of the Industrial Revolution (1850), activities including 

deforestation and the burning of fossil fuels have released increasing quantities of 

greenhouse gases into our atmosphere. These gases, which include carbon dioxide and 

methane, among others, trap heat that would otherwise escape into space. As such, the 

gases which have accumulated in the Earth's atmosphere have intensified the natural 

effect and now are causing climate change. 

Looking towards the future, the IPCC Special Report on Emissions Scenarios (SRES) 

predicts that temperatures will rise by 1.1 to 6.4° C by the end of 21 century, with range 

largely dependent on future greenhouse gas emissions. The type and severity of impacts 

I-1 



that are associated with such temperature increases will vary by region, but on the 

whole they are expected to be negative and in some cases disastrous. 

Furthermore, the greater the temperature increase, the greater the impacts we can 

expect. Fragile ecosystems, coastal areas and low—lying islands will be destroyed. 

Species unable to adapt to changing conditions will go extinct. Agricultural pests and 

vector-borne diseases will spread, and people will suffer as droughts, floods, and storms 

become may both more frequent and more intense The world's poor will be hit first, and 

hardest, as changing climatic conditions exacerbate problems of food security, water 

scarcity, and sanitation. (Downie, 2009). 

It is almost certain that the world is experiencing climate change and hence additional 

risks will arise in the future. Thus it is very important that scientist should make 

prediction of the future climate. This is necessary so that we can prepare ourselves to 

face the future climate and make strategies as part of mitigation planning and 

adaptation. 

General Circulation Model or Global Climate Models (GCM) have been developed to 

simulate the present climate and used to predict future climatic change. These. are 

designed to simulate time series of climate variables globally, accounting for the effects 

of greenhouse gases in the atmosphere. GCMs perform reasonably well in simulating 

climatic variables at larger spatial scale, but poorly at the smaller space and time scales 

relevant to regional impact analyses, especially in the important area of hydrology. 

GCMs have resolutions of hundreds of kilometer (> 104  km2). However, many impact 

applications required the equivalent of point scale climate variations that are 

parameterized in coarse-scale models. Therefore the output from a GCM has to be 

downscaled to obtain the information relevant to hydrologic studies (Wilby 2004). 

Downscaling climate data is a strategy for generating locally relevant data from GCM. 

The overarching strategy is to connect global scale predictions and regional dynamics to 

generate regionally specific forecasts. Basically, downscaling technique is a movement 

process from large scale to small scale. One way to connect the GCM large scale with a 
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smaller scale (study area) is to use Statistical Downscaling (SD) technique. SD is a 

statistical process of downscaling where data on large-scale grids in the period and 

particular time is used as the basis for determining the data on the smaller grid scale. 

1.2. OBJECTIVE OF PRESENT STUDY 

The objective of this dissertation work is: 

To downscale precipitation and temperature data at Roorkee area from GCM output 

data by using the Support Vector Machine (SVM) and Multiple Linear Regression 

(MLR) method and compare the results. 

1.3 SCOPE OF PRESENT STUDY 

Roorkee area is taken as the area for the present study. Mean monthly precipitation, 

maximum and minimum temperature are the climate variables that are proposed to be 

downscaled. SVM and MLR are the methods that will be used to downscale the climate 

variables. 

1.4 ORGANIZATION OF DISSERTATION 

The dissertation is arranged in six chapters as follows:  

1. Chapter I: The first chapter provides background for the study and the objectives 

which are proposed to be achieved in this study. 

2. Chapter II: Literature review. 

3. Chapter III: This chapter covers description of downscaling methods. 

4. Chapter IV: In this chapter the support vector machine method is explained. 

5. Chapter V: This chapter informs about the study area and the data used in the 

study. 

6. Chapter VI: This chapter provide downscaling computation and result analyses. 

7. Chapter VII: This chapter presents the summary of important conclusions drawn 

from the study. 
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II.1 GENERAL 

Climate (from Ancient Greek klima, meaning inclination) is commonly defined as the 
weather averaged over a long period of time. The standard averaging period is 30 years, 

but other periods may be used depending on the purpose. The difference 

between weather and climate is a matter of time scale. Weather is the day-to-day stuff. 

The climate cannot be harsh on one particular day, because it is not measured in terms 
of days, but in terms of many years. 

The Intergovernmental Panel on Climate Change (IPCC) glossary definition of climate 

is: Climate in a narrow sense is usually defined as the "average weather," or more 

rigorously, as the statistical description in terms of the mean and variability of relevant 

quantities over a period of time ranging from months to thousands or millions of years. 

These quantities are most often surface variables such as temperature, precipitation, and 

wind. The classical period is 30 years, as defined by the World Meteorological 

Organization (WMO). Consortium for Atlantic Regional Assessment (CARA) glossary 

defined Climate Variables as "measures of climate such as average, maximum and 

minimum temperature; precipitation, humidity, cloud type and amount, solar radiation". 

Climate in a wider sense is the state, including a statistical description, of the climate 

system which is an interactive system consisting of five major components: the 

atmosphere, the hydrosphere, the cryosphere, the land surface, and the biosphere. The 

climate system continues to evolve over time, influenced by: its own internal dynamics, 

external forcings such as volcanic eruptions, solar variations, and human-induced 
forcings such as fossil fuel burning and land use change. 



 Twr" pa %M n Mod ~r 
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Figure 2.1 
Climate System 

Figure 2.1 shows the main physical processes that take place within the climate system 

and thus exert an influence on climate. The components of the global climate system 
consisting of the atmosphere (including the troposphere and stratosphere), the geosphere 

[which includes the solid earth (lithosphere), the oceans, rivers and inland water masses 
(hydrosphere) and the snow, ice and permafrost (cryosphere)] and the biosphere [the 

transition zone between them within which most plant and animal life exists and most 

living and dead organic matter (biomass) is to be found]. 

II.2 CLIMATE CHANGE 
Climate change is defined as variation and shifts in weather condition over space and 
time of different scale and magnitude. In fact, climatic change refers to drastic or 

secular change in heat balance of the earth-atmosphere system, moisture, cloudiness and 

precipitation caused by either external or internal factor (Singh, 2005). 

Climate change is nothing new or unnatural. Climate has been changing since the world 

began. It has changed continually on most time scales we can measure, and it has 
changed catastrophically, far more radically than what is feared to occur in the next 200 

years. Most climate change occurs on' time scales far longer than a human lifetime: 

centuries, millennia or millions of years. 
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During most of its estimated 4.6-billion-year life, the Earth did not have the sort of 

atmosphere that could support life on land. Earth's early atmosphere probably included 

large amounts of carbon dioxide (CO2), and it took billions of years for algae and other 

small, plantlike organisms in the seas to remove that CO2 and replace it with enough 

oxygen that life could be sustained on land. 

Not only would animals and plants have suffocated in the early atmosphere, but the lack 

of protection from ultraviolet sunlight could have killed them. The ultraviolet from the 

Sun is strong enough to break the bonds of organic molecules like DNA, and is fatal to 

many forms of life and harmful to others. It was not until about 450 to 350 million years 

ago, that plants, insects, and finally fish-like animals came ashore. Until that point the 

"natural" global atmosphere and climate had been largely lethal to living things. 

II.2.1 Natural Green House Effect 

The greenhouse effect is a process where energy from the sun readily penetrates into the 

lower atmosphere and onto the surface of Earth and is converted to heat, but then cannot 

freely 	leave 	the planet. 	This 	can 	be 	sketched 	as 	follows: 

Sun's Radiation —+ absorbed by Earth —> some re-radiated to space as heat —~ 

some trapped by the atmosphere. 

Some solar radiation is 
reflected by 
the earth and 
the atmosphere. 

Most solar 	 7tKEwgry surface emits infrared 
radiation 	 radiation VR). Some of thislR 
passes 	 passes through the atmosphere 
through the 	to space while some Is absorbed 

clear 	 and re-emitted by greenhouse 

atmosphere. 	gasè  

Most radiation,is absorbed~(~ 
by the earths or e't5i,thtcff7s 
then w,4ed 1 I  

Figure 2.2 

Illustration of the Earth's radiative balance. (Adapted from: NOAA) 
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Due to the presence of certain "greenhouse gases" that trap heat, like carbon 

dioxide, methane, water vapor, and Chlorofluorocarbon (CFC's), the atmosphere retains 

the sun's radiation and warms up the planet. 

With a Greenhouse Effect 
Radiative "surface" 

5000 m 
Earth's surface 

VO *  

Without a Greenhouse Effect 

5000m 
Earth's surface = Radiative su 

0°F 

Figure 2.3 

The illustration of radiation balance and the role of greenhouse effect. 

Figure 2.3 demonstrates the importance of greenhouse gases in regulating the 

temperature of the lower atmosphere. The top diagram shows a greenhouse Earth where 

the apparent temperature "surface" lies 5000m up in the atmosphere from the land 

surface. In the past 100 years this apparent temperature "surface" has been rising. By 

contrast, without a greenhouse effect, the Earth would look like the lower diagram, with 

a uniform temperature in the atmosphere of 0°F (18°C). 

Basically a "natural" greenhouse effect keeps the Earth's climate warm and habitable, 

but by increasing the abundance of greenhouse gases in the atmosphere, humankind is 

increasing the overall warming of the Earth's surface and lower atmosphere, this 

process is called "global warming." 
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11.2.2 Causes Of Climate Change 

There are some basic components that influence the state of the Earth's climatic system. 

Changes in the state of this system can occur externally (from extraterrestrial systems) 

or internally (from ocean, atmosphere and land systems) through any one of the 

described components. For example, an external change may involve a variation in the 

Sun's output which would externally vary the amount of solar radiation received by the 

Earth's atmosphere and surface. Internal variations in the Earth's climatic system may be 

caused by changes in the concentrations of atmospheric gases, mountain building, 

volcanic activity, and changes in surface or atmospheric albedo or reflectivity. 

(Pidwirny & Jones, 1999) 

Volcanic 	 Atmospheric 
Emissions Chemistry 

Mountain 	 Atmospheric 
Building Reflectivity 

!ental pheean 	Surface 
Drift 	Heat Exchange 	Reflectivity 

Figure 2.4 
Influence Factors of the Earth's climate. 

The work of climatologists has found evidence to suggest that only a limited number of 

factors are primarily responsible for most of the past episodes of climate change on the 

Earth. These factors include: 

• Variations in the Earth's orbital characteristics. 

• Atmospheric carbon dioxide variations. 

• Volcanic eruptions 

• Variations in solar output. 
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A. Variations in the Earth's Orbital Characteristics 

The Milankovitch theory suggests that normal cyclical variations in three of the Earth's 

orbital characteristics are probably responsible for some past climatic change. The basic 

idea behind this theory assumes that over time these three cyclic events vary the amount 

of solar radiation that is received on the Earth's surface. The elliptical path of the Earth 

around the Sun (eccentricity) brings it closer to or farther from the Sun every 100,000 

years (Figure 2.5a). 

r figure z.)a 
Eccenticity 

Also, the Earth like a spinning top wobbles as it rotates on its axis, exposing more or 

less of each hemisphere to the direct rays of the Sun. It does this, in a process called 

precession, with a periodicity of 22,000 years.(Figure 2.5b). 

U 

Figure 2.5b  
Precession 

Finally, the tilt of the Earth's axis with respect to the Sun (obliquity) changes over a 
period of 40,000 years (Figure 2.5c). 



Figure 2.5c 
Obliquity 

The summation of these three periodicities determines the amount of solar radiation 

reaching the Earth at a particular time. The resulting cold and warm periods and glacial 

retreats and advances. The most recent glaciations peaked about 18,000 years ago, and 

between then and 6,000 years ago the Earth's climate warmed by an average 5°C 

(Hardy, 2003). Computer models and historical evidence suggest that the Milankovitch 

cycles exert their greatest cooling and warming influence when the troughs and peaks of 

all three cycles coincide with each other. 

B. Atmospheric Carbon Dioxide Variations 

Studies of long term climate change have discovered a connection between the 

concentration of carbon dioxide in the atmosphere and mean global temperature. Carbon 

dioxide is one of the more important gases responsible for the greenhouse effect. 

Certain atmospheric gases, like carbon dioxide, water vapor and methane, are able to 

alter the energy balance of the Earth by being able to absorb long wave 

radiation emitted from the Earth's surface. The net result of this process and the re-

emission of long wave back to the Earth's surface increase the quantity of heat energy in 

the Earth's climatic system. 

Over the past three centuries, the concentration of carbon dioxide has been increasing in 

the Earth's atmosphere because of human influences. Human activities like the burning 

of fossil fuels, conversion of natural prairie to farmland, and deforestation have caused 
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Over the past three centuries, the concentration of carbon dioxide has been increasing in 

the Earth's atmosphere because of human influences. Human activities like the burning 

of fossil fuels, conversion of natural prairie to farmland, and deforestation have caused 

the release of carbon dioxide into the atmosphere. From the early 1600s, carbon dioxide 

has increased from 310 ppmv (parts per million by volume) to 380 ppmv in 2010. 

Climatologists estimate that a level pf 450 ppmv—as projected for 2050—may result in 

an eventual 1.8-3°C (3.2-5.4° F) increase in temperature (Butler,2010) 

Atmospheric Carbon Dioxide 
Measured at Mauna Loa, Hawaii 
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Figure 2.6: 
The increasing carbon dioxide concentration in the atmosphere from 1960 to 2010 

taken from Mauna Loa-Hawaii Recording. 

C. Volcanic Eruptions 
For many years, climatologists have noticed a connection between large 

explosive volcanic eruptions and short term climatic change. For example, one of the 

coldest years in the last two centuries occurred the year following the Tambora volcanic 

eruption in 1815. Accounts of very cold weather were documented in the year following 

this eruption in a number of regions across the planet. Several other major volcanic 

events also show a pattern of cooler global temperatures lasting I to 3 years after their 

eruption. The satellite data indicated that the sulfur dioxide plume from the volcano 

eruption caused a several percent increase in the amount of sunlight reflected by the 

Earth's atmosphere back to space causing the surface of the planet to cool. 
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D. Variations in Solar Output 

Until recently, many scientists thought that the Sun's output of radiation only varied by 

a fraction of a percent over many years. However, measurements made by satellites 

equipped with radiometers in the 1980s and 1990s suggested that the Sun's energy 

output may be more variable than was once thought. Measurements made during the 

early 1980s showed a decrease of 0.1 percent in the total amount of solar energy 

reaching the Earth over just an 18 month time period. If this trend were to extend over 

several decades, it could influence global climate. Numerical climatic models predict 

that a change in solar output of only 1 percent per century would alter the Earth's 

average temperature by between 0.5 to 1.0° Celsius. 

11.3 THE IMPACTS OF CLIMATE CHANGE ON CRITICAL AREAS 

According to Water Aid Paper (Environmental Resources Management London, 2007) 

the effects of minor levels of climate change are already being felt, with impacts across 

many economic sectors. While there will clearly be some gains from climate change 

(for example, agriculture in some northern regions should increase in productivity due 

to a rise in temperatures), most of the impacts will be negative, and gains and losses will 

not be evenly distributed. For example: 

A. WATER 

Rising global -temperatures will lead to an intensification of the hydrological cycle, 

resulting in dryer dry seasons and wetter rainy seasons, and subsequently heightened 

risks of more extreme and frequent floods and drought. Changing climate will also have 

significant impacts on the availability of water, as well as the quality and quantity of 

water that is available and accessible. Melting glaciers will increase flood risk during 

the rainy season, and strongly reduce dry-season water supplies to one-sixth of the 

World's population. 

B. AGRICULTURE 

Declining crop are likely to leave hundreds of millions without the ability to produce 

or purchase sufficient food supplies, especially in Africa. At mid to high latitudes, crop 

yields may increase for low levels of change in temperature, but will decline at higher 

levels of temperature change. 
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C. ECOSYSTEMS: 

Changing temperatures will cause ecosystems to shift — forests, land types and plant 

species will dieback in some areas as temperatures rise, but increase in other areas. 

However, in many cases, the pace of change in temperature may be too fast for 

ecosystems to adjust, resulting in the loss of forests and species. 

D. HEALTH: 

Higher temperatures expand the range of some dangerous vector-borne diseases, such as 

malaria, which already kills one million people annually, most of whom are children in 

the developing world. Further, heat waves associated with climate change, and increases 

in water borne diseases, will result in increased health problems. 

E. COASTLINES: 

Melting ice and thermal expansion of oceans are the key factors driving sea level rise. In 

addition to exposing coastlines, where the majority of the human population live, to 

greater erosion and flooding pressures, rising sea levels will also lead to salt water 

contamination of groundwater supplies, threatening the quality and quantity of 

freshwater access to large percentages of the population.6 For example, according to 

some estimates a 1 meter rise in sea level will displace 80 percent of the population of 

Guyana. 
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Table 2.1 

Examples of climate change impacts in Asia 
Boreal Asia 

• Expanded agricultural growing season 

• Increased active soil temperatures/ better soil climate 

• Northward shift of agricultural boundary 

• Change to timing of snowmelt and therefore altered flow regime 
• Decrease in dry summer season water flow 

Arid & Semi-Arid Asia 
• Exacerbation of threats caused by land use/ cover change & 

population pressures 

• Significant increase in surface air temperatures 

• Increased evapotranspiration in plants 

• Acute water shortages 
Temperate Asia 

Significant surface warming & rainfall pattern shifts 
• Increased plant respiration & saturation deficits, decreased agricultural 

productivity  

• Intensification of climatic hazards (e.g. floods, droughts, sea level rise, 
storm surges) 

Tropical Asia 
• Changes to hydrological regime 

• Increased flooding, water logging, salinity caused by higher runoff in 

some river basins 

• Decreased surface runoff in some basins due to increased evaporation 
• Changes in freshwater availability in coastal regions 

• Sea level rise, leading to inundation of low-lying areas, shoreline 

retreat, changes to water table, salinisation/ acidification of soil 
Source : iru Lumate Lnange 2001 : lmpact,Adaptation and Vulnerability 



II.4 OBSERVED CHANGES IN CLIMATE AS RELATE TO WATER 

Based on the IPCC Technical Paper VI report , the - hydrological cycle is intimately 

linked with changes in atmospheric temperature and radiation balance. For widespread 

regions, cold days, cold nights and frost have become less frequent, while hot days, hot 

nights and heatwaves have become more frequent over the past 50 years. 

Climate warming observed over the past several decades is consistently associated with 

changes in a number of components of the hydrological cycle and hydrological systems 

such as: changing precipitation patterns, intensity and extremes; widespread melting of 

snow and ice; increasing atmospheric water vapor; increasing evaporation; and changes 

in soil moisture and runoff (IPCC, 2008). 

II.4.1 Precipitation and Water Vapour 

A number of model studies suggest that changes in radiative forcing (from combined 

anthropogenic, volcanic and solar sources) have played a part in observed trends in 

mean precipitation. Widespread increases in heavy precipitation events (e.g., above the 

95th percentile) have been observed, even in places where total amounts have 

decreased. These increases are associated with increased atmospheric water vapour and 

are consistent with observed warming (IPCC, 2008). 

Theoretical and climate model studies suggest that, in a climate that is warming due to 

increasing greenhouse gases, a greater increase is expected in extreme precipitation, as 

compared to the mean. Hence, anthropogenic influence may be easier to detect in 

extreme precipitation than in the mean. This is because extreme precipitation is 

controlled by the availability of water vapor, while mean precipitation is controlled by 

the ability of the atmosphere to radiate long-wave energy (released as latent heat by 

condensation) to space, and the latter is restricted by increasing greenhouse gases. 

The water vapor content of the troposphere has been observed to increase in recent 

decades, consistent with observed warming and near-constant relative humidity. Total 

column water vapor has increased over the global oceans by 1.2 ± 0.3% per decade 

from 1988 to 2004, in a pattern consistent with changes in sea surface temperature. 
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Many studies show increases in near surface atmospheric moisture, but there are 

regional differences and differences between day and night (IPCC, 2008). 

II.4.2 Snow and Land Ice 

The cryosphere (consisting of snow, ice and frozen ground) on land stores about 75% of 

the world's freshwater. In the climate system, the cryosphere and its changes are 

intricately linked to the surface energy budget, the water cycle and sea-level change. 
A. Snow cover, frozen ground, lake and river ice 

Snow cover has decreased in most regions, especially in spring and summer. 

Degradation of permafrost and seasonally frozen ground is leading to changes in land 

surface characteristics and drainage systems. Permafrost warming and degradation of 

frozen ground appear to be the result of increased summer air temperatures and changes 

in the depth and duration of snow cover. Freeze-up and break-up dates for river and lake 

ice exhibit considerable spatial variability. Averaged over available data for the 
Northern Hemisphere spanning the past 150 years, freeze-up has been delayed at `a rate 

of 5.8 ± 1.6 days per century (IPCC, 2008). 

B. Glaciers and .Ice Caps 	 a 
On average, glaciers and ice caps in the Northern Hemisphere and Patagonia e show 
moderate but rather consistent increase in mass turnover over the last half-century, and 

substantially increased melting. As a result, considerable mass loss occurred on the 

majority of glaciers and ice caps worldwide. The widespread 20th-century shrinkage 

appears to imply widespread warming as the primary cause although, in the tropics, 

changes in atmospheric moisture might be contributing. There is evidence that this 

melting has very likely contributed to observed sea-level rise (IPCC, 2008). 

II.4.3 Sea Level Rise 

Global mean sea level has been rising and there is high confidence that the rate of rise 

has increased between the mid-19th and the mid-20th centuries. The average rate was 
1.7 f 0.5 mm/ yr for the 20th century. Rising sea level potentially affects coastal 

regions, but attribution is not always clear. Global increases in extreme high water 
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levels since 1975 are related to both mean sea-level rise and large-scale inter-decadal 

climate variability (Woodworth and Blackman, 2004). 

II.4.4 Evapotranspiration 

A. Pan Evaporation 

Decreasing trends during recent decades are found in sparse records of pan evaporation 

(measured evaporation from an open water surface in a pan, a proxy for potential 

evapotranspiration) over the USA, India, Australia, New Zealand and China 

(IPCC,2008). 

B. Actual Evapotranspiration 

Using observations of precipitation, temperature, cloudiness-based surface solar 

radiation and a comprehensive land surface model, (Qian et al., 2006) found that global 

land evapotranspiration closely follows variations in land precipitation. Global 

precipitation values peaked in the early 1970s and then decreased somewhat, but reflect 

mainly tropical values, and precipitation has increased more generally over land at 

higher latitudes. Changes in evapotranspiration depend not only on moisture supply but 

also on energy availability and surface wind. 

C. Soil Moisture 

Among more than 600 stations from a large variety of climates, identified an increasing 

long-term trend in surface (top 1 m) soil moisture content during summer for the 

stations with the longest records, mostly located in the former Soviet Union, China, and 

central USA. The longest records available, from the Ukraine, show overall increases in 

surface soil moisture, although increases are less marked in recent decades (Robock et 

al., 2005). 

D. Runoff and River Discharge 

At the global scale, there is evidence of a broadly coherent pattern of change in annual 

runoff, with some regions experiencing an increase in runoff (Milly et al., 2005). There 

is more robust and widespread evidence that the timing of river flows in many regions 

where winter precipitation falls as snow has been significantly altered. Higher 
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temperatures mean that a greater proportion of the winter precipitation falls as rain 

rather than snow, and the snowmelt season begins earlier 

II.5 EL NINO/LA NINA 

According to Environmental Law Institute — USA, El Nino and La Nina are the two 
extremes of the El Nino-Southern Oscillation, also known as ENSO. ENSO is generated 

by interactions between the ocean and the atmosphere in the Tropical Pacific. ENSO is 

the strongest of all naturally occurring climate cycles on the annual-to-decadal time 

scale; it creates some of the most pronounced variability in climate events on a year-to-

year basis, including the frequency and severity of droughts, floods, hurricanes, and 
tornadoes, among other events. 

During the "normal" phase of the ENSO cycle, trade winds blow from east to west 

(from an area of higher pressure to an area of lower pressure), pushing the surface layer 

of the ocean westward. This warmer surface water gets pushed westward by the trade 

winds and "piles up" in the west Pacific; the eastern Pacific, by contrast, is much colder, 

since cold water from deeper in the ocean wells up to replace the water that has been 

blown westward. During these normal years, large rain clouds form over the warm 

water, bringing rain to countries like Indonesia and Malaysia. 

During El Nino years, the pressure difference between east and west is less, and 

therefore, trade winds do not blow as hard, and the warm surface water remains farther 

east. Thus, the rain clouds form farther east, and the rain falls farther east, resulting in 

above average rainfall for places like California and Peru, and droughts for places like 
Indonesia and Australia. El Nino is known as the "warm phase" of ENSO. By contrast, 

during La Nina years, the pressure difference between east and west increases, causing 

more water than normal to be pushed westward, resulting in even colder surface water 

in the eastern Pacific and even warmer surface water in the western Pacific, delivering 

more rain than normal to countries like Indonesia and Australia, which can result in 

flooding in these areas. La Nina is known as the "cold phase" of ENSO. 
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it is possible that an increase in global temperatures may exacerbate El Nino conditions. 

Even though the trade winds would still blow the warmest water west, the water in the 

east would not be as cold, since global temperature increases would increase water 

temperatures. Thus, "normal" years would resemble El Nino years, since warm water 

would be present in the east Pacific. As a result, future El Nino events would be 

magnified: areas which are normally wet during El Nino years would become wetter, 

and dry areas drier. This could have a profound effect on the growing seasons in these 

areas, and also upon seasons in these areas, and also upon health conditions arising from 

extreme wet or dryness. 

II.6 MONSOON 

The word "monsoon" is used to indicate the winds in the areas where they change their 

direction twice each year. On this basis, the word monsoon was applied to all those 

winds of the globe which had directional change from summer season to winter season 

and vice-versa. According to Singh (2005) monsoon is surface convective system which 

is originated due to differential heating and cooling of the land and water (oceans) and 

thermal variations. The monsoons,. which help balance global temperatures and sustain 

life on earth, affect a vast area of the globe - from Africa across Asia to the Pacific; 

northern China and the Himalayas to north Australia; and even Mexico and parts of 

Central America - directly influencing the lives of over half the world's population. In 

India, 50% of the arable land is irrigated solely by monsoon rains. 

There are two Indian monsoon seasons. The summer or south-west monsoon comes in 

from the direction of Africa, and brings heavy rain to the west coast and large areas of 

northern India between June and August. The winter, or north-east monsoon, sweeps 

down from the plateaus of Asia and the Himalayas, and brings rain and cooler weather 

to south-east India between October and December. 

The key to understanding the basic monsoon mechanism lies in the fact that land heats. 

up and cools more quickly than the sea; the latter holding its temperature more or less 

steady. As the sun moves north bringing summer heat, the land steadily gets hotter and 

hotter, while the temperature of the ocean lags far behind. The effect on a huge land 
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mass like Asia as the hot air rises over the land, leaving below a vast area of low 

pressure, is to draw in massive amounts of air from over the ocean, where higher 

pressures are maintained. This is the south-west monsoon pattern (it is the wind, and not 

the resulting rain, which is defined as the monsoon). 

Around September, with the sun fast retreating south, the northern land mass begins to 

cool rapidly. As it cools, air pressure builds up over the land. Meanwhile the oceans are 

still holding their warmer summer temperatures. The cooler high pressure air over 

inland Asia then starts to move down towards the lower pressure areas over the ocean, 

and India north-east monsoon is formed and make month October-December as period 

of rains. Meanwhile the air moving out from inland Asia is replaced and balanced by 

warmer air moving in northwards from the. oceans at around 40,000 feet. For most of 

India, the main monsoon is the south-west monsoon. 

II.7 IPCC SPECIAL REPORT ON EMISSIONS SCENARIOS (SRES) 

In order to understand how global climate could change over the next hundred years, it 

is necessary for climate models to represent in some way information on possible 

changes in greenhouse gas emissions over that time period. Such information, on 

theoretical paths for growth in greenhouse gas emissions over time, is necessarily based 

on a wide range of considerations related to the future development of human societies, 

such as population changes, economic development, technological change, energy 

supply and demand, and land use change. 

In September 1996, the IPCC initiated an `open process' approach for the development 

of new emissions scenarios, involving input and feedback from a broad community of 

experts, culminating in approval of a Special Report on Emissions Scenarios (SRES) by 

the IPCC Working Group III in March 2000. The scenarios are firmly based on 

published and peer reviewed literature, and represent the state-of-the-art at the time of 

preparation of the SRES. The SRES scenarios are characterized on the basis of four 

`storylines' (Figure 2.8), which are based on sets of assumptions about possible 

alternative futures. Each storyline yields a family of scenarios, totaling 40 altogether, 
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with each considered equally sound. The future worlds described by the four storylines 

are as follows: 

Al: a world of very rapid economic growth, global population that peaks in mid-century 

and declines thereafter, and the rapid introduction of new and more efficient 

technologies. Three Al groups are defined with specific technological emphases: fossil 

intensive (AIFI), non-fossil energy sources (A1T), or a balance across all sources 

(A1B). 

A2: a very heterogeneous world, featuring self-reliance, preservation of local identities, 

continuously increasing population and economic development which is primarily 

regionally oriented. 

B!: a convergent world with the same global population as in the Al storyline, but with 

rapid change in economic structures toward a service and information economy, with 

reductions in material intensity and the introduction of clean and resource-efficient 

technologies. 

B2: a world which emphasizes local solutions to economic, social and environmental 

sustainability, with continuously increasing global population, intermediate levels of 

econ mic development, and less rapid and more diverse technological change than in the 

B1 and Al storylines. 

