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ABSTRACT

The preéent thesis aims at bringing the latest discoveries in nuclear physics and the new
developments in semiclassical physics closer together. The low energy domain of nuclear
physics has been replete with exciting observations of superdeformed (SD) bands in a number
of pockets of the chart of nuclides beginning with the first discovery of a discréte high spin
SD band in 52Dy in 1986 [1]. Since then a large number of SD bands have been seen in
A=80,130, 150,190 mass regions [2]. On the experimental side, the observation of these
weakly populated and very low intensity structures represents a triumph of the modern
detector arrays and data analysis capabilities of modern computing systemé. It has also led
to the emergence of what we may term as ultra-weak spectroscopy.

Theoretically, one expected the observation of these structures on the basis of potential
energy surface calculations based on Strutinsky method which lays emphasis on the role of
shell structure near the Fermi energy in stabilising specific configurations at specific shapes
[3-5]. A detailed compilation of these results as applicable to SD shapes may be found in
the reference [6]. Experimental discovery of SD bands thus also implies a growing confidence
in the predictive capabilities of the present theoretical methods iﬁ nuclear physics.

Large def‘orma,tions and high angular momenta, which are intertwined themes, have now
become commonplace in nuclear physics [7]. Superdeformed structures like fission isomers
were already known in 1970 [8]. There is however an important difference between SD
structures and fission isomers; while the former are essentially observed at high spins, the
fission isomers are observed at low spins. Moreover the SD bands display characteristics
which make these structures look very simple ‘ye‘t very hard to understand.

Physics over the past decades, has also been witness to a resurgence in thé study of non-
linear features and applic#tion of semiclassical methods to quantal systems. Semiclassical
techniques, first ushered in by Bohr, Sommerfeld, Einstein etc. were abandoned after the
advent of quantum theory [9,10]. These have now been found to be of immense help and

use in unraveling the nature of truth underlying the various phenomena exhibited by com-



plex quantum and semi~qﬁantum (mesoscopic) systems. The study of chaotic dynamics in
hamiltonian systems has become a growing discipline during the recent years. These studiés
are now being carried out in nuclei also with an emphasis on order-to-chaos transition in the
classical dynamics of a particle in various shapes of cavities [11,12]. While earlier studies of
chaos in nuclei have concentrated on statistical approaches [13], semiclassical methods have
now begun to play a very' important role. Developments like the periodic orbit theory (9]
have brought to fore the deep connection between classical motion and quantal shell struc-
ture. Effects like superdeformation at high spin are directly linked to quantal fluctuations
which tend to stabilise shapes having axes ratio 2 : 1,3 : 1, etc. The fact that these aré
very feeble and weak structures suggests that small nonlinear terms have a role to play in
stabilising these structures with specific configurations.

Taking a lead from the classical analysis of the nuclear models {14} and combining several
ideas from the theo‘ry of dynamical systems, we present in this thesis a complete dynamical
scenario of the two most used models of nuclear rotation: the cranking model [15] and
the particle-rotor model [16]. We also highlight the most importént features of the SD
bands and establish their systematics. We then proceed to show that most of these features
can be under\stood very well from.the semiclassical analysis and thus establish the role of
nonlinearity in stabilising the SD structures.

Shell structure is a recurrent theme of molecular,atomic and nuclear systems. The quan-
tal nature of a system naturally leads us to shell structure. It basically represents the
grouping of levels at certain number of neutrons and protons at zero or, non-zero deforma-
tions. A quantitative way of dealing with shell structure was provided by Strutinsky [4] and
~ forms the basis of the present day understanding of the stability of nuclei. In reéent times,’
a new semiclassical approach has emerged in the form of Gutzwiller’s periodic orbit theory
(POT) [9] which relates the single particle level density of a quantum system to the classi-
cal periodic orbits. Use of periodic orbit theory to understand the properties of deformed
and superdeformed systems is another major theme of this thesis. An introduction to the

superdeformation and related topics is presented in Chapter I.
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In chapter II, we present a complete discussion of the nonlinear dynamics of the particle-
rotor model [16]. Special attention is given to the semiclvassical quantization of small ampli-
tude oscillations around the twin excited fixed points c, which naturally yields rotational
bands whose various features such as alignment, starting angular momentum and oscilla-
tions in gamma ray energies are discussed. These twin fixed points are located in a region of
nonlinearity and can be identified with the two minima in the double well potential (DWP)
of j3. The DWP, being energy dependent, gives rise to unusual features including a AJ=2
‘staggering. |

A close correspondence of these results with the properties of the SD bands is established
in chapter III, where we establish some additional new features of SD bands from an analysis
of the experimental data [17]. In particular, we show that the SD bands have almost reached
the rigid rotor value of the moment of inertia [17]. Also, we highlight the negative alignment
of SD bands and its saturation at a finite positive value at higher aﬁgular momenta which
in turn is responsible for a saturation in the dynamic moment of inertia. The fact that SD
bands begin with a finite starting angular momentum is presented as an important feature of
the SD bands and its systematics are explained. An understanding of the AI=2 staggering
is aléo provided [18]. A new feature of General Identical Band is also presented [19].

In chapter IV, we present a complete discussion of the dynamics of cranking mode] and its
semiclassical quantisation is carried out [15,20]. Numerical results based on this model are
presented. These results confirm the results of particle-rotor model. These studies together
tend to p'resént a view of the SD bands as structures stabilised in a sea of chaos and hence
not so well connected to the normal deformed states.

We present the currenf general interpretation of shell structure in nuclei in chapter V. At
this stage we introduce the periodic orbit theory and other necessary tools to understand the
link between the shell structure and periodic orbits. We also present, as examples, simple
applications of the POT to integrable systems like harmonic oscillator and spherical billiard.
An expression for the level density of spherical billiards is derived and results presented [21].

We extend the POT in chapter VI to deformed systems. In particular an analysis of the

iii



classical closed orbits in éin infinitely deep ellipsoidal well is considered and its relevance to
the gross-shell structure of single particle spectra in deformed nuclei established [22]. We
present detailed and éxact results for the planar and the 3-dimensional periodic orbits and
study their consequences for the deformed and superdeformed nuclei [23]. The conclusions

of the thesis are contained in chapter VII.
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CHAPTER I
INTRODUCTION



1 INTRODUCTION TO SUPERDEFORMATION

Nuclei possessing very large deformations have been known for many years iﬁ light nuclei
in terms of excited a-cluster configurations, and in some actinide nuclei in terms of the so
called fission isomeric states. However, thesev;‘Superd_eformed” shapes could be studied only
in the ground state region; for example the highest spin observed among the fission isomers is
8h. Animportant step forward in the.research was taken by the observation of superdeformed
high-spin states [110] first in 12Dy and later on in many neighbouring nuclei as well as in
nuclei around 2 Hg. Rotational bands containing up to 18 or 19 discrete superdeformed
transitions could be identified ranging up to spin I = 66A. By these observations a new
and exciting field in nuclear spectroscopy has opened up allowing for detailed studies of 2:1
shapes where the pairing interaction often plays a minor role.

The experimental discovery of superdeformed high spin states was preceded by their
prediction a decade earlier [9]. In fact, the underlying mechanism, namely clustering of
single-particle states (particularly at the symmetric 2:1 deformation), that gives rise to a -
negative shell energy for specific particle numbers, is the same as for the earlier observed
fission isomers [12,84]. Although the qccurrence and stability of SD regions (static proper-
ties) are well reproduced by the standard model calculations [9,28,97], it is the dynamical
properties that elude a complete explanation.

‘For the past decade, the study of superdeformed states has dominated experimental
nuclear structure studies at high spin. A recent compilation [99] lists about 170 yrast and
excited superdeformed bands in about 60 nuclei spread over the four Arx’lass regions with A=
80, 130 - 140, 150 and 190. The list continues to expand as more data are added, for example
the recently added 156 Dy nucleus. Another recent addition is the observation of SD states is
62 Zn [108], which corresponds to a new region of superdeformation for nuclei with neutron
and proton numbers N, Z =~ 30 — 32. This region was predicted long ago by Sheline et al.
- [98].

The spectroscopic properties of the different bands in different nuclei can generally be



understood from the occﬁpa,tidn of the highest spin orbitals (N = 6, and N = 7 protons and
neutrons in the case of the Ax 150 region). The A=130-140 region corresponds to a 3 : 2
axis ratio, and the positions of the single particle orbitals (especially N = 6 neutrons) play
an important role in determining the particle numbers corresponding to shell gaps. The

A=190 mass region also arises for similar reasons [86].

II. EXPERIMENTAL INFORMATION

The importance of adgquate detection techniques becomes clear if one analyses the FIG.
1.1 [39]. A typical heavy ion projectile vs. target collision leads to fusion giving a compound
nucleus having high excitation energy and large angular momentum. The characteristic
phases of its rotation responding at the various stages of the de-excitation process are shown
in*FIG. 1.1. The process of particle emission is the‘ fastest. During a characteristic time
of 7 & 1079sec. a number of particles, like neutrons, protons or a-particles are emitted,
thus lowering the total excitation energy of the compound system. The electromagnetic
radiation follows.the particle emission with its characteristic gamma decay time of 7 ~ 1017
to 10~!2sec. Thus the main task of an experimentalist is to determine the process of de-
excitation by measuring the energies, and angular correlations between the successive gamma
rays. A typical heavy ion reaction used to populate the superdeformed bands in 12Hg can
be given as '%9Gd(36S,4n)!92Hg using %S [78] beam energy ~ 159 MeV. Future of this
domain of research lies in the exploitation of the 47 multidetector systems with high energy

resolution like Eurogam and Gammasphere and the systems to follow.

III. UNUSUAL FEATURES OF THE- SD BANDS

The SD bands present several puzzles; most of these puzzles emanate from the very
simple behaviour of the SD bands which defy a complete and consistent understanding [62].

| Mostly two types of data have been gathered about the SD bands; one the quadrupole



transition energiés of v ray cascades and two, the intensity of the « rays. The data have

been used to arrive at a number of unusual features which we discuss briefly.

A. An Unusual Population and Depopulation Pattern

A schematic representation of the formation and decay of the yrast SD band is shown
in FIG. 1.2. The SD bands are fed from the top in Hl-fusion cum evaporation reactions of
the kind described above and.merely 1-2 percent of the nuclei formed correspond to the SD
shape; naturally the transitions of SD bands are very weak.

The population and feeding pattern of nearly all the SD bands are similar and this makes
it very interesting. It has been observed that after the population at high spins, the intensity
builds up slowly and attains a constant value; it then stays constant. For example, the SD
yrast band in 1°0Tb builds up intensity from 20 to 80 percent in a very narrow range of spin
between 60A to 48h [34] as shown in FIG. 1.3. Also the population of SD bands is observed
to be nearly unaffected by changes in excitation energy ahd the maximum input angular
momenta. Such a feeding pattern indicates that there is no side-feeding to the SD bands as
opposed to the normal deformed (ND) bands which experience considerable side;feeding.

In another result from Eurogam, Petrache et al. [91] populated the ND and SD bands
in 11Tb. It was observed that the yrast SD band and the first excited SD band depopulate
at I = 32.5h and 26.5h respectively. Interestingly, the first excited SD band is observed
to selectively populate only four positive Iparity ND states having spins between 35/2 and
45/2 (average spin < I >= 20.5%). The yrast SD band, on the other hand, feeds yrast
states of both positive and negative parity having spins between 45/2 and 63/2 (average
spin < I >= 27.5h). The decay-out spins of the first excited SD band and the yrast SD
band are 26.5h and 32.5h respectively; the difference of 6/ in the decay out spins is thus
maintained in the average value of the entry spin of ND states.

As the angular momentum decreases, the SD bands undergo a sudden depopulation over

the last two or three transitions. The sudden depopulation indicates that the strength of



the SD band has got fragmented over many weak transitions which have not been resolved.
These observations paint a picture of the SD bands as isolated and hanging bands with no

observations of any linking transitions between the SD bands and the ND states.

B. Spin and Excitation Energy of SD Bands

Since no linking transitions have been observed in most of the cases, there is no direct
information dbout the spin and the excitation energy of SD bands. It became necessary to
use indirect methods to make the spin assignments. In one such method [36], use is made
of the fact that the garﬁma—ray transitions are imown to be of E2 type. The level energies

for these bands may be written as

E(I) = %[1(1 +1)~ K+ Ep. | (1) .
One may wuse the Harris expansion to write [* = m = 20w + g—ﬁuﬂ + Here
hw =~ %1. A series of such equations are generated, one for each level, with spin value
increasing by 2 units with each y-ray. A least squares fit to this set of equations is then
performed fo obtain ,, the spin of the lowest level. In another method [92], the VMI model
was used to fit the cascade of y-ray energies and obtain the spin assignments. Thevspin.
assignments in the mass-150 region are more uncertain as the y-ray sequences are known to
end at higher energies and spins and the methods are not so sensitive to a change of I by
+1. The available spin assignments are therefore uncertain by at least 1% to 2A.

The estimates of the excitation energy are likewise uncertain. Theoretical calculations,
for example, done by Bonche et al. [17] yield a SD minimum which is 4 to 5 MeV above
the ground state minimum. Estimates from the experimental data also suggest that the SD
minimum may lie anywhere between 4 MeV to 20 MeV. The recent observations from the
France-UK collaboration [96] leads to an average excitation energy of decaying SD states
above ND states of 4.3 0.9 MeV at the average spin value of 104 at the decay point in the

1921 g nucleus. It is therefore certain that the SD minimum lies nearly 5 MeV above the



ground state minimum. Considerable effort has gone into observing the linking transitions
with some success in a few such cases. Recently, the spins, parity and excitation energ& of
excited SD bands in '**H g have been measured by Khoo et al. [76] and Hackman et al. [51].
Linking v-ray transitions, highly fragmented, having energies from 3 to 5 MeV have been

observed placing the two SD bands in **Hg at 6.4 MeV and 7.2 MeV of excitation energy.

C. Unusual Behaviour of the Moment of Inertia

The SD bands display a very regular energy spectrum as opposed to the energy spectrum
* of ND bands which are marred by significant variation in the moment of inertia with angular
momentum and other features such as the backbendings. A semi-classical expression for the

rotational energy of an axially symmetric rotor is given by

E(I) = 2% - 2%1(1 +1), )

where & is the moment of inertia about the rotation axis. Also, the rotational frequency
w = %€ Tt follows that the gamma-ray transition energies E,(I — I —2) = 2%2(21 —1)
and the second difference of energies AE,(I) = E,(I + 2) — E,(I). An ideal rigid rotor

band will thus display a constant increment in the successively higher gamma-ray energies.

The normal deformed bands however show a strong deviation from this rule; the pairing -

correlations, the Coriolis anti-pairing effect and the preferential breakdown of the high-j
nucleon pairs accompanied by alignhent lead to .a complex dependence of the moment of
inertia on rotational frequency.

It is instructive to plot the angular momentum [/ vs. the rotational frequency w or
E(I—-I-2)aswr %1 We show the typical behaviour observed in the ND and the SD
bands in FIG. 1.4. The SD bands display a nearly linear behaviour in most of the cases
in comparison to the ND nuclei which display a rapidly changing 'slope and backbending
features. An exactly linear behaviour would imply a constant moment of inertia. We find

that the SD band observed in the doubly-odd %9Tb1 and 194T2 are closest to this kind of
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behaviour (see FIG. 1.5 and 1.6). The SD band in '°T is probably unique in the sense that
the change in moment of inertia for this band is within 1 percent from spin 244 to 60%; it
may easily be identified as the most rigid band seen so far with an average value of moment
of inertia equal to 76h*MeV 1. The variations in the SD bands of 94T are likewise very
small, and & remains between 100A*MeV ~! and 10652MeV ~1 over the whole range of spins -
from' 11h to 37h. We find in general that the variation from a linear behaviour is very small;'
it is about 1 to 3 percent over a range of 10 units of angular momentum in the mass-190
region. On the other hand, the change may be as much as 3 to 5 times of the ground state
-value over the same range of angular momentum in ND bands. ;

It is customary in the literature to define a second moment of inertia or, the dynamical

moment of inertia as

dI  [d2E7-1
== R
It is easy to show that
(1)
3 =g 4 w%. (4)

If 3O, the kinematic moment of inertia, does not have any w-dependence, () = I®, The
dynamical moment of inertia may thus reflect the small changes in 9 with w which are not
obvious in the M) vs. w plots. The second difference in the gamma ray energies denoted

by AE.,, when plotted as a function of either I or w, also reveals these fine changes.

D. AI =2 Staggering

The term AI = 2 staggering (62,88] irhplies a systematic displacement of a sequence of
states having spins I, + 4... etc. with respect to a complementary sequence of states with
spins I + 2,1 + 6,.... etc. Such a systematic displacement appears as a regular staggering
pattern in the $® vs. fw plots. Two examples which display this feature prominently are

shown in FIG. 1.7; the example of 9Gd band 1 has been widely discussed in the literature



and the other example where the feature is quite prominent is band 1 of '%3Tl. Other cases
with this feature over a limited range of spin have also been observed. Most recent examples,
where this feature has been observed, are 18Gd and ?Eu [55]; however in both the cases
t;he feature is observed over a range of angular momentum limited from both the sides. We

discuss this feature in Chapter 1II in some detail.

E. Unusually Long Chain Of Levels In SD Bands

It is understood that the SD shapes become a possibility because the large moment
of inertia helps in lowering the rotational energy. These Bands are located in the second
minimum formed at higher angular momenta; the second minimum is not more than 3-4
MeV deep. The SD bands consist of a chain of levels ranging from say, 154 to 60%; the
topmost level lies almost 15-20 MeV above the lowest level thus extending much beyond the
second well (see FIG. 1.8). There is no example of such a long chain of levels in the fission
isomers where the second minimum exists at the lowest angular momenta; the highest spin
known in the fission isomeric SD bands is merely 8i. The density of normal states is very
high at 15-20 MeV of excitation energy reached in the high-spin SD bands. It is therefore
amazing that the SD states exist almost isolated from these normal states. Further, the
lifetime measurements have confirmed that there is no change in shape as we go up‘v the
band with increasing angular morﬁentum. In other words, the SD bands are quite rigid in

nature.

F. Phenomenon Of Identical Bands

The most widely discussed feature of the SD bands has been the phenomenon of identical
bands (IB) [25,101]. A discussion of this phenomenoﬁ will also bring up interesting questions
about the presence of pairing correlations in SD nuclei.

When we go from one nucleus having mass number A to another nucleus having mass

number say (A+1), we expect some changes in the rotational energies due to a variation
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in the moment of inertia and also the spin values. Since the pairing correlations play an
important role, the observed changes could in fact be much more. It has however been
observed that the gamma-ray transition energies of two SD bands in neighbouring nuclei
are identical over a very large range of angular momenta,; the differences are much less than
what one would normally expect on physical grounds. This observation of identical cascades
of y-transitions in two neighbouring nuclei is termed as the phenomenon of identical bands.

It is known that the variation of the moment of inertia in deformed nuclei is proportional
to o (A3h%) MeV~!l. For an increase in A by one unit, the increment in < is given by

0 =~ %(Ag)hQMeV‘l. Therefore,

&S 5 1 R
e A = 150 (5)

A 1 percent relative change in & is expected. Let us now assume that the spin of the levels
invol\;ed in the identical transition (see,F IG. 1.9) differ by 61 = I44; — I4. The change in

rotational frequency for the transition may be written as

Sw 8 oI

0w = war1(Lat1) —wa(la) or, —="3 + T (6)

IfA correspénds to an even-even nucleus, then A+1 will be an odd-A nucleus. The angular
mom;ta of the two will differ by at least 1 /2; the difference could however also be 3/2 or,
5/2etc. For I ~ 30and I=1/2,3/20r,5/2..... ,571= 1/60, 1/20 or, 1/12..... etc. respectively.
Thus the value of %2=1/180 or nearly 0.5 percent fof 0I=1/2; it acquires a value 7/180 or,
nearly 3.5 percent for 6/=3/2. Sincew = %1, we expect at least 1 percent change in gamma-
ray energy in going from a nucleus with mass number A to a neighbouring nucleus A+1.
The observed change is however much smaller than this because there is hardly a change of

3-5 keV over a range of 3000-5000 keV implying %“’ ~ 1 per thousand. Note that we have

completely ignored the additional changes that might occur due to pairing correlations.



b G. IB Phenomenon In Normal Deformed Nuclei

Is this feature unique to SD bands? Probably not. Similar features were noted by Jain
in 1984 [60,71] in the normal deformed nuclei of the rare-earth region and also the actinide
region [66] where the identical nature of the transition energies of an even-even and its
neighbouring odd-A nucleus was specifically pointed out. _Similarly, a striking similarity
between the energies of rotational bands of pairs of even-even nuclei with A=164+ a was
observed again for the first time by Jain and collaborators [64,65,100).A comprehensive
review of this topic may be found in Baktash et al. [5]. It is thus clear that such features
are not uncommon; however, these are much more prominent in the SD bands. |

Questions may also be asked about the presence of pairing correlations in the SD nuclei.
It appears that the pairing may not have completely vanished in the SD bands. It is well
known that the observed moment of inertia in ND nuclei is less than one-third of the rigid
body value due to the presence of pairing correlations. As the angular momentum increases,
the Coriolis antipairing effect leads to a large rise in the moment of inertia by a factor of 2
to 3. On the other hand, the change in the moment of inertia of mass-190 SD bands is as
little as 1 to 5 percent over a rangé of 10 to 20A of angular momentum. As we shall show in

this thesis, the SD bands may already havé reached the rigid rotor value.

s

IV. SHELL STRUCTURE

In simple terms, the shell structure means a bunchiness in the levels of a system. It

is a general property of quantal systems.present in diverse fields of nature, be it an atom,

molecule or nucleus. This shell structure has two characteristics, one, the groupings of levels

and the second is the extra stability of the system at the complete filling of the shells.

Example of shell structure in atoms is the extra stability, high ionisation potential, lack of
reactivity of noble gases at particular electron numbers.

A similar stability, first noticed by Mayer {82,56] exists for spherical nuclei with magic
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numbers of 2, 8, 20, 28, 50, 82 and 126 (114) neutrons or protons. A large number of phe-
nomena exhibit this special stability at these magic numbers such as stability to radioactive
decay, abundance of isotopes, delayed neutron emission by these nuclei. Peaks in the binding
energy aiso show this feature.

In the framework of single-particle models, the distribution of energy levels is usually:
defined in terms of shells, subshells etc. Shells can be defined as a large-scale nonuniformity '
in the energy distribution of the individual particle states [22].

Most nuclei are now known to be nonspherical in shape. In order to describe the effect of
deformation, Nilsson [85] developed a deformed shell model, which is basically an extension
of the shell model to deformed potentials. In this model an axially deformed harmonic
oscillator potential was introduced and a spin-orbit term, and a term proportional to £2
which simulates the flat bottom and a steeper surface, were added to reproduce realistic
magic numbers. In the early stages, only one deformation parameter € was use(i in this model.
In this model also, shell structure was evident. The aspéct of quantal shell effects and their
relation with nuclear deformations was emphasized by Strutinsky with the introduction
of his shell correction method [22,105]. A detailed description and understanding of this
method ma}; be found in Brack et al. [22]. " An understanding of the shell structure r;.md
- hence the spherical or deformed shapes at various nucleon numbers, plays an important role
in explaining the superdeformed shapes. In the present thesis, we shall try to understand
the origin of shell structure by using the powerful semiclassical technique of periodic orbit

theory.

