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ABSTRACT 

The present thesis aims at bringing the latest discoveries in nuclear physics and the new 

developments in semiclassical physics closer together. The low energy domain of nuclear 

physics has been replete with exciting observations of superdeformed (SD) bands in a number 

of pockets of the chart of nuclides beginning with the first discovery of a discrete high spin 

SD band in 152Dy in 1986 [1]. Since then a large number of SD bands have been seen in 

A=80,130,150,190 mass regions [2]. On the experimental side, the observation of these 

weakly populated and very low intensity structures represents a triumph of the modern 

detector arrays and data analysis capabilities of modern computing systems. It has also led 

to the emergence of what we may term as ultra-weak spectroscopy. 

Theoretically, one expected the observation of these structures on the basis of potential 

energy surface calculations based on Strutinsky method which lays emphasis on the role of 

shell structure near the Fermi energy in stabilising specific configurations at specific shapes 

[3-5]. A detailed compilation of these results as applicable to SD shapes may be found in 

the reference [6]. Experimental discovery of SD bands thus also implies a growing confidence 

in the predictive capabilities of the present theoretical methods in nuclear physics. 

Large deformations and high angular momenta, which are intertwined themes, have now 

become commonplace in nuclear physics [71. Superdeformed,  structures like fission isomers 

were already known in 1970 [8]. There is however an important difference between SD 

structures and fission isomers; while the former are essentially observed at high spins, the 

fission isomers are observed at low spins. Moreover the SD bands display characteristics 

which make these structures look very simple yet very hard to understand. 

Physics over the past decades, has also been witness to a resurgence in the study of non-

linear features and application of semiclassical methods to quantal systems. Semiclassical 

techniques, first ushered in by Bohr, Sommerfeld, Einstein etc. were abandoned after the 

advent of quantum theory [9,10]. These have now been found to be of immense help and 

use in unraveling the nature of truth underlying the various phenomena exhibited by corn- 



plex quantum and semi-quantum (mesoscopic) systems. The study of chaotic dynamics in 

hamiltonian systems has become a growing discipline during the recent years. These studies 

are now being carried out in nuclei also with an emphasis on order-to-chaos transition in the 

classical dynamics of a particle in various shapes of cavities [11,12]. While earlier studies of 

chaos in nuclei have concentrated on statistical approaches [13], semiclassical methods have 

now begun to play a very important role. Developments like the periodic orbit theory [91 

have brought to fore the deep connection between classical motion and quantal shell struc-

ture. Effects like superdeformation at high spin are directly linked to quantal fluctuations 

which tend to stabilise shapes having axes ratio 2 :.1,3 : 1, etc. The fact that these are 

very feeble and weak structures suggests that small nonlinear terms have a role to play in 

stabilising these structures with specific configurations. 

Taking a lead from the classical analysis of the nuclear models [14] and combining several 

ideas from the theory of dynamical systems, we present in this thesis a complete dynamical 

scenario of the two most used models of nuclear rotation: the cranking model [15] and 

the particle-rotor model [16]. We also highlight the, most important features of the SD 

bands and establish their systematics. We then proceed to show that most of these features 

can be understood very well from the semiclassical analysis and thus establish the role of 

nonlinearity in stabilising the SD structures. 

Shell structure is a recurrent theme of molecular,atomic and nuclear systems. The quan-

tal nature of a system naturally leads us to shell structure. It basically represents the 

grouping of levels at certain number of neutrons and protons at zero or, non-zero deforma-

tions. A quantitative way of dealing with shell structure was provided by Strutinsky [4] and 

forms the basis of the present day understanding of the stability of nuclei. In recent times, 

a new semiclassical approach has emerged in the form of Gutzwiller's periodic orbit theory 

(POT) [9] which relates the single particle level density of a quantum system to the classi-

cal periodic orbits. Use of periodic orbit theory to understand the properties of deformed 

and superdeformed systems is another major theme of this thesis. An introduction to the 

superdeformation and related topics is presented in Chapter I. 
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In chapter II, we present a complete discussion of the nonlinear dynamics of the particle-

rotor model [16]. Special attention is given to the semiclassical quantization of small arupli-

tude oscillations around the twin excited fixed points c±, which naturally yields rotational 

bands whose various features such as alignment, starting angular momentum and oscilla-

tions in gamma ray energies are discussed. These twin fixed points are located in a region of 

nonlinearity and can be identified with the two minima in the double well potential (DWP) 

of j3. The ]JWP, being energy dependent, gives rise to unusual features including a DI-2 

staggering. 

A close correspondence of these results with the properties of the SD bands is established 

in chapter III, where we establish some additional new features of SD bands from an analysis 

of the experimental data [17]. In particular, we show that the SD bands have almost reached 

the rigid rotor value of the moment of inertia [17]. Also, we highlight the negative alignment 

of SD bands and its saturation at a finite positive value at higher angular momenta which 

in turn is responsible for a saturation in the dynamic moment of inertia. The fact that SD 

bands begin with a finite starting angular momentum is presented as an important feature of 

the SD bands and its systematics are explained. An understanding of the AI=2 staggering 

is also provided [18]. A new feature of General Identical Band is also presented [19]. 

In chapter IV, we present a complete discussion of the dynamics of cranking model and its 

semiclassical quantisation is carried out [15,20]. Numerical results based on this model are 

presented. These results confirm the results of particle-rotor model. These studies together 

tend to present a view of the SD bands as structures stabilised in a sea of chaos and hence 

not so well connected to the normal deformed states. 

We present the current general interpretation of shell structure in nuclei in chapter V. At 

this stage we introduce the periodic orbit theory and other necessary tools to understand the 

link between the shell structure and periodic orbits. We also present, as examples, simple 

applications of the POT to integrable systems like harmonic oscillator and spherical billiard. 

An expression for the level density of spherical billiards is derived and results presented [21]. 

We extend the POT in chapter VI to deformed systems. In particular an analysis of the 
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classical closed orbits in an infinitely deep ellipsoidal well is considered and its relevance to 

the gross-shell structure of single particle spectra in deformed nuclei established [22]. We 

present detailed and exact results for the planar and the 3-dimensional periodic orbits and 

study their consequences for the deformed and superdeformed nuclei [23]. The conclusions 

of the thesis are contained in chapter VII. 

iv 
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CHAPTER I 

INTRODUCTION 



I. INTRODUCTION TO SUPERDEFORMATION 

Nuclei possessing very large deformations have been known for many years in light nuclei 

in terms of excited a-cluster configurations, and in some actinide nuclei in terms of the so 

called fission isomeric states. However, these "Superdeformed" shapes could be studied only 

in the ground state region; for example the highest spin observed among the fission isomers is 

81`i. An important step forward in the research was taken by the observation of superdeformed 

high-spin states [110] first in 152Dy and later on in many neighbouring nuclei as well as in 

nuclei around 192Hg. Rotational bands containing up to 18 or 19 discrete superdeformed 

transitions could be identified ranging up to spin I -_ 66h. By these observations a new 

and exciting field in nuclear spectroscopy has opened up allowing for detailed studies of 2:1 

shapes where the pairing interaction often plays a minor role. 

The experimental discovery of superdeformed high spin states was preceded by their 

prediction a decade earlier [9]. In fact, the underlying mechanism, namely clustering of 

single-particle states (particularly at the symmetric 2:1 deformation), that gives rise to a 

negative shell energy for specific particle numbers, is the same as for the earlier observed 

fission isomers [12,84]. Although the occurrence and stability of SD regions (static proper-

ties) are well reproduced by the standard model calculations [9,28,97], it is the dynamical 

properties that elude a complete explanation. 

'For the past decade, the study of superdeformed states has dominated experimental 

nuclear structure studies at high spin. A recent compilation [99] lists about -170 yrast and 

excited superdeformed bands in about 60 nuclei spread over the four mass regions with A= 

80, 130 —140,150 and 190. The list continues to expand as more data are added, for example 

the recently added 156Dy nucleus. Another recent addition is the observation of SD states is 

62 Zn [108], which corresponds to a new region of superdeformation for nuclei with neutron 

and proton numbers N, Z .^ 30 — 32. This region was predicted long ago by Sheline et al. 

[98]. 

The spectroscopic properties of the different bands in different nuclei can generally be 

2 



understood from the occupation of the highest spin orbitals (N = 6, and N = 7 protons and 

neutrons in the case of the AN 150 region). The A=130-140 region corresponds to a 3 : 2 

axis ratio, and the positions of the single particle orbitals (especially N = 6 neutrons) play 

an important role in determining the particle numbers corresponding to shell gaps. The 

A=190 mass region also arises for similar reasons [86]. 

II. EXPERIMENTAL INFORMATION 

The importance of adequate detection techniques becomes clear if one analyses the FIG. 

1.1 [39]. A typical heavy ion projectile vs. target collision leads to fusion giving a compound 

nucleus having high excitation energy and large angular momentum. The characteristic 

phases of its rotation responding at the various stages of the de-excitation process are shown 

in:.FIG. 1.1. The process of particle emission is the fastest. During a characteristic time 

of r N 10-19sec. a number of particles, like neutrons, protons or a-particles are emitted, 

thus lowering the total excitation energy of the compound system. The electromagnetic 

radiation follows the particle emission with its characteristic gamma decay time of T : 10-17  

to 10-12sec. , Thus the main task of an experimentalist is to determine the process of de-

excitation by measuring the energies, and angular correlations between the successive gamma 

rays. A typical heavy ion reaction used to populate the superdeformed bands in 192 Hg can 

be given as 160Gd(36S, 4n)192 Hg using 368  [78] beam energy ti 159 MeV. Future of this 

domain of research lies in the exploitation of the 4ir multidetector systems with high energy 

resolution like Eurogam and Gammasphere and the systems to follow. 

III. UNUSUAL FEATURES OF THE SD BANDS 

The SD bands present several puzzles; most of these puzzles emanate from the very 

simple behaviour of the SD bands which defy a complete and consistent understanding [62]. 

Mostly two types of data have been gathered about the SD bands; one the quadrupole 
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transition energies of ry ray cascades and two, the intensity of the ry rays. The data have 

been used to arrive at a number of unusual features which we discuss briefly. 

A. An Unusual Population and Depopulation Pattern 

A schematic representation of the formation and decay of the yrast SD band is shown 

in FIG. 1.2. The SD bands are fed from the top in HI-fusion cum evaporation reactions of 

the kind described above and merely 1-2 percent of the nuclei formed correspond to the SD 

shape; naturally the transitions of SD bands are very weak. 

The population and feeding pattern of nearly all the SD bands are similar and this makes 

it very interesting. It has been observed that after the population at high spins, the intensity 

builds up slowly and attains a constant value; it then stays constant. For example, the SD 

yrast band in 150Tb builds up intensity from 20 to 80 percent in a very narrow range of spin 

between 6041 to 48h [34] as shown in FIG. 1.3. Also the population of SD bands is observed 

to be nearly unaffected by changes in excitation energy and the maximum input angular 

momenta. Such a feeding pattern indicates that there is no side-feeding to the SD bands as 

opposed to the normal deformed (ND) bands which experience considerable side-feeding. 

In another result from Eurogam, Petrache et al. [91] populated the ND and SD bands 

in 151Tb. It was observed that the yrast SD band and the first excited SD band depopulate 

at I = 32.5h and 26.5h respectively. Interestingly, the first excited SD band is observed 

to selectively populate only four positive parity ND states having spins between 35/2 and 

45/2 (average spin < I >= 20.51i). The yrast SD band, on the other hand, feeds yrast 

states of both positive and negative parity having spins between 45/2 and 63/2 (average 

spin < I >= 27.5h). The decay-out spins of the first excited SD band and the yrast SD 

band are 26.5h and 32.5h respectively; the difference of 6h in the decay out spins is thus 

maintained in the average value of the entry spin of ND states. 

As the angular momentum decreases, the SD bands undergo a sudden depopulation over 

the last two or three transitions. The sudden depopulation indicates that the strength of 
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the SD band has got fragmented over many weak transitions which have not been resolved. 

These observations paint a picture of the SD bands as isolated and hanging bands with no 

observations of any linking transitions between the SD bands and the ND states. 

B. Spin and Excitation Energy of SD Bands 

Since no linking transitions have been observed in most of the cases, there is no direct 

information about the spin and the excitation energy of SD bands. It became necessary to 

use indirect methods to make the spin assignments. In one such method [36], use is made 

of the fact that the gamma-ray transitions are known to be of E2 type. The level energies 

for these bands may be written as 

2 
E(I) = 	[I(I + 1) — K2 ] + Eo. 	 (1) 

One may use the Harris expansion to write I* = I(I + 1) = 2aw + 3/3w2  + ...... Here 

fue 2  A series of such equations are generated, one for each level, with spin value 

increasing by 2 units with each 'y-ray. A least squares fit to this set of equations is then 

performed to obtain 4, the spin of the lowest level. In another method [92], the VMI model 

was used to fit the cascade of 'y-ray energies and obtain the spin assignments. The spin 

assignments in the mass-150 region are more uncertain as the 7-ray sequences are known to 

end at higher energies and spins and the methods are not so sensitive to a change of I by 

±1. The available spin assignments are therefore uncertain by at least 1h to 2h. 

The estimates of the excitation energy are likewise uncertain. Theoretical calculations, 

for example, done by Bonche et al. [17] yield a SD minimum which is 4 to 5 MeV above 

the ground state minimum. Estimates from the experimental data also suggest that the SD 

minimum may lie anywhere between 4 MeV to 20 MeV. The recent observations from the 

France-UK collaboration [96] leads to an average excitation energy of decaying SD states 

above ND states of 4.3 + 0.9 MeV at the average spin value of 1011 at the decay point in the 
192Hg nucleus. It is therefore certain that the SD minimum lies nearly 5 MeV above the 
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ground state minimum. Considerable effort has gone into observing the linking transitions 

with some success in a few such cases. Recently, the spins, parity and excitation energy of 

excited SD bands in 194Hg have been measured by Khoo et al. [76] and Hackman et al. [51]. 

Linking 'y-ray transitions, highly fragmented, having energies from 3 to 5 MeV have been 

observed placing the two SD bands in 194 Hg at 6.4 MeV and 7.2 MeV of excitation energy. 

C. Unusual Behaviour of the Moment of Inertia 

The SD bands display a very regular energy spectrum as opposed to the energy spectrum 

of ND bands which are marred by significant variation in the moment of inertia with angular 

momentum and other features such as the backbendings. A semi-classical expression for the 

rotational energy of an axially symmetric rotor is given by 

E(I) 
	

(2) 

where £i is the moment of inertia about the rotation axis. Also, the rotational frequency 

w = dE. It follows that the gamma-ray transition energies E.-(I --> I — 2) = 1 2(2I— 1) 

and the second difference of energies AE y(I) = E(I + 2) — E.-(I). An ideal rigid rotor 

band will thus display a constant increment in the successively higher gamma-ray energies. 

The normal deformed bands however show a strong deviation from this rule; the pairing 

correlations, the Coriolis anti-pairing effect and the preferential breakdown of the high-j 

nucleon pairs accompanied by alignment lead to a complex dependence of the moment of 

inertia on rotational frequency. 

It is instructive to plot the angular momentum I vs. the rotational frequency w or 

E(I --* I — 2) as w N 2 . We show the typical behaviour observed in the ND and the SD 

bands in FIG. 1.4. The SD bands display a nearly linear behaviour in most of the cases 

in comparison to the ND nuclei which display a rapidly changing slope and backbending 

features. An exactly linear behaviour would imply a constant moment of inertia. We find 

that the SD band observed in the doubly-odd '50Tb1 and 194T12 are closest to this kind of 



behaviour (see FIG. 1.5 and 1.6). The SD band in 150Tb is probably unique in the sense that 

the change in moment of inertia for this band is within 1 percent from spin 2411 to 6011; it 

may easily be identified as the most rigid band seen so far with an average value of moment 

of inertia equal to 76112 MeV -1. The variations in the SD bands of '94T1 are likewise very 

small, and !` remains between 100112 MeV-' and 106h2MeV-i over the whole range of spins 

from 1111 to 37h. We find in general that the variation from a linear behaviour is very small; 

it is about 1 to 3 percent over a range of 10 units of angular momentum in the mass-190 

region. On the other hand, the change may be as much as 3 to 5 times of the ground state 

value over the same range of angular momentum in ND bands. 

It is customary in the literature to define a second moment of inertia or, the dynamical 

moment of inertia as 

	

~2) — dl 	d2E -1 

	

dw 	C die 	 (3) 

It is easy to show that 

(4) 

If Q3`(1), the kinematic moment of inertia, does not have any w-dependence, !3(1) = X3 (̀2). The 

dynamical moment of inertia may thus reflect the small changes in 3 (̀1) with w which are not 

obvious in the 3 (̀1) vs. w plots. The second difference in the gamma ray energies denoted 

by DES., when plotted as a function of either I or w, also reveals these fine changes. 

D. L I, =. 2 Staggering 

The term iI = 2 staggering [52,88] implies a systematic displacement of a sequence of 

states having spins I, I + 4... etc. with respect to a complementary sequence of states with 

spins I + 2, I + 6,.... etc. Such a systematic displacement appears as a regular staggering 

pattern in the 3 (̀2) vs. 11w plots. Two examples which display this feature prominently are 

shown in FIG. 1.7; the example of 149Gd band 1 has been widely discussed in the literature 
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and the other example where the feature is quite prominent is band 1 of 193T1. Other cases 

with this feature over a limited range of spin have also been observed. Most recent examples, 

where this feature has been observed, are 148Gd and 143Eu [55]; however in both the cases 

the feature is observed over a range of angular momentum limited from both the sides. We 

discuss this feature in Chapter III in some detail. 

E. Unusually Long Chain Of Levels In SD Bands 

It is understood that the SD shapes become a possibility because the large moment 

of inertia helps in lowering the rotational energy. These bands are located in the second 

minimum formed at higher angular momenta; the second minimum is not more than 3-4 

MeV deep. The SD bands consist of a chain of levels ranging from say, 15h to 6011; the 

topmost level lies almost 15-20 MeV above the lowest level thus extending much beyond the 

second well (see FIG. 1.8). There is no example of such a long chain of levels in the fission 

isomers where the second minimum exists at the lowest angular momenta; the highest spin 

known in the fission isomeric SD bands is merely 811. The density of normal states is very 

high at 15-20 MeV of excitation energy reached in the high-spin SD bands. It is therefore 

amazing that the SD states exist almost isolated from these normal states. Further, the 

lifetime measurements have confirmed that there is no change in shape as we go up the 

band with increasing angular momentum. In other words, the SD bands are quite rigid in 

nature. 

F. Phenomenon Of Identical Bands 

The most widely discussed feature of the SD bands has been the phenomenon of identical 

bands (IB) [25,101]. A discussion of this phenomenon will also bring up interesting questions 

about the presence of pairing correlations in SD nuclei. 

When we go from one nucleus having mass number A to another nucleus having mass 

number say (A+1), we expect some changes in the rotational energies due to a variation 



in the moment of inertia and also the spin values. Since the pairing correlations play an 

important role, the observed changes could in fact be much more. It has however been 

observed that the gamma-ray transition energies of two SD bands in neighbouring nuclei 

are identical over a very large range of angular momenta; the differences are much less than 

what one would normally expect on physical grounds. This observation of identical cascades 

of ry-transitions in two neighbouring nuclei is termed as the phenomenon of identical bands. 

It is known that the variation of the moment of inertia in deformed nuclei is proportional 

to oc (Al 2 ) MeV -1. For an increase in A by one unit, the increment in `3` is given by 

(A3 )h2 MeV -1. Therefore, 

 
A=150; 	(5) 

A 1 percent relative change in is expected. Let us now assume that the spin of the levels 

involved in the identical transition (see FIG. 1.9) differ by bI = IA+1 - IA. The change in 

rotational frequency for the transition may be written as 

_ 	 bW b oI 
6W = WA+1(IA+1) — WA(IA) 	or, 	-;:;-=--;-+T (6) 

If A corresponds to an even-even nucleus, then A+1 will be an odd-A nucleus. The angular 

momenta of the two will differ by at least 1/2; the difference could however also be 3/2 or, 

5/2 etc. For I N 30 and I= 1/2, 3/2 or, 5/2 .....,= 1/60, 1/20 or, 1/12..... etc. respectively. 

Thus the value of & =1/180  or nearly 0.5 percent for SI=1/2; it acquires a value 7/180 or, 

nearly 3.5 percent for bI =3/2. Since w :: 2 , we expect at least 1 percent change in gamma-

ray energy in going from a nucleus with mass number A to a neighbouring nucleus A+1. 

The observed change is however much smaller than this because there is hardly a change of 

3-5 keV over a range of 3000-5000 keV implying 	I per thousand. Note that we have 

completely ignored the additional changes that might occur due to pairing correlations. 
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G. IB Phenomenon In Normal Deformed Nuclei 

Is this feature unique to SD bands? Probably not. Similar features were noted by Jain 

in 1984 [60,71] in the normal deformed nuclei of the rare-earth region and also the actinide 

region [66] where the identical nature of the transition energies of an even-even and its 

neighbouring odd-A nucleus was specifically pointed out. Similarly, a striking similarity 

between the energies of rotational bands of pairs of even-even nuclei with A=164± a was 

observed again for the first time by Jain and collaborators [64,65,100].A comprehensive 

review of this topic may be found in Baktash et al. [5]. It is thus clear that such features 

are not uncommon; however, these are much more prominent in the SD bands. 

Questions may also be asked about the presence of pairing correlations in the SD nuclei. 

It appears that the pairing may not have completely vanished in the SD bands. It is well 

known that the observed moment of inertia in ND nuclei is less than one-third of the rigid 

body value due to the presence of pairing correlations. As the angular momentum increases, 

the Coriolis antipairing effect leads to a large rise in the moment of inertia by a factor of 2 

to 3. On the other hand, the change in the moment of inertia of mass-190 SD bands is as 

little as 1 to 5 percent over a range of 10 to 20h of angular momentum. As we shall show in 

this thesis, the SD bands may already have reached the rigid rotor value. 

IV. SHELL STRUCTURE 

In simple terms, the shell structure means a bunchiness in the levels of a system. It 

is a general property of quantal systems present in diverse fields of nature, be it an atom, 

molecule or nucleus. This shell structure has two characteristics, one, the groupings of levels 

and the second is the extra stability of the system at the complete filling of the shells. 

Example of shell structure in atoms is the extra stability, high ionisation potential, lack of 

reactivity of noble gases at particular electron numbers. 

A similar stability, first noticed by Mayer [82,56] exists for spherical nuclei with magic 
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numbers of 2, 8, 20, 28, 50, 82 and 126 (114) neutrons or protons. A large number of phe-

nomena exhibit this special stability at these magic numbers such as stability to radioactive 

decay, abundance of isotopes, delayed neutron emission by these nuclei. Peaks in the binding 

energy also show this feature. 

In the framework of single-particle models, the distribution of energy levels is usually 

defined in terms of shells, subshells etc. Shells can be defined as a large-scale nonuniformity 

in the energy distribution of the individual particle states [22]. 