A 
I 

Mor. glob. 	 Moro rosb..al, 

[Øi 	 B2 

Figure 2.7 
Schematic diagram of the SRES scenarios 
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II.8 CLIMATE CHANGE MITIGATION 

Climate change mitigation is action to decrease the intensity of radiative forcing in 

order to reduce the potential effects of global warming. Mitigation is distinguished from 

adaptation to global warming, which involves acting to tolerate the effects of global 

warming. Most often, climate change mitigation scenarios involve reductions in the 

concentrations of greenhouse gases, either by reducing their sources or by increasing 
their sinks. 

The UN defines mitigation in the context of climate change, as a human intervention to 

reduce the sources or enhance the sinks of greenhouse gases. Examples include using 

fossil fuels more efficiently for industrial processes or electricity generation, switching 

to renewable energy (solar energy or wind power), improving the insulation of 

buildings, and expanding forests and other "sinks" to remove greater amounts of carbon 

dioxide from the atmosphere. 

Scientific consensus on global warming, together with the precautionary principle and 

the fear of abrupt climate change is leading to increased effort to develop new 

technologies and sciences and carefully manage others in an attempt to mitigate global 

warming. Most means of mitigation appear effective only for preventing further 

warming, not at reversing existing warming. The Stern Review identifies several ways 

of mitigating climate change. These include reducing demand for emissions-intensive 

goods and services, increasing efficiency gains, increasing use and development of low-

carbon technologies, and reducing fossil fuel emissions. 

The Summary for Policymakers (SPM) of the IPCC concludes that there was a high 

level of agreement and much evidence that 'there is substantial economic potential for 

the mitigation of global greenhouse gas emissions over the coming decades, that could 

offset the projected growth of global emissions or reduce emissions below current 

levels', taking into account financial and social costs and benefits. The consideration of 

technologies with the largest economic potential within this timescale is presented in the 
table 2.2 below. 
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Tabel 2.2 

Key mitigation technologies and practices by sector 

Sector Key mitigation technologies and practices Key 	mitigation 	technologies and 
currently commercially available practices 	projected 	to 	be 

commercialized before 2030 
Energy Improved supply and distribution efficiency; Carbon Capture and Storage (CCS) 
Supply fuel switching from coal to gas; nuclear power; for 	gas, 	biomass 	and 	coal-fired 

renewable heat and power (hydropower, solar, electricity 	generating 	facilities; 
wind, geothermal and bioenergy); combined advanced nuclear power; advanced 
heat and power; early _applications of CCS (e.g. renewable energy, including tidal and 

storage of removed CO2 from natural gas) waves energy, 	concentrating solar, 

and solar PV. 
Transport More fuel efficient vehicles; electric vehicle; Second generation biofuels; higher 

hybrid 	vehicles; 	cleaner 	diesel 	vehicles; efficiency aircraft; advanced electric 

biofuels; modal shifts from road transport to rail and 	hybrid 	vehicles 	with 	more 
and public transport systems; non-motorised powerful and reliable batteries 
transport 	(cycling, 	walking); 	land-use 	and 

transport planning 

Buildings Efficient 	lighting 	and 	daylighting; 	more Integrated 	design 	of 	commercial 
efficient electrical appliances and heating and buildings 	including 	technologies, 
cooling 	devices; 	improved 	cook 	stoves, such as intelligent meters that provide 

improved insulation; passive and active solar feedback 	and 	control; 	solar 	PV 
design 	for heating 	and 	cooling; 	alternative integrated in buildings 

refrigeration fluids, recovery and recycle of 

fluorinated gases 

Industry More efficient end-use electrical equipment; Advanced energy efficiency; CCS for 

heat and power recovery; material recycling and cement, 	ammonia, 	and 	iron 
substitution; control of non-0O2 gas emissions; manufacture; 	inert 	electrodes 	for 
and 	a 	wide 	array 	of 	process-specific aluminium manufacture 
technologies 

Agriculture Improved crop and grazing land management to Improvements of crop yields 
increase 	soil 	carbon 	storage; 	restoration 	of 

cultivated 	peaty 	soils 	and 	degraded 	lands; 

improved 	rice 	cultivation 	techniques 	and 

livestock and manure management to reduce 

CH4 emissions; improved nitrogen fertilizer 

application 	techniques 	to 	reduce 	N20 

emissions; dedicated energy crops to replace 
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fossil fuel use; improved energy efficiency 
Forestry/ Afforestation; reforestation; forest management; Tree species improvement to increase 
forests reduced deforestation; harvested wood product biomass 	productivity 	and 	carbon 

management; use of forestry products for bio- biosequestration. 	Improved 	remote 
energy to replace fossil fuel use sensing technologies for analysis of 

vegetation/ soil carbon sequestration 
potential 	and 	mapping 	land 	use 
change 

Waste Landfill methane recovery; waste incineration Biocovers and biofilters to optimize 
with energy recovery; composting of organic CH4 oxidation 
waste; 	controlled 	waste 	water 	treatment; 
recycling and waste minimization 

II.9 GCM 

Global Climate Models (GCM) another term for General Circulation Models (also 

referred to as GCM) is a computer program which simulates the behavior of the real 

atmosphere and/or ocean by incorporating our understanding of physical climate 

processes into a set of mathematical equations which are used to calculate the future 
evolution of the system from some initial conditions. 

M 

The key equations are those relating to the conservation of mass, momentum and energy 

in the atmosphere and ocean (Figure 2.9). The equations are solved at a large number of 

individual points on a three dimensional grid divide the atmosphere or ocean into a 

horizontal grid with a horizontal resolution covering the world (Figure 2.9) or by 

equivalent (e.g. spectral) methods. There are 3 Types of GCM : 

• Atmosphere general circulation models (AGCMs) 

• Ocean general circulation models (OGCMs) 

• Coupled atmosphere-ocean general circulation models (AOGCMs) 
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The closeness of the points on the grid depends largely on the computing power 

available; in general, the more powerful the processor, the more detailed the achievable 

resolution of the model and the better the simulation. Typical calculations may have 

time steps of about half an hour over a global grid with resolution in the atmosphere of 

about 250 km in the horizontal and 1 km in the vertical. 

For the ocean component, spatial resolutions are typically 125-250 km in the horizontal 

and 200-400 m in the vertical. To make the numerical simulation process possible 

within the limits of present-day supercomputers, it is necessary to `parameterize' the 

effects of short time and small space scale phenomena, such as individual clouds and 

storms. Given the large thermal inertia of the ocean, the oceanic component of a 

coupled GCM may be `spun up' over an extended .period of time to allow it to reach a 

state close to equilibrium before coupling with the atmospheric component. In the real 

world, the ocean is probably never in equilibrium. 

Typically, OGCM is spun up over 1000 model years (maybe 10,000 years for the deep 

ocean) while the AGCM, together with the land-surface and sea-ice components, is 

typically run over five model years, prior to full coupling. Once coupled, the model is 

usually allowed to run for a few model decades to establish a control climate simulation, 
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prior to interpretation of the results or further experimentation, such as altering the 

radiative forcing through increasing atmospheric carbon dioxide concentrations. 

Many GCMs have been developed around the world for studies of seasonal to 

interannual predictability (El Nino time-scales), greenhouse forcing, nuclear winter and 

so on. Some of these have been derived directly from the operational global atmospheric 

models used for weather forecasting but extended for climate studies by coupling to 

appropriate models of the ocean, sea-ice and land-surface processes. Many have been 

purpose built for climate. The representation of the various physical processes and 

feedbacks differs from model to model. The sophistication of the modeling of the ocean 

ranges from so-called mixed layer models to incorporation of the complex three-

dimensional deep-ocean circulation. 

There is also a broad spectrum in the treatment of the complexity of the land-surface 

component. In a few models, land and ocean carbon-cycle components have been 

included, as well as a sulphur-cycle component, representing the emissions of sulphur 

and their oxidization to form aerosols. Atmospheric chemistry has largely been modeled 

outside the main climate model (i.e. off line), but recently it has been included in some 
models. 

To summarize the key features of GCMs are: 

• GCMs have a rougher resolution of more than 2° latitude-longitude (>104  km2 ) 

• A regional model provides and response to local control, usually the processes within 

the sub-grid GCMs. 

• Many impacts models require information at scales of 50 km or less, so some method 

is needed to estimate the smaller-scale information. 

• A direct result of coarse spatial resolution of GCMs is mismatch in spatial scale 

between available climate predictions and the required scale by the users of climate 

prediction. 

• Some applications also require the climate predictions with a higher time resolution. 

Most of plants models require daily weather input. 
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Due to above reason, downscaling climate data is needed so that the GCM result can be 

used in smaller scale of hydrological models. Downscaling technique will be explained 
in chapter III. 

Some GCM products from various sources are: 
- CSIRO Mark3 (Australia) 

- GISS-AOM (USA) 
- GISS-ER (USA) 

- UKMO HadCM3 (UK) 

- UKMO HadGEM (UK) 

- INM CM3.0 (Russia) 
- IPSL CM4 (France) 

- MRI CGCM2.3.2 (Japan) 

- NCAR CCSM3 (USA) 

- CCCma CGCM (Canada) 
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III 

DOWNSCALING METHODE 

111.1 INTRODUCTION 

As mentioned before in Chapter II, there are some issues about the use of GCM in the 

field of water resources which basically deal with the data scale. The GCMs typically 

performe well on. the use of global scale but a GCM is not expected to give results at a 

smaller scale due to logistic reasons. This is where the downscaling techniques become 

important. 

Downscaling Climate data is a strategy for generating locally relevant data from Global 

Circulation Models (GCM). The overarching strategy is to connect global scale 

predictions and regional dynamics to generate regionally specific forecasts. Figure 3.1 

shows the_ concept of downscaling. Many of the processes which control local climate, 

e.g. topography, vegetation and hydrology, are not included in coarse-resolution GCMs. 

The development of statistical relationships between the local- and large-scales may 

include some of these processes implicitly. 

Figure 3.1. A graphical depiction of downscaling. 
(Source: David Viner, Climatic Research Unit, University of East Anglia, UK) 



Downscaling methodologies fall into two broad categories based on the very different 

approaches used to resolve climate parameters on regional to local scales, which result 

in information at substantially finer resolutions (smaller areas) than global-scale GCM 

provide. The first category is called Dynamic Downscaling and the second is Statistical 

Downscaling 

IH.2 DYNAMIC DOWNSCALING 
Dynamic downscaling (sometimes it is called mesoscale simulation) basically attempts 

to nest a finer-scale grid (e.g., 10 km by 10 km) within a GCM over an area of interest 

(e.g., parts of the Gan.ga River Basin). Dynamic downscaling imbeds a regional model 

with a higher resolution within a global model, whereby the results of the global model 

•are only used to set up the initial and boundary conditions of the regional model. The 

horizontal grid space in regional models usually varies from 15 to 50 km, whereas the 

grid space of global models is in the range of 100 to 400 km (see Figure 3.2). 

Figure 3.2. Usual grid spaces of a general circulation model {— 3.75° left) and a regional climate 

model for the Arctic (— 0.50  right). At each case only every second grid line is shown. 

Source :www.awi.de 

There are many advantages to dynamic downscaling particularly around the variety of 

factors (e.g., temperature, precipitation, soil moisture, wind direction and strength, etc.) 

generally available in both GCM and the nested finer-scale grid. However, dynamic 

downscaling requires supercomputer systems and there are too few supercomputer 

systems available to perform such mesoscale simulations for all the areas around the 
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world to more fully assess the local/regional impacts and consequences of climate 

change. As supercomputer capabilities and availability increase, dynamic downscaling 

will become more widely accessible. 

111.3 STATISTICAL DOWNSCALING 

Statistical or empirical downscaling is a method for obtaining high-resolution climate or. 

climate change information from relatively coarse-resolution global climate models 

(GCM). Typically, GCM have a resolution of 150-300 km by 150-300 km. Many 

impacts models require information at scales of 50 km or less, so some method is 

needed to estimate the smaller-scale information. 

Statistical downscaling first derives statistical relationships between observed small-

scale (often station level) variables and larger (GCM) scale variables, using either 

headings weather classification, weather generator and regression models (Figure 3.3). 

Future values of the large scale variables obtained from GCM projections of future 

climate are then used to drive the statistical relationships and so estimate the smaller-

scale details of future climate is more fully developed and more widely used probably 

because it can be performed on a PC. This method is dependent on the availability of 

two important data sets : 

(1) A multi-decadal data set (e.g., 25-30 years) of past climate change parameters (e.g., 

weather station data from a number of stations across the region or locale of 

interest) 

(2) GCM data sets for the same parameters for the same past time period (these data are 

generally available at most modeling centers around the world). 

With these data a statistical (e.g., using any of a range of statistical techniques) 

relationship of past climatic changes between the observational data from the set of 

"local" weather stations and the estimate of past changes contained in the GCM 

projected for that past time period can be established for that region. Then, to project 

climatic conditions for some time in the future (e.g., 2025-2050), use the GCM data for 

that future time period (again, generally available at most modeling centers around the 

world) and the previously established statistical relationship for each of the weather 
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station locations, and the variables can be downscaled and provide an estimate of the 

future climatic conditions for that location. The following sections outline the main SD 

techniques under the broad headings weather classification, weather generator and 

regression models. 

Figure 3.3. Downscaling Scheme 

(Source : Fowler, H. et al , Linking climate change modeling to impact studies : Recent 

advances in downscaling techniques for hydrological modeling, 2007) 

1H.3.1 Weather Classification Schemes 
Weather classification methods group days into a finite number of discrete weather 

types or "states" according to their synoptic similarity. Typically, weather states are 

defined by applying cluster analysis to atmospheric fields or using subjective circulation 

classification schemes. 

In both cases, weather patterns are grouped according to their similarity with 'nearest 

neighbours' or a reference set. The predictand is then assigned to the- prevailing weather 

state, and replicated under changed climate conditions by resampling or regression 

functions. Classification-based methods can have limited success in reproducing the 
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Figure 3.4: The weather typing approach to statistical downscaling. Blue arrows indicate steps 

based on observed climate data. Red arrows indicate the application of GCM data to determine 

site values corresponding to a particular future time period. 

These models reproduce key characteristics of precipitation such as interannual 

variability, occurrence and persistence of wet and dry spells at individual sites, and 

correlations between precipitation series for pairs of sites. 

III.3.2 Weather Generator 

Weather generators (WG) are models that replicate the statistical attributes of a local 

climate variable (such as the mean and variance) but not observed sequences of events 

These models are based on representations of precipitation occurrence via Markov 

processes for wet-/dry-day or spell transitions. Secondary variables such as wet-day 

amounts, temperatures and solar radiation are often modeled conditional on 

precipitation occurrence (e.g.. dry-days in summer may have on average more sunshine 

than wet-days).. 

WG are adapted for statistical downscaling by conditioning their parameters on large-

scale atmospheric predictors, weather states or rainfall properties. However, parameter 

modification for future climate scenarios can lead to unanticipated outcomes). For 

example, changes to parameters governing wet-dry-spell lengths can affect simulated 

lii - 6 



persistence characteristics of at-site wet and dry spells. Recent approaches include 

extensions to multi-site and multi—variety series. 

Analogue approaches are examples of a weather classification method in which 

predictands are chosen by matching previous to the current weather-state. The method 

was originally designed by Lorenz (1969) for weather forecasting applications but was 

abandoned due to its limited success. It has resurfaced for climate applications since 

longer series of predictors have emerged following the completion of reanalysis 

projects. Even so. the analogue method still suffers whenever the pool of training 

observations is limited and or the number of classifying predictors is large. However, it 

compares favorably with more complex regression methods and is suitable for 

providing multi-site and multi-variety series. 

Another approach is to classify spatial rainfall occurrence patterns using hidden Markov 

models, then infer corresponding synoptic weather patterns. A hidden Markov model 

represents a doubly stochastic process, invoking an underlying (hidden) stochastic 

process that is translated into another stochastic process that yields the sequence of 

observations. 

The observed process (e.g.. precipitation occurrence at a network of sites) is conditional 

on the hidden process (the weather states). Weather states evolve according to a first 

order Markov chain, in which transitions from one state to the next have fixed 

probabilities and depend only on the current state. Alternatively, non-homogeneous 

hidden Markov models have transition probabilities that are conditioned by atmospheric 

predictors and thus vary in time. 



temperatures and solar radiation even before modifications are applied to the parameters 

governing these variables. 

Moreover WG based on first-order Markov chains (i.e.. one-state-to-the-next 

transitions) often underestimate temporal variability and persistence of precipitation 

.However, conditioned WG methods are useful for temporal downscaling, for instance 

disaggregating monthly precipitation totals and rain days into daily amounts, or daily 

totals into sub-daily components). 

111.3.3 Regression Models 
Regression models are a conceptually simple means of representing linear or nonlinear 

relationships between predictands and the large scale atmospheric forcing. Commonly 
applied methods include multiple regressions. Canonical correlation analysis (CCA), 

artificial neural networks and support vector machine which are akin to nonlinear 
regression. Some multi-site regression-based methods are also becoming available in 

which the unexplained variance is represented by stochastic processes. 

Select 
predictor 
variables 

~
Exfrad 
pre did or 
variables 
from GCM 

Figure 3.5: The transfer function approach to spatial downscaling. Blue arrows indicate steps 

based on observed climate data. Red arrows indicate the application of GCM data to determine 

site values corresponding to a particular future time period. 
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Table 3.1 provides a summary of their relative strengths and weakness 

Table.3.l 
A summary of the strengths and weaknesses of the main SD method. 

Method 
Eaz` 	~o 	: ~Z . 	.. 

 Strength 
3. 	.'.ê ; 	\ 	qtr 	$. 	,n.' 	~) 	., 	.. 	-' 

Weaknesses 
.ia 	.z', 	'~,' 	 P(' 	t'.. 	'• 	- 

Weather typing • Yields physically interpretable • Requires additional task of 
(e.g. analogue method, linkages to surface climate weather classification 
hybrid approaches, • Versatile (e.g.. can be applied • Circulation-based schemes can 
fuzzy classification, to surface climate, air quality, be insensitive to future climate 
self organizing maps. flooding, erosion, etc.) forcing 
Monte Carlo methods). . 	Compositing for analysis of • May not capture intia-type 

extreme events variations in surface climate 

Weather generators • Production of large ensembles • Arbitrary adjustment of 
(e.g. Markov chains, for uncertainty' analysis or parameters for future climate 
stochastic models, long simulations for extremes • Unanticipated effects to 
spell length methods, • Spatial interpolation of model secondary variables of changing 
storm arrival times, parameters using landscape precipitation parameters 
mixture modelling). • Can generate sub-daily 

information 

Regression methods • Relatively straightforward to • Poor representation of observed 

(e.g. linear regression, apply variance 

neural networks, • Employs full range of • May assume linearity and'or 
canonical correlation available predictor variables normality' of data 
analysis, knging). • Off-the-shelf solutions and • Poor representation of extreme 

software avaliable event 

(Source : Wilby et al ,Guidelines for Use of Climate Scenarios Developed From Statistical 

Methods, 2004) 
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III.4 COMPARISON OF DYNAMIC AND STATISTICAL DOWNSCALING 

TECHNIQUES 

This section provides a comparison between the Dynamic Downscaling and Statistical 

Downscaling technique. 

Table.3.2 

A summary of advantages and disadvantages of Dynamic Downscaling and Statistical 

Downscaling 

Scenario 
type o.f too 

 Description/ 
Use 

Advantage Disadvantage 

Dynamic Providing • highly resolved • computationally very 
Downscaling high information (spatial and expensive, particularly for 
(Regional spatial/tempo temporal), long runs, 
Model) ral resolution • information is derived • lack of two way nesting 

information from physically based (feedback with the forcing 
models, GCM input), 

• many variables available, • dependent on usually biased 
• better representation of inputs from the forcing 

the mesocale and GCM 
weather extremes than in • errors in the GCM fields 
GCM; could result in errors in the 

regional climate scenarios. 
• fewer scenarios available. 

Statistical Providing • Can generate • Assumes constancy of 
Downscaling point/high information on high empirical relationships in 

spatial resolution grids, or non- the future 
resolution uniform regions • Demands access to daily 
information • Potential for some observational surface and/or 

techniques to address a upper air data that spans 
diverse range of range of variability 
variable • Not many variables 

• Variables are (probably) produced for some 
internally consistent techniques 

• Computationally • Dependent on (usually 
(relatively) inexpensive biased) inputs from driving 

• Suitable for locations AOGCM 
with limited 
computational resources 

• Rapid application to 
multiple GCMs 

(Source : Mearns.L.O,et al ,Guidelines for Use of Climate Scenarios Developed from Regional 

Climate Model Experiments, 2003) 



IV.1 INTRODUCTION 

Support vector machine (SVM) is a relatively new technique to make prediction, 

both in the case of classification and regression, which is becoming very popular 

lately. The foundations of Support Vector Machines (SVM) has been developed by 

Vapnik (1995) and is gaining popularity due to many attractive features, and 

promising empirical performance. 

The formulation embodies the Structural Risk Minimization (SRM) principle, which 

has been shown to be superior, (Gunn et al., 1997), to traditional Empirical Risk 

Minimization (ERM) principle, employed by conventional neural networks. SRM 

minimizes an upper bound on the expected risk, as opposed to ERM that minimizes 

the error on the training data. It is this difference which equips SVM with a greater 

ability to generalize, which is the goal in statistical learning. SVM was developed to 

solve the classification problem, but recently they have been extended to the domain 

of regression problems (Vapnik et al., 1996). 

In the literature the terminology for SVM can be slightly confusing. The term SVM 

is typically used to describe classification with support vector methods and support 

vector regression is used to describe regression with support vector methods. In this 

study the term SVM will refer to both classification and regression methods, and the 

terms Support Vector Classification (SVC) and Support Vector Regression (SVR) 

will be used for specification. 

I 

IV-1 



SVC composed two types, SVC on linear and non linear data. At the beginning when 

it was introduced by Vapnik, SVC only able to separate the data into two classes, but 

recently; the SVC has been developed so at is able to separate the multi class data. 

Some of the methods used in separating the multi-class data are: 'one-against-

all", "one-against-one", and the "Directed Acyclic Graph Support Vector Machine 

(DAGSVM)" method. 

SVR which is based on the non-linear SVM that implicitly apply kernel functions 

which map the data to a higher dimensional feature space. A linear solution in the 

higher dimensional feature space corresponds to a non-linear solution in the original, 

lower dimensional input space. In this study, only SVR method that will be detail 

explained. 

IV.2 STATISTICAL LEARNING THEORY 

This section is a very brief review some of Vapnik's statistical learning theory which 

based on learning examples. As is the case, learning is a stochastic process, with the 

training data being drawn from two sets of variables: an Input vector x; E X 9.n  

and the response or Output y; E Y 

The relationship between X and Y is probabilistic: an element X does not map 

uniquely to an element of Y; rather it defines a probability distribution on X. 

Alternatively for x; drawn from every X with probability P(x1) (called the marginal 

probability), the output y; is observed with probability P(y; Ix;) (called the conditional 

probability of y; given x;). In other word, an unknown probability distribution p(x,y) 

defined on X x Y determines the probability of observing a training data point 

(x;,y;). Therefore the training data set T = (xi , y1 ) 1  which we have been using time 

and again, is actually generated by sampling the cross space X x Y, Q times in 

accordance with the distribution p(x,y). This learning problem is searching for 

appropriate estimator function f : X-* Y which can then be used in predictive mode 

to generate a value y in output to an unseen input x. 
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In order to successfully solve the regression or classification task, a learning machine 

learns an approximating function f(x, a) (also referred to as a hypothesis) which is a 

function of both inputs x and the parameter or weights a as the notation emphasizes. 

IV.2.1 Empirical Risk Minimization and Structural Risk Minimization. 

The risk functional the expected value of the loss due to the classification or 

estimation error. It employs a loss function L to measure the average error, and then 

search out the estimator from the space hypotheses, that minimizes this risk. If the 

desired value is y and the predicted value is f(x, a), then the expected risk is defined 
as: 

R(a) = f L (y, f (x, a))dP(x, y) 	 (4.1) 

As the probability P(x,y) is unknown, the risk R(a) cannot directly be minimized 

therefore an induction principle for risk minimization is required. This inductive 

principle is called Empirical Risk Minimization (ERM) which compute the empirical 
risk function as : 

Remp(a).-1 ~N 1 L(yi —.f (x1,a)) 	 (4.2) 

However this Remp(a) will not able to guarantee a small actual risk if the number of N 

training examples is limited. In other words, a smaller error on the training set does 

not necessary implies higher generalization ability (i.e smaller error on an 

independent test set). To make the most out of limited amount of data, a statistical 

technique following called Structural Risk Minimization (SRM) has been developed 
by Vapnik (1995). 

The theory of uniform convergence in probability developed in 1974 by Vapnik and 

Chervonenkis (VC) provides bounds on the deviation of the empirical risk from the 

expected risk. This theory shows that it is crucial to restrict the class of function that 

the learning machine can implement to one with a capacity that suitable for the 

amount of available training data. 
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For a E A and N> h, a typical uniform VC bound, which holds with probability 1 — 

i?, has the following inductive principle SRM form as : 

~Lh(l oge h +1)—log(4) 	 (4.3) 
R(a) : Remp(a) + 	 1V 

Here the second term on the right is called VC Confidence. The VC The parameter h 

is called the VC dimension of a set of function and it describes the capacity of a set 

function to represent the data set. When N/h is small, a small empirical risk does not 

guarantee a small value of the actual risk. In this case, in order to minimize the actual 

risk R(a),the inequality in right hand in (4.3) should be minimized simultaneously 

over both term; the empirical risk and the VC confidence interval. 

The VC confidence term in (4.3) depends on the chosen class of the function, 

whereas the empirical risk depends on one particular function chosen by the training 

procedure. The objective here is to find that subset of the chosen set of the function, 

such that the risk bound for that subset is minimized. This is done by simply training 

a series of machines, one of each subset; where for a given subset the goal of training 

is simply to minimize the empirical risk. One then takes that trained machines in the 

series whose sum of empirical risk and VC confidence is minimal. 

IV.3 FEATURE SPACE 
In the case of non linear separable data (which become the base of SVR), SVM 

formula should modified by construct a mapping into a high dimensional feature 

space. The input x is first mapped onto an p-dimensional feature space using some 

fixed (nonlinear) mapping, and then a linear model is constructed in this feature 

space. 
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Figure 4.1 Non-linear mapping of input examples into high dimensional feature space. 
(Classification case, however the same stands for regression as well). 

Usually feature space have higher dimension from input vector (input space), this make 

the computation in feature space probably become bigger, because there are possibility 

that feature space have infinite number of feature. Besides that it is difficult to know the 

appropriate transformation function. To solve this problem, SVM used "kernel trick". 

Kernels Function that commonly used are as follows: 

a. Kernel Linier 

K(x,,x) = xt,x 	 (4.14) 

b. Polynomial Kernel 

K(x=,x)= (yxix+r',y>0 	 (4.15) 

c. Radial Basis Function (RBF) 

K (x,,x) = exp(- Z x1- xaI2) , y>O 	 (4.16) 
Q 

d. Sigmoid Kernel 

K (x,,x) =tanh (yxl x + r) 
	 (4.17) 

According to Hsu ( 2004 ) kernel function that recommended for the first time tested is 

the RBF, because it has the same performance like liner kernel in certain parameters and 

has a behavior like kernel sigmoid function with fixed parameter and small range value. 

Figure 4.2 provides architecture on the SVM for non linear function estimation, with 

input vector x and the utilization of kernel function to determine the optimal y values. 
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Figure 4.2 

Architecture of SVM 

IV.4 SUPPORT VECTOR REGRESSION 
SVM can be applied to regression problems by the introduction of an alternative 

loss function, (Smola, 1996). The loss function must be modified to include a 

distance measure. Figure 4.3 illustrates four possible loss functions. 

— E 0 +e (y) —(Y, —fl 	0  (Y,— Yt) 

(a) E- insensitive 	 . (b) Quadratic 
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(Yf -Yi) 	 (Yi -Yz) 

(c) Huber 	 (d) Laplace 

Figure 4.3. 
The loss function 

Figure 4.3(a) the E insensitive loss function that ensure existence of the global 

minimum and at the same time optimization of reliable generalization bound, in 

Figure 4.3(b) quadratic loss function corresponds to the conventional least squares 

error criterion. Figure 4.3(c) Huber proposed the loss function as a loss function that 

has optimal properties when the underlying distribution of the data is unknown. 

Figure 4.3(d) is a Laplacian loss function that is less sensitive to outliers than the 

quadratic loss function (Figure 4.3b). 

Support vector regression is based on the non-linear SVM that implicitly apply 

kernel functions which map the data to a higher dimensional feature space. A linear 

solution in the higher dimensional feature space corresponds to a non-linear solution 

in the original, lower dimensional input space. One approaching method is using the 

RBF (equation 4.16) and is called Least Square Support Vector Machine (LS-SVM). 

The main advantage of LS-SVM is that it is computationally more efficient than the 

standard SVM method, since the training of LS-SVM requires only the solution of a 

set of linear equations instead of the long and computationally demanding quadratic 

programming problem involved in the standard SVM (Suykens, 1999). In comparison 

with some other feasible kernel functions, the RBF is a more compact, supported 

kernel and able to shorten the computational training process and improve the 

generalization performance of LS-SVM, a feature of great importance in designing a 
model (Maity, 2010). 
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In SVR, [xi, yi}N 1  is considered as a training set, in which x;  E W' represents a p- 

dimensional input vector and yi E 91 is a scalar measured output, which represents 

the system output. The goal is to construct a_ function y = f(x) which represents the 

dependence of the output y;  on the input x,. The form of this function is 

y= wT  q (x) + b 
	 (4.18) 

where w is known as the weight vector and b the bias. This regression model can be 

constructed using a nonlinear mapping function 0 (x) . By mapping the original input 

data into a high - dimensional space, the non-linear separable problem becomes 

linearly separable becomes linearly separable in space. 

