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RESUME

The unique feature of the transition metals is the presence
of somewhat tightly bound electrons in d-bands and more mobile

electrons in the s band. The magnetlsm of the transition

" metals is presunably associated wi th the d bands. However
the elec’c-rons in the s hand are ma\gnetically po.l_arised due to the
magnetism associated with the 4 electrons.'ATherefore for the
~ discussion of the magnetic propertles of the'transition metals
the s'end"d bands should be considered simultaneously. At
this early stage of the theory, it is excusable if we ignore
the fivefoid degeneracy of the d-bands, Accordingly we limit
our study'to a single nondegenerate d band described by the
tight bindlng form and a nearly free electron like s band.
Anderson s ‘theory of dilute alloys of the transition
metals is able to explain the occurrencevof the localized
magnetic moment on transition me@al impurities dissolved in‘a
nonmagneticvmetai._ In #nderson's model, the band states of the
host metal are created as independent duasi;particles. The
impurity is introduced as an extraelocalized_orbital which
interacts with the band states by a hybrid matrix element, A11
two-body Coulomdb interactions are.neglected_except the -Coulomb
interaction between the opposite soin electrons on the localized
orbital. As an extension of this model, a transition metsl can
be imagined as a system having a localized d orbital at eaeh
lattice site. However, this is an approximate picture of a

transition metal, in the sense that there would be no direct’
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interaction between d electrons on the different‘sites-only
van iﬁdifect coupling via the conduction electrons, It is well
known that a considerable fraction of'ihg width of the 3d band

in transition metals arises_from thé overlap of the 3d wavefunction
i on neighboring 1att1ce_sites._ We assume here thatﬂﬁhe d
electrons form a band and they 1nteragt among_themselves only
via the Coulomb interaction.between opposi te spiﬁ electrons at
the same lattice site., This is the Hubbard model for a single
nondegenerate narrow energy band. The effect of the s band is
taken dnto account by adopting the one-particle interaction
between s and d electrons given Py Anderson. Using the Green's
functiqn‘technique,_yhe self congistent ferromagnetic solutions
. of this moéel are obmaihed within the Hartree-Fock approximation,
| An approximate solutlongof the correlation ‘problem is obtained.
The ferromagnetic golutions for which the correlation effects
are taken into account are compared»with‘tbose obtained in the
‘ Hart:ee-Fock approxhnation, The‘model_islalso'used_ﬁo”investigate
the role of the s-d interaction in metal—ngnmetalAtgansitions.
Itisg posSible to'understand the difficulty of observing the
pressure-induced nonmetal-metal tran51tion.. .
| The Hubbard Hamiltonian, which is certainly agross,
oversimplification for real systems, has been extended by
» including the inte:atomic Coplpmbhinte:actipns. An approximate
so;ﬁtion of the COrrelation problem for this model is obtained and
the conditions for ferromagnetism are discussed.

The dynamical susceptibility for a system of electrons

in a narrow energy band has been studied. The Hamiltonian of
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the s&stem consists of single“particle epgrgies'of:eleétrons
in the absence of interactidns,.the intraatomic Céulomb
inﬁazaction and interatomic Coulomb and exchange interactions.
in apprdximate expressioﬁ for the susceptibility 1s derived by
using the randbm phass approXimafipn. Ingtability of the
paremagnetic state against the ferro and the sntiferromagnetic
states is discussed.‘ An_express;on for.the'dynémical susceptibil
ty ie derived for a system with strbng ;ntraétom1cAinteraction,
In thls case the conditions for the paragagnetic instab;iity
against th_e ferro gnd“antiferromagnetic state, and the spin.-flip‘
excitvations are discusseds -~ o o _
ThelHémiltohian, used to study the dynamical susceptibilit
has been used to investigate thé phenomenon of metal;nonmetal
transitions in the ferro and antifgrrpmagnetic systems having‘
one electron per étom. In the Terroragnetic system there exist
two phase transitions at two different critical temperatures:
TH at which a ferromaghetic nonmetal_changgs into a2 férromagnetic
metal, and T, at which system becomes a paramagnetic metal.
I, is.alwayé.higher-than‘TM. In an antife?romagngtic system
two phase transitidns, as found'in ferromagnetic systan, dp
not occurs In ferromagnetic system at absolute zero a fifét_
order phase transitions.where a ?erromagneﬁiq nOnmetal ehanges
into a paramagnetic metal, occurs at some particular values of
interaction paramgtersqﬂ In gntiferromagnetic system no phase
trensition ig possible at absolute 2€r0s

In appendices the Hubbard model has been solved using
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improved'decoupling approximations for the higher order Green's -
functions;_'The results agree with the exact results known in some
limiting cases. It is found that withig the Hartree-Fock
apprpximation, the ﬁubbard4model for a single nqndegenerate band
gives the exchange spliting of the d band in nickel in cloSe
agreement with the valpgﬂderived-from the detailed energy band
calculations. An expreésion for the electronic.spin‘polarization
p(;b due to s-d exchange interaction between the conduction
electrons and the locallzed impurity of spin 1/2 in a dilute'
magnetic alloy is obtained; For large distances p(;) is found

to exhibit exponentially damped behaviorg
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CHAPTER 1
INTRODUCTION

I. THEORETICAL CONCEPTS IN MAGNETISM

A. Itinerent versus Locallized-Spin Models

For over forty years the occurence of ferromagnetisn
or antiferromagnetiam in_trangition metalg have been a}subject
of much gpeculation, Broadly speaking there have been two
schools of thought about this problem and all others may be
considered as variations on these two themes. The Heisenbergl
model 1s based on the assumption that the electrons are localized
on atoms and the interatomic exchange effects can be treated
by introducing an interaction - 2 Jij'gi:gj-between the electrons
localized on the sites 1 and j. Here Jij is an exchange
integral,‘gi and'gj are spin operators corresponding to the
electrons at the sites 1 end Je The itinerant electron model,
on the other hand, developed by Bloch,2 Stoner3 and Sla’ser,4
is based on the qompetitionAbetween>the kinetic energy of the
electrons in a band and electron exchange in the Hafaﬁree-Fock
approximation. ‘The. litz=rature on the itineran?; electron nodel
has been reviewed by'ﬂotﬁ,s Herring,§ and Beeby;7 _

Experimén?gl facts suggest that neither of these models
is correct in its naive form.6 Itinerant electron model
explaing the d band specific heat, nonintegral magneton nunbers,

the low entropy of the antiferromagnetic transition in

chromium znd the absence of magnetic disorder scattering of



neutron; aboye its Neel point.» On the other hand_experimentgl
evidences from the critical scattering éf neutrons, entrdpies
of ferromagnetic transiyioné, spin waves and the behavior
of ferromagnetic moments on allpying favor the localized‘
picture, In the light of modern refinements of the theories
such arguments are not éuite significant. Form-example vhen
corpelation effects are included in the itinerant electron
theory it provides nabtural places for spin waves, critical
fluctuations and other phenomena once_considered expligablé
only on the localized model, . The locaiized‘model,_in tumn,
has been generalized not only in the direction of allowing
cbnduction-electrons to meqiate the exchange coupling
(indi:ect exc@%ge), but also in that of allowing the magnetic
Velectrpns to participaﬁe in condugtiqn, Thus each model has '
acqui:ed some of the‘principal :eatures of the other, However
a clear residue of evidence remains in favor of an itinerant
nodel for iron.group metals_and a localized_modeleo; rare
earths. Fér iron Broup, moreover, galvanomagnet;c‘datg and
other evidences suggest thgt the d like electrong are quite:
mobile and hence the fdmner‘belief -1l that the d electrons
constitute é low mobility group clearly separable from
conduction electrons, must now be discarded.

We restrict our study to the theory of magnetlsn in
transition metals and therefore we shall not discuss the
Hei senberg model which 1s particularly suited to the case

of insulators. For a review of exchange in insulators one
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may refer to Anderson.” In the next three subsections &

excitations and spin density waves based on the itinerant

electron model will be given,

B, Ferromagnetiam

In 1038 Wigner 14

._refining his aarlier calculations
of the éorrelation energy ofla free electron.gas, argued )
convinelngly that, in contrast to Bloch's Hartree-Fock result,
such a gas would probably not be ferromagnetic at any density.
The physical principle"involved is that the Coulomb repulsion
of electrons of mntiparallel epin will always keep them
reasonably well apart, Thus the electrostatic energy of a
nbnferromagnetic staﬁe,lwhich has more,apﬁipapallel pai?s

~ than a ferrbmagneticﬂgtaté, will not be as positive in an
exact wave function as iﬂ a determinantal one, for which
antiparallel electtqns“are syatially»uncorrelated. After
Wigner's wo:k several authors;sfgs c@ncentratﬁd their atten-
tign~on this problem of e;ectron_corrélation in free electron
gas. Apart from_thg_int:insic.interest of this problem,

the free electron gas serves as a model for the conduction
bends of metals and alloys.

When the electrons involved are no¥ free, but’me;ely
migrate among the rather compact d éhells of the various
atoms of transition metals, the overestimate of the egergy
of the nonmagnetic state relative to the ferromagnei‘.ic s’;ate

ought to be even greater. One can of courge argue that the



narrow width of the 4 bands reduce's the kinetic eriergy
relative to the exehange energy, thus favoring ferromagnetlsn.
-But this effect by itself is of essentially the same ‘nature
as decreasging the density of a free electron gas, and if one -
grants that a correlated electronlgas_is not»ferromagnetlc
at eny density, then it is not obvious that a correlated
assembly of 1tinefant electrons in narrow bands ean be
férromagnetief - S o _ |
The~resp9nses‘thaﬁ we:e"ggde'tq pbe»challenge Aposed
by the problen of correlation may be grouped into those
which undertook to graft correlation”correctign pnfq“exiéting
theories of ‘the Hartree~Fock type s and those which made an
entirely‘new start based on the many electron states of
indlvidgal atoms. Papers of the ?ormer.group were psua;lyw
| rather general and Qid not un@ertake éuantitativeﬂes?@napes
of co;relation fq; real metals. Typical of this.grgup'is

24

the work of Lidiard " who pointed out the need for a more

adequate treatment of correlation in the Stoner model, and
suggested Bhat use of a screened Coulomb potential might take -

'account of some of the prlncipal correlation effects. A

a5

SUbSQQUent discussion by Wohlfarth™ of the role of correlap

tion in the Stoner modl was also linited in aim, In the

same period SlaterzGLaQquated_g gopfégurgﬁipn intefaction

treatment with the bgnd.mOdel_ag.a'gtar#ing pointe
$h9 othe: app;oagh“tg qorrelafion sctually‘started

some years before‘Wigngr's work, _The foundation was 1zid by

27

Slater”  who proposed a model of a metal as an array of




atmms,.somg:neut?al wiﬁh aHeigenberg pype.coup;ing‘of
their-spins and somg'ig_tpe_form thppsi?ive or negativ@
ions._vThiS'model-wag‘greéply_gxtendgd by Sghﬁbin and
VonsoVski.zs Although it seems never to have been put into
a form suitable for practical quaﬁtitaxive calculatign; it
is appealing iﬁ that it keeps electrons with antiparallel
~spins reasonably well apart, and yet allows electrical
conduction, nonintegral magneton number ete, Independently
wol“ag proposed a medel bésed;on”neutral.many e;ectrqn
atoms in ground and exclted states, the later having a )
different magnetic momenf from the fommer and the excitations
on nelghborlng atoms being coupled.

fn extreme Tform of ‘this model was discussed in 1941 by

HurwitzfBO but it appeared 1n literature in 1953 when _
Van Vleck S1 published an elaboration oﬁfitg In its origlnal

form, which hglcalled the fminimumnpolarity‘ model, the &
electrons of a.metalAlike”nigkglnwere envisioned as distributed
mong atams in states closely resenbling a*0 md d states

of the free atom, the_rglaﬁive“nuﬁbers being chosen to give
agreement with the empirical number of 4 holes, The holes
(dg configuration) were épgisaged as free to_migrats th:ough
the lattice, subject to hgvipg to ayoid»one anothe?. Van Vieek
generalized the model by'sﬁowinghtnat»phese d holes could
lover their energy appfecggb;y by=@igrating.more_freely ‘

and occasionally occurring in pairs on the same atom giving
this atom aAds configuration. Since aAdg and a a*° configu-

ration together have g much highef energy than two d9 S, this



occurrence should be moderately infreéuent. However the
cost in energy should be somewhat reduced by the screening
effect of the 4s - 4p elsctrons. In a rough calculations,
beset by many difficulties and umcertaintities, he argued
that the participation of d8 configuration with their Hund's
rule coupling of the two d holes, might well be sufficient
to explain the ferromagnetisn‘of nickgl.