Most nuclei are now known to be nonspherical in shape. In order to describe the effect of 

deformation, Nilsson [85] developed a deformed shell model, which is basically an extension 

of the shell model to deformed potentials. In this model an axially deformed harmonic 

oscillator potential was introduced and a spin-orbit term, and a term proportional to e2  
which simulates the flat bottom and a steeper surface, were added to reproduce realistic 

magic. numbers. In the early stages, only one deformation parameter c was used in this model. 

In this model also, shell structure was evident. The aspect of quantal shell effects and their 

relation with nuclear deformations was emphasized by Strutinsky with the introduction 

of his shell correction method [22,105] . A detailed description and understanding of this 

method may be found in Brack et al. [22]. An understanding of the shell structure and 

hence the spherical or deformed shapes at various nucleon numbers, plays an important role 

in explaining the superdeformed shapes. In the present thesis, we shall try to understand 

the origin of shell structure by using the powerful semiclassical technique of periodic orbit 

theory. 

V. PERIODIC ORBIT THEORY 

It is well known that periodic orbits play an important part in going from classical 

mechanics to quantum mechanics. Classical action of the orbit is a major input in this 

theory [20]. In the beginning of quantum mechanics, this theory failed when it encountered 

nonintegrable system. This old quantum theory is related to the present day quantum 
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mechanics through the quantisation of the classical action over a periodic orbit. An early 

example of this is Bohr's model of atom in which the orbits with certain integral units of 

classical action are said to be quantized and labelled by some quantum numbers. For one 

dimensional systems the quantity f pdx can be understood in terms of action S or the area 

of a closed path in the two dimensional phase space, whose two axes are represented by 

the position coordinate and the corresponding canonical momentum. As an example, we 

consider the case of one dimensional harmonic oscillator, whose Hamiltonian is given by 

H = ZM + Z MW 2 x2 = E. 	 (7) 

It can also be written as 

p  a x 2 

2MEl + ( 2E2) =1. 
	 (8) 

M~ 

This is just the equation of an ellipse in the given phase space with semi-axes given by 

2ME and M . Thus the particle orbits along this ellipse in harmonic oscillator. The 

area of the particle over one complete period is given by 

2E 27rE 
W 	 (9) 

This area will identify action denoted by S. This action can further be quantised to, have 

few periodic paths or orbits. 

A powerful technique called periodic orbit theory has now been developed [49] which 

enables one to obtain gross-shell effects in the level density of a quantum system semiclas-

sically without solving the Schrodinger's equation. This theory was originally developed for 

chaotic systems. As we shall see, it was later on adapted to work for integrable systems also. 

There are almost infinite number of orbits present in a system. The beauty of this technique 

is that, the inclusion of a few shortest periodic orbits reflects the correct gross-shell structure 

[50]. Thus it is clear that these periodic orbits give rise to shells in the density of states 

and thus to the shell effects as an observable effect in the energy spectrum of the system. It 

is a known fact that shell effects are most prominent for the systems with high degeneracy 
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and symmetry. But these effects can also be seen in the case of chaotic or unstable systems 

because some isolated orbits are still present there. 

Periodic orbit theory relates the classical actions of the periodic paths to the oscillating 

part of level density 6g(E). This theory gives a Fourier decomposition of the oscillating part 

of the level density of single-particle states in terms of classical periodic orbits, their actions, 

periods and stabilities. This relation in general is quoted as `trace formula' was proposed 

by Gutzwiller [50]. The periodic orbit theory or trace formula as proposed by Gutzwiller 

applies only to systems with isolated orbits. Balian and Bloch presented in 1972 [6] a similar 

formula for cavities of arbitrary shapes in two or more dimensions; their formula remains 

valid also to integrable systems. Berry and Tabor in 1976 [10] also presented a trace formula 

also applicable to integrable as well as non-integrable systems taking EBK quantisation as a 

basis. Strutinsky and coworkers [105] extended the Gutzwiller theory to include potentials 

with continuous symmetries and correspondingly degenerate periodic orbits. A more detailed 

description of the trace formula and some aspects of the P.O.T. will follow in the relevant 

chapters. 

VI. PRESENT WORK 

This thesis aims at exploiting the semiclassical techniques available in the literature and 

applying those in the field of nuclear physics. We have tried to couple this with the study 

of the latest discovery in nuclear physics i.e. of superdeformed shapes. 

Since the discovery of first superdeformed band in 152 Dy by P. J. Twin in 1986 [110], 

the list of SD bands has expanded significantly. Till date, about 170 SD bands are known, 

spread over the four mass regions [99]. The gamma ray transition energies observed in these 

structures are very feeble. Thus the discovery of these bands depicts the a quantum leap of 

the advancement in the detection technology. 

The study of chaotic dynamics in hamiltonian systems has become a growing discipline 

during the recent years. These studies are now being carried out in nuclei also with an 
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emphasis on order-to-chaos transition in the classical dynamics of a particle in various shapes 

of cavities. Moreover as mentioned in the previous section developments like the periodic 

orbit theory [49] have brought to fore the deep connection between classical motion and 

quantal shell structure. Study of SD bands, which represent examples of motion in a highly 

deformed cavity, therefore offers an exciting possibility to connect the two areas. 

In Chapter II we present a complete semiclassical analysis of Particle-Rotor model, tak-

ing lead from Bohr and Mottelson [16]. In this chapter we have taken care of the classi-

cal fixed point structure emerging in the particle-rotor model and subsequent semiclassical 

quantisation at various fixed points. This SCQ naturally yields rotational bands whose 

various features such as alignment, starting angular momentum and oscillations in gamma 

ray energies are discussed. The two degenerate fixed points c, are situated in the region of 

nonlinearity/chaos and can be identified with the two minima in the double well potential 

(DWP) of j3. The features of the rotational bands built at the fixed points c± are discussed 

in full detail in this chapter [63]. 

A close correspondence of these results with the properties of the SD bands is established 

in chapter III, where we establish some additional new features of SD bands from an analysis 

of the experimental data [61]. In particular, we show that the SD bands have almost reached 

the rigid rotor value of the moment of inertia [37]. Also, we highlight the negative alignment 

of SD bands and its saturation at a finite positive value at higher angular momenta which 

in turn is responsible for a saturation in the dynamic moment of inertia. The fact that SD 

bands begin with a finite starting angular momentum is presented as an important feature 

of the SD bands and its systematics are explained. With the help of our simple model, 

presented in chapter II, we have tried to identify the most significant features of a few 

observed SD bands, representative of the four mass regions, with those obtained from our 

model. An understanding of the DI=2 staggering is provided. A new feature of General 

Identical Band is also presented [61] in this chapter. 

Chapter IV is a parallel to Chapter II, the difference being in the model chosen. In 

this chapter we have chosen the cranking model and the semiclassical analysis is repeated. 
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Numerical results at the degenerate fixed points c± are presented for excitation energies and 

alignments [59,38]. 

We present the current general interpretation of shell structure in nuclei in chapter V. At 

this stage we introduce the periodic orbit theory and other necessary tools to understand the 

link between the shell structure and periodic orbits. We also present, as examples, simple 

applications of the POT to integrable systems like harmonic oscillator and spherical billiard 

[20]. An expression for the level density of spherical billiards is obtained and numerical 

results presented. 

We now exploit the periodic orbit theory to understand deformed systems. We identify 

the possible classical periodic orbits in the infinitely deep ellipsoidal well. In particular 

an analysis of the classical closed orbits in the infinitely deep ellipsoidal well is considered 

and its relevance to the gross-shell structure of single particle spectra in deformed nuclei 

established [106].  We present detailed and exact results for the planar and the 3-dimensional 

periodic orbits and study their consequences for the deformed and superdeformed nuclei. The 

conclusions of the thesis are contained in chapter VII. 
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I. INTRODUCTION 

The present day particle-rotor models can trace their origin to the early works of Bohr 

and Mottelson [13,14] and the first application of Coriolis mixing to the rotational structure 

of 183W presented by Kerman [75]. Since then the particle-rotor models have played an 

important role in the understanding of a large body of experimental data on rotational 

structures in odd-A [67], odd-odd [70] and 2qp structures in even-even [46] nuclei. Several 

versions of the particle-rotor model are presently in use and detailed references to these 

may be found in [67,70]. The basic idea of the particle-rotor model is to treat one or, more 

valence particles moving independently in the potential as coupled to an inert rotating core . 

consisting of rest of the particles. An odd-A nucleus thus naturally divides into one unpaired 

nucleon plus an even-even core. Accordingly the Hamiltonian also breaks up into two parts, 

H = Hintr + Hrotor, 	 (1) 

where Hintr is the intrinsic Hamiltonian and Hrotor is the rotational Hamiltonian. One may 

also add to this, a residual interaction term such as pairing or, n-p residual interaction. The 

rotational part, 

2 	h2 	hz 

Hrotor — 2 R~ + 2c 2 R2 + 2% R3, 	 (2) i 

where (R1, R2, R3) are the three components of rotational angular momentum R. If the 
ti 

valence particle carries an angular momentum j, then I = R + j. For axially symmetric 

systems, where 13 = j3 and 2 1 = 2 2 = (2! ), the rotational Hamiltonian reduces to 

Hrotor = A(I — j)2 , 	 (3) 

where A = 	is labeled as the inertia parameter. The intrinsic part of the Hamiltonian 

is usually taken from the Nilsson model potential or, the deformed Woods-Saxon potential. 

For our purpose, we shall introduce a highly simplified version of the Nilsson model. 

Neglecting the spin-orbit (l and 11 terms, the Nilsson model for a single j-shell provides 

a simple expression for the single particle energies which may be written as [15], 
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E~3 = co — ,3 < nljj3 I r2Y20 I n1 jj3 >, 	 ( 4 ) 

= €o+/3k   3j3 — j(j + 1) (5) 4j(j+1) 

where ic is the radial matrix element. We rewrite this result as 

2  Eh = EO + Q33 ;. 	 ( 6) 

where Eo represents the energy corresponding to zero deformation and is independent of j3, 

the third component of . along the symmetry axis. 

I 	The total Hamiltonian for a particle in a single-j shell therefore becomes 

H = Qjs + A(I — j)2, 	 (7) 

where we drop the constant energy contribution Eo as it does not affect the dynamics of 

the problem. The Qj3 term reproduces the fan-like splitting of single particle energies for 

a given j as the deformation increases. A typical plot of this term is shown in FIG. 2.1; it 

simulates the Nilsson diagram reasonably well for a schematic model that we propose to use 

We use this Hamiltonian in the present chapter for a complete discussion of the non-

linear dynamics of the particle-rotor model for a single-j configuration. A semiclassical 

quantization procedure is then used to obtain excitation energies which group together into 

many rotational bands around twin fixed points c±. A detailed analysis and discussion of 

the behaviour of gamma ray energies, alignment and the dynamical moment of inertia is 

then presented. As will be discussed in the next chapter, many observed features of the 

superdeformed (SD) bands resemble very closely with the properties of the bands built 

around the fixed points c±. 

II. THE DYNAMICS OF THE PARTICLE-ROTOR MODEL 

The particle-rotor Hamiltonian, eq. (7), introduced above was first discussed by Bohr 

and Mottelson [16]. The rotor is assumed to be axially symmetric and R3 = 13 — j3 is a 



constant of motion, which is assumed to be zero. The parameter Q = k/3 4~ 4j( 31), where 
rc is the radial matrix element which may have a value in the range of 40-50 MeV. The 

inertial parameter A is of the order of 10 keV for highly deformed nuclei. For ,Q -- 0.6 we 

get a typical value of Q 	MeV. We thus have A << Q << Aj 2 for the orbits of large j 

that are of special interest in the superdeformed nuclei. We discuss solution for Q > 0, i.e. 

prolate shape only. Using the Poisson brackets 147], we can write the equations of motion 

for the Hamiltonian (eq.(7)) by noting that the components of the angular momenta are 

generators of infinitesimal rotations. The time derivatives of the components of l and I are 

given by the six equations, 

del 
dt — —2A(I2 — 22)j3 — 2Qj2j3, 	 (8) 

dj2 
dt — 2A(Il — ji)9a. + 2 Qjijs, (9) 

d~3 

dt 	—2A(I1 — j1)j2 + 2A(I2 — j2)jl, 	 (10) 

dIl 
dt = —2A(12 — j2)I3, 

d12 
	 :r 

dt = —2A(Il — j1)Is, 	 (12) 

and 

dI3 _ dh 	
(13) 

dt 	dt 

A. General Structure of the Orbits 

The equations of motion along with the general conservation laws can be used to explore 

the dynamics of a problem. Besides the six equations of motion, the magnitude of the 
--1 

particle angular momentum. j and the total angular momentum I are conserved so that 
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..2  = 3' +j +j, 	 (14) 

and 

I 2 = I1+12+13, 	 (15) 

provide additional constraints. In addition, the total energy of the system given by eq. (7) 

is also a conserved quantity. The total energy defines a parabolic surface whose intersection 
ti 

with the sphere corresponding to constant . defines the trajectories of the system. A fixed 

point analysis of the problem by putting jl , j2i  and j3  equal to zero, provides four stationary 

points corresponding to a minimum, a saddle point and two distinct but degenerate maxima. 

For I > I. the saddle point and maxima merge into a single maximum. 

• The fixed point a 

The fixed point denoted by a corresponds to the full alignment of .7I along  and represents 

the minimum in energy. It defines the yrast line with 

.11 = j , .12 = ,73 = 0, 	 (16) 

Il = I , I2 = 13 = 0, 	 (17) 

and the energy 

Ea  = A(I — j)2 . 	 (18) 

We have chosen the 1-axig as the rotation axis. 

• The fixed point b 

The fixed point b, an extremum, corresponds to an anti-aligned configuration in which 3 is 

aligned opposite to I. At this point, 

9i = — j , j2 = .7a = 0 , 	 (19) 

Il = I , I2  = 13 = 0, 	 (20) 
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and the energy 

Eb = A(I + j)2. 	 (21) 

• The twin stable fixed points cf 

The twin stable fixed points denoted by c± exist only for I < I, and correspond to the 

situation j3 	0. It can be shown 163] that c± are defined by the following values of 

(j1, j2, j3) and (11,12, 13):  

ji = j2 = — 	
a2(I2 — j2) 	( 1 + a + 0.5%,/)2 	2 _ 2 

	

32 1+a( 1+a+ 	) + 2 1-}-a( 1+a + a)(
j 	i 	(22) 22)  

a(12 — j2) 

	

j3 — I3 
= 

j2 _ 	 (23) 
4/1+a(/1+a + -/a)' 

	

I1 = (2 /(1+    a~ 	+ 1)2ji 	i= 1,2 	 (24) 

where a = Q~Qa 4A~ To obtain the energy at the fixed points ct we rewrite the Hamiltonian 

eq. (7) as 

E = (Q — 2A)j3 — 2A(Ilji + 12j2) + A(I2 + j2 ), 
	 (25) 

and use the values of (Ii, I2 , 13) and (jl, j2, j3) given by equations (22-24). We finally obtain 

= A(I2 + j2 ) + 2A\/(1 + a).2 — 	aA(I 2 — j2 ) 	(3 (1 + a) + 1). (26) 
a 	2 1+a( 1-~a -I- ~) 	a 

It can be shown that the fixed point b is a saddle point for a value of the angular momentum 

I less than a critical value I. The vectors I and j precess around the point of minimum 

energy until the saddle point is reached. The orbit passing through the saddle point, the 

separatrix, plays a very important role in.the analysis of the solutions of classical dynamical 

systems. Knowing the nature of the separatrices is very helpful in classifying the general 

structure of orbits. 
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III. FICTITIOUS HAMILTONIAN FOR J3 

The system of equations (8-13) can be reduced to a second order differential equation in 

j3 as also shown by Bohr and Mottelson [16,59,63]. It follows that j3 satisfies 

dt3 + Kjs + Lj3 = 0 , 	 ( 27 ) 

where the coefficients 

K = 4AQIj + 4A2(I — j)2 — 2(Q — 2A)E, 	 . (28) 

L = 2Q(Q — 4A), 	 (29) 

and 

E=E—E,,,=E—A(I—j)2 . 	 (30) 

Here E represents the energy with respect to the yrast line representing the fully aligned 

configuration. As .J, 32 and ,j3 are coupled through a set of nonlinear differential equations, 

dynamics 01 33 controls the overall dynamics of the model. The equation of motion for j3 

leads to a fictitious Hamiltonian in j3 

Hft~cic~ous = (dt )2 + Kj3 + 2 j3• 	 (31) 

It can easily be shown that 

Hfictitious = (4AIj — E) E, 	 (32) 

a quantity denoted by C. The nature of solution depends on the sign of K which in turn 

depends on the energy. At fixed point a where K > 0 and L j3 << K j3 i the simple 

harmonic oscillator regime prevails. As we move away from a, the cubic anharmonic term 

Lj3 in equation (27) becomes important with increasing energy. When K = 0, the solutions 

of j3 obey a purely quartic oscillator. On increasing the energy further, the constant K 

changes its sign becoming negative. It heralds the commencement of a most interesting 
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nonlinear dynamical phase governed by Duffing oscillator [94] which then prevails for all 

higher energies. As shown in FIG. 2.2, the orbit corresponding to K = 0 and the separatrix 

divide the phase space into three parts. 

As pointed out earlier, the maxima c± exist only for I < I. To find the critical angular 

momentum, we should find the limit when these maxima merge with the saddle point b. 

Note that as soon as K < 0 at b, it becomes a saddle point. Thus, the critical angular 

momentum corresponds to the situation when K = 0 at b. Using this condition it is easy to 

show that  

	

1 _ =( 1+a+1). 	 (33) 

Thus K will be negative at b provided we do not cross the limit I. For j = 7 and A = 0.005 

	

MeV, values typical of SD shapes, I 	400h. Clearly 	the fixed points cf 'always remain 

within the i-space for all meaningful values of angular momenta. 

IV. SMALL AMPLITUDE OSCILLATIONS 

Small amplitude solutions near the fixed points can beobtained by using the technique 

of linearization of equations of motion. The frequency of oscillations at the fixed point then 

plays the role of angle variable and the energy at the fixed point is provided by (action x 

angle). It also provides us an avenue to introduce quantization of energy by quantizing the 

action. 'The nature of solutions around the fixed point a has been discussed by Bohr and 

Mottelson [16]. We give the details of solutions around a, b and c±; our main interest being 

in the fixed points c±  and a general expression for the frequency of oscillation. 

Fixed point a 

The frequency of small oscillation for j3 can immediately be obtained by ignoring the an-

harmonic term in the equation of motion to give 

w„ib = 	= [ 4AQIJ + 4A2(I — j)2  ]Z, 	 (34) 

	

j3 = a3COS(Wvibt + 110), 
	 (35) 
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a3 = [ 4K j ]E. 	 (36) 

The energy for small oscillations at a is given by 

E = Ea  + JW1ib , 	 ( 37) 

where Ea, = A(I — j)2  and J is the action for W,ib. The solutions of j2 and I2  are 

j2 = a2sin(Wvibt + v0), 	 I (38) 

a2 = 2  [ Q.7 + A(I — j)]a3, 	 (39) 
Wvib 

12 = b2sin(Wvibt + v0 ), 	 (40) 

b2  = 	A(I  — j)a3. 	 (41)  

Wvib 

The components Il and Jl are obtained from j2  = ji + j2 + j3 and I2  = Il + I2 + I. 

The action J can be quantized in the sense of Bohr-Sommerfeld quantization to obtain 

quantized energy levels. Thus 

	

J = (n + - )h, 	 (42) 

where n = 0 ,1, 2, 3, .... etc. 

• Fixed point b 

At• the unstable fixed point b which is a saddle point for I < I,, we obtain 

Wvib = [ —4AQIj + 4A2  (I — j)2  ] 2 	 (43) 

33 = a3COS(Wvibt + 1/0), 	 (44) 

a  — [ 	
2 

4AI jEb]  2 	 (45)  
3  

Wv-ib 

The energy of small oscillations at b is given by 
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E = Eb + JWvib. 	 (46) 

• Fixed point c+ 

The twin stable fixed points c± offer interesting .possibility of supporting motion beyond the 

saddle point b and therefore the separatrix. Since K < 0 at c, the equation of motion 

becomes that of a Duffing oscillator whose solutions are in the form of Jacobian elliptic 

functions [48] which decide the nature of excitations that can be sustained at or, near cf. 

The energy at the fixed points cf can be obtained by using the approximate values of 

(Ii , I2i 13 ) and (jl, j2, j3) at ct in the equation (25). We obtain [63], 

Ect = A(I 2 + j 2 ) + 2A 
(1+a) j2 — 	aA(I 2 — j 2 ) 	(3 /(1+a) 

+ 1), a 	2 l+a( l+a + 	) V a 

as in equation (26) and Ek, = E,} — Ea. 

Small oscillation analysis at c leads to the following results, 

w„ib = f f 4A2 (I l + j 2 
L 

— 2j3) + 4A(Q — 2A) (2 	1 + a + 1) \ I2 vim) a j 41( 	1 ( 	1 + a 	+ a2 + ~ ~— 

(47) 

In fact the frequency of small oscillations near the various fixed points is given by a general 

expression. 

Wvib = ±[4A2(11 + I2 + .71 + .72) + 4A(Q — 2A)(I1j1 + I2j2)]Z, 	(48) 

where appropriate values of Ii, j1 , etc. should be used. The energy for small oscillations 

around c± can be written as 

E = E,t + Jwzib, 	 (49) 

where J is the action is given by 

J = 4 ~~ dj3 [C — Kj3 — 2jg]Z~ 	 (50) 

and 



j+ = [L K2 + 2LC --- K)] . 	 (51) 

The quantization condition, 

J = (n + 2)fi, 	 (52) 

where n = 0 , 1, 2.......etc. is introduced to obtain the quantized energy levels. As already 

pointed out, as K changes sign from positive to negative, a double well potential (DWP) 

appears from the single well in V(j3) of the fictitious Hamiltonian of j3 given by 

(3 
 d~ 

dt)
a 
+ V (i3) = C, (53) 

where V(j3 ) = Kj3 + (L/2)j3 and C = (4AIj — E)E. The minima of the DWP correspond 

to the two isolated, fixed points cf ; these are located in a region of nonlinearity. The DWP 

supports two solutions which we denote by p=0 and p=1; these correspond to the usual 

even and odd solutions of a potential well. On taking the tunelling between the two wells 

into account, the semiclassical quantization condition for the action in j3 now reduces to 

- /~ C — V(j3)dj — ~(E) 2 	= (nf ± 4), 	(54) 

where 

E(C) = 
2P:(O:)~  

(C — V(0)) = C , 	 (55) 
4K 

(D±(E) = 2 [argF( 1 + iE) — el 	+ s ± tan-ie-ITE], 	 (56) 

and, 0cI = 4)_ — 1'+ and 0 = 1_ +c+. The limits on j3 are the four real turning points at 

subbarrier energies denoted by —j+ , —j_, j_ and j+. If we choose the upper sign in equation 

(54) and take n+=0,1,2,3..., we get the even solutions denoted. by p=0. By taking the lower 

sign and n_=1,2,3,...we get the odd solutions denoted by p=1 [2]. Fulfillment of the SCQ 

condition given by equation (54) yields a set of energies E for a given n and different I; this 

constitutes a band which exhibits rotational features. 
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As pointed out by Bohr and Mottelson [16], the frequency w„ib  is characteristic of motion 

in the intrinsic frame . Another frequency Wrot associated with the angle variable conjugate 

to the total angular momentum, can also be defined in the particle-rotor model, 

(aEl 
Wroe = \ al / J' 

(57) 

and is characteristic of the mean rate of precession of the rotor around appropriate axis. 