V. PERIODIC ORBIT THEORY

It is well known that periodic orbits play an important part in going from classical
mechanics to quantum mechanics. Classical action of the orbit is a major input in this
theory (20]. In the beginning of quantum mechanics, this theory failed when it encountered

nonintegrable system. This old quantum theory is related to the present day quantufn
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mechanics through the quantisation of the classical action over a periodic orbit. An early
example of this is Bohr’s model of atom in which the orbits with certain integral units of
classical action are said to be quantized and labelled by some quantum numbers. For one
dimensional systems the quantity [ p,dz can be understood in terms of action S or the area
of a closed path in the two dimensional phase space, whose two axes are represented by
the position coordinate and the corresponding canonical momentum. As an example, we
consider the case of one dimensional harmonic oscillator, whose Hamiltonian is given by

Pg 1 2,.2 |
H=m+§waL‘ =F. (7)

It can also be written as

( L )2 + ( )2 =1 (8)
/ 2E ’
This is just the equation of an ellipse in the given phase.space With semi-axes given by

V2MFE and 4/ '];—ff Thus the particle orbits along this ellipse in harmonic oscillator. The

area of the particle over one complete period is given by

_wE o

w

2F
‘ S=?{pzda:=7r\/2ME =

M
This area will identify action denoted by S. This action can further be quantised to.have
few periodic paths or orbits.

A powerful technique called periodic orbit theory has now been developed [49] which
enables one to obtain gross-shell effects in the level density of a quantum system semiclas-
sically without solving the Schrodinger’s equation. This theory was originally developed for
chaotic systems. As we shall see, it was later on adapted to work for integrable systems also.
There are almost infinite number of orbits present in a system. The beauty of this technique
is that, the inclusion of a few shortest periodic orbits reﬂects the correct gross-shell structure
[50]. Thus it is clear that these periodic orbits give rise to shells in the density of states
and thus to the shell effects as an observable effect in the energy spectrum of the system. It

is a known fact that shell effects are most prominent for the systems with high degeneracy
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and symmetry. But these effects can also be seen in the case of chaotic or unstable systems
because some isolated orbits are still present there.

Periodic orbit théory relates the classical actions of the periodic paths to the oscillating
part of level density §g(FE). This theory gives a Fourier decomposition of the oscillating part
of the level density of single-particle states in terms of classical periodic orbits, their‘ actions,
periods and stabilities. This relation in general is quoted as ‘trace formula’ was proposed
by Gutzwiller [50]. The periodic orbit theory or trace formula as proposed'by Gutzwiller
applies only to systems with isolated orbits. Balian and Bloch presented in 1972 (6] a similar
formula for cavities of arbitrary shapes in two or more dimensions; their formulé remains
valid also to integrable systems. Berry and Tabor in 1976 {10] also presented a trace formula
also applicable to integrable as well as non-integrable systems taking EBK quantisation as a
basis. Strutinsky and coworkers [105] extended the Gutzwiller theory to include potentials
with Gontinuous symmetries and correspondingly degenerate periodic orbits. A more detailed
description of the trace formula and some aspects of the P.O.T. will follow in the relevant

chapters.

- VI. PRESENT WORK

This thesis aims at exploiting the semiclassical techniques available in the literature and
applying ‘tl‘lose in the field of nuclear physics. We have tried to couple this with the study
of the latest discovery in ﬁuclear physics i.e. of superdeformed shapes.

Since the discovery of first superdeformed band in 152Dy by P. J. Twin in 1986 [110],
the list of SD bands has expanded significantly. Till date, abQut 170 SD bands are known,
spread over the four mass regions [99]. The gamma ray transition energies observed in these
structures are very feeble. Thus the discovery of these bands depicts the a quantum leap of
the advancement in the detection technology.

The study of chaotic dynamics in hamiltonian systems has become a growing discipline

during the recent years. These studies are now being carried out in nuclei also with an
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emphasis on order-to-chaos transition in the classical dynamics of a particle in various shapes
of cavities. Moredver as mentioned in £he previous section developments like the periodic
orbit theory [49] have brought to fore the deep connection between classical motion and
quantal shell structure. Study of SD bands, whiéh represent examples of motion in & highly
deformed cavity, therefore offers an exciting possibility to connect the two areas.

In Chapter II we present a complete semiclassical analysis of Particle-Rotor model, tak-
ing lead from Bohr and Mottelson [16]. In this chapter we have taken care of the classi-
cal fixed point structure emerging in the particle-rotor model and subsequent semiclassical
quantisation at various fixed points. This SCQ naturally yields rotational bands whose
various features such as alignment, starting angular momentum and oscillations in gamma
ray energies are discussed. The two degenerate fixed points ¢y are situated in the region of
nonlinearity/chaos and can be identified with the two minima in the double well potential
(DWP) of j3. Thé‘features of the rotational bands built at the fixed points cy are discussed
in full detail in this chapter [63].

A close correspondence of these results with the properties of the SD bands is established
in chapter III, where we establish some additional new features of SD bands from an analysis
of the experimental data [61]. In particular, we show that the SD bands have almost reached
the rigid rotor value of the moment of inertia [37]. Also, we highlight the negative aliénment
of SD bands and its saturation at a finite positive value at higher angular momenta which
in turn is responsible for a saturation in the dynamic moment of inertia. The fact that SD
bands begin with a finite starting angular momentum is presented as an important feature
of the SD bands and its systematics are explained. With the help of our simple model,
presented in chapter II, we have tried to identify the most significant features of a few
observed SD bands, representative of the four mass regions, with those obtained from our
model. An understanding of the AI=2 staggering is provided. A new feature of General
Identical Band is also presented [61] in this chapter.

Chapter IV is'a parallel to Chapter II, the difference being in the model chosen. In

this chapter we have chosen the cranking model and the semiclassical analysis is repeated.
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Numerical results at the degenerate fixed points c4 are presented for excitation energies and
alignments [59,38].

We present the current general interpretation of shell structure in nuclei in chapter V. At
this stage we introduce the periodic orbit theory and other necessary tools to understand the
link between the shell structure and periodic orbits. We also present, as examples, simple
applications of the POT to integrable systems like harmonic oscillator and spherical billiard
[20]. An expression for the level density of spherical billiards is obtained and numerical
results presented.

We now exploit the periodic orbit theory to understand deformed systems. We identify
the possible classical periodic orbits in the infinitely deep ellipsoidal well. In particular
an analysis of the classical closed orbits in the infinitely deep ellipsoidal well is considered
and its relevance to the gross-shell structure of single particle spectra in deformed nuclei
established [106]. We present detailed and exact results for the planar and the 3-dimensional
periodic orbits and study their consequences for the deformed and superdeformed nuclei. The

conclusions of the thesis are contained in chapter VII.
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I. INTRODUCTION

The present day particle-rotor models can trace their origin to the early works of Bohr
and Mottelson [13,14] and the first application of Coriolis mixing to the rotational structure
- of 183W presented by Kerman [75]. Since then the particle-rotor models have played an
important role in the understanding of a large body of experimental data on rotational
structures in odd-A [67], odd-odd [70] and 2qp étructures in even-even [46] nuclei. Several
versions of the particle-rotor model are presently in use and detailed references to these
may be found in {67,70]. The basic idea of the particle-rotor model is to treat one or, more
valence particles moving independently in the potential as coupled to an inert rotating core
consisting of rest of the particles. An odd-A nucleus thus naturally divides into one unpaired

nucleon plus an even-even core. Accordingly the Hamiltonian also breaks up into two parts,
H = Hinyr + Hrotor, . (1)

where Hj,, is the intrinsic Hamiltonian and H,.r is the rotational Hamiltonian. One may
also add to this, a residual interaction term such as pairing or, n-p residual interaction. The

rotational part,

| Hoo = S m2 2 gy I g | (2)
rotor — 2%(1 1 23(2 2 23(3 3

where (R, Ry, R3) are the three components of rotational angular momentum R. If the
valence particle carries an angular momentum f, then I = R + 5 For axially symmetric

systems, where I3 = j3 and 2—"‘;—1 = 5’{—% = (%), the rotational Hamiltonian reduces to

Hrotor = A(I'—'j)z, ' (3)

where 4 = I is labeled as the inertia parameter. The intrinsic part of the Hamiltonian

29
is usually taken from the Nilsson model potential or, the deformed Woods-Saxon potential.

For our purpose, we shall introduce a highly simplified version of the Nilsson model.

Neglecting the spin-orbit (l-Ts") and I2 terms, the Nilsson model for a single j-shell provides

a simple expression for the single particle energies which may be written as [15],
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e = € — B < nljja | ™Yo | nljss >, (4)

= e+ - ,
o+l 45(7 + 1)

where k is the radial matrix element. We rewrite this result as
€z = € + Q]ga (6)

where ¢, represents the energy corresponding to zero deformation and is independent of 73,
the third component of ; along the symmetry axis.

The total Hamiltonian for a particle in a single-j shell therefore becomes
H = Qi + AU-j), (7)

where we drop the constant energy contribution €y as it does not affect the dynamics of
the problem. The @Qj2 term reproduces the fan-like splitting of single particle energies for
a given j as the deformation increases. A typical plot of this term is shown in FIG. 2.1; it
simulates the Nilsson diagram reasonably well for a schematic model that we propose to use.

We use this Hamiltonian in the present chapter for a complete discussion of the non-
livnear dynamics of the particle-rotor model for a single-j configuration. A semiclassical
quantization procedure is then used to obtain excitation energies which group together into
many roﬁa:fional bands around twin fixed points c1. A detailed analysis and discussion of
the behaviour of gamma ray energies, alignment and the dynamical moment of inertia is
then presented. As will be discussed in the next chapter, many observed features of the

superdeformed (SD) bands resemble very closely with the properties of the bands built

around the fixed points cy.

II. THE DYNAMICS OF THE PARTICLE-ROTOR MODEL

The particle-rotor Hamiltonian, eq. (7), introduced above was first discussed by Bohr

and Mottelson [16]. The rotor is assumed to be axially symmetric and R3 = I3 — j3 is a
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constant of motion, which is assumed to be zero. The parameter @ = &g,/ 35?3563?3’ where

k is the radial matrix element which may have a value in the range of 40-50 MeV. The

inertial parameter A'is of the order of 10 keV for highly deformed nuclei. For 8 ~ 0.6 we

get a typical value of Q =~ 7 MeV. We thus have A <« Q <« Aj? for the orbits of large j

that are of special interest in the superdeformed nuclei. We discuss solution for Q > 0, i.e.

prolate shape only. Using the Poisson brackets [47], we can write the equations of motion

for the Hamiltonian (eq.(7)) by noting that the components of the angular momenta are

generators of infinitesimal rotations. The time derivatives of the components of I and 7 are

given by the six equations,

and

dj N ..
-6—;-;— = —2A(I - 72)J3 — 2QJj2Js,
dig N -
e 2A(1) — j1)Js + 2Qj1J3,

i N L
E]té = =2A(L = )7z + 2A(Lz = j2)J1,

dl, :
@1 _ R
g 2A(1; — jo)1s,
dl; )
42 _ _ — i
pr 2A(L - 51)1s,

dly _ dis
dt — dt’

A. General Structure of the Orbits

(8)

(10)
(11)

(12)

(13)

The equations of motion along with the general conservation laws can be used to explore

the dynamics of a problem. Besides the six equations of motion, the magnitude of the

particle angular momentum. j and the total angular momentum I are conserved so that
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it =t + 55+ ji (14)

and
P=n5+105+15n (15)

provide additional constraints. In addition, the total energy of the system given by eq. (7)
is also a conserved quantity. The total energy defines a parabolic surface whose intersection
with the sphere corresponding to constant j defines the trajectories of the system. A fixed
point analysis of the problem by putting j; , j», and j; equal to zero, provides four stationary
points corresponding to a minimum, a saddle point and two distinct but degenerate maxima.
For I > I, the saddle point and maxima merge into a single maximum.

e The fixed point a

The fixed point denoted by a corresponds to the full alignment of ; along I and represents

the minimum in energy. It defines the yrast line with

=17, J2 = J3=0, | (16)
L =1, I =v13=0, . ' _ (17)'

and the energy
E, = A(I-j). (18)

We have chosen the 1-axis as the rotation axis.
e The fixed point b

The fixed point b, an extremum, corresponds to an anti-aligned configuration in which j is

aligned opposite to I. At this point,

jl = "ja j2 = j3=01 (19)

L =1, I, = I;=0, (20)



and the cnergy

E, = AU +4)% (21)

o The twin stable fixed points cy
The twin stable fixed points denoted by cy exist only for' I < I. and correspond to the
situation j3 # 0. It can be shown [63] that c. are defined by the following values of
(71, J2, j3) and (11, I, I3): |

9 a?(1? - 5?) (vVI+a+0.5/a)?

it = = TR/ita(/ita+va) | /ita(/ita + \/a)(f—jg)’ (22)
9 2 __ a(I? = 72)
g B B P (24)

where a = Q—@i‘i—zm. To obtain the energy at the fixed points ¢y we rewrite the Hamiltonian

eq. (7) as
E = (Q-24)j - 2A(Iijy + Lj) + A + 7%, (25)

and use the values of (Iq, I5, I3) and (71, J2, J3) given by equations (22-24). We finally obtain

| A2 4 [(1+a) 5 aA(I” - j%) (1+a)
E, = A(I*+j% + 24 - 72 2\/TJ:‘&(\/W5+\/5)(3 — + 1). (26)

It can be shown that the fixed point b is a saddle point for a value of the angular momentum
I less than a critical value I.. The vectérs I and 7 precess around the point of minimum
energy until the saddle point is reached. The orbit passing through the saddle point, the
separatrix, plays a very important role in.the analysis of the solutions of classical dynamical
systems. Knowing the nature of the separatrices is very helpful in classifying the general

structure of orbits.
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III. FICTITIOUS HAMILTONIAN FOR J3

‘The system of equations (8-13) can be reduced to a second order differential equation in

j3 as also shown by Bohr and Mottelson {16,59,63]. It follows that j3 satisfies

d*j; . 3
el + Kjz + Lj; = 0, (27)
where the coefficients
K = 4AQIj + 4A%*(I —4)* — 2(Q —24A)F, | (28)
L = 2Q(Q — 4A), (29)
and
E=E-E, =E - A(I—j> © (30)

Here £ represents the energy with respect to the yrast line representing the fully aligned
configuration. As j;, j2 and j3 are coupled through a set of nonlinear differential equations,
dynamics of j3 controls the overall dynamics of the model. The equation of motion for J3

leads to a fictitious Hamiltonian in j3 viz.,

dj o L
= (By 4 K2+ 24k (31)

Hictitious o 5

It can easily be shown that
Hfictitious = (4A[.7 - E)E: (32)

a quantity denoted by C. The nature of solution depends on the sign of K which in turn
depends on the energy. At fixed point @ where K > 0 and Lj3 << Kjj, the simple
harmonic oscillator regime prevails. As we move away from a, the cubic anharmonic term
Lj3 in equation (27) becomes important with increasing energy. When K = 0, the solutions
-of j3 obey a purely quartic oscillator. On increasing the energy further, the constant K

changes its sign becoming negative. It heralds the commencement of a most interesting
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‘nonlinear dynamical phase governed by Duffing oscillator {94] which then prevails for all
higher energies. As shown in FIG. 2.2, the orbit corresponding to K = 0 and the separatrix
divide the phase space into three parts.

As pointed out earlier, the maxima cy exist only for I < I.. To find the critical angular
momentum, we should find the limit when these maxima merge with the saddle point b.
Note that as soon as K < 0 at b, it becomes a saddle point. Thus, the qritical angular

momentum corresponds to the situation when K = 0 at b. Using this conditiFn it is easy to

(VIFa+1). o (33)

show that

J
I, = —
, Va
Thus I will be negative at b provided we do not cross the limit /.. Forj =7 Iand A= 0.005
MeV, values typical of SD shapes, I, ~ 400h. Clearly the fixed points c. ‘always remain

within the j-space for all meaningful values of angular momenta.

IV. SMALL AMPLITUDE OSCILLATIONS

Small amplitude solutions near the fixed points can be obtained by using the technique
of linearization of equations of motion. The.frequency of oscillations at the fixed point then
plays the role of angle variable and the energy at the fixed point is provided by (action x
angle). It also providés us an avenue to introduce quantization of energy by quantizing the
action. ‘'The nature of solutions around the fixed point a has been discussed by Bohr and
Mottelson [16]. We give the details of solutions around a,b and c4; our main interest being
in the fixed points c4 and a general expression for the frequency of oscillation.

o Fixed point a V |
The frequency of small oscillation for j3 can immediately be obtained by ignoring the an-

harmonic term in the equation of motion to give

war = VK = [4AQIF + 44%(I - 5)? |3, (34)

ja = agcos(wyapt + o), (35)
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441y E. (36)

a5 = [—==

The energy for small oscillations at a is given by

E = E, + Juw, (37)
where E, = A(I — j)? and J is the action for wyp. The solutions of j; and I, are
(
J2 = apsin(weit + W), (38)
@ = Qi + AU = jas (39
I, = bysin{wyat + 1), (40)
2 . | '
by = A = 7)as. (41)
Wyib

The components ; and J; are obtained from j2 = j2 + j2 + j2and I? = I? + I} + I2
The action J can be quantized in the sense of Bohr-Sommerfeld quantization to obtain

quantized energy levels. Thus
1
= (n + -2-)h, , (42)

wheren = 0,1, 2, 3, .... etc
e Fixed point b

At the unstable fixed point b which is a saddle point for I < I. we obtain

wo = | —4AQIj + 4AYI —j)* |}, (43)
js = agcos(wyist + p), (44)
4AI4E
Cag = | zj b]%- : (45)
Wyib

The energy of small oscillations at b is given by
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E = Eb + me'b. . (46)

¢ Fixed point c4

The twin stable fixed points c.. offer interesting possibility of éupporting motion beyond the
saddle point b and therefore the separatrix. Since K < 0 at cy, the equation of motion
becomes that of a Duffing oscillator whose solutions are in the form of Jacobian elliptic
functions [48] which decide the nature of excitations that can be sustained at or, near C4.
The energy at the fixed points ¢y can be obtained by using the approximate values of
(I, 12,13) and (Jj1, 72, J3) at cy in the equation (25). We obtain [63],

(1+a), aA(I% - j%) 3 (1+a)

2v1+a(v/1+a + /a) a

E., = A(I*+3j% + 24 + 1),

as in equation (26) and E., = E,, — E,.

Small oscillation analysis at cy. leads to the following results,

stz s o B 1 o - 2 1h
Wiy = i[4A2(1‘ + 5% = 25 + 4A@Q 2A)(2,/1 + a+1)4\/1—16(\/m " ﬁ)] .
(47)

In fact the frequency of small oscillations near the various fixed points is given by a general

expression.

NI

wop = LUAIZ + T2 + 2 + j2) + 4AQ — 24)(Ij1 + Li)P, (48)

where appropriate values of Iy, j;, etc. should be used. The energy for small oscillations

around c4 can be written as
E = B, + Jow - (49)
where J is the action is given by
s =4 e - KF - L, (50

and




it = [%(\/m ¥ 20 - K NG
The quantization condition,
. ,
J=(@n+ —2—)ﬁ, B (52)

wheren = 0, 1, 2,......etc. is introduced to obtain the quantized energy levels. As already -
pointed out, as K changes sign from positive to negative, a double well potential (DWP)

appears from the single well in V'(j3) of the fictitious Hamiltonian of j3 given by

(%)Qﬂ/@) = ¢ (53)

where V (j3) = K32 + (L/2)j and C = (4AIj — E)E. The minima of the DWP correspond
‘to the two isolated, fixed points cy; these are located in a region of nonlinearity. The DWP
supports two solutions which we denote by p=0 and p=1; these correspond to the usual
even and odd Solutions of a potential .Well. On taking the tunelling between the two wells

into account, the semiclassical quantization condition for the action in j3 now reduces to

VT Vi - 2ATEE _ oy 54

where
C) = |z € ~ VO) = —= (55)
1 1 . e P
Dy(e) = §[a'rgF(§ + ie) —eln|e| +¢e £ tan"e™™, (56)

and, A® = ®_—-®, and ® = ®_+&,. The limits on j3 are the four real turning points at
subbarrier energies denoted by —j;, —j-, j- and ji. If we choose the upper sign in equation
(54) and take n,=0,1,2,3..., we get the even solutions denoted by p=0. By taking the lower
sign and n_=1,2,3,...we get the odd solutions denoted by p=1 [2|. Fulfillment of the SCQ
condition given by equation (54) yields a set of energies E for a given n and different I; this

constitutes a band which exhibits rotational features.
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As pointed out by Bohr and Mottelson (16}, the frequency w,;, is characteristic of motion
in the intrinsic frame . Another frequency wyo associated with the angle variable conjugate

to the total angular momentum, can also be defined in the particle-rotor model,

o = (22) 57

and is characteristic of the mean rate of precession of the rotor around appropriate axis.

A. Double well in j3 and second order Phase transition

The fictitious hamiltonian for j; contains a fictitious potential term (Kj2 — Lj4) which
is parabolic. As K changes sign frpm positive to negative, there is a sudden appearance of a
double well potential FIG. 2.3, which implies a spontaneous breakdown of symmetry. Such
a symmetry breaking is weil known to be associated with a second order phase transition

(67]. Following the Landau theory, let us choose the Landau free energy as

W) = (K7 + 24 - 2%, Y
The term in square brackets is the potential term which is a single well‘potential for K > 0
and a double well potential for K < 0. The Landau free energy ¢ for x = 0 is invariant
under j3 — —js but this symmetry is spontaneously broken when K < 0. The transition
is"a second order because < j3 > is continuous at K=0. Here, j3 plays the role of order

parameter and | K | plays the role of the intensive variable (an exact analogy can be made

with magnetization and temperature respectively). The Gibbs free energy G can be defined

as
: oG
B = CFER) (59)
(note again the analogy with magnetism). The condition determining < j3 > is
2K < j3 > +2L<j3>3—%=0. (60)

For x = 0, the only real solution is
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<j3>=0 - K >0,

| K|
+/— K
7 <0,
which implies that the exponent § = % in the Rushbrook law. This establishes that

there is a second-order phase transition as K changes sign. The system has two minima;
corresponding to i\/@; it cannot however exist simultaneously in both of them and one of
these two must become the ground state. From the nature of the fixed points a,b and cy,
it is clear that the allowed j-space is divided by the separatrix passing through b into three
disjoint regions. The yrast region (around a) is phase separated from the excitations built
at or, around the other fixed points. Thus there appéar four distinct regimes starting from
the lowest energies - the SHO (simple harmonic oscillator) , AHO (anharmonic oscillator),
QO (quartic oscillator) and DO (duffing oscillator). From the semiclassical quantisation.
procedures , we can quantise our system in all these regimes . Most signiﬁéant point to
note here is that the level sequences thus built up.will not be easily connected t;) each other
or, stated in other words, the transition probabilities to qualitatively different dynamical

scenario are expected to be rather small.

V. ALIGNED ANGULAR MOMENTUM

A quantity of great physical interest is the aligned angular momentum or, just alignment
which quantifies the extent to which the particle angular momentum aligns with the direction

of collective rotation. Alignment is defined as {16]

r > r a2
i = i(_ji)?_ = <1j J31> ) (61)
| <l > < (2 - I3): >
It can be shown easily that at the fixed point a,
oo N (Q — 24)I§
(I'J .73) [.7 214 [1 Q[] + A(I __ J)ZCOS (wv’lbt + VO)]’ (62)
which implies that
J : : ) .
(@ + AIj + AQI - HU - )+ A%l (63)

vib

<Ij-ji>=1j -
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Taking < I? + 122)% >~ I, weget

J

ta =7~ o=@ + A5 + ARL = )T = )+ Af]. (64)
In the limit of @ >> A,
o Q7 |1
o & j = J( 5t (65)

The alignment at c, is obtained as

oy = (P 2 2 - QSHOZ s - O, (69)

where <> denotes the time average value of the quantity within the brackets. In order to
find the value of < j2(t) > the averaging is to be done over the natural time period of the

solutions of j3 which are elliptic functions [48]. Therefore,

djs . L.
() = —Ki§ — 545 + G, o(6T)
which leads us to
dj L oy -
\ '7373 =\/§(62—J§)(J§—g2), | (68)

where €2 = — & 4 \/(£)2 4 20 and g2 = K —  /(X)2 + 20 and

(69)

[ T —
0 e L2 -3 - g?)
Here we have assumed that at time t = 0 the particle is at point j3 = e and at, time ¢, it is at
a point j3. Note that for —1 < C < 0, the particle is confined to one of the wells while for
0 < C < oo the particle has enough energy to cross the barrier. The solution to equation

(68) is given in terms of Jacobian Elliptic functions.

e For C < 0, we get [94]
Ja(t) = e dn(et, s), | (70)

and the corresponding canonically conjugate momentum,

29



P3(t) = —e*s’sn(et, s)cn(et, s), (71)
where the modulus, s, is defined as

=29 (72)

Note that when C < 0, s < 1, the natural time period of dn(et,s) is 2K (s) where K(s) is
the complete elliptic function of first kind.

e The solutions to equation (68) for the case C > 0, s > 1 are
7(t) = e enfest, 2), (73)
and
Ps(t) = —se*sn(est, —s-)dn(est, ;), (74)

with the quantity ! playing the role of the modulus. The time period of cn(est, 1) is 4K (s).