It is clesr that models such as that of Hurwitz and
Van Vleck are properly described as correlated itinerant
models rather than belonging to the localized family;
Considefable further insight into the properties of such
highly correlated narrdw&band models has been provided by
some recent theories. These theories are much more mathe-
metical in nature and based on field theoretical techniques.

| In the language of field theory the general Hamiltonian :

for a system of electrons in a solid can be written as
H =20y T - <Yen + V(3] Y (#) &r
_ & Yo (T c o~

-+

I @ @ @D VEB Y g B drd

m\?f_..g

b
oo
(1.1)

Here and'hereafter we assume thath =1, -ﬂiﬂ?m is the
kinetic energy operator fof the electrons and VC(?)'represents
the periodic potential which_an electron sxperience due

to the presence of positively charged ions. V(¥-¥) is the
Coulomb potential between two electrons. HJGT(?) and QJG_ (%)

are the creation and the annihilation field operators at
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the space point T corresponding to ‘sp.ji.t_;_ o . They satisfy |
the usual anticommutation rules for femipns at ea;ual times
viz. |
[y (B)y w5 (9], =5 /6 (5-8)
(1.2)
[ve (B, i (B4 = Ty (B, s (391, = 0

where [4,B], = 4B + Ba, (1.3)

It is very difficult to develop any theory of
electron correlatj.on in narrov energy band.s by takiﬁg into
account the whole Hamiltonian (1.1). Therefore it is
preferable to develop a theory vﬁ.}‘{h“a’Hmiltpniar;_ which
exhiblts the most \importax;‘;c features of the system under
investj_.-gation and at»the_ same timAeA _simple_enoug_h_ to_ .trea’t
mat\hematically. an app;oximate __Haai.-'_i.tonian“for narrow ensrgy
bands can be o_bt_ained by represéni:in_g the Hamiltgni‘an (1.1)
-in the Wannier representation. In Wazm_i"ér repre s_en}:ation

the field operators \ko.,(?) and \l’oj (F) are expressed as

2y L >

VYo () = %ine- CFin('r) (1.4)

4
o, Fraw o + * *

| '\PO‘T(r) = 2no- CFi_n(r)
. y am ‘ .

vhere 8o~ and Ao 2T the a_nnilixilat:zon and creation
operators for an electron of spin a in the band n at the

lattice site i. ' These operators satisfy the anticommubtation



rules

i
oz

Eaino- ’ ajn’o-'+—]+ B
(1.5)
+ =0

Naype o ajn’c" + =‘Eain¢ ’ ajn’cr’]’-"

q: (r) is the Wannier function for the band n localized at
the lattice site i, When the values of \{Jc..(r) and \}’c_'i'(?)
from Eq.(l.4) are substituted in qu.(l.l), the Hamiltonian

(1.1) in Wannier representati.oﬁ takes the form

n-.n )

_ 172 0. 41 nynghy .
B3 Ty Ano 2mpo® 2 adee Vigw ¥

g | A

ainlo" a Jnyo ’ akn30" afn40'
(1.6)
. 1n2 i .V"Z, . - 3

waere  T; = ICFin (r)[-_. T+ Vc(r)];_ <Ema(r)- ) r,(;,?)

n-n.n
e

15KP f‘f’m (r) %n (x')V(z -¥) CPma r’) %1 (7) rdr

(1.8) |

The Hamiltonian (1.6) serves as a basis to obtain the
approximate Hamiltonian exhibiting the most important features
of the system. 4 very pop_u_la'r model for the study of electron

correlation in narrow energy bands ls the one band Hamiltonian



n (1.9)

i i - o

where I = V,,,; is the intraatomic Coulomb interaction and

Ny - = ai°_+ 8 s+ Slnce we are considering only one band,

the band indices are dropped out, This Hamiltonian is oblalnedd

on the agsunptipn.thgt interaction betwsen el'ectrons. are

of very short range so ﬁ:hat inter-a‘comi‘c 1nteractior;s ecan

be neglected in comparisbn to the iptéraa‘bomic inte;eaction.
The Hubbard model (Hemiltonian (1,9)) invites the

attention of the theorists because of its simplicity and

richness, I2 we could completely understand the physical

predictions of this model, we would be helped in enalysing

the models which éorrespond to the ;real situation. Once we

| havé decided to analyse -é model‘, however, it 1s J:'eéuired‘ of

us to make no distorting approximationse Little real progress

cen result from an u_ncertain treatiment of a simplified modsl,

In search of the exact solution of the Hubbard model several

investigatorsaz'47 have .concentz;ate@ their attention on the

study of this m‘odel using different_ app;‘baches and gppro:dm&-

tions, A review of the early approaches, of correlated wav.é

function by 'Gutzwillerl,az' of two-body scatiering operator by

33

Keanamori, ™ 34

and of one particle Green's functlon by Hubbard,v

is given by Herring.‘6 Later on these approaches have been

used by many authprsas'ég using different appro;d.ma’cions.

Recently Harris and Lange43 have devised a method of
analysing the Hubbard model, Their technique illuminates

several propertieg of the gpeetral weight and density of
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é._tate functioné_ for the electrons whi_ch are mambiguo‘usly
real within this model and not manifestations of an approxima-
tion vsc'h'éme.. Their results therefore shed considerable light
on the model, the extent to which the model is sound and
give information about the real narrow energy-band systems
with which it is associated. Their results can also be used
to check particular aspects of approximation schemes to see
if the relationship they de:'rive;“‘ are found to be true for
such approximate solutions. Pratt and C,f;u"cm.44 suggested

-a cluster type treaﬁnent ‘analogous to the Ogt.lclrliz":8

of ferromagne_ti Mo Esterling and Langeg'”5 applied a degenerate

‘ treatment

mass operator perturbation theory %o investigate the |
Hemiltonian (1.9). In spite of all these developments, it is
not possible to solve the Hubbard model exactly in three
dimension. However it hag been shown that in one diﬁensioh
it is exactly soluble.?® | -
The Hubbard model is too simple o represent the
real sifuation in the trensition metals. To deal with the
reality one ﬁust considsr the degeneracy of the d band, the
interatomic interactioms, and the presence of the g bana.
The problem of degeneracy in d band has been discussed by

Gutzwiller ,32 @8 34

Kanamori, =~ ami Hubbard™, and Roth®’ for the

short renge Hamiltonian (1.9) which does not include the
interagomic interactions. Effect of interatomic interactions

has been discussed by meny authorsffe“sa Ihe presence of s

band has been considered by Smiths-é' and K:L shore and Zi'c;slfx:t.s5 '
by taking into accomnt the effect of hybridization of s snd

d .bands on the Hubbard model.
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C, Collective Excitations_

& very important Step in the evolution.of itinerant
electron theories of magnetisn wag the recognition that in '
a correlated wave function indiv1dual—particle and collective
. type of elementary exciuaulons may co-exist, It 1s experimentall
found that the spontaneous magnetization decreases wlth |

5
increasing temperature T as Ts/ ab low'temperatures. 6

Theoretically, Bloch57

has first shown that there exigsts a
.,collective motion of spins in a ferromagnet, so called 'epin
waves,' and the excitation of spin waves decreases the

magnetization as T 3/2

in the Helsenberg model. The absenoe
of spin waves on an itinerant model was thought to be a serious
drawback of the itinerant theory until. it was shown by

58

Slater  in 1937 that spin waves arise qul te namurally out

of a treatnent of correlation effects in an itinerant electron

model and one gets praotlcally identical formulas starting

from either the itinerant or localized picture, . This view

vas lator anplified by;Herring and Kittelsg ~and by'Horring.so
'  The célculaﬁions of spin wave energies in a narrow

energy band have been made by several auxhor3623537'39' 50,61-63

Most of these calculaﬁions are performed within the random

- phase approximation, Sakurai,sg

Roth,37 Nagaoka3§ and Morris63
have gone beyond the random phase approximation %o ineclude .
the correlation effects on the spin wave energles, iﬁe'

study of spin waves has not been confined only to‘the one band

Hamiltonian. Spin waves in multiple band model have been



discussed by,Ma.ttis,64 'Thompson6§ and Yamada and Shimizu.

66
In multiple band model the spin wave spectra consist of one.
a_coustical intra-bend branch, some optical intra-band branches
and other branche:e: ‘-due to interband transitions which are
called interband spin vaves. |

1t follows from the general congiderations that in
single bsnd model for ferromagnétic'metals when the wavelength
of a spin wave lis long, its energy w must be relatéd to the
wave number q by o = Dég in waich D i's a constent. Experiments
have adequately confirmed the validity of this expression67
 and values of D have been determined in numerous cases.
Edwards68 has recently given an exact expression for this
quantity, This expression cannot be evalueted in the general
case. Calculations of D for some particular models have
been reported?g »70

1% is well known that there ig another coliectivé

motion due to the density fluctuation of electrons in metals,
vhich is called plasma oscillation or a plasmcm.?l This
plasmon is experimeﬁtaliy found by inelastic scattering of
electrons not only for alksll metals but ’also for .ferromagnetic
transition metals.7l ‘Ihé plasnems. in an clectron gas fkrzh were
-first studied theoretically_ by Bohm and P.ines.'?z y78 The
dispersion relations of‘ pié,smon ;’..r; a _i'e:romagnetic electron
‘gas have recently been studied by X’arnada,?%_ ‘So far no atbtempt

has been made %o study the plasmons in narrow energy bands.