A. Double well in j3 and second order Phase transition 

The fictitious hamiltonian for j3 contains a fictitious potential term (Kj3 — Lj3) which 

is parabolic. As K changes sign from positive to negative, there is a sudden appearance of a 

double well potential FIG. 2.3, which implies a spontaneous breakdown of symmetry. Such 

a symmetry breaking is well known to be associated with a second order phase transition 

(57]. Following the Landau theory, let us choose the Landau free energy as 

X) = [Kj3 + 2js] —  E • 	 (58) 

The term in square brackets is the potential term which is a single well potential for K > 0 

and a double well potential for K < 0. The Landau free energy 0 for X = 0 is invariant 

under j3  -+ —h but this symmetry is spontaneously broken when K < 0. The transition 

is a second order because < j3 > is continuous at K=O. Here, j3 plays the role of order 

parameter and K I plays the role of the intensive variable (an exact analogy can be made 

with magnetization and temperature respectively). The Gibbs free energy G can be defined 

M 

ac  
= -  01 K 

 1
' 	 (59) 

(note again the analogy with magnetism). The condition determining <j > is 

2K < j3  > + 2L< j3  >3  — E = 0. 	 (60) 

For X = 0, the only real solution is 



<33 >= 0 	K>0, 

=f I L I 	K<0, 

which implies that the exponent /0 = 2 in the Rushbrook law. This establishes that 

there is a second-order phase transition as K changes sign. The system has two minima; 

corresponding to f M; it cannot however exist simultaneously in both of them and one of 

these two must become the ground state. From the nature of the fixed points a, b and c±, 

it is clear that the allowed j-space is divided by the separatrix passing through b into three 

disjoint regions. The yrast region (around a) is phase separated from the excitations built 

at or, around the other fixed points. Thus there appear four distinct regimes starting from 

the lowest energies - the SHO (simple harmonic oscillator) , AHO (anharmonic oscillator), 

QO (quartic oscillator) and DO (duffing oscillator). From the semiclassical quantisation 

procedures , we can quantise our system in all these regimes . Most significant point to 

note here is that the level sequences thus built up. will not be easily connected to each other 

or, stated in other words, the transition probabilities to qualitatively different dynamical 

scenario are expected to be rather small. 

V. ALIGNED ANGULAR MOMENTUM 

A quantity of great physical interest is the aligned angular momentum or , just alignment 

which quantifies the extent to which the particle angular momentum aligns with the direction 

of collective rotation. Alignment is defined as J16] 

i= 	_  
<I1> 	<(I2 — I3)2> 	 (61 ) 

It can be shown easily that at the fixed point a, 

(I •j — j3) = I j — 2Azb [1 — QI j Q A~I )I J)2 COS (wvibt + vo)J, 	(62) 

which implies that 

— j3 > = ii — J [(Q + A)I j + A(21 — j)(I — j) + Aj2 ]. 	(63) 
Wvib 



Taking < I1 + I2) z > 	I , we get 

zn = j — J [(Q + A)Ij + A(2I — j)(I — j) + Aj2 ]. 	(64) 
IWvi.b 

In the limit of Q >> A, 

(65) 

The alignment at c+ is obtained as 

ic} = [— E} — 2AI j2A 	
— < j3 (t) >] [< I2 — j3 (t)] -1 , 	(66) 

where <> denotes the time average value of the quantity within the brackets. In order to 

find the value of <j (t) > the averaging is to be done over the natural time period of the 

solutions of j3 which are elliptic functions [48] . Therefore, 

( )2 = — Kj3 	2 ~3 + C, 	 (67) 

which leads us to 

dh — L 
1 	dt 	2 (e2 — j) (93 —g2), 	 (68) 

where e2 = — L } (L )2 + L and g2 = — L — (G )2 + G and 

fo
tdt'—fe 23 dj3

(69) 
  2 (e2 — j3)(~2 — g2) 

Here we have assumed that at time t = 0 the particle is at point 33 = e and at, time t, it is at 

a point 33. Note that for —1 < C < 0, the particle is confined to one of the wells while for 

0 < C < oo the particle has enough energy to cross the barrier. The solution to equation 

(68) is given in terms of Jacobian Elliptic functions. 

• For C < 0, we get [94] 

j3 (t) = e dn(et, s), 	 (70) 

and the corresponding canonically conjugate momentum, 



P3(t) = —e2s2sn(et, s)cn(et, s), 	 (71) 

where the modulus, s, is defined as 
e2 _ 2 

s2 = 
e2

9 	 (72) 
e 

Note that when C < 0, s < 1, the natural time period of dn(et,$) is 2K(s) where K(s) is 

the complete elliptic function of first kind. 

• The solutions to equation (68) for the case C > 0, s> 1 are 

j 3(t) = e cn(est, S ), 	 (73) 

and 

P3(t) = —se2 sn(est, S )dn(est, s ), 	 (74) 

with the quantity s playing the role of the modulus. The time period of cn(est, 9) is 4K(s). 

• The phase space for the duffing oscillator is shown in FIG. 2.4. We see that phase space 
( 2  Z 

contains two stable (elliptic) fixed points (P = 0, j3 = I3 = j2 — 4 l+a( / l+a + ~) ) 
and one unstable (hyperbolic) fixed point (P = 0, j3 = 0). The region of trapped motion 

(-1 < C < 0) is separated from that of untrapped motion (0 < C < oo) by a separatrix 

C=O. The separatrix has the same energy as the hyperbolic fixed points however, they have 

different trajectories. A particle moving on a separatrix has infinite time period i.e. it takes 

an infinite time to reach the hyperbolic fixed point from any point on the separatrix. 

The case C > 0 corresponds to the superbarrier solutions (s > 1) where Eb > E. For 

A=0.005 MeV and j=7, Eb becomes greater than E at I = 129.5h as shown in FIG. 2.5(a). 

Since our interest lies in angular momentum I < 80h we always remain in the region where 

C < 0. In other words the subbarrier solution need to be considered. 

VI. RESULTS AND DISCUSSION 

We now present numerical results for the various fixed points and discuss the general 

nature of the solutions. As already pointed out, the fixed points c+ continue to exist until a 
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critical angular momentum I, -_ 40011 for typical values of the parameters A= 0.005 MeV, 

Q = 	and j= 7, representative of superdeformed bands. Thus, c± always remain within 

the domain of j-space. A plot of the energies of the various fixed points as a function of 

angular momentum I is shown in FIG. 2.5(a). We can see that the energy of fixed point c±, 

Ec. becomes lower than Eb around I = 13011. This is still a very large angular momentum. 

Thus for all practical purposes, Eb. < Ec}  . If we choose I = 7, then Eb (the energy of b 

relative to a) is about 1 MeV and E t . (the energy of ct relative to a) is about 14 MeV. In 

FIG. 2.5(b), we plot the gamma ray transition energies E y(I -► I -2) as obtained from Ect . 

It is most remarkable that the I vs. E.y  plot is exactly linear, implying an exact rigid-rotor 

behaviour of levels built at E,}. Also the line has an intercept of -1.0 on the I-axis. The 

slope of the line gives a moment of inertia value of ].04h2 MeV -1. 

When exact solutions are obtained at fixed point c±, we obtain bands corresponding to 

n=0,1,2...., p=0 and n=1,2,3.....p=1. When solving the equations we ensure that action in 

j3 is quantized at least upto fourth decimal place. The resulting solutions of level energies 

for the standard set of parameters A=0.005 MeV and j=7 are shown in FIG. 2.6 and FIG. 

2.7. We have plotted the alternate angular momentum I vs. the gamma ray energies 

Ery(I - I - 2). It is remarkable to note that the transition energies obtained after SCQ 

begin to show very weak oscillations around an overall linear behaviour. The oscillations 

show up more clearly when we plot the energy difference E.,(I --► I - 2) - Ehi"(I --> I - 2) 

vs. I where Eli"(I -+ I - 2) represents the linear fit to the calculated gamma ray energies. 

As is evident from the results in FIG. 2.8 and FIG. 2.9 the magnitude of the oscillations 

decreases rapidly as n is increased. 

Another important feature resulting from our calculations is that these bands start with 

a finite angular momentum Ib. In other words the bandhead has a finite angular momentum 

which depends on A, j and n. Effect of A and j on the starting angular momentum is shown 

in Table I. As j is increased the starting angular momentum comes down. We may point 

out at this stage that the many particle configurations assigned to the SD bands can give 

rise to a higher effective j value; the starting angular momentum therefore will depend in a 
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crucial manner on the SD band configuration. 

Other quantities of physical interest are alignment i and dynamical moment of inertia 

(2). The aligned angular momentum of a given band is numerically calculated by using 

the level energies of the band in equation (68). The time average of j3(t) is obtained by 

using the procedure outlined in section V. The numerical results for n=1,2,3,4, p=O and 

p=1 are shown in FIG. 2.10 and FIG. 2.11 respectively. It is interesting to note that the 

alignments are negative near the bandhead, rise with increasing angular momentum and 

finally saturate. In FIG. 2.12 and FIG. 2.13 we show the behaviour of second moment of 

inertia (~) for n=1,2,3,4, p=O and p=1 respectively. We notice that the (2) value shows 

a sudden rise at certain angular momentum which is reminiscent of a similar discontinuity 

noticed in the behaviour of several SD bands [301. Further i~) value appears to saturate 

at higher angular momenta for several n values. This saturation in X3 (̀2) may be directly 

correlated with the saturation in the alignment observed at high angular momenta. 

To conclude, we have carried out a complete analysis of the dynamics of the particle-rotor 

model in a single-j configuration. The SCQ at the stable fixed points c± leads to rotational 

bands with many unique features which resemble closely to those of the SD bands. The weak 

oscillations in gamma ray energies appears to be a direct consequence of the nonlinearity in 

the equation of motion of j3. Also the calculated bands start at a finite angular momentum 

as is the case with the observed SD bands. The behaviour of the aligned angular momentum 

indicates that the alignment remains negative for a considerable portion of the band near 

the bandhead. The dynamical moment of inertia exhibits features similar to those noticed 

in the experimental data. A detailed comparison of these features and also some additional 

features like DI = 2 staggering with the experimental data will be presented in chapter III. 
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TABLES 

TABLE I. Effect of Parameters A and j on Starting Angular Momentum lb 

A j Ib,n =0,p=0 Ib,n =1,p=0 Ib,n =2,p=0 16,n =1,p=1 Jb,n =2,p=1 

0.005 6 15.5 37.5 55.5 21.5 41.5 

0.005 7 11.5 29.5 41.5 17.5 31.5 

0.005 8 9.5 23.5 33.5 13.5 25.5 

0.006 7 9.5 23.5 35.5 13.5 27.5 

0.008 7 7.5 17.5 27.5 11.5 21.5 
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I. INTRODUCTION 

The phenomenon of superdeformed bands [110] and some well known features of these 

bands have already been introduced in chapter I. The aim of this chapter is to bring into 

light some additional new feature of SD bands pointed out more recently by us [61,62]. In 

particular, we would establish the following features on the basis of the data on SD bands. 

• A weak oscillation in the angular momentum I vs. the gamma ray energies Ery (I --~ I — 2) 

plots. 

• A negative intercept on the I axis of the linear fit through the I vs. E.y plots in a large 

number of SD bands. 

• A finite angular momentum for the bandhead of the SD band. 

• The DI = 2 staggering is a third order effect compared to the weak oscillation which is a 

first order effect. 

• A feature of general identical band. On the basis of the empirical analysis, we also 

show that a feature of general identical band (GIB) emerges in A = 190 mass region. This 

phenomenon of GIB is also present in the other mass regions of SD bands but not as strongly 

as in the A=190 mass region. The identical bands are therefore just an outcome of this more 

general feature. 

An understanding of these features on the basis of particle-rotor model presented in 

chapter II will be attempted in this chapter. An empirical analysis of the SD band data 

based on our understanding clearly establishes the rigid rotor nature of the SD bands and 

also the negative aligned angular momentum. An explanation of the DI = 2 staggering 

follows in a most natural way. 
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II. NEW EMPIRICAL FEATURES OF SD BANDS 

A. Weak oscillations in the I vs. E.. plots 

A very interesting general feature was noticed by us in the I vs. E. y  plots of the SD 

bands. We observe that the general nature of I vs. E. plots is almost linear as is evident 

from the examples shown in FIG. 3.1 for different mass regions [61,99]. It may be noticed 

that the gamma ray energy exhibits a systematic oscillation . around the linear fit to the 

I vs. E., data. We have verified that such oscillations are present in almost all the SD 

bands [63]. These oscillations can be seen more clearly by plotting the energy difference 

EE.Tp.  ( I --► I — 2) — E 1z(I - I —2) vs. I. Here E (I —p I — 2) represents the gamma ray 

energies obtained through a linear fit to the SD band data. These plots are shown in FIG. 

3.2 (a), (b), (c) and (d) with examples from all the mass regions. It may be noticed that 

the amplitude of the oscillations is of the order of 10-20 keV. This universal feature of the 

SD bands gets further support from the observation of the weak oscillations in even-even, 

odd-A and odd-odd nuclei. For example as many as six SD bands are observed in 194T1, 

which otherwise has very little spectroscopic information known at normal deformation. 

This suggests that a common mechanism must be operative which leads to the stabilization 

of the SD bands irrespective of these belonging to an even-even or an odd-odd nucleus. All 

the properties displayed by these SD bands are also common to other SD bands. It may 

also be emphasized that the data on SD bands in odd-odd nuclei do not display any new 

additional feature; it again brings into focus the universal nature of the properties of the SD 

bands [99]. 

B. Negative intercept of the I vs. E.y  plots 

The linear fit to the I vs. E. y  plots of the data on SD bands when extrapolated to the 

I-axis invariably leads to a negative intercept for the SD bands in A=190 mass region [37]. 

This feature is also present in a large number of cases from the other mass regions. In the 
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first column of Table I we list the values of the alignment as obtained from the intercept; as 

will be shown in this chapter, an empirical analysis based on the particle-rotor model [37] 

allows us to interpret the values of these intercepts in terms of aligned angular momentum 

of SD bands. It immediately leads to the unusual conclusion that a large number of SD 

bands have negative alignment. This however appears to support the interpretation of SD 

bands built around the fixed points c*  located in a region of nonlinearity [63]. 

C. Finite angular momentum of the SD bandheads 

It is a general observation that the SD bands terminate at the lower end rather abruptly 

at an angular momentum which may lie anywhere between 8h to 3011 [99]. The abrupt 

termination of the SD bands is explained in terms of the inability of the present day detection 

techniques. In other words it is believed that the gamma rays decaying out of the lowest 

observed band level have been fragmented into many weak gamma rays. This has been 

the biggest stumbling block to the experimental assignment of the angular momentum and 

parity as well as the excitation energy of the SD bands. Absence of linking transitions should 

not however be viewed as purely a deficiency of experimental techniques. Recent observation 

of linking transition in at least two cases [51,76] confirm this because the final level appears 

to decay out in to many-many paths and only few of the high energy gamma rays could be 

established. 

These observations based on the experimental data suggest that the SD bands have 

a bandhead which always carries a finite angular momentum, we denote this by Ib. The 

empirical systematics of Ib [99] are shown in FIG. 3.3. It is clear from the FIG. 3.3 that SD 

bands in a given mass regions have their Ib values lying in a definite or fixed range of angular 

momenta. The SD1 bands, which are probably yrast, are plotted in the left block while the 

rest are plotted in the right. We find that the value of the Iy, in A=130 mass region, has 

the largest range extending form 12.511 to 26.51 except for '33Nd which has the lowest value 

of Ib=8.511. In the A=140-150 mass region, the value of Ib lies in the range of 25h — 32h. 
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Finally for the A=190 mass region the value of Ib=8k to 12x. It is thus clear that each 

mass region has its own characteristic range of values of Ib. It may be cautioned that all the 

angular momentum values listed here are tentative and their experimental determination 

still remains to be achieved. 

D. LI = 2 Staggering 

We now establish that the AI = 2 staggering observed in few cases is a third order 

effect in gamma ray energies as compared to the weak oscillations which are first order 

effect and are much more general in nature. It may also be emphasized that a regular 

DI = 2 staggering has been observed in only three or four cases for example band 1 of 149Gd 

and band 1 of 193T1 [42,55]; it is therefore not a very general feature of all the SD bands. 

Most of the other SD bands display no such feature or, display an irregular staggering. It 

is therefore important that any explanation of this feature must therefore give a regular 

DI = 2 staggering only under special circumstances. 

To establish that DI = 2 staggering is a third order effect we first calculate LE(I) _ 

I — 2) — E"'(I —+ I — 2). As an example we list the values DE(I) for 149Gd 

band 1 in the II column of Table II. We then define a second difference A2 E y(1) = AEry(I) -

DEry(I — 2) also listed in column III of Table 2. A third difference defined as DD=02E.,(I) -

A2 E f(I — 2),is given in the fourth column of Table II . Notice that the quantity DD begins 

to exhibit a small rise or fall in its values for I > 37.5k, where AI = 2 staggering sets in. 

This rise and fall in DD is mostly less than 1 keV. It is this third order difference that shows 

up as DI = 2 staggering. 

The weak oscillations in gamma ray energies as discussed above have a magnitude of 

the order of 10-20 keV [61,62], are observed in most of the SD bands and hence represent 

a more general feature than Al = 2 staggering. DI = 2 staggering must therefore follow 

naturally from any explanation that leads to the oscillatory behaviour of I vs. E, plots. We 

shall show that this is indeed the case. 



III. AN EMPIRICAL ANALYSIS OF SD BANDS 

A complete discussion of the nonlinear dynamics of the Particle-Rotor model in associa-

tion with semiclassical quantization (SCQ) procedure was presented in chapter II [63). We 

have already shown that the motion around the twin fixed points c± supports rotational 

bands which display several unusual features. We summarize some of these features as fol-

lowing . 

1. The angular momentum I vs. the gamma ray energies E7 (I -4 I — 2) exhibits a linear 

behaviour signifying a constant moment of inertia. 

2. Inclusion of the nonlinear term in j3  and subsequent semiclassical quantization (SCQ) 

introduces weak oscillations in the linear I vs. E7  plots. 

3. The aligned angular momentum of these bands is negative near the bandhead, increases 

with I and ultimately becomes positive at large angular momentum. 

4. The rotational bands have a bandhead which always has a finite angular momentum 

which is around 811 or more. 

5. The dynamical moment of inertia 2)  is observed to saturate at large angular momentum 

and decreases slightly at the upper end. 

We note that all the features mentioned above resemble very closely with those of the 

SD bands. A further confirmation of these features can be obtained only from an analysis of 

the experimental data on SD bands. Taking our cue from the theory, we propose a simple 

empirical model [37]. Here we assume that the total angular momentum I of the SD band 
ti 

consists of a rotational part R and an aligned part 

ti 

I=R+i. (1) 

An almost linear behaviour of I vs. E y  plots both in theory and experiment suggests that 

the SD bands can be treated as some kind of aligned bands. The spectrum of a classical 

rotor with rotational angular momentum R and a decoupled particle with an aligned angular 

momentum i may be written as 
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2 
Erot (I) = 2  [I (I + 1) — 2iI + i(i + 1)]. 	 (2) 

The effect of alignment is thus to modify the rotational energy ,I(I + 1) by a term pro-

portional to I. The gamma-ray transition energies are given by, 

2 
Ey(I —> 1-2)  = 2  2[(2I — 1) — 2i]. 	 (3) 

Inverting this relation, we get 

I 4 E7 (I—*I-2)+(i+2). 	 (4) 

On a plot of I vs. E.,, the slope therefore gives the moment of inertia Q` and the intercept 

on the I axis gives the aligned angular momentum i. The extrapolation of the line to obtain 

the intercept is strictly valid only when the moment of inertia is constant. It is observed 

that the experimental data lie very close to this line. This method however cannot succeed 

in normal deformed (ND) bands. 

It may be remarked that the usual method for extracting experimental alignment by 

comparing a given band with a reference band (for example the ground state band of an 

even-even nucleus as the reference band) cannot be used for SD bands for two reasons. First 

it is difficult to define a reference band for superdeformed nuclei and second the angular 

momenta are not known precisely. For this reason, only the incremental alignments are 

discussed in literature [101]. The procedure followed by us therefore promises to give some 

idea about the aligned angular momentum of SD bands. Our calculations based on the 

Particle-Rotor model presented in Chap. II are able to account for the weak oscillations 

around a general linear behaviour in I vs. E., plot. These oscillations are the result of 

taking into account the nonlinear term in the equation of motion of j3 . If we ignore the 

nonlinear term, an exact linear behaviour is obtained. The observed variation in the moment 

of inertia with angular momentum is therefore a direct result of these oscillations. That the 

variation is indeed small may be seen from the fact that the change in the moment of inertia 

of mass 190 SD bands, over a range of angular momentum of the order of 10tt, is as little as 
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1-3 percent. On the other hand, the change in moment of inertia. in ND bands is as much as 

a factor of 3 to 5 of the bandhead value over the same spin range [39]. Most of the SD bands 

being observed at high spins are thus expected to possess very weak pairing correlation [39]. 

In view of these discussions, a linear fit to the data of the SD bands by using the eq. (3) 

becomes meaningful. The moment of inertia obtained from such a linear fit can be taken as 

an average value of the moment of inertia over the whole band and are listed in column III 

of Table I. We show in FIG. 3.4, the moment of inertia obtained in this manner for all the 

yrast and nonyrast SD bands in all the four mass regions. These values are compared with 

rigid rotor value calculated from the well known relation rjg  = ?AMRo(1 + 0.31,0; ,Q is 

the deformation parameter obtained from the measured values of the quadrupole moment. 

The rigid body expression predicts a A3 dependence of the moment of inertia on the mass 

number A. FIG. 3.4 confirms such a dependence. Moreover the values extracted from the 

linear fit are always equal to or, slightly greater than the rigid body values. The analysis 

clearly establishes that the SD bands are rigid rotor in nature [37,69). 

The aligned angular momentum or simply the alignment i is one of the most significant 

quantities which indicate the nature of the rotational bands. We have extracted this quantity 

from the intercepts on the I axis and the values are tabulated in column II of Table I. We plot 

in FIG. 3.5 the alignments for the yrast and non-yrast SD bands. We notice that a negative 

value is obtained in a large number of cases. It may be recalled that our calculations based on 

the SCQ theory [63] predicts an alignment which is negative near the bandhead, increases 

with increasing angular momentum, becomes positive and 'then saturates. Sometimes a 

downturn at high angular momentum is also obtained. Alignment however remains negative 

for a considerable range of angular momentum in the beginning of the band. A constant 

value of alignment as obtained from the linear fit to the SD data can therefore at best be 

termed as some kind of averaged out value of the alignment. But the fact that a negative 

value is obtained in a large number of cases is a very significant result which appears to 

support the negative alignment predicted by our model. Since our model calculations relate 

to high- j orbital, it would appear that high- j configurations should be involved in those SD 
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bands which display a negative alignment behaviour. 