The function (x) : 9ip -+ ' is a mostly non-linear function which maps the data 

into a higher, possibly infinite, dimensional feature space. The LS-SVM involves 

equality constraints, and works with a least squares cost function. The optimization 

problem and the equality constraints are defined by the following equations: 
N 

min OL (w, e) = 2 wT  w + y 21 eL 	 (4.19) 
i=1 

Subjected to equality constrain: 

yi - y = ei, 	i = 1,....,N 	 (4.20) 

Or by substitution to equation (4.18) : 

yi = wT  O(x1) + b + el , 	i = 1,....,N 	 (4.21) 

Where ei  is the quadratic loss term and y E 91+  is a regularization parameter in 

optimizing the trade-off between minimizing the training errors and minimizing the 

model's complexity. The objective is now to find the optimal parameters that 

minimize the prediction error of the regression model. The optimal model will be 

chosen by minimizing the cost function where the errors ei  are minimized. This 

formulation corresponds to the regression in the feature space and since the 

dimension of the feature space is high, possibly infinite, this problem is difficult to 

solve. Therefore, to solve this optimization problem, the following Lagrange function 

is given: 
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min L. (w, b, e; a) = %L(w, e) — 
w,b 

N 

b +e — yi) 
i=1 

(4.22) 

The solution of equation (4.21) can be obtained by partially differentiating with 
respect to w, b, e;  and a;, i.e. 

N aL_  
aw 0 —4 W  = 	ai 4(xi) 	 (4.23) 

i=1 

aL 	" 
ab =0 —+b= >a1=0 	 (4.24) 

i=1 
aL  = 0 —* ai  = Y. ei , 	i = 1, .... N aei 	 (4.25) 
aL 
a L = 0 ) W T  (xi) + b + ei — yi  = 0 

(4.26) 

Finally, the estimated values of b and a1 , i.e. b And ai  , can be obtained by solving 

the linear system and the resulting LS-SVM model can be expressed as: 
N 

Y_ = f (x) = I ai K (x, xi) + b 	 (4.27) 
i=1 

Where K(x,xi) is a kernel function in the non-linear RBF ( equation 4.16). 

The regularization parameter g is also necessary in LS-SVM model and determines 

the trade-off between the fitting error minimization and smoothness of the estimated 

function. It is not known beforehand which y and a are the best for a particular 

application problem to achieve the maximum performance with LS-SVM models. 

Thus, the regularization parameter y and the value of a from the kernel function have 

to be tuned during model calibration. 

IV.5 LS-SVMLAB TOOLBOX 

The LS-SVMLAB toolbox is program written in C-code mainly intended for use 

with the commercial Matlab package. It is built around a fast LS-SVM training and 

IV-9 



simulation algorithm. The Matlab toolbox is compiled and tested for different computer 

architectures including Linux and Windows. Most functions can handle datasets up to 

20000 data points or more. LS-SVMlab's interface for Matlab consists of a basic 

version for beginners as well as a more advanced version with programs for multi-class 

encoding techniques and a Bayesian framework. 

Figure 4.4 below is briefly sketch how to obtain an LS-SVM model (valid for 

classification and regression) : 

1. Choose between the functional or objected oriented interface (initlssvm) 

2. Search for suitable tuning parameters (tunelssvm) 

3. Train the model given the previously determined tuning parameters (trainlssvm) 

4a. Simulate the model on e.g. test data (simlssvm) 

4b. Visualize the results when possible (plotlssvm) 

Functional 

i 	s 	-Interface 
~r 	tunnelssvm 	trainslssvm rsimissvm =DATA 

 Object Oriented -̀ "` 
Interface 

rte, 

plotissvm 

Figure 4.4 

List of commands for obtaining an LS-SVM model 

A. TUNELSSVM, LINESEARCH- & GRIDSEARCH 

Purpose 
Tune the tuning parameters of the model with respect to the given performance 

measure. 

Description 
There are. three optimization algorithms: simplex which works for all kernels, gridsearch 

is used (this one is restricted to 2-dimensional tuning parameter optimization); and the 

third one is linesearch (used with the linear kernel). The tuning parameters are the 
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regularization parameter gam and the squared kernel parameter (or sig2) in the case of 
the 'RBF kernel' 

B. TRAINLSSVM 
Purpose  
Train the support values and the bias term of an LS-SVM for classification or function 

approximation. 

Description 

Type can be 'classifier' or 'function estimation' (these strings can be abbreviated into 

'c' or 'f', respectively). X and Y are matrices holding the training input and training 

output. The i-th data point is represented by the i-th row X(i,:) and Y(i,:). gam is the 

regularization parameter: for gam low minimizing of the complexity of the model is 

emphasized, for gam high, fitting of the training data points is stressed. Kernel par is 
the parameter of the kernel; in the common case of an RBF kernel, a large sig2 indicates 
a stronger smoothing. The kernel_ type indicates the function that is called to compute 
the kernel value (by default RBF_ kernel). 

The training can either be proceeded by the preprocessing function ('preprocess') (by 

default) or not ('original'). The training calls the preprocessing (prelssvm, postlssvm) 

and the encoder (codelssvm) if appropriate. In the remainder of the text, the content of 

the cell determining the LS-SVM is given by {X,Y, type, gam, sig2}. However, the 

additional arguments in this cell can always be added in the calls. 

This implementation allows to train a multidimensional output problem. If each output 

uses the same kernel type, kernel parameters and regularization parameter, this is 

straightforward. If not so, one can specify the different types and/or parameters as a row 

vector in the appropriate argument. Each dimension will be trained with the 

corresponding column in this vector. 

C. SIMLSSVM 
Purpose 

Evaluate the LS-SVM at given points 
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Description  
The matrix Xt represents the points one wants to predict. The first cell contains all 

arguments needed for defining the LS-SVM (see also trainlssvm, initlssvm). The second 

cell contains- the results of training this LS-SVM model. The cell syntax allows for 

flexible and consistent default handling. 

D. PLOTLSSVM 

Purpose  
Plot the LS-SVM results in the environment of the training data 

Description  
The first argument specifies the LS-SVM. The latter specifies the results of the training 

if already known. Otherwise, the training algorithm is first called. One can specify the 

precision of the plot by specifying the grain of the-grid. By default this value is 50. The 

dimensions (seldims) of the input data to display can be selected as an optional 

argument in case of higher dimensional inputs (> 2). A grid will be taken over this 

dimension, while the other inputs remain constant (0). 

IV-12 



V.1 ROORKEE AREA 

Roorkee is a city and a municipal council in the Indian state of Uttarakhand. It is also 

known for Roorkee Cantonment (a temporary or semi-permanent military quarters), one 

of the country's oldest cantonments. It is a part of the district of Haridwar which is 

merely 30 km distant away. It is about 172 kilometers north of the Indian capital, New 

Delhi and located between the rivers Ganga and Yamuna on the banks of the upper 

Ganga Canal, which take off at Haridwar. The town has an administrative status of a 
Tehsil (sub-division). 

Roorkee has a flower-shaped town spread over a flat terrain with the grand spectacle of 

Himalayan ranges flanking it in the East and the North-east. The dominant feature of the 

town is the Upper Ganges Canal which flows north-south and bisects the town. The 

canal has elevated embankments flanked. Roorkee lies at 29 52 'N Latitude and 77 53'E 
Longitude. in Uttarakhand State (see figure 5.1). It has an average elevation level 274 

meters above mean sea level.. 

it is not a heavily industrialized city; therefore the impacts of industrialization do not 

dominate the city's system. The city is representative of a very large number of similar, 

urban systems. Eventhough it is a major educational and tourist attraction, the city does 
not have significant floating population. 
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Figure 5.1 Administrative Map of Uttarakhand 

V.2 CLIMATE 
The climate of Roorkee is typical of Northwestern India. All three predominant season 
- summer; winter; and monsoon - are witnessed in Roorkee, with very hot summers and 

very cold winters: Being a submontanic district, with higher latitude than any other 
portion of the plains, it has longer spells of cold weather then Delhi. Though the heat in 
May and June is considerable, relief occasionally afforded by the cooling effect of 
moderate Himalayan storms, the influence of which extends for somedistance to the 

South. 

In terms of average annual precipitation (103.2 cm), Roorkee is semi-arid. The South-
West monsoon generally breaks in mid-June and the North-East during November-
December. Winters begin from late September and continue through February. The 
coldest months are generally December and January, when the minimum temperature 
approaches zero. A rise in temperature is experienced from the beginning of March, 
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which heralds the onset of summer The temperature ranges from 00  C to 20°  C in 

Winter (December to March), 25°  C to 40°  C in Summer ( April to June) which warm 

winds blow frequently and 20°  C to 40°  C in Rainy season ( June to September). Annual 

variation in mean monthly temperature from 1981-2010 observations is presented in 

Figure 5.2. 

The Graph of Average Maximum and Minimum 
Temperature at Roorkee (1981-2010) 
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Figure 5-2 Mean monthly minimum and maximum temperature Graph of Roorkee area 

for the last 30 years (1981.-2010) 

The Graph of Average Precipitation Amount at Roorkee 
(1981-2010) 
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Figure 5.3 Mean monthly precipitation Graph of Roorkee area for the last 30 years 

(1981-2010) 
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V.3 IMPORTANT ROORKEE DATA 
Some important data recorded by Hydrogy Department of Institute Technology Roorkee 

are: 
Average Annual Rainfall: 1032 mm 

Average Temperatures: 
January: 13.8°C 

June 32.2°  C 

Annual Temp. difference: 18. 4°  C 

Highest Temp. Recorded 45. 5°  C ( on 9th May, 1956) 

Lowest Temp. Recorded: -3. 3°C (on 26th January, 1964) 

Population 97,064 (according to census 2001) 

Literacy rate: 87 % (according to census 2001) 

Average max. Humidity 100% 

Average min.Humidity 30% 

Soil : Alluvial soils of Ganga Plain. 

V.4 DATA REQUIRED 
To develop the downscaling model, the available data set is partitioned into a training 

set and a test set. 50% of the available data from 1981-1995 (15 years) is selected for 

training (calibration) while the remaining 50% from 1996 — 2010 (15 years) is used for 

testing (validation). The data required is dived into two type, the predictant (Observed 

data) and the predictors (GCM data). All the data set will be available in appendix. 

A. PREDICTANT (OBSERVED DATA) 
Observed data is taken from Hydrology Department Station of Institute Technology 

Roorkee. The observed data that will be used for downscaling calculation are: 

1. Mean monthly precipitation 

2. Mean monthly minimum temperature 

3. Mean monthly maximum temperature 
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B. PREDICTORS (GCM DATA) 

In this study the simulated monthly climate data is taken from of the second generation 

Coupled General Circulation Model (CGCM2) Canada. The second version of the 

Canadian Centre for Climate Modelling and Analysis (CCCma) Coupled Global 

Climate Model (CGCM2), is based on the earlier The First Generation Coupled Global 

Climate Model , but with some improvements aimed at addressing shortcomings 
identified in the first version. 

In particular, the ocean mixing parameterization has been changed from 

horizontal/vertical diffusion scheme to the isopycnal/eddy stirring parameterization of 

Gent and McWilliams (1990), and sea-ice dynamics has been included. In addition, 

some technical modifications were made in the ocean spinup and flux adjustment 
procedure. 

There are 3 type of data in this CGCMA2 model: 

1. GHG+A : 

	

	Data from an ensemble of three 201-year simulations 

with CGCM2 using the IPCC "IS92a" forcing scenario in which the 

change in green house gases (GHG) forcing corresponds to that 

observed from 1900 to 1990 and increases at a rate 1% per year 

thereafter until year 2100. The direct effect of sulphate aerosols (A) is 

also included. 

2. A2 	: 	Data from an ensemble of three 111-year simulations using the 

provisional IPCC SRES "A2" GHG and aerosol forcing scenario. The 

simulations begin at year 1990 with initial conditions from the 

corresponding member of the GHG+A runs described . above. To 

obtain data before 1990 please use GHG+A runs above. The A2 

results differ only modestly from the IS92a results. Daily data for the 

time period 1961-2100 from the first member are also available. Daily 

data for the time period 1961-1989 are obtained from the 

corresponding GHG+A "IS92a" simulation. 
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3. B2 	Data from an ensemble of three 111-year simulations using the 

provisional IPCC SRES "B2" GHG and aerosol forcing scenario. The 

simulations begin at year 1990 with initial conditions from the 

corresponding member of the GHG4-A runs described above. To 

obtain data before 1990 please use GHG+A runs above. The B2 

scenario produces a more modest warming compared to the "IS92a" 

and "A2' scenarios. Daily data for the time period 1961-2100 from 

the first member are also available. Daily data for the time period 

1961-1989 are obtained from the corresponding GHG+A "IS92a" 

simulation. 

In this study the scenario IS92a is chosen. The mean monthly data which extends from 

January 1981 to December 2040 is extracted from CCCma web site 

http://www.cccma.bc.ec.gc.ca/.  The extracted data pertains to 4 grid points whose 

latitude ranges from 27.83° N to 31.54° N and longitude ranges from 75° E to 78.75° E 

covering entire Roorkee Area. The CGCM2 grid is uniform along the longitude with 

grid box size of 3.75° and nearly uniform along the latitude (approximately 3.75°) see 

figure 5.4 and 5.5. 

Figure 5.4 Selected Study Area Grid Point at GCMA2 Model 
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Figure 5.5 3.75 x 3.75 (approx) GRID Map Covered Roorkee Area 
Source: Google earth map 

According to Tripathi (2006) the choice of predictors could vary from one region to 

another. Since there are no general guidelines for selection of predictors in different 

parts of the world, a comprehensive search of predictors is necessary. In general, the 

values of the climate variables at earth's surface (which corresponds to approximately 

1000 mb), 850 mb, 500 mb and 200 mb pressure levels are found to be representative of 

circulation pattern in the study region (Maini et al., 2004). Some candidate predictors 

variables provided by CGCM2 are: 

1. Air temperature, 

Air temperature is the temperature in the air above area study at the various 

pressures. The unit is Celsius Degree 

2. Specific humidity, 

Specific humidity is a ratio of mass quantities of water vapor to dry air, such as 

1:200, for example. The unit is percent (%). 

3. Precipitation 

Precipitation is any product of the condensation of atmospheric water vapor that 

falls under gravity. The main forms of precipitation include drizzle, rain, sleet, 

snow, graupel and hail. The unit is mm/day. 
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Geopotential height is a vertical coordinate referenced to Earth's mean sea level — 

an adjustment to geometric height (elevation above mean sea level) using the 

variation of gravity with latitude and elevation. Thus it can be considered a 

"gravity-adjusted height." One usually speaks of the geopotential height of a 

certain pressure level, which would correspond to the geopotential height necessary 

to reach the given pressure. The unit is meter (m). The Approximate Temperature 

and Pressure of Various Geopotential Height is shown in table 5.1. 

5. Zonal and Meridional Wind Velocities 

Positive u winds (Zonal) are from the west and called Westerlies while positive v 

winds (Meridional) are from the south and call Southerlies. The unit in m/sec. 

6. Sea level pressure. 

Atmospheric pressure at sea level is the result of the force of gravity on the matter 

above sea level (the atmospheric gases). The unit in hPa (hectoPascal) 

Table 5.1 
The Approximate Temperature and Geopotential Height from various Pressure. 

... 	... 	........ 

Pressure 
..... 	..... 	.. 	.. 	... 	 ....... 	 .._ 	.. 	.... 	.F 

Approximate Height 	Approximate Temp 

Sea level ( 	0 m 	Oft 	(~ 	15C 	59 F 

1000 mb fl00. m 300 ft.._.._ 15. C ..59 F......... 
850 mb 	! 1500 m 5000 ft 5 C 41 F 

700 mb 3000 m 	! 10000 ft 	! -5C 	23F 

500 mb 

• 

5000 m 
[.,,. 	

18000 ft l . -20 C 	-4 F 

300 mb IILI J IZEii 9000 m II  

200 mb 	12000 m 	40000 ft  C -67F ~ 

100 mb I16000 m 	µ 	53000 ft 	? -56C -69 F 

Source : www.atmos.uiuc.edu 
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VI.1 PREPARATION 

VI.1.1 Observed Data 

Daily minimum and maximum temperature and precipitation records from Hydrology 

Department Station, Indian Institute Technology Roorkee were summed and divided by 

the number of records (day) for that month to obtain mean monthly data for each 
variable. 

The statistic for mean monthly temperature and precipitation are given in table 6.1, 

which shows that the mean monthly precipitation ranges from 0 - 21.1 mm/day, the 

mean monthly temperature ranges from 5.1 - 31.7 °C and mean maximum temperature 
range from 15.8 — 39.6 °C. 

Table 6.1 
Statistical Description of Temperature and Precipitation data of study period (1981-2010) 

Observed Observed 	Observe 
Mean M rbty Mean 	Mean 

 Descriptive precipitation Monthly 	Monthly   
(mm/day  

~ 
Minimum 	Maximum 

f temperature 	Temperature  
(°C) 	.. 	(°c)  . .  

2.785 17.664 29.988 Mean 

Standard Error 0.214 0.374 0.300 
Median 1.031 18.185 31.945 
Standard Deviation 4.066 7.087 5.684 
Kurtosis 3.066 -1.434 -0.885 
Skewness 1.902 -0.190 -0.467 
Minimum 0.000 5.177 15.816 
Maximum 21.137 31.723 39.680 
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VI.1.2 Selecting The Predictors 

In this study, the candidate of predictors was selected by computing the correlation 

between the observed and GCM data. Pearson product-moment correlation 

coefficient (PMCC, denoted by r) method is chosen as the method for calculate the 
value. The r value can range between +1 and —1. This calculation is simply using 
Microsoft Excel facility correlation in data analysis. The interpretation of r value 
according to Wang (2006) is provided in this table 6.2. 

Table 6.2 

The Interpretation of r value 

Correlation coefficient value Interpretation 

0 No relationship 
Larger than 0 but smaller than 0.500 Weak positive relationship 
From 0.500 to 0.699 Moderate positive relationship 
From 0.700 to 0.999 Strong positive relationship 
1.000 Perfect positive relationship 

-1.000 Perfect negative relationship 
From -0.700 to -0.999 Strong negative relationship 
From -0.500 to -0.699 Moderate negative relationship 
Smaller than 0 but larger than -0.500 Weak negative relationship 

Table 6.3 shows that for precipitation, the predictors at 200Mb pressure level have weak 
to moderate correlation with the observed data. 850Mb GPH give strong relationship 

even though in negative values (-0.714). Rainfall and evaporation have weak negative 
correlation with observed precipitation. 

For minimum temperature, strong positive correlation are given by 500Mb Temp, 

200Mb GPH and 850 SpecHum. However, 850Mb GPH give stronger relationship than 

200Mb even though in negative values (-0.840). 

The predictor candidates for maximum temperatures mostly have weak to moderate 
relationship both in negative and positive values. Only 500Mb GPH give slightly better 

correlation ( 0.714) with the observed maximum temperature data. 
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Table 6.3 
The Correlation Coeficient ( r ) value between Observed and GCM data 

GCM DATA 

200 Mb Temp  
500 Mb Temp  
850 Mb Temp  
200 Mb GPH 
500 Mb GPH 
850 Mb GPH 
200 Mb SpecHu 
500 Mb SpecHu 
850 Mb SpecHu 
200 Mb U wind 
500 Mb U wind 
850 Mb U wind 
200 Mb V wind 
500 Mb V wind 
850 Mb V wind 
Rainfall 

Observed Mean 
Monthly 

Precipitation 
0.728 
0.580 
-0.125 
0.643 
0.425 
-0.714 
0.706 
0.651 
0.616 
-0.554 
-0.333 
0.376 
0.169 
-0.333 
0.235 
-0.116 
-0.092 

Correlation With 

Observed Mean 
monthly MIN 

Temp 
0.698 
0.853 
-0.481 
0.834 
0.807 
-0.840 
0.651 
0.766 
0.822 
-0.569 
-0.437 
0.273 
0.058 
-0.437 
0.058 

Observed Mean 
Monthly MAX 

Temp 

0.393 
0.689 
-0.517 
0.610 
0.714 
-0.608 
0.380 
0.564 
0.645 
-0.406 
-0.311 
0.131 
-0.075 
-0.311 
0.026 

VI.1.3 Performancee Indices 

Beside r value others methods that used to measure the error are Nash-Sutcliffe 
Efficiency (NSE) and Root Mean Square Error (RMSE) measurement. 
NSE is defined as: 

NSE= 1 -L4 1. 0 - i 	Ii)2 

	

> =1(~i-Avg)2 	 6.1 

RMSE is defined as: 

RMSE = n~ ~(0i - P32 	 6.2 
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Where Oi is the observed value, Pi is predicted output, Oavg  is the average of measured 

value and i equals the number of values and n is the number of data. For NSE, the closer 

the model efficiency is to 1, the more accurate the model is. For RMSE, lower values of 

RMSE indicate better fit. 

For MLR downscaling only in validation part NSE and RMSE are measured, but for 

SVR the error in calibration and validation both are measured by NSE and RMSE. 

V1.2. DOWNSCALING USING MULTIPLE LINEAR REGRESSION (MLR) 

Multiple linear regression is a form of regression analysis in which the regression 

function establishes the relationship between one dependent variable y and more than 

one independent variables (xi, x2... x„). A linear regression equation is in the following 

form: 

y=a+blxl+b2x2+...+b„X„ 	 (6.3) 

Parameters a (intercept) and b1, b2... b„ (coefficient of x„) are estimated using the least 

squares method. 

In MLR method, the choosing of predictor's variable for downscaling is based on the 

statistic analysis. The highest r (including negative value) for each type of predictors is 

chosen as the candidate of predictors. The best statistic result from the combination 

predictors in calibration part is taken as the predictors in validation model 
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VI.2.1. Precipitation 

1.  Calibration (1981-1995) 

The predictor candidates for downscaling precipitation are presented in table 6.4. 

Table 6.4 

The Candidate Predictors for downscaling precipitation 
GCM DATA Correlation with Observed 

Mean Monthly Precipitation 

200Mb Temp 0.728 
200Mb GPH 0.643 
850Mb GPH -0.714 
200Mb SpecHum 0.706 
200Mb U wind -0.554 
500Mb V wind -0.393 
Rainfall -0.116 
Evaporation -0.092 

Because GPH variable have two potential predictors, at 200 Mb GPH and 850 Mb GPH 

thus the combination to gain the best model is done separately for each value of GPH. 
The result of the combinations is in table 6.5 

Table 6.5 

Summary output of statistic analysis for MLR precipitation in calibration model 
Predictors 

Combination 
Regression Statistics for 7 

candidates predictors 
200 Mb Temp 
200 Mb GPH 
200 Mb SpecHum 
200 U wind 
500 V Wind 

Precipitation 

Evaporation 

Multiple R I 	0.767 
R Square 0.589 
Adjusted R Square 0.572 
Standard Error 2.558 

Predictors 

Combination 
Regression Statistics for 7 

candidates predictors 
200 Mb Temp 
850 Mb GPH 
200 Mb SpecHum 
200 U wind 
500 V Wind 
Precipitation 
Evaporation 

Multiple R I 0.757 
R Square 0.573 
Adjusted R Square 0.556 
Standard Error 2.607 
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Predictors 
Combination 

Regression Statistics for 6 
candidates predictors 

200 Mb Temp 
200 Mb GPH 
200 Mb SpecHum 
200 U wind 
500 V Wind 
Precipitation 

Multiple R 0.767 
R Square 0.589 
Adjusted R Square 0.574 
Standard Error 2.551 

Predictors 
Combination 

Regression Statistics for 5 
candidates predictors 

200 Mb Temp 
200 Mb GPH 
200 Mb SpecHum 
200 U wind 
500 V Wind 

Multiple R 0.767 
R Square 0.589 
Adjusted R Square 0.577 
Standard Error 2.544 

Predictors 
Combination 

Regression Statistics for 4 
candidates predictors 

200 Mb Temp 
200 Mb GPH 
200 Mb SpecHum 
200 U wind 

Multiple R 0.764 
R Square 0.584 
Adjusted R Square 0.575 
Standard Error 2.550 

Predictors 
Combination 

Regression Statistics for 3 
candidates predictors 

200 Mb Temp 
200 Mb GPH 
200 Mb SpecHum 	. 

Multiple R 0.764 
R Square 0.584 
Adjusted R Square 0.577 
Standard Error 2.542 

Predictors 
Combination 

Regression Statistics for 6 
candidates predictors 

200 Mb Temp 
850 Mb GPH 
200 Mb SpecHum 
200 U wind 
500 V Wind 
Precipitation 

Multiple R 0.757 
R Square 0.573 
Adjusted R Square 0.558 
Standard Error 2.599 

Combination 
Predictors 

Regression Statistics for 5 
candidates predictors 

200 Mb Temp 
850 Mb GPH 
200 Mb SpecHum 
200 U wind 
500 V Wind 

Multiple R 0.756 
R Square 0.572 
Adjusted R Square 0.560 
Standard Error 2.595 

Predictors 
Combination 

Regression Statistics for 4 
candidates predictors 

200 Mb Temp 
850 Mb GPH 
200 Mb SpecHum 
200 U wind 

Multiple R 0.755 
R Square 0.570 
Adjusted R Square 0.560 
Standard Error 2.594 

Predictors 
Combination 

Regression Statistics for 3 
candidates predictors 

200 Mb Temp 
850 Mb GPH 
200 Mb SpecHum 

Multiple R 0.749 
R Square 0.561 
Adjusted R Square 0.553 
Standard Error 2.613 

From the result of various combination models, the bigger predictor number the bigger 

is the r but also the bigger is the standard error. The combination model which is using 

850Mb have bigger standard error and smaller r than the model which using 200Mb 

data. Thus, 200Mb GCM Temp, 200Mb GPH and 200Mb SpecHum are chosen as the 

predictors for downscaling precipitation variable and become the input data to get the 

formula for validation model. 

A. Input 

y 	: Observed Precipitation 

xl 	: 200Mb GCM Temperature 

X2 	: 200Mb GPH 

X3 	: 200Mb SpecHum 
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B. Output 

The regression facility in Microsoft excel produce the value of intercept coefficient 

and b1,b2,b3 coefficient that next will used as the data input for calculation of MLR 
precipitation in validation model (see table 6.6). 

Table 6.6 
Coefficient Variables for Precipitation Validation of MLR Model 

Coefficient 
Intercept 104.501 

200Mb Temp GCM 	x, 0.613 
200Mb GPH GCM x2  -0.006 

200Mb SpecHum GCM x3  45.053 

2. Validation (1996-2010) 

A. Input 

Using the result from calibration output, the equation 6.3 can be rewritten into: 

yppt =104.500 + 0.613.x1-0.006.x2 + 45.053. x3 

Yppt 	: Computed Precipitation 
x1 	: 200Mb GCM Temperature 

X2 	: 200Mb GPH 

x3 	: 200Mb SpecHum 

B. Output 

MLR analysis result the correlation coefficient between the observed and computed 

precipitation is 0.714. NSE and RMSE also measured in validation part and the result 

are 0.492 and 3.002 respectively. From the graph in figure 6.1 it is clearly seen that 

MLR cannot mimic the lower part of observed precipitation and also for the extreme 

precipitation. The complete result of calculation for MLR precipitation (MLR PPTn) is 
given in appendix. 
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MLR DOWNSCALING FOR MEAN MONTHLY PRECIPITATION 
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Figure 6.1 
Downscaling result of mean monthly precipitation during the validation period using MLR 

-method. 

VI.2.2 Minimum Temperature 

1.  Calibration (1981-1995) 

The predictor candidates to develop minimum temperature downscaling are in this table 

6.7 
Table 6.7 

Predictor candidates for MLR downscaling of minimum temperature. 

GCM DATA Correlation with observed mean 
minimum Temperature 

500Mb Temp 0.853 

200Mb GPH 0.834 

850Mb GPH -0.840 

850Mb SpecHum 0.822 

200Mb U wind -0.569 

500Mb V wind -0.437 

Again GPH variable have two potential predictors, which are 200Mb GPH and 850Mb 

GPH thus the combination will do separately for each value. The result of the 

combinations is in table 6.8 
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that result, V (vertical or meridional) wind has an influence in predict the 
temperature. This probably happens due to the Indian monsoon which is the 
• south-west monsoon brings heavy rain between July and september. The 
north-east monsoon, sweeps down from the plateaus of Asia and the 
and brings rain and cooler weather to south-east India between October and 
Thus, the chosen predictors for minimum temperatures downscaling are the 
n of four predictors which are 500Mb Temp, 850Mb GPH, 850Mb SpecHum 
V wind. 

served minimum temperature 
0Mb GCM Temperature 
0Mb GPH 
0Mb SpecHum 
0Mb V wind 

>rovide the intercept coefficient (a) and b1,b2,b3,b4 coefficient that next will 
the data input for calculation in validation model. 