De §£in Density Waves

| Ever since the original paper by Overhguser'??
guggesting the existence of spin density waves i'n’ free
électron gas there has been much debate on their sjbability
in real metals. The foundation of this concept was lald

down by Slater in 1951, Spin density waves (SDW) are defined
as the states of uniform, or nearly nni.fom, electron density
but nonwmiform dénsity of spin magﬁetiza’cicn. '.L‘ne uniform
statesinonmagnetic and ferromagnetlc can be considered

as spscial cases of the simple SDW states (where the electron
~ density 1s wnifom). Specifically the ferromagnetic state
can be regarded as a SDW of wave vector q = 0, The non-
magnetic state, on the other hand, can be regarded as a simple
SDW with any arbitrary wave vector q“ and gmpll'tt_xde ze:o.
Several calculations 0,77-84 of SDW states for varlous
simplified models have been performed, The results of

these calculations have dempnsti'ated the exlstence of stable
finite amplitude SDW's under proper conditions,
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11, METAL-NONMETAL TRAVSITIONS

We differentlate between metals and nonmetals
customarily in terms of a.mode;Aqﬁ nonipterégting elgctrons;ss
However this model does not alﬁays pyqve’satisfactoryge and
in some situations it may'become necessary to consider the
Coulomb interaction between the electrons. w1gners7 in 1938
specifically introduced the electron-electron interactlon
into the problem énd suggested thét at low density a free
electron gas should crystallize in. a nonconducting state, In

1949 a simple model was introduced by Mpttgg

for the metal;
nonmetal transition. He considered a lattice of hydrogen.
atoms arranged in a regular lattice. With only ogé_gieqtron
per atom, two 1ls staﬁes avellable for them, such a system .
constitute a half filied band, according to band theory, Thus
it should be a metal, It'is-physical;y é;eag, however, that
for large values of the iattice‘cbnstant we have a system
of independent hydrogen‘atoms and this shou;d be_an'insulator.
To explain this Mott imagined the system as a lattice .
of electrons and holes. The holes are gll,atémic‘sﬁates_ndt
’ occupie§ by electrons. ‘if an electron wants,tQ leave its '
aﬁom, or rather its hole, it feels énfattracti?e potential,
For a large lattice constant this is a Cou;ombvattrgction
vhich cen keep the electron and the hole bound, Also the
overlap of wavefwunctions from one atom to the next is =small,

so the electron and the hols are not much inclined to move.

As the lattice constant diminishes, the Coulomb atiraction
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becomes screened and also the gtomic wavefunctions overlap
more, 8o the electron hole attraction is diminished whife
their motion is enhancéd; Eventually a bound state cannot
be maintained and the material becomes a.metal,

‘ A more quantitative discussion of ﬁhe transition
proposed by Mott has been given by_Kohn89 and Hu,bbard.?'é
Kohn hag considered a crystelline array of monovalent atoms
spaced a distance apart and showed that for large enough
ﬁalues-of theAlattice constant such an array_is a nonconducting,
Hubbard hag analysed the one band Hamiltonian (1.9). He
has shown that for vanishingly small banﬁjﬁidth (atomic
limit), the band is splié into twc sub bands, separated by_
an energy gap of order I, Thus, fof the case of one electron
per atom, the lower band is'completely filled and the upper
band is empty at absolute zero. As the ratio of band width
to I is increased, the gap decreases until a critical value
i reached, at which paint the two bands overlap and hence the.
system changés from a nonmetal to metgl. Since the gap |
decreases slowly to zero, conductivity will_inpreage graduglly
as we pass through the critical ratio, unles; a firstvqrder
transition occurs. Thig is not a violent transition as

o1

Mott predicted, - Later on Kemeny390 Kemeny and Caron™™y and

Pratt snd Caron 2 showed the possibility of Mott transition

in the Hemiltonien (1.9), Recently Lenger et al,”

have
shown the existence of two phase transitions in Hubbard
model. 1¥éyconsidered an antiferromagnetic»system and showed

that at a temperature ?N the system becomes magnetically
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disordared and at a high tempergture TM the atoms loose |
all véstige of localized moments snd nonmetal-metal transition
occurs. | |

It is not of course the case that all metal-nonmetal
transitions are due to eketron-electron interaction and
inexplicable in the mode; of noninteracting electrons,
Naturally a change of crystal structure may lead to a band
gap, and 1t has been suggested that this is what happens

94,95

in the vanadiun oxide, Also a metal-nonmetal

transition can occur at a Neel point, as predicted by s:Later?G
end observed in NiS.96 Then of course in the W:}lson model

of noninteracting electrons any divalent m‘et_al will become

a nonmetal if the lattice consiant is increased above a cr;ltical
value. There is another kind of transition vhich can be

dascribed in the model of noninteracting electron's, and

which Mott97 hos termed as the 'Anderson transition. .
Anderson98 in 1958 congidered an array of hydrogen atoms far .

enough apart for the tight binding approximation to be
applicable and for the band width J to depend on: the interaction
between nearest neighbors only. He suppééed that a pot_ential
energy Vn was applied at each atom n, with a random ‘spre._adﬁvo. |
He showed that when V /J exceeded a critical velue, a transition
from a metallic to a no:imetallic state occurred. Also there

is an excitonic insulator theory of metal-nonmetal transition
deseribed in a nuber of 1:aperss.£')9"’:"01 The enti;'e sub ject

" of thie theory is reviewed and the latest work is presented

in the article by Halperin snd Rice, 102
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 III. PRESENT WORK

- . Many problems_ in theoretical ph'ysj.cs‘ are attacked
by considering models with mathematical descriptions vhich
arg usefully simple;' than thpse of rea:}. s_ystems.ﬂ of cource,
the model is usually not exactly soluble and cpnséciuently
approximations must be employed. Tlgus we oftsn :"i_nd |

ourgelves with approximate solutions‘to a mo@e_l probl‘e‘m;,
| When we want to know how %o make cﬂpnnecti;pp with experiment
two levels of questipn§ ardi se.. Firsfc_, how wall do the
approximate solutiops reflect the exa_ct.propert.ies of tl}e
model, eand then second, of course, ho'mr well does the model
reflect the propertles of real system? ) |
The present work directs itself for the most part‘.
at the second type of question, The Hamiltonian (1.9) is
an overs;mplification‘_ if appi_ti_c_at‘i_o_r’l‘s to ;'eal _rr;atérials are
contemplated. It does, howeverfurnish a situation in which
meny approximation schemes which may be applied to actual
metals can be tested by compari son with exact results for the
model., In addition, it is possible to exftend the model
elther by including other bands, or ;by ‘ex‘_t.enqing the range
of the electron interaction to inclﬁde nearestv neighbor
lattice sites,
- In Chapter 1II we extend the Hubbard Hamiltom.an .
by taking into account the _presence of s band through the
hybridization of s and d bands., The self-consi stent



ferromagnetic solutions are obtained within the Hartree-Fock
approximation as well as in an approximation which takes
into account the cbrrelation effects, Thevfgnromagnetic
solutions for which the correlation effects are taken into
accomt are compared with those in the Hartree;Fock
approxbnation.

“In Chapter III the effeet of electron correlation
on the ferrmnagnetism of a yransition metal“is'lnyest;gated
by taking a model Hgmiltonian which includes the intgpatomic
Coulonb interactions,imkaddition to intraatomic interaction
in the Hubbard model, 4An approximate solnﬁion of the
correlation problem for thi; médel is.obtained end the |
conditions for ferromagnetism for this so;utiop are discussed,

In Chapter IV we study the dynamical susceptibility
for a sjstem of electrons in a:na;row energy band, The
Hamiltonian of the system consists of single partic;g
energies of electrons in the absence of interactions, the
in@g%atmnic Coulomb interaction and interatomic Coulomb
and exzchange interacpions. An gpproximate e;p?essiqq”for
the susceptibility is derived by using the random phase
approxlmation. The instability of the paramagnetic state
againgt the ferro and the antiferromagnetic states is
dlscussed. We also study the dynamical susceptibility for
a sys Tem of_electrons with strong intraatomlc interaction
where ji;he validity of the random phase appro:dmatiop is

dubiouse In this case in addition to the conditions for
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the paramagnetic instabili ty against _thg‘f_elrzfp and _the
entiferromagnetic stateswe have also discussed the spin

flip excltatlions,

In Chapter V we study the metal-nonmetal ._transitions
on the basis of the Hamiltonlans \;sed in Chapters 'I'I and
IV. The existence of iwo phase transitlons in ferromagnetic
gsystems and the difficulty of observing pressure induced

nonme tal-metal transitions are discussed.

In appendix A magnetic golutions of Hubbard model
are obtained using an improved decoupling schieme i‘o: higher
order Green's fumections. Solutions .are found to agree
with the ekact results in limiting cases. Ip appendix B
exchange splitting of the d band in nickel is discussed
within the Hartree-Fock approximation. In appendix C an
expression for electronic spin polarization due to s-;d
exchange interactlon between the ponduction electrons and
the localized impurity of spin 1/2 in a dilute magnetic
alloy is obtained. For large distances it is found to
exhibit the exponen_ti;aily demped behavior,
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IV, A GREEN's FUNCTION TECHNIQUE

- In the éucceeding chapters our method of_calculgtions
' will be based upon the Green's function techniéue described
by Zubarev.lea In order to establish th§ notation, the
prineipal definitions and basic'eéﬁations of this technique
are briefly reviewed in this section. |

| Fdilowing Zu.barevlo3 the doﬁble time teﬁperature

dependent retarded (+) and advanced (-) Greenfs funetions -

involving two operators A and B are defined by

‘ (T) - . / s
«<A(t), Bt )>>" =F i 0(tt ) <[a(t), B(t )] (1,10)
- where , o
[4,B]l, = &8 + 7BA} n = 1 (whichever is more |
convenient), The tiﬁe'dependence of operators is defined
by o

/ /-
eiH t e—iH t

ACt) A

where H =H -/uNp, N (1.11)

pis the chemical potential and N is the operator for

b
the total number of particless 6 (t) is the wnit step
functioﬁg ity for positive ¢ and zero for negative te
The angular brackets <o.0e> donote a grand canonical
engemble sverasge defined by

/
Ty e'pH 0
£ 0> =

Tr e'gH
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‘where B = 1/}',%’1?, kp ig the Boltmann's constant and T is
the absgolute 'temperatu;‘e. o |

g ‘The Green's ;‘uﬁc"'ti'qnls»_are the functions of (t-’c/),
This can eg*_sily‘_bef:f seen by wra_;t:i_.ng dovn _the vtj'.me dependence
of the operators and using the eyelic property of the
operators _i_zn;_ier the Tr. sign, Then one can define the
~ Fourier trangform of the Green's functions with respect
to real o |

+ l o0 ' ‘ FRO “ S
<<@.,B>>tf,“) = 5= foo <<A(%), B(% > ) glolt-57) a(t-t)
(1,12)

In the case qf' the retarded (*)‘ function the integral (1.12)
éonverge: .also for complex o provided Im w>0, so <<A:,B>>£+)
can be defined and isjregulér function of w in the upper.
half of the couplex w=-plane. ,Sj.milarly*((A,B»cg'? is &
regular function in ‘the lower half of the complex w-plane.

 Une may now define

h Bys = ec (+) . o

KAB = <<4,B) if Imw > 0
= 4(&,B>>(g’) it Imw <0

which will be a fue ﬁic;n_ re gule:p thm_u;ghéut“the who_le -
complex;co;plane except‘on the real _a:,scig. By _dif;f’eren‘ciating
the eqlua‘cilon (1;41;0) with respect to t and then taking the
Fourier transform (1.12), it cen be shown that <<A,B>>
satisfies |

\
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0<<A,BY> = == <[A,Bjn? +<<[AH]_, B> (1.13)

The correlation function <B(t ) A(t)> can bs obtained

from the gpectiral *-l:hec:arem,:“":JB

0 <A N <L4,B2> ' . ’
f - - - .
<B(t )ACE)> = i lim S (erkoS @=1€ ~io(t-t )
. g o o eﬁw 7

(1.14)

Equations (1. 13) and (1.14) together formm the essential
basis of calculations with these Green s func‘cions.
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CHAPTER II

FERROMAGNETISM, I, HYBRIDIZATION OF s AND 4 BANDS

I, INTRODUCTION

Anderson's theory104igf dilute alloys of fhe:transition‘
metals is able to explain the occurrence of the localized
magnetic momen®t on transitionﬂmetal impurities dissolved in
nonmagnetic metals. In Anderson's model the band stateSIOf_
the host metal are tréated as indeﬁendent quasi-particles,

The impurity is introduced as en extra localized orbital;
which is mixed with the band stafes by a hybrié matrix element,
A1l two body Coulomb interactions are neglectéd exneptAthe
 Coulomb interaction between the opposite spin electrons on

the localized orbital. As an exiension of this model a
trangition metal can be imagined as a system having a localized
d orbital st each lattice site, Rescently such 2 model has
been analysed by Smith.sq“ However, this is an @pprqximate
picture of a transition metal, in the sgense that there would
be no direct interaction between the d electrons on differgnt
siteé, only an indirect coupling via the conduction electroné.
It is vell known that a conslderable fraction of the width of
the 34 bend in trancition metals arises from the overlap of

the 3d wave funetions on neighbouring lattice'sites,lqa

Here we asswne tﬁgt the d electrons form a band and
they interact among themselvesg only via'ﬁhe Coulomb interacti&n -
between opposite spin electrons at the seme lattice site, |

The effect of the s band is taken into account'by adopting the
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the ith lattice site specified by lattice vector 'ﬁ . Iis

fhe Coulomb interaction between electrons of opposite spin

at ‘the same lattice gl te, nk;_ and N4, 3T€, respectively, the
-

nunber operators for the s electron of wave vector k and

spin o and the d electron of spin o at’ the 1atti’ce slte i.