IV. STARTING ANGULAR MOMENTUM FOR THE BANDHEAD 

We have already emphasized that the existence of a finite angular momentum for the 

bandhead of SD bands is a new and general feature. It would be interesting to see if we can 

obtain an explanation for the systematics of Ib on the basis of our model calculations. It 

should be kept in mind that our model Hamiltonian is highly schematic in nature and has 

very few parameters.. Moreover, the values of these parameters have to be fixed from the 

nuclear structure information on SD bands and therefore cannot be varied in an arbitrary 

manner. We present in Table III the set of parameters used to carry out the calculations 

in the four mass regions namely A=80,150,160,190. The value of j was chosen on the basis 

of the configuration assignments reported in the literature [33,41,8,74]. The deformation 

parameter was taken to represent the measured values. To keep the effect of parameters to 

a minimum, we decided to use a constant value of the radial matrix element k=40 MeV [16]. 

For all the cases, the moment of inertia parameter A was estimated from the linear fits to 

the experimental data on SD band gamma ray energies. Using these sets of parameters we 

obtained the starting angular momentum as reported in Table III. We note that the predicted 

values for n=0, p=0 case; representing yrast SD bands as given in column V of Table III 

match with the observed values for A=130 and 190 mass regions. However the observed 

values in A=80 and 150 mass regions are much larger than the calculated values. There are 

two ways in which we can reconcile this discrepancy between the theory and experiment. 

One of the explanations may be given by assigning different n and p values [63] to the bands 

in these mass regions. In Table IV we list the values of lb  obtained for n=0, 1 and 2 with 

the same set of parameters as listed in Table III. We note that starting angular momentum 

can lie anywhere between 6h and 41h depending on the n and p values. However another 

reasonable explanation is also possible in terms of the present understanding of SD bands 

from the Nilsson-Strutinsky calculations [103,104] . It is well known that the SD bands are 
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observed for the particle number and deformation which stabilise or develop a minimum in 

the potential energy surfaces (P.E.S) at a finite angular momentum [111]. It is this angular 

momentum with which a band may be expected to come into existence. Therefore even if 

lower angular momentum states for SD bands may be possible, they would not be observed 

if the second minimum develops at a higher angular momentum. Therefore if the second 

minimum develops at I 2011 for A=80 and 150 mass regions, we cannot expect to see 

states lying lower than I N 2011. 

Keeping the second explanation in mind we present in FIG. 3.6 the behaviour of gamma 

ray energies as calculated from our model and compare them with the behaviour of SD bands 

observed in 82Y, 133 Nd, 149Gd and 193Hg. In plotting the calculated results we terminate 

the bands at the lower end at the same angular momentum as observed in experimental 

data [99]. We find that in doing so we automatically obtain the correct phase of the weak 

oscillatory behaviour of gamma ray energies. The similarity in the calculated results and the 

observed values is quite remarkable in view of the fact that we are basically changing only 

three parameters. The amplitude of the oscillations as obtained from our model is larger 

than the observed amplitudes. This is controlled by the coefficient L of the nonlinear term in 

our model. In FIG. 3.7 and FIG. 3.8 we plot the difference EP' (I - + I — 2) —E7 i" ( I —> 1-2)  

for experimental and theoretical bands respectively. The correspondence between the two 

figures can be seen clearly. In our model a finite value of the angular momentum Ib arises 

from the fact that no solutions at c f  are possible below this angular momentum. The 

quantity C(= (4AIj — E)E) becomes negative for I > Ib which gives rise to a double well in 

j3 whose minima are the fixed points cf where the SD bands are supposedly being supported. 

The saddle point b is a maximum and corresponds to a completely antialigned state implying 

a net• alignment which is negative. As we increase the energy beyond b we begin to move 

towards fixed points cf. The negative alignment for lower angular momentum states at cf 

is therefore reminiscent of the complete antialigned configuration at fixed point b [63]. 
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V. AI=2 STAGGERING 

The phenomenon of identical bands and DI=2 staggering have proved to be the most 

difficult to resolve [5,42] among the other unresolved features of SD bands. The SD bands 

are LI=2 structures with a nearly linear dependence of transition energies-E., on the angular 

momentum I. It was observed that one set of states with DI=4 are slightly shifted in energy 

with respect to the complimentary set of states. While DI=1 staggering is quite common 

in rotational bands of odd-A [67] and odd-odd nuclei [68], a LI=2 shift is quite unexpected 

and puzzling. 

This phenomenon has motivated many theoretical studies which have offered explana-

tions in terms of a four-fold C4 symmetry [52,79,88], a g-boson in IBM [77], mixing of two 

bands [107],  hexadecapole interaction [87] and an intrinsic vortical motion [83] . More re-

cently, studies have attempted to look for similar feature in normal rotational bands and 

offer an explanation in terms of the sd-IBM [109]. 

It may be remarked that a regular AI=2 staggering has been observed in only two cases 

viz., band 1 of 149Gd and band 1 of 193T1; it is therefore not a general feature of all the 

SD bands. Most of the other SD bands display such feature over a limited range of angular 

momenta or, display an irregular staggering. Any explanation of this feature must therefore 

give a regular AI=2 staggering only occasionally. 

Several kind of parameters have been used to quantify the DI = 2 staggering. One of 

the quantities widely used has been a five-point formula [29]. It has been shown [54] that 

the feature of staggering depends sensitively on the multi point formula used to analyze the 

data and may often give misleading conclusions; a one-point formula was therefore proposed 

which confirmed the presence of DI =2 staggering in only one case i.e. 149Gd. It is therefore 

indeed necessary that any conclusion regarding the presence of staggering is based on sound 

footings. In the present chapter, we have already shown that the DI=2 staggering is a third 

order effect in transition energies as compared to the weak oscillations superimposed on the 

linear I vs. E.y  plots, which are first order effect and have recently been shown to be much 
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more general in nature [61,62]. A very natural explanation for the weak oscillations in the I 

vs. E.,(I —► 1-2) plots has been provided in terms of the non-linear dynamics of the particle-

rotor model [63]. The present section focuses upon the AI=2 staggering and offers a very 

reasonable explanation in terms of the tunneling effect in the double well potential (DWP) 

that comes into picture in the non-linear dynamical regime of the particle-rotor model [63]. 

Unlike the five point formula, the quantity DD introduced in section II.D is a reasonable 

measure of AI=2 staggering. The oscillations on the other hand have a magnitude of the 

order of 10-20 keV, are observed in most of the SD bands and hence represent a more general 

feature than the DI=2 staggering. The DI =2 staggering must therefore follow as a corollary 

to any explanation that leads to the oscillatory behavior of I vs. E.y  plots. We now proceed 

to show that this is indeed the case. 

It is most interesting to note that the height of the DWP in j3  depends on n and I 

as shown in FIG. 3.9. Our DWP is thus energy dependent and the tunelling between the 

DWP leads to a shift in the eigenvalues of C which ultimately results in a shift of the energy 

eigenvalues. The energies corresponding to different I for a given n are therefore shifted 

differently. Also, the various bands designated by different n are shifted differently. 

We have already shown that these solutions display properties which match closely with 

the several observed properties of the SD bands [37,63]. We have thus been able to reproduce 

the weak oscillations in the I vs. E., plots; also the bands start with a finite angular 

momentum . We now show that the same model is also capable of explaining the LI=2 

staggering. 

To check the presence of the DI =2 staggering we calculate the quantity DD defined 

earlier; of course now we replace ET)  by E''. We plot this quantity DD vs. I in 

FIG. 3.10 for n=3, p=1 and four values of j=7,8,9 and 11; A=0.005 MeV in all the cases. 

We notice that a AI=2 staggering is present in the high spin region; the magnitude of 

staggering is of the right order and decreases as j increases. It is our general observation 

that the 1iI=2 staggering is more pronounced in p=1 cases than in p=O cases. In the upper 

panels of FIG. 3.11 we show the results of j=7, p=O, A=0.006 MeV and n=1 and 3. We find 
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that significant staggering is still present in n=3, p=0 case. We also find that the staggering 

completely disappears when A is increased to 0.008. The staggering feature thus depends 

sensitively on A and j. In the lower panels of FIG. 3.11, we compare the observed feature 

of AI=2 staggering in 149Gd with the n=3, p=1 solution for j=9 and A=0.005 MeV; a nice 

comparison can be made between the observed features although the calculated staggering 

starts at a higher angular momentum. The DI=2 staggering is thus directly related to the 

height of the DWP which in turn depends on A, j and n. It may also be stressed that a 

regular DI=2 staggering is only an occasional feature as obtained experimentally. 

The unusual dependence of the depth of the DWP in j3 on I has another important 

consequence. Since the depth goes on increasing with I, the higher members of a SD band 

remain well entrenched inside the well and acquire extra stability. This explains the unusual 

stability of the long cascades of the SD bands. 

In conclusion, we find that the observed phenomenon of DI=2 staggering may be under-

stood in terms of the nonlinear features of the particle rotor model. It does not require any 

extra assumptions. The depth of the fictitious potential V(j3) increases with I as shown 

in FIG. 3.9. It has a very interesting consequence in terms of the unusual stability of SD 

bands. As the angular momentum increases, the, motion remain well-entrenched in the well. 

VI. IDENTICAL BAND FEATURE 

The phenomenon of identical band (IB) is another puzzling feature of SD nuclei which 

probably remains least understood. It is observed that the, SD bands in different nuclei have 

nearly identical gamma ray energies and therefore nearly identical moment of inertia. The 

first pair of identical band was discovered in 151Tb whose excited SD band exhibited gamma 

ray energies identical with the yrast SD band of '52Dy to within 1.5keV over 20 transitions 

125]. After the discovery of IB in SD nuclei, attention was focused on discovering similar 

features in normal deformed (ND) nuclei also. Existence of twined bands among several 

even-even .cores and their adjacent odd-N and odd-Z nuclei were shown for the first time 



by Jain et al. [60,72]. Later on existence of such twined bands in widely dispersed nuclei 

was also pointed out by Jain and Sood [100] and later on interpreted in terms of F-spin 

multiplets by Jain and Casten [64].In the present section we primarily concentrate upon the 

identical band feature of SD bands. For a detailed review of the IB phenomenon in deformed 

and superdeformed nuclei one may refer to reference [102]. 

The discovery of IB phenomenon implies that the valence particles beyond the SD shell 

closure do not influence the core as much as they do in ND nuclei. In other words the 

valence particles remain decoupled from the core and therefore a simple interpretation of 

the IB phenomenon may be sought in terms of an aligned or a decoupled structure. This 

premise forms the basis of several explanations including the one based on pseudo spin 

alignment [102]. The role of high-N intruder orbitals appears to be crucial in deciding the 

identicity of the bands. The empirical model presented by us in this chapter is also based 

on the same assumptions. The aim of this subsection is to use the results of this empirical 

analysis along with a reasonable criterion for identical bands and to show that in this process 

we arrive at a new phenomenon termed as the general identical band (GIB). In other words 

we show that a substantial number of SD bands come very close to a reference band in each 

mass region and give rise to the GIB phenomenon. 

A number of criteria have been used in the literature for defining two bands as identical 

bands. A detailed discussion of these criteria may be found in the review [5]. These criteria 

are based on the closeness of gamma ray energies in the two bands or a matching of dynamical 
L 

or kinematic moment of inertia. It is important to note that ultimately all the criteria use 

the gamma ray energy as the basic input. However since the angular momenta of SD band 

levels are still not measured quantities, the dynamic moment of inertia is preferred by several 

authors. 

To identify the identical bands, one tries to bring the transition energies of a SD band 

as close as possible to the transition energies of another SD band in a neighbouring nucleus; 

this is achieved by suitably displacing the angular momentum of one across the other. Let 

the gamma ray energies of band R and S be represented by E y(IR ) and E(Is) respectively, 
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where the transitions correspond to (IR  -' IR — 2) and (Is --+ Is  — 2). The two SD bands 

R and S which belong to different nuclei may be said to have an IB pattern if the difference 

	

in gamma ray energies AE tends to vanish or, is small. 	 43  

AE=Ey(IR)—E. y(Is),: 0. 	 (5) 

The criterion may be further extended to include half average, (1/4,3/4) average or (3/4,1/4) 

average of gamma ray energies becoming identical to the gamma ray energies of the reference 

band as defined below [40]: 

	

LE = E7 {IR) — 2 [E.y(Is+2) + E.y(Is)], 	 (6 ) 

	

DE = E7(IR) — 4[Eti(Is+2) +3E, y(Is)], 	 (7 ) 

	

DE = E7(IR) — 4 [E7( 315+2) + E(I3)J. 	 (8) 

These four criteria can in fact by generalised to write a general expression for the average 

gamma ray energies E4,(Is) as follows [26], 

	

E(Is) = xE7 (Is) + (1 — x)E. y(Is + 2). 	 (9) 

In this equation x is a parameter which may be continuously varied in the interval [0,1]. 

The gamma ray energies so obtained may be compared with thb reference band to check the 

smallness of the quantity. 

	

AE = E ).(IR ) — E. y(Is). 	 (10) 

There are two points to be further decided in making this comparison. One is the relative 

displacement of band S with respect to the band R (which is our reference band) by DI in 

order to obtain the best matching. And second is to decide how small AE should be so that 

bands R and S may be called identical. According to equation (3), 

E. y(IR) = 2A[2(IR — 1) — 2i R ], 



E~,(Is) = 2A[2(Is — 1) — 2is ], 	 (12) 

where we have chosen the rotational parameter approximately the same for both the nuclei. 

This immediately leads us to the following value for °E (equation (10)) 

AE=4A[(IR—Is -2(1 —x)—(iR—is)], 	 (13) 

= 4A[LI — 2(1 — x) — Ai]. 	 (14) 

In the ideal situation °E -- 0 which implies that 

°I =2(1—x)+Ai. 	 (15) 

From the least square fitting of data on SD bands we already know the quantities A, iR and 

is. The quantity x is obtained by a procedure of minimizing the difference °E in equation 

(10). Using the value of x, we obtain Al by which the band S should be shifted with respect 

to the band R in order to make them identical. 

To obtain an upper limit on the value of AE, we further define a quantity called fractional 

change (FC) [88] in the kinematic moment of inertia of two bands R and S. 

FC- - ~Rll 

If ~3`Rl) and ~S~ are approximated by the respective rigid rotor value, the above FC will reduce 

to 

FC = g, 
A3 

(17) 

where A are the mass numbers of respective nuclei. Whether or not two bands are identical 

depends on the value of c0,where 

Eo = (FC)(E7 ), 

since the two bands are identical only if the energy difference °E between the two is less 

than the allowed change in gamma ray energies Eo resulting from the difference in their 

(16) 
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masses. The gamma ray energies in the four mass regions i.e. A=130, 150, 190 are of the 

order of 1 MeV and in A=190 mass region are of the order of 0.5 MeV. The values of Eo  

for various AA (change in mass) are listed in Table V. The last column in Table V lists the 

largest RMSD that we come across in the A=190 mass region while identifying the identical 

bands; it should be less than the corresponding limit of co  for two bands to be identical. 

A. A=190 Mass region 

First we present an analysis of the SD bands in A=190 mass region using the procedure 

outlined above. The quantity DE which should vanish for the existence of identical bands 

was obtained on the assumption that the parameter A remains constant when going from 

band R to band S. However a change in the mass of nuclei is expected to give rise to a 

minimal change in gamma ray energies as listed in Table V. The observed change in AE 

should therefore be less than this limit co  in order that band R and S may be said to form 

an IB pair. In this analysis we choose SD band 1 of 192Hg as the reference band R and 

treat all other SD bands as band S. In Table VI we list the bands which could be identified 

as identical with band R. Out of a total number of 53 bands, 32 bands are found to be 

identical with band R. When we plot these bands on I vs.E y  plots , properly displaced 

with respect to each other by DI obtained from equation (15), all the SD bands appear to 

coalesce with the reference band giving rise to a General Identical Band (GIB). As is evident 

from FIG. 3.12 there is further scope to bring these bands still closer to the reference band 

R. This may be done by using a more refined expression for describing the SD bands rather 

than the simple linear equations (11) and (12) used by us. Emergence of the GIB feature 

substantiates the general observation that the SD bands appear to be rather insensitive to 

their configurations. 

The SD bands which could not be identified with the SD1 band in 192 Hg are listed 

in Table VII. We find that if we drop a few transitions from the top of these bands, it 

is possible to identify these bands also with the band R; the resulting RMSD (root mean 
2.48 233 



square deviation) for these bands with the truncated cascade are also listed in Table VII. 

The RMSD values are certainly higher than those for bands in Table V. This indicates that 

these bands do not form as good GIB pattern as those listed in Table VI but within the 

limit Eo. 

B. A=130, 140 and 150 mass regions 

Following the same procedure as outlined for A=190 mass region, we carried out an 

analysis for the SD bands A=130, 140 and 150 mass regions. We have chosen the SD band 

in 133Nd,  ' 46Gd and 152 Dy1 as the reference band R for our analysis in respective mass 

regions. The upper limit in the variation of gamma ray energies DE are again found out. 

We find that in A=130 mass region 8 out of 11 SD bands satisfy the criteria of identical 

bands. The corresponding I vs. E., plot is shown in FIG. 3.13. In A=140 mass region only 

7 out of 14 SD bands coalesce with the reference band; corresponding plot of. I vs.E'y is 

shown in FIG. 3.14. In mass 150 region, 17 out of 27 SD bands appear to form GIB pattern 

as shown in FIG. 3.15. It is clear from the figures that the GIB pattern or phenomenon 

is observed with the greatest accuracy in A=190 mass region. The deviations in the other 

mass regions are larger. 

VII. CONCLUSIONS 

A detailed presentation of the results and their discussion has already been made in each 

section. We present here the highlights of this chapter and a summary of the results. 

On the basis of the SD band data, we have shown that the SD bands exhibit weak 

oscillations in the I vs. E,y  plots, are more likely to have a negative intercept on the I axis 

in these plots and possess a finite angular momentum for bandhead which is greater than 

8h. Also we have shown that DI = 2 staggering is a third order effect and probably an 

outcome of the weak oscillations which are first order effect. 
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An empirical analysis of the SD band, carried out on the basis of a simple expression 

for decoupled bands, leads us to moment of inertia values for SD bands which are close to 

the rigid rotor moment of inertia. Further the negative aligned angular momentum suggests 

that most of the SD bands are located near the fixed points c± in a region of chaos. 

We also present the systematics of the starting angular momentum, 4, and show that 

it is possible to reconcile these systematics with the results of our schematic particle-rotor 

model results. 

The DI = 2 is shown to be a feeble third order effect arising out of the first order 

weak oscillations. Since our model calculations reproduce the weak oscillations should also 

reproduce the Al = 2 staggering provided effect of tunneling in the DWP is taken into 

account. We have shown that this is indeed the case. 

We also present an interesting - analysis, where we show that the SD bands are quite 

similar to each other at least within a mass region. Their similar behaviour can be exploited 

to obtain a general identical band feature. We show that the SD bands in A=190 mass 

region most easily form a GIB pattern. The SD bands from other mass regions are not 

so well behaved. This feature focusses our attention on the universality of the SD band 

phenomenon cutting across the various mass regions and various types of nuclei (even-even, 

odd-A and odd-odd). Although we cannot provide any explanation for such a wide scale 

similarity, we believe that the phenomenon is important enough to warrant a deeper study 

of the SD bands. It is our hope that more fundamental theories like the periodic orbit theory 

may be able to throw some light on the unusual scaling behaviour of the SD bands. 

52 



TABLES 

TAI3LE I. Values of alignment i and moment of inertia ;3' from fitting of experimental data 

SD Band i 

82Sr1 2.69 24.86 

82Sr2 1.27 26.19 

83  Sr 4.21 27.06 

84Zr 3.13 25.75 

130La -1.61 50.24 

131C -1.25 58.15 

132C 0.45 51.22 

133Ce1 3.53 54.82 

133Ce2 1.25 54.35 

133Ce3 -7.58 68.58 

133Pr1 4.64 55.91 

133Pr2 5.09 55.04 

133Pr3 8.44 50.17 

133Pr4 7.87 52.27 

133Nd -0.35 55.09 

135Nd -1.71 58.38 

136Nd -1.81 55.37 

137Nd -4.01 64.63 
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Table I continued, for A--140 

SD Band i ~3 

142S", 4.72 64.74 

142Eu 5.22 66.18 

143Eu 1.48 67.12 

146Gd1 2.36 78.12 

146Gd2 5.08 71.37 

147Gd1 2.04. 77.29 

147Gd2 6.39 71.96 

141Gd l 6.12 71.81 

148Gd2 1.86 80.24 

149Gd1 4.65 75.18 

149Gd2 0.62 80.49 

149Gd3 5.69 75.91 

149Gd3 5.70 75.91 

149Gd4 2.46 84.38 

149Gd5 6.70 71.06 

149Gd6 6.41 71.33 
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Table I continued, for A~150 

SD Band i ~3 

150Gd1 -1.43 88.09 

150Gd2 0.66 83.90 

150Gd3 2.90 75.37 

150Gd4 3.49 74.37 

150Gd5 -3.25 89.97 

150Tb1 3.21 75.75 

151Tb1 0.27 83.80 

151 Tb2 0.78 84.79 

151 Tb3 1.27 82.15 

151 Tb4 0.85 83.55 

151Tb5 1.19 76.05 

151 Tb6 0.99 76.38 

151 Tb7 0.19 76.52 

151 Tb8 0.06 76.78 

152Tb1 -1.21 83.11 

152Tb2 -2.06 84.71 

151 Dy 1 2.13 78.65 

152Dy1 0.36 79.06 

153Dy 1 1.78 87.03 

153Dy2 2.66 84.08 

153Dy3 2.63 84.29 

153Dy4 0.53 84.87 

153Dy5 2.71 84.56 

154 Er 0.75 78.06 
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Table I continued, for A~190 

SD Band i :3 

191 Au -1.68 106.81 

189Hg -3.48 104.83 

190Hgl -5.42 112.98 

190Hg2 -4.73 122.31 

19' Hg 1 -0.37 108.75 

191Hg2 -1.86 107.02 

191Hg3 -3.14 109.98 

191 Hg4 -0.76 101.48 

192Hg 1 -4.07 114.00 

192Hg2 -4.36 120.83 

193Hg1 -4.05 119.41 

193Hg2 -3.75 115.69 

193Hg3 -3.44 114.68 

'93Hg4 -3.75 115.69 

193Hg5 -1.30 109.10 

193Hg6 -0.87 103.04 

194Hg 1 -4.40 115.88 

194Hg2 -3.13 114.02 

194Hg3 -3.75 116.06 

193T11 -1.49 106.58 

193T12 -1.99 109.48 

'94T11 -1.56 110.18 
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Table I continued, for Ai 190 

SD Band i ~3 

194712 -1.22 108.97 

194T13 -1.89 108.42 

194T14 -1.66 107.41 

'94T15 -0.91 108.96 

194T16 -0.82 108.08 

195T11 -1.56 107.34 

'95T12 -2.19 111.16 

192Pb -2.33 104.39 

193Pb1 0.94 101.066 

193Pb2 0.99 94.39 

193Pb3 -1.29 103.82 

193Pb4 -2.15 108.17 

'93Pb5 -1.04 102.18 

'93Pb6 -1.43 104.28 

194Pb1 -1.86 104.27 

1s5Pb1 -0.50 102.62 

195 Pb2 -0.03 98.39 

195Pb3 -1.86 106.48 

195Pb4 -1.63 104.99 

'96pbl -2.03 102.52 

19spb2 -1.62 104.48 

196p -1.85 105.72 

1 98 Pb -2.49 101.88 

197 Bi 1 -0.32 98.51 

197Bi2 -0.53 100.47 

57 



TABLE II. A comparison of various quantities as obtained from the experimental data of SD 

band 1 in 149Gd 

I DE )  (keV) 02E,, (keV) DD (keV) 

25.5 23.25 -6.81 1.21 

27.5 16.44 -5.60 0.29 

29.5 10.84 -5.31 0.50 

31.5 5.53 -4.81 0.60 

33.5 0.72 -4.21 0.61 

35.5 -3.49 -3.60 0.79 

37.5 -7.09 -2.81 1.2 

39.5 -9.90 -1.61 0.4 

41.5 -11.51, -1.21 1.11 

43.5 -12.72 -0.10 0.29 

45.5 -12.82 0.19 1.2 

47.5 -12.63 1.39 0.1 

49.5 -11.24 1.49 0.81 

51.5 -9.75 2.30 0.09 

53.5 -7.45 2.39 1.0 

55,.5 -5.06 3.39 -0.3 

57.5 -1.67 3.09 1.01 



TABLE III. Values of Parameters and Starting Angular Momentum Ib. 