Table 6.9 
efficient Variables for Minimum Temperature Validation of MLR Model 

Coefficients 
Intercept 61.152 
500 Mb Temp GCM (xi) 0.645 
850 Mb GPH GCM (x2) -0.027 
850 Mb SpecHum GCM (x3) 567.551 
500 Mb V wind (x4) -0.077 

Dn (1996-2010) 

-,suit from calibration output, the equation 6.3 can be rewritten into: 

ymi,, = 61.152+ 0.645.x1 - 0.027.x2  + 567.551.x3 - 0.077.x4 

computed minimum temperature 
: 500Mb GCM Temperature 

: 850Mb GPH 
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Table 
Summary output of statistic analysis for MLF 

	

Predictors 	Regression Statistics for 5 
Combination 	candidates predictors 

500Mb Temp 	Multiple R 	 0.903 
200Mb GPH 	R Square 	 0.815 
850Mb SpecHurn 	Adjusted R Square 	0.810 
200Mb U wind 	Standard Error 	3.072 
SOOMb V wind 

Predictors 	Regression Statistics for 4 

	

Combination 	candidates predictors 
500 Mb Temp 	Multiple R 	 0.903 
200 Mb GPH 	R Square 	 0.815 
850 Mb SpecHum Adjusted R Square 	0.811 
500 Mb V wind 	jStandard Error 	3.063 

Predictors 	Regression Statistics for 4 
Combination 	candidates predictors 

1500 Mb Temp 	Multiple R 	 0.901 
200 Mb GPH 	R Square 	 0.812 
850 Mb SpecHum Adjusted R Square 	0.808 
200 Mb U wind 	Standard Error 	 3.086 

8 

Predictors 	Regression Statistics for 3 
Combination 	candidates predictors 

500 Mb Temp 	Multiple R 	 0.901 	50C 
200 Mb GPH 	R Square 	 0.812 	2013 
200 Mb SpecHum Adjusted R Square 	0.809 	850 

Standard Error 	 3.082 

The result of combination using 200Mb GPH shove 
occur in combination of four predictors which incl',  
error (3.086) occur in combination with four pred 
value in combination three and four with U w1 
combination five and four with V wind also the Sam' 

The combination which using 850 Mb GPH shove 
(2.980) occurs in combination of four predictors witty 
and four with U wind predictors result the smaller v, 
of five and four with U wind. 
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Table 6.8 

Summary output of statistic analysis for MLR minimum temperature in calibration model 

Predictors 
Combination 

Regression Statistics for 5 
candidates predictors L 

WGPH 

Regression Statistics for 
candidates predictors-  

5 

500Mb Temp Multiple R 	 0.903 
R Square q 	 0.815 
Adjusted R Square 	0.810 
Standard Error 	3.072 JoMb 

JçlMb 	Multiple R p 
0Mb 	 R Square 

850Mb SpecHum 	Adjusted R Square 
U wind 	Standard Error 

500Mb V wind 

0.908 
0.825 
0.820 
2.988 

200Mb GPH 
850Mb SpecHum 
200Mb U wind -  
500Mb V wind 

rs 
on 

ession Statistics for 4 
ndidates predictors 

&SpecHum 

R 
fSquare 

R Square 
Error 

0.903 
0.815 
0.811 
3.063 

 Mb 	 um 

Predictors j 	Regression Statistics for 4 
Combination candidates predictors 

500 Mb Temp Multiple R 0.901 
200 Mb GPH R Square 0.812 
850 Mb SpecHum Adjusted R Square 0.808 
200Mb U wind Standard Error 3.086 

Predictors Regression Statistics for 3 
Combination candidates predictors 

500 Mb Temp Multiple R 	 0.901 
200 Mb GPH R Square 	 0.812 
200 Mb SpecHum Adjusted R Square 	0.809 

Standard Error 	3.082 

Predictors 	Regression Statistics for 4 
Combination 	candidates predictors 

500Mb Temp 	Multiple R 	 0.908 
850Mb GPH 	R Square 	 0.825 
850Mb SpecHum Adjusted R Square 	0.821 
500Mb V wind 	IStandard Error 	2.980 

Predictors j 	Regression Statistics for 4 
Combination 

J 	candidates predictors 
500 Mb Temp Multiple R 	 0.907 
850 Mb GPH ]R Square 	 0.823 
850 Mb SpecHum JAdjusted R Square 	0.819 
200 Mb U wind IStandard Error 	2.996 

Statistics for 3 
 candidates predictors a Regression 

Multiple R 	 0.907 
R Square 	 0.823 
Adjusted R Square 	0.820 
Standard Error 	2,988 

The result of combination using 200Mb GPH shows that smallest standard error (3.063) 

occur in combination of four predictors which include V wind and the biggest standard 

error (3.086) occur in combination with four predictors which include U wind. The r 

value in combination three and four with U wind the same (0.901) likewise the 
combination five and four with V wind also the same (0.903). 

The combination which using 850 Mb GPH shows that the smallest standard error 

(2.980) occurs in combination of four predictors with V wind. The combination of three 

and four with U wind predictors result the smaller value of r (2.988) than combination 
of five and four with U wind. 
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Based on that result, V (vertical or meridional) wind has an influence in predict the 

minimum temperature. This probably happens due to the Indian monsoon which is the 

summer or south-west monsoon brings heavy rain between July and september. The 

winter, or north-east monsoon, sweeps down from the plateaus of Asia and the 

Himalayas, and brings rain and cooler weather to south-east India between October and 

December. Thus, the chosen predictors for minimum temperatures downscaling are the 

combination of four predictors which are 500Mb Temp, 850Mb GPH, 850Mb SpecHum 
and 500Mb V wind. 

A. Input 

y 	: Observed minimum temperature 

xl 	: 500Mb GCM Temperature 

x2 	: 850Mb GPH 

X3 	: 850Mb SpecHum 

1(4 	: 500Mb V wind 

B. Output 

Table 6.9 provide the intercept coefficient (a) and b1,b2,b3,b4 coefficient that next will 

be used as the data input for calculation in validation model. 

Table 6.9 
Coefficient Variables for Minimum Temperature Validation of MLR Model 

Coefficients 
Intercept 61.152 
500 Mb Temp GCM (xi) 0.645 
850 Mb GPH GCM (x2) -0.027 
850 Mb SpecHum GCM (x3) 567.551 
500 Mb V wind (x4) -0.077 

2.  Validation (1996-2010) 

A. Input 

Using the result from calibration output, the equation 6.3 can be rewritten into: 

ymi„ = 61.152+ 0.645.x1 - 0.027.x2 + 567.551.x3 - 0.077.x4 

Ymin 	: computed minimum temperature 

xl 	: 500Mb GCM Temperature 

X2 	:850Mb GPH 
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X3 	 : 850Mb SpecHum 

x4 	: 500Mb V wind 

B. Output 
The result of regression minimum temperature model result r = 0.882, the measurement 

of NSE = 0.766 and RMSE = 3.450. From the graph in figure 6.2 we can see that MLR 

overestimated almost all the upper part of observed temperature and underestimates 

lower part or small values. 

MLR DOWNSCALING FOR MEAN MONTHLY MINIMUM TEMPERATURE 

35 

 

—Observed MIN Temp 

—MLR MIN Temp 
30 

35 — 

v '0  

VVy' io 

Figure 6.2 
Downscaling result of mean monthly minimum temperature during the validation period using 

MLR method. 
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VI.2.3 Maximum Temperature 

1. Calibration (1981-1995) 

The predictor candidates to develop maximum temperature downscaling are in this table 

6.10 

Table 6.10 
Predictor candidates for MLR downscaling of maximum temperature. 

GCM DATA Correlation with observed 
mean minimum 
Temperature 

500 Mb Temp GCM 0.689 
500 Mb GPH GCM 0.714 
850 Mb SpecHum GCM 0.645 
200 Mb U wind -0.406 
500 Mb V wind -0.311 

Table 6.11 
Summary output of statistic analysis for MLR maximum temperature in calibration model 

Predictors Combination 
Regression Statistics for 5 

candidates predictors 
500 Mb Temp GCM 

500 Mb GPH GCM 

850Mb SpecHum GCM 
200 Mb U wind 

500 Mb V wind 

Multiple R 0.793 
R Square 0.629 
Adjusted R Square 0.618 
Standard Error 3.469 

Predictors Combination 
Regression Statistics for 4 

candidates predictors 
500 Mb Temp GCM 

500 Mb GPH GCM 

850Mb SpecHum GCM 

200 Mb U wind 

Multiple R 0.792 
R Square 0.628 
Adjusted R Square 0.619 
Standard Error 3.464 
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Predictors Combination Regression Statistics for 4 
candidates predictors 

500 Mb Temp GCM 
500 Mb GPH GCM 

850Mb SpecHum GCM 

500 Mb V wind 

Multiple R 0.791 
R Square 0.626 
Adjusted R Square 0.617 
Standard Error 3.475 

. Predictors Combination Regression Statistics for 3 
candidates predictors 

500 Mb Temp GCM 

500 Mb GPH GCM 

850Mb SpecHum GCM 

Multiple R 0.790 
R Square 0.624 
Adjusted R Square 0.618 
Standard Error 3.470 

Based on the statistic analysis, the biggest r value (0.793) is achieved by combination 

with five predictors and the smallest value of standard error (3.464) is achieved by 

combination of four predictors which include U (zonal) Wind. Regarding the value of 

standard error, the combination of four combination include U wind is chosen as the 

predictors for develop downscaling for maximum temperature. This probably happens 

because zonal wind which has west—east direction bring strong, hot and dry summer 

"loo" (wind) from the large desert regions of the northwestern Indian subcontinent 
(Rana,2007). 

A. Input 

y 	 : Observed maximum temperature 
x1 	 : 500 Mb GCM Temperature 
X2 	 : 500 Mb GPH 

x3 	 : 850 Mb SpecHum 
x4 	 :200 Mb U Wind 

B. Output 

Same as previous process the value of intercept coefficient (a) and b1,b2,b3 coefficient 
from MLR process will used as the data input for calculation of MLR - temperature in 
validation part (see table 6.12). 
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Coefficient Variables for Minimum Temperature Validation of MLR Model 
Coefficients 

Intercept (a) -403.778 
500 Mb Temp GCM 	(xi) -0.451 
500 Mb GPH GCM 	(x2) 0.073 
850 Mb SpecHum GCM 	(x3) 1061.202 
200 Mb U Wind (x4) 0.093 

Table 6.12 

2.Validation (1996-2010) 

A. Input 

Using the result from calibration output, the equation 6.3 can be rewritten into: 

yma  _ -403.778- 0.451.x1  + 0.073.x2 + 1061.2020.x3+ 0.093.x4  

Ymax 	: computed max temperature 
xi 	: 500 Mb GCM Temperature 

X2 	:500 Mb GPH 
X3 	: 850 Mb SpecHum 

x4 	:200 Mb U Wind 

B. Output 

The MLR for maximum temperature validation result r = 0.732, the measurement of 

NSE = 0.529 and, RMSE = 3.941. From the graph in figure 6.3 we can see that MLR 

cannot mimic the lower part of observed temperature but better replicate the upper parts 
of maximum temperature. 
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SVR FOR MEAN MONTHLY MAXIMUM TEMPERATURE 

as 
--Observed MAX Temp 

40  --SVR_MAX Temp 

35 

V 30 

25 

20 

15 

Figure 6.3 
Downscaling result of mean monthly maximum temperature during the validation period using 

MLR method. 

xz. 
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V1.3 DOWNSCALING USING SUPORT VECTOR MACHINE 

As mentioned in chapter IV, the downscaling by SVM Regression (SVR) was carried 

out by using MATLAB LS-SVMLab toolbox Version 1.7. The data was divided into 

two periods and the steps of using the model in this study are given below: 

Calibration period 

1. Upload the data 

2. Downscale calibration data 

3. Determined the trial value of gam (gamma) and sig2 (sigma square). 
4. Do the train of the model get the value of alpha and b (bias) values. 
5. Using the values of alpha and b get the simulated precipitation. 

6. Check the errors and correlation. 

7. Back to step 3 again until the value of gam and sig2 get the best model (smallest 

error and biggest correlation). 

Validation period 

1. downscale validation data 

2. Simulate the train result from calibration result using validation data. 

3. Rescaling the simulated precipitation. 

4. Check the errors and correlation 

In this study,the length of data series used for the calibration and validation is the 

same, 15 years. For the calibration the data is from 1981 — 1995 and for the validation is 

from 1996 -2010. This is done because from the calibration model will produce the 

value of a (alpha) for each variable that will be used also in validation part. 

This SVR from LS-SVMLab toolbox model has two parameters y(gam) and o 2(sig2) to 

be determined. These parameters are independent, and their near optimal values can be 

obtained by command tunelssvm but in this study by a trial-and-error method was 

employed. These analysis and calculations of y and 0.2  parameters is used to perform 

computed climate variables (precipitation, minimum and maximum temperature). For 

both period the computed variables is compared to the observed variables and the error 

parameters is measured by using correlation coefficient (r), RMSE and NSE. The best 

combination of y and QZ  is chosen for further training and validation. The complete 
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model syntax and the calculations in matlab program are shown in appendix. The steps 

of doing the downscaling using the LS-SVMLab Version 1.7 toolbox are shown figure 
6.4. 

Upload the data 

Scale data to fall between 0 and 1 

Determine the value of gam 
and sie2 

Train the data 

Simulate the data 

Check the error and 
correlation 

no / Are the values 

satisfactory? 

yes 
The best model 

Figure 6.4 

Flow chart the SVR downscaling method using LS-SVMLab Version 1.7 toolbox 
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V1.3.1 SVR Downscaling for Precipitation 

As it was mentioned before that for downscaling precipitation variable, the chosen 

predictors are 200 Mb Temp (xi), 200 Mb GPH (X2), 200 Mb SpecHum (X3). The 

predictant is observed precipitation data (y). The result of combination y and a2  for 

precipitation downscaling are shown in table 6.13 from top to bottom in each cell of 

table 6.13 the statistics are (1) r (2) RMSE and (3) NSE. 

Table 6.13 

Performance statistic of precipitation downscaling for different combination of kernel 

parameters y and a2  for validation period. 

sig2 
gamma 

0.01 0.1 0.3 0.32 0.33 0.34 0.5 1 
0.01 0.5991 0.5985 0.5944 0.5939 0.5936 0.5933 0.5535 0.5727 

4.1927 4.0285 3.7769 3.7582 3.7491 3.7404 3.5591 3.4933 
0.0099 0.0859 0.1965 0.2045 0.2083 0.212 0.2865 0.3127 

0.1 0.6807 0.6971 0.696 0.695 0.6945 0.694 0.5687 0.6386 
4.1035 3.541 3.1938 3.1842 3.1804 3.1772 4.3969 3.5722 
0.0516 0.2938 0.4255 0.4289 0.4303 0.4314 -0.0889 0.2813 

1.5 0.7429 0.7487 0.7477 0.7475 0.7473 0.7472 0.7443 0.7027 
3.9204 3.0741 2.8436 2.8419 2.8416 2.8415 2.872 3.3183 
0.1343 0.4677 0.5446 0.5451 0.5452 0.5452 0.5354 0.3798 

1.7 0.7473 0.7499 0.7478 0.7476 0.7475 0.7474 0.7454 0.7346 
3.8903 3.0304 2.8411 2.8393 2.8389 2.8388 2.8639 3.1415 

0.1476 0.4828 0.5454 0.5459 0.5461 0.5461 0.538 0.4441 
1.8 0.7473 0.7499 0.7477 0.7475 0.7474 0.7473 0.7455 0.7348 

3.89 3.0301 2.8404 2.8387 2.8383 2.8381 2.8621 3.14 
0.1477 0.4829 0.5456 0.5461 0.5463 0.5463 0.5386 0.4447 

2 0.7474 0.7499 0.7475 0.7473 0.7472 0.7471 0.7454 0.735 
3.8898 3.0298 2.8402 2.8385 2.838 2.8379 2.8604 3.1386 
0.1478 0.483 0.5457 0.5462 0.5463 0.5464 0.5392 0.4452 

On sequence (1) r (2) RMSE (3) NSE 
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The best combination for the predicted precipitation is y = 0.33 and o-2  = 1.8 with the 

value of r = 0.7474, RMSE = 2.8383 and NSE = 0.5463. Even though SVR can make 

4.678 % improvement in correlation (r) and able to reach lower part in some point, but 

the upper part or high values still cannot be well replicated by the model particularly the 

extreme precipitation. Figure 6.5 shows the graph between of observed precipitation and 

computed precipitation by SVR (SVR PPTn). 

—OBSERVED PPTn 
SVR DOWNSCAUNG FOR MEAN MONTHLY PRECIPITATION 

—SVR PPTn 
25 

20 -- 

A 15 
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0 
t0 	to 	aO 	1- 	n 	o0 	to 	a0 	O, 	Ol 	0 	0 	.-f 	,. 	r`t 	N 	en 	a, 	to 	.7 	v 	v1 	9n 	to 	ao 	.0  
a m m a. at m rn .m ct m o 0 0 0 0 o c? 9 o 9 o 0 0 0 0 9 0 

t 	P. a0 9  o0 m rn o 0 
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Figure 6.5 

Downscaling result of mean monthly precipitation during the validation period using SVR 
method 

V1.3.2 SVR Downscaling for Minimum Temperature 

The best combination for the predicted minimum temperature is y = 0.45 and a2  = 2 
with the value is r = 0.920, RMSE = 2.881 and NSE = 0.837. Again if we compare the r 

value, then SVR make slightly improvement '(4.331 %) better than MLR. SVR model 

can reach the upper part of observed value however in some point still difficult to 

predict the higher values (green circle). Figure 6.6 shown the graph between of 

observed minimum temperature and computed minimum temperature by SVR (SVR 

MIN Temp). 

VI-19 



Table 6.14 

Performance statistic of minimum temperature downscaling for different combination of kernel 

parameters y and Q2 for validation period. 

sig2 
gamma 

0.01 0.1 0.3 0.4 0.45 0.5 

0.1 0.8741 0.8769 0.8739 0.8711 - 0.8697 0.8682 
7.0096 6.1781 5.1297 4.805 4.6728 4.5568 

- 0.0333 0.2491 0.4823 0.5458 Q.5704 0.5915 

1 0.8813 0.899 0.9113 0.9132 0.9137 0.9139 
6.4934 4.1135 3.0251 2.9297 2.9259 2.9418 
0.1704 0.6671 0.82 0.8311 0.8316 0.8297 

2 0.8791 0.8982 0.9147 0.9187 0.9202 0.9214 
6.3409 3.7911 2.9125 2.8688 2.8806 2.9069 
0.209 0.7172 0.8331 0.8381 0.8368 0.8338 

3 0.8796 0.8971 0.9131 0.9171 0.9187 0.92 
6.3041 3.6975 2.9326 2.926 2.9512 2.9883 
0.2181 0.731 0.8308 0.8316 0.8287 0.8243 

5 0.88 0.8946 0.9103 0.9145 0.9161 0.9175 
6.3357 3.6924 2.9701 2.9855 3.0198 3.0651 
0.2103 0.7318 0.8264 0.8246 0.8206 0.8152 

On sequence (1) r (2) RMSE (3) NSE 
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Figure 6.6 

Downscaling result of mean monthly minimum temperature during the validation period using 
SVR method 
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V1.3.3 SVR Downscaling for Maximum Temperature 

The best combination for the computed maximum temperature is y = 0.9 and o2 = 0.2 
with the value is r = 0.853, RMSE = 3.179 and NSE = 0.695. From the comparison of r 
value, the SVR make a better prediction than MLR which is 14.440 %. Figure 6.7 

shows the graphic between of observed maximum temperature and computed 

maximum temperature by SVR (SVR MAX Temp). The model cannot well replicate 
almost all lower and upper part. 

Table 6.15 

Performance statistic of maximum temperature downscaling for different combination of kernel 

parameters y and a2  for validation period. 

sig2 gamma 
0.1 0.5 0.9 0.92 1 1.5 

0.1 0.8109 0.8479 0.8493 0.8489 0.8466 0.82 
4.7385 3.6476 3.3239 3.3157 3.2892 3.3177 
0.3196 0.5968 0.6652 0.6668 0.6721 0.6664 

0.19 0.8136 0.8442 0.8387 0.838 0.8349 0.8068 
4.4272 3.3456 3.1718 3.1727 3.1834 3.4628 
0.406 0.6608 0.6951 0.695 0.6929 0.6366 

0.2 0.8137 0.8435 0.8377 0.8370 0.8339 0.8339 
4.4039 3.3283 3.1709 3.1726 3.1868 3.1868 
0.4123 0.6643 0.6953 0.6950 0.6922 0.6922 

0.21 0.8137 0.8429 0.8368 0.8287 0.833 0.8063 
4.382 3.313 3.1721 3.2585 3.1923 3.509 

0.4181 0.6674 0.6951 0.6782 0.6912 0.6269 
0.3 0.8133 0.8373 0.8294 0.8287 0.826 0.8049 

4.2331 3.2389 3.2483 3.2585 3.3057 3.7729 
0.457 0.6821 0.6803 0.6782 0.6688 0.5686 

0.5 0.8098 0.8284 0.8193 0.8187 0.8165 0.8021 
4.0592 3.2485 3.553 3.5776 3.6811 4.4352 
0.5007 0.6802i 0.6174 0.6121 0.5894 0.4039 

On sequence (1) r,(2) RMSE, (3) NSE 
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SVR DOWNSCAUNG FOR MEAN MONTHLY MAXIMUM TEMPERATURE 
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Figure 6.7 

Downscaling result of mean monthly maximum temperature during the validation period using 
SVR method. 
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V1.4 COMPARISON RESULT 

Table 6.16 provides ' the percentage of improvement result from regression model 
compare to SVM model in validation part. SVR model give better error measurements. 
Even in maximum temperature, SVR make 31.4 % improvement from MLR model. The 
smallest improvement is in r value of minimum temperature which is 4.3 %. 

Table 6.16 

Comparison of error measurement in validation part between MLR and SVR model 

Variables 
r value NSE RMSE 

MLR SVR 	
im rovof MI SVR %of 

MLR SVR %of 
eciitation 0.714 0.747 	4.678 0.492 0.546 

Improvement 
inimum Temperature 0.882 0.920 4.331 0.766 0.837 

10.931 3.002 2.838 5.447 
Iximum Temperature 0.732 0.838 14.440 0.529 0.695 

9.243 3.450 2.881 16.504 
31.437 3.94I 3.171 19.541 

The summarize result of error measurement for SVR model is provide in table 6.17. 
SVR give smaller precision in validation part. The r and NSE value are getting smaller 
whereas RMSE value is getting bigger. 

Table 6.17 

Error measurements value of SVR model 

Errors Measurements 
Variables Name Calibration Validation 

Preci itation  
r 	RMSE _ NSE r 	RMSE NSE 

Minimum Temperature 
0.772 2.537_
0.939 

0.577 _0.7472.838 0.546   
2.632 0.860 

_ 
0.920_2.881 0.837 Maximum Temperature 

__ 
0.914_2.408_ 0.815 

_ _ 
_0.838  	3.171 0.695 
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V1.5 FUTURE PROJECTIONS 

To develop future projection, GCM data are divided into two groups with 15 years span 

for each group. The first group is from 2011-2025, second group from 2026-2040. For 

SVR model the data are computed by SVR validated model with the same value of 

gamma and sigma for each variable. For MLR model the data are computed by MLR 

validated model with the same formula for each variable. 

VI.5.1 Precipitation Projection 

Descriptive statistic in; table 6.18 shows that mean value of SVR projection for 

precipitation is between 2.5 - 2.9 mm/day and 2.4 -3.2 mm/day for MLR model. From 

total amount of precipitation per year, one can see that for SVR model there will be 

increase of precipitation approximately by 0.5 - 2%. This is in accordance with 

Tritpathi (2006) which predicted that will precipitation increase in North India 

(Punjab,Haryana in the north-west,east Uttar Pradesh, west Uttar Pradesh), while MLR 

predict mixed trend in precipitation. 

Table 6.18 
Descriptive Statistic of Precipitation Projection 

Descriptive statistic of 
precipitation (mm/day) 

Observed 
1996-2010 

1996-2010 2011-2025 2026-2040 
MLR SVR MLR SVR MLR SVR 

Mean 2.778 3.25 2.52 2.41 2.88 2.96 2.92 

Standard Error 0.210 0.25 0.21 0.26 0.19 0.26 0.22 

Median 1.015 1.61 1.09 0.82 1.39 1.30 1.35 

Standard Deviation 4.049 3.39 2.83 3.54 2.60 3.54 2.94 

Range 21.137 15.26 8.71 15.57 7.87 14.81 8.84 

Minimum 0.000 0.11 0.12 -0.94 0.82 -0.32 0.60 

Maximum 21.137 15.36 8.83 14.63 8.69 14.49 9.44 

Sum (mm/year) 1048.319 1191.85 922.63 888.18 1054.52 1084.98 1070.174 

Figure 6.8a it shows that MLR is reaching negative values in future projection part also 

it have more variation in the range value. The maximum value can be reach by 14 

mm/day and the trend line is flat. The MLR seems underestimates the lower part. 

Figure 6.8b shows less variation in SVR. The maximum value is always below 10 

mm/day. Even though in projection part, there is no negative values but still SVR 

cannot well compute the lowest amount of precipitation (zero value).The trend line 

make small positive slope. 
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Those results possibly happen because regression based statistical downscaling model 

often cannot explain entire variance of the downscaled variable (Wilby et al, 2004). The 

Other reason could be that by nature precipitation is much more erratic and dependant 

on very local factors than for the other predictand ( Berastegi, 2011). Also, for 

precipitation the spatial variation is very large and it has very poor tern oral correlation. 
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VI.5.2 Minimum Temperature Projection 

From the projection of mean monthly minimum temperature, by the SVR model one 

can see that there will be not much change in temperature. The mean value of SVR in 

table 6.19 is between 16.9- 17.2 °C and MLR the mean value increase from 18.3°C to 

18.8 °C. The maximum value of MLR is approximately in 31°C same with the 

observed value but the minimum value is 9°C, 4°C higher than observed value. SVR 

have the minimum value 5-6°C, same with observed. For the maximum value, the 

highest prediction from SVR only 27.68°C, 4°C lower than observed. 

Table 6.19 
Descriptive Statistic of Minimum Temperature Projection 

Descriptive Statistic of 
minimum temperature 

C. 

Observed 1996 
2010 

1996-2010 2011-2025 2026-2040 

MLR SVR MLR SVR MLR SVR 
Mean 17.75 18.31 17.29 18.50 16.92 18.89 17.32 
Standard Error  0.53 0.51 0.53 0.51 0.57 0.53 0.56 
Median 18.49 16.70 16.48 16.52 15.81 16.78 16.45 
Standard Deviation 7.15 6.81 7.12 6.82 7.63 7.06 7.49 
Range 26.55 22.24 20.46 22.31 21.56 23.01 21.24 
Minimum 5.18 9.51 6.29 9.41 5.87 9.47 6.44 
Maximum 31.72 31.75 26.74 31.71 27.43 32.47 27.68 

Figure 6.9a shows the projections for minimum temperature by MLR. The highest value 

in projection part reach 32° and the lowest is around 7°C. The trend line increase 1°C 

.until 2040. Figure 6.9b shows that SVR have more variation in the upper part. After 

validation SVR shows not much change and the trend line is flat. 
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VI.5.3 Maximum Temperature Projection 

From the projection of mean monthly maximum temperature by SVR model one can see 

that there will be not much change. The mean value of the maximum temperature in 

table 6.20 is between 29.8 - 29.9 °C while the MLR model the mean value is between 

28 - 31°C. The SVR predict the highest value of mean monthly maximum temperature 

until 2040 is 39.25°C, while MLR predict it will reach 42.44°C. 

Table 6.20 
Descriptive Statistic of Maximum Temperature Projection 

Descriptive statistic of 
mean monthly maximum 

temperature °C 

observed  
1996-2010 

1996-2010 2011-2025 2026-2040 

MLR SVR MLR SVR MLR SVR 
Mean 30.20 28.24 29.95 31.22 29.81 32.01 29.96 
Standard Error 0.43 0.50 0.33 0.34 0.40 0.36 0.42 
Median 32.00 29.00 31.05 31.58 31.60 32.42 31.35 
Standard Deviation 5.76 6.75 4.44 4.59 5.30 4.84 5.61 
Range 23.86 23.67 18.74 20.64 19.59 20.10 20.14 
Minimum 15.82 15.58 19.84 21.09 19.43 22.35 19.12 
Maximum 39.68 39.25 38.58 41.72 39.02 42.44 39.25 

Figure 6.1Oa show the projection maximum temperature by MLR model. It can be seen 

that the range is getting bigger the trend line increase 2°C until 2040. The highest value 

of SVR model is around 39°C and the lowest value reach 19°C. After validation part, 

there is not much change. The trend line is flat. 
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VII.1 CONCLUSIONS 

This work has downscaled the climate variables in Roorkee area which are mean 

monthly precipitation, minimum and maximum temperature by using Support Vector 

Machine for Regression (SVR) and Multi linear regression (MLR) methods. Based on 

the result of this study, the following conclusions can be drawn: 

- The best combination of predictors for downscaling precipitation for Roorkee area 

among the available variables are temperature, geopotential height, and specific 

humidity at 200 mb this means that the values refer to approximately 12,000 m 

height where the cumulonimbus clouds are formed. This finding is in accordance 

with Gadgil (2006) that most of the rain over the Indian region comes from 

Cumulus and Cumulonimbus clouds. 

- V (Vertical) or Meridional wind influences the computations when downscaling the 

minimum temperatures. This probably happens because in the summer, south-west 

monsoon comes to Roorkee area and brings heavy rain between July and 

September. In the winter, north-east monsoon sweeps down from the plateaus of 

Asia and the Himalayas and brings rain and cooler weather between October and 

December. 