N is the total number of atoms in thel' system, Vg& is the

hybrid matrix element defined by

Vi = I Sr <Fd (r) H (r) ‘i’k(r) (2.3)

where Ho(;) is the one particle Hamiltonisn for an electron
in the presence of the periodic lattice. ff’d(l_") ~is an atomic
d orbital and \l“ﬁ(;) is & Bloch wave function for the conduction

band.

In our anélysis_ we work with Green's functions of the

form
0Gf0) =<Ka,_ 5 8,0 >0 (M=+1), (2.4)

where m and v are either the conductlon band % states or 4
Astates on particular‘ lattice sites. Thus we shall have here
four different types of Green's functions in all, With the
help of the conunﬁtators

laygr Bl =F %y a0t I 0y o g * 53V © R o

(2;5)

'{ak}’ H1-—' = el?al?c- * :IE.: v}?d eit:ﬁi %o (2.6)
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o6 g = ? i j ( aia-+ B0 " 'ajo-+- % o

ik, ‘ ik.
- 3Vie o L ot %+ 2 -ﬁl ako-aio*' ’

(2.7)

the equations of motion (Eq.1.12) for the Green's functions

can be written as
&/

(mﬂ*'/h-ek ) G re (w) = S + § V o ﬁi G -*'( ) (2.;8)

'(w‘ii'/»«‘-el?) Gr ) (oo) = ‘E Gg-j (o) (2.2)

| 6
T DRN.S  TN o T ¢ +
W) 67 w) = g+ 2 Ty Gpy (@) # 1 Koy o8 59245 2%,

We are mainly interested in finding out the Green's

functlions Gg = (w) =nd Gw % (»). The later is defined

by S
" () eik (‘f& 'ﬁ | (2.12)

e .
G‘:L:j (a))=-ﬁ>;G
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These Green's functions ‘are needed to evaluate the average
nuber <n 2 of s electrons and <ny.> of d electrons per
- atom for spin’o- R By ta_king the limit t = ¢ in Eq.(1,14)

we getb <nsq_> end <ndc:'> as

>=d 2 <o T

e ? =N e “Pko Pho?
=1 [ @ (e f + 1) @, (2.13)
- <nge? 3_1!1' f <ai; 2 q-7
0 g -1
= L (1) @, (2.14)
- OO

where

It
»

o~ .
(’S(w) : ﬁ éi& » 3 L "ﬁ m*"ie) - G—* (m-ie)], (2 15)
“ )

a’ »‘I R
[ afo) -n- lim § [G (w+i€) - Gdk (m-iej (2.518) .

G'*O

are uie gensity of states per atom for s and d electrons
~corregponding to spin ¢ . The total average nunber of

electrons per atom for spin o im given by

<> = ~<nsc'> # <ndc_> (2.17)

III, HARTREE-FOCK THEORY

For the sake of comparison with the results of the
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one particle in__terac‘ti.ioﬁ petp;egzn' is and d eledtrgns givgn

by Anderson, In Sec, II we write the Hamiltonian for such
a model in the second éﬁantized forn, In our analysis we use
the Green's function method discussed by meoa::'ev.lg3 In

gec, 111 the self-consistent ferromagnetic solutions are.
obtained within the Hartree-Fock approximation for the 8ero
and finite widths of the d band. In Sec. IV an approximate
theory for the electron correlatioh 1s'devéAloped. The
self-consistent ferromagnetic solutions for l_w_ot,h' the zero

and the finite papd:brj.dths of d band are obtained, In Seec,V

the main results are sunmarised,
' II. BASIC THEORY

We cons:tder a system consisting of s and d electrong,

descnbed by the Haniltonian

= - + ; ! )
i=2 6 k0'+i‘§'°_Tij 1o~ 2o T I F By Pygm
ko ) '
: > : -
L Ak R : | * ik, -+ .
I L ST AL PR S}
kio~ . :
where - 1 T (B | e

61'; and edk are the énergies of s and d band electrons of

wave vector k, ako-.r ’ ak-s_ are the creation and annihilation

operators of the s electron of wave vector 'JE and spin o~

By

y & Aare the same for the d electrons of spin o~ at



28

theory‘to be“devglppeqﬂin the next gect@on for the correlétion
‘ effécts,'it would be useful to investigate thenp:oblemlin
the Hart?eeeFopk approx;matiop, Actually, we sha;l not-makm
an exgaustive study of all possible Hartree-Fock solutiéns,
but will restrict ourselves to particularly simplevsolﬁtions
which may represent paramagnetic or ferrmmagnetic_states
but not more compl;cated spin arrangements, The same ‘
restriction gpplies to‘the scope of the correlation theory
developed in the next section, _

In terms of the Green's functions, the Hartree-Fock

approximation corresponds to the assumption that
t 5y .t '
<<ni_0_a10_, af*a- >ab ~ <ni-U°> <<aia" a °_>)m s (2,18)

where index/@iis elther j or k: Ve restrigt oursslves to
the class of solutions for which <ni;d_> is independent of
the lattice site i,

<ny > =<nz.>  for all ;. (2.19)

When we incorporate the assumptions (2.18) and (2.19) in

Eqs. (2,10) and (2.11), Eqs. (2.8) - (2.11) asswme a closed
- , o"

fom. ©Solutions of these Bgs. for Gg'ﬁ (w) ena Gdgé' (0) give

o= W - Ed‘];. - I<nd_°_> o~ -
G (w) P .dk( )
‘ k
and ‘
o~ ' 1/2m |
Gd-]E () = ' ' S
vl

W - B - I<nd_

dk (o o

St (2,21)
W - EE‘ .
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= G e

| o o
By subvtitut:n.ng the values of Gy (m) ‘and dk (a:) from

where E-v= eﬁr - and Edlz

Eqs,(Z 20) eond (2 21) in Eqs.(z 15) and (2 16), we obtain
the density of stgtes per atom of s and d electrons

corresponding to spin o~
o 1 T by L s 1 s
fe @ = 5§ 3 Lags 6 (@ -op ) + A7 slo-op")] (2.22)

o= 1 s e - - |
Paled = T% [Ad_ﬁ,. & (w0 ") + 8gu3rs (wwop " )] (2428)

where

p. L. kom T Pk d-o
e , (2.25
Of = O
‘ oD . Ei? oo
B =p - (2,26)
. hand . , * . . * J
- ko= =~ Tko-

Here p is‘either (+) or (=)o

- The expressions (2,28) and (2.23) for the density of
states per atom of § and 4 electrons corresponding to sp;n

0 show that s and d bands are admixed into two new bands
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with dispersion laws @ = wg&* and o =ap” o« For an
unpertgurbed d bend, €y of zero width, the new bands are
.always separated by an -enérgy,gap. In this case the lower
band aiways lies beiow T, ~p+ 1 {ndc_) while the upper
band always lics above this energy, Here T is the mean
energy of ‘the d band edl? '-(.1..e-. _ "ﬁ’ i dk ) As the
width of the band edk increases, the gap between the two
bands decreases and i‘inally they overlap gach other, From

Eqs. (22. 5) and (2 26) it is clear that A% o ¥ Adkc" =

A:kc_* Adka' = L. This shows that for both the new bands
the densgity of st.ates per a’com for each spin ig always equal
%o one. The_refom if there are .two velec"tro’ns per atom in
the two bands together, then for the zero w;dth of the‘d o
band, system always behaves as an- insulator. As we increase
the d band’ width., an insulator to metal %transition occurs
at some critical 4 ban_d_Jwidth. ~In Chapter V we shall discuss

this type of transition in‘detail.
A. Zero Bandwidth

In the liait of the zero band-width, edk =T, for

all k. It is easy to show from Eq.(2.24) that
L
wige < B <op. ’
- N - ‘ ’ * §
and o < (Bgpr+ ]F(nd-o-» oL

so that Agfco- and Agkoﬂ are positive. Then by replacing
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€siv by I, in Eqs. (2.22) and (2.23), we got

fs(m) = -'—-N é | o --a-/f-.- To- I(nd_o_>|8{(m-mﬁ*a_,)(m-mgo_ )} ,1—(2.;27)
o1 RN L _
fale) = 5~ E’ Lo speggl 8{loog ) < ag D)) . (2,28)

For the sake of simplicity we asswme that the hybrid matrix

elem.ent Vi;a is iédepenclgnt_ o;i'_'l-zr‘. Thgn thase Egs. 4'can ‘be'

expreséed in terms of the density of states for the s band .~
..’N(m)j =~l-\;- £ 8 (@ - €7), " (2.29)

.

k

which is normalized to wmity since k 1s limited o the first

Brillowin zone and the higher p;ane' —yfa{re bands w;Lil be
neglectede In terms of N(w) Egs, (2.27) and (2,28) can be

written as
- o ‘ .
f @) =N {f (o "*'/“)} T (2.39)

¢+/A;-fo_(c;> +},)

o~ : .
(w) = e} N JF__ (0 + M) (2,31) -
where :
vl® | o
fa_(oa) = - . . . (2.32)

(.n - TO - I <nd‘o_>
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Finally the average ‘nufﬁb.er's _o_f_ s and q electrons per atom for

spin o= at absolute zero are givenAby

<o -ﬁ{,N { e @) aw (2.34)
, o " 0 = f*‘a_(;m). _ .
amd <ng.> = | ———————— | N{f_ (@)} w. (2.35)
- moo  W=Tg ‘I<nd@c-> T

)

 These Eqss. give the total average nunber of electrons per

atom for spin o at absoluie zero.

o y _
§n°_> <-nso'> <nd°_>

=17 | — f"‘.(m) ' ] {f @)] @

- GO | ® - To- I <_nd_a_>

(2 36)

With the Ferq;i level as a variabie parameter Eci,(z,BS)
for <nd¢,> must be golved self~éonsistently. Then Eq.(B‘.BG)
can bé used to fix the Fermi level from the total number of
electrons per atom n = (Kn*> + <n-> ) which is assumed given.