. The phase space for the duffing oscillator is shown in FIG. 2.4. We see that phase space

contains two stable (elliptic) fixed points (P = 0,55 = I3 = ;2 — ; \/ﬁz"((j;_f )+ =)

and one unstable (hyperbolic) fixed point (P = 0, j3 = 0). The region of trapped motion
(-1 < C < 0) is separated from that of untrapped motion (0 < C' < 00) by a separatrix
C=0. The separatrix has the same energy as the hyperbolic fixed points however, they have
different trajectories. A particle moving on a separatrix has infinite time period i.e. it takes
an infinite time to reach the hyperbolic fixed point from any point on the separatrix.

The case C > 0 corresponds to the superbarrier solutions (s > 1) where E, > E.. For
A=0.005 MeV and j=7, E; becomes greater than E, at I = 129.5% as shown in FIG. 2.5(a).
Since our interest lies in angular momentum I < 80k we always remain in the region where |

C < 0. In other words the subbarrier solution need to be considered.

+ VI. RESULTS AND DISCUSSION

We now present numerical results for the various fixed points and discuss the general

nature of the solutions. As already pointed out, the fixed points ¢y continue to exist until a
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critical angular momentum I, & 400A for typical values of the parameters A= 0.005 MeV,
Q = ;.—;‘ and j= 7, representative of superdeformed bands. Thus, ¢y always remain within
the domain of j-space. A plot of the energies of the various fixed points as a function of
angular momentum I is shown in FIG. 2.5(a). We can see that the energy of fixed point cy,
E., becomes lower than Ej afound I = 130A. This is still a very large angular momentum.
Thus for all practical purposes, E, < E.,. If we choose I = 7, then E, (the energy of b
relative to a) is about 1 MeV and E, . (the energy vof cy relative to a) is about 14 MeV. In
FIG. 2.5(b), we plot the gamma ray transition energies E. (I — I —2) as obtained from E., .
It is most remarkable that the / vs. E, plot is exactly linear, implying an exact rigid-rotor
behaviour of levels built at E.,. Also the line has an intercept of -1.0 on the [-axis. The
slope of the line gives a moment of inertia value of 104A2MeV 1,

When exact solutions are obtained at fixed point ci, we obtain bands corresponding to
n=0,1,2...., p=0 and n=1,2,3.....p=1. When solving the equations we ensure that action in
J3 is quantized at least upto fourth decimal place. The resulting solutions of level energies
for the standard set of parameters A=0.005 MeV and j=7 are shown in FIG. 2.6 and FIG.

"2.7. We have plotted the alternéte angular momentum / vs. the gamma ray energies
E.(I] - 1-2). Itis reniarkable to note that the transition energies obtained after'SCQ
begin to show very weak oscillétions around an overall linear behaviour. The oscilla;ﬁons
show up more clearly when we plot the energy difference E,(I — I — 2) — E"(] — I — 2)
vs. I where E""(I — I — 2) represents the linear fit to the calculated gamma ray energies.
As is evident from the results in FIG. 2.8 and FIG. 2.9 the magnitude of the oscillations
decreases rapidly as n is increased.

Another important feature resulting from our calculations is that these bands start with
a finite angular momentum /. In other words the bandhead has a finite angular momentum
which depends on A, j and n. Effect of A and j on the starting angular momentum ié shown
in Table I. As j is increased the starting angular momentum comes down. We may point

out at this stage that the many particle configurations assigned to the SD bands can give

rise to a higher effective j value; the starting angular momentum therefore will depend in a
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crucial manner on the SD band configuration.

Other quantities of physical interest are alignment ¢ and dynamical moment of inertia
Q2. The aligned angular momentum of a given band is numerically calculated by using
the level energies of the band in equation (68). Thé time average of j3(t) is obtained by
using the procedure outlined in section V. The numerical results for n=1,2,3,4, p=0 and
p=1 are shown in FIG. 2.10 and FIG. 2.11 respectively. It is interesting to note that the -
alignments are negative near the bandhead, rise with increasing angular momentum and
finally saturate. In' FIG. 2.12 and FIG. 2.13 we show the behaviour of second moment of
inertia @ for n=1,2,3,4, p=0 and p=1 respectively. We notice that the I value shows
a sudden rise at certain Angular momentum which is reminiscent of a similar discontinuity
noticed in the behaviour of several SD bands [30]. Further (@ value appears to saturate
at higher angular momenta for several n values. This saturation in 3®) may be directly
correlated with the saturation in the alignment observed at high angular momenta.

To conclude, we have carried out a complete analysis of the dynémics of the particle-rotor
model in a single-j configuration. The SCQ at the stable fixed points c,. leads to rotational
bands with many unique features which resemble closely to those of the SD bands. The weak
oscillations in gamma, ray energieé appears to be a direct consequence of the nonlinearity in
the equation of motion of j3. Also the éalculated bands start at a finite angular momentum
as is the case with the observed SD bands. The behaviour of the aligned angular momentum
indicates that the alignment remains negative for a considerable portion of the band near
thé bandhead. The dyﬁamical moment of inertia exhibits features similar to those noticed
in the experimental data. A detailed comparison of these features and also somie additional

features like Al = 2 staggering with the experimental data will be presented in chapter III.
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TABLES

TABLE I. Effect of Parameters A and j on Starting Angular Momentum I

A I,n=0,p=0 |I1,n=1p=0 (I, n=2,p=0 [Ih,n=1,p=1 |Lh,n=2,p=1
0.005 15.5 375 55.5 21.5 41.5
0.005 11.5 29.5 41.5 17.5 31.5
0.005 9.5 23.5 33.5 13.5 25.5
0.006 9.5 23.5 35.5 13.5 27.5
0.008 7.5 17.5 27.5 11.5 21.5
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FIG. 2.2 Schematic diagram showing the division of the j-space into four distinct regions.
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FIG. 2.3 Plot of V(j3) vs. j3 showing the DWP when K < 0.
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CHAPTER III
SOME NEW UNIVERSAL
FEATURES OF SD BANDS AND
EMPIRICAL ANALYSIS OF SD
BAND DATA
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I. INTRODUCTION

The phenomenon of superdeformed bands [110] and some well known features of these
bands have already been introduced in chapter I. The aim of this phapter is to bring into
light some additional new feature of SD bands pointe& out more recently by us [61,62]. In
particular, we would establish the following features on the basis of the data on SD bands.
e A weak oscillation in the angular momentum I vs.- the gamma ray energies E, (I — I —2)
plots.

e A negative intercept on the I axis of the linear fit through the / vs. E, plots in a large
number of SD bands.

¢ A finite angular momentum for the bandhead of the SD band.

e The Al = 2 staggering is a third order effect compared to the weak oscillation which is a
first order effect.

o A feature of general identical band. On the basis of the empirical ,analysis, we also
show that a feature of general identical band (GIB) emerges in A = 190 mass region. This
phenomenon of GIB is also present in the other mass regibns of SD bands but not as strongly
as in the A=190 mass region. The identical bands are therefore just an outcome of this more
general feature.

An understanding of these features on the basis of particle-rotor model presented in
chépter II will be attempted in this chapter. An empirical analysis of the SD band data
based on our understanding clearly establishes the rigid rotor nature éf the SD bands and
also the negative aligned angular momentum. An explanation’ of the Al = 2 staggering

follows in a most natural way.
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II. NEW EMPIRICAL FEATURES OF SD BANDS
A. Weak oscillations in the I vs. E, plots

A very interesting general feature was noticed by us in the I vs. E, plots of the SD
bands. We observe that the general nature of I vs. E., plots is almost linear as is evident
from the examples shown in FIG. 3.1 for different mass regions [61,99]. It may be noticed
that the gamma ray energy exhibits a systematic oscillation .around the linear fit to the
I vs. E, data. We have verified that such oscillations are present in almost all the SD
bands [63]. These oscillations can be seen more clearly by plotting the energy difference
EFeP(] — [ -2) — E*(I — I—2) vs. I. Here E*"(I — I —2) represents the gamma ray
energies obtained through a linear fit to the SD band data. These plots are shown in FIG.
3.2 (a), (b), (c) and (d) with examples from all the mass regions. It may be noticed that
the amplitude of the oscillations is of the order of 10-20 keV. This universal feature of the
SD bdnds gets further support from the observation of the weak oscillations in even-even,
odd-A and odd-odd nuclei. For example as many as six SD bands are observed in %77,
which other\yise has very little spectroscopic information known at normal deformation.
This suggests that a common mechanism must be operative which leads to the stabilization
of the.&.SD bands irrespective of these belonging to an even-even or an odd-odd nucleus. All
the properties displayed by these SD bands are also common to other SD bands. It may
also be emphasized that the data on SD bands in odd-odd nuclei do not display any new

additional feature; it again brings into focus the universal nature of the properties of the SD

bands [99].

B. Negative intercept of the I vs. E, plots

The linear fit to the I vs. E, plots of the data on SD bands when extrapolated to the
I-axis invariably leads to a negative intercept for the SD bands in A=190 mass region [37].

This feature is also present in a large number of cases from the other mass regions. In the
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first column of Table I we list the values of the alignment as obtained from the intercept; as
will be shown in this chapter, an empirical analysis based on the particle-rotor model [37)
allows us to interpret the values of these intercepts in terms of aligned angular momentum
of SD bands. It immediately leads to the unusual conclusion that a large number of SD
bands have negative alignment. This however appears to support the interpretation of SD

bands built around the fixed points ¢4 located in a region of nonlinearity [63].

C. Finite angular momentum of the SD bandheads

It is a general observation that the SD bands terminate at the lower end rather abruptly
at an angular momentum which may lie anywhere between 84 to 304 [99]. The abrupt
termination of the SD bands is explained in terms of the inability of the present day detection
techniques. In other words it is believed that the gamma rays decaying out of the lowest
observed band level have been fragmented into many weak gamma rays. This has k;een
the biggest stumbling block to the experimental assignment of the angular momentum and
parity as well as the excitation energy of the SD bands. Absence of linking transitions »should
not however be viewed as purely a deficiency of experimental techniques. Recent observation
of linking transition in at least two cases [51,76] confirm this because the final level appé%ars
to decay out in to many-many paths and only few of the high energy gamma rays could‘ be
esﬁablished.

These observations based on the experimental data suggest that the SD bands have
a bandhead which always carries a finite angular momentum, we denote this by I,. The
empirical systematics of I, [99] are shown in FIG. 3.3. It is clear from the FIG. 3.3 that SD
bands in a given mass regions have their ; values lying in a definite or fixed range of angular
momenta. The SD1 bands, which are probably yrast, are plotted in the left block while the
rest are plotted in the right. We find that the value of the I, in A=130 mass region, has
the largest range extending form 12.5% to 26.5h except for 1** Nd which has the lowest value

of I,=8.5A. In the A=140-150 mass region, the value of I, lies in the range of 25k — 32A.
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Finally for the A=190 mass region the value of I,=8Ah to 12k. It is thus clear that each
mass region has its own characteristic range of values of I,. It may be cautioned that all the
angular momentum values listed here are tentative and their experimental determination

still remains to be achieved.

D. AI =2 Staggering

We now establish that the Al = 2 staggering observed in few cases is a third order
effect in gamma ray energies as compared to the weak oscillations which are first order
effect and are much more general in nature. It may also be emphasized that a regular
Al = 2 staggering has been observed. in only three or four cases for example band 1 of °Gd
and band 1 of 3T [42,55]; it is therefore not a very general feature of all the SD bands.
Most of the other SD bands display no such feature or, display an irregular staggering. It
is therefore important that any explanatibn- of this feature must therefore give a regular
Al = 2 staggering only under special circu;nstances.

To establish that AJ = 2 staggering is a third order effect we first calculate AE,(I) =
EE=p(I — I —2) — EI™(I — I —2). As an example we list the values AE,(I) for 19Gd
band 1 in the II column of Table II. We then define a second difference A?E, (I) = AE, (1) -
AE,(I—2) also listed in column III of Table 2. A third difference defined as DD=AZE, ()~
A’E, (!I - ;‘Z),is given in the fourth column of Table II . Notice that the quantity DD begins
to exhibit a small rise or fall in its values for I > 37.5h, where Al = 2 staggering sets in.
This rise and fall in DD is mostly less than 1 keV. It is this third order difference that shows
up as Al = 2 staggering.

The weak oscillations in gamma ray ehergies as discussed above have a magnitude éf
the order of 10-20 keV [61,62], are observed in most of the SD bands and hence represent
a more general feature than Al = 2 staggering. Al = 2 staggering must therefore follow
naturally from any explanation that leads to the oscillatory behaviour of I vs. E, plots. We

shall show that this is indeed the case.
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I1I. AN EMPIRICAL ANALYSIS OF SD BANDS

A complete discussion of the nonlinear dynamics of the Particle-Rotor model in associa-
tion with semiclassical quantization (SCQ) procedure was presented in chapter II [63]. We
have already shown that the motion around the twin fixed points c; supports rotational
bands which display several unusual features. We summarize some of these features as fol-
lowing .

1. The angular momentum / vs. the gamma ray energies E,(I — I — 2) exhibits a linear
behaviour signifying a constant moment of inertia.

2. Inclusion of the nonlinear term in js3 and subsequent semiclassical quantization (SCQ)
introduces weak oscillations in the linear I vs. E, plots. |

3. The aligned angular momentum of these bands is negative near the bandhead, increases
with I and ultimately becomes positive at large angular momentum.

4. The rotational bands have a bandhead which always has a finite angular momentum
which is around 8% or more.

5. The dynamical moment of inertia Q{2 is observed to saturate at large angular momentum
and decrecases slightly at the upper end.

We note that all the features mentioned above resemble very closely with those of -the
SD bands. A further confirmation of these features can be obtained only from an analysis of
thé experimental data on SD bands. Taking our cue from the theory, we propdse a simple
empirical model [37]. Here we assume that the total angular momentum I of the SD band

consists of a rotational part R and an aligned part 7,

I'=R+s. (1)

An almost linear behaviour of I vs. E, plots both in theory and experiment suggests that
~ the SD bands can be treated as some kind of aligned bands. The spectrum of a classical
rotor with rotational angular momentum £ and a decoupled particle with an aligned angular

momentum 7 may be written as
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Erot(1) = gg[l(l +1) — 20 +1i(i + 1)). (2)

The effect of alignment is thus to modify the rotational energy %I (I +1) by a term pro-

portional to /. The gamma-ray transition energies are given by,

2 .
E(I—T—2)= %2[(21 _1) -2 3)
Inverting this relation, we get
128 1
I'=327E,(I>1-2)+(i+5). (4)

On a plot of I vs. E.,, the slope therefore gives the moment of inertia & and the intercept
on the I axis gives the aligned angular momentum . The extrapolation of the line to obtain
the intercept is strictly valid only when the moment of inertia is constant. It is observed
that the experimental data lie very close to this line. This method however cannot succeed
in normal deformed (ND) bands. |

It may be remarked that the usual method for extracting experimental alignment by
comparing a given band with a reference band (for example the ground state band of an
even-even nucleus as the reference band) cannot be used for SD bands for two reasons. First
it is difficult to define a reference band for superdeformed nuclei and second the angular
momenta are not known precisely. For this reason, only the incremental alignments are
discussed in literature [101]. The procedure followed by us therefore promises to give some
idea about the aligned angular momentum of SD bands. Our calculations based on the
Particle-Rotor model presented in Chap. II are able to account for the weak oscillations
around a general linear behaviour in I vs. E, plot. These oscillations are the result of
taking into account the nonlinear term in the equation of motion of j3. If we ignore the
nonlinear term, an exact linear behaviour is obtained. The observed variation in the moment
of inertia with angular momentum is therefore a direct result of these oscillations. That the
variation is indeed small may be seen from the fact that the change in the moment of inertia

of mass 190 SD bands, over a range of angular momentum of the order of 10/, is as little as
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1-3 percent. On the other hand, the change in moment of inertia in ND bands is as much as
a factor of 3 to 5 of the bandhead value over the same spin range [39]. Most of the SD bands
being observed at high spins are thus expected to possess very weak pairing correlation [39].
In view of these discussions, a linear fit to the data of the SD bands by using the eq. (3)
becomes meaningful. The moment of inertia obtained from such a linear fit can be taken as
an average value of the moment of inertia over the whole band and are listed in column III
of Table I. We show in FIG. 3.4, the moment of inertia obtained in this manner for all the
yrast and nonyrast SD bands in all the four mass regions. These values are compared with
rigid rotor value calculated from the well known relation Q. = %AM R2(1+0.3108); B is
the deformation parameter obtained from the measured values of the quadrupole moment.
The rigid body expression predicts a A3 dependence of the moment of inertia on the mass
number A. FIG. 3.4 confirms such a dependence. Moreover the values extracted from the
linear fit are always equal to or, slightly greater than the rigid body values. The analysis
clearly establishes that the SD bands are rigid rotor in nature [37,69).

The aligned angular momentum or simply the alignment ¢ is one of the most significant
quantities which indicate the nature of the rotational bands. We have extracted this quantity
from‘ the intercept on the I axis and the values are tabulated in column II of Table I. We plot
in FIG. 3.5 the alignments for the yrast and non-yrast SD bands. We notice that a nega’tive
vélue is obtained in a large number of cases. It may be recalled that our calculations based on
the SCQ theory [63] predicts an alignment which is negative near the bandhead, increases
with increasing angular momentum, becomes positive and then saturates. Sometimes a
downturn at high angular momentum is also obtained. Alignment however remains negative
for a considerable range of angular momentum iﬁ the beginning of the band. A constant
value of alignment as obtained from the linear fit to the SD data can therefore at best be
termed as some kind of averaged out value of the alignment. But the fact that a negative
value is obtained in a large number of cases is a very significant result which appears to
support the negative alignment predicted by our model. Since our model calculations relate

to high-j orbital, it would appear that high-j configurations should be involved in those SD
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bands which display a negative alignment behaviour.

IV. STARTING ANGULAR MOMENTUM FOR THE BANDHEAD

We have already emphasized that the existence of a finite angular momentum for the
bandhead of SD bands is a new and general feature. It would be interesting to see if we can
obtain an explanation for the systematics of I, on the basis of our model calculations. It
should be kept in mind that our model Hamiltonian is highly schematic in nature and has
very few parameters. Moreover, the values of these parameters have to be fixed from the
nuclear structure information on SD bands and therefore cannot be varied in an arbitrary
manner. Wé present in Table III the set of parameters used to carry out the calculations
in the four mass regions namely A=80,150,160,190. The value of j; was chosen on the basis
of the configuration assignments réi)orfed in the literature [33,41,8,74]. The deformation
parameter was taken to represent the measured values. To keep the effect of parameters to
a minimum, we decided to use a constant value of the radial matrix element k=40 MeV [16].
For éll the cases, the moment of inertia parameter A was estimated from the linear fits to
the experimental data on SD band gamma ray energies. Using these sets of parameters we
obtained the starting angular momentum as reported in Table I1I. We note that the predicted
values for n=0, p=0 casé? representing yrast SD bands as given in column V of Table III
match wifﬁ the observed values for A=130 and 190 mass regions. However the observed
values in A=80 and 150 mass regions are much larger than the calculated values. There are
two ways in which we can reconcile this discrepancy between the theory and experiment.
One of the explanations may be given by assigning different n and p values [63] to the bands
in these mass regions. In Table IV we list the values of I, obtained for n=0, 1 and 2 with
the same set of parameters as listed in Table III. We note that starting angular momentum
can lie anywhere between 6/ and 417 depending on the n and p values. However another
reasonable explanation is also possible in terms of the present understanding of SD bands

from the Nilsson-Strutinsky calculations [103,104] . It is well known that the SD bands are
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observed for the particle number and deformation which stabilise or develop a minimum in
the potential energy surfaces (P.E.S) at a finite angular momentum [111]. It is this angular
momentum with which a band may be expected to come into existence. Therefore even if
lower angular momentum states for SD bands may be possible, they would not be observed
if the second minimum develops at a higher angular momentum. Therefore if the second
minimum develops at I ~ 20h for A=80 and 150 mass regions, we cannot expect to see
states lying lower than I = 20h.

Keeping the second explanation in mind we present in FIG. 3.6 the behaviour of gamma
ray energies as calculated from our model and compare them with the behaviour of SD bands
observed in 82Y, 133Nd 49Gd and 1% Hg. In plotting the calculated results we terminate
the bands at the lower end at the same angular momentum as observed in experimental
data [99]. We find that in doing so we automatically obtain the correct phase of the weak
oscillatory behaviour of gamma ray energies. The similarity in the calculated results and the
observed values is quite remarkable in view of the fact that we are basically changing only
three parameters. The amplitude of the oscillations as obtained from our model is larger
than the observed amplitqdes. This is controlled by the coefficient L of the nonlinear term in
our model. In FIG. 3.7 and FIG. 3.8 we plot the difference EX*P (I — [-2)—EL™(I — [-2)
for experimental and theoretical bands respectively. The correspondence between the two
figures c.an be seen clearly. In our model a finite value of the angular momentum I, arises
from the fact that no solutions at c; are possible below this angular momentum. The
quantity C(= (441j — E)E) becomes negative for I > I, which gives rise to a doﬁble well in
J3 whose minima are the fixed points ct where the SD bands are supposedly being supported.
The saddle point b is a maximum and corresponds to a completely antialigned state implying.
a net-alignment which is negative. As we increase the energy beyond b we begin to move
towards fixed points ci. The negative alignment for lower angular momentum states at ci

is therefore reminiscent of the complete antialigned configuration at fixed point b [63].

.
9
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V. AI=2 STAGGERING

The phenomenon of identical bands and AI=2 staggering have proved to be the most
difficult to resolve [5,42] among the other unresolved features of SD bands. The SD bands
are AJ=2 structures with a nearly linear dependence of transition energies’E, on the angular
momentum /. It was observed that one set of states with AI=4 are slightly shifted in energy
with respect to the complimentary set of states. While AI=1 staggering is quite common
in rotational bands of odd-A [67] and odd-odd nuclei [68], a AI=2 shift is quite unexpected
and puzzling.

‘This phenomenon has motivated many theoretical studies which have offered explana-
tions in terms of a four-fold Cy4 symmetry [52,79,88], a g-boson in IBM [77], mixiﬁg of two
bands [107], hexadecapole interaction [87] and an intrinsic vortical motion [83]. More re-
cently, studies have attempted to iook for similar feature in normal rotational bands and
offer an explanation in terms of the sd-IBM [109].

It may be remarked that a regular AI=2 staggering has been observed in only two cases
viz., band 1 of %°Gd and band 1 of 193T1; it is therefore not a general feature of all the
SD bands. Most of the other SD bands display such feature over a limited range of angular
momenta or, display an irregular staggering. Any explanation of this feature must therefore
give a regular Al=2 staggering ronly occasionally.