A j A = 	,(MeV) Ib(Exp.) Ib(Theo.) 

80 4.5 0.55 0.02 20 	' 6 

130 5.5 0.4 0.009 8.5. 8.5 

150 7.5 0.6 0.0066 25.5 7.5 

190 7.5 0.45 0.0042 9.5 9.5 

TABLE IV. Value of Starting Angular Momentum Ib for various n and p values 

A Ib for n=O,p=O Ib for n=1,p=0 Ib for n=1,p=1 Ib for n=2,p=O Ib for n=2,p=2 

80 6 14 8 22 16 

130 8.5 ' 	21.5 11.5 33.5 23.5 

150 7.5 19.5 11.5 27.5 21.5 

190 9.5 27.5 15.5 41.5 31.5 
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TABLE V. Values of Tolerance Limit(E0) for mass 190 region 

DA Eo(keV) Upper Limit of RMSD (keV) 

±1 4.3 3.4 

±2 8.5 4.9 

±3 12.7 3.7 

±4 16.9 2.0 

±5 20.9 1.9 

±6 24.9 1.9 



TABLE VI. Values of x, RMSD and zI for GIB feature in mass 190 region 

SD Band x RMSD AI 

191 Au 0.25 1.18 -0.89 

190Hg2 0.25 1.84 2.16 

191 Hg2 0.85 3.44 -1.29 

191Hg3 0.25 1.13 0.57 

193Hg2 0.80 1.29 0.02 

193Hg3 0.30 1.56 0.77 

193Hg4 0.80 1.53 0.26 

194 Hg 1 0.85 3.75 0.60 

194Hg2 0.55 1.98 -0.07 

194Hg3 0.00 1.53 1.65 

191T11 0.50 2.55 -0.91. 

191 T12 0.95 1.14 -0.75 

193T11 0.25 4.67 -0.74 

193T12 0.60 2.97 -1.09 

194T11 0.05 2.56 -0.61 

1947'12 0.55 4.95 -1.95 

194T13 0.45 2.28 -1.08 

194T14 0.00 3.29 -0.41 

195TH 0.30 2.89 -1.11 

'95T12 0.65 3.79 -1.18 

192 Pb 0.10 0.72 0.05 

193Pb3 0.85 4.24 -2.3 

'93Pb4 0.25 1.05 0.22 

193Pb5 0.85 2.04 -2.1 
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Table VI continued, 

SD Band x RMSD Al 

193Pb6 0.35 2.41 -0.71 
194Pb1 1.00 2.36 -1.88 

'95Pb3 0.40 2.47 -1.01 

195 pb4 0.40 1.76 -2.34 

196pb2 0.75 1.72 -1.95 

196Pb3 0.20 2.07' -0.62 

197Bi 0.30 1.95 -2.00 

198Po 0.20 1.91 -1.06 
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TABLE VII. Values of x, RMSD and Number of transitions taken into account for the bands 

which could not be identified with reference band 

SD Band x RMSD No. of Transitions 

189Hg 0.80 4.77 7 

190Hg1 0.60 4.85 9 

191Hgl 0.35 4.28 11 

191 Hg4 0.70 6.03 7 

192Hg2 0.45 3.88 11 

193Hg1 0.25 4.10 8 

193Hg5 0.75 4.95 9 

193Hg6 0.65 4.63 9 

195HgI 0.60. 4.98 15 

195 Hg2 0.15 4.72 14 

1s5Hg3 0.70 4.74 10 

195Hg4 1.00 4.26 14 

194T15 0.05 6.68 7 

1947116 0.55 6.39 7 

193Pb1 0.50 4.14 9 

193Pb2 0.50 4.19 8 

195Pb1 0.10 4.11 12 

195Pb2 0.70 4.41 11 

196PH 0.15 4.92 10 

198Pb 0.35 5.92 7 

196 Bi 0.85 3.75 6 
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CHAPTER IV 

CRANKING MODEL AND ITS 

SEMI-CLASSICAL 

QUANTIZATION 
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I. INTRODUCTION 

In this chapter we present a complete discussion of the dynamical features of. the cranking 

model hamiltonian as applicable to high-j orbitals. The cranking model first introduced in 

1954 by Inglis [58] has been used very extensively to study the rotational phenomena in nuclei 

[35]. It has now become a standard tool in nuclear physics to calculate a large number of 

properties such as the nuclear deformation, moment of inertia, aligned angular moment um 

etc. It has also been used in recent times to assign configurations to the superdeformed 

bands and calculate other properties based on these configurations [1]. In its simplest form, 

a single particle potential is cranked about one of the principal axes and then study the 

influence of this rotation on the properties of the nucleons. 

Following the treatment presented for the particle-rotor model in chapter II and III, we 

present an analysis of the cranking hamiltonian on a similar line. Our emphasis will be 

on a detailed discussion of the nonlinear dynamical regime of the cranking model and its 

semiclassical quantisation. We show that the cranking model results support the findings of 

the Particle-Rotor model. 

II. MODEL HAMILTONIAN 

Assuming that the deformation of the single-particle potential contains only a quadrupole 

axially symmetric component with respect to the 3-axis, the hamiltonian in the rotating 

frame may be written as [16] 

H = Qj3 — wji, 	 (1) 

where 

_ 
F~17_r 

3 
4 j(j + 1)' 
	 (2) 

and k is the radial matrix element given by < nl j j3 r2Y20 nl j j3 >. The rotation axis is 

defined by axis 1 which is perpendicular to the symmetry axis denoted by 3-axis. 
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A. Equations of motion and fixed point structure 

Equations of motion can be obtained by using the properties of Poisson's bracket and 

were given by Bohr and Mottelson [16]: 

dj1 _ 
dt = —2Qj2j3, 	 (3) 

dj2 = 
dt = 2Qjlj3 + wja, 	 (4) 

dj3 
dt = —wcj2. 	 (5) 

A fixed point analysis of the problem is very helpful in classifying the orbits. We obtain four 

fixed points denoted by a, b and c± whose characteristic features are listed below 

a = (j, 0, 0), Ea = —WcJ 	 (minimum; stable and isolated), 

b = (j, 0, 0), Eb = Wc 	 (maximum for w, > 2Qj 

and saddle point for we < 2Qj; unstable and isolated), 
2 	 2 

cf = 2Q , 0, 	(j2 — 	Ecf 	Q93 + 4Q 

	

(maxima for we < 2Qj; stable and isolated) 	(6) 

The conservation of the angular momentam j restricts the motion in j-space to lie on a 

spherical surface given by j2 = j1 + j2 + j3. The energy conservation on the other hand 

restricts the motion to lie on a parabolic cylinder defined by the Hamiltonian; an intersection 

of the two gives the allowed orbits. For a critical cranking frequency w* > 2Qj, the saddle 

point is pushed out of the invariant region FIG. 4.1 and there is only one minimum of 

stability corresponding the fixed point a, which represents maximum alignment. The critical 

frequency w* plays the role of critical angular momentum Ic in the particle-rotor model. For 

SD nuclei we is of the order of 0.1 MeV and hence the ratio 2Q~ < 1 a value that keeps the 

saddle point in the region of interest. The fixed point b corresponds to a configuration where 

particle angular momentum is completely anti-aligned to the rotation axis. We can see from 



and j3 follows anharmonic oscillator equation. When E = ZQ and K = 0, 33 obeys the 

solutions of quartic oscillator. On increasing the energy further, K becomes negative and 

we enter the nonlinear dynamical regime dictated by the Duffing oscillator which persists 

for all higher energies. A detailed discussion of this has already been presented in chapter 

II. 

III. SMALL AMPLITUDE OSCILLATIONS 

A. Fixed point a 

Using the method of linearization of the equation of motion, at fixed point a(= j, 0, 0), 

we obtain the linearised set of equations as 

d(6j1) = 0, 
 (12) 

dt 

d(5j2) _ (2Qj +w.)bjs, 	 (13) 
dt 

d( 6 j3)  
dt 	= —wcbj2 	

(14) 

where bji(i = 1, 2, 3) are infinitesimal deviations about the fixed point. 

These equations give the solutions as 

äj1(t) = dji(0), (15) 

bj2(t) = fij2(0)cos( w,(w, + 2Qj)t) + 	S~2 (0) 	sin( w,(w + 2Qj)t), 	(16) 
w~(wr + 2Qj) 

b33(t) = Sj3(0)cos( w,(w, + 2Qj)t) + 	S~3 (0) 	sin( w.(w~ + 2Qj)t). 	(17) 
w~(w~ + 2Qj) 

The action-angle variables were introduced by Bohr and Mottelson to facilitate semiclassical 

quantisation. The energy E depends only on the action Ja, and for harmonic oscillations 

around the equilibrium, we have 



E = Ea + JoWvib,a, 	 (18) 

= —Wc j + Ja,( c ,( + 2+ 2Qj)). 	 (19) 

For a quantised system, the action takes the value 

Ja = (na + 1)h, 	 ( 20 ) 

with na = 0, 1, 2, ...... etc. 

The action Ja at the fixed point a in harmonic approximation is given by, 

Jn =4 10i
[WCj2— E2— Kj3]'dj3• 	 (21) 

The integral is exactly solvable and its semiclassical quantisation (SCQ) gives us the condi-

tion, 

2 W2'2—E2 
( ~2 _ 2aE) 

w2 '2 -28E 
W2 , + 2j 	28E — E2 .~ 

1 
(n + 	). 	(22) 

j2 —€2    
2 

When solved for a given n, we obtain the energy e as a function of cac. 

In a similar way one can show that the frequency of vibration at the fixed point b is given 

by 

Wvib,b = (/ c(we — 2Qj)). 
	 (23) 

The motion at b is however not of much interest to us. As in the Particle-Rotor model, we 

will concentrate upon the twin fixed points c± where the solutions are more complex and 

interesting. 

B. Fixed points c± 

When K < 0, j3 evolves as a duffing oscillator. We have already discussed the shape 

of the potential in j3, V(j3) = K j3 + 2 j3 which exhibits a sudden appearance of a double 

well. We have already shown that this spontaneous breakdown of symmetry is associated 



with a second order phase transition. Assuming a simple harmonic motion at fixed points 

c} linearization of the equations gives us a frequency of vibration 

Wvib = ±( 4Q2 j2 — 	 (24) 

and the corresponding energies are given by 

1 
E = Ec± + Jcwvib = Ecf + (nc + 2 )wvib, 	 (25) 

where n,=0,1,2,3....... etc. is introduced to obtain quantised energy levels. Jc is the action 

given by 

Jc = 4 1 dj3(w2 j2 — E2 — Kj3 — 2 js)1/2, 	 (26) 
J o 

2 
= 41 dj3[C — Kjs — 2 7s~ 2 , 	 (27) 

and, 

j+ = [L K2 + 2LC — K)] 2 . 	 (28) 

The semiclassical quantization of this action provides us with the energy levels corresponding 

ton = 0,1,2,3 ..... as a function of w,. As already pointed out, as K changes sign from 

positive to negative, a double well potential (DWP) appears from a single well in V(j3) of 

the fictitious Hamiltonian of .j given by 

(dj3 )2

dt +V(j3) = C, 
	 (29) 

where V (j3 ) = Kj + (L/2) j3 and C = (w~ j — E) (wc j + E). The minima of the DWP 

correspond to the two isolated fixed points c±; these are located in a region of nonlinearity. 

When tunelling between the two wells of DWP is taken into account, the DWP is found 

to support two solutions which we denote by p=0 and p=1; these correspond to the usual 

even and odd solutions of a potential well. The appearance of the double well potential and 

tunelling between the two wells modify the semiclassical quantization condition as follows, 
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f~ c - V(j3)dj3 - 
	 2 °~(~) = (n~ 1 4 )> 	(30) 

where 

e(C) = 2V1(0) (C — V(0)) = 4K' 	 (31) 

= 2 [argF(1 + iE) — el e I + e ± tan-l e-"E], 	 (32) 

and, L F _ 1_ — F+ and 1_ &_ + +. The limits on j3 are the four real turning points 

at sub barrier energies denoted by - j+, —j, j_ and j+. If we choose the upper sign in 

equation (28) and take n+=0,1,2,3..., we get the even solutions denoted by p=0. By taking 

the lower sign and n_=1,2,3,...we get the odd solutions denoted by p=1. Fulfillment of the 

SCQ condition given by equation(29) yields a set of energies e for a given n and different 

w,; this constitutes a band which exhibits rotational features. The tunelling between, the 

DWP leads to a shift in the eigenvalues of C which ultimately results in a shift of the energy 

eigenvalues. Here the effect of tunneling between the two potential wells has also been 

included. Most of this discussion is parallel to that in chap II and similar details apply. 

IV. ALINGED ANGULAR MOMENTUM 

A quantity of great physical interest is the aligned angular momentum or simply the 

alignment defined as 

i =< jl > . 	 (33) 

From the Hamilton's principle we obtain 

i = —(aW~)J. 	
(34) 

The alingment at the fixed point a was obtained by Bohr and Mottelson to be 

i = j — J 	Qj +W° 	 (35) 
(wc(2Qj +W,)) 
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We can see that for w, >> Qj, the alignment approaches the asymptotic limit i = j — Ja,. 

To obtain the alignment at fixed points c± we note that energy of small osciliations 

around c f is given by 

w2  
E = Qj2  + 4Q + Jwb. (36) 

To obtain the frequency of vibration of j3  we recall that (see chapter II, section V) the 

solutions of j3 are elliptic functions of the first kind where natural time period provides us 

with the values of wvzb. The alignment can be obtained by using equation (34). 

V. NUMERICAL RESULTS AND DISCUSSION 

As pointed out by Bohr and Mottelson [16] , the nature of the equation governing the 

motion of j3 in the cranking model is identical to that found in the Particle-Rotor model. 

The fixed point structure and the nature of orbits is also same. 

In FIG. 4.3, we plot the energy E vs. w obtained by SCQ at fixed point a for n = 1. 

The behaviour of solution indicates a rotational band whose aligned angular momentum is 

(j — 2 )h. This is the rotation aligned band with maximum alignment. 

In FIG..4.4 and 4.5, we plot a similar quantity c obtained by SCQ procedure at fixed 

point c f . FIG. 4.4 contains the results for p = 0 and FIG. 4.5 contains the results for p = 1. 
The nature of solutions is similar to that obtained in the Particle-Rotor model where weak 

oscillations were obseved to be superimposed on what would otherwise have been an ideal 

rotational band. 

The alignment for the cases plotted in FIG. 4.4 and FIG. 4.5 are shown in FIG. 4.6 

and FIG. 4.7 respectively. The behaviour of alignment with rotational frequancy is similar 

to that observed in the Particle-Rotor model. The aligned angular momentum is negative 

at low w, rises with increasing w and then saturates. One important difference with the 

results of Particle-Rotor model is noticed. The alignment as obtained here, saturates at 

around —7h whereas the alignment obtained in the Particle-Rotor model becomes positive 
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and then saturates. The saturation value reached in the case of cranking model seems to 

be limited by the alignment at the fixed point b. It is not clear why this difference in 

the numerical value of i should arise. However it is not surprising that the cranking and 

particle-rotor models should give different numerical results particularly when the solutions 

are coming from nonlinear equations. As pointed out by Bohr and Mottelson [161, important 

discrepencies in the cranking and particle-rotor model with the observed spectra still remain 

unresolved. 
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1.5 

FIG. 4.1 j space diagram depicting the exclusion of saddle point b for certain w, > 2Qj. 

From Ref. [16]. 



0.15 

FIG. 4.2 Diagram showing j space being divided into four distinct regions. From Ref. 

(161. 
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CHAPTER V 

PERIODIC ORBIT THEORY AND 

SPHERICAL CAVITY 
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I. INTRODUCTION 

The current understanding of nuclear shapes as a function of angular momentum, nucleon 

number and excitation energies is based on the theory of shell structure developed over the 

last three decades. This understanding gained further ground with the introduction of the 

microscopic plus macroscopic approach put forward by Strutinsky [103]. A detailed expo-

sition of the Strutinsky's approach and the relationship of shell structure to the underlying 

physical concepts like degeneracy in quantum systems may be found in the reviews of Brack 

et al. [22] and Bjorholm and Lynn [12J. It is now understood that shell structure is a general 

phenomena which pervades all quantum systems. The quantal nature of a system naturally 

leads to the emergence of shell structure. It has been found that quantal fluctuations tend 

to stabilise shapes having axes ratio 2:1, 3:1 etc. [15]. These ratios in turn can be directly 

linked to the frequency ratios as in the harmonic oscillator where the shape of the potential 

is defined in terms of frequencies. As we shall see, these axes ratios can also be linked to 

the frequencies of the periodic orbits in an appropriately deformed cavity. 

Parallel to the Strutinsky method, a new and radically different understanding of shell 

structure has continued to evolve which is based on the closed periodic paths possible in 

a given cavity [6,50]. A semiclassical approach based on periodic orbits led Gutzwiller to 

propose a trace formula for level density of a quantum system in terms of quantities which are 

classical in nature [49]. Strutinsky and coworkers [105,106] used this approach to propose 

the first semiclassical interpretation of the gross shell structure in deformed nuclei. This 

seminal work constitutes the basis of much of what will be presented in this chapter and the 

next one. 

In the present chapter we discuss very briefly the general conditions for the occurrence 

of shell structure with special reference to the harmonic oscillator potential. We then show 

that the level density for the harmonic oscillator can be naturally separated into a smooth 

and a fluctuating part. Explicit analytical expressions [201 can be easily obtained and serve 

as an easy text book example to illustrate the power of this technique. Next we introduce 
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some elementary ideas of the periodic orbit theory (POT) due to Gutzwiller and his famous 

trace formula for the fluctuating part of the level density. This formula was modified by 

Strutinsky to include the effect of systems with continuous symmetries such as a spherical 

or a spheroidal cavity [105]. Using this expression we obtain a simple formula for the level 

density of a spherical billiard and test the validity of the formula. 

II. CONDITIONS FOR SHELL STRUCTURE : ISOTROPIC HARMONIC 

OSCILLATOR 

The harmonic oscillator potential serves as a paradigm to illustrate the underlying con-

cepts of shell structure. The solutions of the isotropic harmonic oscillator are well known 

and are specified in terms of three quantum numbers [N, 2, A] in polar coordinates. The 

energy eigenvalues are given by 

E(N, e) = ( N + 3/2)1wo  = [2(n,. — 1) + f + 3/2]hwo. 	 (1) 

Here (n,. - 1) is the number of radial nodes. For each N, l = N, N — 2......1 or 0. For 

each N, there are (N + 1) (N + 2) orbitals including the two fold degeneracy of spin. The 

degeneracy 'd' "of shells defined by N= 0, 1, 2, 3......etc. are given by.d := 0, 6,12, 20......etc. 

respectively; these are the magic numbers of harmonic oscillator. The energy E(n, £) is 

generally an increasing function of n and e. Same energy is obtained by increasing £ and 

decreasing n by appropriate integer amounts; this leads to degeneracy and shell structure. 

Bohr and Mottelson [15] generalised this idea by expanding the E(n, £) around a given point 

(no, eo) 

E(n, P) = E(no , Po ) + (n — no ) (aE/an), 0  + ( e — .eo ) (aE/ae) Q_ Q9  

+ second and higher order terms. 	(2) 

Approximate degeneracy is obtained for mutual compensation of the two first order terms; 

it implies that 
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b(OE/On)o  = a(0E/DQ)o , 	 ( 3 ) 

where a and b are small integers. We therefore obtain the condition an + be = ano + beo. So 

the levels with a constant value of N = an + bQ only slightly differ in energy (due to second 

and higher order derivatives). We may redefine N as N3hell = a(n — 1) + bE, which now looks 

similar to the value obtained for H.O. with a = 2 and b = 1. It is easy to show that two 

consecutive shells occur with an energy separation 

hWshe11 = 1/a(c7E/an)o = 1/b(aE/a2)o. 	 . (4) 

It is most revealing to realize that the derivatives (8E/5n) and (OE/NN) are the radial and 

angular frequencies of the orbits and the equation (4) corresponds to the condition that 

the classical orbits close upon themselves after a radial and b angular oscillations giving 

rise to periodic orbits with a frequency Wshell.  The orbitals having the same value of Nshe11 

bunch together. This shell structure is clearly visible in FIG. 5.1 what is now one of the 

most common figures on shell structure in harmonic oscillator [15]. If an axial symmetry 

is introduced in the system and if we choose w,, = wy  = wl , then the harmonic oscillator 

potential can be written as, 

V (x, y, z) = rn/ 2(w1(x2  + y2 ) + wiz2), 	 (5) 

or, 

V(r, 0) = 2rnwar2(1 — 3SP2(cos9)), 	 (6) 

where w,z  N wo(l — 2  b) and wl  -_ wo  (1 + 1  S) and b is a deformation parameter given by 
o  = 	where c and a are the semi major and semi minor axes respectively. The energy 

of this anisotropic oscillator is given by 

E(nj,n z ) = (n z  + 2)hw z  + (n1 + 1)hwl, 	 ( 7 ) 

where nl = n,, + ny. Denoting r = w , we obtain by using the condition of volume 

conservation, 
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E( ni, nz ) = 77-2/3riwo[rinl ~--,IZ + ( ,l -+- 2)]. 	 (8) 

For the special case of wl = 2wz which represents the 2:1 shape, we obtain 

E(N, nz ) = 0.6hwo [2N — nz + 2). 	 (9) 

For a given N, nz = 0, 1, ..., N. Thus, for the same value of (2N—n), degenerate states arise. 