- U (horizontal) or Zonal wind influences the computation of the maximum 

temperature. This probably happens because zonal wind which has west—east 

direction brings strong, hot "loo" and dry summer wind from the large desert 

regions of the northwestern Indian subcontinent (Rana, 2007). 

- The result of downscaling for precipitation variable shows that SVR result are 

better computation than the MLR as seen by the improvement of error 

measurements which are 4.678 % for r, 10.931 % for NSF and 5.447 % for 

RMSE. However, from the performance indices, it can be determined that both 
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MLR and SVR could not well downscaled precipitation variable in Roorkee Area. 

The possible reason of this could be that by nature, precipitation is much more 

erratic and dependant on very local factors than for the other predictand (Berastegi, 

2011). Also, for precipitation the spatial variation is very large and it has very poor 

temporal correlation. Thus, downscaling of precipitation is a challenge and more 

studies are needed to that. 

- The result of SVR downscaling for minimum temperature shows a 4.331 % 

improvement in r, 9.243 % in NSE and 16.504 % in RMSE as compared to MLR. 

- The result of SVR downscaling for maximum temperature shows a 14.440 % 

improvement in r, 31.437 % in NSE and 19.541 % in RMSE as compared to MLR. 

- The result of downscaling for temperature variables shows that the maximum 

temperature shows better improvement when the SVR model is used rather than the 

minimum temperature. 

- From the comparison of the results, it can be concluded that, use of SVR can 

improve correlation in the range 4 — 14 % than MLR, for NSE by 9 - 31 % and for 

RMSEby5-19%. 

- From the SVR model, the future projection until. 2040 for precipitation shows that 

there will be little increase of precipitation and the future projection for temperature 

shows that there will be not much change of temperature in Roorkee area. 

- More research is needed to confirm these conclusions. 

VII.2 SUGGESTIONS FOR FUTURE RESEARCH 

- Precipitation is a very important input variable in hydrologic modeling. Long series 

of predictant variables and data of many related stations will be necessary to get 

better results from statistical downscaling of precipitation. 

- It would be interesting to get more data from various GCM outputs so that other 

variables which are important in hydrologic modeling such as evaporation, 

humidity, wind speed, radiation and sunshine hours. 
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PRECIPITATION DATA (CALIBRATION) 

NO Month 

Observed Mean 
Mothly 

precipitation 
(Y) 

200Mb 
Temp GCM 

(Xl) 

200Mb GPH 
GCM 
(X2) 

200Mb 
SpecHum 

GCM 
(X3) 

1 Jan-81 2.268 -56.898 11941.700 0.025 

2 Feb-81 0.361 -57.503 11917.900 0.025 
3 Mar-81 0.661 -57.989 12010.800 0.030 
4 Apr-81 0.207 -58.716 12044.400 0,041 
5 May-81 1.448 -56.976 12174.000 0.069 
6 Jun-81 8.200 -53.830 12274.700 0.046 
7 Jul-81 12.070 -49.148 12457.300 0.091 
8 Aug-81 4.297 -48.848 12485.700 0.118 
9 Sep-81 7.720 -51.978 12426.500 0.076 
10 Oct-81 0.000 -54.240 12283.600 0.042 
11 Nov-81 1.593 -56.047 12143.900 0.047 
12 Dec-81 0.123 -57.074 12060.700 0.038 
13 Jan-82 1.990 -55.9721 11972.400 0.026 
14 Feb-82 0.679 -56.757 11977.500 0.036 
15 Mar-82 4.965 -57.145 12009.900 0.036 
16 Apr-82 1.803 -57.128 12045.200 0.039 
17 May-82 0.858 -57.315 12150.100 0.047 
18 Jun-82 3.500 -53.622 12293.400 0.052 
19 Jul-82 5.961 -48.497 12471.300 0.144 
20 Aug-82 5.503 -48.622 12484.600 0.188 
21 Sep-82 0.200 -51.205 12417.800 0.067 
22 Oct-82 0.000 -54.742 12278.100 0.039 
23 Nov-82 0.000 -55.970 12176.600 0.039 
24 Dec-82 1.152 -56.708 12010.600 0.031 
25 Jan-83 4.058 -55.561 11993.000 0.027 
26 Feb-83 0.193 -55.905 12014.700 0.025 
27 Mar-83 0.284 -56.674 12008.600 0.035 
28 Apr-83 3.131 -58.517 12075.400 0.037 
29 May-83 0.917 -57.212 12184.000 0.051 
30 Jun-83 3.446 -53.963 12326.200 0.045 
31 Jul-83 4.254 -48.756 12462.100 0.117 
32 Aug-83 14.645 -48.205 12501.900 0.177 
33 Sep-83 3.666 -51.792 12433.200 0.075 
34 Oct-83 0.403 -53.765 12257.600 0.041 
35 Nov-83 0.000 -55.921 12127.000 0.036 
36 Dec-83 1.265 -57.918 12007.000 0.029 
37 Jan-84 1,065 -56.701 12025.800 0.037 
38 Feb-84 3.804 -56.214 12002.400 0.030 
39 Mar-84 0.000 -56.288 11953.200 0.035 
40 Apr-84 0.000 -58.221 12047.800 0.043 
41 May-84 1.570 -56.379 12135.000 0.043 
42 Jun-84 6.517 -53.539 12332.300 0.066 
43 Jul-84 8.662 -48.601 12467.700 0.140 
44 Aug-84 8.662 -47.915 12508.300 0.167 
45 Sep-84 2.680 -51.802 12411.100 0.095 
46 Oct-84 0.000 -53.904 12293.600 0.036 
47 Nov-84 0.130 -55.824 12117.300 0.036 
48 Dec-84 0.010 -56.924 12009.400 0.034 
49 Jan-85 0.281 -56.799 11999.200 0.039 
50 Feb-85 0.000 -55.953 12059.100 0.035 
51 Mar-85 0.000 -57.600 11960.300 0.033 
52 Apr-85 0.463 -58.656 12043.700 0.045 
53 May-85 0.290 -57.624 12173.400 0.050 
54 Jun-85 2.736 -53.238 12353.500 0.052 
55 Jul-85 7.668 -49.583 12459.100 0.115 
56 Aug-85 13.814 -47.832 12506.200 0.197 
57 Sep-85 3.780 :51.628 12423.600 0.067 
58 Oct-85 2.916 -54.630 12303.100 0.054 
59 Nov-85 0.000 -55.380 12182.200 0.057 
60 Dec-85 1.739 -56.966 12045.400 0.035 

NO Month 

Observed Mean 
Mothly 

precipitation 
(Y) 

200Mb 
Temp GCM 

(Xl) 

200Mb GPH 
GCM 
(X2) 

200Mb 
SpecHum 

GCM 
(X3) 

61 Jan-86 0.165 -54.962 12035.400 0.029 
62 Feb-86 2.171 -55.562 11957.900 0.024 
63 Mar-86 0.587 -57.438 11965.600 0.031 
64 Apr-86 0.407 -59.273 12003.400 0.035 
65 May-86 1.923 -57.393 12182.000 0.043 
66 Jun-86 1.481 -52.603 12359.300 0.081 
67 Jul-86 3.610 -48.675 12456.800 0.146 
68 Aug-86 6.013 -48.394 12503.100 0.190 
69 Sep-86 2.027 -51.556 12402.000 0.073 
70 Oct-86 2.467 -53.966 12283.300 0.053 
71 Nov-86 0.000 -56.298 12113.100 0.034 
72 Dec-86 1.003 -57.313 11981.100 0.034 
73 Jan-87 1.065 -57.729 11950.700 0.022 
74 Feb-87 1.346 -56.195 11991.200 0.026 
75 Mar-87 0.787 -56.972 11992.300 0.028 
76 Apr-87 0.193 -58.356 11998.900 0.038 
77 May-87 3.668 -56.598 12211.200 0.055 
78 Jun-87 4.042 -53.099 12317.300 0.057 
79 Jul-87 1.565 -48.873 12484.600 0.108 
80 Aug-87 4.365 -47.166 12511.100 0.217 
81 Sep-87 0.960 -51.563 12412.400 0.076 
82 Oct-87 0.161 -53.989 12295.100 0.046 
83 Nov-87 0.000 -55.985 12094.000 0.036 
84 Dec-87 0.294 -56.736 12047.000 0.035 
85 Jan-88 0.000 -57.044 11957.900 0.027 
86 Feb-88 2.258 -58.558 11946.700 0.027 
87 Mar-88 1.248 -56.982 11965.000 0.036 
88 Apr-88 0.417 -56.679 12050,800 0.044 
89 May-88 0.206 -57.833 12123.400 0.050 
90 Jun-88 1.739 -53.832 12314.400 0.062 
91 Jul-88 15.732 -48.205 12484.100 0.131 
92 Aug-88 15.839 48.852 12481.000 0.144 
93 Sep-88 9.387 -51.710 12425.200 0.082 
94 Oct-88 0.000 -54.222 12239.800 0.034 
95 Nov-88 0.000 -56.098 12128.200 0.044 
96 Dec-88 0.419 -57.682 12010.900 0.045 
97 Jan-89 3.294 -56.961 11943.800 0.025 

98 Feb-89 0.132 -56.569 11975.200 0.034 
99 Mar-89 0.052 -58.157 11973.800 0.040 

100 Apr-89 0.073 -58.191 11995.600 0.036 
101 May-89 0.413 -57.293 12165.200 0.042 
102 Jun-89 2.184 -52.940 12353.800 0.065 
103 Jul-89 8.639 -49.196 12442.300 0.139 
104 Aug-89 11.894 -49.106 12475.100 0.156 
105 Sep-89 11.404 -51.613 12402.100 0.070 
106 Oct-89 0.000 -54.001 12274.500 0.040 
107 Nov-89 0.360 -56.388 12140,100 0.055 
108 Dec-89 2.258 -56.985 11969.700 0.032 
109 Jan-90 1.084 -57.190 11982.400 0.036 
110 Feb-90 4.723 -56.089 12038.400 0.029 
111 Mar-90 1.729 -56.549 12035.900 0.040 
112 Apr-90 2.071 -57.899 12034.000 0.040 
113 May-90 2,071 -56.941 12161.700 0.049 
114 Jun-90 0.800 -52.272 12368.500 0.063 

118 Jul-90 10.900 -47.901 12499.200 0.142 

116 Aug-90 12.310 -47.706 12510.500 0.271 
117 Sep-90 3.715 -51.648 12421.400 0.077 
118 Oct-90 0.087 -54.242 12286.600 0.056 
119 Nov-90 0.520 -54.203 12206.500 0.041 
120 Dec-90 2.642 -57.519 12042.900 0.048 



NO Month 

Observed Mean 
Mothly 

precipitation 
(Y) 

200Mb 
TempGCM 

(Xl) 

200Mb GPH 
GCM 
(X2) 

200Mb 
SpecHumGCM 

(X3) 

121 Jan-91 0.000 -55.543 12035.000 0.038 
122 Feb-91 0.739 -56.153 12013.300 0.037 
123 Mar-91 0.606 -56.721 11969.500 0.032 
124 Apr-91 0.813 -58.040 12061.800 0.049 
125 May-91 0.000 -57.041 12154.300 0.062 
126 Jun-91 2.903 -53.063 12345.200 0.061 
127 Jul.91 6.642 -48.426 12489.900 0.148 
128 Aug.91 5.342 -47.910 12504.500 0.185 
129 Sep-91 7.857 -51.089 12436.500 0.078 
130 Oct-91 0.000 -54.367 12279.400 0.044 
131 Nov-91 0.567 -56.764 12117.400 0.044 
132 Dec-91 1.532 -57.388 12014.700 0.034 
133 Jan-92 1.371 -57.105 11973.800 0.036 
134 Feb-92 2.317 -55.563 11969,800 0.025 
135 Mar-92 0.165 -56.737 11992.400 0.038 
136 Apr-92 0.000 -56.767 12029,300 0.044 
137 May-92 1.390 -56.930 12154.200 0.045 
138 Jun-92 1.290 -52.012 12372,000 0.071 
139 Jul-92 4.090 -48.026 12513.100 0.131 
140 Aug-92 15.790 -47.323 12523.300 0.148 
141 Sep-92 0.010 -51.434 12438,100 0.072 
142 Oct.92 0.039 -54.392 12302.500 0.058 
143 Nov-92 0.043 -56.360 12098.500 0.037 
144 Dec-92 0.000 -57.923 12012.300 0.032 
145 Jan-93 0.255 -54.997 11980.500 0.028 
146 Feb-93 1.036 -56.339 11958.300 0.036 
147 Mar-93 3.816 -56.785 12022.100 0.027 
148 Apr-93 1.620 -57.365 12072.700 0.042 
149 May-93 1,000 -57.006 12151.400 0.042 

150 Jun-93 1.000 -52.302 12360.700 0.048 
151 Jul-93 1.753 -49.237 12438.500 0.104 
152 Aug-93 3.055 -48.979 12487.400 0.146 
153 Sep-93 5.553 -51.344 12421.300 0.104 
154 Oct-93 0.000 -54.445 12251.500 0,048 
155 Nov-93 0.000 -55.830 12103.500 0.033 
156 Dec-93 0.000 -56.988 11987.300 0.024 
157 Jan-94 1.026 -56.644 11940.600 0.032 
158 Feb-94 2.057 -55.748 12024.400 0.032 
159 Mar-94 0.077 -56.416 11987.800 0.035 
160 Apr-94 1.137 -57.754 12033.500 0.037 
161 May-94 1.129 -56.924 12117.600 0.049 
162 Jun-94 1.129 -53.112 12334.900 0.048 
163 Jul-94 12.793 -48.828 12475.100 0.122 
164 Aug-94 12.480 -48.123 12508.600 0.175 
165 Sep-94 1.313 -51.761 12423.700 0.065 
166 Oct-94 0.000 -54.071 12328.000 0.049 
167 Nov-94 0.000 -55.911 12148.900 0.042 
168 Dec-94 0.000 -57.232 12000.100 0.030 
169 Jan-95 2.223 -56.108 11977,100 0.032 
170 Feb-95 5.021 -56.053 11943.100 0.032 
171 Mar-95 0.077 -56.892 11936.700 0,026 
172 Apr-95 0,207 -57.514 12067.500 0.043 
173 May-95 0.000 -56.537 12166.500 0.051 
174 Jun-95 0.000 -52.305 12350.000 0.049 
175 Jul-95 17.229 -48.235 12484.800 0.159 
176 Aug-95 17.229 -48.273 12491.100 0.194 
177 Sep-95 1.313 -51.410 12435.200 0.091 
178 Oct-95 0.000 -53.457 12317.900 0.046 
179 Nov-95 0.040 -56.540 12107.700 0.048 
180 Dec-95 0.029 -56.677 12031.300 0.026 

Coefficients 
Intercept 104.501 

200Mb Temp GCM 	(Xl) 0.613 

200Mb GPH GCM (X2) -0.006 

200Mb SpecHum GCM 	(X3) 45.053 
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PRECIPITATION DATA (VALIDATION) 

NO Month 

Observed Mean 
Mothly 

precipitation 

(Y) 

200Mb 
Temp GCM 

(Xl) 

200Mb GPH 
GCM 
(X2) 

200Mb 
SpecHum GCM 

(X3) YREG Y- Yreg Y-Ymean (Y-Yreg)' (Y-Ymean)2 

1 Jan-96 1.087 -56.583 11974.800 0.026 1.070 0.017 -1.769 0.000 3.131 
:2: Feb-96 4.000 -56.646 11977.400 0.039 1.568 2.432 1.143 5.917 1.308 3 Mar-96 0.294 -56.861 11976.100 0.031 1.081 -0.788 -2.563 0.621 6.569 4 Apr-96 0.007 -58.487 12037.300 0.041 0.183 -0.177 -2.850 0.031 8.122 
5 
6 

May-96 
Jun-96 

0.245 
3.306 

-56.814 
-52.202 

12176.000 
12387.900 

0.048 
0.074 

0.729 
3.492 

-0.484 
-0.186 

-2.611 
0.450 

0.235 
0.035 

6.819 
0.202 7 Jul.96 5.168 -48.091 12502.800 0.147 8.640 -3.472 2.311 12.057 5.342 8 Aug-96 15.119 -46.733 12528.600 0.172 10.442 4.677 12.263 21.877 150.377 

9 Sep-96 4.307 -51.815 12430.800 0.102 4.739 -0.433 1.450 0.187 2.103 10 Oct-96 2.045 -53.627 12299.100 0.042 1.671 0.374 -0.811 0.140 0.658 11 Nov-96 0.000 -56.794 12136.700 0.054 1.236 -1.236 -2.857 1.529 8.160 12 Dec-96 0.000 -56.850 12045.300 0.039 1.058 -1.058 -2.857 1.119 8.160 13 Jan-97 0.613 -56.194 12065.400 0.040 1.398 -0.785 -2.244 0.617 5.034 14 Feb-97 0.136 -55.083 12031.600 0.026 1.650 -1.514 -2.721 2.293 7.403 15 Mar-97 0.177 -56.788 11987.100 0.037 1.354 -1.176 -2.679 1.384 7.178 
16 Apr-97 1.993 -58.005 12059.600 0.043 0.448 1.545 -0.863 2.386 0.746 17 May-97 0.487 -56.424 12168.500 0.054 1.297 -0.810 -2.369 0.657 5.614 18 Jun-97 1.200 -52.225 12365.600 0.068 3.349 -2.149 -1.657 4.618 2.744 
19 Jul-97 10.542 -47.691 12499.000 0.166 9.761 0.781 7.685 0.610 59.066 
20 Aug-97 8.381 -48.011 12504.100 0.155 9.032 -0.651 5.524 0.424 30.516 
21 Sep-97 11.973 -50.606 12433.200 0.090 4.934 7.039 9.117 49.549 83.116 
22 Oct-97 2.161 -54.322 12310.700 0.039 1.070 1.091 -0.695 1.190 0.483 
23 Nov-97 3.016 -56.752 12122.800 0.041 0.774 2.242 0.160 5.025 0.025 
24 Dec-97 3.016 -56.732 12043.000 0.042 1.260 1.756 0.160 3.083 0.025 
25 Jan-98 0.103 -55.880 12022.300 0.039 1.779 -1.676 -2.753 2.809 7.581 
26 Feb-98 0.893 -55.706 12005.300 0.030 1.602 -0.709 -1.964 0.502 3.856 
27 Mar-98 2.587 -56.418 12010.600 0.035 1.329 1.258 -0.269 1.582 0.073 
28 Apr-98 2.937 -57.269 12054.000 0.040 0.785 2.152 0.080 4.630 0.006 
29 May-98 1.045 -56.054 12225.200 0.063 1.564 -0.519 -1.811 0.269 3.281 
30 Jun-98 1.045 -51.373 12379.100 0.061 3.480 -2.435 -1.811 5.931 3.281 
31 Jul-98 8.219 -47.683 12486.900 0.145 8.891 -0.671 5.363 0.450 28.760 
32 Aug-98 13.407 -48.044 12516.200 0.143 8.392 5.014 10.550 25.143 111305 
33 Sep-98 2.493 -50.819 12458.100 0.099 5.053 -2.559 -0.363 6.549 0.132 
34 Ott-98 4.690 -54.190 12263.600 0.033 1.124 3.566 1.834 12.719 3.363 
35 Nov-98 0.000 -56.011 12159.400 0.043 1.093 -1.093 -2.857 1.195 8.160 
36 Dec-98 0,000 -57.541 11976.100 0.033 0.753 -0.753 -2.857 0.567 8.160 
37 Jan-99 2.648 -56.427 11948.700 0.031 1.511 1.137 -0.208 1.293 0.043 
38 Feb-99 0.064 -56.040 12009.800 0.035 1.590 -1.526 -2.792 2.329 7.797 
39 Mar-99 0.000 -56.136 12033.100 0.038 1.531 -1.531 -2.857 2.345 8.160 
40 Apr-99 0.000 -56.497 12035.200 0.038 1.297 -1.297 -2.857 1.684 8.160 
41 May-99 0.974 -56.378 12181.100 0.043 0.751 0.223 -1.882 0.050 3.543 
42 Jun-99 0.974 -52.077 12361.400 0.062 3.189 -2.215 -1.882 4.907 3.543 
43 Jul-99 9.155 -47.299 12504.600 0.103 7.102 2.053 6.298 4.213 39.669 
44 Aug-99 5.661 -47.433 12525.600 0.222 12.261 -6.600 2.805 43.558 7.867 
45 Sep-99 6.347 -50.795 12456.900 0.119 5.958 0.389 3.490 0.151 12.181 
46 Oct-99 0.219 -53.123 12339.200 0.057 2.455 -2.235 -2.637 4.997 6.955 
47 Nov-99 0.000 -55.341 12163.500 0.042 1.426 -1.426 -2.857 2.033 8.160 
48 Dec-99 0.077 -57.294 12003.700 0.032 0.709 -0.631 -2.779 0.398 7.723 
49 Jan-00 1.416 -55.756 11992.500 0.028 1.564 -0.148 -1.440 0.022 2.075 
50 Feb-00 0.323 -55.889 12051.600 0.034 1.402 -1.079 -2.534 1.164 6.421 
51 Mar-00 8.000 -56.477 12064.400 0.051 1.736 6.264 5.143 39.236 26.455 
52 Apr-00 0.100 -57.614 12050.100 0.035 0.403 -0.303 -2.757 0.092 7.598 
53 May-00 1.974 -55.469 12269.800 0.058 1.471 0.504 -0.882 0.254 0.779 
54 Jun-00 12.717 -52.263 12382.800 0.050 2.398 10.319 9.861 106.477 97.234 
55 Jul-00 13.063 -47.175 12505.700 0.170 10.202 2.862 10.207 8.190 104.179 
56 Aug-00 15.813 -47.375 12512.000 0.233 12.890 2.923 12.956 8.543 167.868 
57 Sep-00 3.803 -51.107 12445.200 0.085 4.325 -0.522 0.947 0.272 0.896 
58 Oct-00 0.000 -53.986 12324.300 0.066 2.402 -2.402 -2.857 5.768 8.160 
59 Nov-00 0.000 -54.819 12191.000 0.041 1.553 -1.553 -2.857 2.411 8.160 
60 Dec-00 0.000 -57.381 12012.900 0.030 0.511 -0.511 -2.857 0.261 8.160 
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61 Jan-01 0.535 -56.102 12000.300 0.031 1.413 -0.877 -2.321 0.770 5.387 
62 Feb-01 0.648 -55.993 11978.100 0.034 1.752 -1.103 -2.208 1.217 4.876 
63 Mar-01 0.000 -55.508 12037.100 0.036 1.783 -1.783 -2.857 3.180 8.160 
64 Apr-01 0.347 -57.088 12027.700 0.043 1.198 -0.851 -2.510 0.725 6.299 
65 May-01 0.942 -56.338 12181.800 0.048 0.987 -0.045 -1.915 0.002 3.666 
66 Jun-01 7.660 -51.896 12405.400 0.095 4.513 3.147 4.803 9.903 23.073 
67 Jul-01 9.519 -48.101 12497.700 0.161 9.263 0.256 6.663 0.066 44.393 
68 Aug-01 5.342 -48.870 12483.700 0.195 10.422 -5.080 2.485 25.807 6.177 
69 Sep-01 0.010 -50.357 12449.700 0.101 5.454 -5.444 -2.847 29.637 8.103 
70 Oct-01 0.227 -53.586 12301.500 0.051 2.087 -1.861 -2.630 3.462 6.916 
71 Nov-01 0.093 -55.378 12243.300 0.070 2.220 -2.127 -2.763 4.523 7.635 
72 Dec-01 0.090 -56.512 12040.500 0.033 1,037 -0.947 -2.766 0.897 7.652 
73 Jan-02 0.619 -55.179 12077.500 0.034 1.672 -1.053 -2.237 1.108 5.005 
74 Feb-02 0.510 -56.080 12042.500 0.038 1.481 -0.971 -2.347 0.944 5.508 
75 Mar-02 0.000 -55.829 12088.300 0.040 1.459 -1.459 -2.857 2.128 8.160 
76 Apr-02 0.014 -56.950 12046.400 0.049 1.454 -1.441 -2.843 2.075 8.081 
77 May-02 1.639 -57.521 12133.000 0.038 0.107 1.532 -1.218 2.346 1.483 
78 Jun-02 2.903 -52.063 12366.600 0.075 3.727 -0.824 0.047 0.679 0.002 
79 Jul-02 1.290 -47.649 12500.500 0.174 10.137 -8.846 -1.566 78.260 2.453 
80 Aug-02 9.445 -47.215 12509.400 0.196 11.315 -1.869 6.589 3.495 43.410 
81 Sep-02 14.113 -52.028 12399.600 0.094 4.423 9.690 11.257 93.899 126.716 
82 Oct-02 0.774 -54.226 12284.900 0.047 1.639 -0.865 -2.082 0.748 4.336 
83 Nov-02 0.000 -56.633 12128.700 0.045 0.977 -0.977 -2.857 0.954 8.160 
84 Dec-02 0.090 -55.710 12092.800 0.042 1.603 -1.512 -2.766 2.287 7.652 
85 Jan-03 0.906 -56.006 11971.100 0.029 1.572 -0.665 -1.950 0.443 3.803 
86 Feb-03 0.587 -55.869 12082.300 0.042 1.582 -0.995 -2.269 0.989 5.150 
87 Mar-03 0.000 -55.802 12078.000 0.040 1.567 -1.567 -2.857 2.457 8.160 
88 Apr-03 0.014 -56.654 12076.000 0.031 0.632 -0.618 -2.843 0.382 8.081 
89 May-03 0.161 -55.939 12223.300 0.059 1.463 -1.301 -2.695 1.694 7.264 
90 Jun-03 2.017 -52.793 12375.200 0.079 3.420 -1.403 -0.840 1.969 0.705 
91 Jul-03 7.213 -47.163 12511.700 0.220 12.413 -5.200 4.356 27.040 18.978 
92 Aug-03 10.290 -48.241 12507.000 0.209 11.284 -0.993 7.434 0.986 55.261 
93 Sep-03 6.777 -50.374 12471.400 0.120 6.189 0.588 3.920 0.346 15.367 
94 Oct-03 0.000 -53.428 12340.700 0.050 1.932 -1.932 -2.857 3.732 8.160 
95 Nov-03 0.071 -55.883 12127.100 0.028 0.690 -0.619 -2.786 0.383 7.759 
96 Dec-03 0.058 -56.796 12013.300 0.029 0.822 -0.764 -2.798 0.584 7.831 
97 Jan-04 1.248 -56.102 12003.200 0.032 1.458 -0.209 -1.608 0.044 2.586 
98 Feb-04 0.000 -56.145 11990.500 0.042 1.936 -1.936 -2.857 3.749 8.160 
99 Mar-04 0.000 -56.801 12020.900 0.036 1.076 -1.076 -2.857 1.159 8.160 
100 Apr-04 0.953 -56.973 12059.900 0.041 1.002 -0.048 -1.903 0.002 3.622 
101 May-04 0.665 -56.490 12171.100 0.056 1.334 -0.669 -2.192 0.448 4.805 
102 Jun-04 1.767 -51.881 12349.100 0.064 3.455 -1.688 -1.090 2.850 1.188 
103 Jul-04 9.219 -47.770 12492.100 0.137 8.433 0.786 6.363 0.618 40.486 
104 Aug-04 9.897 -46.577 12537.400 0.235 13.334 -3.438 7.040 11.817 49.565 

105 Sep-04 1.167 -50.639 12448.600 0.099 5.238 -4.072 -1.690 16.577 2.856 

106 Oct-04 0.000 -53.480 12320.600 0.048 1.938 -1.938 -2.857 3.757 8.160 

107 Nov-04 0.173 -55.045 12172.500 0.054 2.121 -1.948 -2.683 3.793 7.200 

108 Dec-04 0.052 -56.810 12058.400 0.039 1,030 -0.978 -2.805 0.957 7.866 
109 Jan-05 1.248 -56.901 12021.800 0.036 1.036 0.212 -1.608 0.045 2.586 
110 Feb-05 2.455 -56.002 11997.600 0.030 1.463 0.992 -0.402 0.985 0.161 

111 Mar-05 0.000 -56.537 12041.200 0.036 1.160 -1.160 -2.857 1.346 8.160 
112 Apr-05 0.000 -57.663 12088.200 0.039 0.291 -0.291 -2.857 0.085 8.160 
113 May-05 0.694 -57.070 12179.300 0.043 0.304 0.389 -2.163 0.152 4.678 
114 Jun-05 2.990 -52.323 12380.200 0.071 3.338 -0.347 0.134 0.121 0.018 
115 Jul-05 7.648 -48.306 12496.000 0.150 8.646 -0.998 4.792 0.995 22.962 

116 Aug-05 6.829 -47.888 12514.700 0.193 10.767 3.938 3.973 15.509 15.781 
117 Sep-05 12.553 -50.267 12473.100 0.093 5.035 7.519 9.697 56.532 94.028 
118 Oct-05 0.226 -53.975 12313.000 0.066 2.495 -2.270 -2.631 5.151 6.921 