Sevefai kind of parameters have been used to quantify the Al = 2 staggering. One of
the quantities widely used has been a five-point formula [29]. It has been shown [54] that
the feature of staggering depends sensitively on the muiti point formula used to analyze the
data and may often give misleading conclusions; a one-point formula was therefore proposed
which confirmed the presence of Al=2 staggeriﬂg in only one case i.e. 14°Gd. It is therefore
indeed necessary that any conclusion regarding the presence of staggering is based on sound
footings. In the present chapter, we have already shown that the AI=2 staggering is a third
order effect in transition energies as compared to the weak oscillations superimposed on the

linear I vs. E, plots, which are first order effect and have recently been shown to be much

¢

44



more general in nature [61,62]. A very natural explanation for the weak oscillations in the I
vs. E,(I — I—2) plots has been provided in terms of the non-linear dynamics of the particle-
rotor model [63]. The present section focuses upon the Al =2Vstaggering and offers a very
reasonable explanation in terms of the tunneling effect in the double well potential (DWP)
that comes into picture in the non-linear dynamical regime of the particle-rotor model [63].
Unlike the five point formula, the quantity DD introduced in section 11.D is a reasonable
measure of AI=2 staggering. The oscillations on the other hand have a magnitude of the
order of 10-20 keV, are observed in most of the SD bands and hence represent a more general
feature than the AI=2 staggering. The AI=2 staggering must therefore follow as a corollary
to any explanation that leads to the oscillatory behavior of I vs. E, plots. We now proceed
to show that this is indeed the case. |

It is most interesting to note that the height of the DWP in j3 depends on n and [/
as shown in FIG. 3.9. Our DWP is thus energy dependent and the tunelling between the
DWP leads to a shift in the eigenvalues of C which ultimately results in a shift of the energy
eigenvalues. The energies corresponding to different I for a given n are therefore shifted
differently. Also, the various bands designated by different n are shifted differently.

We have already shown that these solutions display properties which match closely with
the several observed propefties of the SD bands [37,63]. We have thus been able to reproduce
the weak oscillations in the I vs. E, plots; also the bands start with a finite angular
momentum . We now show that the same model is also capable of explaining the AI=2
staggering.

To check the presence of the AI=2 staggering we calculate the quantity DD defined
earlier; of course’ now we replace Eff“””' by E?,‘ heo . We plot this quantity DD vs. [ in
FIG. 3.10 for n=3, p=1 and four values of j=7,8,9 and 11; A=0.005 MeV in all the cases.
We notice that a AI=2 staggering is present in the high spin region; the magnitude of
staggering is of the right order and decreases as j increases. It is our general observation
that the AI=2 staggering is more pronounced in p=1 cases than in p=0 cases. In the upper

panels of FIG. 3.11 we show the results of j=7, p=0, A=0.006 MeV and n=1 and 3. We find
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that significant staggering is still present in n=3, p=0 case. We also find that the staggering
completely disappears when A is increased to 0.008. The staggering feature thus depends
sensitively on A and j. In the lower panels of FIG. 3.11, we compare the observed feature
of AI=2 staggering in '9Gd with the n=3, p=1 solution for j=9 and A=0.005 MeV;; a nice
comparison can be made between the observed features although the calculated staggering
starts at a higher angular momentum. The AI=2 staggering is thus directly related to the
height of the DWP which in turn depends on A, j Qnd n. It may also be stressed that a
regular AI=2 staggering is only an occasional feature as obtained experimentally.

The unusual dependence of the depth of the DWP in j; on I has another important
consequence. Since the depth goes on increasing with 7, the higher members of a SD band
remain well entrenched inside the well and acquire extra stability. This explains the unusual
stability of the long cascades of the SD bands.

In conclusion, we find that the observed phenomenon of A/=2 staggering may be under-
stood in terms of the nonlinear features of the particle rotor model. It does not require any
extra assumptions. The depth of the fictitious potential V(j3) increases with I as shown
in FIG. 3.9. It has a very interesting consequence in terms of the unusual stability of SD

bands. As the angular momentum increases, the motion remain well-entrenched in the well.

VI. IDENTICAL BAND FEATURE

The phenomenon of identical band (IB) is another puzzling feature ;)f SD nuclei which
probably remains least understood. It is observed that the SD bands in different nuclei have
nearly identical gamma ray energies and therefore nearly identical moment of inertia. The
first pair of identical band was discovered in '°!Th whose excited SD band exhibited gamma
ray energies identical with the yrast SD band of '*?Dy to within 1.5keV over 20 transitions
[25]. After the discovery Aof IB in SD nuclei, attention was focused on discovering similar
features in normal deformed (ND) nuclei also. Existence of twined bands among several

even-even cores and their adjacent odd-N and odd-Z nuclei were shown for the first time

46



by Jain et al. [60,72]. Later on existence of such twined bands in widely dispersed nuclei
was‘also pointed out by Jain and Sood [100} and later on interpreted in terms of F-spin
multiplets by Jain and Casten [64].In the present section we primarily concentrate upon the -
identical band feature of SD bands. For a detailed review of the IB phenomenon in deformed
and superdeformed nuclei one may refer to reference [102]. .

The discovery of IB phenomenon implies that the valence particles beyond the SD shell
closure do not influence the core as much as they do in ND nuclei. In other words the
valence particles remain decoupled from the core and therefore a simple interpretation of
the IB phenomenon may be sought in terms of an aligned or a decoupled structure. This
premise forms the basis of several explanations including the one based on pseudo spin
alignment [102]. The role of high-N intruder orbitals appears to be crucial in deciding the
identicity of the bands. The empirical model presented by us in this chapter is also based
on the same assumptions. The aim of this subsection is to use the results of this empirical
analysis along with a reasonable criterion for identical bands and to show that in this process
we arrive at a new phenomenon termed as the general identical band (GIB). In other words
~ we show that a substantial number of SD bands come very close to a reference band in each
mass region and give rise to the GIB phenomenon.

A number of criteria have been used in the literature for defining two bands as identical
bands. A detailed discussion of these criteria may be found in the review [5]. These criteria
are based on the closeness of gamma ray energies in the two bands or a matching of dynamical
or kinematic moment of inertia. It is important to note that ultimately all the criteria use
the gamma ray energy as the basic input. However since the angular momenta of SD band
levels are still not measured quantities, the dynamic moment of inertia is preferred by several
authors.

To identify the identical bands, one tries to bring the transition energies of a SD band
as close as possible to the transition energies of another SD band in a neighbouring nucleus;

this is achieved by suitably displacing the angular momentum of one across the other. Let

the gamma ray energies of band R and S be represented by E., (Ig) and E,(Is) respectively,
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where the transitions correspond to (Ig — Ir — 2) and (Is — Is — 2). The two SD bands

R and S which belong to different nuclei may be said to have an IB pattern if the difference

in gamma ray energies AF tends to vanish or, is small. s
AE = E,(Ir) - By(Is) = 0. (5)

The criterion may be further extended to include half average, (1/4,3/4) average or (3/4,1/4)
average of gamma ray energies becoming identical to the gamma ray energies of the reference

band as defined below [40];

AE = Ey(I) - 5[Ey(Isia) + By(Is)], (6)
AE = B, (Ip) - 211-[E7(15+2) +3E,(Is)], 7)
AFE = EL,(IR) - i[E—Y(313+2) + E’y(IS)]- (8)

These four criteria can in fact by generalised to write a general expression for the average

gamma ray energies E’ (Is) as follows [26],
E"Y(IS) =zE,(Is) + (1 — 2) E5(Is + 2). (9)

In this equation z is a parameter which may be continuously varied in the interval [0,1].
The gamrha. ray energies so obtained may be compared with the reference band to check the

smallness of the quantity.
AE = E,(Ig) — E,(Is). (10)

There are two points to be further decided in making this comparison. One is the rela,tive
displacement of band S with respect to the band R (which is our reference band) by AI in
order to obtain the best matching. And second is to decide how small AE should be so that

bands R and S may be called identical. According to equation (3),

E.,(Ig) = 2A[2(Ig — 1) — 2ig], - (11)
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E\(Is) = 2A[2(Is — 1) — 2isg], (12)

where we have chosen the rotational parameter approximately the same for both the nuclei.

This immediately leads us to the following value for AE (equation (10))

AE =4A[(Ir — Is = 2(1 — z) — (ir — is)], ' (13)

= 4A[AT - 2(1 — T) — Ad). (14)

In the ideal situation AE =~ 0 which implies that
Al =2(1 — z) + Ad. (15)

From the least square fitting of data on SD bands we already know the quantities A, iz and
ts. The quantity z is obf;ained by a procedure of minimizing the difference AE in equation
(10). Using the value of z, we obtain AJ by which the band S should be shifted with respect
to the band R in order to make them identical. |

To obtain an upper limit oh the value of AE, we further define a quantity called fractional

chan‘ge’ (FC) [88] in the kinematic moment of inertia of two bands R and S.

_ o -op)

FC = 50 (16)

if S‘g) and 3(31) are approximated by the respective rigid rotor value,the above FC will reduce

to

Wi

FC = 9-(—’%——), (17)
A3

where A are the mass numbers of respective nuclei. Whether or not two bands are identical
depends on the value of €g,where

€0 = (FC)(E), (18)
since the two bands are identical only if the energy difference AE between the two is less

than the allowed change in gamma ray energies €y resulting from the difference in their
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masses. The gamma raylenergies in the four mass regions i.e. A=130, 150, 190 are of the
order of 1 MeV and in A=190 mass region are of the order of 0.5 MeV. The values of ¢
for various AA (change in mass) are listed in Table V. The last column in Table V lists the
largest RMSD that we come across in the A=190 mass region while identifying the identical

bands; it should be less than the corresponding limit of ¢ for two bands to be identical.

A. A=190 Mass region

First we present an analysis of the SD bands in A=190 mass region using the procedure
outlined above. The quantity AE which should vanish for the existence of identical bands
was obtained on the assumption that the parameter A remains constant when going from
band R to band S. However a change in the mass of nuclei is expected to give rise to a
minimal change in gamma ray ene/rgies as listed in Table V. The observed change in AF
should therefore be less than this limit € in order that band R and S may be said to form
an IB pair. In this analysis we choose SD band 1 of 1921 g as the reference band R and
treat all other SD bands as band S. In Table VI we list the bands which could be identified
as identical with band R. Out of a total number of 53 bands, 32 bands are found to be
identical with band R. Whén we plot these bands on I vs.E, plots , properly displaced
~ with respect to each other by A/ obtained from equation (15), all the SD bands appear to
coalesce wi‘th the reference band giving rise to a. General Identical Band (GIB). As is evident
~from FIG. 3.12 there is further scope to bring these bands still closer to the reference band
R. This may be done by using a more refined expression for describing the SD bands rather
than the simple linear equations (11) and (12) used by us. Emergence of the GIB feature
substantiates the general observation that the SD bands appear to be rather insensitive to
their configurations.

The SD bands which could not be identified with the SD1 band in '*?Hg are listed
in Table VII. We find that if we drop a few transitions from the top of these bands, it

is possible to identify these bands also with the band R; the resulting RMSD (root mean




square deviation) for these bands with the truncated cascade are also listed in Table VII.
The RMSD values are certainly higher than those for bands in Table V. This indicates that
these bands do not form as good GIB pattern as those listed in Table VI but within the

limit €g.

B. A=130, 140 and 150 mass regions

Following the same procedure as outlined for A=190 mass region, we carried out an
analysis for the SD bands A=130, 140 and 150 mass regions. We have chosen the SD band
in 18Nd, 16Gd and 52Dyl as the reference band R for our analysis in respectiQe mass
regions. The upper limit in the variation of gamma ray energies AE are again found out.
We find that in A=130 mass region 8 out of 11 SD bands satisfy the criteria of identical
bands. The corresponding I vs. E, plot is shown in FIG. 3.13. In A=140 mass region only
7 out of 14 SD bands coalesce with the reference band; corresponding plot of I vs.Ev is
shown in FIG. 3.1‘4. In mass 150 region, 17 out of 27 SD bands appear to form GIB pattern
as shown in FIG. 3.15. It is clear_'from the figures that the GIB pattern or phenomenon

is observed with the greatest accuracy in A=190 mass region. The deviations in the other

mass regions are larger.

VII. CONCLUSIONS

A detailed presentation of the results and their discussion has already been made in each
section. We present here the highlights of this chapter and a summary of the results.

On the basis of the SD band data, we have shown that the SD bands exhibit weak
oscillations in the I vs. E, plots, are more likely to have a negative intercept on the I axis
in these plots and possess a finite angular momentum for bandhead which is greater than
8%. Also we have shown that Al = 2 staggering is a third order effect and probably an

outcome of the weak oscillations which are first order effect.
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An empirical analysié of the SD band, carried out on the basis of a simple expression
for decoupled bands, leads us to moment of inertia values for SD bands which are close to
the rigid rotor moment of inertia. Further the negative aligned angular momentum suggests
that most of the SD bands are located near the fixed points cy in a region of chaos.

We also present the systematics of the starting angular momentum, I,, and show that
it is possible to reconcile these systematics with the results of our schematic particle-rotor
model results.

The AI = 2 is shown to be a feeble third order effect arising out of the first order
wéak oscillations. Since our model calculations reproduce the weak oscillations should also
reproduce the Al = 2 staggering provided effect of tunneling in the DWP is taken into
account. We have shown that this is indeed the case.

We also present an interesting-analysis, where we show that the SD bands are quite
similar to each other at least within a mass region. Their similar behaviour can be exploited
to obtain a general identical band feature. We show that the SD bands in A=190 mass
region most easily form a GIB pattern. The SD bands from other mass regions are not
so well behaved. This feature focusses our attention on the universality of the SD band
phenomenon cutting across the various mass regions and various types of nuclei (even-even,
odd-A and odd-odd). Although we cannot provide any explanation fbr such a v;fide scale
similarity, we believe that the phenomenon is important enough to warrant a déeper study
of the SD bands. It is our hope that more fundamental theories like the periodic orbit theory

may be able to throw some light on the unusual scaling behaviour of the SD bands.
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TABLES

TABLE I. Valucs of alignment ¢ and moment of inertia & from fitting of experimental data

SD Band 1 )
825r1 2.69 24.86
82512 1.27 26.19
83Gr 4.21 27.06
84z7r 3.13 25.75
130, -1.61 50.24
1B1Ce1 -1.25 58.15
- 132¢1 0.45 51.22
133Cel 3.53 : 54.82
13309 | 1.25 o543
133Ce3 -7.58 63.58
133pp1 4.64 55.91
133 prg 5.09 55.04
1383pr3 8.44 50.17
133 pryg 7.87 5297
1383Nd , -0.35 55.09
'135Nd -1.71 ~ | 58.38
136Ng -1.81 55.37
B7Ng -4.01 . 64.63
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TableAI continued, for A~140

SD Band

142 6, 4.72 64.74
142 g, 5.99 66.18

143 py, 1.48 67.12
146(3d1 2.36 78.12
146742 5.08 71.37
M1Gg) 2.04 77.99
Ryfer ) 6.39 71.96
148241 6.12 71.81
148342 1.86 80.24
149qd1 4.65 75.18
49340 0.62 80.49
14943 5.69 75.91
149Gd3 5.70 75.91
14944 2.46 84.38
149345 6.70 71.06
1946 6.41 71.33

54




Table 1 continued, for A=150

SD Band
150Gd1 -1.43 88.09
150Gd2 0.66 83.90
150Gd3 2.90 75.37
1503d4 3.49 74.37
150Gd5 -3.25 89.97
1507p1 3.21 75.75
151Tp1 0.27 83.80
151h2 0.78 84.79
151753 1.27 82.15
15174 0.85 83.55
1515 1.19 76.05
151Th6 0.99 76.38
BlTh7 0.19 76.52
15178 0.06 76.78
1527h1 -1.21 8311
1527p2 -2.06 84.71
151Dyl 2.13 78.65
152Dyl 0.36 79.06
153 Dy1 1.78 87.03
153 Dy2 2.66 84.08
158 Dy3 2.63 84.29
153 Dy4 0.53 84.87
153Dy5 2.71 84.56
154 0.75 78.06
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Table I continued, for Ax~190

SD Band
191 gy, -1.68 106.81
189y -3.48 104.83
19 741 -5.42 112.98
190 £7 99 -4.73 122.31
101 Hgl -0.37 108.75
191 f1 g2 -1.86 107.02
1917743 -3.14 109.98
191Hg4 -0.76 101.48
1927741 -4.07 114.00
192759 A -4.36 120.83
193f7 1 -4.05 119.41
188 g2 -3.75 115.69
193143 .3.44 114.68
193 g4 -3.75 115.69
1§3Hg5 -1.30 109.10
19846 -0.87 103.04
194p701 -4.40 115.88
19417 49 -3.13 114.02
194H93 -3.75 116.06
193711 -1.49 106.58
19379 -1.99 109.48
19471 -1.56 110.18
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Table I continued, for A~190

SD Band i

19479 -1.292 108.97
194773 -1.89 108.42
1947714 -1.66 107.41
19475 -0.91 108.96
19476 -0.82 108.08
19571 -1.56 107.34
1957719 -2.19 111.16
192 py, -9.33 104.39
193 pp1 0.94 101.066
193 pyo A 0.99 94.39

193 pp3 -1.29 103.82
193 ppy -2.15 108.17
193 pps -1.04 102.18
193 ppg -1.43 104.28
194 ppt -1.86 104.27
195 pp1 -0.50 102.62
195 ppo -0.03 98.39

195 pp3 -1.86 106.48
195 ppg -1.63 104.99
196 pp1 -2.03 102.52
196 ppo -1.62 104.48
196 pp3 -1.85 105.72
198 py, -2.49 101.88
197 B;1 -0.32 98.51

197 B;9 -0.53 100.47
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TABLE 1. A éomparison of various quantities as obtained from the experimental data of SD

band 1 in 19Gd

1 AE, (keV) AZE., (keV) DD (keV)
25.5 23.25 -6.81 121
27.5 16.44 -5.60 0.29
29.5 10.84 -5.31 0.50
315 5.53 481 0.60
33.5 0.72 -4.21 0.61
35.5 -3.49 -3.60 0.79
37.5 -7.09 -2.81 | 1.2
39.5 -9.90 -1.61 0.4
415 -11.51, | -1.21 | 1.11
43.5 -12.72 -0.10 0.29
45.5 -12.82 0.19 1.2
475 -12.63 1.39 0.1
49.5 -11.24 1.49 0.81
51.5 -9.75 . 2.30 0.09
53.5 | 745 2.39 1.0
55.5| -5.06 | 3.39 0.3
57.5 -1.67 3.09 1.01
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TABLE IIL. Values of Parameters and Starting Angular Momentum /.

A j B A=K (Mev) Iy(Exp.) Iy(Theo.)
80 4.5 0.55 0.02 20 - 6
130 5.5 04 0.009 8.5. 8.5
150 7.5 0.6 0.0066 25.5 7.5
190 7.5 0.45 0.0042 9.5 9.5
TABLE IV. Value of Starting Angular Momentum I, for various n and p values
A Iy for n=0,p=0| I for n=1,p=0| I, for n=1,p=1| I for n=2,p=0{ I for n=2,p=2
80 6 14 8 22 16
130 8.5 " 215 11.5 33.5 23.5
150 7.5 19.5 11.5 27.5 21.5 |
190 9.5 27.5 15.5 41.5 31.5
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TABLE V. Values of Tolerance Limit(ep) for mass 190 region

AA eo(keV) Upper Limit of RMSD (keV)
+1 4.3 34
+2 8.5 4.9
+3 12.7 3.7
+4 16.9 2.0
+5 20.9 1.9
+6 24.9 1.9
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TABLE VI. Values of z, RMSD and AI for GIB feature in mass 190 region

SD Band T RMSD Al
191 gy 0.25 118 -0.89
190 g2 0.25 1.84 2.16
V192 0.85 3.44 -1.29
19143 0.25 1.13 0.57
193 g2 0.80 1.29 0.02
1981143 0.30 1.56 1 0.77
1931794 0.80 1.53 0.26
19491 0.85 3.75 0.60
194142 0.55 1.98 -0.07
19443 0.00 1.53 1.65
19171 0.50 2.55 -0.91
1917719 0.95 1.14 -0.75
193711 0.25 4.67 -0.74
19372 0.60 2.97 -1.09 |
19471 0.05 2.56 -0.61
19472 0.55 4.95 -1.95
19473 0.45 2.28 -1.08
19474 0.00 3.29 -0.41
19571 0.30 2.89 -1.11
19579 0.65 3.79 -1.18
192 pyy 0.10 0.72 0.05
193 pb3 -0.85 4.24 -2.3
193 ppg 0.25 1.05 0.22
193 pps5 0.85 2.04 2.1
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Table VI continuéd,

SD Band T RMSD Al
193 pp6 0.35 2.41 -0.71
194 pp1 1.00 2.36 -1.88
195 pp3 0.40 2.47 -1.01
195 ppy4 0.40 1.76 -2.34
196 pha 0.75 1.72 -1.95
196 pp3 0.20 2.07° -0.62
197 B4 0.30 1.95 -2.00
198 py 0.20 1.91 -1.06
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TABLE VIL Values of z, RMSD and Number of transitions taken into account for the bands

which could not be idefx’ciﬁed with reference band

SD Band T RMSD No. of Transitions
1894 0.80 4.77 7
19041 0.60 4.85 ' 9
BlHg1 0.35 4.28 11
1911 g4 0.70 6.03 7
1921 g2 0.45 3.88 11
198141 0.25 , 4.10 | 8
19831105 0.75 4,95 9
193 g6 0.65 4.63 9
% Hg1 0.60 . 498 | 15

195192 0.15 4.72 14
1951 g3 0.70 4.74 10
195 1 g4 1.00 : 4.26 14
19475 0.05 6.68 7
19476 0.55 ' 6.39 7
193 pp1 0.50 4.14 . 9
193 pp2 0.50 4.19 | 8
195 pp1 0.10 4.11 . 12
195 ppg 0.70 4.41 | 11
196 pp1 0.15 4.92 10
198 pp 0.35 | 5.92 . 7
196 g; 0.85 3.75 6
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CHAPTER IV
CRANKING MODEL AND ITS
SEMI-CLASSICAL '
QUANTIZATION
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I. INTRODUCTION

In this chapter we present a complete discussion of the dynamical features of the cranking
model hamiltonian as applicable to high-j orbitals. The cranking model first introduced in
1954 by Inglis [58] has been used very extensively to study the rotational phenomena in nuclei
[35]. It has now become a standard tool in nuclear physics to calculate a large number of
properties such as the nuclear deformation, moment of inertia, aligned angular moment um
etc. It has also been used in recent times to assign configurations to the superdeformed
bands and calculate other properties based on these configurations [1]. vIn its simplest form,
a single particle potential is cranked about one of the principal axes and then study the
influence of this rotation on the properties of the nucleons.

Following the treatment presented for the particle-rotor model in chapter II and III, we
present an analysis of the cranking hamiltonian on a similar line. Our emphasis will be
on a detailed discussion of the nonlinear dynamical regime of the cranking model and its

semiclassical quantisation. We show that the cranking model results support the findings of

the Particle-Rotor model.