The ferromagnetic solutions are poss:i.ble only when <ngg-” §v!<n(,1 o

Solutions of the integrals (2.35) and (2.36) depend on the
form of the. density of states N_(w). For slmplicity we conslder
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the square density of states defined by

i
|~

N(w) if 0o &

o . (2.37)
=0 otherwise

where & is the width of the s band, For the square density

of gtates we have

N p{fa_ (m)} " L)E;* {9(0) Z ‘Dlg") e 0 (0 = wzg_ )}] 9 (2’38).

where

@ P_= T +I<n. > +pJiD +I<n >)°+ 4lv!‘2j
lo- 2 o - d-o ‘_p 4 o Qeg—" ,
| 1 - , | | 2 o
P o e ot 4T ¢n - , -(Y*

Ogm =73 <=<+T0ﬂ Dy o2 * P J{(To-s- Kng_.>=«)" + 4lv] _}/

Now we su'bst'-ituta the values of f_. (w) anva{fg_ (w)} from
Egs. {2.32) and (2.38) in Eqs.(z.as) and (2.36) and get

|Vl2 = {ﬁ ((J o (Dlaa) - 0 (w"mz )}

<nd > = I’“ LIl - _ . o (2439
«(o-1T -1I<n, 2
| | 12
\ . 1 - Ivl

> = L ]

. «w CO . (0.) . T - I<nd'0’->)2
~ s WPy . L (2.40
X E t§9 (» mla_) 2] (a) m&'r' )} dm (2.40)

=73



34

Integrals (2.39) and (2.40) are easy to evaluate. Limits of
integratlons are controlled by 0 functions.

Now'by'taking /u-as a,varlable parameter ve solve
Eq.(2.39) self-congistently for some perticular choice
of parameter I, « and To,to obtain <n&§,> and <nd-a'>?. Then
Eq.(2.40) is used to fix the value of 4 for the integral
values ( n = 1,2,3) of the total npm§s$ of electrons in both
the bands togethe:, We do not consider n =4 because in this
case both the bands are completely filled and hence there is
no possibility ofAierramagnetism. In Figa(Z 1) we have
plotted Q = /T vs & = T/ for three values 0,1, 0,2 and
,‘1.0 of § = v/To for a particqla;_valgg of P = I/'T0 = 2,0,
The range“of gxlstence of ;he"fgrrqmagnetic soiutidls betwéen
the values of Z from O to 1 1s shown in Table 2.1, The value
of @ corresponding to a particular value of 4 can be read
from Fig.2,1. To show explicitely the magnetic solutions we
have plotted §nd+> and <ndu> in Fig.2,2, Results of our
calcu;gtions show #hat the range o? the fer;omagnetic‘solutions
decreases as the hgbridization of_s and d'bands increases i.e.
the hybridization of s and d bands decreases the tendency
-towards ferromagnetis;r_:.; To have an i.de_a about the *;raz{iation
of the ferromagnetic solutions wi#h regpect to the strength
of interatomic interaction, we have ploﬁted,'Q.vs Z in Fig.2.3 -
for. three different values of P, 0.5, 1.0 and 2,0 for a
partlcular value of S = 0. l. The renge of ferramagnetic

solutions is shown in Table 2.2. It is found that the increage
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of intraatomic inté'raction i1s favorable to ferromagnetiagn,

B, Finite Band_ Width

We shall assums jbhat the form_ oi_‘ the 4 band is the_

sane as that of the s band. We represent it by the exzpression
€ =AEPT T - M2, (2.41)

where A is some positive constant less_t.han unity i.e.

it is asswmed that the width of d band is sn'aller than that

of the s band. 4 =0 corresponds to 'bhe zeT0 band mdth.
This cho:.ce is made because the density of e;tates /Os(m)
and /Dd(m) given by T‘os.(z 22) and (2.23) can then be
expressed in temms of ‘the dens:Lty of states of the s band
N (). wasy:atuhing the expression (2,41) for dl? in

Eqs.(2 22) and (2, 2.:) and using the epproximation \2.33), we
get '

o ] o Hfie Mep e T, ¥ A4/2 - Idng o? i
/os(m) = ¥ El ‘
. ' A -

x5 {leg ot - 62D (gl ) - 6]

(2.42)
® A*/*-Sg

o 1
[y =gz

(2,43)

. I@{ (w *,u)-e"’) (g (0 +4)= 6".)?(
g A

)
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where

1 ' ' o
gg_(w) = "‘2—"\ [(A 1D ow-=-TI + A2 - I Dy g

+ pTA(L-A) o ST F Ax/2 SIng D %4 4A{-v|2}j
(2.24)
Eqs.(2.42) and (2.43) cean bYe written in terms of the density
of states N(m):A |

. | o P
0 -.0-/4*-, To‘i' Af2 -I<n 2 -4 o (® +) "

o i deo~
Ios(m) == 3 i
. A P= + -
gm0 +4) = g {0 +2)
XN {go? \& +/fﬁ ,'  (2.45)
o= 1 o +pe gl (o 4) -
e S e —— | N(g (0 )]

89 (0 ) = g (@) .
' (2.4:6)

For the square censity of states for the unperturbed 8 aband,
N ,Eg p(“’ ”"/‘*)} is c:?.vean by
P ot . : .
A L SR LR R
(2.47)

where o

mn—-t

P = . - : " “: - a3, 0
1=~ [To - Af2 + 1 <nd_°_> WBO Ae(/2+1<nd_°_>)+q(vljl

(2.48)
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and

P - 1l & 4.
oo 2[(2+1)q+T0+;<nd_a_>

¥

+p ,J‘%”((%-- 1) « + T + I<nd‘-o-'>)2+ 4'vlaﬂ :

By substituting the values of gef (w"'/*) and N { € p(co"‘/*)}

from Eqs. (2.,44) and (2 47) in Eqs. (2.45) and (2.46) we
get at absolute zero

LA

(b 2T, e T g >

<n >—fﬂ—-%°-( z | 1-p 2 _d-c
- 00 =

—

s

‘g(( l-A)(D-T d’ _I{n >) 2""4A' VIZ}J

X ]je(a)-mlaf ) -6 (ba-u)z;_? ):, (2.50)
‘ - )

A
(1-A)o-2, + F - Kn, >

= . s {1+ ?ﬁ, dg-’
Bae? =T B« pzj;[l P

A/\f( -A)(D-T + ¥ K d_°_>)3\+4al.v|2-}]

X [e (m-‘ml';l_) ) -9 (co-ca)z;g Y.

(2.51)

As in the case of the zero band width, by taking mas
a variable parameter <n > and <n.d <,_,> are obtained self=-

congistently from Eq.(2.51). Then Eq.(2 17) and (2 5@) are

used to fix the Fermi level for an integral nuber of
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electrons. In Fig.2.4 Q vs Z curves are shown for three

values 0.1, 0.2 and-0.4 of A, Values of P and S are taken

equal to 2.0 and 0.1 respectively. Table 2.3 indicates.
that the range of the ferromagnetic éolutions diminishes -
as the d band width increases, This shows that the localiza-

tion of the 4 electrons favors the existence of ferromagne- |

tigm.

IV. CORBELATION THEORY

In this section we discuss the e:f.‘fecf. of“cor‘rel.a’civon
by coxisidering the equation of motion of the higher order
’ / +
' _
Green‘ s functiqn <«<ny 5 2 o~ 9 2ug- 22 whered is elther
j or %k. The equation of motion for this Green's function

e

i s given by

- fﬁhg:i?.iﬁ.+zmi

. T y
of<ny _ By s Bu3-2% = z <0y B G D

+

-+I<<ni_o__ 830~ o > w

-i-ﬁo ﬁ

S _, ¥
2 vh o RBeny_jop, 8L >,

N T
*i Ti£<<(ai-0' af-O"-af.-O" a':i.«-.g"l 3 Ao saﬂr

T ARH

‘E ka® Kagl o34 o~ Yo 12uo "
- : - = :
‘_‘ "ikq Rj- + +
*E Vi © Kayg o2 _g Ao %0 "%
k
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We assume that the correlations between electrons at
different lattice sites znd the correlations between s and
'd electrons are very small as compared to the correlations |

between elsctrons at the same 1é.ﬁtice site. In this

approximation we can decouple the Green's functions on the

right band side of Eq.(2.52) by replacing the operators at

the same lattice site by their average \falues as follows
<a, ¥ 55 ot f
Ky 8oy ar*é'»w ~ <ng_ > <Kep oy /*0'» y I 1 £ %2

ts + +
<<&‘i.--.cl;" 8o tig a’,uo— xRy 8y K8y s pcs-» it iﬁ

i t 55 - t .4
Kay o8 =855 aya'»w”(ai- IR S T o-»m if if—f.

t5 ~<n ¥
<<ni-0'afd" ’arm'>>m d <nd—0"> «31?0" pur»w ’

<<ak-z'ai-&'&la'.' ,ar;>>w’:<_ai_o;aia_><<aﬁi,, ar'g_)}m ’

| f <o t o st
Koy o 8o %o ? aka"»w‘<ai-c'éiq'x<ak~o" a]uo'»m

(2.53)
We'also assune that
) + o= = ' ‘
<ay Lo o> =< 8. >=0 . (2.54)

Under these approximations Eq.(2,52) beccmes
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+>?«’~a)

(‘f’*f" To = I ) KLny 3y s % ue-

<nd-o"‘ >si M
. +<n

o
- d“"’"?:;lii Tp G_:{,,* (w)

-

w

AW*

When we substitute the values of the Green S funci;lons

<<ni-°_, 8y g= 9 a!h.g_ »co from Eq.(2 55) in Eqs¢(2.10) and

(2,11), Bqs.(2.8) - (2.11) acquiz_:e a closed fomm. By sclving
- o , o~
these Eqs. for Ggpr () and Gy 0) we get |

wrp-T)er “TD) (e oo 1)

: #p el «I(1-< >
Gﬁ;:(a)) = —l 0 - (eknd -z ?). Gd;,-{:(m) ’
: . - /u -6+
(2.56)
'u" . 1/2r
Gap (@) = — »
(O)ﬂ', {UL.TO) ((DT" -To— I) N 'V !
' " (edi?" To) -
w*p =T - T(1<ny__>) w¥p '-'31;
(2,57)

These Green's functions have the same singularities
which are simple poles. There are three quasi-particle

bands which arise from the s hand crossing and hybridizing



41
w:Lth the two pseudo-d-bands given 'by the roots of the

equation.

w p-T.) V(g',eg-#;%;z);(éég '-"Tb')@* PQT&%IQX’n& o._>)') =0
‘(é,ssj

In genefai the footé_ of the cubic eciua_tion ‘vaJhi‘Cﬁ _detezﬁni;;e-s' |

the poles of the Green's function, are not all real, However:

we can avold this situation by taking the limit I +%, In tis

limit the upper band given by Eq.(2.58) is pushed out to

inflnlty and we have only two bends to congider, Vhen I -+ % the

o o
Greenfg functlons Gy (m) and Gdk (m) are given by

ma-M-I*Q, -(e-*- )
Gih? (@) = : ' G (o) (2.59)
N 1/2%
G (o) T <é 1) mkd) ‘ (2.60)
ak - dk )
_ 1-<n - 0""> m’*y_ -eek

By subs’cituting the values of G"‘“" (ces) and Gdlr (m)

from Eqs.(2 59) and (2 60) in Eqs. (2 15) and (2 16), we -obtaln

1 P - | | o

flod = —z (B0l B + B, oadyz)] |, (2.60)
i
{



the number 6f states per‘ atom for each ‘spin in the lower
bznd is not equal to 1. Therefo;ce a system having two
eiectrons per atom will behave as a metal instead of an )
ingulator, However for some particu;ar_ choice of parameters
I, v, io and % it may behave as an insulator, The number
of states per atom for each spin in both the bands together
is eéual to Bsﬁoj + B;E’o- + ngo_ + B:i'l'fo* = 2&nd~-o~”
instead of 2 ag in the Hartree-Fock approximation. This

is due to the fact that the upper band given by Eq.(2,58)

has been pushed out to infinity,

A. Zero Bandwidth
In the zero-bandwidth case Egs.(2,61) and (2,62)
take the fomm
o ;
= ¢ ) |
fo @) =8 {z£ S (2.66)

o+ [A-‘fg.c(m‘-i' M

ot g TQ

'/%"'(m) = (1<ny_.>)] - 18 @] (2i67)

1v1%(1-<n . >)

m-TO

vhere - £.° (w) =w - (2.68)

o

Eqs.(2,66) and (2,67) give the a{rerage nunber of s and d

electrons per atom for spin o as

. M
= C . N
ge> =1 WS @)} (2.69)
. __ 2 M |v|2 c : 0
- Ange? H1<n, 2) oz )2 N(E (wﬁjm (2.7\)

- QOO " (o)
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Above equations are used to obtain the farr;bmagnetié

/ solutions for square dengity of states, In Fig.E.S»QQ\iersus-Z .
curves are plotted for three different values of 8, 9.1, 0.3,
1,0, Hore and in the next subgection we do not, consider the

case n = 3 because in this case both s and 4 bends ave -
completely filled, It ig found that ferromagnetic solutions

are possible only forn = 1,0, 8 = 1,0 and Z from 0.01 to

0,12, This shows that the square density of states is

lsss favourable to ferromagnetism than the parabdlic density
of states studied by emith who found that for m = 1, ferromagnetie
: olﬁtidns are possible for S = 1,0 and also for 8 = 0,3,

Thusll the ferromagnetic solutions are influenced by the shape

of the density of states. In Fig.2.6 the self consistent

magnetic solutions are ghown.