It is worth noticing that levels from several major shells (several N) and therefore having 

both parities come together to form superdeformed shell structure as shown in FIG. 5.1. For 

the spherical shape, the energies are equally spaced at 11wo and are highly degenerate; the 

degeneracy is partially lifted when deformation is introduced. A nearly uniform distribution 

appears to prevail at 5 	0.15. The levels regroup in a very orderly way to form new 

sets of degenerate levels when the axes ratio of the spheroid is equal to the ratio of two 

integers. The regrouping is most pronounced at the axes ratio -equal to 2: 1. The energy of 

a system, for a given deformation, will be relatively lower if the number of particles is just 

sufficient to fill a group of degenerate levels; this represents a shell closure. For example, 168 

particles completely fill a shell for the spherical shape and will have relatively lower energy 

than having only 140 particles. On the other hand, 140 particles completely fill a shell at 

2 : 1 deformation and therefore lead. to shell closure at the 2 : 1 shape. This leads to a 

generalisation of the concept of shells and shell closures. 

III. SOME BASIC TOOLS FOR SEMICLASSICAL PERIODIC ORBIT THEORY 

In the next section we will present the periodic orbit theory (POT) which quite generally 

establishes a link between the density of states of a given quantum mechanical system with 

the periodic orbits of the corresponding classical system through the so called trace formula. 

As a preparation to this, we present in this section some basic quantum mechanical tools 

needed to calculate the density of states or the level density. 



A. Level Density 

We start from the Hamiltonian for a particle with mass m in a local potential V(r) [20] 

H = T + V(r), 	 (10) 

h2  T = --V2 . 	 (11) 

The stationary Schrodinger equation for bound states gives the spectrum En  as, 

HIn>= E,,In >, 	En >0. 	 (12) 

The eigenstates j n> form a complete, orthonormal basis set of wavefunctions. 

'n(r) =<r n >, 	<n I m >_ one,; 	 I (r')4(r) = a(r' — r). 	(13) 
n 

The single-particle level density or density of states g(E) is defined as the sum of delta 

functions, 

(14) 
n 

B. Separation Of g(E) Into Smooth and Oscillatory Part 

The level density g(E) contains information related to the stability of a quantum system. 

On the average, it has a smooth energy dependence which is determined by the number of 

degrees of freedom and the degeneracies of the single particle levels given by the symmetries 

of the hamiltonian. In general g(E) can be written as a sum of an average level density g(E) 

which has a smooth energy dependence and an oscillatory part bg(E) 

g(E) = g(E) + 6g(E)  (15) 

Both the parts can be obtained in a number of ways. In principle, for a given system both 

parts are determined uniquely.. (E), the smooth part is most commonly obtained from the 
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extended Thomas Fermi model [73], the Weyl's formula [7] and the Strutinsky averaging 

procedure [103,104] . The oscillating part is the subject of various semiclassical methods 

including the periodic orbit theory. In the following, we present an example of harmonic 

oscillator where both the smooth and oscillating part of g(E) can be obtained analytically 

without using the trace formula. A detailed discussion of the various methods may be found 

in [20,23]. 

C. Solvable Case of Harmonic Oscillator 

Linked to section III.A the single-particle density matrix p(r, r') is defined as 

p(r, r') _ 	il~n(r n(r) = E n(r)(r), 	 (16) 
n 	 En <µ 

where p. is the Fermi energy. Now p(r, r') depends on it and thus on statistics. A Laplace 

transform of g(E) yields the single-particle canonical partition function Z(/3) 

co 
Z(3) = LA[g(E)] _ fo e-PEg(E)dE _ >e", 	 (17 ) 

where ,3 is just a mathematical variable. Thus inverse Laplace transform of the partition 

function of the system yields the density of states g(E) 

1 

g(E) = L 1E [Z(8)] = 
-j   	 (18) 27ri "i. 

where the integral is to be taken in the complex ,0-plane along a contour C. 

Examples: 

• Schematic spectrum with one quantum number: Poisson formula 

Let us choose the following schematic spectrum [20], 

En = n, 	d,~ = 1, 	n=0,1,2,3 	 (19) 
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Here d denotes the degeneracy of nth level. The partition function for this system can be 

given as 

Q 
—nO 	1 	e2  Z(/3) _ e 	= 1 -e 13  _ 2sinh(J 
	 (20) 

Now by the calculus of residues we get the inverse Laplace transform, 

00 	 k=+oo 

g(E) _ > b(E - n) _ E e27rtkE , 	 ( 21)  
n=O 	 k=+oo 

00 

_ [1 + 2 E cos(2irkE)]. 	 (22) 
k=1 

Next we assume the energy spectrum En  to be given by, 

En  = f (n), 	do  = D(n), 	n=0,1,2,3....., 	 (23) 

where f (n) is an arbitrary monotonous function with differentiable inverse f -1(E) = F(E) 

such that n = F(En ) and D(E) = D(F(E)) is another arbitrary function. The delta 

function may be written as, 	 -- - 

6(E - En ) = 6(E - f (n)), 

= 6(E n.f (n) — 
n 

= o(E F(E)F 1(E) - F-1(En)), 
n 

	

=j F(E) 16(n - F(E)). 	 (24) 

(25) 

Including the degeneracy D(n) = D(F(E)) = D(E), 

	

S(E - En ) = D(E) I F(E) 16(n - F(E)). 	 (26) 

Comparing it with equation (22), we get 

00 
g(E) = D(E) I F(E) 1 [1 + 2 > cos27rkF(E)], 	 (27) 

k=1 



where the first term is smooth part g(E) and the second term is the fluctuating part 5g(E). 

This formula can be applied to any one-dimensional problem. Later on, in the periodic orbit 

theory, 2irhF(E) is identified with the classical action S along a primitive periodic orbit, 

where the number k represents the number of revolutions around the orbit. Note that the 

smoothed average level density separates out from the fluctuating part in a natural way. For 

3-dimensional harmonic oscillator one obtains very easily, 

00 
g(E) = 2(hw)3 (E2 — (hw)2 ) [1 + 2 	cos(2irk E — 2 A. 	(28) 

k=1 

In FIG. 5.2, we display the numerical results obtained by Brack and Bhaduri, to demonstrate 

the convergence of expression(27). The plot of g(E) vs. E (in units of hw) for different 

maximum values of kmax rapidly approaches the delta function peaks at the correct positions 

of the quantum energy spectrum as kmax becomes 50. On the other hand, k = 1 already 

gives information about the gross shell structure.. 

IV. PERIODIC ORBIT THEORY 

The periodic orbit theory (POT) received a boost with the proposal of a trace formula 

by Gutzwiller [50) which relates the oscillatory part in the level density og to a sum over 

the actions, time periods and stability angles of all the periodic orbits. In its simplest form, 

the trace formula for a system with isolated orbits is given by 

bg(E) = 	TPPO 	cos f SPo(E) — cp0~ 	 (29) 

irh Po det M — I 	' L h 	2 J 

Here TPPO is the time period of the primitive periodic orbits. Each periodic orbit contributes 

an oscillating term whose phase is given by the action 

SPPO = i p.dq. 	 (30) 

a is the Maslov index which is an integer depending on the reflection points of the orbits. The 

matrix Mpo is a (2n — 2) dimensional stability matrix, where n is the number of degrees of 



freedom. The determinant in the denominator is large for an unstable orbits, thus reducing 

their contribution. The POT as developed by Gutzwiller applies, only to systems with 

isolated orbits and thus is mostly of use for chaotic systems. For systems having high degree 

of symmetry, the periodic orbits exist in continuous families [105]. In such systems, the 

discrete sum over orbits in equation (28) cannot be carried out. It is necessary to first 

integrate over each family, and then sum over the various families. A detailed discussion 

of the general structure of trace formulae for systems with continuous symmetry was given 

by Creagh and Littlejohn [32]. In this thesis, we have adopted the trace formula given by 

Strutinsky et al. [106] with proper introduction of Maslov index. 

Balian and Bloch [6] presented a similar formula which they developed for cavities with 

reflecting walls of arbitrary shape in two or more dimensions; their formula also applies 

to integrable systems, such as the spherical cavity. Berry and Tabor [10] derived a trace 

formula for integrable systems with arbitrary smooth potentials with EBK quantization as 

a basis. The formula proposed for isolated orbits, is mainly applicable to chaotic systems, 

although. its clever usage for systems with families of degenerate periodic orbits has recently 

been demonstrated by Brack and Jain [19]. One of the main strengths of the periodic orbit 

theory is that it enables one to obtain gross-shell effects in the level density of a quantum 

system semiclassically, i.e. without solving the Schrodinger equation, independently of its 

integrability or the possibility of a full quantization, and to interpret shell effects in terms 

of the interplay of the most important short periodic orbits. 

A. Convergence of the Periodic Orbit Sum 

Keeping in mind that equation (28) is a Fourier decomposition of the oscillating level 

density, it is clear that if one is interested in high resolution, one must include large number 

of Fourier components i.e. one has to sum up to higher number of orbits. Usually, the 

periodic orbit sum does not converge and the series has to be truncated. But if one is 

interested only in a low resolution of shell structure, only orbits with the smallest actions 



and consequently the largest amplitude of Fourier component are enough. Many observable 

shell effects in real systems do not depend on the exact level density, but on a coarse-grained 

level density obtained by averaging over the finer details. Such an averaging, in practice, 

may arise due to finite temperature effects or, by uncertainties in the measurements. We 

therefore use Gaussian averaging of the level density [20] over an energy range 'y, which 

should be less than the main shell spacings. This implies that ry should be chosen that 

27th 	 (31)  
PPo 

This leads to a damping factor exp[—(ry5)2 ] in the trace formula. The fluctuating part of 

level density becomes, 

b9(E) 
	

(32) 
PO 

Thus, each periodic orbit contribution• is damped exponentially, whereby the orbits- with 

longer periods are damped more strongly than the short ones. Therefore the problem of the 

convergence of the series is overcome by using the above averaging procedure. Since only 

shortest orbits contribute most significantly, this procedure allows us to retain the most 

important part of the information. 

B. Maslov Indices 

The Maslov index plays a very crucial role in the periodic orbit sum as it decides the 

relative phase of the various terms in the summation. Creagh and Littlejohn [31] presented a 

much deeper understanding of the Maslov index showing that it is equal to twice the number 

of times the stable and unstable manifolds wind around the periodic orbit. They presented 

two practical methods for determining o. One of the methods is useful for kinetic-plus-

potential systems and its detailed application to harmonic oscillator has been discussed by 

Brack and Bhaduri [20]. The second method applies specifically to billiard systems and is a 

geometrical method. Specific rules in applying the geometrical method have been stressed by 



Brack and collaborators [20,80]. Since we are specifically interested in billiards, we present 

the rules only for billiards. It may be remarked here that various authors do not seem to be 

consistent in using Maslov index. The resulting ambiguity has been difficult to resolve even 

in the simple case of a circular or a spherical billiard. The ultimate test of the success of a 

trace formula however is the reproduction of the exact quantum spectrum. 

The Maslov index a is given by a = p + v where p is an index counting the number 

of conjugate points of a given orbit of fixed energy and v arises while taking the trace of 

the Green's function to obtain the level density g(E). Following Creagh and Littlejohn [31], 

Balian and Bloch [6] and Magner et al. [80] a set of rules were presented by Brack and 

Bhaduri [20] to obtain the Maslov index for billiards. We present these rules in a more 

explicit form for an axially symmetric deformed cavity. 

1. p is determined by number of conjugate points i.e. turning and caustic points. 

2. A simple conjugate point gives a phase shift of — corresponding to change in p by 

3. Each reflection from the boundary produces a simple turning point (sign change of the 

normal component of the particle momentum) and a caustic point in the tangential direction. 

This gives a change Ay = 2 per reflection and a change in phase by —yr. 

4. Inside the billiard, there is a conjugate point along the caustic for each reflection, giving 

rise to AA = 1 and a phase change of — 2 . Thus the total contribution to y is —mn, I  , 
where m is the number of repetitions. 

5. There is a phase shift of —(mno — 1)7r for 2- dimensional periodic orbits which is related 

to phase change in 7r due to rotation around the centre. 

6. While Dµ = 2 for each reflection satisfying Dirichiet boundary condition, Dµ = 0 for 

Neumann boundary condition. 

7. The contribution due to v depends on the sign of the quantity w defined by 

_ trM-2  
b 	' 	 (33) 

where b is the upper right element of the stability matrix 



a b 
M =  ,  (34) 

c d 

which is also given by 

b 
ar1(t = T) 

=  ap1(t _ 0) . (35) 

If w is positive, v = 0 and if w is negative, then v = 1. 

8. For the diameters along the symmetry axis, 1- dimensional periodic orbits, there are two 

simple caustic points presented by two focal points. 

9. Rule number (3) is also applicable to orbits in the equatorial plane. 

C. Smooth Part of the Level Density 

For the smooth part of the level density g(E), Weyl devised a formula which was later 

extended and generalised by Balian and Bloch [7]. This generalised Weyl formula for a 

cavity with an arbitrary smooth convex boundary is given by 

1 2m 	 1 2m 	1 2mi 1 = 9(E) 47.2 (-2 )' /EV — 16~r —(--
)S+  127x2 ( 2) 2 ~C, 	(36) 

where V is the volume and S the surface area of the cavity. C is the mean curvature of the 

cavity, which is defined as the surface integral over the algebraic mean of the two principal 

curvatures c1, K2: 

C = Jda  2 (n, + K2 ). 	 (37) 

V. SPHERICAL CAVITY 

In this section, we use the POT presented in earlier sections to obtain the shell structure 

of a spherical cavity. There are number of reasons for choosing this cavity. First, it is the 

simplest and most elegant example where the basic ideas can be seen to work. Second, the 

exact results are known from quantum mechanics so that a direct comparison can be made. 



Finally, the results of a spherical cavity have found applications in a number of situations. 

It is our hope that spherical nuclei must also display some basic characteristics of a spherical 

cavity leading to a deeper insight in the structure of these nuclei. First we present the exact 

quantum mechanical solution. 

A. Quantum Mechanical Results 

The usual Schrodinger equation is solved to get the energy levels of a particle enclosed 

in a sphere of zero potential with infinitely high potential walls defining its surface of radius 

R [431. Choosing XQ(r) as the radial eigen function, the radial Schrodinger equation can be 

written as 

Xe +[k2—   e&  1) jXe = 0 0 < r < R, 

	

x= 0 	r > R 	 (38) 

The solutions of the above equation are well known spherical Bessel functions given by 

	

Xe(r) = Cjj(kr), 	 (39) 

where C is a constant. The boundary condition gives us, 

jp(kR) = 0. 	 (40) 

Since, for each given value of £, the Bessel function has an infinite number of zeros, we find 

an infinite number of values of k,,r ,p and of energy levels 

h2 

E,, e = 2m knr,e. (41) 

For each e, nr=1,2,3,...... etc., where nr  is the radial quantum number counting the zeros 

The zeros of Bessel functions tend towards either nit for even, or (n + 1 /2)ir for odd e. In 

FIG. 5.3 are plotted energy eigenvalues on y-axis and £ on the x-axis. It is clear from the 

figure that many energy levels bunch together (for different n,., 2) giving rise to fluctuation 

in the level density and hence a shell structure arises. 



B. Results Using POT 

A spherical billiard is a system with continuous symmetries and therefore contains fam-

ilies of degenerate periodic orbits [6]. These results were recently used to explain the super-

shell structure observed in sodium atom cluster [90]. The circular billiard has recently been 

applied to study atomic clusters [24,81], quantum dots [95] and nuclei by Frisk [44] and by 

Brack [21]. 

The starting point of our formulation is the trace formula presented by Strutinsky et 

al. [106],which takes care of degenerate family of periodic orbits. According to this, the 

oscillating component of single particle level density in cylindrical coordinate (p, 0, z) is 

given by, 

b9(E) 	77a E fp,msin(S 
"' 

+ iA'm) If  dPdz IPPPJ(pPPzta,►►t; P'z'E)IP ,z ,~pz . (42) 

The factor fo,m equals to 1 for the diametric orbits and 2 for other orbits like triangles, 

squares etc. The time period for the path from the initial point r" to final point i for energy 

E is defined as 

	

to = 	 (43) &E 

The quantity J in equation (42) is the Jacobian of transformation between two sets of 

classical quantities (p,, pz , to'-) and (p', z', E), which are related by the classical equations 

of motion. 

The maximum contribution to the gross-shell structure comes from the shortest periodic 

orbits. As pointed out, it has now become customary to carry out a smooth truncation 

of the contributions of longer periodic orbits by folding the level density with a Gaussian 

function of width 'y/R [24], 

	

b9nv(E) _ 	Jg(E)e-l2R i 2 . 	 (44) 
p,M 

Here, Lf,m is the length of periodic orbit. The averaging width y is chosen to be larger 

than the mean spacing between the energy levels within a shell, but much smaller than the 



distance between the gross shells. This averaging ensures that all longer paths are strongly 

damped and only the shortest periodic orbits contribute to the oscillating part of the level 

density. 

1. Spherical Billiard in Spherical Polar. coordinates 

We characterize the spherical cavity by using the spherical polar coordinates (r, 0, ) 

which are related to the cartesian coordinates as 

x = rsinOcosq 0 < r < oo; 

y = rsinOsinçb 0 < 0 < 7r; 

z=rcosO 	0<0<27r. 	 (45) 

The hamiltonian H is expressed in terms of (r, 0, 0) and the canonically conjugate momenta 

(Pr, Po, Pi) as 

H =- _ _ ( Z -I- 1- 2 + - 1 	2 ) + V r 	 (46) 2M 1?' — rape- - r2sin2A1?~ 

where M is the mass of the particle and 

V(r)=0 	r < Ro 

=00 	r > Ro. 	 (47) 

Ro being the radius of the spherical cavity: 

The time dependent Hamilton-Jacobi equation leads to the time independent equation 

given by, 

1 [(2S,)2 	 (8Sp 2 ( 	2l
r2 \ aB) + r2sin20 ` ao ) J 	E. 	 (48) 

The three partial actions (Sr , S, s0), obtained by using the separation of variable technique, 

are 

s, = 	podo = 27rl , 



~-'-2-20dO se = pdO =  

= 27r(€-1), 	 (50) 

sr _ 
i 

p, dr = ~2ME — —dr, 	 (51) 

where lZ and E are the separation constants in equation (49), (50) and (51). The limits of 

integration in (51) are determined by noting that the particle motion is bounded between 

an upper limit provided by the radius of the sphere r = Ro and a lower limit obtained from 

pr= 0 

E rmjn = 
.  

2ME 	
(52) 

where, 

	

E = (2ME)RocosX. 	 (53) 

Solving the equation (51), we get 

Sr = 2 (2ME)Ro(sinx — xcosx). 	 (54) 

The constant E is fixed by using the periodicity condition i.e. 

WB 	aE 	ne 

where nr and no are relatively prime integers. This implies that X = n . The frequency 

of rotation for a three dimensional orbit is 

27f 	Wr 

2ME 7r 

	

MRo n,.sinX' 	 (56) 

and, 

= Tp 	2ME Lp' 	 (57) 



where Lp = 2Ron,.sinX. It may be noted that the equation (56) for the rotational frequency 

is exactly the same as obtained in the quantum treatment [15]. 

The action 	y2MELp in equation (42) is determined by the length LQ(nr:, no ), 

which can easily be found from the time period in equation (57). This length comes out to 

be exactly the same as obtained from the geometrical considerations viz. Lp = 2nr Rosin"' 
A good description of the periodic orbits in a circle may be found in [24]. 

The Jacobian is obtained by using the Hamilton-Jacobi equation and is given by 

2M2 	1 	1 
J — — 2ME r2 — a2 ( m ) 	 (58) 

with a = RocosX. The quantity pp, appearing in equation (42) is given by 

pp p = 2ME[ r2 — a2sin6 + acosO]sin9. 	 (59) 

Using equations (58) and (59) in equation (42), the oscillating component of the level density 

is given by 

6g( E ) =  	Sin[kL(Tnr,Tne)+ cr( Tnr,Tne)] X 
7rEO 	TT B Tnr >2Tng 

!=a
RO '~t 	 /  

f —rdrdOl 2[sin26 + 	c sinOcosO] 2 I. 	(60) 
 ©—o 	\ m 	r cos 	/ 

where Tnr = mnr , Tne = mn0, m is the number of repeated cycles of a given type of orbit 

and co = 2MN . We also multiply equation (60) by a factor /k]j to compensate for the 

higher degeneracy of the spherical cavity. The Maslov index a(Tn,, Tna ) can be worked out by 

using the rules stated earlier. It may be pointed out that whereas the action Sp is identical 

for repeated cycles of a periodic orbit and therefore can be multiplied by the number of 

repetitions to obtain the total action, the same is not true, in general, for the Maslov index. 

It was recently demonstrated explicitly by Brack and Jain [19] that for stable isolated orbits 

in a harmonic oscillator potential, the Maslov index does not repeat itself in successive 

cycles. The Maslov index used here is taken from Balian and Bloch [6]: 

ir 
_ — 32 Tnr — (Tng — 1)7f 4 34 	 (61) 
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For diametric orbits, the equation (60) simplifies to 

6gdi.(E) = — 1 
	

1 sin(kL(m) + u(m)). 	 (62) 
7rEp ,,L 	2172 

The Maslov index a(m) in this case is taken as, 

32 m + 4 	 (63) 

Using Weyl's formula for smooth part of level density, we obtain for a spherical cavity, 

g(E) = 3irE kRe [(kRo)2  — 4 kRo  + 1]. 	 (64) 

The total level density g(E), therefore becomes, 

g(E) = g(E) + ag(E) + 6gdza(E)• 	 (65) 

VI. RESULTS AND DISCUSSION 

We have used the formula (60) to calculate the oscillating part of the level density and 

the results are shown in figures 5.4(a) and (b). In FIG. 5.4(a), we show the variation of 6g 

as a function of kR where the 3:1, 4:1, 5:1 and 6:1 orbits have been taken into account; the 

diametric orbits were not included and no sum was carried out over repeated cycles. The 

plot reveals the well known beating pattern or the supershell structure that arises out of the 

interference of mainly the triangular (3:1) and the rhomboidal (4:1) orbits. It may be noticed 

that og oscillates at a higher frequency where AkR X1.1 units and a supershell structure 

appears which oscillates with a slow frequency where AkR .^12 units. When the diametric 

orbits are included in the sum, the picture modifies to what is shown in FIG. 5.4(b) with a 

little change. Although the diametric orbits have a significantly smaller length than the 3:1 

and other higher orbits included in the sum, but they have a degeneracy factor lower by one 

unit than other orbits so they do not lead to any significant modification in the supershell 

structure; in both the cases -y = 0.6. As pointed out earlier, the ultimate test of the trace 

formula is its ability to reproduce the exact quantum mechanical eigenvalues if sufficient 
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number of orbits are included in the periodic orbit sum. In figures 5.5 and 5.6 we show 

the results for orbits upto nr  = 100 and no = 100 included in the sum. FIG. 5.5 exhibits 

the results without smoothing while a smoothing width ry = 0.02 is taken in FIG. 5.6. The 

effect of smoothing is visible in terms of a cleaning up of many spurious peaks and also the 

negative amplitude decreases appreciably. In figures 5.7 and 5.8, we show similar results 

when the number of orbits included in the sum is increased to n,. = 500 and no = 500. A 

much better eigenvalue spectrum is obtained both with and without smoothing. The exact 

quantum eigenvalues are also shown in the graphs at the bottom for a direct comparison. 