II. MODEL HAMILTONIAN

Assuming that the deformation of the single-particle potential contains only a quadrupole

axially symmetric component with respect to the 3-axis, the hamiltonian in the rotating

frame may be written as [16]
H = Qjs — weh, (1)

where

5 3

Q = kB TLGTD) (2)

and k is the radial matrix element given by < nljjs | 72Yz | nljjz >. The rotation axis is

defined by axis 1 which is perpendicular to the symmetry axis denoted by 3-axis.
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A. E(juations of motion and fixed point structure

Equations of motion can be obtained by using the properties of Poisson’s bracket and

were given by Bohr and Mottelson [16]:

dji . '
il 2Qj2J3, (3)
dj .. .
}1372 = 2QJ1J3 + wejs, (4)
dj ) ,
£ = —WJ. ﬁ (5)

A fixed point analysis of the problem is very helpful in classifying the orbits. We obtain four

fixed points denoted by a, b and ci+ whose characteristic features are listed below

a=(4,0,0),e, = —wcj (minimum, stable and isolated),
b=(-70,0),& =wej (maximum for w, > 2Qj

and saddle point for w. < 2Q)j; unstable and isolated),
2

))) €y = Q]g'*‘%

(maxima for w, < 2Q)j; stable and isolated). (6)

2
We

- i

s = (1‘-“— 0, /(52

2Q°’

The conservation of the angular momentam j restricts the motion in j-space to lie on a
spherical surface given by j* = j2 + j3 + j3. The energy conservation on the other hand
restricts the motion to lie on a parabolic cylinder defined by thé Hamiltonian; an intersection
of the two gives the allowed orbits. For a critical cranking frequency w? > 2Qj, the saddle
point is pushed out of the invariant region FIG. 4.1 and there is only one minimum of
stability corresponding the fixed point a, which represents maximum alignment. The critical
frequency w; plays the role of critical angular momentum I, in the particle-rotor model. For
SD nuclei w, is of the order of 0.1 MeV and hence the ratio 5%3 < 1 a value that keeps the
saddle point in the region of interest. The fixed point b corresponds to a configuration where

particle angular momentum is completely anti-aligned to the rotation axis. We can see from
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and j3 follows anharmonic oscillator equation. When ¢ = 2% and K = 0, j; obeys the
solutions of quartic oscillator. On increasing the energy further, K becomes negative and
we enter the nonlinear dynamical regime dictated by the Duffing oscillator which persists
for all higher energies. A detailed discussion of this has already been presented in chapter

IL

III. SMALL AMPLITUDE OSCILLATIONS
A. Fixed point a

Using the method of linearization of the equation of motion, at fixed point a(= j3,0,0),

we obtain the linearised set of equations as

d(051)
o, (12)
Wh) _ gj+uii, (13)
t
20) et )

where 6j;(i = 1, 2, 3) are infinitesimal deviations about the fixed point.

These equations give the solutions as

d51(t) = 65(0), (15)

55a(t) = 8ja(0)cos(y/mn(wn + 2Q5)t) + \/ﬁ%smﬁ/%(wﬁwﬁt), (16)

Sis(t) = 6js(0)cos(yfme(we + 2Q)t) + ——B8O)_in( St + 20708, (17)

wc(wc +2Qj )
The action-angle variables were introduced by Bohr and Mottelson to facilitate semiclassical

quantisation. The energy € depends only on the action J, and for harmonic oscillations

around the equilibrium, we have
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€ =€+ Ja,wuib,aa | (18)

= —wej + Jo(y/we(we + 2Q7)). (19)

For a quantised system, the action takes the value

Jo = (g + —;—)h, (20)

with n, =0,1,2,...... etc.
The action J, at the fixed point a in harmonic approximation is given by,
J
Jo = 4/0 w252 — € — K 32|13 djs. (21)

The integral is exactly solvable and its semiclassical quantisation (SCQ) gives us the condi-

tion,

Awis? =€) . ] |We2—28e) o me—mg 1
wf—%%ﬁ sin [ w3j2—e2]+2j 28¢ — ¢ N(n+§), (22)

When solved for a given n, we obtain the energy € as a function of w..
In a similar way one can show that the frequency of vibration at the fixed point b is given

by

Wyibp = (/Welwe — 2QJ)). (23)

The motion at b is however not of much interest to us. As in the Particle-Rotor model, we

will concentrate upon the twin fixed points cy where the solutions are more complex and

interesting.

B. Fixed points c4

When K < 0, j3 evolves as a duffing oscillator. We have already discussed the shape
of the potential in j3, V(ja) = Kj3 + £j4 which exhibits a sudden appearance of a double

well. We have already shown that this spontaneous breakdown of symmetry is associated
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with a second order phasé transition. Assuming a simple harmonic motion at fixed points

¢y linearization of the equations gives us a frequency of vibration

weip = £(1/4Q%5% — w?), (24)

and the corresponding energies are given by
1
€ =€y + Jewyip = €cy + (nc + 5)%“"’ - (25)

where n.=0,1,2,3....... etc. is introduced to obtain quantised energy levels. J, is the action

given by

j+
i = o[ bt - e k- 2y )

— [ dic - K - ik, @7)
and,
= (5 ! ETT3IC K)]2 (28)

The semiclass;ical quantization of this éction provides us with the energy 1evels corresponding
ton = 0,1,2,3 .... as a function of w.. As already pointed out, as K changes sign from
positive to negative, a double well potential (DWP) appears from a single well in V (j3) of
the fictitious Hamiltonian of j; given by

(%Y +vu = (29

where V(j3) = Kj3 + (L/2)j3 and C = (wej — €)(wej + €). The minima of the DWP
corréspond to the two isolated fixed points cy; these are located in a region of nonlinearity.

When tunelling between the two wells of DWP is taken into account, the DWP is found
to éupport two solutions which we denote by p=0 and p=1; these correspond to the usual
even and odd solutions of a potential well. The appearance of the double well potential and

tunelling between the two wells modify the semiclassical quantization condition as follows,
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Le = VG - 2R o,

where
“0) = |/57(C ~ VO) = = (1
Ou(e) = %[argF(% + i) — eln|e| +e £ tan"le ™), | (32)

and, A® = &_—-P, and P = ®_ + ®,. The limits on j; are the four real turning points
at sub barrier energies denoted by —j;,—j_,j— and ji. If we choose the upper sign in
equation (28) and take n4+=0,1,2,3..., we get the even solutions denoted by p=0. By taking
the lower sign and n_=1,2,3,...we get the odd solutions denoted by p=1. Fulfillment of the
SCQ condition given by equation(29) yields a set of energies € for a given n and different
we; this constituteé a band which exhibits rotational features. The tunelling between: the
DWP leads to a shift in the eigenvalues of C which ultimately results in a shift of the energy
eigenvalues. Here the effect of tunneling between the two potential wells has also been

included. Most of this discussion is parallel to that in chap II and similar details apply.

Iv. ALINGED ANGULAR MOMENTUM

A quantity of great physical interest is the aligned angular momentum or simply the

alignment defined as
=<5 >. (33)

From the Hamilton’s principle we obtain

Oe

i = —(awc)1~ (34)
The alingment at the fixed point a was obtained by Bohr and Mottelson to be
imjo g e (35)
V(we(2Q5 +we))
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We can see that for w, >> Qj, the alignment approaches the asymptotic limit i = 7 — J,.
To obtain the alignment at fixed points c; we note that energy of small osciliations

around cy is given by

2
. w?
e=Qj% + ZQ— + Jwyip. (36)

To obtain the frequency of vibration of j3 we recall that (see chapter II, section V) the
solutions of js are elliptic functions of the first kind where natural time period provides us

with the values of wy;. The alignment can be obtained by using equation (34).

V. NUMERICAL RESULTS AND DISCUSSION

As pointed out by Bohr and Mottelson [16] , the nature of the equation governing the
motion of j3 in the cranking model is identical to that found in the Particle-Rotor model.
The fixed point structure and the nature of orbits is also same.

In FIG. 4.3, we plot the energy € vs. w obtained by SCQ at fixed point e for n = 1.
The behaviour of solution indicates a rotational band whose aligned angular momentum is
(j — 3)h. This is the rotation aligned band with maximum alignment.

In FIG. 4.4 and 4.5, we plot a similar quantity € obtained by SCQ procedure at fixed
point c+. FIG. 4.4 contains the results for p = 0-and FIG. 4.5 contains the results for p = 1.
The nature of solutions is similar to that obtaineci in the Particle-Rotor model where weak
oscillations were obseved to be superimposed on what wbuld otherwise have been an ideal
rotational band.

The alignment for the cases plotted in FIG. 4.4 and FIG. 4.5 are shown in FIG. 4.6
and FIG. 4.7 respectively. The behaviour of alignment with rotational frequancy is similar
to that observed in the Particle-Rotor model. The aligned angular momentum is negative
at low w, rises with increasing w and then saturates. One important difference with the
results of Particle-Rotor model is noticed. The alignment as obtained here, saturates at

around —7h whereas the alignment obtained in the Particle-Rotor model becomes positive
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and then saturates. The saturation value reached in the case of cranking model seems to
be limited by the alignment at the fixed point b. It is not clear why this difference in
the numerical value of ¢ should arise. However it is not surprising fhat the cranking and
particle-rotor models should give different numerical results particularly when the solutions
are coming from nonlinear equations. As pointed out by Bohr and Mottelson [16], important
discrepencies in the cranking and particle-rotor rﬁodel with the observed spectra still remain

unresolved.
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FIG. 4.1 j space diagram depicting the exclusion of saddle point b for certain w, > 2Qj.
From Ref. [16]. '



FIG. 4.2 Diagram showing j space being divided into four distinct regions. From Ref. |

[16).
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I. INTRODUCTION

The current understanding of nuclear shapes as a function of angular momentum, nucleon
number and excitation energies is based on the theory of shell structure developed over the
last three decades. This understanding gained further ground with the introduction of the
microscopic plus macroscopic approach put forward by Strutinsky [103]. A detailed expo-
sition of the Strutinéky’s approach and the relationship of shell structure to the underlying
physical concepts like degeneracy in quantum systems may be found in the reviews of Brack
et al. [22] and Bjorholm and Lynn [12]. It is now understood that shell structure is a general
phenomena which pervades all quantum systems. The quantal nature of a system naturally
leads to the emergence of shell structure. It has been found that quantal fluctuations tend
to stabilise shapes having axes ratio 2:1, 3:1 etc. [15]. These ratios in turn can be directly
linked to the frequency ratios as in the harmonic oscillator where the shape of the potential
is defined in terms of frequencies. As we shall see, these axes ratios can also be linked to
the frequencies of the periodic orbits in an appropriately deformed cavity.

Parallel to the Strutinsky method, a new and radically different understanding of shell
structure has continued to evolve which is based on the closed periodic paths possible in
a given cavity [6,50]. A semiclassical approach based on periodic orbits led Gutzwiller to
propose a trace formula for level density of a quantum system in terms of quantities which are
classical in nature [49]. Strutinsky and coworkers [105,106] used this approach to propose
the first semiclassical interpretation of the gross shell structure in deformed nuclei. This
seminal work constitutes the basis of much of what will be presented in this chapter and the
next one.

In the present chapter we discuss very briefly the general conditions for the occurrence
of shell structure with special reference to the harmonic oscillator potential. We then show
that the level density for the harmonic oscillator can be naturally separated into a smooth
and a fluctuating part. Explicit analytical expressions [20] can be easily obtained and serve

as.an easy text book example to illustrate the power of this technique. Next we introduce
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some elementary ideas of the periodic orbit theory (POT) due to Gutzwiller and his famous
trace formula for the fluctuating part of the level density. This formula was modified by
Strutinsky to include the effect of systems with continuous symmetries such as a spherical
or a spheroidal cavity [105]. Using this expression we obtain a simple formula for the level

density of a spherical billiard and test the validity of the formula.

II. CONDITIONS FOR SHELL STRUCTURE : ISOTROPIC HARMONIC
OSCILLATOR

The harmonic oscillator potential serves as a paradigm to illustrate the underlying con-
cepts of shell structure. The solutions of the isotropic harmonic oscillator are well known

and are specified in terms of three quantum numbers [N, 4, A] in polar coordinates. The

energy eigenvalues are given by
E(N,f) = (N+3/2)hwy = [2(n, — 1)+ €+_ 3/2]hwy. ' (1)

Here (n, — 1) is the number of radial nodes. For each N, [ = N,N — 2,....1 or 0. For
each N, there are (V 4 1)(/NV + 2) orbitals including the two fold degeneracy of spin. The
degeneracy ‘d'"*of shells defined by N-= 0, 1,2, 3,.....etc. are given by.d = 0,6,12, 20.....etc.
respectively; these are the magic numbers of harmonic oscillator. The energy E’(n,@) is
generally an increasing function of n and £. Same energy is obtained by increasing ¢ and
decreasing n by appropriate integer amounts; this leads to degeneracy and lshell structure.

Bohr and Mottelson [15] generalised this idea by expanding the E(n, £) around a given point
(Tlo, eO)

E(n,t) = E(ng, &)+ (n—ng)(OE/0n)p=ny + (£ = Lo)(OF/0€) e,

+ second and higher order terms. (2)

Approximate degeneracy is obtained for mutual compensation of the two first order terms;

it implies that
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b(OE/0n) = a(OL/0K),, 4' (3)

where a and b are small integers. We therefore obtain the condition an + b¢ = ang + bfy. So
the levels with a constant value of N = an + b{ only slightly differ in energy (due to second
and higher order derivatives). We may redefine N as Nyhen = a(n — 1) + b¢, which now looks
similar to the value obtained for H.O. with a = 2 and b = 1. It is easy to show that two

consecutive shells occur with an energy separation
hwshen = l/a(c’)E/@n)o = l/b(aE/c%)o . (4)

It is most revealing to realize that the derivatives (OF /0n) and (OE/9¢) are the radial and
angular frequencies of the orbits and the equation (4) corresponds to the condition that
the classical orbits close upon themselves after a radial and b angular oscillations giving
rise to periodic orbits with a frequency wgpen. The orbitals having the same value of Ngpen
bunch together. This shell structure is clearly visible in FIG. 5.1 what is now one- of the
most common figures on shell structure in harmonic oscillator [15]. If an axial symmetry
is introduced in the system and if we choose w, = wy = w; , then the harmonic oscillator

potential can be written as,

V(z,y,2) = m/2(wl(z® +¢°) + wiz?), | = (56) ~
| 4
V(r,0) = il (1- §6P2(cost9)), ~ (6)

where w, & wg(l — 26) and w; ~ wy(1 + }6) and & is a deformation parameter given by
0= g%%ﬁ% where ¢ and a are the semi major and semi minor axes respectively. The energy

of this anisotropic oscillator is given by
1 ~
E(ng,n,) = (n,+ §)hwz + (ny + Dhw,, (7

where n; = n; + n,. Denoting n = ‘f"—)-:—, we obtain by using the condition of volume

conservation,
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' 1
E(TL_L, nz) = n_Q/Sth[nn.L +7n,+ (77 + 5)] (8)

For the special case of w; = 2w, which represents the 2:1 shape, we obtain
5 :

For a given N, n, = 0,1, ..., N. Thus, for the same value of (2N —n;), degenerate states arise.
It is worth noticing that levels from several major shells (several V) and therefore having
both parities come together to form superdeformed shell structure as shown in FIG. 5.1. For
the spherical shape, the energies are equally spaced at fiwp and are highly degenerate; the
degeneracy is partially lifted when deformation is introduced. A nearly uniform distribution
appears to prevail at § ~ 0.15. The levels regroup in a very orderly way to form new
sets of degenerate levels when the axes ratio of the spheroid is equal to the ratio of two
integers. The regrouping is most pronounced at the axes ratio-equal to 2 : 1. The energy of
a system, for a given deformation, will be relatively lower if the number of particles is just
sufficient to fill a group of degenerate levels; this represents a shell closure. For example, 168
particles completely fill a shell for the spherical shape and will have relatively lower energy
than having only 140 particles. On the other hand, 140 particles complétely fill a shell at
2 : 1 deformation and therefore lead.to shell closure at the 2 : 1 shape.. This leads to a

generalisation of the concept of shells and shell closures.

III. SOME BASIC TOOLS FOR SEMICLASSICAL PERIODIC ORBIT THEORY

In the next section we will present the periodic orbit theory (POT) which quite generally
establishes a link between the density of states of a given quantum mechanical system with
the periodic orbits of the corresponding classical system through the so called trace formula.
As a preparation to this, we present in this section some basic quantum mechanical tools

needed to calculate the density of states or the level density.
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A. Level Density

We start from the Hamiltonian for a particle with mass m in a local potential V() [20]

H = T+V(r), - (10)
. - .
T = -5V (11)

The stationary Schrodinger equation for bound states gives the spectrum E, as,
H|n>= E,|n>, E,>0. (12)
The eigenstates | n > form a complete, orthonormal basis set of wavefunctions.

1l’n('r) =T I n >, <n I m >= Opm; Z¢;(TI)¢(T) = 5(7"’ - T)‘ (13)

o

The single-particle level density or density of states g(E) is defined as the sum of delta

‘functions,

9(E) = S 6(E — B) )

n

B. Separation Of g(E) Into Smooth and Oscillatory Part

The level density g(F) contains information related to the stability of a quantum system.
On the average, it has a smooth energy dependence which is determinéd by the number of
degrees of freedom and the degeneracies of the single particle levels given by the symmetries
of the hamiltonian. In general g(E) can be written as a sum of an average level density §(E)

which has a smooth energy dependence and an oscillatory part dg(E)
9(E) = §(E) + ég(E) (15)

Both the parts can be obtained in a number of ways. In principle, for a given system both

parts are determined uniquely. §(F), the smooth part is most commonly obtained from the
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extended Thomas Fermi model [73], the Weyl’s formula [7] and the Strutinsky averaging
procedure [103,104]. The oscillating part is the subject of various semiclassical methods
including the periodic orbit theory. In the following, we present an example of harmonic
oscillator where both the smooth and oscillating part of g(E) can be obtained analytically
without using the trace formula. A detailed discussion of the various methods may be found

in [20,23).

C. Solvable Case of Harmonic Oscillator

Linked to section III.A the single-particle density matrix p(r,7’) is defined as

p(r, ') Zw VWalr) = D (" )a(r), (16)

En<p
where p is the Fermi energy. Now p(r, ') depends on p and thus on statistics. A Laplace

transform of g(E) yields the single-particle canonical pértition function Z(0)

2(8) = Lolg(B) = [ ePPg(EME = Y e PP, (17

where 3 is just a mathematical variable. Thus inverse Laplace transform of the partition

function of the system yields the density of states g(E)

o(B) = LE120) = 5 [ e 2(0)p, (1)

2t

where the integral is to be taken in the complex (-plane along a contour C.

Examples:

e Schematic spectrum with one quantum number: Poisson formula

Let us choose the following schematic spectrum [20],

En=n, da=1  n=0123.. (19)
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Here d,, denotes the degeneracy of nt* level. The partition function for this system can be
given as

8
1 e?
Z = -nﬁ = = . 20
B) =2 e™ =10 2sinh() (20)
Now by the calculus of residues we get the inverse Laplace transform,
0o k=+o00
g(E)=Y §(E-n)= 3 &5, (21)
n=0 k=+o00
=[1+2)_ cos(2nkE)). (22)
k=1
Next we assume the energy spectrum FE, to be given by,
E,= f(n), d,= D(n), n=0,1,23..., (23)

where f(n) is an arbitrary monotonous function with differentiable inverse f~1(E) = F(E)

such that n = F(E,) and D(F) = D(F(F)) is another arbitrary function. The delta
function may be written as, -

§(E — E,) = 6(E — f(n)), |
=8 nf(n) - f(n)), -

= 6(3 F(Ea)F~!(En) = F7!(E)),
=| F(E) | §(n — F(E)).

(24)
(25)
Including the degeneracy D(n) = D(F(E)) = D(E),
6(E — Eyn) = D(E) | F(E) | 6(n — F(E)). (26)
Comparing it with equation (22), we get
o(E) = D(E) | F(E) | [1+2 ki_'fl cos2mkF(E)], (27)
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where the first term is smooth part §(E) and the second term is the fluctuating part dg(E).
This formula can be applied to any one-dimensional problem. Later on, in the periodic orbit
theory, 2nhF(F) is identified with the classical action S along a primitive periodic orbit,
where the number k represents the number of revolutions around the orbit. Note that the
smoothed average level density separates out from the fluctuating part in a natural way. For

3-dimensional harmonic oscillator one obtains very easily,

9(F) = g7 (B

1, . o E 3
Z(hw)2)[1 +2 kZ=:1 cos(27rk-h-; - -2-)] (28)

In FIG. 5.2, we display the numerical results obtained by Brack and Bhaduri, to demonstrate
the convergence of expression(27). The plot of g(E) vs. E (in units of fiw) for different
maximum values of k., rapidly approaches the delta function peaks at the correct positions
of the quantum energy spectrum as ko, becomes 50. On the other hand, k = 1 already

gives information about the gross shell structure.

IV. PERIODIC ORBIT THEORY

The periodic orbit theory (POT) received a boost with the proposal of a trace formula
by Gutzwiller [50] which relates the oscillatory part in the level density dg to a sum over
the actions, time periods and stability angles of all the periodic orbits. In its simﬁlest form,

the trace formula for a system with isolated orbits is given by

dg(E) = . Trro cos Seo(B) _ UPOW].

— = (29)
Th PO \/ldet(Mpo—I)I . h 2

Here Tppo is the time period of the primitive periodic orbits. Each periodic orbit contributes -

an oscillating term whose phase is given by the action

Sppo = fp.dq. (30)

o is the Maslov index which is an integer depending on the reflection points of the orbits. The

matrix Mpg is a (2n — 2) dimensional stability matrix, where n is the number of degrees of
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freedom. The determinant in the denominator is large for an unstable orbits, thus reducing
their contribution. The POT as developed by Gutzwiller applies, only to systems with
isolated orbits and thus is mostly of use for chaotic systems. For systems having high degree
of symmetry, the periodic orbits exist in continuous families [105]. In such systems, the
discrete sum over orbits in-equation (28) cannot bé carried out. It is necessary to first
integrate over each family, and then sum over the various families. A detailed discussion
of the general structure of trace formulae for systems with continuous symmetry was given
by Creagh and Littlejohn [32]. In this thesis, we have adopted the trace formula given by
Strutinsky et al. [106] with proper introduction of Maslov index.

- Balian and Bloch [6] presented a similar formula which they developed for cavities with
reflecting walls of arbitrary shape in two or more dimensions; their formula also applies
to integrable systems, such as the spherical cavity. Berry and Tabor [10] derived a trace
formula for integrable systems with arbitrary smooth potentials with EBK quantization as
a basis. The formula proposed for isolated orbits, is mainly applicable to ché,otic systems,
‘although its clever usage for systems with families of degenerate periodic orbits has recently
been demonstrated by Brack and Jain [19]. One of the main strengths of the periodic orbit
theoxly is that it enables one to obtain gross-shell effects in the level density of a quanéum
system semiclassically, i.e. without solving the Schrodinger equation, independently oflt;s

integrability or the possibility of a full quantization, and to interpret shell effects in terms

of the interplay of the most important short periodic orbits.

A. Convergence of the Periodic Orbit Sum

Keeping in mind that equation (28) is a Fourier deéomposition of the oscillating level
density, it is clear that if one is interested in high resolution, one must include large number
of Fourier components i.e. one has to sum up to higher number of orbits. Usually,‘ the
periodic orbit sum does not converge and the series has to be truncated. But if one is

interested only in a low resolution of shell structure, only orbits with the smallest actions
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and consequently the ]argest amplitude of Fourier component are enough. Many observable
shell effects in real systems do not depend on the exact level density, but on a coarse-grained
level density obtained by averaging over the finer details. Such an averaging, in practice,
may arise due to finite temperature effects or, by uncertainties in the measurements. We
therefore use Gaussian averaging of the level density [20] over an energy range 7, which

should be less than the main shell spacings. This implies that v should be chosen that

2mh .

7<hQ =~ TER (31)

This leads to a damping factor ezp[—(7Z22)?| in the trace formula. The fluctuating part of

level density becomes,
69(E) = Y- e~ E bgpo(E). (82)
PO

Thus, each periodic orbit contribution is damped ‘exponentially, whereby the orbits- with
longer periods are damped more strongly than the short ones. Therefore the problem of the
convérgence of the series is overcome by using the above averaging procedure. Since only
shortest orbits contribute most significantly, this procedure allows us to retain the most

important part of the information.

B. Maslov Indices

The Maslov index plays a very crucial role in the periodic orbit sum as it decides the
relative phase of the various terms in the summation. Creagh and Littlejohn [31] presented a
much deeper understanding of the Maslov index showing that it is equal to twice the number
of times the stable and unstable manifolds wind around the periodic orbit. They presented
two practical methods for determining 0. One of the methods is useful for kinetic-plus-
potential systems and its detailed application to harmonic oscillator has been discussed by
Brack and Bhaduri [20]. The second method applies specifically to billiard systems and is a

geometrical method. Specific rules in applying the geometrical method have been stressed by
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Brack and collaborators [20,80]. Since we are specifically interested in billiards, we present
the rules only for' billiards. It may be remarked here that various authors do not seem to be
consistent in using Maslov index. The resulting ambiguity has been difficult to resolve even
in the simple case of a circular or a spherical billiard. The ultimate test of the success of a
trace formula however is the reproduction of the exact quantum spectrum.