119 Nov-05 0.100 -55.422 12124.500 0.041 1.579 -1,479 -2.757 2.189 7.598 
120 Dec-05 0.000 -56.963 11984.300 0.035 1.145 -1.145 -2.857 1.311 8.160 
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121 Jan-06 0.258 -56.087 12008.000 0.036 1,625 -1.367 -2.598 1.870 6.752 
122 Feb-06 0.881 -55.438 12060.700 0.032 1.525 -0.645 -1.976 0.416 3.904 
123 Mar-06 0.000 -56.498 12032.800 0.043 1.544 -1.544 -2.857 2.383 8.160 
124 Apr-06 0.000 -57.273 12066.400 0.041 0.756 -0.756 -2.857 0.572 8.160 
125 May-06 3.306 -56.796 12183.200 0.041 0.376 2.930 0.450 8.587 0.202 
126 Jun-06 2.687 -52.780 12385.300 0.075 3.207 -0.521 -0.170 0.271 0.029 
127 Jul-06 13.000 -46.978 12492.000 0.087 6.680 6.320 10.143 39.943 102.890 
128 Aug-06 2.258 -47.804 12523.700 0.167 9.574 -7.316 -0.598 53.521 0.358 
129 Sep-06 1.313 -51.428 12433,200 0.106 5.138 -3.824 -1.543 14.626 2.381 
130 Oct-06 1.661 -53.685 12339.400 0.038 1.223 0.438 -1.195 0.192 1.429 
131 Nov-06 0.000 -56.370 12110.900 0.054 1.628 -1.628 -2.857 2.652 8.160 
132 Dec-06 0.210 -56.687 12039.300 0.043 1.376 -1.166 -2.647 1.360 7.006 
133 Jan-07 0.232 -55.704 11949.200 0.030 1.933 -1.701 -2.624 2.892 6.887 
134 Feb-07 1.397 -56.127 11983.800 0.034 1.618 -0.221 -1.460 0.049 2.131 
135 Mar-07 10.400 -56.237 12033.400 0.041 1.602 8.798 7.543 77.413 56.904 
136 Apr-07 1.153 -57.192 12089.500 0.047 0.974 0.180 -1.703 0.032 2.901 
137 May-07 1.200 -56.604 12191.600 0.049 0.791 0.409 -1.657 0.167 2.744 
138 Jun-07 5.830 -52.533 12386.300 0.047 2.078 3.752 2.973 14.077 8.842 
139 Jul-07 2.258 -47.929 12496.000 0.125 7.792 -5.534 -0.598 30.627 0.358 
140 Aug-07 9.181 -47.649 12529.300 0.204 11.310 -2.129 6.324 4.534 39.994 
141 Sep-07 1.407 -50.830 12425.500 0.101 5.344 -3.937 -1.450 15.501 2.102 
142 Oct-07 0.000 -52.873 12348.300 0.051 2.275 -2.275 -2.857 5.174 8.160 
143 Nov-07 0.097 -56.746 12118.100 0.050 1.206 -1.109 -2.760 1.229 7.616 
144 Dec-07 0.135 -57.356 12008.000 0.027 0.431 -0.296 -2.721 0.088 7.404 
145 Jan-08 0.077 -56.311 12029.700 0.035 1.319 -1.241 -2.779 1.541 7.723 
146 Feb-08 0.000 -55.442 11985.700 0.027 1.731 -1.731 -2.857 2.995 8.160 
147 Mar-08 0.000 -56.798 12058.100 0.045 1.293 -1.293 -2.857 1.673 8.160 
148 Apr-08 0.607 -55.645 12079.300 0.040 1.662 -1.056 -2.250 1.115 5.062 
149 May-08 1.329 -56.017 12162.400 0.049 1.346 -0.016 -1.527 0.000 2.332 
150 Jun-08 8.300 -52.621 12360.300 0.052 2.380 5.920 5.443 35.045 29.631 
151 Jul-08 12.871 -47.260 12520.100 0.192 11.078 1.793 10.014 3.214 100.289 
152 Aug-08 5.590 -47.093 12524.800 0.206 11.770 -6.180 2.734 38.189 7.474 
153 Sep-08 3.200 -50.637 12470.400 0.135 6.698 -3.498 0.343 12.239 0.118 
154 Oct-08 0.632 -53.056 12320.600 0.033 1.511 -0.878 -2.224 0.771 4.947 
155 Nov-08 0.473 -55.955 12128.800 0.042 1.250 -0.776 -2.383 0.603 5.680 
156 Dec-08 0.019 -57.791 12011.800 0.042 0.831 -0.812 -2.837 0.659 8.050 
157 Jan-09 0.090 -55.430 12037.000 0.032 1.677 -1.586 -2.766 2.516 7.652 
158 Feb-09 0.219 -55.057 11966.200 0.029 2.174 -1.954 -2.637 3.820 6.955 
159 Mar-09 0.000 -57.424 11959.000 0.026 0.640 -0.640 -2.857 0.410 8.160 
160 Apr-09 0.547 -57.591 12028,300 0.051 1.240 -0.693 -2.310 0.481 5.335 
161 May-09 0.877 -55.513 12211.300 0.049 1.357 -0.480 -1.979 0.230 3.917 
162 Jun-09 1.227 -53.139 12364,900 0.048 1.854 -0.628 -1.630 0.394 2.656 
163 Jul-09 9.223 -47.542 12501.100 0.090 6.411 2.812 6.366 7.905 40.527 
164 Aug-09 8.868 -47.055 12538.900 0.177 10.411 -1.544 6.011 2.383 36.135 
165 Sep-09 9.170 -49.838 12490.300 0.083 4.757 4.413 6.313 19.471 39,860 
166 Oct-09 0.226 -53.694 12310.500 0.035 1.281 -1.055 -2.631 1.113 6.921 
167 Nov-09 0.027 -57.009 12120.400 0.036 0.390 -0.363 -2.830 0.132 8,008 
168 Dec-09 0.000 -56.672 12044.800 0.041 1.265 -1.265 -2.857 1.599 8.160 
169 Jan-10 0.348 -56.896 11967.400 0.035 1.321 -0.972 -2.508 0.945 6.291 
170 Feb-10 0.000 -54.953 12040.100 0.032 1.952 -1.952 -2.857 3.810 8.160 
171 Mar-10 0.000 -56.332 12029.000 0.036 1.359 -1.359 -2.857 1.846 8,160 
172 Apr-10 0.000 -55.453 12085.200 0.045 1.966 -1.966 -2.857 3.863 8.160 
173 May-10 0.619 -55.920 12145.900 0.054 1.700 -1.081 -2.237 1.168 5.005 
174 Jun-10 0.807 -53.733 12317.000 0.046 1.719 -0.913 -2.050 0.833 4.202 
175 Jul-10 21,137 -47.816 12507.800 0.118 7.470 13.667 18.281 186.780 334.179 
176 Aug-10 8.133 -47.185 12526.400 0.287 15.365  -7.232 5.276 52.305 27.837 
177 Sep-10 15.427 -49.677 12459.300 0.103 5.921 9.505 12.570 90.350 158.008 
178 Oct-10 0.432 -53.330 12306.600 0.040 1.722 -1.290 -2.424 1.663 5.877 
179 Nov-10 0.020 -55.649 12119.200 0.031 1.019 -0.999 -2.837 0.998 8.046 
180 Dec-10 0.000 -57.169 11995.300 0.044 1.361 -1.361 -2.857 1,851 8.160 

aulvu 	 _iw.i S 	 R: 	0.714 	 1621.971 	3195.799 
MEAN 	2.857 

NASH : 	0.492 
RMSE : 	3.002 
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MINIMUM TEMPERATURE DATA (CALIBRATION) 

No Month 

Mean MIN Temp 
observed 

(Y) 

500Mb Temp 
GCM 
(Xl) 

85OMb GPH 
(X2) 

850Mb SpecHum 
GCM 
(X3) 

500 Mb V 
Wind 
(X4) 

1 Jan-81 7.80 -18.036 1528.950 0.002 6.882 
2 Feb-81 11.02 -18.939 1523.600 0.003 3.828 
3 Mar-81 14.08 -15.988 1528.680 0.003 1.603 
4 Apr-81 20.00 -13.716 1498.340 0.007 3.345 
5 May-81 22.37 -10.172 1482.460 0.008 -3.306 
6 Jun-81 24.08 -7.619 1457.340 0.008 3.408 
7 Jul-81 26.59 -2.200 1386.040 0.009 2.434 
8 Aug-81 26.86 -1.740 1404.580 0.010 1.465 
9 Sep-81 22.89 -3.539 1452.030 0.007 2.384 
10 Oct-81 15.49 -8.965 1528.500 0.004 3.954 
11 Nov-81 11.48 -12.378 1537.370 0.005 -3.507 
12 Dec-81 5.65 -14.334 1531.700 0.004 2.329 
13 Jan-82 6.89 -17.577 1524.450 0.002 7.831 
14 Feb-82 8.64 -17.374 1530.950 0.002 -7.226 
15 Mar-82 12.32 -15.665 1510.690 0.003 -1.271 
16 Apr-82 17.24 -13.738 1479.980 0.006 -1.765 
17 May-82 21.26 -10.667 1485.390 0.008 -9.168 
18 Jun-82 24.40 -6.558 1436.070 0.008 2.905 
19 Jul-82 26.26 -1.930 1384.440 0.010 4.298 
20 Aug-82 26.26 -1.561 1400.370 0.012 3.860 
21 Sep-82 22.39 -3.514 1451.100 0.007 1.143 
22 Oct-82 26.12 -8.185 1523.790 0.004 4.414 
23 Nov-82 17.15 -11.804 1543.280 0.004 7.283 
24 Dec-82 12.37 -16.235 1531.830 0.003 -2.323 
25 Jan-83 5.75 -17.187 1533.070 0.002 -2.114 
26 Feb-83 8.62 -16.562 1519.170 0.002 3.590 
27 Mar-83 12.81 -16.132 1511.690 0.006 6.460 
28 Apr-83 16.86 -12.900 1499.100 0.006 -3.184 
29 May-83 21.55 -9.793 1485.150 0.008 2.398 
30 Jun-83 23.47 -5.518 1448.070 0.005 2.633 
31 Jui-83 24.92 -2.403 1402.560 0.008 7.468 
32 Aug-83 25.04 -1.122 1393.130 0.010 2.950 
33 Sep-83 _ 	23.53 -3.540 1459.390 0.006 8.460 
34 Oct-83 16.66 -9.610 1523.770 0.005 7.754 
35 Nov-83 9.88 -13.072 1537.530 0.003 4.016 
36 Dec-83 6.44 -15.708 1544.140 0.003 -3.987 
37 Jan-84 5.79 -16.211 1533.100 0.004 1.793 
38 Feb-84 7.39 -16.501 1519.110 0.003 6.573 
39 Mar-84 13.29 -16.810 1487.030 0.004 7.837 
40 Apr-84 17.17 -13.587 1494.910 0.006 2.189 
41 May-84 22.51 -11.444 1483.210 0.006 2.895 
42 Jun-84 24.50 -5.789 1441.080 0.006 -4.452 
43 Jul-84 25.79 -2.239 1406.270 0.011 1.931 
44 Aug-84 25.79 -1.137 1399.080 0.010 4.342 
45 Sep-84 23.92 -3.508 1440.690 0.008 -9.385 
46 Oct-84 16.66 -8.092 1517.800 0.004 4.972 
47 Nov-84 10.64 -13.751 1550.940 0.002 6.896 
48 Dec-84 7.65 -16.088 1540.730 0.004 -9.952 
49 Jan-85 7.48 -16.489 1531.700 0.005 3.590 
50 Feb-85 7.60 -14.754 1514.140 0.004 4.186 
51 Mar-85 13.29 -16.070 1494.060 0.005 5.519 
52 Apr-85 18.65 -13.198 1489.250 0.008 1.530 
53 May-85 24.51 -9.535 1488.960 0.006 -1.657 
54 Jun-85 24.51 -4.698 1442.280 0.005 -1.945 
55 Jul-85 24.98 -1.685 1388.860 0.010 1.277 
56 Aug-85 27.68 -0.765 1396.570 0.010 2.429 
57 Sep=85 24.89 -3.646 1452.640 0.006 3.943 
58 Oct-85 19.57 -7.399 1509.040 0.004 4.157 
59 Nov-85 12.01 -11.204 1535.410 0.006 3.655 
60 Dec-85 9.57 -15.243 1544.910 0.004 -2.928 
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61 Jan-86 6.71 -15.733 1529.380 0.003 -3.486 
62 Feb-86 9.18 -17.928 1511.740 0.003 4.315 
63 Mar-86 14.55 -16.834 1515.460 0.004 5.293 
64 Apr-86 18.66 -14.089 1491.600 0.006 2.808 
65 May-86 21.83 -9.214 1483.070 0.008 -2.130 
66 Jun-86 24.63 -5.135 1433.030 0.010 7.142 
67 Jul-86 25.92 -1.966 1382.260 0.011 3.506 
68 Aug-86 25.85 -1.281 1408.730 0.013 9.826 
69 Sep-86 23.29 -4.281 1460.250 0.009 2.218 
70 Oct-86 18.46 -8.404 1516.090 0.007 5.072 
71 Nov-86 13.32 -14.105 1565.940 0.003 6.085 
72 Dec-86 8.30 -16.128 1514.070 0.006 1.782 
73 	Jan-87 8.47 -18.108 1534.890. 0.002 -1.655 
74 	Feb-87 11.89 -17.089 1517.880 0.003 2.578 
75 	Mar-87 	16.11 	-15.886 	1507.130 0.004 7.722 
76 	Apr-87 	20.05 	-14.736 	1491.850 0.006 -4.947 
 I lvldy-oI /1.IL -y.Lt 4 1488.550 0.009 5.892 

78 Jun-87 24.52 -6.223 1453.150 0.011 5.952 
79 Jul-87 28.20 -1.183 1392.820 0.010 1.202 
80 Aug-87 26.94 -1.085 1402.490 0.012 2.456 
81 Sep-87 25.57 -4.380 1461.910 0.006 1.324 
82 Oct-87 18.92 -8.217 1523.000 0.005 -1.747 
83 Nov-87 12.00 -13.876 1534.760 0.004 7.388 
84 Dec-87 9.10 -14.964 1531.930 0.003 7.008 
85 Jan-88 8.27 -18.026 1541.800 0.003 4.804 
86 Feb-88 10.91 -17.465 1539.070 0.003 2.718 
87 Mar-88 14.38 -16.327 1502.340 0.006 5.356 
88 Apr-88 20.43 -13.563 1495.420 0.007 3.887 
89 May-88 25.41 -11.093 1486.460 0.009 -5.665 
90 Jun-88 26.96 -5.926 1447.810 0.009 -4.510 
91 Jul-88 26.44 -1.080 1382.470 0.013 -1.596 
92 Aug-88 26.28 -1.567 1400.400 0.012 3.678 
93 Sep-88 25.31 -3.186 1446.290 0.006 1.797 
94 Oct-88 17.51 -10.049 1528.300 0.004 5.122 
95 Nov-88 12.49 -12.965 1547.350 0.003 -4.167 
96 Dec-88 9.29 -15.611 1530.670 0.005 1.412 
97 Jan-89 7.49 -17.924 1530.270 0.002 2.112 
98 Feb-89 8.94 -17.086 1518.820 0.002 4.549 
99 Mar-89 14.14 -16.266 1516.710 0.005 2.604 
100 Apr-89 18.11 -14.790 1494.870 0.005 5.630 
101 May-89 23.88 -10.053 1484.390 0.007 -5.796 
102 Jun-89 24.74 -5.612 1455.510 0.009 4.381 
103 Jul-89 26.76 -3.387 1408.810 0.010 4.649 
104 Aug-89 25.59 -1.607 1408.290 0.012 6.948 
105 Sep-89 24.92 -4.623 1467.510 0.008 4.623 
106 Oct-89 18.46 -9.445 1539.400 0.004 -6.485 
107 Nov-89 12.05 -12.417 1542.180 0.006 -7.023 
108 Dec-89 8.73 -17.187 1539.690 0.004 4.456 
109 Jan-90 9.89 -16.994 1531.780 0.004 1.879 
110 Feb-90 11.26 -15.764 1519.340 0.004 4.857 
111 Mar-90 12.59 -15.251 1519.320 0.006 2.114 
112 Apr-90 16.54 -13.856 1495.590 0.006 -2.565 
113 May-90 23.32 -10.386 1488.860 0.009 -3.666 
114 Jun-90 25.90 -4.533 1429.940 0.007 3.294 
115 Jul-90 25.34 -1.109 1386.800 0.010 2.866 
116 Aug-90 26.28 -1.405 1394.710 0.012 3.571 
117 Sep-90 24.50 -3.393 1446.600 0.009 1.531 
118 Oct-90 18.05 -7.735 1513.910 0.007 5.442 
119 Nov-90 12.12 -10.404 1532.560 0.005 1.947 
120 Dec-90 7.98 -15.112 1543.880 0.005 3.713 



No Month 
Mean MIN Temp 

observed 
(Y) 

500Mb Temp 
GCM 
(X1) 

850Mb GPH 
(X2) 

850Mb SpecHum 
GCM 
(X3) 

500 Mb V 
Wind 
(X4) 

121 Jan-91 5.93 -16.554 1544.960 0.003 -5.909 
122 Feb-91 9.68 -16.528 1536.160 0.004 -1.622 
123 Mar-91 14.45 -16.997 1519.970 0.005 3.256 
124 Apr-91 17.93 -12.995 1491.290 0.006 -1.104 
125 May-91 22.73 -10.312 1484.990 0.009 -5.987 
126 Jun-91 24.90 -4.888 1450.930 0.008 5.282 
127 Jul-91 26.30 -1.785 1400.910 0.009 5.993 
128 	Aug-91 25.48 -1.057 1390.700 0.012 	1.980 
1L7 _ep-yi Z .bu -3.484 1448.270 0.008 2.979 
130 Oct-91 15.37 -8.981 1528.920 0.004 4.155 
131 Nov-91 10.36 -13.593 1549.400 0.004 -8.092 
132 Dec-91 8.54 -15.548 1532.660 0.004 -1.705 
133 Jan-92 7.52 -17.200 1527.910 0.004 7.361 
134 Feb-92 10.78 -17.219 1513.020 0.003 1.779 
135 Mar-92 8.64 -15.993 1503.070 0.004 -9.581 
136 Apr-92 17.84 -14.301 1494.680 0.005 2.994 
137 May-92 21.52 -10.385 1488.380 0.006 4.273 
138 Jun-92 25.09 -5.116 1447.960 0.009 7.101 
139 Jul-92 25.10 -0.999 1392.420 0.008 2.530 
140 Aug-92 28.44 -0.938 1401.250 0.010 2.287 
141. Sep-92 23.61 -3.070 1441.750 0.007 1.315 
142 Oct-92 16.40 -8.356 1532.220 0.005 2.081 
143 Nov-92 16.58 -13.529 1539.910 0.004 2.239 
144 Dec-92 7.15 -15.809 1543.350 0.003 -2.910 
145 Jan-93 7.26 -16.404 1502.260 0.001 3.017 
146 Feb-93 10.78 -16.536 1499.480 0.004 6.858 
147 Mar-93 12.76 -15.755 1514.940 0.004 -1.040 
148 Apr-93 17.87 -13.626 1501.740 0.006 -5.426 
149 May-93 23.12 -10.582 1477.540 0.006 -5.315 
150 Jun-93 25.72 -5.355 1437.270 0.005 2.892 
151 Jul-93 26.18 -2.560 1398.760 0.011 4.096 
152 Aug-93 26.02 -1.218 1398.260 0.013 1.975 
153 Sep-93 23.38 -3.336 1440.340 0.011 1.127 
154 Oct-93 11.38 -9.284 1524.510 0.005 2.045 
155 Nov-93 11.38 -13.543 1541.040 0.003 7.186 
156 Dec-93 6.90 -17.397 1564.680 0.004 -2.556 
157 Jan-94 8.32 -17.746 1522.670 0.004 -1.845 
158 Feb-94 14.64 -16.202 1524.800 0.004 1.644 
159 Mar-94 14.89 -16.474 1513.580 0.003 2.480 
160 Apr-94 17.19 -14.214 1509.600 0.006 -3.120 
161 May-94 22.60 -10.992 1481.800 0.011 -2.772 
162 Jun-94 26.80 -5.603 1446.190 0.008 1.328 
163 Jul-94 25.87 -1.932 1404.800 0.009 5.672 
164 Aug-94 25.32 -1.170 1401.420 0.010 1.500 
165 Sep-94 23.47 -3.926 1459.400 0.007 1.706 
166 Oct-94 15.87 -6.369 1506.490 0.005 6.824 
167 Nov-94 10.67 -12.265 1544.210 0.004 2.630 
168 Dec-94 7.87 -16.505 1541.940 0.005 -1.267 
169 Jan-95 6.06 -17.067 1519.060 0.003 3.385 
170 Feb-95 9.34 -17.704 1511.980 0.003 5.540 
171 Mar-95 12.92 -16.460 1479.810 0.004 -1.014 
172 Apr-95 17.68 -13.061 1494.670 0.005 -9.769 
173 May-95 23.22 -10.457 1488.900 0.007 -1.519 
174 Jun-95 25.52 -5.263 1432.540 0.010 2.653 
175 Jul-95 25.14 -1.379 1381.680 0.012 1.319 
176 Aug-95 24.96 -1.139 1394.090 0.011 1.392 
177 Sep-95 24.08 -2.741 1441.550 0.007 4.651 
178 Oct-95 18.87 -7.602 1529.380 0.005 3.421 
179 Nov-95 11.43 -13.427 1543.770 0.005 1.203 
180 Dec-95 8.15 -15.315 1532.090 0.004 4.642 



MINIMUM  TEMPERATURE DATA (VALIDATION) 

Mean MIN Temp 	500Mb Temp 	 850Mb SpecHum 	500 Mb V No 	Month 	observed 	GCM 	850Mb GPH 

(Y) 	(Xl) 	 (X3) 	(X4) 
(X2) 
	

GCM 	Wind 	Yreg 

1 	Jan-96 	6.95 	-17.5277 	1541.480 	0.002 	-3,185 	9.5 2 	Feb-96 	9.71 	-17.1682 	1529.200 	0.004 	6.763 	10.3 3 	Mar-96 	15.19 	-16.5924 	1502.640 	0.005 4 Apr-9 	18.06 	-1.584 	13.9 p 	 -14.1167 	1504.230 	0.004 	-2.375 	13.9 S 	May-96 	22.28 	-9.84026 	1480,550 	0.009 6 	Jun-96 	 -1.822 	24.9 25.40 	•4.01313 	1438.660 	0.009 	-1.239 	24,g 7 	Jul-96 	25,89 	-0.952298 	1396.540 	0.010 	-4.988 	28.45 8 	Aug-96 	24.95 	-0.86872 	1393.360 	0.011 	-3.604 	29,05 9 	Sep-96 	23.46 	-3.44713 	1453.070 	0.007 0 	Oct.96 	17.89 	-8.22989 	1520.740 	0.005 	-5.811 	17.64 1 	Nov-96 	10.71 	-12.4956 	1548.230 	0.005 	-2.331 	14.07 2 	Dec-96 	5.83 	-14.9318 	1529.180 	0.005 	1.672 	12.87 3 	Jan-97 	5.18 	-14.9851 	1537.550 	0.004 	3.144 	12.05 4 	Feb•97 	7.63 	-15,3362 	1516.550 	0.003 	1.774 5 	Mar-97 	17.18 	-16.0198 	1511.570 	0.004 	
11.94 

6 	Apr-97 	17.78 	-13.011 	1505.750 	0.006 	1.183 	14.95 14.951 7 	May-97 	26.02 	-10.0517 	1488.830 	0.008 	-4.281 	19.01 B 	Jun-97 	29.10 	-4.71525 	1444.720 	0.008 9 	Jul-97 	26.06 	 -1.581 	23.56 -1.31621 	1396.600 	0.012 	_7,9; 	2g y0 Aug-97 	25.58 	-1.35044 	1406.740 	0.013 	5.686 	29.73 L 	Sep-97 	24.15 	-3.87967 	1455.090 	0.006 	1.569 	22.721 Oct-97 	17.00 	-7.64256 	1529,680 	0.003 	3.278 	16.678 I 	Nov-97 	12.78 	-13.3356 	1560.290 	0.005 	1.626 	12.958 Dec-97 	9.21 	15.0094 	1533,410 	0.006 	1,203 	13.267 Jan-98 	6.73 	16.0345 	1529.110 	0.004 	2.743 	11.117 Feb-98 	10.19 	-16.2498 	1506.560 	0.003 	1.128 	11.440 Mar-98 	12.87 	15,6164 	1512.580 	0.004 	2.946 	12.343 _Apr-98 	18.59 	-13,2783 	1498.020 	0.004 	-8 002 

27 

 Y- Yreg 	Y-Ymean 	(Y-Yreg)2 	(Y-Ymean)' 

f1'-2.579 	•1.802 	6.651 	116.683 05 	-0.595 	-8.040 	0.354 	64.642 13 	2.680 	2.557 	7.185 	6.537 76 	4.081 	0.306 	16.652 	0.094 70 	2.308 	4.527 	5.326 	20.494 70 	0.526 	7.646 	0.277 	58,466 7 	-2.563 	8.143 	6.570 	66.311 1 	-4.099 	7,201 	16.805 	51.858 9 	-0.075 	5.713 	0.006 	32.638 6 	0.247 	0.143 	0,061 	0.020 3 	-3.359 	-7.037 	11.286 	49.520 2 	-7.043 	-11.921 	49.601 	142.119 
7 	-6.879 	-12.573 	47.326 	158,079 9 	-4.321 	-10.122 	18.667 	102.451 
2 	5.292 	-0.567 	28.002 	0.321 
 2.828 	0.029 	7.999 	0.001 

2 	7,008 	8.269 	49.108 	68.376 
7 	5.533 	11.350 	30.616 	128.814 

3.848 	8.308 	14.811 	69.018 
7 	4.160 	7.827 	17.303 	61.263 

1.433 	6.403 	2.053 	40.998 
0.314 	-0.754 	0.102 	0.568 

-0.181 	-0.974 	0,033 	24.738 
-4.061 	-8,544 	16.489 	72.999 
4.385 	11.018 	19.228 	121,399 

-1.247 	7,558 	1.555 	57.116 
0.525 	-4.883. 	0.275 	23.840 

z9 	May-98 	23.34 	-8,77009 	1487.820 	0.007 	-1.114 	19.430 	3.908 30 	Jun-98 	26.60 	-4,48909 	1430.020 	0.008 	-2,836 	24,288 	2.309 31 	Jul-98 	26.25 	-1.32218 	1382.960 	0.011 	-3.245 	29.178 	2.926 32 	Aug-98 	25.45 	-1.2493 	1409.390 	0,011 	-5.301 	28.776 	-3.330 33 	Sep-98 	24.89 	-3.24567 	1454.660 
34 	Oct-98 	25.64 	-8.87445 	1521.830 	0.007 	2.035 	18.004 	7.635 35 	Nov-98 	13.21 	-12.2702 	1547.930 	0,004 	1.185 	13.245 	0.032 36 	Dec-98 	7,49 	-17.0614 	1542.200 	0.003 	7.289 	10.714 	3.224 37 	Jan-99 	8.30 	-17.6495 	1522.750 	0,003 	1.338 	10.137 	1.837 38 	Feb.99 	10.66 	15.7196 	1509.080 	0,003 	3.704 	12.194 	1.534 39 	Mar-99 	13.80 	14.8353 	1503.710 	0.005 	1.231 	13.512 	0.285 40 	Apr-99 	17.97 	-13.8236 	1483.850 
41 	May-99 	22.30 	-10.3645 	1489.280 	0.007 	1.087 	17.865 	4.435 42 	Jun-99 	31.72 	-5.10442 	1438.170 	0.008 	-1.472 	23.239 	8.485 43 	Jul-99 	26.08 	-1.40685 	1395.510 	0.009 	4.128 	27.812 	1.731 44 	Aug-99 	26.91 	-1.09345 	1409.080 	0.012 	4.682 	29,602 	2.696 45 	Sep-99 	23.82 	-2.39634 	1445.850 	0.012 	1.386 	27.432 	3.612 46 	Oct-99 	18.19 	-6.78567 	1520.950 	0.004 	2.676 	18.008 	0.185 47 	Nov-99 	11.20 	12.1263 	1549.930 	0.003 	•1.058 	13,311 	-2.114 48 	Dec•99 	7.59 	-15.8549 	1542.350 	0.004 	1.271 	11.049 	-3.455 49 	Jan-00 	7.26 	-17.2487 	1529,490 	0.002 	1.599 	9.511 	-2.253 50 	Feb-00 	8.14 	-16.2574 	1550.310 	0.003 	-1.813 	10.408 	-2.267 51 	Mar-00 	12.96 	-14.4727 	1510,590 	0.005 	5.616 	13.143 	-0,178 52 	Apr-00 	20.79 	-13,7243 	1500.340 	0.005 	4.643 	14.333 	6.457 53 	May-00 	24.35 	-7.58382 	1476.250 	0.008 	-1.043 	20.830 	3.521 54 	Jun-00 	24.61 	-4.22871 	1448.790 	0.005 	5.329 	21.510 	3.097 55 	Jul-00 	26,45 	-1.79864 	1393,700 	0.010 	-3.644 	28.224 	-1778 56 	Aug-00 	25.56 	-1.37871 	1398.460 	0.013 	5.259 	29.855 	4,297 57 	Sep-00 	22.88 	-3.60119 	1460.840 	0.007 	2.933 	23.566 	0.682 58 	Oct-00 	18,81 	7.01549 	1520.020 	0.006 	2.582 	18.557 	0.250 59 	Nov-00 	12.74 	11.7769 	1540.710 	0.nna 	cas  

	

8.846 	5.331 

	

8.501 	8.561 

	

7.696 	11.088 

	

7.143 	1.021 

	

7,888 	58.290 

	

4.537 	0.001 

	