It is satisfying to note that the observed peaks have a one-to-one correspondence with the 

quantum results. the formula for level density therefore appears to be reasonably successful. 
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FIG. 5.1 Plot of single-particle level energies vs. the deformation showing shell struc-

ture for an axially symmetric harmonic oscillator. From Ref. [15]. 
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CHAPTER VI 

PERIODIC ORBIT THEORY OF 

SPHEROIDAL CAVITY 
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I. INTRODUCTION 

We have presented in chapter V, a limited exposition of the powerful semiclassical theory 

of the periodic orbits followed by its application to spherical billiard. It is now our general 

understanding that most of the nuclei are deformed rather than spherical. Moving few 

nucleons away from a closed shell, or changing the configuration of a nucleus is enough 

to introduce deformation or, shape change. Much of the nuclear structure over last three 

decades has remained centered around deformation in nuclei. A deformed cavity containing 

a particle provides a simple example of a deformed nucleus. An important connection in 

these studies is provided by the success of the single particle models of nuclei. It is now well 

known that the mean field approximations for the nuclear potential has proved to be the 

single most simplifying factor in much of the nuclear structure studies. It provides the basis 

for the single particle models which assume that nucleons move almost independently in a 

common potential. It also provides us the starting point for an alternate view of the questions 

related to nuclear shapes, the shell structure and their inter-relationships as a function of the 

particle number, excitation energy and the angular momentum. The alternate view arises 

from the realisation that the common potential in which nucleons move, does resemble a 

cavity. An early and lucid description of semiclassical theory of bound states was given<may 

be found in Percival [93]. 

In the present chapter, we extend the studies presented in the preceeding chapter and 

take up the problem of a particle in an infinitely deep ellipsoidal well. Such a system 

resembles a deformed nucleus and an application of the POT allows us to study the gross 

shell structure as well as the energy spectrum and their relationship with periodic orbits can 

be explored. Since most of the nuclei are prolate deformed we concentrate on a cavity with 

prolate spheroidal shape. The periodic orbits of such a system with continuous symmetry, 

exist in degenerate families. We therfore use the trace formula presented by Strutinsky et 

al. [106] which is applicable to non-isolated orbits. A similar study for prolate cavity was 

also carried out by Frisk [44] by using the formula of Berry and Tabor [ 10,11] and also 
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more recently by Magner et al. [80] by using the extended Gutzwiller theory. Arvieu and 

coworkers [3,4,27] have studied spherical as well as elliptical boxes by using semiclassical 

EBK quantisation techniques. 

The outline of this chapter is as follows. First we present the details of the classical 

dynamics of a particle in a spheroidal cavity; this presentation closely follows the work of 

Strutinsky et al. [106] where we obtain the detailed conditions for the existence of periodic 

orbits in an ellipsoidal well. Three kinds of periodic orbits are possible in a spheroidal cavity; 

planar orbits in the axis of symmetry plane, planar orbits in the equatorial plane and 3-

dimensional orbits. The actions, frequencies and periodicity conditions are derived for these 

orbits. We then use the trace formula to obtain the fluctuating part of level density for the 

three kinds of orbits. A brief discussion of the gross-shell structure is then presented. 

II. PERIODIC ORBITS IN A SPHEROIDAL. CAVITY: 

Let us consider an ellipsoidal cavity with an infinitely high boundary so that a particle 

makes a perfect reflection on striking the walls. The potential inside the well is assumed 

to be zero. 'Spheroidal system of coordinates. (u, v, 0) is a natural choice to describe an 

ellipsoidal well; these are related to the cartesian coordinates (x, y,.z) [106] by ... 

x = cosu sinhv cosq 	— 2 < u 

y = cosu sinhv sino. 	0 < v <00 ; 

z = sinu coshv 	0 < 0 < 27r 	 (1) 

For the special case of spheroid, where the two smaller semi-axes are equal a = b and the 

third one, c, is longer, 

_ (c2 — a2) 2 = R0rk-"3(n2 - 1) . 	 (2) 

where the volume conservation condition 

3
~rR0 = 3ira2c, 	 (3) 

•t 



Inside the ellipsoidal well and using the definition pi = aq where S is the total action, 

C
8S12 + (aS)2 

 
. 	

+ (cos2u 
1

+sinh2 	
aS2 = 2M~2e(cosh2v — sin2u). 	(10) c7u) 	av 	 a0 

Since 0 is cyclic, we obtain by using the technique of separation of variables, 

where £z is a constant to be interpreted as the component of the orbital angular momentum 

along the symmetry axis. Hence, 

	

84, = 2ir€z. 	 (12) 

Similarly, we obtain 

2 

su = ~du[2M 2(E — esin2u — 	~z 	 )] 2 , 	 (13) 2Me2cos2u 

2 
s„ _ dv[2M 2(ecosh2v — E — 	~z 	)] 2. 	 (14) 

2M~2 sinh2v 

where e is the constant of separation. The limits of integration are.decided',..by the classical . 

turning points where momenta, 

2 

	

pu = 2M 2(€ — esin2u — 	~z 	 ), 	 (15) 2M, 2cos2u 

a 

	

pv = 2M 2 (eco8h2v — f — 	£z 	), 	(16) 2M~2sinh2v 

become zero. The second of these equations can be solved to give 

cosh2v=2(1+e)±[4(1—e)2+2m 2e]2. 	 (17) 

Let or1 = e and a2 = 2M 2 , where o and Gr2 are dimensionless quantities, so that 

cosh2v= 2(1+0-1)±[4(1-61)2 +a2]2. 	 (18) 



The particle moves in 2-dimensional elliptical periodic orbits between two confocal ellipsoids 

with v = v0 and v = v,,,j where vmi,i is given by 

cosh2v„1t,t = 2 (1 + a1) + [4 (1 — a, )2 + 012] 1. 	 (19) 

The 2-dimensional hyperbolic butterfly orbits are limited by two confocal hyperboloids with 

u = um,, and u = —u 	which are governed by the equation (15). We obtain 

sin2u = 2(1 + a1) ± [4(1 — a1 )2 + a2]2,  (20) 

which gives for a hyperboloid, 

sin2u,,,, = 2(1+a1) — [4(1 —Ql )2 +v2] 2 . 	 (21) 

We have thus expressed Vmin and um,ax in terms of the variables orl and a2. Further limits 

on a1 and a2 are set by the requirement that the kinetic energy be positive. This implies 

that p2 > 0 or, 

E > sin2u + cr2  (22) 
e  cos2u 

It implies that a1 > a2 and 012 > 0. Similarly, setting pv > 0, we obtain 

cosh2v — 	> a1. 	 (23) sinh2v 

Combining these, we get 

0 < 0-2 < Or1 < cosh2v0— 
sinh2va  

(24) 

Hence, 

012 < cosh2va — 	0'2 	 (25) sinh2vo 

which also implies that 

1 a2 < 21. 	 (26) r~— 



It is also clear from the above equations that 

max(l, ai) < coshv,nin < (1 + ai) 2 < coshv0, 	 (27) 

and 

sinumax < min(1, ai ). 	 (28) 

The two dimensional elliptical orbits in the axis of symmetry plane reflect from the 

outer boundary at v = vo and pass tangentially to the internal caustic defined by v = 

Similarly, the two dimensional hyperbolic butterfly orbits touch the internal caustics defined 

by the hyperbolae at u = —umax and u = u,,,,~. The diametric orbits are defined by Vmin = 0. 

In the spheroid, there is only one (isolated) diametric orbit along the axis of symmetry. In 

addition to these, we have planar orbits in the equatorial plane defined by z = '0; these 

are similar to the orbits of a circular billiard and will be treated by using the results of the 

earlier chapter V (spherical billiard). The hyperbolic butterfly orbits appear for deformations 

r) > 7]min and their effect will not be considered in the present calculations. Magner et al. 

[80] discuss these orbits. 

Finally, we have the three-dimensional periodic orbits which exist for only large defor-

mations. These satisfy the conditions, 

V0 > Vmin > 0, 	0 < Umax < 2 • 	 (29) 

These appear at a specific deformation for specific values of nu, n„ and no and will be 

considered in the present work. 

III. PARTIAL FREQUENCIES AND PERIODICITY CONDITIONS 

We note that the partial actions 

Su = SU(e, f, &), 

Sv = 

SO = SO(e, E, f'), 	 (30) 
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may be used to obtain the partial frequencies 

wu = 2ir( ae ) _ —27r 	& , 	 (31) 
asv , 	J(s„s,; eE) 

ate) wv=27r 9e _)_-2-7r (of 	 (32) 
asv 	J(Sv Su ; eE) 

ae  J(sysu;t ) 
w~ = 2ir(as- ) 	J(sys,.; eE) ' 	 (33) 

in the angular, radial and azimuthal directions. Here J represent the respective Jacobians 

of transformation. The periodicity condition may now be written as 

wu = ( a ) 	 (34) 

v  (8E ) 

where 

( aE")_— 2Mej 	1 	dv 
2e~ [cosh

2 
v 	Ql 

— (35) 

sinh2v]

2 

 

8su 
 dv 

	

2M 2 	1 	a 1 
( aE ) 	'2e1 a1 sin2u — 	2 	 ( 36 ) 

1  cos2vJ 

Solving these integrals, we obtain 

Wu 
	1 1 	F(8' i)

j 
	

n" 	 (37) 
n,. ~ 

where n, and n„ are relatively prime integers. Also, F(O, K) are elliptic functions of first 

kind with, 

SinUmax 1 coshvmin 9 = sin- ( 	) . 	 (38) 
COShVmin 	 coshvp 

Similarly, the ratio of frequencies in 0 and u is given by 

a~ 

wu 	27r L 8ez + '- , 	
39 

v 

which may be solved to give 
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1 

2 

	

Wu 	i. [(1 	 x)2)(1 — )l
z x 

	

u 	 J 

IT 	l~ 2  	7i 
 (

ri(,   K, k) — H(O,   ~2, k) /  —   n [n( ~ 2~(  ) ,k) — F(2,K)+  	1   1— FO,,~ 	I  	n ' 	(40) 
2( 	F(2,tc ) )  	" 

where no and n.0 are also relatively prime integers, and 

_ 	1 	_ 	 (41) 
sin6coshvo 	iisin6 

 

Here fI(6, 2, ic) are the elliptic functions of the third kind. 

For systems with continuous symmetries such as a sphere or a spheroid, the periodic 

orbits fall into families of orbits, each family /3 having a constant action Sp at a fixed 

energy. Each member of a family is defined by a fixed number of parameters K, which is 

the degeneracy of the family. A given periodic orbit, or family of orbit ,3 is defined by the 

three relative prime integers n,, n21 , no and also the repetition number in so that an orbit 

is labelled as ,3(n, n,,, no, m). Equations (38) provide the range of values for r and 6 for a 

given 3. 

A. Three-Dimensional Orbits 

For three-dimensional orbits, the solutions to ic(nu , nv , no ) and 9(n,y, n,,, no ) exist for 

deformation 77 > 77,in, where 

sin("O) n„ 
7min 

_ 
— 

nv 

(42) 

at which point ic = 0, 0 = 2 (1 — 2n ). The 3-dimensional orbits are close to the equatorial 

plane z = 0 at or, near 1]min. They occupy increasingly larger volumes as i increases. It can 

be shown that n < 2 for the 3-dimensional orbits. Also n, > 2nd and no > 2. Thus for 

the nonplanar orbits, the minimal value of n„ is 5 i.e. there must be at least five reflection 

points from the potential well. For example the 3-dimensional orbits (nu : n,, : no ) = 1 : 5: 2 

appear at rather large deformations with 7/min = 1.62. The orbits with no : nu = 2: 1 are the 

shortest nonplanar orbits and resemble the Lissajous figures of the harmonic oscillator with 

102 



the deformation corresponding to wl : wZ = 2 : 1. It is well known that the 2 : 1 frequency 

ratio of harmonic oscillator corresponds to a shape where new shell gaps corresponding to 

superdeformation arise. For 3-dimensional orbits, K=2. 

B. Frequency Of Rotation 

The frequency of rotation for 3-dimensional orbits is given by 

2i- 	w,,,  
(43) 

To calculate SZQ, we note that 

wv  1 
S2 p = n = 2ir (as 	n as ) • 	 (44) 

8e 	n„ Oe 

Now, 

	

as„ _ pRij3 sing r 	d8 

 

ae  e  fo sin29[1 — ,c2sin2B]1'  
(45) 

and 

a e _ 2pRr~e sin6 ic2D( 2 
'
ic) 	

(46) a  
Here p = 2Me. Using these results in equation (44), we obtain 

	

3 z S~9ph 

  [ 	

1 

        jJ 	
(47) 

2nr13sin8 	 ,c 	9,n)] +cotO(1 —K2sin29)2  n„  2 

where S29ph = 	 , is the frquency for triangular orbits in a sphere as shown in euation (55) 3 pR  

of chapter V. The function D(O, ic) is given by 

 

0  d~ D(O, c) 
=  0 1—K sin O 

For rhomboidal orbits in the axis of symmetry plane nu = 1, n„ = 4 and is --3 1. It can be 

shown that 
3 

SZp(1 : 4) = 42 Stsph~l3 5 2 — 1 — 412 1 — 1~ z . 
	 (49) 

	

[ 	( 	2,, )] 
For 77 > 1, it reduces to 

4) = 32QaphTi3 
4(2+1)'  

(50) 

a result used by Strutinsky et al [106]. 

(48) 
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C. Planar Orbits 

The 2-dimensional planar orbits exist in the axis-of-symmetry plane and also in the 

plane perpendicular to the axis of symmetry or, equatorial plane at z = 0. The orbits in 

the equatorial plane correspond to the periodic orbits in a circular billiard and are polygons 

satisfying the condition 

w„:wo =nz :no. 	 (51) 

A family of orbits with constant action can be generated by continuously varying one angle 

parameter and therefore the classical degeneracy K = 1. 

Periodic orbits in the axis of symmetry plane are more important and as pointed out 

earlier, fall into two categories, the elliptical periodic orbits and the hyperbolic periodic 

orbits, the latter making appearances at 

7]min = 	.ten  sin( ) 
1  

nv 
	 (52) 

The degeneracy parameter K for these orbits is 2. Due to higher degeneracy, these orbits are 

a major contributor to the shell structure. The diametric orbit along the axis of symmetry 

is however isolated and has a degeneracy. parameter K = 0. 

IV. RELATIONSHIP OF PLANAR ORBITS WITH THE GROSS-SHELL 

STRUCTURE 

In the first application of the periodic orbits to the gross shell structure in nuclei and 

the evolution of nuclear deformation as a function of particle number, Strutinsky et al. [106] 

were quite successful in relating the rhomboidal orbits to the change in nuclear deformation 

near shell closure. 

It is now a well established procedure to locate the minima (or, valleys) in the level 

density vs. deformation plots and identify the corresponding particle numbers as the most 

stable shapes. Instead of level density, one usually considers the energy e vs. deformation 
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rj plots. The minimum of the level density then corresponds to a minimum in the energy 

em(r~). Such minima are well recognised at the usual magic numbers for the spherical shape. 

As the shape changes, these points of minima turn into distinct prolonged valleys as shown 

in Figures 6.1 and 6.2 [106]. One may now calculate the nucleon numbers Nm(77) along these 

valleys which then represent the magic numbers at non-zero deformations. The characteristic 

quantities of these minima valleys are the slopes da and d which decide the positions of 

the minima valleys in the contour plots of the shell corrections in density of states, 6g(e, 77) 

and the shell corrections in energy, 6E(e, ui). 

In an interesting application, that provides much insight into the relationship of periodic 

orbits with the most preferred nuclear shape at a given nucleon number, Strutinsky et al. 

[106] presented a simple relationship based on just one family of orbits n, : n, = 1 : 4 

that fortunately explained the fall in nuclear deformation as the magic number A = 208 is 

approached. The basic argument is the constancy of the action integral SS(em, rj) along the 

minima valley. Thus, 

SO(em,71) = constant, 	 (53) 

which leads to 

de,,,  — (a) 	 54 
dry 	Ta 	 ( 

where 7a = 1p . The slopes of the valleys are then given by 

d di7'►` = g(em)( d- ), 	(55) 

where g(em) is the level density at the Fermi energy em. It can be shown that 

as° 
= 4 2MeR ( 2ii2 — 1) 	 (56) 

1977 	 3rd 3 r~ + 1 

For the rhomboidal orbits, where n,, = 1, n„ = 4, 

de,,,, _ 2e(2r~2 — 1) 	
(57) 

dq 	377(r~2 +1)' 
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which is a negative quantity. Using the Thomas-Fermi relationship between the nucleon 

number N and the average level density g(e), 

3N 

	

(e) = 2e , 	 ( 58)  

we obtain, 

dNm  N 

	

d  ' — 2 	 (59) 

for i close to unity. At ii = 1, N = Nmagic and at i > 1, the nucleus acquires the most 

preferred equilibrium shape 7/ eq  at a given N. Integrating, we obtain 

2(Nmnagic — N) 7eq  = 1 + 	N (60) 

Here Nmagic  is the magic number at spherical shape. Strutinsky et al. [106] used this relation 

to reproduce the ,nearly linear trend of- nuclear deformation prior to' the magic number 208. 

The same cannot however be said to be true for the onset of nuclear deformation after a 

shell closure. Recently, Brack et al. [18] adapted this formula to the magic numbers of 

metal clusters and obtained straight lines that fit perfectly to the average deformations 

found numerically from the quantum spectra using the shell-correction method. 'Although 

this formula was worked out for prolate deformations, it also fits the oblate deformations in 

metallic clusters. 

It is indeed amazing that the predictions based only on the rhomboidal orbits can explain 

qualitatively the features of nuclear deformation. Particularly so when the triangular orbit, 

which is shorter, has not been considered. Using the exact expression for ( da- ) and solving 

it numerically for the (n,, : n„) = 1: 3,1 : 4,1 : 5 and 1: 6 families of orbits, we obtain 

the variation in shape with particle number as shown in FIG. 6.3, where we have also used 

Nmagic = 208. It is clear from the exact results that the dependence from any one family of 

orbits is not exactly linear. Even then, the tangent drawn to the curve corresponding to 1 : 4 

comes quite close to the observed deformations. It may be mentioned that our solutions are 

not valid near magic number. Therefore the large deviation near Nmagic  should be ignored. 
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It is also remarkable to note that all these curves for the four leading families of orbits tend 

towards each other near nucleon number 176 giving a deformation 6 = 0.3. 

V. TRACE FORMULA FOR SPHEROIDAL CAVITY 

To calculate the oscillating component of level density for spheroidal cavity , we use the 

formula proposed by Strutinsky (taking degenerate families of orbits into account) as done 

in the case of spherical billiard in chap V: 

ö9(E) 	~h2 	fp,msin 
(Sh"'' 

+ vp m) f J dpdz I pppJ(pppztp,m; P'z'E'') I p,Z ,,-+Pz • (61) 
Q,m 

where the various terms have already been explained. Since this formula is in cylindri-

cal coordinates and we have described our system in spheroidal coordinates, we make a 

transformation between the two sets of coordinates by using the relations, 

p = cosu sinhv, 	 (62) 

z = esinu coshv, 	 (63) 

pP =Map 
dt 

= 2Me —sinu sinhv (a l — sin2u — 2) 2 + cosu coshv (cosh2v — 01 — 	) z 64 
L 	sin2u sinh2v + cos2u cosh2v 	,' ( ) 

pp p = kRrj 3i 712 — lcosu sinhv x 

( — sinu sinhv (or1 — sin2u — -2) * + cosu coshv (cosh2v — Ql -  
( 	 sin2u sinh2v + cos 2u cosh2v 

)?l , (65) 
J 

2me 
cosu  coshv (o, — sin2u — — 

COS IL 
 ) 2 + sinu sinhv (cosh2v — a1 — si 	) 2 	66 Px= 	 (66) 

sin2u sinh2v + cos2u cosh2v 

Here p and z are the radial and axial coordinates in the cylindrical system; p,, and pz are 

the corresponding canonically conjugate momenta. Also k = p/h = 2Me/h. 

The total action may be given in the terms of the partial actions as 
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S = nusu + n„s„ + noso, 
'umax 	 Q2 = kRii-1/3 ii2 — 1 4nu f

o
du Ql — sin2u - 
 cos2u 

+2n„ 
J"Min 

vO dv cosh2v — a1 — sinh2v 0'2 + 2irn 6  ~~ , 

The action can also be written in terms' of the length of the orbit 

(67) 

(68) 

where Lo in turn can be found out by using the time period. 

Now the Jacobian of transformation is given by the determinant, 

Op az ae 

Op az ae 

at at at 
8p az ae 

The various terms of the Jacobian can be written down by using the following relations: 

Op,  2Me _ 2Me r 	Ti 	 T2 
ap 	Kl 	L sinu sinhv + cosu coshv J' 

where Ti and T2 are given by 

Tl = 	 1 
(sin2u sinh2v + cos2u cosh2v) 

[_os 	 (72u sinhv Ql — sin2u — 
cos2u 

	

sinu sinhv sin2u(1 ' ~) 	 2 l 
+ 2 al — sin2u — 94u 

— sinu coshv cosh2v — — sinh2v J 
coy u 

sin2u + 	 sine 	 a2 
(sin2u sinh2v + cos2u cosh2v)2  

sinhv Q1 — sin2u -  
cos2u 

+cosu coshv cosh2v — Q1 — Or2 

sinh2v 

and, 
0 

1  cr2 

T2 _ (sin% sinh2v + cos2u cosh2v) [—sinu coshv a1 — sin2u — cos2u 



cosu coshv sinh2v(1 + fir) 	 2 	Qz 1 
+ 	 + cosu sinhv cosh v — cal — 	2 J 2 cosh2v — U 1 — sinh2v 	

Binh v 
ainh v 

	

shdt2v 	 o'2 sine sinhv vl — sinzu -  
(sin2u sinh2v + cos2u cosh2V)2 	 COS% 

02 l +cosu coshv cosh2v — a1 — sinh2v J' 

Similarly, 

app  2M 

	

— 	e 
K2 

_ 2Me 	Ti 	+ 	T2 l 
az 	2 

/Mr 
 coshv si nu sinhv (72)  

OPP — 2M 	 (73) 
X 2Mep3' 

where 

1 _ —sinu sinhv (a1 — sin2u — 	) + cosu coshv (cosh2v — 0-1 — sinh2v z 
p3 —  sin2u sinh2v + cos2u cosh2v  

]• (74) 

Also, 

and, 

8pz — 2Me 
K3 

dp 

8pz 	K4= 

2Me f— T3 + T4 l 
	(75) 

• L sinu sinhv cosu coshv] ' 

[cosu

T3 	T4 l (6)  coshv + sinu sinhv]' 

where T3 and T4 are given by, 

T3 — 	 1  sinu coshv 	D'1 — sin2u — 	a2 
L 	 cos2u (sin2u sinh2v + cos2u cosh2v) 

cosu coshv sin2u(1 + 	) 2 
	

a2 + cosu sinhv cosh v — ~i — sinh2v J 2 Q — sin2u — 2\1 	C032U 
+ 	sin2u 

IC
osu coshv 	a1 — sin2u — 	U2 

(sin2usinh2v + cos2ucosh2v)2 	 cos2u 
a2 +sinu sinhv cosh2v — a1 — sinh2v 

f 
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T4  (sin2u sinh2v + cos2u cosh2
v) [Cosa sinhv vl  — sin2

u — cos2u 
sinu sinhv sinh2v(1 + s 	) 	 2 	0'2  

+ 	/' 	 + cosu sinhv cosh v — Ql  -  
2V cosh2v — a1 — sinh2v sinh2v 

sinh2v 	
cosu coshv a'1 — sin2u — Or2  

(sin2u sinh2v + cos2u cosh2v)2 L 	 cos2u 

+sinu sinhv cosh2v — or — 02  1.  
sinh2v 

Further, 

apZ _ 2M 
ae 	2Me p4' (79) 

where, 

1 _ 	coshv (vl  — sin2u — 	) I + sinu sinhv (cosh2v — a1 — h2)2

P4 

 [cosu 
 sin2u sinh2v + cos2u cosh2v ' 

	 I 	(80) 

To obtain e , we note that 

9Sa  

	

to  =  ae  , 	 ( 81) 

ata— _S 
ae 	4e2 	 (82) 

Finally the Jacobian takes the following form, 

2Me 
E 	Kl 

2Me ' t K2  2M 
2MeP3 

2Me 
K3K 

2M 
C 4 2MeP4 
2M 

2Mep3 
2M 

2Mep4 
_ S 

The fluctuating part of level density Sg is finally obtained by using these terms in the trace 

formula and numerical computation. These are general expressions valid for 3-dimensional 

orbits in the spheroidal cavity. Results for the planar orbits can be simply obtained by 

putting u2 = 0. 