The Maslov index o is given by ¢ = y + v where p is an index c'ounting the number
of conjugate points of a given orbit of fixed energy and v arises while taking the trace of
the Green’s function to obtain the level density g(E). Following Creagh and Littlejohn [31],
Balian and Bloch [6] and Magner et al. [80] a set of rules were presented by Brack and
Bhaduri [20] to obtain the Maslov indéx for billiards. We present these rules in a more
explicit form for an axially symmetric deformed cavity.

1. p is determined by number of conjugate points i.e. turning and caustic points.

2. A simple conjugate point gives a phase shift of —5 corresponding to change in u by.L..
3. Each reflection from the boundary produces a simple turning point (sign change of the
normal component of the particle momentum) and a caustic point in the tangential direction.
This givés a change Au = 2 per reflection and a change in phase by —7r

4. Iﬁside the billiard, there is a conjugate point along the caustic for each reflection, giving
rise to Ay = 1 and a phase change of —5. Thus the total contribution to u is —mnr%’!,
where m is the number of repetitions. |
5. There is a 'phase shift of —(mng — 1)m for 2- dimensional periodic orbits which is related
to phase change in 7 due to rotation around the centre.

6. While Ap = 2 for each reflection satisfying Dirichlet boundary conditioh, Ap = 0 for
Neumann boundary condition.

7. The contribution due to v depends on the sign of the quantity w defined by

_trM—Q
=—5

w

where b is the upper right element of the stability matrix
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which is also given by

L oru(t=T)
~ Apu(t=0)

If w is positive, v = 0 and if w is negative, then v = 1.
8. For the diameters along the symmetry axis, 1- dimensional periodic orbits, there are two
simple caustic points presented by two focal points. |

9. Rule number (3) is also applicable to orbits in the equatorial plane.

C. Smooth Part of the Level Density

For the smooth part of the level density G(F), Weyl devised a formula which was later
extended and generalised by Balian and Bloch [7]. This generalised Weyl formula for a

cavity with an arbitrary smooth convex boundary is given by

N

- 1 2m 3 1 2m 1 2m
9(E) = F(F) VEV — T(—i;r-(_ﬁz_)s + W("h—'[) C, (36)

VE
where V is the volume and S the surface area of the cavity. C is the mean curvature of the
cavity, which is defined as the surface integral over the algebraic mean of the two principal

curvatures Ki, Kg:

csz§m+@y | (37)

V. SPHERICAL CAVITY

In this section, we use the POT presented in earlier sections to obtain the shell structure
of a spherical cavity. There are number of reasons for choosing this cavity. First, it is the
simplest and most elegant example where the basic ideas can be seen to work. Second, the

exact results are known from quantum mechanics so that a direct comparison can be made.
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Finally, the results of a spherical cavity have found applications in a number of situations.
It is our hope that spherical nuclei must also display some basic characteristics of a spherical
cavity leading to a deeper insight in the structure of these nuclei. First we present the exact

quantum mechanical solution.

A. Quantum Mechanical Results

The usual Schrodinger equation is solved to get the energy levels of a particle enclosed
in a sphere of zero potential with infinitely high potential walls defining its surface of radius

R [43]. Choosing x,(r) as the radial eigen function, the radial Schrodinger e;lua.tion can be

written as

X + [k -

e(etl)]Xe=0 0<r<R,

T .
xe=0. r>2R (38)

The solutions of the above equation are well known spherical Bessel functions given by

xe(r) = Ca(kr), . (39)
where C is a constant. The boundary condition gives us, -
Je(kR) = 0. ' (40)

Since, for each given value of ¢, the Bessel function has an infinite number of zeros, we find

an infinite number of values of k,, ¢ and of energy levels

R?
En ¢=—k; , 41
nrye 2m nr,E ( )
For each ¢, n,=1,2,3,...... etc., where n, is the radial quantum number counting the zeros

The zeros of Bessel functions tend towards either nn for even, or (n + 1/2)w for odd £. In
FIG. 5.3 are plotted energy eigenvalues on y-axis and £ on the x-axis. It is clear from the
figure that many energy levels bunch together (for different n,,¢) giving rise to fluctuation

in the level density and hence a shell structure arises.
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B. Results Using POT

A spherical billiard is a system with continuous symmetries and therefore contains fam-
ilies of degenerate periodic orbits [6]. These results were recently used to explain the super-
shell structure observed in sodium atom cluster {90]. The circular billiard has recently been
applied to study atomic clusters {24,81], quantum dots [95] and nuclei by Frisk [44] and by
Brack [21].

The starting point of our formulation is the trace formula presented by Strutinsky et
al. [106],which takes care of degenerate family of periodic orbits. According to this, the
oscillating component of single particle level density in cylindrical coordinate (p, ¢, z) is

given by,

1 . S m
09(E) = —5 3 Somsin( 22 +0g,m) [ [ dpdz /oI Grpitomi #Z BN, . (42)
Bm .

The factor fg» equals to 1 for the diametric orbits and 2 for other orbits like triangles,
squares etc. The time period for the path from the initial point 7 to final point 7 for energy
E is defined as

asﬁ(ﬁ T—;; E)

5E (43)

tg =

The quantity J in equation (42) is the Jacobian of transformation between two sets of
classical quantities (p,,p;,ts,m) and (¢, 2/, E), which are related by thé classical equations
of motion.

The maximum contribution to the gross-shell structure comes from the shortest periodic
orbits. As pointed out, it has now become customary to carry out a smooth truncation
of the contributions of longer periodic orbits by folding the level density with a Gaussian

function of width v/R {24],
1Lpm 2
09au(E) = Z&g(E)e‘( ) (44)
Bgym

Here, Lgm is the length of periodic orbit. The averaging width v is chosen to be larger

than the mean spacing between the energy levels within a shell, but much smaller than the
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distance between the gross shells. This averaging ensures that all longer paths are strongly
damped and only the shortest periodic orbits contribute to the oscillating part of the level

density.

1. Spherical Billiard in Spherical Polar coordinates

We characterize the spherical cavity by using the spherical polar coordinates (r,8, @)

which are related to the cartesian coordinates as

z = rsinfcos¢ 0<r <00
y = rsinfsing 0<60<m;

z = rcosf 0L ¢ <L 2m. (45)

The hamiltonian H is expressed in terms of (r, 8, ¢) and the canonically conjugate momenta

(pr, Do, Dg) aS
1

) ‘
?,.211’3_‘.’1 mpi) +V(r), -~ (46)

1/,
H = W(P_,- +
where M is the mass of the particle and

V(ir) =0 r < Ry

= o0 r > Ro. (47)

Ry being the radius of the spherical cavity:

The time dependent Hamilton-Jacobi equation leads to the time independent equation

given by,

1 1/083\% 17085\ 1 0S5\ _
27\7[(87) +r_2<—379_) +r2sin29(79$>J = E , (48)

The three partial actions (s,, sg, S3), obtained by using the separation of variable technique,

are
S¢ = fpd,d(,b = 27T'lz, (49)
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_ P
S0 = fpgd@ - }{\/ sm29

= 2m(e - 1,)

2
5 = )t{p,dr = f\/EME—%dr,

(50)

(51)

where [, and € are the separation constants in equation (49), (50) and (51). The limits of

integration in (51) are determined by noting that the particle motion is bounded between

an upper limit provided by the radius of the sphere r = Ry and a lower limit obtained from

P’ =0,

Tmin =

OME’

where,

= \/(ZME)R{,cosx.

Solving the equation (51), we get

= 2v/(2M E)Ry(siny — xcos)-

The constant e is fixed by using the periodicity condition i.e.

9_" _ de Ny

- T8 T
Oor

Wy e Ng

where n, and ny are rélatively prime integers. This implies that y =

of rotation for a three dimensional orbit is

2 w
Q, = =— = *
g T/g n,

VZME
MRy n,siny’

and,

Lg,
oME "

90

(52)

(53)

(54)

()

n22. The frequency

(57)



where L = 2Ron;.sinx. It may be noted that the equation (56) for the rotational frequency
is exactly the same as obtained in the quantum treatment [15].

The action S5 = 2MFELjp in equation (42) is determined by the length Lg(n,,ny),
which can easily be found from the time period in equation (57). This length comes out to
be exactly the same as obtained from the geometrical considerations viz. Lg = 2n,Rosin™=.
A good description of the periodic orbits in a circle may be found in [24].

The Jacobian is obtained by using the Hamilton-Jacobi equation and is given by

2M? 11
I = =~ aME v —2(5): (58)

with a = Rpcosy. The quantity pp, appearing in equation (42) is given by

= V2ME[VT? — a2sinf + acos]sinf. (59)

Using equations (58) and (59) in equation (42), the oscillating component of the level density
is given by |

59(E) = \/ﬁz S Sin[EL(Tays Tng) + T (Tays Tg)] X

Tng Tny >2‘rn9

/ - /0 s —rdrd@(l —[sin?@ \/%sm%ose] |%) (60)

where 7, = mn,, T,, = mng, m is the number of repeated cycles of a given type of’:worbit
and ¢ = 2—‘,‘%3 We also multiply equation (60) by a factor v/kRy to compensate for the
higher degeneracy of the spherical cavity. The Maslov index o(7y,, Tn,) can be worked out by
using the rules stated earlier. It may be pointed out that whereas the action Sp is identical
for repeated cycles of a periodic orbit and therefore can be multiplied by the number of
repetitions to obtain the total action, the same is not true, in general, for the Ma,slov index.
It was recently demonstrated explicitly by Brack and Jain [19] that for stable isolated orbifs
in a harmonig oscillator potential, the Maslov index does not repeat itself in successive

cycles. The Maslov index used here is taken from Balian and Bloch [6]:



For diametric orbits, the equation (60) simplifies to

1 1
09aa(E) =~ =

sin(kL(m) + a(m)). | (62)

The Maslov index o(m) in this case is taken as,

M+ o8, | (63)

olm)=—5m+

Using Weyl’s formula for smooth part of level density, we obtain for a spherical cavity,

HE) = gl (kRo)? = S kR + 1. (64)

The total level density g(F), therefore becomes,

9(E) = §(E) + 09(E) + 6gaia(E). (65)

VI. RESULTS AND DISCUSSION

We have used the formula (60) to calculate the oscillating part of the level density apndl
the results are shov&n in figures 5.4(a) and (b). In FIG. 5.4(a), we show the variation of dg
as a function§ of kR where the 3:1, 4:1, 5:1 and 6:1 orbits have been taken into account; the
diametric orbits were not included and no sum was carried out over repeated cycles. Thé
plot reveals the well known beating pattern or the supershell structure that arises out of the
interference of mainly the triangular (3:1) and the rhomboidal (4:1) orbits. It may be noticed
that dg oscillates at a higher frequency where AkR ~1.1 units and a supershell structure
appears which oscillates with a slow frequency where AkR =12 units. When the diametric
orbits are included in the sum, the picture modifies to what is shown in FIG. 5.4(b) with a
little change. Although the diametric orbits have a significantly smaller length than the 3:1
and other higher orbits included in the sum, but they have a degeneracy factor lower by one
unit than other orbits so they do not lead to any significant modification in the supershell
structure; in both the cases v = 0.6. As pointed out earlier, the ultimate test of the trace

formula is its ability to reproduce the exact quantum mechanical eigenvalues if sufficient
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number of orbits are included in the periodic orbit sum. In figures 5.5 and 5.6 we show
the results for orbits upto hr = 100 and ny = 100 included 'in the sum. FIG. 5.5 exhibits
the results without smoothing while a smoothing width v = 0.02 is taken in FIG. 5.6. The
effect of smoothing is visible in terms of a cleaning up of many spurious peaks and also the
negative amplitude decreases appreciably. In figures 5.7 and 5.8, we show similar results
when the number of orbits included in the sum is increased to n, = 500 and ny = 500. A
much better eigenvalue spectrum is obtained both with and without smoothing. The exact
quantum eigenvalues are also shown in the graphs at the bottom for a direct comparison.
It is satisfying to note that the observed peaks have a one-to-one correspondence with the

quantum results. the formula for level density therefore appears to be reasonably successful.
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FIG. 5.1 Plot of single-particle level energies vs. the deformation showing shell struc-

ture for an axially symmetric harmonic oscillator. From Ref. [15].
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CHAPTER VI
PERIODIC ORBIT THEORY OF
SPHEROIDAL CAVITY
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I. INTRODUCTION

We have presented in chapter V, a limited exposition of the powerful semiclassical theory
of the periodic orbits followed by its application to spherical billiard. It is now our general
understanding that most of the nuclei are deformed rather than spherical. | Moving few
nucleons away from a closed shell, or changing the configuration of a nucleus is enough
to introduce deformation or, shape change. Much of the nuclear structure over last three
decades has remained centered around deformation in nuclei. A deformed cavity containing
a particle provides a simple example of a deformed nucleus. An important connectioh in
these studies is provided by the success of the single particle models of nuclei. It is now well
known that the mean field approximations for the nuclear potential has proved to be the
single most simplifying factor in much of the nuclear structure studies. It provides the basis
for the single particle models which assume that nucleons move almost independently in a
common potential. It also provides us the starting point for an alternate view of the questions
related to nuclear shapes, the shell structure and their inter—relatio'nships as a function of the
particle number, excitation energy and the angular momentum. The alternate view drises
from the realisation that the common potential in which nucleons move, does resemble a .
cavity. An early and lucid description of semiclassical theory of bound states was given:may
be found in Percival [93].

In the present chapter, Awe extend the studies presented in the preceeding chapter and
take up the problem of a particle in an infinitely deep-ellipsoidal well. Such a system
resembles a deformed nucleus and an application of the POT allows us to study the gross
shell structure as well as the energy spectrum and their relationship with periodic orbits can
be explored. Since most of the nuclei are prolate defofmed we concentrate on a cavity with
prolate spheroidal shape. The periodic orbits of such a system with continuous symmetry,
exist in degenerate families. We therfore use the trace formula presented by Strutinsky et
al. [106] which is applicable to non-isolated orbits. A similar study for prolate cavity was

also carried out by Frisk [44] by using the formula of Berry and Tabor [10,11] and also
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more recently by Magnei' et al. [80] by using the extended Gutzwiller theory. Arvieu and
coworkers [3,4,27] have studied spherical as well as elliptical boxes by using semiclassical
EBK quantisation techniques.

The outline of this chapter is as follows. First we present the details of the classical
dynamics of a particle in a spheroidal cavity; this presentation closely follows the work of
Strutinsky et al. [106] where we obtain the detailed conditions for the existence of periodic
orbits in an ellipsoidal well. Three kinds of periodic orbits are possible in a spheroidal cavity;
planar orbits in the axis of symmetry plane, planar orbits in the equatorial plane and 3-
dimensional orbits. The actions, frequencies and periodicity conditions are derived for these
orbits. We then use the trace formula to obtain the fluctuating part of level density for the

three kinds of orbits. A brief discussion of the gross-shell structure is then presented.

II. PERIODIC ORBITS IN-A SPHEROIDAL CAVITY: .

Let us-consider an ellipsoidal cavity with an infinitely high boundary so that a particle
makes a perfect reflection on striking the walls. The potential inside the well is assumed
to be zero. ‘Spheroidal system of coordinates (u,v, @) is a natural choice to describe an

ellipsoidal well; these are related to the cartesian coordinates (z,y,2) [106] by .. .

z = & cosu sinhv cos¢ — -g- <u< %§
y = & cosu sinhv sing 0fv<o0o
z = £ sinu coshv 0o 2m . : (1)

For the special case of spheroid, where the two smaller semi-axes are equal a = b and the

third one, ¢, is longer,
€= (I —d’)s = Ron™"*(n ~ 1)2. (@)

where the volume conservation condition

§7rR8 = §7ra2c, (3)
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Inside the ellipsoidal well and using the definition p; = g% where S is the total action,

(O5) 4 (B 4 (o o)y = amtgte(costo — sintu). (10

Ou v cos?u = sinh?v/ '8¢

Since ¢ is cyclic, we obtain by using the technique of separation of variables,

68¢, _
'a_¢ - eza (11)

where £, is a constant to be interpreted as the component of the orbital angular momentum

along the symmetry axis. Hence,
s¢ = 2ml,. (12)

Similarly, we obtain

52

. 20, _ 02, 1
Sy = fdu[ZM{ (€ — esin‘u ———————2M§2c082u)]2, | (13)
and
Sy = ]{dv[QM&?(ecoshzv —€— ———L)]% (14)7
2ME2sinhv

_where € is the constant of separation. The. limits of integration are decided:by the classical .

turning points where momenta,

72
2 _ 27, 2, 2
pi = 2M&°(e — esin‘u ___2M§20032u)’ (15)
p? = 2ME*(ecosh®v — € — ______63 ) (16)
v 2ME2sinh?v”’

become zero. The second of these equations can be solved to give

€

Wo=ta+Saiia- S L p 17
cosv = e 4 2mé%e’

1
2 e

2 . . s
Let o = £ and 03 = 5’1\%575’ where 01 and o5 are dimensionless quantities, so that

1 1
cosh?v = 5(1+01):!:[Z(1—01)2+02]%. (18)
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The partivcle moves in 2-dimensional elliptical periodic orbits between two confocal ellipsoids

with v = vy and v = v;, Where v, is given by

1 1
cosh?vpn = —2—(1 +0y) + [;1-(1 - 01)2 + 0'2]%. (19)

The 2-dimensional hyperbolic butterfly orbits are limited by two confocal hyperboloids with

U = Upmag aNd U = —Uy,,; Which are governed by the equation (15). We obtain
. 2 1 1 2 1
sin‘u = §(l+01):h[z(1—01) + 09)2, (20)

which gives for a hyperboloid,
. 9 1 1 2 1
SN Upmgs = —2—(1 +0y) — [Z(l —01)* + g9)2. (21)

We have thus expressed vpmin and ¥p,; in terms of the variables o and 0. Further limits
on o, and o, are set by the requirement that the kinetic energy be positive. This implies

that p2 > 0 or,

. 02
> sin? :
> sin“u + P (22)

olm

It implies that oy > 04 and oy > 0. Similarly, setting p? > 0, we obtain

cosh?v — pEeT > o1. (23)
Combining these, we get
0< 0y <0y < cosh?vy — — %2 __ (24)
sinh?vy _
Hence,
oy < cosh®vg — sinoffzvo’ (25)
which also implies that
1
o2 < o1 (26)



It is also clear from the above equations that

1
maz(l,0f) < coshvpn, < (1+ 01)% < coshuy, (27)

)

and
1
SiNUmee < min(l,0f). (28)

The two dimensional elliptical orbits in the axis of symmetry plane reflect from the
outer boundary at v = vy and pass tangentially to the internal caustic defined by v = vyn.
Similarly, the two dimensional hyperbolic butterfly orbits touch the internal caustics defined
by the hyperbolae at u = —unqr and ¥ = Upmay. The diametric orbits are defined by v, = 0.
In the spheroid, there is only one (isolated) diametric orbit along the axis of symmetry. In
addition to these, we have planar orbits in the equatorial plane defined by 2 = 0; these
are similar to the orbits of a circular billiard and will be treated by using the results of the
earlier chapter V (spherical billiard). The hyperbolic butterfly orbits appear for deformations
ﬁ > Tmin and their effect will not be considered in the present calculations. Magner et al.
[80] discuss these orbits.

Finally, we have the three-dimensional periodic orbits which exist for only large defor-

mations. These satisfy the conditions,
s
Vg > Umin > 0, 0 < Umaz < 7 (29)

These appear at a specific deformation for specific values of n,,n, and ngs and will be

considered in the present work.

III. PARTIAL FREQUENCIES AND PERIODICITY CONDITIONS

We note that the partial actions

Sy = Sule, €,£,),
Sy = Sv(e, 6,52),
Sp = S4(e, €, £,), (30)
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may be used to obtain the partial frequencies

Oe (Qu)
=2 (Bsu) _QWJ(svsu, ee)’ (31)
de . (%)
s T T Tsusuied )
_ J(8y8u; £€)
0= (5 ) = Tousured =

in the angular, radial and azimuthal directions. Here J represent the respective Jacobians

of transformation. The periodicity condition may now be written as

we (3
w, (%) (34_)

where

(%) = - \omet f — (3)

2,
2ez[coshv 01 — %5

)= oM f (36)

2e3(oy — sznzu - - 3

Solving these integrals, we obtain

ﬂ—l[l— F(O”‘)]_EE
wv—Z_ F(Zz'-,n) Ty

(37)

where n, and n, are relatively prime integers. Also, F(0, ) are elliptic functions of first

kind with,
. SINUmax 0 — sin-! (coshvmin) (38)
"~ coShUpmin B coshvy ,
Similarly, the ratio of frequencies in ¢ and u is given by
Yo _ __[%_*_gi] (39)
Wy oo, e’

which may be solved to give
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where ng4 and n, are also relatively prime integers, and

1 _ vir—1 (41)

sinfcoshvg  npsin

K=

Here I1(6, &2, k) are the elliptic functions of the third kind.

* For systems with continuous symmetries such as a sphere or a spheroid, the periodic
orbits fall into families of orbits, each family # having a constant action Sz at a fixed
energy. Each member of a family is defined by a fixed number of parameters K, which is
the degeneracy of the family. A given periodic orbit, or family of orbit 3 is defined by the
three relative prime integers n,, n,,ng and also the repetition number m so that an: orbit

is labelled as (4, ny, ng, m). Equations (38) provide the range of values for x and @ for a.

given f3.

A. Three-Dimensional Orbits

For three-dimensional orbits, the solutions to k(n,,n,,ny) and 8(n,,n,,n,) exist for

deformation 1 > 7, where

sin(52)

sm(m)

(42)

Mmin =

at which point K =0, 8 = (1 — 3&“) The 3-dimensional orbits are close to the equatorial
plane z = 0 at or, near 7,in. They occupy increasingly larger volumes as 7 increases. It can
be shown that 2+ < 3 for the 3-dimensional orbits. Also n, > 2n4 and ng > 2. Thus for
the nonplanar orbits, the minimal value of n, is 5 i.e. there must be at least five reflection
points from the potential well. For example the 3-dimensional orbits (n, : n, : ng) =1:5:2
appear at rather large deformations with 7, = 1.62. The orbits with ng : n, = 2 : 1 are the

shortest nonplanar orbits and resemble the Lissajous figures of the harmonic oscillator with
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the deformation corresponding to wy : w, = 2: 1. It is well known that the 2 : 1 frequency

ratio of harmonic oscillator corresponds to a shape where new shell gaps corresponding to
superdeformation arise. For 3-dimensional orbits, K=2.

B. Frequency Of Rotation

The frequency of rotation for 3-dimensional orbits is given by

e (43)

T (44)
Oe ny Oe
Now,
2
)3 St 3 dé '
Osy _ pRn3sing /2 . I (45)
Oe e 0 sin?d[1 — k?sin?f]z
and
8s, 2pRnisind , .
= D(=, k).
Oe e " (2’R) (46)
Here p = V2Me. Using these results in equation (44), we obtain
Qp = _,__[ — — |, (47)
2nyn3 sind Lk?[(1 — 22¢)D(§, k) — D(6, )] + cotf(1 — K2sin?0)3 .
_ 4re
where Qg0 = e

is the frquency for triangular orbits in a sphere as shown in euation (55)
of chapter V. The function D(6, k) is given by

o db
D6, x) = /(; V1= KZsin%¢ (48)

For rhomboidal orbits in the axis of symmetry plane n, = 1,n, =4 and Kk — 1. It can be
shown that

33
Qp(1:4) = — . 49
S e R “

For n > 1, it reduces to |

7

1
Qsphn%

B%Qsphn%

)

X1
—~
[+
(o=}
N

a result used by Strutinsky et al [106].
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C. Planar Orbits

The 2-dimensional planar orbits exist in the axis-of-symmetry plane and also in the
plane perpendicular to the axis of symmetry or, equatorial plane at 2 = 0. The orbits in
the equatorial plane correspond to the periodic orbits in a circular billiard and are polygons

satisfying the condition
Wy ! Wy = Ty : N, (51)

A family of orbits with constant action can be generated by cox_ltinuqusly varying one angle
parameter and therefore the classical degeneracy K = 1.