10.260 	10.396 

	

-9.450 	3.376 

	

-7,090 	2.352 

13.046 



Na Month 
Mean MiN Temp 

observed 
(Y) 

500MbTemp 
GCM 
(X7) 

SS0(2GPH
X2) ( 

SSOMb SpecHum 
GCM 
(X3) 

500 Mb V 
Wind 
(X4) 

Yreg Y-Yreg Y-Ymean (Y-Yreg)1  (Y-Ymean)2  

61 Jan-01 5.98 -16.8964 1529.520 0.002 -3.076 10.373 -4.389 -11.767 19.260 138.451 

62 Feb-01 8.93 -17.8013 1540.780 0.003 -2.647 9.870 -0.945 -8.825 0.893 77.887 

63 Mar-01 13.20 -15.0586 1498.280 0.005 1.163 13.689 -0.486 -4.547 0.23 20.677 

64 Apr-01 18.56 -14.4617 1495.010 0.007 4.830 14.874 3.686 0.810 13.583 0.655 

65 May-01 24.22 -10.2609 1487.980 0.008 -1.405 18.543 5,679 6.4 32.254 41.889 

66 Jun-01 25.55 -3.74989 1423.980 0.009 -3.372 25.684 -0.134 7.800 0.018 60.834 

67 Jul-01 26.64 -0.964186 1373.160 0.011 -5.214 30.077 -3.435 8.892 11.797 79.060 

68 Aug-01 26.43 -1.63063 1409.980 0.014 -4.444 30.351 -3.919 8.682 15.359 75.375 

69 Sep-01 23.44 -3.10253 1449.700 0.009 -4.500 25.543 -2.103 5.690 4.422 32.372 

70 Oct-01 19.43 -8.43268 1526,890 0.005 -1.042 16.997 2.437 1.683 5.938 2.832 

71 Nov-01 11.85 -9.53713 1539.000 0.006 -1.753 16.712 -4.859 -5.897 23.608 34.775 

72 Dec-01 8.06 -15.5905 1540.510 0.005 3.562 12.016 -3.955 -9,689 15.639 93.878 

73 Jan-02 . 	7.21 -14.9562 1533.900 0.004 2.915 11.893 -4.680 -10.537 21.901 111.038 

74 Feb-02 9.98 -15.8893 1545.390 0.004 -1.501 11.141 1.159 7.768 1.343 60.346 

75 Mar-02 15.25 -13.962 1512.010 0.004 -2.105 13.759 1.493 -2.499 2.228 6.244 

76 Apr-02 19.43 -13.9096 1501.090 0.007 1.832 15.459 3.971 1.680 15.766 2.821 

77 May-02 24.52 -10.637 1491.720 0.007 -2.723 18.118 6.398 6.766 40.930 45.775 

78 Jun-02 25.56 -4.81223 1439.470 0.012 -3.525 26.107 -0.544 7.813 0.296 61.042 

79 Jul-02 26.03 -0.878893 1374.410 0.013 -4.896 31.222 -5.190 8.282 26.936 68.590 

SO Aug-02 28.00 -1.39397 1395.780 0.013 -4.566 29.973 -1.976 10.246 3.905 104.989 

81 Sep-02 22.67 -4.30191 1462.960 0.012 -4.374 25.897 3.224 4.923 10.392 24.235 

82 Oct-02 18.01 -8.71682 1530.070 0.005 -2.923 16.908 1.102 0.259 1.214 0.067 

83 Nov-02 11.46 -12.9291 1555.910 0.005 1.180 13.305 -1.847 -6.292 3.412 39.593 

84 Dec-02 8.47 -14.2307 1541.040 0.004 2.556 12.382 -3.907 -9.276 15.268 86.048 

85 Jan-03 6.49 -17.643 1532.740 0.002 -4.471 9.937 -3.450 -11.263 11.903 126.862 

86 Feb-03 10.09 -14.7119 1534.960 0.003 -1.891 11.915 -1.829 7.665 3.345 58.747 

87 Mar-03 14.38 -14.0199 1510.200 0.006 1.145 14.406 -0.029 -3.373 0.001 11.377 

88 Apr-03 18.88 -13.0682 1498.990 0.003 -2.624 13.978 4.904 1.132 24.053 1.282 

89 May-03 21.40 -8.94064 1486.570 0.007. -5,351 19.286 2.117 3.653 4.484 13.343 

90 Jun-03 26.11 -4.20136 1438.370 0,009 -1.843 24.856 1.254 8.360 1.573 69.883 

91 Jul-03 26.16 -0.742531 1379.560 0.014 -6.000 31.462 -5,301 8.411 28.100 70.743 

92 Aug.03 25.63 -1.02785 1398.610 0.014 -3.841 30.867 -5.235 7.882 27.402 62.124 

93 Sep-03 24.50 -1.77208 1435.340 0.009 -4.656 26.552 -2.052 6,750 4.209 45,557 

94 Oct-03 16.60 -6.51935 1515.910 0.006 -5.866 19.956 -3.359 -1.154 11.281 1.331 

95 Nov-03 11.27 -13.4823 1556.650 0.003 .3.529. 11.971 -0.703 -6.483 0.495 42.025 

96 Dec-03 9.53 -15.9815 1541.400 0.003 4.215 11.049 -1,520 -8.221 2.309 . 	67.591 

97 Jan-04 8,60 -16.0974 1517.130 0.003 3.191 10.920 -2.316 -9.147 5.363 83.662 

98 Feb-04 10.58 -16.8542 1523.730 0.003 -4.354 11.122 -0.547 -7.175 0.299 51.486 

99 Mar-04 15.28 -14,9209 1504.640 0.004 1.012 13.173 2.105 -2.473 4.430 6.116 

100 Apr-04 20.27 -13.5829 1505.880 0,006 -1.242 14.767 5,503 2.520 30.284 6.348 

101 May-04 22.60 -10.213 1492.130 0.010 7.295 18.950 3.647 4.846 13.300 23.485 

102 Jun-04 25.06 -5.18374 1446.510 0.007 -3.261 22.608 2,456 7.313 6.030 53.479 

103 JuI-04 25.71 -1.57738 1396.160 0.010 -3.223 27,964 -2.255 7.959 5.083 63.350 

104 Aug-04 25.39 -0.436458 1385.910 0.014 -4.087 31.753 -6.366 7.637 40.526 58.319 

105 Sep-04 24.26 -2.9306 1457.970 0.008 -3.132 24.632 -0.369 6.513 0,136 42.419 

106 Oct-04 15.87 -7.89688 1522.850 0.004 -2.516 17.290 -1.422 -1.883 2.023 3.544 

107 Nov-04 12.12 -11.6191 1532.920 0.007 3.354 15.609 -3.493 -5.634 12.198 31.739 

108 Dec-04 8.60 -14.8945 1549.200 0.004 2.919 11.691 -3.088 -9.147 9.533 83.662 

109 Jan-05 6.56 -16.374 1543.720 0.004 -9.462 11.962 -5.404 -11.192 29,201 125.268 

110 Feb-05 10.00 -16.8737 1519.850 0.004 7.010 10.928 -0.932 -7.754 0.868 60.124 

131 Mar-05 22.31 -15.3879 1524.910 0.004 -1.638 12.415 9.894 4,559 97.895 20.787 

112 A 17.96 17.96 -12.0355 1496,530 0.005 -1.294 15.564 2.400 0.213 5.759 0.045 

113 

_- 

May-05 21.84 -10.1083 1502.010 0.008 -1.352 18.370 3.465 4.085 12.006 16.688 

114 Jun-05 24.61 -4.33689 1443.610 0.008 -2.025 23.625 0.982 6.856 0.964 47.006 

115 Jul-05 25.51 -1.73203 1403.300 0.010 -2.334 27.942 -2.429 7.763 5.899 60.257 

116 Aug-05 25.26 -0.929587 1408,770 0,013 -3.105 29.685 -4.427 7.508 19.601 56.365 

117 Sep-05 23.93 -2.20726 1447.580 0.007 -2.044 24.692 -0.759 6.183 0.576 38.229 

118 Oct-05 18.40 -7.53045 1524.290 0.005 1.351 17.750 0.653 0.653 0.426 0.426 

119 Nov-05 9.91 -13.016 1536.250 0.006 3.558 14.030 -4.123 -7.844 17.002 61.524 

120 Dec-05 5.61 -16.5635 1530.980 0.004 1,373 11.016 -5.409 .12.144 29.259 147.475 



MEAN: 	17.75 ^ 	"•O°' 	 2142.199 	9149.599 

NASH: 	0.766 
RMSE: 	3.450 



JFI 

MEAN MONTHLY MAXIMUM TEMPERATURE (CALIBRATION) 

Mean MAX 
Temp Observed 

NO 	MONTH 	(Y) 

500Mb 
Temp GCM 

(Xl) 

500Mb GPH 
GCM 
(X2) 

850Mb 
SpecHum GCM 

(X3) 

200Mb U 
Wind 
(X4) 

1 	Jan-81 	19.230 -18.036 5635.060 0.002 5.975 
2 	Feb-81 	23.539 -18.939 5633.410 0.003 5.665 
3 	Mar-81 	26.342 -15.988 5704.590 0.003 4.491 
4 	Apr-81 	35.738 -13.716 5737.780 0.007 3.227 
5 	May-81 	37.865 -10.172 5776.050 0.008 2.280 
6 	Jun-81 	38.687 -7.619 5794.920 0.008 1.510 
7 	Jul-81 	33.147 -2.200 5799.230 0.009 2.845 
8 	Aug-81 	33.871 -1.740 5820.060 0.010 -5.556 
9 	Sep-81 	32.500 -3.539 5842.890 0.007 4.204 
10 	Oct-81 	31.216 -8.965 5806.900 0.004 2.426 
11 	Nov-81 	25.993 -12.378 5757.670 0.005 3.895 
12 	Dec-81 	22.868 -14.334 5708.160 0.004 4.872 
13 	Jan-82 	21.019 -17.577 5643.400 0.002 5.461 
14 	Feb-82 	21.271 -17.374 5650.170 0.002 5.432 
15 	Mar-82 	24.458 -15.665 5676.680 0.003 4.974 
16 	Apr-82 	32.690 -13.738 5697.390 0,006 4.525 
17 	May-82 	35.481 -10.667 5766.270 0.008 2.492 
18 	Jun-82 	37.171 -6.558 5802.470 0.008 1.247 
19 	Jul-82 	35.477 -1.930 5796.120 0.010 -4.659 
20 	Aug-82 	32.535 -1.561 5803.850 0.012 -6.933 
21 	Sep-82 	34.187 -3.514 5824.420 0.007 1.321 
22 	Oct-82 	31.050 -8.185 5799.800 0.004 2.474 
23 	Nov-82 	25.931 -11.804 5761.300 0.004 3.971 
24 	Dec-82 	21.226 -16.235 5678.690 0.003 5.327 
25 	Jan-83 	18.248 -17.187 5643.920 0.002 5.526 
26 	Feb-83 	22.271 -16.562 5644.250 0.002 6.117 
27 	Mar-83 	27.990 -16.132 5683.490 0.006 5.486 
28 	Apr-83 	31.403 -12.900 5755.570 0.006 3.350 
29 	May-83 	35.555 -9.793 5782.640 0.008 2.038 
30 	Jun-83 	38.687 -5.518 5818.090 0.005 1.608 
31 	Jul-83 	35.148 -2.403 5795.120 0.008 1.008 
32 	Aug-83 	33.381 -1.122 5799.950 0.010 -6.960 
33 	Sep-83 	33.907 -3.540 5832.250 0.006 5.441 
34 	Oct-83 	32.123 -9.610 5788.980 0.005 2.622 
35 	Nov-83 	27.723 -13.072 5741.640 0.003 4.102 
36 	Dec-83 	24.242 -15.708 5709.270 0.003 4.457 
37 	Jan-84 	19.526 -16.211 5682.400 0.004 5.374 
38 	Feb-84 	21.632 -16.501 5643.170 0.003 5.655 
39 	Mar-84 	30.390 -16.810 5632.440 0.004 5.619 
40 	Apr-84 	33.614 -13.587 5716.180 0.006 4.330 
41 	May-84 	37.248 -11.444 5755.940 0.006 3.275 
42 	Jun-84 	35.357 -5.789 5807.800 0.006 1.156 
43 	Jul-84 	32.466 -2.239 5798.600 0.011 -4.851 
44 	Aug-84 	32.466 -1.137 5809.150 0.010 -8.830 
45 	Sep-84 	32.807 -3.508 5820.800 0.008 0.799 
46 	Oct-84 	33.197 -8.092 5817.420 0.004 2.131 
47 	Nov-84 	28.063 -13.751 5741.810 0.002 4.328 
48 	Dec-84 	24.287 -16.088 5696.770 0.004 4.903 
49 	Jan-85 	20.181 -16.489 5677.440 0.005 5.055 
50 	Feb-85 	24.213 -14.754 5664.600 0.004 5.679 
51 	Mar-85 	31.787 -16.070 5660.320 0.005 4.925 
52 	Apr-85 	34.917 -13.198 5723.030 0.008 3.539 
53 	May-85 	39.097 -9.535 5779.170 0.006 2.169 
54 	Jun-85 	36.832 -4.698 5812.590 0.005 1.300 
55 	Jul-85 	33.023 -1.685 5804.760 0.010 1.482 
56 	Aug-85 	33.400 -0.765 5800.550 0.010 -1.157 
57 	Sep-85 	31.753 -3.646 5815.290 0.006 3.278 
58 	Oct-85 	29.400 -7.399 5808.240 0.004 2.138 
59 	Nov-85 	26.647 -11.204 5764.530 0.006 3.414 
60 	Dec-85 	22.552 -15.243 5710.930 0.004 4.982 



NO MONTH 

Mean MAX 
Temp Observed 

(Y) 

500Mb 
Temp GCM 

(X1) 

500Mb GPH 
GCM 
(X2) 

850Mb 
SpecHum GCM 

(X3) 

200Mb U 
Wind 
(X4) 

61 Jan-86 20.894 -15.733 5659.290 0.003 5.542 
62 Feb-86 21.971 -17.928 5625.930 0.003 5.741 
63 Mar-86 27.571 -16.834 5680.980 0.004 4.994 
64 Apr-86 33.960 -14.089 5711.870 0.006 3.451 
65 May-86 35.726 -9.214 5775.830 0.008 2.127 
66 Jun-86 35.352 -5.135 5791.240 0.010 1.027 
67 Jul-86 32.061 -1.966 5778.620 0.011 -2.753 
68 Aug-86 31.952 -1.281 5808.010 0.013 -1.048 
69 Sep-86 32.093 -4.281 5815.470 0.009 6.986 
70 Oct-86 29,797 -8.404 5807.350 0.007 2.098 
71 Nov-86 27.177 -14.105 5765.120 0.003 3.544 
72 Dec-86 20.829 -16.128 5676.910 0.006 5.009 
73 Jan-87 21.723 -18.108 5650.100 0.002 6.094 
74 Feb-87 24.121 -17.089 5632.820 0.003 6.058 
75 Mar-87 29.400 -15.886 5666.280 0.004 5.047 
76 Apr-87 33.863 -14.736 5699.350 0.006 3.828 
77 May-87 33.790 -9.284 5781.290 0.009 2.387 
78 Jun-87 36.381 -6.223 5790.770 0.011 1.866 
79 Jul-87 36.587 -1.183 5810.450 0.010 1.030 
80 Aug-87 33.658 -1.085 5796.420 0.012 -6.296 
81 Sep-87 33.970 -4.380 5825.980 0.006 7.444 
82 Oct-87 32.232 -8.217 5804.480 0.005 2.032 
83 Nov-87 28.033 -13.876 5725.100 0.004 4.404 
84 Dec-87 22.945 -14.964 5693.770 0.003 5.498 
85 Jan-88 21.481 -18.026 5669.830 0.003 5.495 
86 Feb-88 24.283 -17.465 5680.640 0.003 5.004 
87 Mar-88 26.535 .-16.327 5667.530 0.006 4.418 
88 Apr-88 35.947 -13.563 5712.840 0.007 3.970 
89 May-88 39.242 -11.093 5749.030 0.009 3.066 
90 Jun-88 35.461 -5.926 5795.890 0.009 1.580 
91 Jul-88 32.110 -1.080 5795.680 0.013 -1.903 
92 Aug-88 30.310 -1.567 5808.350 0.012 -2.789 
93 Sep-88 32.500 -3.186 5819.360 0.006 6.302 
94 Oct-88 30.948 -10.049 5783.950 0.004 2.765 
95 Nov-88 27.233 -12.965 5750.680 0.003 4.342 
96 Dec-88 22.813 -15.611 5697.190 0.005 5.326 
97 Jan-89 18.661 -17.924 5643.800 0.002 5.689 
98 Feb-89 22.439 -17.086 5649.220 0.002 5.737 
99 Mar-89 27.387 -16.266 5691.480 0.005 4.640 
100 Apr-89 33.037 -14.790 5701.550 0.005 3.824 
101 May-89 37.103 -10.053 5766.900 0.007 2.687 
102 Jun-89 33.716 -5.612 5800.580 0.009 1.229 
103 Jul-89 34.106 -3.387 5796.280 0.010 2.133 
104 Aug-89 32.113 -1.607 5797.040 0.012 -6.762 
105 Sep-89 32.058 -4.623 5823.920 0.008 1.218 
106 Oct-89 32.239 -9.445 5808.570 0.004 2.320 
107 Nov-89 26.290 -12.417 5758.680 0.006 3.680 
108 Dec-89 19.874 -17.187 5681.560 0.004 4.686 
109 Jan-90 20.568 -16.994 5663.480 0.004 6.133 
110 Feb-90 25.687 -15.764 5664.500 0.004 5.780 
111 Mar-90 25.687 -15.251 5680.660 0.006 5.438 
112 Apr-90 32.981 -13.856 5720.450 0.006 3.923 
113 May-90 35.113 -10.386 5774.170 0.009 2.493 
114 Jun-90 36.823 -4.533 5811.760 0.007 1.173 
115 Jul-90 32.568 -1.109 5805.840 0.010 -2.107 
116 Aug-90 32.490 -1.405 5793.820 0.012 -1.204 
117 Sep-90 30.677 =3.393 5816.520 0.009 4.890 
118 Oct-90 29.829 -7.735 5795.940 0.007 2.039 
119 Nov-90 28.143 -10.404 5766.020 0.005 3.440 
120 Dec-90 22.290 -15.112 5729.300 0.005 4.533 



Mean MAX 500Mb 500Mb GPH 850Mb 200Mb U 
Temp Observed Temp GCM GCM SpecHum GCM Wind NO MONTH 

(Y) (Xi) (X2) (X3) (X4) 

LU . Jan-91 1y.44b -lb.554 5688.820 0.003 5.210 
122 Feb-91 23.400 -16.528 5678.470 0.004 5.449 
123 Mar-91 26.577 -16.997 5678.120 0.005 4.483 
124 Apr-91 32.647 -12.995 5725.490 0.006 3.824 
125 May-91 37.932 -10.312 5756.460 0.009 3.157 
126 Jun-91 35.587 -4.888 5805.110 0.008 1.115 
127 Jul-91 35.010 -1.785 5806.320 0.009 -2.564 
128 Aug-91 32.442 -1.057 5796.970 0.012 -6.694 
129 Sep-91 31.950 -3.484 5820.090 0.008 2.743 
130 Oct-91 29.603 -8.981 5809.080 0.004 2.445 
131 Nov-91 24.513 -13.593 5750.890 0.004 4.363 
132 Dec-91 21.103 -15.548 5701.870 0.004 4.901 
133 Jan-92 19.906 -17.200 5658.750 0.004 5.834 
134 Feb-92 20.503 -17.219 5631.430 0.003 5.985 
135 Mar-92 27.113 -15.993 5668.570 0.004 5.276 
136 Apr-92 33.660 -14.301 5703.300 0.005 4.323 
137 May-92 36.661 -10.385 5755.860 0.006 2.988 
138 Jun-92 37.807 -5.116 5804.020 0.009 1.801 
139 Jul-92 33.319 -0.999 5817.750 0.008 -2.015 
140 Aug-92 31.700 -0.938 5814.250 0.010 -6.138 
141 Sep-92 32.257 -3.070 5827.620 0.007 7.932 
142 Oct-92 30.784 -8.356 5817.970 0.005 2.486 
143 Nov-92 26.827 -13.529 5734.300 0.004 3.974 
144 Dec-92 22.006 -15.809 5704.480 0.003 5.088 
145 Jan-93 18.990 -16.404 5619.410 0.001 5.913 
146 Feb-93 24.489 -16.536 5634.290 0.004 5.704 
147 Mar-93 25.332 -15.755 5678.220 0.004 5.412 
148 Apr-93 33.393 -13.626 5736.420 0.006 3.920 
149 May-93 36.310 -10.582 5767.560 0.006 3.236 
150 Jun-93 37.193 -5.355 5823.510 0.005 1.226 
151 Jul-93 34.361 -2.560 5798.180 0.011 6.131 
152 Aug-93 33.987 -1.218 5810.300 0.013 -2.008 
153 Sep-93 30.207 -3.336 5822.770 0.011 5.182 
154 Oct-93 32.168 -9.284 5792.600 0.005 2.384 
155 Nov-93 27.617 -13.543 5734.480 0.003 3.990 
156 Dec-93 23.216 -17.397 5701.020 0.004 4.681 
157 Jan-94 21.716 -17.746 5648.690 0.004 5.180 
158 Feb-94 22.479 -16.202 5648.070 0.004 6.004 
159 Mar-94 30.055 -16.474 5658.610 0.003 5.655 
160 Apr-94 33.393 -14.214 5723.990 0.006 3.412 
161 May-94 37.019 -10.992 5744.340 0.011 2.312 
162 Jun-94 38.557 -5.603 5802.270 0.008 1.207 
163 Jul-94 33.813 -1.932 5806.080 0.009 6.801 
164 Aug-94 32.337 -1.170 5806.730 0.010 -7.672 
165 Sep-94 33.213 -3.926 5826.750 0.007 5.805 
166 Oct-94 31.945 -6.369 5812.950 0.005 1.463 
167 Nov-94 27.213 -12.265 5759.840 0.004 3.945 
168 Dec-94 22.540 -16.505 5700.340 0.005 4.853 
169 Jan-95 19.303 -17.067 5648.790 0.003 5.770 
170 Feb-95 22.589 -17.704 5638.980 0.003 5.410 
171 Mar-95 26,816 -16.460 5632.830 0.004 5.346 
172 Apr-95 34.050 -13.061 5732.810 0.005 3.873 
173 May-95 38.703 -10.457 5764.630 0.007 3.082 
174 Jun-95 39.113 -5.263 5800.750 0.010 1.453 
175 Jul-95 33.377 -1.379 5801.750 0,012 1.904 
176 Aug-95 31.719 -1.139 5799.020 0.011 -4,768 
177 Sep-95 32.886 -2.741 5818.520 0.007 3.643 
178 Oct-95 30.955 -7.602 5820.880 0.005 1.620 
179 Nov-95 27.667 -13.427 5752.610 0.005 3.983 
180 Dec-95 22.645 -15.315 5695.860 0.004 5.218 



EIiPy1,i1 
MEAN MONTHLY MAXIMUM TEMPERATURE (VALIDATION) 

NO MONTH 

Mean MAX 
Temp Observed 

Y 

500Mb 
Temp GCM 

Xl 

500MbGPH 
GCM 
X2 

850Mb 
SpecHum GCM 

X3 

200Mb U 
Wind 
X4 

Y Reg Y-Yreg Y-Ymean (Y-Yreg)2  (Y-Ymean)z  

1 Jan-96 20.268 -17.528 5665.670 0.002 5.259 23.153 -2.885 •9.986 8.323 99.720 
2 Feb-96 23.190 -17.168 5663.960 0.004 5.456 24.710 -1.520 -7.064 2.312 49.901 
3 Mar-96 28.352 -16.592 5661.370 0.005 4.959 25.101 3.250 -1,902 10.564 3.618 
4 Apr-96 35.033 -14.117 5719.460 0.004 4,472 27.921 7.112 4.780 50.578 22.845 
5 May-9 6 	37.742 -9.840 5766.250 0.009 2.705 34.190 3.552 7.488 12.614 56.073 
6 Jun•96 36.307 -4.013 5804.440 0,009 1.558 34.351 1.955 6.053 3.823 36.638 
7 Jul-96 33.123 -0.952 5816.880 0.010 -1.561 33.932 -0.809 2.869 0.654 8,230 
8 Aug-96 30.829 -0.869 5809.640 0.011 -5.461 34.046 -3.217 0.575 10.348 0.331 
9 Sep-96 31.177 -3.447 5830.060 0.007 8.214 33.920 -2.743 0.923 7,524 0.852 
10 Oct.96 30.645 -8.230 5813.840 0.005 2.213 32.092 -1.446 0.391 2.092 0.153 
11 Nov.96 26.883 -12.496 5765.810 0.005 3.877 31.002 -4.119 -3.370 16.967 11.359 
12 Dec•96 22.235 -14.932 5695,870 0.005 5.355 27.404 -5.169 -8.018 26.717 64.292 
13 Jan-97 20.087 -14.985 5693.050 0.004 5.577 26.418 -6.331 •10.167 40.083 103.360 
14 Feb.97 22.354 -15.336 5658.250 0.003 5.444 22.969 -0.615 -7,900 0.378 62.412 
15 Mar-97 26.610 -16.020 5681.820 0.004 4.911 25.510 1,100 -3.644 1.210 13.279 
16 Apr-97 31.500 -13.011 5748.760 0.006 3.250 30.538 0.962 1.246 0.925 1.553 
17 May-97 36.442 -10.052 5762.700 0.008 2.720 32.557 3.885 6.188 15.095 38,294 
18 Jun-97 36.327 -4.715 5799.080 0.008 1.467 32,934 3.393 6.073 11.510 36.881 
19 Jul.97 33.665 -1.316 5765.870 0.012 -4.363 34.289 -0.625 3,411 0.390 11.634 
20 Aug-97 32.432 -1.350 5817.560 0.013 -6.420 36.999 -4.567 2.179 20.855 4.746 
21 Sep-97 32.397 -3.880 5823.410 0.006 7,893 32.882 -0.485 2.143 0.235 4.592 
22 Oct.97 28.806 -7.643 5825.030 0.003 2.381 30.963 -2.156 -1.447 4.650 2.095 
23 Nov-97 23.800 -13.336 5767.300 0.005 3,499 31.097 -7.297 •6.454 53.242 41.650 
24 Dec-97 16.974 -15.009 5712.230 0.006 5,063 29.594 -12.620 -13.280 159.253 176.346 
25 Jan-98 18.477 -16.035 5685.420 0.004 5.230 25.322 -6.845 -11.776 46.854 138.681 
26 Feb-98 22.861 -16.250 5634.540 0.003 6.187 21.259 1.602 -7.393 2.566 54.656 
27 Mar-98 25.377 -15.616 5680.630 0.004 5.236 25,761 -0.383 -4.876 0.147 23.778 
28 Apr•98 34.253 -13.278 5716.970 0.004 4.088 26.640 7.613 4.000 57.965 15.997 
29 May-98 38.765 -8.770 5790.140 0.007 2.571 33,620 5.144 8.511 26.463 72,434 
30 Jun-98 37.140 -4.489 5804.240 0.008 9.246 34,086 3.054 6.886 9.324 47.421 
31 Jul.98 33.781 -1.322 5797.480 0.011 -2.440 33.947 -0.166 3.527 0.028 12.439 
32 Aug-98 31.353 -1.249 5814.970 0.011 -7.671 34.918 -3.564 1.100 12.706 1.209 
33 Sep-98 33,363 -3.246 5837.130 0.007 4.924 34.442 -1.078 3.110 1.163 9.670 
34 Oct-98 30,855 -8.874 5802.220 0.007 2.079 33.561 -2.706 0.601 7.321 0.361 
35 Nov.98 27.770 •12.270 5760,920 0.004 4.366 29.257 -1.487 -2.484 2.212 6.169 
36 Dec-98 . 	21,703 -17.061 5689.540 0.003 5.025 25.778 -4.075 -8.550 16.602 73.109 
37 Jan-99 17,574 -17.650 5642.830 0.003 5.694 22.174 -4.600 -12.680 21.156 160.770 
38 Feb.99 23.789 -15.720 5654.820 0.003 5.753 22.674 1.116 -6.464 1.245 41.789 
39 Mar-99 30.006 -14.835 5672.750 0.005 5.659 25.417 4.590 -0.247 21.066 0,061 
40 Apr-99 38.600 -13.824 5699.410 0.006 3.905 28.366 10,234 8.346 104.728 69.660 
41 May-99 37.781 -10.365 5786.450 0,007 2.729 33.158 4.623 7.527 21.373 56.655 
42 Jun-99 36.963 -5.104 5824.690 0.008 1.187 34,504 2.459 6.710 6.047 45.019 
43 Jut-99 33.416 -1.407 5810.280 0.009 3,324 33.521 -0.105 3.162 0.011 10.001 
44 Aug•99 31.353 -1.093 5813.380 0.012 -1.005 36.782 -5.429 1.100 29.472 1.209 
45 Sep•99 32.900 -2.396 5816.220 0.012 3.921 37.890 -4.990 2.646 24.903 7.003 
46 Oct-99 32.655 -6.786 5818.270 0.004 2.037 31.144 1.510 2.401 2.281 5.765 
47 Nov-99 28.270 -12.126 5759.250 0.003 4.032 28.767 -0.497 -1.984 0.247 3.935 
48 Dec.99 26.290 -15.855 5713.400 0.004 4.459 27.340 -1.050 -3.964 1.103 15.711 
49 lan-00 18.097 -17.249 5652.540 0.002 5.757 21.822 -3.725 -12.157 13.874 147.791 
50 Feb-00 21.541 -16.257 5694.090 0.003 5.459 25.445 -3.904 -8.712 15.238 75.905 
51 Mar-00 28.700 -14.473 5693.390 0.005 5.438 26.599 2.101 -1.554 4.416 2.414 
52 Apr-00 36.787 •13.724 5718.400 0.005 3.737 28.603 8.183 6.533 66.967 42,679 
53 May-00 37.448 -7.584 5804.180 0.008 1.485 34.625 2.823 7.195 7.969 51.763 
54 Jun-00 34.345 4.229 5823.580 0.005 1.360 31.269 3.076 4.091 9.459 16.737 
55 lu!-00 33.767 1.799 5802.350 0.010 6.337 33.436 0.331 3.513 0.110 12.341 
56 Aug-00 32.632 -1.379 5805.850 0.013 -1.094 36.545 -3.913 2.379 15.312 5.657 
57 Sep-00 33.037 -3.601 5831.710 0.007 7.599 34.678 -1.641 2.783 2.693 7.745 
58 Oct-00 33.135 -7.015 5811.660 0.006 2.292 32.797 0.339 2,882 0.115 8.305 
59 Nov-00 27.216 -11.277 5761.040 0.003 3.919 28.095 0.879 3.038 0.772 9.227 
60 Dec-00 23.555 -16.072 5714.130 0.003 4,664 26.437 -2.883 -6.699 8.310 44.875 