B, Finlte Bandwidth

To consider the offect of the width of the 4 band on’
the ferromagnetic solutions, ve take the 4 band glven by
Eq. (2.41). The density of sta‘tes fs(co) and /oa(w) are given

. by

o 1 | | R
fs“”)z Tz’ ""*/"To = M1ny_ o 2)(ER - /2) |

X5 J( =Bz ) (o -%ps )] (2.71)
o) =z (1 o) ]
fd(w) = -;'" i (lf<n >Hw*,« -2 & 5(@:@ ) w-wkg.
K (2,72)
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If ve assune that A(1-<n - 0_,'>') # O,thegse equations can beg

rewritten as

A(1-<n

Ty 1 N -«——-@—-Q'(o(-z D tp)
w) = ' ‘ '
/oSv , :A(l-(nd;d_,} p= * ga_.(w*/&) . go. (wta)
XN {gdg(w*/f)} - (2,73)
. - o /JL go_(m Hu) ' - o
o) = 32 1 = —— | ¥ fgf r)f (2.74)
o P gc_'(mf*',u) - 8o (m*v*/«)
where
Dy = 1. T.. . L Y -
Sa-p:é(ﬂ)) = 2A(1-<n ; >) [w -?o*(1-<nd‘¢>) {ho + S )

dd"

-1, -(w-«/Z)A(l-<n S R -ty >
C(2.95)

From Eqs.(z 73) and (?..74) we obtain <n > and <n.,_> at

do~

‘abgo 1ute ZeY0,

AMi<ng 72

‘ w=T -+ (°<r,2gg_ (o)
&n_ > = 2| —

Ml--<nd o_,>) -~ P=2 ' g‘;‘_ (@) - g5 ()

N ,ggg_ (w)} a» (2,76)
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o-()'=3'2]'_53«>+ s ) o
where

%v P = .[u*-l [6""' T + (6 * - TO) (1';<?nd-c->')

+p ,‘[‘gxd—.!-(edﬁz-‘ro)-(l&'_n >)- ek} N |V

Y p P
o, DR Mt (€4 %) (1-<ng_g )
| o - B
P AP - S
BEp. = pli-<ng_>) 4
i " Pko-

|2(1-1'-<;nd_02 )1

(2,63)

(2.64)

(2,65)

'BEqs.(2.61) ang (_2.62) chow that both s and d bends

are split into two bands with dispersion laws mé&?i!'a,

) 7Y ., -
and o =wgo_ .

+

The general form of these bands comes .

out to be similar %o that in the Hartree-Fock approximation,

Here again for zero width of the d band, the two bands are

alvays separated by an energy gap,

But in this case the

two bands are separated by an asymptole at ‘I' - instead of

-}A*I <n

> in the Hartree-Fock appromma’cion.

Again the band gap decreases as the d=- bané width increases

and finally they overlap each other,

In this ecase, in general,
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w=g-_{®) ‘
<n, > = -l— IP = | | N{ ()] & (2.77)
“do~ - e P&t gcga)) -go.(w) H( d } .

4E§uations (2. 76) and (2,77) are anaiysed to get the
magnetic solutions. For the zZero wmdth of the d-band the
case of parabolic density of states was analysed by fnzth
and square density of states by us in ﬁheﬂlast_sectlon, Ve
consider here both the séﬁarg and the parabolicﬂdensity of Ny
states, to get on idea of the change of the magnetic solutions
with d band width. In Figs,_Z.?uand.E.S the plots of Q versﬁs
~ Z are given for theiséua;eland parabgi;c_dgnsity.o?‘states
respectively. We have taken A4 = 0.1, 0.2 and 0.4 and § = 1.0,
A search for magneticlsolutionshshows thaﬁ thg_fe:romagnetic

solutions are not possible for eny of these curves,

VI, CONCLUSIONS

Tne results of the correlatlon theory for ferromagnetic
solutions are in marked dlsagreement with those of Hartree-
Fock theory, In Hartreeprck theory, as"the”strsngth_of
s-d hybridizatiqn increases,‘ﬁhe pendgncy towards ferromag-
netisn decreases, while reverse is true for the correigtion |
theory. In the Hartree-Fock theory the ferromagnetic solutions
are possible for n = 1,2,3 vhile according to correlation .
theory ferromagnetic solutions are pgssiple only form = 1.

In both the theories the tendency towards ferromagnetisn
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decreases as the band width increases. Our conclusions that
ferromagnetian ig possible for square density of s»ates*
disagrees with the Hubbard's uheory vhich predicts that for
this type of density of states ferromagnetisn is n9t pqssible.
Furthermore in correlation theory ten&encj tdwards |

: ferromagnetisn 1ncreases ae the hybridlzation between the s

| and d bands increases. Thls shows the importance of s-d
hybridization in the correlation thaory of ferromagnetlgn.

In the~ngtreg-Fqgk thaory_the strength of the intraatomic

interaction favors ferromagnetism.

Here we have‘taken the form of the d band sgme.aé_tpat
of sfband,therefore the form of tﬁe densit& of states should
be the same for both the bands. Since square density of
states 1s taken fgr S hand, we ghall have square density of
state for d band also. - |
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Table 2,12 Range of Z for ferromagnetic solutions
for zero width of the 4 band

P g S g n ) z
L ]
2.0 0,1 L0 0,01 - 0,25
- 2.0 0,05 - 0,95
3.0 0.4 - 1.0
0.3 1.0 0.01 - 0.35
2,0 0.05 - 0,65
| 3.0 0.2 =10
1.0 1.0 0.01 - 0.2

2.0 0,01 - 0.1
3.0 0.4 - 1.0
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Table 2,2¢ Range of Z for ferromagnetic solutions
+ ~Tor zero width of the 4 band.

s 4 P § n 4§ 2
, g g
. |
0.1 0,8 1.0 0,01 - 036
| 2.0 0.1 - 0.85
3.0 0.4 - 1.0
1.0 1.0 001 - 0.45
2,0 0.05 - 0.95
| 3.0 0.4 - 1.0
2,06 1.0 0.01 - 0.45

2,0 0.05 - 0,95
3.0 0.04 - 1,0
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Table 2.,3¢ Range of Z for ferromagnetic solutions
. for the finite width of the 4 band

P § s § 4 4§ n § Z
d i . d d

2.0 01 01 L0 0,05 - 0.4
o 2,0 0.11 - 1.0
8.0 0.26 - 1.0
0.2 1.0 0.1 - 0.4
2.0 0.16 - 1.0
3.0 0,26 - 1,0
0.4 1.0 0,15 - 0.4
2,0 0,26 - 1.0

3.0 0.31 - 1.0
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CHAPTER III

FERROMAGNETISM.II.INTERATOMIC COULOMB INTERACTION

1. .INTRODUCTION

In this ch‘a‘pfcer.we discuss the ferromagnetism in a
single narrow energy band. The one band Hamiltonian (1.9) 1is
extended by including a term corresponding to the inte:atomic
Coulomb interaction, From Eq.(l.G), the general one band

Hamiltonian in Wannier representation is given by

H=3
ijo ijkt

/

g &i‘g— -5 . 3 Vi aii' aji-" k-’ Bt (341D
o s

Vi jx1 are in general four center integrals which are

extremely difficult to compute. For Coulomb interaction, in

narrovwv energy bands, three and four center int_:egral_s are

very small in comparison tp two and one center integrals. We

therefore simplify (3.1) by retalning only one and two centre

integrals, Of all_ the: two center integrals we ke{ep only

one of thgm, namely, the interatomic Coulomb interaction Vi iR

vhich is quite large in comparison to other two center integrals

and for atomic wave functions its magnitude is about 30/ to thd

of one center integral Viiii?34,53 Within this approximation

Eq.(3.1) becomes |

I 1

+ ane——
S Nty v 73

T g, *+ = b
1j #Ho %0 2 o

1j
Tl (3,2)

13 Moo’
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where Kij = vijji if.i # i and 28r0 if 1 # j. We shall also

assune that

Kij =K if 1 and j are nearest neighbors

= 0 Qtherwise.

In Section II, an approximate theory for correlation
effects in electrong is developed, Heygy we hay@ evaluaﬁed
one electron Grgen's function for the system describég by the
Hamiltonian (3.2). The higher order Green's functions appearing
- in the eéuatiops of motion of Green's functlon are decoupled
within the Haptxee;quk approximation and within the
approximations similar to that of H_u.bbarde_z4 We also find
the approximate solution of cpr:elatioa problgm“;n Zero
bandwidth limit., The seme problem is then discussed for’fiﬁite
bandwidth case. In Sec. III, the occurrence of ferromagnetism

for square density of staﬁeé is discussed, Sec. IV summarizes

our findings.
Il, SOME APPROXIMATE SOLUTIONS
We consider the Green's function
) = T (n=+ | 2
Gy plo) =< ay oy 2 > (M =41) (3.3)

The Inowledge of this Green's function enables ane to evaluate
the density of states per atom of spin ) whicp ig needed

to study the condition for fe~romagnetism. Substituting (3.3)
into (1.14), putting i =k, & - t'= 0, and sunming over 1,

one obtaing for <nur>,-the mean nunber of the electrons per
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. Fo
«ni -0~ jo ‘s 8y -8 »a:' into <<ni o Yo ! g 220 according

to the following approximation

+ ~&n 'l'
By o Moo B T NP K0y o 815 82 !