Periodic orbits in the axis of symmetry plane are more important and as pointed out
earlier, fall into two categories, the elliptical periodic orbits and the hyperbolic periodic

orbits, the latter making appearances at

1

(52)

Nmin =

The degeneracy parameter K for these orbits is 2. Due to higher degeneracy, these orbits are
a major contributor to the shell structure. The diametric orbit along the axis of symmetry

is however isolated and has a degeneracy parameter K = 0. ..

IV. RELATIONSHIP OF PLANAR ORBITS WITH THE GROSS-SHELL
STRUCTURE |

In the first application of the periodic orbits to the gross shell structure in nuclei and
the evolution of nuclear deformation as a function of particle number, Strutinsky et al. [106]
were quite successful in relating the rhomboidal orbits to the change in nuclear deformation -
near shell closure.

It is now a well established procedure to locate the minima (or, valleys) in the level
density vs. deformation plots and identify the corresponding particle numbers as the most

stable shapes. Instead of level density, one usually considers the energy e vs. deformation
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n plots. The mi‘nimum of the level density then corresponds to a minimum in the energy
em(n). Such minima are well recognised at the usual magic numbers for the spherical shape.
As the shape changes, these points of minima turn into distinct prolonged valleys as shown
in Figures 6.1 and 6.2 [106]. One may now calculate the nucleon numbers IV,,(7) along these
valleys which then represent the magic numbers at non-zero deformations. The characteristic
ﬁuantities of these minima valleys are the slopes d—de-rl’n and %—"# which decide the positions of
the minima valleys in the contour plots of the shell corrections in density of states, dg(e, )
and the shell corrections in energy, 6E(e,n).

In an interesting application, that provides much insight into the relationship of periodic
orbits with the most preferred nuclear shape at a given nucleon number, Strutinsky et al.
[106] presented a simple relationship based on just one family of orbits n, : n, =1 : 4
that fortunately explained the fall in nuclear deformation as the magic number A = 208 is
approached. The basic argument is the constancy of the action integral Sg(em,7) along the

minima valley. Thus,

Ss(em,n) = constant, . (83)
which leads to
dewm _ (2 )
dn - Tﬂ ! .

where 1 = %%. The slopes of the valleys are then given by

den,

Wn _ olem)(G2), (55)

dn

where g(e;) is the level density at the Fermi energy em- It can be shown that

35S (277 - 1) |
— =4V2MeR—5——. 56
on st + 1 (56)

For the rhomboidal orbits, where n, = 1,n, = 4,

den,  2¢(2n% —1)

dnp ~ 3n(n?+ 1)’ 0

105



which is a negative quahtity. Using the Thomas-Fermi relationship between the nucleon

number N and the average level density g(e),

.,y _ 3N
we obtain,
dNp, N

for n close to unity. At n = 1, N = Np,g and at 7 > 1, the nucleus acquires the most

preferred equilibrium shape 7., at a given N. Integrating, we obtain

+ 2(Nmagic - N) ]

Neqg = 1 N (60)

Here Nynagic is the magic number at spherical shape. Strutinsky et al. [106] used this relation
to reproduce the nearly linear trend of nuclear deformation prior to the magic number 208: -
The éame cannot however be said to be true for the onset of nuclear deformation after a
shell closure. Recently, Brack et al. [18] adapted this formula to the magic numbers of
metal clusters and obtained straight lines that fit perfectly to the average deformations

found numerically from the quantum spectra using the shell-correction method. - Although

this formula was worked out for prolate deformations, it also fits the -oblate deformationsin - -~

metallic clusters.

It is indeed amazing that the predictions based only on the rhomboidal orbits can explain
qualitatively the features of nuclear deformation. Particularly sd when the triangular orbit,
which is shorter, has not been considered. Using the exact expression for (gd%!;l) and solving
it numerically for the (n, : n,) = 1:3,1:4,1:5 and 1: 6 families of orbits, we obtain
the variation in shape with particle number as shown in FIG. 6.3, where we have also used
Niagic = 208. 1t is clear from the exact results that the dependence from any one family of
orbits is not exactly linear. Even then, the tangent drawn to the curve corresponding to 1 : 4
comes quite close to the observed deformations. It may be mentioned that our solutions are

not valid near magic number. Therefore the large deviation near N,,,4:. should be ignored.
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It is also remarkable to note that all these curves for the four leading families of orbits tend

towards each other near nucleon number 176 giving a deformation é = 0.3.

V. TRACE FORMULA FOR SPHEROIDAL CAVITY

To calculate the oscillating component of level density for spheroidal cavity , we use the
formula proposed by Strutinsky (taking degenerate families of orbits into account) as done

in the case of spherical billiard in chap V:

2 R S m
6g(E) = WZfﬁ,msm(-%—ﬂLUﬂ,m) _/ f dpdz/| [Popd (Popetom; ZE) ,,,_, - (61)
Bm

where the various terms have already been explained. Since this formula is in cylindri-
cal coordinates and we have described our system in spheroidal coordinates, we make a

transformation between the two sets of coordinates by using the relations,

N

p = Ecosu sinhv, . (62)

z = Esinu coshv, (63)

L.

dp 4
bp = My | .

cos?u
sin?u sinh?v + cos?u cosh?v

—sinu sinhv (o) — sinu — ~2-)7 + cosu coshv (cosh?v — o) — —%25-)1
- \/2Me[ (o1 ) ( ~ __gink ”)2], (64)

PPp = kRn_Tl\/nz — lcosu sinhv X

. . - o 1 2 o 1
{—-smu sinhv (01 — sin“u — -Z-)2 + cosu coshv (cosh®v — 0y — Z2-)2

stn?u sinh?v + cos?u cosh?v

|, (6)

2
pz — Zme cos‘u

. 1 1
\/—[cosu coshv (o) — sin®u — ~%-)z + sinu sinhv (cosh®v — o — .91—'7:)217;)2] (66)
sin?u sinh?v + cos?u cosh?v _ '

Here p and z are the radial and axial coordinates in the cylindrical system; p, and p, are
the corresponding canonically conjugate momenta. Also k = p/h = vV2Me/h.

The total action may be given in the terms of the partial actions as
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S = NSy + NySy + NSy,

Umazx
= IcRn‘l/3 72 — 1[471u/ .du\/al — sinu — 72
: 0

cos’u

vo 0‘2
+2nu/ dv\/cosh% — 0oy —
Ymin

+ 27m¢\/0_2] .

sinh?v

(67)

The action can also be written in terms of the length of the orbit

S = kLg =V 2M6L3,

(68)

where Lg in turn can be found out by using the time period.

Now the Jacobian of transformation is given by the determinant,

9pp

Op

Op:
Op

ot
dp

Opp
Oz

Opz
Oz

ot
Oz

9pp
Oe

Op:
Oe

ot
de

The various terms of the Jacobian can be written down by using the following relations:

T T,

8p, 2Me V2Me
= K =
Op £ £

where T7 and 75 are given by

[_
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sinu sinhv

(69)

cosu coshv]’

1 : . 02
= f=—5—3 3 5 [—cosu smhv\/al — sinfy — 5
(stn?u sinh?v + cos?u cosh?v) cos?u
sinu sinhv sin2u(l 4 -2-) , ) 02
— sinu coshv/cosh?v — o — —
2\/01 — siny — 22— : sinh?v
cos‘u
sin2u . . . 9 02
L A 55 | —Sinu sinhvy /oy — sin®u — 5
(sin?u sinh?v + cos?u cosh?v) cos‘u
02
+cosu coshv\/ cosh®v — 01 — ——5= ],
sinh?v
and,
/J
1 : - 09
Ty = s 5 5 [—smu coshv\/al — sin?y — 5
(sin?u sinh?v + cos?u cosh?v) cos?uy



+ 22 coshv sinh2v(l ¥ pfsy) + cosu sinhv\/cosh’v -0y - =2 ]
2\/cosh2v -0y — sk sinh?v
sinh2v [ sinu sinhv\/ o, — sinu ik
(sin?u sinh?v + cos?u cosh?v)? ! cos*u
+cosu cosfw\/cosh% A 22 ]
sinh?v
Similarly,
8p, V2Me Mef T T,
0z € Ko = € [cosu coshv + sinu 3inhv]’ (72)
0pp __2M o (73)
de  /2Meps’
where
1 [—sz’nu sinhv (o) — sin’u — ;‘;223)% + cosu coshv (cosh®v — 0y — 72— %] (74)
Py sinu sinh?v + cos?u cosh?v '
Also,
8p. V2Me, 2Me[ T T.
P V2Mep, Y2 ], (75)
p 3 . '3 sinu sinhv ~ cosu coshv
and,
Op. 2Me 2Me T3 Ty ]
= = 7
dz £ Kq 3 [cosu coshv | sinu sinhv)’ (76)
where T3 and Ty are given by,
T3 = - [—sinu coshv\/ 01 — 8in2u — —2
37 (sinu sinh2v + cos?u cosh?v) ! cos?u
hv st 22— '
_COSZ\;O,S 0 s?n22u(1 * o) + cosu sinhv \/ cosh?v — oy — si:;ﬁv ]
oy — sin*u — 2% '
sindu [cosu coshv\/ o) — sinty — —2
(sin?u sinh?v + cos?u cosh?v)? ! cos?u
+sinu sinhv\/ cosh?v — oy — L ],
sinh?v
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‘ 1 09
= cosu sinhv\/ o, — siny —
T4 (sin?u sinh?v + cos?u cosh?v) [ ! cos?u
J inhv sinh2v(l + =2-) —
Sy At St qi( * i) + cosu sinhv\/cosh'-’v -0 - ,022 ]
2\/cosh2v - 01— sitr; sinh2?v
sinhv [cosu coshv\/a siny 72
(sin2u sinh?v + cos?u cosh?v)? ! cos?u
+sinu sinhv\/ cosh?v — oy — ,02 ]
sinh?v
Further,
Op.  2M (79)
de  2Mep,’
where,
1 _ [cosu coshv (o) — sin?u — Efs%;)% + sinu sinhv (cosh®v — oy — ;,‘1—’,2%)%} (80)
s [ sin2u sinh?v + cos?u cosh?v '
To obtain £, we note that
| S,
t= e 8
atg S »
Pe = et 52)

'Finally the Jacobian takes the following form; -

1261\/& Kl ¥2€Me K2 2M

v2Meps
Y2Me Y2Me 2M
e s e K V2Meps
aM oM _ S
v2Meps vV2Mep, 4e

The fluctuating part of level density dg is finally obtained by using these terms in the trace
formula and numeﬁcal computation. lThese are general expressions valid for 3-dimensional
orbits in the spheroidal cavity. Results for the planar orbits can be simply obtained by
putting g; = 0. |

The contribution to dg from the isolated diametric orbit along the symmetry axis is ob-
tained by using the expressions for planar orbits. We take the effect of the lower degeneracy

(K = 0) for diametric orbits into account by dividing by a factor kR,.
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There now remains the contribution of orbits in the equatorial piane. We note that
‘these orbits are simply those corresponding to a circular billiard at z = 0 having a radius
R= R(,n:sl . We use the results presented in chapter V for the spherical billiard to calculate
the ég., by properly taking into account the effect ?f classical degeﬁeracy which in this case

is K = 1. The total level density dg(e) therefore is obtained as,
~ dg(e) = 6g%=2 4 6g%=0 4 §g"=1 (83)

The effect of 3-dimensional orbits, which begin at higher deformations, will be discussed
separately. We have not included the contribution of the hyperbolic butterfly orbits in our
results. The damping factor for the convergence of the periodic orbit sum has been taken
as the same as discussed in the previous chapter.

The Maslov indices have been discussed in chapter V. We have used the following values
in accordance with Magner et al. [80]. For planar orbits (except diametric) in the plane of

axis of symmetry the Maslov index has been taken as

3mn, o
Ogym = — m;z T — (mny, - 1)w — z (84)

2
For diametric orbits in the same plane the Maslov index is given by

3mn,w
2

op = — - 5 (85)

The Maslov index for the orbits in the plane perpendicular to the plane of axis of symmetry
is given by

3mn,m w
5 + 1 (86)

Oeq =

For 3-Dimensional orbits we have taken the Maslov index as,

3mn,T

2

- (mn, - )7 - mngmw — -;I - (87)

034 = =~
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V1. NUMERICAL RESULTS AND DISCUSSION

We have presented in this chapter a detailed discussion of the periodic orbits in spheroidal
deformed cavity. We have used the trace formula due to Strutinsky et al. to obtain a general
formulation for the oscillating part of the level density dg(e). This trace formula, valid for
3-dimensional non-planar orbits, can be reduced to that of planar orbits by putting g, = 0
and also to that of diametric orbits. In order to calculate the contribution to dg(e) from the
orbits in the equatorial plane, we have adapted the expression obtained for spherical billiard
(Chapter V) which was also derived by using the trace formula of Strutinsky et al. We now
present some numerical results based on these expressions. »

We consider the application of these formula to gross shell structure, a topic of great
interest in nuclear and atomic cluster physics. We show in FIG. 6.4 four numerical results for
dg(e) as a function of KRy at n = 1.2. The quantity dg(e) has been evaluated here in units
‘independent of energy by putting € = 1. The bottom panels exhibit the results of summing
overn, :m, =1:3,1:4,1:5 and 1: 6 orbits. Besides the fast oscillations, we also see -
the familiar beat pattern. The right panel exhibits results with v = 0.6 and the left panel
exhibits results. with v+ = 0. In the top panels, we have also included the contribution of
the shortest pendular orbit (1 : 2). It modifies-the magnitude of the oscillations b.ut only at -
small kR; most of the pattern remains unchanged. The 1 : 2 orbit is infact shorter in length
but does not affect the dg(e) significantly. As in the spherical case, the most important
leading orbits are the 3 : 1 and 4 : 1 orbits. On looking back, it therefore does not seem to
be so surprising that Strutinsky et al. succeeded in expla.ining the main trends of nuclear
ground-state deformations by considering only the rhomboidal periodic orbits.

The four panels in FIG. 6.5 contain similar results for the orbits in the equatorial plane.
The contribution of the equatorial orbits is significant but not more than that of the planar
orbits. Although the degeneracy of the equatorial orbits is lower, éhey are shorter and this
seems to enhance their contribution. Further, we observe that the number of beats has

increased as compared to the planar orbits alone.
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In FIG. 6.6, we show the results for the total dg at 7=1.2 where contributions of planar
and equatorial orbits have been added. The upper right pancl, which contains the results for
v = 0.6, is almost same as that obtained by Magner et al. [80] except for a small difference
near kR = 0. Figures 6.7, 6.8,and 6.9 are similar to Figures 6.4, 6.5,and 6.6 but are n.ow
plotted for a deformation n = 1.53. Two distinct changes are evident. First is the decreasing
contribution of the planar orbits. Second is the relatively enhanced contribution from the
orbits in the equatorial plane; effectively the role of equatorial planar orbits has gone up
with increase in deformation. This is as expected because the orbits in the equatorial plane
continue to become shorter with increase in prolate deformation. Figures 6.10, 6.11 and 6.12
contain similar results for the important deformation n = 2 where most of the non-planar
orbits begin to play an important role. We notice the decreasing role of the planar orbits at
n = 2 from FIG. 6.10. The equatorial orbits, on the other hand, remain as important as
shown in FIG. 6.11. The total dg(e) is shown in FIG. 6.12.

It is important to point out that the planar butterfly hyperbolic orbits (such as n, : n, =
1:4) appear at 7 = v/2 and contribute at larger deformations. Magner et al. have included
the effect of these orbits, which we have not done so far. This may explain some differences
in 01;r results with those of Magner et al. As pointed out by Magner et al. n = 2 is the
bifurcation point where the hyperbolic orbit n, : n, = 1 : 6 appears. =

Besides the hyperbolic butterfly orbits, the 3-dimensional non-planar orbits also begin

to play a role for > Mmin. For example, the shortest 3-dimensional orbits correspond to

Ny : My : Ny = 1 :5: 2 which appear at 9, = 1.62. We therefore have chosen 7 = 2 as

the deformation to study the role of the 3-dimensional orbits. The deformation n = 2 is -

also significant because at 7 = £+ = 2, the harmonic oscillator exhibits a large degenerécy
and occurrence of shell closure. In FIG. 6.13 we display the results of g obtained from six
non-planar orbits , :n, :mg=1:5:24+1:6:2+1:7:24+1:8:2+1:9:2+1:10:2.
Most striking is a remarkable beating pattern with several beats occuring upto kR = 35.

In contrast to the planar and equatorial orbits, where only one to three beats were seen

upto kR = 35, we find almost five beats for non-planar orbits. Also the amplitude of the 3-
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dimensionél (orb.ité 1sshght1y greater than that of equ’aiorial orbits. This brings an important
point into focus, that the 3-dimensional orbits are as important or even more important than
any other orbits particularly for superdeformed (SD) shapes. This conclusion therefore opens
up a new dimension to the study of superdeformed nuclei. It appears that the 3-dimensional
orbits stabilise the superdeformed shapes and are not perturbed by rotation asvmuch as the
planar orbits would be.

The role of 3-dimensional orbits is conjectured to assume more important role in SD
nuclei in view of the following discussion. We note that we have approximated deformed
nucleus by a spheroidal cavity. We also note that the SD bands are observed at high
spins. Even otherwise, a deformed nucleus always has a rotational motion. Thus a proper
understanding of these bands would require the inclusion of rotation which leads us to a
rotating billiard. Signiﬁcgnt modifications are expected in the periodic orbits, when we
include rotation, because of the inertial forces.

In a simple yet signiﬁcé,nt work, Arvieu and Frisk [45] explored the classical dynamics
of a particle in rotating ellipse and stadium billiard and discussed the organisation of the
phase space which highlights the regions of order and chaos. While ellipse is an integrable
system, the s;:adium is a non-integrable system. Yet at large rotational frequencies, both the:
billiards display very similar phasé—space structure. I't was found that rotation of stadium
billiard (which is chaotic) leads to ordered motion which is very similar to that of an ellipse.
The phase-space exhibits two confined regions in which only order is seen in both the cases.
From our discussion of the dynamics of cranking model (and also the particle-rotor model),
which is a rotating system, we are tempted to identify these two confined regions of order at
large rot-ation with the two fixed points c; where we suppose that the SD bands may exist.
The SD bands thus appear to present a nice example of ordered motion in a sea of chaos;
the stabilising effect is provided by large rotation.

It is our belief that the planar orbits of the spheroidal cavity will get more disturbed
when rotation is introduced. The 3-dimensional orbits must therefore be considered at large

rotational frequencies which are expected to play a significant role in SD nuclei.
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The results presented in this chapter are 6nly indicative of the direction in which more
detailed studies are required. We have not carried out any detailed tests .of convergence
largely due to the considerable computational effort involved in it. We have therefore relied
on the information on convergence provided by Magner et al. Yef this is proposed to be
done in future as also the calculations of shell corrections to energy and comparison  with

the quantum results.

p
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FIG. 6.1 Contour plots of shell energy corrections § E(N,7n) obtained by shell correction
method as a function of particle number and deformation for different potentials; The re-
gions of negative § E' are shaded . Solid contour lines correspond to 2.5 MeV intervals. The

fat solid lines represent the position of the minima valleys for the rhomboidal planar orbits.

From Ref. {106].



a. 69 WOODS-SAXON with spin-orbit b. 6 g WOODS-SAXON without spin-orbil

FIG. 6.2 Contour plots of oscillating component dg(e, n) as a function of energy and defor-
mation for the same potentials as in FIG. 6.1. The increment per line is 1/MeV, the regions
of negative dg are shaded. Fat solid lines represent the minima valleys due to rhomboidal

planar orbits as explained in the text. From Ref. [106].
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The two majbr themes of this thesis have been the Superdeformed bands in nuclei and
-application of semi-classical methods to them. The semi-classical physics has recently ac-
quired a new vigour and vitality and its successful applications have been made in diverse
areas of physics. Such studies have provided new insights into the dynamics of quantal sys-
tems. Of particular interest has been the Gutzwiller’s periodic orbit theory, which provides a
direct link between the classical concepts of orbits and quantised energy levels. An attempt
has been made in this thesis to fuse the observat'ion of varied features of SD bands with the
" ideas of the classical dynamical theories and the periodic orbits.

Following this philosophy, we havé presented in chapter II a rather complete discussion
of the dynamics of the particle-rotor model for high-j orbitals which also considered the
effect of the nonlinear term in the equation of motion. This work draws upon the earlier
work of Bohr and Mottelson. Several interesting conclusions have emerged from this study.
The most surprising was the emergence of rotational bands at the twin stable fixed points c4
which lie beyond the separatrix. The motion in j; (the third component of j) controls the
overall dynamics and is dictated by the duffing oscillator which has a double well potential.
The effect of tunelling between the wells was exactly considered and two solutions (p=0 and
p=1) were obtained for each quantum number n = 1,2,3, ..... etc. It has been shown that
the system undergoes a second order phase transition when going from the yrast (aligned) |
regime to the nonlinear regime of duffing oscillator. The rotational bands built at c; are
thus phase separated from those built near the aligned configuration (fixed point a); they
will therefore connect with the yrast configurations with great difficulty.

The level energies at c. follow an exact rotational relationship implying a linear I vs. E,
behaviour. Inclusion of the non-linear effect and semi-classical quantisation revealed that
very weak oscillations develop in the linear I vs. E, plots. Further; we found that the
intercept of this 6verall linear graph of I vs. E,, on the [-axis is mostly negative. In the
later chapter, we interpret this intercept as an average aligned angular momentum. Among
other important features exhibited by these bands at c4, are the finite starting angular

momentum for each band and a negative alignment. The aligned angular momentum which
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is negative at the lower Angular momentum, increases with angular momentum, becomes
positive and saturates at higher angular momenta. We have also found that the dynamical
moment saturates at higher angular momenta and also exhibits a downtrend. This may be
directly correlated with the saturation of aligned angular momentum.

In chapter I1I, we have tried to connect these findings with some of the well-known and
also some newly pointed out features of the SD bands. Among the most important new
features, which were established in this work are, (i) a weak oscillation in the I vs. E, plots,
(ii) a negative aligned angular momentum and (iii) a feature of general identical band. The
first of these is immediately understood in terms of the results of Chapter II, if we associate
the SD bands with the bands located at or, near the fixed points c;. By using a simple
empirical formula for the SD bands, it is possible to associate the negative intercept found
in the I vs. E, plots on the /-axis, with an averaged aligned angular momentum. This
interpretation also fits well with the explanation of most of the SD bands as located at ¢y -
point. |

If we accept this interpretation of the SD bands, we find that a very simple expla;nation
of the Al = 2 staggering also emerges. Arguing that the weak oscillations are a first order
effect, we sh(;w that the Al = 2 staggering is a third order effect and must follow from an - -
‘explanation for the oscillations. Since the system experiences a motion confined to a double
well at ci, a tunelling between the two wells will lead to a shift in the levels of the two
wells. This effect has been taken into account in our éalculations presented in Chapter II. It
is most interesting that the double well has a depth which is dependent on I and therefore
levels with different / will shift with different amount. We ﬁnd that the resultant spectrum
does exhibit a Al = 2 staggering in many situations. The pattern is however irregular in
most of the cases, as is experimentally observed to be the case.

We have also arrived at a systematics in the value of the angular momentum at which
the SD bands start. This starting angular momentum has a typical range for each mass
region. We have shown that it is possible to partially understand this systematics within

the framework of the model calculations of Chapter II.
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We have also presented some numerical results to test this formula. Besides the gross shell
structure, where we obtained the beat pattern in level density, we have also shown that the
formula leads to the exact quantum spectrum if a summation over sufficiently large num-
ber of orbits is carried out. This calculation serves the purpose of a text-book example to
illustrate the basic ideas and concepts involved in these calculations.