NO MONTH 

Mean MAX 
Temp Observed 

Y 

500Mb 
Temp GCM 

X3 

500Mb GPH 
GCM 
X2 

850Mb 
SpecHum GCM 

X3 

200Mb U 
Wind 

X4 
Y Reg Y-Yreg Y-Ymean 2 

(Y-Yreg) 
2 (Y-Ymean) 

61 Jan-01 18.655 -16.896 5651.060 0.002 5.962 22.088 -3.433 -11.599 11.788 134.534 

62 Feb-01 25.514 -17.801 5665.360 0.003 5.253 24.266 1.249 -4.739 1.559 22.462 

63 Mar-01 29.042 -15.059 5660.980 0.005 5.292 24.934 4.108 -1.212 16.873 1.468 

64 Apr-01 34.687 -14.462 5705.770 0.007 3.858 29.678 5.009 4.433 25.090 19.651 

65 May-01 37.377 -10.261 5779.440 0.008 2.683 33.624 3.753 7.124 14.088 50.747 

66 Jun-01 34.570 -3.750 5820.610 0.009 6.626 36.047 -1.477 4.316 2.181 18.630 

67 Jul-OS 34.106 -0.964 5805.620 0.011 -1.265 34.962 -0.856 3.853 0.733 14.844 

68 Aug-01 34.310 -1.631 5803.450 0.014 -7.277 37.838 -3.528 4.056 12.449 16.451 

69 Sep-0 35.217 -3.103 5829.830 0.009 3.696 36.256 -1.039 4.963 1.080 24.631 

70 Oct-01 34.117 -8.433 5813.550 0.005 2.279 32.195 1.922 3.863 3.694 14.922 

71 Nov-01 28.700 -9.537 5793.700 0.006 2.861 32.602 -3.902 -1.554 15.226 2.414 

72 Dec-01 22.661 -15.591 5708.720 0.005 4.695 28.624 -5.963 -7.592 35.556 57.645 

73 Jan-02 20.048 -14.956 5680.980 0.004 5.493 24.951 -4.903 -10.205 24.036 104.149 

74 Feb-02 23.089 -15.889 5696.020 0.004 5.072 26.106 -3.017 -7.164 9.102 51.329 

75 Mar-02 29.442 -13.962 5689.700 0.004 5.178 25.572 3.870 -0.812 14.974 0.659 

76 Apr-02 35.633 -13.910 5715.680 0.007 3.679 30.445 5.188 5.380 26.918 28.940 

77 May-02 37.903 -10.637 5763.040 0.007 2.072 32.192 5.711 7.650 32.619 58.515 

78 Jun-02 35.850 -4.812 5791.110 0.012 9.837 37.495 -1.645 5.596 2.707 31.318 

79 Jul-02 36.152 -0.879 5797.180 0.013 -3.084 36.282 -0.131 5.898 0.017 34.785 

80 Aug-02 32.774 -1.394 S803.900 0.013 -8.480 35.921 -3.147 2.520 9.905 6.353 

81 Sep-02 32.233 -4.302 5820.300 0.012 7.484 39.250 -7.017 1.980 49.236 3.919 

82 Oct-02 31.419 -8.717 5821.150 0.005 2.314 32.953 -1.533 1.166 2.351 1.359 

83 Nov-02 25.806 -12.929 5771.230 0.005 3.498 31.542 -5.736 -4.447 32.899 19.778 

84 Dec-02 23.839 -14.231 5719.080 0.004 5.215 27.746 -3.907 -6.415 15.265 41.152 

85 Jan-03 15.816 -17.643 5654.920 0.002 5.968 22.759 -6.943 -14.438 48.201 208.444 

86 Feb-03 22.893 -14.712 5690.540 0.003 5.461 24.650 -1.757 -7.361 3.087 54,182 

87 Mar-03 28.116 -14.020 5700.480 0.006 5.168 28.045 0.072 -2.138 0.005 4.569 

88 Apr-03 35.207 -13.068 5718.850 0.003 4.148 25.811 9.396 4.953 88.276 24.534 

89 May-03 37.384 -8.941 5792.650 0.007 2.421 33.131 4.252 7.130 18.083 50.839 

90 Jun-03 37,690 -4.201 5826.330 0.009 7.348 36.683 1.007 7,436 1.014 55,298 

91 Jul-03 34,645 -0.743 5798.810 0.014 -5.991 36.456 -1.811 4.391 3.279 19.285 

92 Aug-03 33.048 -1.028 5806.220 0.014 -7.712 37.476 -4.427 2,795 19.602 7.810 

93 Sep-03 32.127 -1.772 5826.950 0.009 5.759 35.167 -3.040 1.873 9.243 3.508 

94 Oct-03 32.339 -6.519 5816.770 0.006 1.821 33.500 -1.161 2.085 1.348 4.347 

95 Nov-03 25.758 -13.482 5755.940 0.003 3.968 28.247 -2.489 -4.496 6.195 20.211 

96 Dec-03 20.958 -15.982 5693.940 0.003 4.961 25.331 -4.373 -9.296 19.125 86.409 

97 Jan-04 18.568 -16.097 5664.380 0.003 5.314 22.976 -4.408 -11.686 19.435 136.562 

98 Feb-04 25.368 -16.854 5661.450 0.003 5.787 23.689 1.679 -4.886 2.819 23.872 

99 Mar-04 32.452 -14.921 5689.190 0.004 4.881 26.074 6.377 2.198 40.669 4.831 

100 Apr-04 36.583 -13.583 5718.250 0.006 4.272 28.655 7.929 6.330 62.866 40.064 

101 May-04 37.871 -10.213 5775.610 0.010 2.554 35.471 2.400 7.617 5.758 58.023 

102 Jun-04 35.433 -5.184 5807.330 0.007 9.874 33.158 2.276 5.180 5.179 26.828 

103 Jul-04 34.742 -1.577 5806.510 0.010 -3.943 33.297 1.445 4.488 2.089 20.144 

104 Aug-04 33.310 -0.436 5799.640 0.014 -1.062 37.610 -4.301 3.056 18.496 9.339 

105 Sep-04 33.997 -2.931 5836.960 0.008 2.663 35.311 -1.314 3.743 1.726 14.010 

106 Oct-04 31.945 -7.897 5825.480 0.004 2.168 32.305 -0.360 1.691 0.129 2.861 

107 Nov-04 26.467 -11.619 5752.280 0.007 3.844 31.465 -4.999 -3.787 24.986 14.342 

108 Dec-04 22.763 -14.895 5728.650 0.004 4.864 28.692 -5.929 -7.491 35.149 56.111 

109 Jan-05 19.790 -16.374 5700.370 0.004 5.294 27.557 -7.767 -10.463 60.323 109.483 

110 Feb-05 23.029 -16.874 5650.620 0.004 5.798 24.000 -0.971 -7.225 0.943 52.203 

111 Mar-05 29.542 -15.388 5701.820 0.004 5.013 27.020 2.521 -0.712 6.358 0.507 

112 Apr-05 34.777 -12.036 5745.520 0.005 2.711 28.955 5.822 4.523 33.892 20.457 

113 May-05 37.548 -10.108 5778.570 0.008 2.465 33.683 3.866 7.295 14.943 53.212 

114 Jun-05 37.490 -4.337 5805.920 0.008 1.394 32.791 4.700 7.237 22.087 52.368 

115 Jul-05 32.058 -1.732 5802.190 0.010 -1.662 33.896 -1.838 1.804 3.380 3.256 

116 Aug-05 33.106 -0.930 5811.750 0.013 -8.522 36.055 -2.949 2.853 8.695 8.138 

117 Sep-05 31.417 -2.207 5825.720 0.007 2.830 33.044 -1.627 1.163 2.649 1.352 

118 Oct-05 32.594 -7,530 5813.970 0.005 2.564 32.378 0.216 2.340 0,046 5.475 

119 Nov-05 28.363 •13.016 5744.030 0.006 3.742 30.411 -2.047 -1.890 4.192 3.574 

120 Dec-05 23.923 -16.564 5677.400 0.004 5.104 25.306 -1.384 -6.331 1.915 40.083 



Mean MAX 500Mb 500Mb GPH 850Mb 200Mb U 
NO MONTH 

Temp Observed Temp GCM 	GCM SpecHum GCM Wind 
y X3 X2 X3 X4 Y Reg Y-Yreg Y-Ymean (Y-Yreg)2 (Y•Ymean)' 

121 Jan-06 21.529 -17.200 5683,110 0.005 5.535 26.766 122 Feb-06 28.064 -15.260 5676.250 0.004 
L23 Mar-06 28.161 -15.564 5697.430 0.004 

5.529 24.795 3.269 2.189 10.685 46794 
124 Apr-06 35.690 -13.321 5733.280 0.006 

5.131 26.722 1.440 -2.092 2.072 4.378 
.25 May-06 36.142 -9.717 5772.730 0.008 

3.699 29.805 5.885 5.436 34.636 29 553 
.26 Jun-06 36.290 -3.691 5812.230 0.010 

2.373 32,931 3.211 5.888 10.311 34.671 
27 Jul-06 33.877 -2.169 5792.740 .0.012 

7.612 36.546 0.256 6.036 0.065 36.437 
28 Aug-06 34.732 -0.911 5826.330 0.012 

2.781 35.298 1.421 3.624 2.019 13.131 
29 Sep-06 34.283 -3.348 5826.470 

3.942 36.778 2.046 

30 Oct-06 31,952 -6.855 5833,300 
0.010 
0.003 

7.001 36.525 2.242 4.030 5.026 16.238 
31 Nov-06 27.074 -13.007 5742,440 0.006 

1.976 31,599 0.352 1,698 0.124 2,883 
32 Dec-06 22.468 -14.549 5687.470 0.006 

4.272 30.622 

33 Jan-07 21.903 17.681 5639.890 0.003 
5.319 27.782 5.314 7.786 28.244 60.621 

34 Feb-07 23.054 -17.241 5659.350 
5.500 22.313 -0.410 8.350 0.168 69.731 

35 Mar-07 27.513 •15.440 5686.440 

0,004 5.637 24.127 -1.073 -7.200 
36 Apr-07 36.613 12.380 5738.790 

0.005 5.234 26.315 1.198 2.741 1.435 715 22 Ij 37 May-07 36.919 -10.232 5798.310 
0.005 3.647 29.501 7.112 6.360 50.585 40.445 

18 Jun•07 36.357 3.977 5821.420 
0.009 
0.007 

2,396 36.741 0.179 6.666 0.032 44.431 
i9 Jul-07 33.877 1.475 5819.410 

1.169 33.150 3.206 6,103 10.280 37.246 
~D Aug-07 33.619 -0.484 5821,250 

0.010 3.281 34.876 -0.999 3.624 0.998 13.131 
1 Sep•07 34.103 3.644 5829.610 

0.012 -6.702 36.646 -3.026 3.366 9.158 11.328 
2 Oct-07 32.697 -7.029 5823.780 

0.009 8.705 36.911 2.807 3,850 7.881 14.820 
3 Nov-07 26.355 -13.218 5756.220 

0.005 1.868 32.830 -0.133 2.443 0.018 5.969 
4 Dec-07 22.719 -16.208 5699.300 

0.004 4.185 29.859 3.504 3.899 12.280 15.201 
5 Jan-08 20.803 -15.666 5683.560 

0.002 4.448 25.107 2.388 7.534 5.702 56.767 
6 Feb-08 22.876 -16.823 5640.240 

0.004 

0.002 
5.567 25.313 4.510 9.450 20.338 89,312 

7 Mar-08 31.065 -14.316 5706.240 0.004 
5.767 21.273 1.602 -7.378 2.568 54.433 

3 Apr-08 34.557 13.336 5708.560 0.008 
5.058 26.527 4,538 0.811 20.595 0.658 

3 May-08 36,174 -10.939 5773.130 0.007 
4.466 30.000 4,557 4.303 20.764 18.515 

Jun-08 33.707 5.062 5804.480 0.008 

2.796 33.367 2.807 5.920 7,879 35.052 
Jul-08 32.419 -0.531 5807.960 0.010 

1.420 33.763 -0.056 3.453 0.003 

, 
11.923 

Aug-08 32.248 -1.082 5812.550 
-1.477 33.452 -1.033 2.166 

Sep-08 33.060 -2.316 5828.430 

0.012 -8.368 35.733 -3.485 1.995 2143 3.979 
Oct-08 31.345 -7.418 5811.670 

0.010 3.552 35.991 -2.931 2.806 8,590 7.875 
Nov-08 28.257 -12.661 5748.280 

0.006 1.949 32.759 1.414 1.091 2.000 1.191 
Dec-08 23.974 -15.467 5698,750 

0.004 4.332 28.749 -0.493 1.997 0.243 3,988 
Jan-09 21.177 -15.656 5674.500 

0.005 4.800 27.068 3.093 6.280 9.569 39.43211  
Feb-09 25.386 -17.365 5618.670 

0.003 5.290 24.089 2.912 9.076 8.477 82.379 
Mar-09 30.258 -16.704 5680.100 

0.003 6.173 20.363 5.023 -4.868 25.232 
Apr-09 36.243 -13.764 5708.280 

0.004 
0.007 

4.483 25.280 4.978 0.004 24.781.;. 0 07 03 	

+ May-09 37,387 -9.206 5778.990 
3.766 29.243 7.000 5.990 48.999 35.876  

Jun-09 39.680 -5.091 5833.920 
0.008 
0.007 

2.238 33.621 3.766 7.133 14.184 50.885 7  
Jul-09 35.045 -1.736 5816.870 0.009 

1.796 34.775 4.905 9.426 

Aug-09 33.777 -0.679 5818.420 0.011 

2.151 33.940 1.105 4.791 14221 22,958 
Sep-09 32.563 -1.685 5830.520 0.06 

-5,239 35.058 1.281 3.524 1.640 12.416 
Oct-09 32.039 -8.015 5823.580 0,004 

-7,351 30.609 1954. 2.310 3.818 5.334 
Nov-09 27.683 -13.692 5778.120 0.003 

1.735 32.365 -0.326 1.785 0.105 3.186 
Dec-09 23.639 -14.718 5700.280 0.004 

3.871 30.189 -2.506 -2.570 6.280 6.607 
Jan-10 17.535 17.276 5671.620 0,003 

4.931 26.395 2.756 -6.615 7.596 43.758 
Feb-10 24.693 -15.547 5640.170 0.004 

5.084 24.758 -7.223 -12.718 52.169 161.753 
Mar-10 31.661 -15.228 5679.580 0.003 

5.973 22.195 2.498 5.561 6.242 30.923 
Apr-10 37.626 -13.302 5723.270 0.006 

5.233 24.000 7.661 1.408 58.698 1.981 
May-10 36.681 -11.199 5756.690 0.008 

4.515 29.721 7.904 7.372 62.481 54.348 
Jun-10 37.080 6.141 5806.180 0.010 

2.899 33.393 3.288 6.427 10.808 41.305 
Jul-10 32,742 1.408 5815.630 0.010 

1.885 36.170 0.910 6,826 0.828 46.598 
Aug-10 30.784 -0,476 5803.240 

-3.373 34.508 -1.766 2.488 3.119 6.191 
Sep-10 29.507 -2.463 5821.760 

0.015 -7.192 37.678 -6.894 0.530 47.530 0.281 
Oct-30 31.126 -7.781 5823.810 

0.009 4.998 35.453 -5,946 -0.747 35357 0.558 
Nov-10 26.947 43.522 5740.820 

0.004 1.940 31.963 -0.838 0.872 0.701 0.761 
Dec-10 22.950 16.581 5709.510 

0.002 
0.05 

4,297 27.012 -0.065 3.307 0.004 10.937 
SUM 	5435.683 

4.607 28.345 5,395 7.304 29.101 53.344 
MEAN 30.254 R 0.732 2795.352 5940.381 

NASH : 0.529 
RMSE: 3.941 
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% DOWNSCALING PRECIPITATION WITH SVR 

clear all; 

cic 
load Ucc.mat 

load Uvv.mat 
load Rcc.mat 

load Rvv.mat 

To = Ucc(:,l); 

Go = Ucc(:,2); 

H = Ucc(:,3); 

LTo= length(To); 

T=To+100; 

G=Go+100; 

%scaling 

Turin = min(T); 

Tmax = max(T); 

Gmax = max(G); 

Groin = min(G); 

Hmax = max(H); 
Hmin = min(H); 

Ts =(T-Tmin)/(Tmax - Turin); 

Gs =(G-Gmin)/(Gmax - Groin); 

Hs =(H-Hmin)/(Hmax - Hmin); 

Xs = [Ts, Gs, Hs]; 
Rmin = min(Rcc); 

Rmax = max(Rcc); 

Rcs = (Rcc-Rmin)/(Rmax - Rmin); 

gam =0.33; 
sig2 =1.8; 

type = 'function estimation'; 

fprintf('Calibration Precipitation. ...\n'); 
[alpha,b] = trainlssvm({Xs,Rcs,type,gam,sig2,'RBF_kernel','preprocess'}); 
Rcst = 

simissvm({Xs,Rcs,type,gam,sig2,'RBF_kernel','preprocess'},{alpha,b},Xs); 

Rct .= Rcst*(Rmax - Rmin) + Rmin; 

STDc = std(Rcc); 

ssqc = sumsgr(Rcc - Rct); 

sq2 = sumsqr(Rcc - mean(Rcc)); 

NMSEc= (ssqc/LTo)/(STDc)^2 %Normalized Mean Square error 

NASHc = 1.0 - ssqc/sq2 %nash-sutcliffe efficiency 

RMSEc = sqrt(ssqc/LTo) %root mean square error 
cor = corrcoef(Rcc , Rct); 



CORc = [cor(1,2)] 
r2c = [cor(1,2)]^2 
% plot (Rct, Rcc, 'k.') 
o - 

 
------------------VALIDATION ------------- ------------------ 

fprintf('Validation Precipitation... .\n'); 
% for validation 
Toy = Uvv(:,1); 
Gov = Uvv(:,2); 
Hv = Uvv(:,3); 

LTov= length(Tov); 

Tv=Tov + 100; 
Gv=Gov + 100; 

%scaling 
Tvmin = min(Tv); 
Tvmax = max(Tv); 
Gvmax = max(Gv); 
Gvmin = min(Gv); 
Hvmax = max(Hv); 
Hvmin = min(Hv); 

Tsv =(Tv-Tvmin)/(Tvmax - Tvmin); 
Gsv =(Gv-Gvmin)/(Gvmax - Gvmin); 
Hsv =(Hv-Hvmin)/(Hvmax - Hvmin); 

Xsv = 	[Tsv, 	Gsv, 	Hsv]; 
Rvmin = min(Rvv); 
Rvmax = max(Rvv); 
Rvs = (Rvv-Rvmin)/(Rvmax - Rvmin); 

%type = 'function estimation'; 
o[alpha,b] = trainlssvm({Xsv,Rvs,type,gam,sig2,'RBF kernel', 'preprocess')); 
Rvst = 	 - 
simissvm({Xsv,Rvs,type,gam,sig2,'RBF_kernel','preprocess'},{alpha,b},Xsv);  
Rvt = Rvst*(Rvmax - Rvmin) + Rvmin; 

STDv = std(Rvv); 
NMSEv= (ssqc/LTov)/(STDv)^2 
ssqcv = sumsqr(Rvv - Rvt); 
sq2v = sumsqr(Rvv - mean(Rvv)); 
NASHv = 1.0 - ssqcv/sq2v 
RMSEv = sqrt(ssqcv/LTov) 
cory = corrcoef(Rvv, Rvt); 
CORv = [corv(1,2)] 
r2v = [cory (1, 2) ] ^2 

Compare_Rvv_Rvt =[Rvv Rvt] 
plot (Rvv, Rvt, ' k. ' ) 



Miini'~~np~~t 
% DOWNSCALING MEAN MONTHLY MINIMUM TEMPERATURE 
clear all; 
cic 
load GMINc.mat 
load GMINv.mat 
load MINc.mat 
load MINv.mat 

To = GMINc(:,1); 
Go = GMINc(:,2); 
H = GMINc(:,3); 
Vo = GMINc(:,4); 
LTo= length(To); 

T=To+100; 
G=Go+100; 
V=Vo+100; 

%scaling 
Tmin = min(T); 
Tmax = max(T); 
Gmax = max(G); 
Groin = 
Hmax = max(H); 
Hmin = min(H); 
Vmax = max(V); 
Vmin = min(V); 

Ts =(T-Tmin)/(Tmax - Tmin); 
Gs =(G-Gmin)/(Gmax - Gmin); 
Hs =(H-Hmin)/(Hmax - Hmin); 
Vs =(V-Vmin)/(Vmax - Vmin); 

Xs = [Ts, Gs, Hs, Vs]; 
Mmin = min(MINc); 
Mmax = max(MINc); 
MINcs = (MINc-Mmin)/(Mmax - Mmin); 

gam =0.45; 
sig2=2; 

type = 'function estimation'; 
fprintf('.....MINIMUM TEMPERATURE ...... \n'); 
fprintf('Calibration MINIMUM TEMPERATURE ....\n'); 
[alpha,b] = trainlssvm({Xs,MINcs,type,gam,sig2,'RBF_ kernel', 'preprocess'}); 
MINcst = 
simissvm({Xs,MINcs,type,gam,sig2,'RBF_kernel','preprocess'},{alpha,b},Xs); 
MINct = MINcst*(Mmax - Mmin) + Mmin; 
STDc = std(MINc); 
ssqc = sumsgr(MINc - MINct); 
sq2 = sumsgr(MINc - mean(MINc)); 



NMSEc= (ssqc/LTo)/(STDc)^2 %Normalized Mean 
NASHc = 1.0 - ssqc/sq2 %Nash-Sutcliffe model 
RMSEc = sqrt(ssqc/LTo) 
cor = corrcoef(MINc , MINct); 
CORc = [cor(1,2)] 
r2c = [cor(1,2)]^2 
% ----------------- -VALIDAT 

Square error 
efficiency coefficient, 

a - 	ION------------------------------ 
fprintf('Validation MINIMUM TEMPERATURE....\n'); 
% for validation 
Toy = GMINv(:,1); 
Gov = GMINv(:,2); 
Hv = GMINv(:,3); 
Vov = GMINv(:,4); 
LTov= length(Tov); 

Tv=Tov + 100; 
Gv=Gov + 100; 
Vv=Vov + 100; 

%scaling 
Tvmin = min(Tv); 
Tvmax = max(Tv); 
Gvmax = max(Gv); 
Gvmin = min(Gv); 
Hvmax = max(Hv); 
Hvmin = min(Hv); 
Vvmax = max(Vv); 
Vvmin = min(Vv); 

Tsv =(Tv-Tvmin)/(Tvmax - Tvmin); 
Gsv =(Gv-Gvmin)/(Gvmax - Gvmin); 
Hsv =(Hv-Hvmin)/(Hvmax - Hvmin); 
Vsv =(Vv-Vvmin)/(Vvmax - Vvmin); 

Xsv = [Tsv, Gsv, Hsv, Vsv]; 
Mvmin = min(MINv); 
Mvmax = max(MINv); 
MINvs = (MINv-Mvmin)/(Mvmax - Mvmin); 

MINvst = 
simissvm({Xsv,MINvs,type,gam,sig2,'RBF_kernel','preprocess'},{alpha,b},Xsv); 
MINvt = MINvst*(Mvmax - Mvmin) + Mvmin; 

STDv = std(MINv); 
ssqcv = sumsgr(MINv - MINvt); 
sq2v = sumsgr(MINv - mean(MINv)); 
NMSEv= (ssqc/LTov)/(STDv)^2 
NASHv = 1.0 - ssqcv/sq2v 
RMSEv = sqrt(ssqcv/LTov) 
cory = corrcoef(MINv , MINvt); 
CORv = [corv(1,2)] 
Compare _MINv_MINvt =[MINv MINvt] 
plot (MINv, MINvt, 'k.') 



% DOWNSCALING MEAN MONTHLY MAXIMUM TEMPERATURE 
clear all; 
cic 
load GMAXc.mat 
load GMAXv.mat 
load MAXc.mat 
load MAXv..mat 

To = GMAXc(:,l); 
Go = GMAXc(:,2); 
H = GMAXc(:,3); 
Uo = GMAXc(:,4); 
LTa= length(To); 

T=To+100; 
G=Go+100; 
U=Uo+100; 

%scaling 
Turin = min(T); 
Tmax = max(T); 
Gmax = max(G); 
Gmin = min(G); 
Hmax = max(H); 
Hmin = min(H); 
Umax = max(U); 
Umin = min(U); 

Ts =(T-Tmin)/(Tmax - Tmin); 
Gs =(G-Gmin)/(Gmax - Gmin); 
Hs =(H-Hmin)/(Hmax - Hmin); 
Us =(U-Umin)/(Umax - Umin); 

Xs = [Ts, Gs, Hs, Us] ; 
Mmin = min(MAXc); 
Mmax = max(MAXc); 
MAXcs = (MAXc-Mmin)/(Mmax - Mmin); 

gam =0.9; 
sig2 =0.2; 

type = 'function estimation'; 
fprintf('.....MAXIMUM TEMPERATURE ....\n'); 
fprintf('Calibration ....\n'); 
[alpha,b] = trainlssvm({Xs,MAXcs,type,gam,sig2,'RBF_kernel','preprocess'}); 
MAXcst = 
simissvm({Xs,MAXcs,type, gain, sig2,'RBFkernel','preprocess'},{alpha,b},Xs); 
MAXct = MAXcst*(Mmax - Mmin) + Mmin; 

STDc = std(MAXc); 



ssqc = sumsqr(MAXc - MAXct); 
sq2 = sumsqr(MAXc - mean(MAXc)); 
NMSEc= (ssqc/LTa)/(STDc)^2 %Normalized Mean Square error 

NASHc = 1.0 - ssqc/sq2 
RMSEc = sqrt(ssqc/LTa) 
cor = corrcoef(MAXc , MAXct); 
CORc = [cor(1,2)] % nash 
r2c = [cor(1,2)]^2 
% -------------------VALIDATION-------------------------- 

fprintf('Validation ....\n'); 
% for validation 
Toy = GMAXv(:,1); 
Gov = GMAXv(:,2); 
Hv = GMAXv(:,3); 
Vov = GMAXv(:,4); 
LTav= length(Tov); 

Tv=Tov + 100; 
Gv=Gov + 100; 
Vv=Vov + 100; 

%scaling 
Tvmin = min(Tv); 
Tvmax = max(Tv); 
Gvmax = max(Gv); 
Gvmin = min(Gv); 
Hvmax = max(Hv); 
Hvmin = min(Hv); 
Vvmax = max(Vv); 
Vvmin = min(Vv); 

Tsv =(Tv-Tvmin)/(Tvmax - Tvmin); 
Gsv =(Gv-Gvmin)/(Gvmax - Gvmin); 
Hsv =(Hv-Hvmin)/(Hvmax - Hvinin); 
Vsv =(Vv-Vvmin)/(Vvmax - Vvmin); 

Xsv = [Tsv, Gsv, Hsv, Vsv]; 
Mvmin = min(MAXv); 
Mvmax = max(MAXv); 
MAXvs = (MAXv-Mvmin)/(Mvmax - Mvmin); 

MAXvst = 
simissvm({Xsv, MAXvs, type, gam,sig2,'RBF_kernel','preprocess'},{alpha,b},Xsv); 

MAXvt = MAXvst*(Mvmax - Mvmin) + Mvmin; 

STDv = std(MAXv); 
ssqcv = sumsgr(MAXv - MAXvt); 
sq2v = sumsqr(MAXv - mean(MAXv)); 
NMSEv= (ssqc/LTav)/(STDv)^2  

NASHv = 1.0 - ssqcv/sq2v 
RMSEv = sgrt(ssqcv/LTav) 
cory = corrcoef(MAXv , MAXvt); 
CORv = [corv(1,2)] % nash 

Compare_MAXv_MAXvt =[MAXv MAXvt] 
plot (MAXv, MAXvt, 'k.') 
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