(3.16)
Within this appro:d.mat:ions, Eq.'(a;ié) reduces to
| ' _ <n _> , &
<n, | T =——=x - [t T, (a))
i-0- %0 ? %xo "0 “’*/*'TQ'E"KM - 2T s j Jk IX
(2.17)

In a similar way, if we write the equation of motion

for <<n ;}c-' 81 aki-__?} é) and decouple the i‘our-operato#

Green's functions according to the approximations used by

Hubbard34 and six operator Green's functions into

<<n 30'/ a3 - 9 aki-_>>w according to the approximation used in

Eq.(3.16), we get

“aglag s agd >,
<n__> &
- [k 31 6], (3.18)
o +p-T -IKn__>-Knz =~ ¥ J

Substituting the valuss of Green's fmetions <<ny o 8o a k%
and «njo-'aio'_’akg." >>, from Egs. (3.17) and (3.18) in Eq.(3.8)

we find
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_ o | §ik |
| i#.i |
' - (8.19)
where
<n _> Knz :
f(w,<n_d;>) = — A — — —
o @ - Toa;-an | W -Tb-I<n_G_> -Knz
(3,20)

“The Fourier transfonﬁ of the ‘Green's function defined by
Eq.(B.lﬁl) is, therefore, given by

., 1 1+ £(o+p <n__>)

.G (i—(’,m) =5 . : Q: ; '

(w pf=er ) - (ef-?o) flwr L yn_>)

(3.21)
We 'shafll now consider th¢ correlation effects in the theory

of ferromagnetisn on the basis of this Green's function .

A, Approximate . Solution in Zero Bandwidth Limit

o fOF alll'c' s

hence, it follows that Ti. i = %613. ~ After replacing Gl';’

In the limit c_:i‘ zaro bandwidth €k‘ -'f T

by To in Eq.(3.21) the Green's function in zero bandwidth

case is

o 1 Flw+p)
G (E_,m) =5 A

(ot p =T ) ot pe =T -1 an)(m+,u -T,~In_ >-an)

(3. 22)



atom of gpin &

P et .
<ng 2> = =R jz_ f8ig 82
o T ot 1€) 67, (am 4€)
i ‘ G * 31€) «G;., (v~ i
' 6"‘0 B Nk o 9&” + 1
(3.4
This shows that
..__1_ '
fo.(m) & éim o3 z [Gyy (m* i€) - Gai (- 16)] (3.5
-

gives the density of (pseudoparticle) states per atonm of
spin & o

For the Hamiltonian (3.2), one finds

[ay-» HI. = 3T et I et B K fge 8y (306

and
Iy HL =’; =¥ (ai; 2o = a;ﬁ- =T R U (3:7
_Ther_efore', the Eq.(1.13) for Gij(‘”) comes out to be

- s o
@ 2y @) =B+ 3 Ty 0g @) *T Cnypa, ok

!
H
H
3

-1-;; ,Ki"i <<njo'laig“” ’ aki: 2% (3.8
o a ~ |



Now we make the Hartree-Fock approxi.mation in which
the higher order Green's functions appeamng in Eq. (23.8)

are decoupled as

Koy 8o 2 2Py = By o> Gy @) (5.9)
' 3.9

tos T
«’-‘30- By 3 eV = <,nJ°___> Gy (w)

In this approximation, Bg.(3.8) tumns out to be

: : : 8 o .
@peTin o> - Ka2) Gylo) = + 21,60 @) (3.10)

2n
Here z is the number of'nearest neighbors, and we have used
the translational syumetry of the problem to write {ni_'_ > =
<n_s,.>. We do not consider antiferromagnetic ordering.

Thig equation may be solved by Fourler trensformation, If we

write
. 1 . 2 >
Gic;' ) = “ﬁ'% eﬁ'(Ri'RJj)Go-(l?,w) (3.11)
' T T F 6o 1k (B~ Ry) | (3.12)
we obtain from Eci.(é.l'o) |
‘ 1/2 7 .
Gon(ir,m) = - . (3.13)

The poles of one~-particle Green's function give the energies

of quasiparticles. Eq.(3.13), therefore, shows that the band
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Here
o) = (@) - (2T, + I + Knz) o

+1% <n_ > (1<n__>) -T (14 #Knz) ,  (3,23)

| G -
‘We substitute the value of G (%k,m) from (3.22) in Eq.(3.5)
to get the density of states per atom of spin o~

: <n _>(1-<n _>) A
Pty = e P (-1 % )
(I+ Knz) (I<n__> * Knz)
+ fnz 6(”'!' T -I<n _ > -Knz)
- - 6 (w+p -T -I<n ~Knz
- IXn _> * Knz . k=% ~a”
' -G .
: I<n | > )
+ ——T— s(+p-T - I - Knz) - (3.24)
(I+ Knz) o b

Ihis expression shows that system behaves as though it
has three energy levels at ?20 - (To*-*' In_o_ + Knz - ) and
(I, 1 + Knz - v )centaining

;3 <n_ge >(1<n_o 2)/(1+ Knz)(IKn g > + Kna),

' an/(I<n-°_> + Knz), and I<n_ . >/(1+ Knz) states per

atom for spin o -, re'Spéctively. Tk;is' result differs

strikingly from that of Hubbé;'a. Agcording to Hubbard, the
system behaves as though it has two energy levels at To end
I+ I containing (l-;-<n;°_>) and <n_ o~ states :;éspegtively.
It_should be noted that becausé of interatomic interactlon,

_.ﬁhe nunber of states in a particular energy level depends upon
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structure is modified,  the eﬁergy' of the (i{’,o—) state now
being €7 -+ IKn_,.> + Knz, which reduces to Hubbard's

. expression in the limit K- Q.
Now, we sghall go beyond the Hartz:ee-Fock approximation

by writing down the equations of motion (Eq.(1.14)) for the

higher order Green's funct:i.ons <<ny o 2o akz_,»(;) and

+
<<n jo- B0 ? ako'>> The equa‘bion of motion for

<<ni o~ Y g= 9 akz_ >‘$ is given by
(o #p-T5=1) K 0y 5 862 25"

_J..k_ . ot
> + 2 ‘1‘1:] <<ni-0' ajc' 9 akcr>>a)

1

~. .o, ¥
*f‘ ijc§« i-0° jo- io-" aktr»w

173 :
"«a;;-o" o e T ako-> 3
-1-3(2,;_ Kj_:1 <<ni_o,:_nj°_ ai¢ ’ a?;a-»m (3.14)
where 1 .
I =Yy *F I{Jr € | , (3.15)

We decouple the four operator Green's functions

| oo cca T, ot
Ky 5 g9 aka' 22 ,<<ai_°_ aj-cr;’ a‘kq-»m and

Oro- ‘

«a, T a‘kc"» according to the approximations used

J"G. l"¢/\ )

by Hubbard,34 and six-operator Green's function



59

‘the strength-of interaction parameters I and K, while these

(]

are independent of themstrangth of_intefatomic-interactions

when interatomic interaction is neglected.

By finding out the density of states in each energy
level, one can find out the number of electrons occupying a
given energy level at absolute zero and, hence, the ground
state energy of the system. Gomparing the energies of ‘
paramagnetic and ferromagnetie statag one ¢an f@ndiout their
relatige stability., In the Hubbard model, it can be shown
that for n = 1? thelqurgy of botp_paramagnetic'gnd
ferromagnetic states is the same and hence the_brgbability of
occurrepée of both the states is e@ual._ In the present
case,AWe find that the energy of the fer:omagnetic‘state isg

smelier than that of the paramagnetic state, and therefore

the ferrmnagnetic state is more stable then the paramagnetic

state, Here and in vhat follows, for the purpose of

- calculation, we take To = 0y ise. we measure the band ecnergy

from the middle of the band, and consider a f.c.c lattice,
The value of intraatomic interaction parameter I is taken to
be 10 eV and to study the interatomic correlation effect

the parameter K is varied from O to 3 eV,

B, Finite Bandwidth Case

The general nature of the solution given by Eq.(3.21)
will novw be investigated for the finite bandwidth case. The
4 - A .

expression (3,21) for G (Eﬁn)lnay be resolved into partisl
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fractions:
o . A i @ g @
G (Kp) = S L ' + (é) + 1
w-wi*c_fl) O-mp> O~ gr (3)
. | ., (3.25) .
2y  (3)

Here- ml?gfl) > m]?O' b a)l?d_ are the roots of the
equation
(0F p-€ Nty "TO'I'&IZ)fw*f‘"To';<n-¢ > - Knz)

_(e].z _';!0) {;(n—o_ >((,0’J"U. -TO-I<D._°_ > - Knz)

+ ,2an(_w+,u -TO—I-an;)} =0 (3.28)
e (D
F (o3 27+
O Ol :‘“ .
Akﬂ' ' (30.27)
| 0 s o g (1) wp )

o Flog () +p) |
a3 = P (3.28)
(wi;’a_(z_)‘-.- mﬁ'b_sl))(wgo_sz) - wl;'b_(s))

- . 3) )
42 3) = R P (3.20)
4 M ‘ *

(0.3 0 1)) (0p B op ) )
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From (8 25) and (3. 5), the dens:Lty of states per atom of spin
o is given by |

for @) = 5 2 4" 0™ + 17 0o 5
B) 5 ey, ) )| (3.30)

The expression (3.30) for density of states per atom
of spin o shows that the sjrstem behaves as though it has

three bands with dispers:l.on 1aws. » kojl) 0 = (2)
and o “mgg;(s) « From Eqs. (3 27) - (3 29), it can be shown

that Akd_(.l) + A’ko-(Z) " Ako_(‘f') 1. This equality and

Eqs. (s. 27) - (3 29) shov that the effect of Ak*‘;,sn) cannot
. be g:w_ez; any simplar ;i_.ntsrpreta_tiqp beyond the sta,tement "i:hat
they regulate the density of states in ‘each band in s_uch_:a
vay that the to"cal m;nb,er of stiate.s‘in all -three bands is just
one, The general f\'om‘qf the_ bandgmgbflh) m*’ (2) and w—* (3)
ie shown in Fig.3.1. The variation of bandwidth of different
bands with K is shown in Table 3,1, We note that the
bandwidth of lowest and hlghest bands increases as K decreases,
while bandmdth of middle band dmimshes as K c‘lecreases.
This middle band disappears when K= 0,

Now, an expression more explicit then (3.30) will be
givcn for the density of states. If F(m'* (1)*;*) and F(oa-r (3)*,».)
are positive and F(Ql?é_xz)éﬁk) 1s negative*,then by applying
the property of 6-function

X - T '
We have seen that this condition is actually satisfied.
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6(x -;a,l)

8 Jg(x)] = T = e . (3.31)
{ f ECI

where an are ‘the roots of the equation g(x) 0 and Ig(an)ﬂ
is the modulus of derivative of g(x) with respect to x at 89

the density of states can be written as

[o- @) =P ] glorf <n g 2)f (3.32)
Here @ +']3° + £ (w, <n_g_,>')
glwy,n_2) = - (3.33)
‘ I+ flw, <n_5.2)
and - o _ .
Ple) = § I 8lo-€p) (3.32)
P

is the density of states corresponding to the band structure
g

Thus, ﬁ_(w) can be obtained frcmP(a)) by the transforma—
tion glven by Eqs.(3.32) end (3,33). This trensformation is
illustrated graphically in Fig.3.2 which shows a typicalhg(a))
curve and ,‘le";.e pro jection of Plw) in'to /Do" Sw —/«)'.' The curve
glw,<n_ >) splits into three parts. -These parts are
separaced by infinities of g(m <n >) at = ami

o =0 , m* mad o (m 3 o) are the roots of the equa’cion

a ' =0 (
(m-To) (a)-iﬂo-_1~an) + I <n_,. > (_1-<n‘_°_'>) 0 (3.35)



The values of @ and ®~ are given in Table 3.2 foridiff_er‘ent
values of K This table illustrates that these infinities
come closer as K decreases and the width of the middle band
is reduced. In the limit K-" 0 both 1nfin1ties merge together
end the second band disappears. Itis qmte clear that the
appearance of middle band is due to the efi‘ect of interatomic
interaction mthin the decoupling scheme used here, ,

In the paramagne tie states (<n_ s =<n. > = = n/2)
of the system, it is found by Hubbard that for qquare density
of stateg, the first b&md is completely full for n = 1 and
therefore, the systen behaves as an insulator. We find ‘l.:hatfl
in the present. case the system in'the pa*amagnetic state behavess

co The

as an insulator only at some crltlcal valuen =n
value of a, depends on the va;ue of K, Table 3.3 shows the
variation of n, with K, It dis clear from the f,Eable that

n, increases as K decreases and it becomes equal to 1 as K=+ 0

III, CONDITION FOR FERROMAGNETISM

In Sec.II, pl;réuha{re. seen that in case of zero bandwidth,
the ferromagne‘_j;ig ___statg.ig_lmngg stablg t}}'an the pa?amagne:i;ic_z
state. In.this sec‘cipn, we shal'l‘find out the possibility of
the occurrence of ferromavnetism in the case of finite bandwidth.