The contribution to 8g from the isolated diametric orbit along the symmetry axis is ob-

tained by using the expressions for planar orbits. We take the effect of the lower degeneracy 

(K = 0) for diametric orbits into account by dividing by a factor kRo . 
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There now remains the contribution of orbits in the equatorial plane. We note that 

these orbits are simply those corresponding to a circular billiard at z = 0 having a radius 

R = Ron r. We use the results presented in chapter V for the spherical billiard to calculate 

the bgeq by properly taking into account the effect of classical degeneracy which in this case 

is K = 1. The total level density bg(e) therefore is obtained as, 

bg(e) = 8g x=2 + J g'=o + bg K=l 	 (83) 

The effect of 3-dimensional orbits, which begin at higher deformations, will be discussed 

separately. We have not included the contribution of the hyperbolic butterfly orbits in our 

results. The damping factor for the convergence of the periodic orbit sum has been taken 

as the same as discussed in the previous chapter. 

The Maslov indices have been discussed in chapter V. We have used the following values 

in accordance with Magner et al. [80]. For planar orbits (except diametric) in the plane of 

axis of symmetry the Maslov index has been taken as 

3 2"~— (mn,~-1)ir-2 0sym_ — 	 . 	 (84) 

For diametric orbits in the same plane the Maslov index is given by 

3mnvir 7r 
O'D 	2 	2 

(85) 

The Maslov index for the orbits in the plane perpendicular to the plane of axis of symmetry 

is given by 

3 2 " ~ + 4 	 (86) 

For 3-Dimensional orbits we have taken the Maslov index as, 

0'3d = -- 3 2 ~ " -- (mn,~ — 1)7r -- mn~~ — 2 . 	 (87) 
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VI. NUMERICAL RESULTS AND DISCUSSION 

We have presented in this chapter a detailed discussion of the periodic orbits in spheroidal 

deformed cavity. We have used the trace formula due to Strutinsky et al. to obtain a general 

formulation for the oscillating part of the level density 6g(e). This trace formula, valid for 

3-dimensional non-planar orbits, can be reduced to that of planar orbits by putting 02  = 0 

and also to that of diametric. orbits. In order to calculate the contribution to 6g(e) from the 

orbits in the equatorial plane, we have adapted the expression obtained for spherical billiard 

(Chapter V) which was also derived by using the trace formula of Strutinsky et al. We now 

present some numerical results based on these expressions. 

We consider the application of these formula to gross shell structure, a topic of great 

interest in nuclear and atomic cluster physics. We show in FIG. 6.4 four numerical results for 

6g(e) as a function of kRo  at ri = 1.2. The quantity 6g(e) has been evaluated here in units 

independent of energy by putting E = 1. The bottom panels exhibit the results,  of summing 

over nu  : n„ = 1 : 3,1 : 4,1 : 5 and 1 : 6 orbits. Besides the fast oscillations, we also see 

the familiar beat pattern. The right panel exhibits results with -y = 0.6 and the left panel 

exhibits results. with ry = 0. In the top panels, we have also included the contribution of 

the shortest pendular orbit (1: 2). It modifies the magnitude of the oscillations but only at- 

small kR; most of the pattern remains unchanged. The 1: 2 orbit is infact shorter in length 

but does not affect the bg(e) significantly. As in the spherical case, the most important 

leading orbits are the 3: 1 and 4 : 1 orbits. On looking back, it therefore does not seem to 

be so surprising that Strutinsky et al. succeeded in explaining the main trends of nuclear 

ground-state deformations by considering only the rhomboidal periodic orbits. 

The four panels in FIG. 6.5 contain similar results for the orbits in the equatorial plane. 

The contribution of the equatorial orbits is significant but not more than that of the planar 

orbits. Although the degeneracy of the equatorial orbits is lower, they are shorter and this 

seems to enhance their contribution. Further, we observe that the number of beats has 

increased as compared to the planar orbits alone. 
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In FIG. 6.6, we show the results for the total (g at 7j=1.2 where contributions of planar 

and equatorial orbits have been added. The upper right panel, which contains the results for 

-y = 0.6, is almost same as that obtained by Magner et al. [80] except for a small difference 

near kR = 0. Figures 6.7, 6.8,and 6.9 are similar to Figures 6.4, 6.5,and 6.6 but are now 

plotted for a deformation r = 1.53. Two distinct changes are evident. First is the decreasing 

contribution of the planar orbits. Second is the relatively enhanced contribution from the 

orbits in the equatorial plane; effectively the role of equatorial planar orbits has gone up 

with increase in deformation. This is as expected because the orbits in the equatorial plane 

continue to become shorter with increase in prolate deformation. Figures 6.10, 6.11 and 6.12 

contain similar results for the important deformation 71 = 2 where most of the non-planar 

orbits begin to play an important role.We notice the decreasing role of the planar orbits at 

r~ = 2 from FIG. 6.10. The equatorial orbits, on the other hand, remain as important as 

shown in FIG. 6.11. The total 6g(e) is shown in FIG. 6.12. 

It is important to point out that the planar butterfly hyperbolic orbits (such as nu : 	 = 

1  : 4) appear at r = 	and contribute at larger deformations. Magner et al. have included 

the effect of these orbits, which we have not done so far. This may explain some differences 

in our results with those of Magner et al. As pointed out by Magner et al. r7 = 2 is the 

bifurcation point where the hyperbolic orbit n,.: n,, = 1: 6 appears. 

Besides the hyperbolic butterfly orbits, the 3-dimensional non-planar orbits also begin 

to play a role for r, > 77,,,i,. For example, the shortest 3-dimensional orbits correspond to 

n,, : n„ : nO = 1 : 5 : 2 which appear at 1/ min = 1.62. We therefore have chosen r = 2 as 

the deformation to study the role of the 3-dimensional orbits. The deformation r) = 2 is 

also significant because at r = W = 2, the harmonic oscillator exhibits a large degeneracy 

and occurrence of shell closure. In FIG. 6.13 we display the results of 6g obtained from six 

non-planar orbits n,, : n„ : no = 1:5:2 + 1: 6: 2 + 1: 7: 2 + 1: 8 : 2 + 1: 9 : 2 + 1: 10:2. 

Most striking is a remarkable beating pattern with several beats occuring upto kR = 35. 

In contrast to the planar and equatorial orbits, where only one to three beats were seen 

upto kR = 35, we find almost five beats for non-planar orbits. Also the amplitude of the 3- 
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dimensional orbits is slightly greater than that of equatorial orbits. This brings an important 

point into focus, that the 3-dimensional orbits are as important or even more important than 

any other orbits particularly for superdeformed (SD) shapes. This conclusion therefore opens 

up a new dimension to the study of superdeformed nuclei. It appears that the 3-dimensional 

orbits stabilise the superdeformed shapes and are not perturbed by rotation as much as the 

planar orbits would be. 

The role of 3-dimensional orbits is conjectured to assume more important role in SD 

nuclei in view of the following discussion. We note that we have approximated deformed 

nucleus by a spheroidal cavity. We also note that the SD bands are observed at high 

spins. Even otherwise, a deformed nucleus always has a rotational motion. Thus a proper 

understanding of these bands would require the inclusion of rotation which leads us to a 

rotating billiard. Significant modifications are expected in the periodic orbits, when we 

include rotation, because of the inertial forces. 

In a simple yet significant work, Arvieu and Frisk [45] explored the classical dynamics 

of a particle in rotating ellipse and stadium billiard and discussed the organisation of the 

phase space which highlights the regions of order and chaos. While ellipse is an integrable 

system, the stadium is a non-integrable system. Yet at large rotational frequencies, both the 

billiards display very similar phase-space structure. It was found that rotation of stadium 

billiard (which is chaotic) leads to ordered motion which is very similar to that of an ellipse. 

The phase-space exhibits two confined regions in which only order is seen in both the cases. 

From our discussion of the dynamics of cranking model (and also the particle-rotor model), 

which is a rotating system, we are tempted to identify these two confined regions of order at 

large rotation with the two fixed points cf where we suppose that the SD bands may exist. 

The SD bands thus appear to present a nice example of ordered motion in a sea of chaos; 

the stabilising effect is provided by large rotation. 

It is our belief that the planar orbits of the spheroidal cavity will get more disturbed 

when rotation is introduced. The 3-dimensional orbits must therefore be considered at large. 

rotational frequencies which are expected to play a significant role in SD nuclei. 
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The results presented in this chapter are only indicative of the direction in which more 

detailed studies are required. We have not carried out any detailed tests of convergence 

largely due to the considerable computational effort involved in it. We have therefore relied 

on the information on convergence provided by Magner et al. Yet this is proposed to be 

done in future as also the calculations of shell corrections to energy and comparison with 

the quantum results. 
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fat solid lines represent the position of the minima valleys for the rhomboidal planar orbits. 

From Ref. [106J. 



60 

50 

0 

40 

30 
	

30 

20 1.0 	1.5 	2.0 	2.5
20 

 1.0 

C. 6g INFINITE SQUARE WELL 

C! 

to 

50 

S 

10 

1.5 	2.0 . 	1 	2.5 

- 	 K9 

- 
d 

r , 
17 

20 
I.0 

__-//.. o C=E7 

2 

20 2.0 	1 	2.5 	1.0 	1.5 	2.0 	,q 	2.5 

r 	 ' 

d. Og WOODS-SAXON with spin-orbit 	 b. 6 g WOODS-SAXON without spin-orbit 

L. §g HARMONIC OSCILLATOR 

FIG. 6.2 Contour plots of oscillating component og(e, 77) as a function of energy and defor-

mation for the same potentials as in FIG. 6.1. The increment per line is 1/MeV, the regions 

of negative bg are shaded. Fat solid lines represent the minima valleys due to rhomboidal 

planar orbits as explained in the text. From Ref. [106]. 



(0 

N 

Y) d LO c0  

N 

N 
N 
N 

O 

N 

• 

N 

N 
(D 
T- 

b 

0 
cd 

w 
c) 

+ 4 
4, -~ 

ccd 

o cad 
bo a 
r; O O Q, 

-d 

o 
a~ 

o c 
4 - 

4-4 M 
Cp 

-a~ 

L~, U 



O • g d o a O O  
o 0 0 o 0 o 0 0 

(3)69 

.. 

Lti7.16,c 
♦ m N to O t0 N W t O 

U) 	 _N O N 
O O 	S O O O 
o O O o 0 o O c) 

(3)69 

0 

0 

I

NO 

N 

0 

0 
m N to o t0 N m Y O 

N 	.: Ci O O 	C4 h 

(3)6$ 

I" 

II 

~' .. a) 

a~ cv 
1-4 

a 

Y y 

O 

b 
 bO 

p 

N 

'- 

iI 
 

b 

~ 

0 

0 cG 

N M 

0 
III 

O 
"  
o 
 bO 

r" 
ct 
Cl) 

-Y 0 
y 

0 a, 

w 

0 

0 

3 

O 

~ 

cad Cl)~ 

CO 
4) 

O 



Ca 
U tyi 

.r 'Ly - 
ID 

m I' 

Y ~ 

a 0 - 

0 q v1 

to 

0 o 
U • 

M 

.4 

II IT 

C) 

~W o 0 
b U 

a O 

te' C U 4 

, 0 

L. 3 .~ 

ID 
0 

N 

ID Y N O N N ID 	100 
O O O O O O O O O 
0 0 0 o 1?  g 4 

(3)69 

0 
NI 

11 

r m N so O (O N 10 * O 
N 	O O O 	N M 
d o d d o o d d o 0 

()b9 

ID 
0 

N II 

O 	_m N_ (DO 	N O N 0 
O O O O 	 O O O O O O O 

(3)gs 

ID 
• 	 N- O 0 O ~ - . 	N 

C O C O O O O O 

(3)b3 



rn W n o n Co a% N 
0 0 o o 0 0 0 
O O 0.0 0 0 0 C 

(3)6.9 
0 CO 0 o g o 0 0 0 0 
O C C O O O O P 

(3)65 

M. 

' 	d 
a, 	b 

o 
r, 

O 	N 

Co 

- 

.b 	a 

O 

14 

w 	td 

O 	U 	O O  a' 

0 	w U~ 

0 	0. 

r, 	o 
M 

'0 
 .. 
O 

4-) 	0. a> 
O 	a 

d) 	Li 

a 
4.3 

Co 

V' 	N 

Cd 

' 
♦ m NW O tD N m .t O 

(3)64 

I 0 

N 

O -  
0 

N it 
Q 

4!- < 
W V 	 O 

CO N 10 O C N i0 .f O 
'C. – 	o O O i i cV r' 

(3)6s 



1p0 N m 	O 	 r 
O O O O S O 0 O 
0 o c 0 0 4 g 

X3)64 

N -00 co n OQ p 	N M 8 
0 8 8 8 8 
0 0 0 0 0 4 4 g 4 q 

(3)69 

oi w n o n 'o o! N 
0 0 

T 
 c 

(3)b 9 

a m n o 1 o 0 N 
0 0 0 o 0 0 o 7 

(3)b9 

4 

no 
Lnn 

Ito M 

- 
o 

— vi 

O y 

6705 O 
O b 

a 
y 

° 
cG 

b M 

0 ;i r' 
a) 

~. 
M 

cd 
~O  

0 
0 

y 

w Y 0 ed 
W a-.., O' 
O r 

O 

a y 

U) 

xr v O 



• N o 	 N m 0• 0 	N 
O 0 0 O O O O O 

(3)6s  c3)6s 

to N tL O t0 N _  O O O  
0 0 0 C O 	O O 

W 

v 

ro 

o 

a ~ 

a 

o 
'., 

C) bO 
•- 

N 4 
A ~ O 

II 

M 

Y 00 C 

O +y~ 

a •3 ~. 

~ o 
ca 

~ 
C) 

LJ y 4.3 

to 
NO 

to 

N II 

t0 - N O N N h O * to 
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The two major themes of this thesis have been the Superdeformed bands in nuclei and 

-application of semi-classical methods to them. The semi-classical physics has recently ac-

quired a new vigour and vitality and its successful applications have been made in diverse 

areas of physics. Such studies have provided new insights into the dynamics of quantal sys-

tems. Of particular interest has been the Gutzwiller's periodic orbit theory, which provides a 

direct link between the classical concepts of orbits and quantised energy levels. An attempt 

has been made in this thesis to fuse the observation of varied features of SD bands with the 

ideas of the classical dynamical theories and the periodic orbits. 

Following this philosophy, we have presented in chapter II a rather complete discussion 

of the .dynamics of the particle-rotor model for high-j orbitals which also considered the 

effect of the nonlinear term in the equation of motion. This work draws upon the earlier 

work of Bohr and Mottelson. Several interesting conclusions have emerged from this study. 

The most surprising was the emergence of rotational bands at the twin stable fixed points cl 

which lie beyond the separatrix. The motion in j3 (the third component of j) controls the 

overall dynamics and is dictated by the duffing oscillator which has a double well potential. 

The effect of tunelling between the wells was exactly considered and two solutions (p=0 and 

p=1) were obtained for each quantum number n = 1, 2, 3, ..... etc. It has been shown that 

the system undergoes a second order phase transition when going from the yrast (aligned) 

regime to the nonlinear regime of duffing oscillator. The rotational bands built at c± are 

thus phase separated from those built near the aligned configuration (fixed point a); they 

will therefore connect with the yrast configurations with great difficulty. 

The level energies at c+ follow an exact rotational relationship implying a linear I vs. E.,. 

behaviour. Inclusion of the non-linear effect and semi-classical quantisation revealed that 

very weak oscillations develop in the linear I vs. E.y  plots. Further, we found that the 

intercept of this overall linear graph of I vs. E.,, on the I-axis is mostly negative. In the 

later chapter, we interpret this intercept as an average aligned angular momentum. Among 

other important features exhibited by these bands at cf, are the finite starting angular 

momentum for each band and a negative alignment. The aligned angular momentum which 
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is negative at the lower angular momentum, increases with angular momentum, becomes 

positive and saturates at higher angular momenta. We have also found that the dynamical 

moment saturates at higher angular momenta and also exhibits a downtrend. This may be 

directly correlated with the saturation of aligned angular momentum. 

In chapter III, we have tried to connect these findings with some of the well-known and 

also some newly pointed out features of the SD bands. Among the most important new 

features, which were established in this work are, (i) a weak oscillation in the I vs. E., plots, 

(ii) a negative aligned angular momentum and (iii) a feature of general identical band. The 

first of these is immediately understood in terms of the results of Chapter II, if we associate 

the SD bands with the bands located at or, near the fixed points cf. By using a simple 

empirical formula for the SD bands, it is possible to associate the negative intercept found 

in the I vs. Ey  plots on the I-axis, with an averaged aligned angular momentum. This 

interpretation also fits well with the explanation of most of the SD bands as located at c± 

point. 

If we accept this interpretation of the SD bands, we find that a very simple explanation 

of the DI = 2 staggering also emerges. Arguing that the weak oscillations are a first order 

effect, we show that the Al = 2 staggering is a third order effect and must follow from an 

explanation for the oscillations. Since the system experiences a motion confined to a double 

well at c±, a tunelling between the two wells will lead to a shift in the levels of the two 

wells. This effect has been taken into account in our calculations presented in Chapter II. It 

is most interesting that the double well has a depth which is dependent on I and therefore 

levels with different I will shift with different amount. We find that the resultant spectrum 

does exhibit a DI = 2 staggering in many situations. The pattern is however irregular in 

most of the cases, as is experimentally observed to be the case. 

We have also arrived at a systematics in the value of the angular momentum at which 

the SD bands start. This starting angular momentum has a typical range for each mass 

region. We have shown that it is possible to partially understand this systematics within 

the framework of the model calculations of Chapter II. 
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We have also presented some numerical results to test this formula. Besides the gross shell 

structure, where we obtained the beat pattern in level density, we have also shown that the 

formula leads to the exact quantum spectrum if a summation over sufficiently large num-

ber of orbits is carried out. This calculation serves the purpose of a text-book example to 

illustrate the basic ideas and concepts involved in these calculations. 

A natural extension of a spherical billiard, to study deformed nuclei, is to consider 

deformed cavities. Many such studies have already been carried out in recent past. We 

have also extended the work of Chapter V to include three-dimensional spheroidal cavity 

which is a good approximation of prolate deformed nuclei. In Chapter VI, we have used 

the periodic orbit trace formula for continuous symmetries and obtained a general result 

for the shell correction part of the level density which is valid for three-dimensional orbits. 

This formula -reduces to give the results of planar orbits when a2 = 0. To calculate the 

contribution of the planar orbits in equatorial plane, we use results of the spherical billiard 

from Chapter V. In an interesting application, Strutinsky and co-workers had obtained 

the variation in nuclear deformation with mass number A near the shell closure A=208 

by considering only the rhomboidal orbits in the axis-of-symmetry plane. The result was 

obtained under approximations and gives remarkable fit to the almost linear variation of 

deformation before the shell closure at A=208. We have ' calculated these ° results more 

exactly by using numerical methods and find that it was indeed fortuitous for Strutinsky 

to have reproduced these results. Various families of shortest periodic orbits (1:3, 1:4, 1:5,.. 

etc.) give a variation which is not too different from each other and they all appear to 

converge at value of 6 	0.3; this value of nuclear deformation, where most of the stable 

deformed nuclei are concentrated, thus appears to have a special status. 

We have carried out some tests of the trace formula for spheroidal billiard by calculating 

the gross shell structure for three deformations rj=1.2, 1.53 and 2. It is clear from these 

results that the most important contribution at lower deformation comes from the leading 

orbits which are 1:3 and 1:4. The planar equatorial orbits also appear to play an important 

role particularly as the deformation increases and the length of these orbits decreases. 
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At higher deformations, when q > iin, the three dimensional (3-d) orbits make an 

appearance. We find that the gross shell structure of the 3-d orbits exhibits a beat pattern 

which has a small `wave-length'. The 3-d orbits thus would have magic shell closures which 

are more closer to each other. This gives rise to the possibility of observing the beat pattern 

in SD nuclei. Also, as pointed out in Chapter VI, the planar orbits will get more disturbed 

when rotation is introduced. Therefore, the 3-d orbits are expected to become more impor-

tant at large deformation and higher angular momenta, which is the case with SD nuclei. 

We therefore believe that a detailed study of the role of 3-d orbits would be very crucial in 

understanding the nature of SD bands. 

Finally, we make some observations about the future directions of this work. The studies 

performed in this thesis have been based on the simplest possible versions of the models. 

This has had an advantage in terms of correlating the effects with the basic causes and 

physics. But it also means that we cannot make calculations for specific nuclei. This is .one 

direction in which progress could be made in future. Further, a direct correlation of these 

studies with exact quantum mechanical studies offers a very important line of study. As is 

clear from the foregoing discussions, it has been possible to understand many features of 

the SD bands in a single model. Yet, many features like the phenomenon of identical bands 

remain untouched. This continues to be a challenge to theorists to explain this feature along 

with other features in a unified manner. 

The results on periodic orbit theory presented in this thesis, represent, the formation of 

a base from which a large number of studies can be started. Before this, it is still necessary 

to carry out detailed tests of the convergence of the summation over trace formula for the 

spheroidal cavity presented by us. Further, calculation of the shell correction to energy and 

its comparison with exact results in specific cases also needs to be carried out. 

The simplest results of the spherical cavity immediately suggest applications to spherical 

nuclei like 40Ca or, 41Ca where a scaling in the energy levels with mass number A must exist. 

The results of the spheroidal shape offer a large number of applications to the deformed nuclei 

such as understanding their behaviour in terms of planar and 3-d orbits. The occurrence of 
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identical bands in different nuclei can be explored in terms of scaling of the spectrum with 

mass number A for very large deformation. Introduction of high spin by rotating the cavity 

may further expand the area of work. These studies also open the route to study the onset 

of chaos in nuclei under specific conditions. 
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