A natural extension of a spherical billiard, to study deformed nuclei, is to consider
deformed cavities. Many such studies have already been carried out in recent past. We
have also extended the work of Chapter V to include three-dimensional spheroidal cavity ‘
which is a good approximation of prolate deformed nuclei. In Chapter VI, we have used
the periodic orbit trace formula for continuous symmetries and obtained a general result
for the shell correction part of the level density which is valid for threefdimensional orbits.
This formula reduces to give the results of planar orbits when o, = 0. To calculate the
contribution of the planar orbits in equatorial plane, we use results of the spherical. billiard -
from Chapter V. In an interesting application, Strutinsky and co-workers had obtained -
the variation in nuclear deformation with mass number A near the shell closure A=208
by considering only the rhomboidal orbits in the axis-of-symmetry plane. The result was
obtained Uncier approximations and gives remarkable fit to the almost linear variation of
deformation - before ' the shell closure at A=208. ' We have calculatéd these-results more
exactly by using numerical methods and find that it was indeed fortuitous for Strutinsky
to have reproduced these results. Various families of shortest periodic orbits (1:3, 1:4, 1:5,..
etc.) give a variation which is not too different from each other and they all appear to
converge at value of § ~ 0.3; this value of nuclear deformation, where most of the stable
~ deformed nuclei are concentrated, thus appears to have a special status.

We have carried out some tests of the trace formula for spheroidal billiard by calculating
the gross shell structure for three deformations #=1.2, 1.53 and 2. It is clear from these
results that the most important contribution at lower deformation comes from the leading
orbits which are 1:3 and 1:4. The planar equatorial orbits also appéar to play an important

" role particularly as the deformation increases and the length of these orbits decreases.
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At higher deformations, when 7 > nnin, the three dimensional (3-d) orbits make an
appearance. We find that the gross shell structure of the 3-d orbits exhibits a beat pattern
which has a small ‘wave-length’. The 3-d orbits thus would have magic sheil closures which
are more closer to each other. This gives rise to the possibility of observing the beat pattern
in SD nuclei. Also, as pointed out in Chapter VI, the planar orbits will get more disturbed
when rotation is introduced. Therefore, the 3-d orbits are expected to .become more impor-
tant at large deformation and higher angular momenta, which is the case with SD nuclei.
We therefore believe that a detailed study of the role of 3-d orbits would be very crucial in

understanding the nature of SD bands.

Finally, we make some observations about the future directions of this work. The studies
performed in this thesis have been based on the simplest possible versions of the models.
This has had an advantage in terms of correlating the effects with the basic causes and
physics. But it also means that we cannot make calculations for specific nuclei. This is one
direction in which progress could be made in future. Further, a direct correlation of these
studies with exact quantum mechanical studies offers a very important line of study. As is
clear from the foregoing discussions, it has been possible to understand many features of
the Sb bands in a single model. Yet, many features like the phenomenon of identical bands
remain untouched. This continues to be a challenge to theorists to explain this feature along
with other features in a unified manner.

The results on periodic orbit theory presented in this thesis, represent the formation of
a base from which a large number of studies can be started. Before this, it is still necessary
to carry out detailed tests of the convergence of the summation over trace formula for the
spheroidal cavity presented by us. Further, calculation of the shell correction to energy and
its comparison with exact results in specific cases also needs to be carried out.

The simplest results of the spherical cavity immediately suggest applications to spherical
nuclei like ¥°Ca or, 'Ca where a scaling in the energy levels with mass number A must exist.
The results of the spheroidal shape offer é large number of applications to the deformed nuclei

such as understanding their behaviour in terms of planar and 3-d orbits. The occurrence of
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identical bands in different nuclei can be explored in terms of scaling of the spectrum with
mass number A for very large deformation. Introduction of high spin by rotating the cavity
may further expand the area of work. These studies also open the route to study the onset

of chaos in nuclei under specific conditions.

122



REFERENCES

123



REFERENCES
[1] Aberg, Sven, Superdeformation-A theoretical overview, Invited talk in “Nuclear Struc-
ture in the Nineties” , Oak Ridge, April (1990).
[2] Ahmed, Zafar, Double well potential, Private communication (1996).

[3] Ayant, Y. and Arvieu, R., Semiclassical study of particle motion in elliptical boxes: I,

J. Phys. A20, 397 (1987).

[4] Arvieu, R. and Ayant, Y., Semiclassical study of particle motion in elliptical boxes:

11, J. Phys. A20, 1115 (1987).

[5] Baktash, C., Hass, B. and Nazarewicz, W., Identical bands in deformed and superde-
formed nuclei, Annu. Rev. Nucl. Part. Sc., 45, 485 (1995).

[6] Balian, R. and Bloch, C., Distribution of eigenfrequencies for the wave equation in
a finite domain: III Eigenfrequency density oscillations, Ann. Phys. (N.Y.), 69, 76
(1972).

(7] Balian, R. and Bioch, C., Asymptotic evaluation of the Green’s function for large

quantum numbers, Ann. Phys. (N.Y.), 60, 401 (1970).

[8] Bazzacco, D., Brandoline, F., Burch, R. et al., Complete decay out of the SD band in
133Nd, Phys. Rev., C49, R2281 (1994).

(9] Bengtsson, R., Larsson, S.E. et al., Yrast bands and high spins potential-energy sur-
faces, Phys. Lett., 57B, 310 (1975).

[10] Berry, M.V. and Tabor, M., Closed orbits and regular bound spectrum, Proc. Roy.
Soc. Lond., A349, 101 (1976). |

[11] Berry, M.V. and Tabor, M., Calculating the bound spectrum by path summation in
action angle variables, J. Phys. A10, 371 (1977).

124



[12] Bjorholm, S. and Lynn, J.E., The double humped fission barrier, Rev. Mod. Phys. 52,
725 (1980).

[13] Bohr, A., The coupling of nuclear surface oscillations to the motion of individual

nucleons, K. Dan. Vid. Selsk. Mat. Fys. Medd. 26; No. 4 (1952).

[14] Bohr, A. and Mottelson, B.R., Collective and individual particle aspects of nuclear
structure, K. Dan. Vid. Selsk. Mat. Fys. Medd. 27, No. 16 (1953).

(15] Bohr, A. and Mottelson, B.R., Nuclear Structure, Vol II, Nuclear deformation, Ben-
jamin, New York, (1975).

[16] Bohr, A. and Mottelson, B.R., Solutions for Particle-Rotor and Cranking Models for
single-j configuration, Physica Scripta 22, 461 (1980).

[17] Bonche, P., Krieger, S.J., Quentin, P. et al., Superdeformation and shape isomerism

at zero spin, Nucl. Phys., A500, 308 (1989).

[18] Brack, M., Creagh, S., Meier. P., Reimann, S.M. and Seidl, M., Semiclassical methods
for the description of large metal clusters, Invited talk at the NATO, ASI Large Clusters
of Atoms and Molecules, Erice, (1995). '

[19] Brack, M. and J ain; S.R., Analytical tests of Gutzwiller’s trace formula for harmonic-

oscillator potentials, Phys. Rev., A51, 3462 (1995).

[20] Brack, M. and Bhaduri, R.K., Semiclassical Physics, Addison-Wesley Pub. Comp.,
Inc., (1997).

[21] Brack, M., The physics of simple metal clusters: shell consistent jellium model and

semiclassical approaches, Rev. Mod. Phys., 65, 677 (1993).

[22] Brack, M., Damgaard, J., Pauli, H.C., Strutinsky, V.M., Wong, C.Y., Funny hills:
The shell correction approach to nuclear shell effects and its applications to the fission

process, Rev. Mod. Phys., 44, 320 (1972).

125



(23] Brack, M.,'Lecture notes on Gutzwiller’s periodic orbit theory, at Konan University,

Kobe, Japan, Sept. (1994).

[24] Brack, M., Blaschke, J.,Creagh, S.C., Magner, A.G., Meier, P. and Reimann, S.M., On

the role of classical orbits in mesoscopic electronic systems, Z. Phys. D40, 276 (1997).

[25] Byrski, T., Beck, F.A., Curien, D. et al., Observation of identical superdeformed bands
in N=86 nuclei, Phys. Rev. Lett. 64, 1650 (1990).

[26] Caiwan, Shen, Wendong, Luo and Chen, Y.S., Identical bands and quantized align-
ments in superdeformed nuclei, Phys. Rev. C55, 1762 (1997).

[27] Carbonell, J., Brut, F., Arvieu, R. and Touchard, J., Classical properties and semi-

classical quantisation of a spherical nuclear potential, J. Phys. G11, 325 (1985).

(28] Chasman, R.R., Superdeformation in the rare earth region , Phyé. Lett., B187, 219
(1987).

[29] Cederwell, B., Janssens, R.V.F., Brinkman, M.J., New features of SD bands in *Hg,
Phys. Rev. Lett. 72, 3150 (1994).

[30] Cederwell, B., Hackman, G., Galindo-Uribarri, A. et al., Properties of superdeformed
bands in 3Dy, Phys. Lett. B380, 18 (1996). -

[31] Creagh, S.C. and Littlejohn, R.G., Geometrical properties of Maslov indices in the

semiclassical trace formula for the density of states, Phys. Rev. A42, 1907 (1990).

[32] Creagh, S.C. and Littlejohn, R.G., Semiclassical Trace formula in the presence of

continuous symmetries, Phys. Rev. A44, 836 (1991).

[33] Dagnall, P.J., Smith, A.G., Lisle, J.C. et él., The observation of a superdeformed
structure in 82Y’, Z. Phys. A353, 251 (1995).

[34] Deleplanque, M.A.,Beausang, C.W., Burde, J., Diamond, R.M., Stephens, F.S., Mc-
Donald, R.J., Draper, J.E., Superdeformation in Odd-Odd nucleus '5°T'b: Experimen-

126



tal search for superdeformed configurations, Phys. Rev. C39, 1651 (1989).

[35] de Voigt, M.J.A., Dudek, J. and Szymanski, Z., High spin phenomena in atomic nuclei,
Rev. Mod. Phys. 55, 949 (1983).

[36] Draper, J.E., Stephens, F.S., Deleplanque, M.A. et al., Spins in SD bands in the mass
190 region, Phys. Rev. C42, R1791 (1990).

[37] Dudeja, M., Malik, S.S. and Jain, A.K., An empirical analysis of superdeformed bands:
A semiclassical view, Phys. Lett. B412, 14 (1997).

[38] Dudeja, M., Semiclassical quantisation of cranking model and SD bands, Talk pre-

sented at IV National Workshop on nuclear structure physics, Puri (1997). -

(39] Dudek, J., Nuclear superdeformation at high spins, Report of Centre de Recherches Nu-
cleaires, IN2P3-CNRS/ Universite Louis Pasteur BP20, F-67037, Strasbourg, Cedex,
France (1987).

[40] El-Aouad, N., Burglin, O., Dudek, J., Heydon, B., Rowley, N. and Szyménski, Z.,
Correlation between quantized-alignment and identical-band mechanisms, Phys. Rev.

C49, R1246 (1994).

[41] Flibotte, S., Hackman, G., Ragnarsson, I. et al., Multiparticle excitations in the su-
perdeformed *°Gd nucleus, Nucl. Phys. A584, 373. (1995). |

[42] Flibote, S., Andrews, H.R., Ball, G.C. et al., Al = 4 bifurcation in a superdeformed
band: Evidence for a C4 symmetry, Phys. Rev. Lett. 71, 4299 (1993).

[43] Fluggae, Siegfried, Practical Quantum Mechanics I, pg. 154, Springer-Verlag, Berlin
(1971). | |

[44] Frisk, H., Shell structure in terms of periodic orbits, Nucl. Phys. A511, 309 (1990).

[45] Frisk, H. and Arvieu, R., Transition order-chaos in a rotating billiard, Z. Phys. A495,
291c (1989).

127



[46] Goel, A. and Jain, A.K., Coriolis coupling in two-quasiparticle rotational bands of

deformed even-even nuclei, Phys. Rev. C45, 221 (1992).
[47] Goldstein, H., Classical mechanics, Addison-Wesley Publ. Co. (1950).

(48] Gradshteyn, I.S. and Ryzhik, I.M., Table of inegrals, series and products, Academic
Press, New york (1983).

[49] Gutzwiller, M.C., Chaos in classical and quantum mechanics, Springer-Verlag, New

York Inc. (1990).

[60] Gutzwiller, M.C., Phase-integral approximation in momentum space and the bound
states of an atom, J. Math. Phys. 8, 1979 (1967); Periodic orbits and classical quanti-
sation conditions, J. Math. Phys. 12, 343 (1971).

[51] Hackman, G., Khoo, T.L., Caarpenter, M.P. et al., Spins, parity, excitation energies
and octupole structure of an excited superdeformed band in %Hg and implications

for identical bands, Phys. Rev. Lett. 79, 4100 (1997).

[52] Hamamoto, I. and Mottelson, B., Superdeformed rotational bands in the presence of

Y-44 deformation, Phys. Lett. B333, 294 (1994).

[53] Hass, B., Vivien, J.P., Basu, S.K. et al., Feeding of the superdeformed yrast bandin
149G d, Phys. Lett. B245, 308 (1991). |

[54] Hara, K. and Lalazissis, G.A., Analysis of Al = 2 staggering in nuclear rotational
spectra, Phys. Rev. C55, 1789 (1997).

[55] Haslip, D.S., Flibotte, S., France, G.de et al., Al = 4 bifurcation in identical superde-
formed bands, Phys. Rev. Lett. 78, 3447 (1997).

[56] Haxel, O., Jensen, J.H.D. and Suess, H.E., On the ‘Magic Numbers’ in nuclear struc--
ture, Phys. Rev. 75, 1766 (1949).

[57) Huang, K., Statistical Mechanics, II edition, John Wiley and Sons, New York, Chap

128



17 (1987).

[58] Inglis, D.R., Particle derivation of nuclear rotation properties associated with a surface

wave, Phys. Rev. 96, 1059 (1954).

[59] Jain, S.R., Jain, A.K. and Ahmad, Z., Nonlinear dynamics of high-j cranking model,
Phys. Lett. B370, 1 (1996).

[60] Jain, A.K., Strongly coupled bands as effectively decoupled bands, Z. Phys. A317, 117
(1984).
[61] Jain, A.K. and Dudeja, M., Some new universal features of superdeformed bands, J.

of Korean Phys. Soc. 23, S361 (1996).

(62] Jain, A.K. and Jain, S.R., Superdeformation -Present status and some new universal
features, ‘Pr(.)c. of National Workshop on Nuclear Structure Physics, Roorkee, pg. 57

(1995).

[63] Jain, A.K., Dudeja, M., Malik, S.S. and Ahmad, Z., Nonlinear dynamics of particle--
rotor model and superdeformed bands, Phys. Lett. B392, 243 (1997).

[64] Jain, A.K. Casten, R.F., Observation of +F, symmetry in F-spin multiplets, Modern
Phys. Lett. A3, 743 (1988). |

[65] Jain, A.K. and Sood, P.C., Proc. of Int. Conf. on Band Structure and Nucl. Dynamics,
Vol. I, pg. 23, New Orleans, U.S.A. (1980).

[66] Jain, K. and Jain, A.K., Rotational bands in deformed odd-A nuclei in the actinide
region, At. Data and Nucl. Data Tables 50, 269 (1992).

[67] Jain, A.K., Sheline, R.K., Sood, P.C., Jain, K., Intrinsic states of deformed odd-A
nuclei in the mass regions (151 < A < 193) and (A > 221), Rev. Mod. Phys. 62, 393
(1990).

v[68] Jain, A.K., Sheline, R.K., Headly, D., Sood, P.C., Bruke, D., Hrivnoacova, 1., Kvasil,

129



_J., Nosek, D. and Hoff, R.W., Nuclear structure in odd-odd nuclei 144 < 194, Rev.
Mod. Phys. in press (July 1998).

[69] Jain, A.K., Dudeja, M., Jain, S.R., Ahmed, Zafar and Malik, S.S., Superdeformed
bands as the rigid rotor bands, Proc. of DAE symposium on Nuclear Physics 39B, 74
(1996). ‘

[70] Jain, A.K., Kvasil, J., Sheline, R.K. and Hoff, R.W., Coriolis coupling in the rotational
bands of deformed odd-odd nuclei, 'Phys. Rev. C90, 432 (1989).

[71] Jain, K., Jain, A.K., Decoupling from the Particle-Rotor model, Phys; Rev. C30, 2050
(1984).

[72] Jain, A.K., A new look at the decoupled bands, Proc. of the Int. Conf. on Nuclear

Physics, Florence, Italy, (Tipografia- Compositori, Bologna), Vol I, pg. 178 (1983).

e

[73] Jennings, B.K., Bhaduri, R.K. and Brack, M., Semiclassical approximation in a one

body potential, Phys. Rev. Lett. 34, 228 (1975).

[74] Joyce, M.J., Sharpey-Schafer, J.F., Riley, M.A. et al., N=7 unfavoured superdeformed
band in 93Hg coriolis splitting and neutron shell structure at extreme deformation,

g

Phys. Lett. 340B, 150 (1994).

[75] Kerman, A.K., Rotational perturbation in nuclei- application to Wolfram 183, Dan.

Mat. Fys. Medd. 30, No. 15 (1956).

[76] Khoo, T.P. et al., Excitation energies and spins of a superdeformed band in %Hg

from one-step discrete decays to the yrast line, Phys. Rev. Lett. 76, 1583 (1996).

[77] Kota, V.K.B., Phys. Rev. C53, 2550 (1996).

[78] Lauritsen, T., Janssens, R.V.F., Carpenter, M.P. et al., Dynamic moment of inertia of

the 192Hg superdeformed band at high rotational frequencies, Phys. Lett. 279B, 239
(1992).

130



[79] Macchiavelli, A.O., Cederwall, B., Clark, R.M. et al. C-4 symmetry effects in nuclear
rotational motion, Phys. Rev. C51, R1 (1995).

[80]’ Magner, A.G,, Fedotkin, S.N., Ivanyuk, F.A., Meier, P., Brack, M., Reimann, S.M.
and Koizumi, H., Semiclassical analysis of shell structure in large prolate cavities,

Ann. Physik 6, 555 (1997).

_[81] Meir, P., Brack, M. and Creagh, S.C., Semiclassical description of large multipole-
deformed metal clusters, Z. Phys. D41, 281 (1997).

(82] Mayer, M.G., On the closed shells in nuclei II, Phys. Rev. 75, 1969 (1949).

[83] Mikhailov, I.N. and Quentin, P., Band staggering in superdeforrhed statesand intrinsic

vortical motion, Phys. Rev. Lett. 74, 3336 (1995).

(84] Neergard, K. and Pashkevich, V.V., Shell corrections to the deformation energies of
very high spin nuclei, Phys. Lett. 59B,.218 (1975).

[85] Nilsson, S.G., Binding states of individual nucleons in strongly deformed nuclei, K.

Dan. Vid. Selsk. Mat. Fys. Medd. 29, No. 16 (1955).
[86] Nolan, P.J., Superdeformation and high spin states, Nucl. Phys. A553, 107C (1993).

[87] Pavlichenkov, I.M., Nonadiabatic mean field effects in the Al = 2 staggering of su-
perdeformed bands, Phys. Rev. C55, 1275 (1997).

[88] Pavlichenkov, I.M. and Flibotte, S., C-4 symmetry and bifurcation in superdeformed
bands, Phys. Rev. C51, R460 (1995).

[89] Pavlichenkov, .M., Bifurcation in quantum rotational spectra, Phys. Reports 226, 173
(1994).

[90] Pederson, J., Bjorholm , S., Borggreen, J., Hansen, K., Martin, T.P. and Rasmussen,
H.D., Observation of quantum supershells in clusters of sodium atoms, Nature 353,

733 (1991).

131



(91] Petrache, C.M., Duchene, G., Kharraja, B. et al., Detailed level scheme of *!Tb and
the feeding of the normal deformed states by the superdeformed bands, Nucl.Phys.
A579, 285 (1994).

[92] Piepeﬂberg, R. and Protasov, K.V., Model of superfluid liquid with triplet pairing,
cranking model and model of variable moment of inertia in superdeformed bands in

A= 190 mass region, Z. Phys. A346, 7 (1993).
[93] Percival, I.C., Semiclassical theory of bound states, Adv. Chem. Phys. 36, 1 (1997).

[94] Reichi, L.E. and Zheng, W.M., Field-induced barrier penetration in the quartic poten-
tial, Phys. Rev. A29, 2186 (1984). ‘

[95] Reimann, S.M., Persson, M., Lindelof, P.E. and Brack, M., Shell structure of circular
quantum dot in weak magnetic fields, Z. Phys. B101, 377 (1996).

[96] Schuk, C., Hannachi, F., Gall, B. et al. , Study of superdeformation in 2Hg with
Eurogam and Gammasphere, Preprint CSNSM-94-15, Paper presented at the XXXII

International winter meeting on nuclear physics, Bormio (1994).

[97] Schutz, Y., Vivien, J., Beck, F.A. et al., Search for collective effects in very high spin
states of 152Dy, Phys. Rev. Lett. 48, 1534 (1982). ‘

[98] Sheline, R.K., Ragnersson, I. and Nilsson, S.G., Shell structure for deformed nuclear

shapes, Phys. Lett. B41, 115 (1972).

[99] Singh, B., Firestone, R.B. and Frank Chu, S.Y., Table of superdeformed nuclear bands
and fisson isomers, Nucl. Data Sheets 78, 1 (1996). |

[100] Sood, P.C. and Jain, A.K., Description of multiband structure in Gd on symmetry
consideration, Z.. Physik A320, 645 (185).

(101} Stephens, F.S., Deleplandue, M.A., Draper, J.E. et al., Spin alignment in superde-
formed Hg nuclei, Phys. Rev. Lett. 64, 2623 (1990).

132



[102] Stephens, F.S., Deleplanque, M.A., Macchiavelli, A.O., Diamond, R.M., Fallon, P. and

Lee, LY. et al., Alignment and pseudospin symmetry, Phys. Rev. C57, R1565 (1998). .

[103] Stutinsky, V.M., Shell effects in nuclear masses and deformation energies, Nucl. Phys,

A95, 420 (1967).
[104] Stutinsky, V.M., Shells in deformed nuclei, Nucl. Phys. A122, 1 (1968).

[105] Stutinsky, V.M. and Magner, A.G., Trace formula for the systems with continuous
| symmetries, Sov. J. Part. Nucl. Phys. 7, 138 (1976).

[106] Stutinsky, V.M., Magner, A.G., Ofengenden, S.R. and Dossing, T., Semiclassical in-
terpretation of the gross-shell structure in deformed nuclei, Z. Phys. A283, 269 (1977).

(107] Sun, Y., Zhang, J. and Guidry, M. Al = 4 bifurcation without explicit four fold
symmetry, Phys. Rev. Lett. 75, 3398 (1995).

(108] Sveﬁsson, C.E., Baktash, C., Cameron, J.A. et al., Observation and quadrupole-
moment measurement of the first superdeformed bands in the Ax~60 mass région,

Phys. Rev. Lett. 79, 1233 (1997).

[109] Toki, H. and Wu, L., AI = 4 bifurcation in ground bands of even-even nuclei and the
interacting boson model, Phys. Rev. Lett. 79, 2006 (1997).

[110] Twin, P.J., Nayko, B.M., Nelson, A.H. et al., Observation ofv discrete-line superde-
formed band up to 60% in 132Dy, Phys. Rev. Lett. 57, 811 (1986).

[111] Werner, T.R. and Dudek, J., Shape coe)dstence effects of super- and hyperdeformed
configurations in rotating nuclei with 42 < Z < 56 and 74 < Z < 92, Atomic Data

and Nucl. Data Tables 59, No.1, 1 (1995).

133



	Title
	Abstract
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Conclusions
	References