We use the general condition 34 »98

l 'A a . e .’ .
-3 1 ?fg(w, rf/z)} o | (3.36)

which must be satisfied for a system to exist in the



ferromagnetic state. The chémical potential is determined

by the condition
n = <n0..> + <r.1—cr'> (3.37)

and <n.»'is given by
<n_> = IP P (w‘n-ﬁ:. >)} duo (3.38)
C L= Trg ? o ' *

It is @ifficult to manifest the condition (3.36)
wlthout reference to some specific densit;f qf”stgi‘;‘e_s funetion
P(w)s We exanine the.cordition (3.,36) for a square density of
states defind by |

- ' 14 ' + 1 pa)
Plw) = == if T - 34 «xXT + =5 (3.39)
= 0 Otherwise
For this case, dengity of state ()0' (w) can be written as

K+l

(-1)

M

' 1
@ =T

o (ot T ) €3.40)
=] (w /‘-%(

o, o o™ o™ o o L
where wq < e < Wz and Wg < Wy <..' g are the roots

of the cubic equations
ig(w, S T ). = To of 4/2 (3.41)
and - glw, “<'nl_-o.,>) -’f' I, * 4/2 (3.42)

- respectively, The density o'f states given by Eq.{3.40) when
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used in,Eq.(?.BG), leads to the following condition for

ferromagnetien,
11 o« T C'" »
- -;- > 2 (-1) 3 Olo-w,) @ (3,43)
. --90'0(::1 : ‘

It is not easy to evaluate the right hand side of
in:equaiity (3.43) analytically; We have evaluated it
numerically,* Itiis Tound that wher the Fermi level lies
in the lowest bénd,Aferromagnetigm ig not possible, but
when it lies in the middle bang, ferrcmagpet;sm is‘ppssible.

This result is éuite different from Hubbardfsvcogqlugion-

that for a square density of states.ferrpmagnetism is not possidle
One may, therefore, infer that the inteﬁatpmic interaction

should play an im?o?tant role in determining thé behavior of

ferromagnstic métals.

IV, CONCLUSIONS

Ig thepprgcéding sectiong, we haveuinveéﬁigated an
approximate model for electron correlation in transition metals;
it is found that one band splits up into three bands. The
middle,band occurs'oq;y;because_weHQOQSide?'the.;nﬁeratom@c
interactions. The system behaves as an insulator at certain
eriticel value ng of m, e value of ng depends on K.

Conditions for the ferromagnetism for the square dansity of

*Calculatiomsare<perfoﬁned for K = 0,14 1 and 3eV, bandwidth =
4 eV znd 2 eV, and Kn<l, | '



states are duite different from Hubbard's conclusion which
is based on the assumption that interatomic interaction

is negligible. We should mention here that Hubbard's
decoupling approximation, which we have used, is not suitable
for the Hamiltonian (3.2) which emphasizes intersite
correlations. To have s better insight sbout the effect of
interatqmig cqulomb inte?agtion, onebmgst use a decoupling
scheme which takes into account the correlation between

‘ différent lattice sites. However, our conclusions show
that intergiteMcor;elatipgéhmay be important fto explain the
magnetic properties of %ransition metals, and should not be

neglected,
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Table 3.1 Compari son of bandm.dths of dii‘fegent
bands for dlfferent valueg of K2

v
fev) ) {ev ) @ I C-)'A) ] (eV)
0.0 2.0 0,0 2,0
0.1 1,79 0,76 15
0.8 14 1,62 0,87
0,6  1.28 2,14 0,58
07 113 2.46 o;gl
0.9 1.01 2.8 0.31
1.0 0,96 2,77 0.27
2,0 0.2  3.26 0.10
3.0 050 . 3.5 0.05

2 Al’ Az andé\3 are the bandwi dths of the bands

o AD L(2) 2 (3)

© = op g0 F "’krr ’ a.nd w = respectivelv.

bo sa .- . ‘ . .
Ced culations are perfommed For To =,_0’_,I, = 10 ev,‘
z = 12, <n-_l°. > =,n[2 = 0,5, and the pandvﬁ.dth of the
unperturbed band r(‘ﬂ);‘eﬁf) is takeh eqizal to 4.0 eV,



Teble 3.2¢ Pogitions of infinities of glo, <n_g-2)°

§ | §
N | en) N
0.0 5.0 540
0.1 8,12 3,08
0.5 | 14.24 ' 1,,7‘6”
.0 20,80 1.20
2,0 33;25 | 0.7
3.0 45.45 | 0.55

o . C e . , 5
. Cd culations are performed for T, =0, I =10¢eV,

$n_.? =n/2 =05 and z= 12,



Table 3.3% Critical value n, for different values of K?

¢ : ?{ (V)
1.0 0.0
0.84 0.1
0.58 0.5
0.35 1.0
0,21 2,0

0.16 ' 3.0

a o . . .

Calculations are perfommed for' T =0, I =10 eV,
<n_g.> = <n0,l} = n/.2. y 2 =12, and the bandwidth of the
unperturbed band equal to 4 eV, '
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Fl6-3.1 TYPICAL PERTURBED BAND STRUCTURE IS SHOWN. W= (kg ) wrs? anp w=wrdP
ARE THREE PERTURBED ENERGY BANDS.DASHED CURVE REFRESENT.S THE UNPERTURBED
BAND. k.B 18 THE WAYE VECTDR AT THE BOUNDAR Y OF THE BRILLOUN ZONE. THE PARAME TEXS

CoRREsPONDJNs TO THIS FIGURE ARE [= eV, k=0-1eV, z= 12,{n-op=L zh=o0- 5,
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PROFILE OF fo(W-p)

Fl6.3.2 TYPICAL 9 (w,{n-8)) CURVE IS SHOWN. THE PROJECTION OF THE UNPERTURBED DENSITY-0F-STATES

FUNCTION P L) IN To, THE PERTURBED DENSITY OF STATES Po(w-4)IS INDICATED. THE PARAMETER S

CORRESPONDING To THIS FIGURE ARE THE SAME AS N FiG. 3-1.
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CHAPTER IV

THE .EWMIC'AL SUSCEPTIBILITY N NARROW ENERGY BANDS

I, INTRODUCTION

The dynamical susceptibility X(q,w) of ametal 1s
a quantity of - considerable interest because it can be used
to discuss a variety of prn’blen‘rue;:‘5 it determines the
¢cross section for lnelastic scnttering of noutrons, it"s pole‘n
" give the- frequencies -of - the Spin ‘waves and the condition i
')L'l(q, 9) = 0 gives the criteria for the stat_)}lity,of magnetic
Sﬁgg’:’:’“ Th‘e”%?:ﬁgi'h a5 of :)(,(q, :») | ior fhf’ iﬁnerant ei.ectron :
zodel based on the Hubbard Hemiltonian Have bédy- QiscuSSEd
et al.»z_"

ination (H)

and

within the random phase appro:d.mation by Izuyams
Dontach,%7__ The validity of random phase appro;
is doubtful in the strongly correlated systems. \ecently '\\'_
i'Sa]m:lrani.a,qami Hubbard and Jain Lhewe gone beyond RPA o treat 'the.
strongly correlated systems. Y
The Hubbard Hamiltonian takes into account only the R

intrnatomic interaction. The effect of inclusion of 1ntera:n.;n1é '

interactions on the Hubbard Hamiltonian has been di scussed by ‘\
lseveral authors.so -53 However there has been no systematic
1nvestigation on the dynamical susceptibility for a Hamiltonian
which takes into account both’ intra as well as. 1nteratomic

*
interactions.

* Englert and Antonoff (ref.62) have discussed the .
susceptibility within RPA by taking into account N _,3
interactions. '
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FIG.3.1 TYPICAL PERTURBED BAND STRUCTURE 1S SHOWN. W= Wka!? wké® and w=wkd¥
ARE THREE PERTURBED ENERGY BANDS. DASHED CURVE REPRESENTS THE UNPERTURBED
BAND. kg IS THE WAVE VECTOR AT THE BOUNDARY OF THE BRILLOUIN ZONE.THE PARAMETERS
CORRESPONDING TO THIS FIGURE ARE I=10eV, k=0-TeV, z=12, <n_,)=i{_ n=o0-4s.
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asisuription in narrow energ-y ‘banas.
We concentrate our attention ‘co the dynamical

susceptlbllity X, & (q, w) corresponding to a process wi th
spin flip. It 1s given by 61

X, (o) =-zar (g /*31”2 «a@ ,algi» 1=-1),
B (4 2)
where g is the gyromagnetic ratlo of an electron and Mg is'

| S
' the Bohr magneton. The spin density operators nc{fﬁ_ are
defined as o |

S . | o~c"
nf = £ ng (@ (2.3)
£ ..
nz?:v ot
x ‘2 Serdo  Zuge

- The Bloch operators ot and'a]?; are defined by
1

TN Y
af‘: Jﬁ‘ 5 e il{.ﬁl. of "

We shell restrict our analyses to cases where nunber of |
l'electrons per atom n&l since the cases n>1 could equivalently
" be treated in terms of holes in the band.

in Sec.ll we obtain the dynamical ‘susceptibility using
the random phase appro:d.matiqn. ‘.Instap:i_.'li.i".y of th.e pargmagnetic

state against the ferro and the antiferromagnetic states is |



(¢

discusseds, In Sec. III wé deriv’e an expression for the
dynanical susceptibility for strongly correlated systems
and discuss the stability of magnetic ‘states and sp:m wave

disperﬂons. In Sec, IV we sunmarize our findings.

II, WEAK INTRAATOMIC INTERACTION THEORY

For the sake of compari son with the results oi‘ the
strong intraatomic Interaction theory developed in the next

gsection it is desirable to 1nvestigate the results obtained

by applying thc HPA which is justii'ied only when the intraatomic
interactiogl Iis small as compared to the band ‘width « (T << c() .
To evaluate the dynamical susceptibility ”)( (q, ) we follow

a procedure similar to that of Izuyama et al. _1 We first
evaluate the re‘carded Gmeen s function

- ¥ *7"-

- * =
d L
<<n(g) , n(-Q) >, =T

<o @) 5 n(-d) 22,7 (4.5)

This retarded G‘_reenr" s fu;;cticn may be cﬁtainied by its equation

of motion. For each term of the sum of the right hand side

In fact FPA ig justified when all three interactions,
intratomic interaction 1, interatomic Coulomb. interaction ¥, j
and the interatomic exchangeg interaction Ji';] are small maﬁ
compared to the bandwidth oc It can bo shown (Ref.34) I >V, 3"5 1

Therefore 1<4< < implies that v, 130 ij <L
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of (4.5) we have

—-* + - l. . =+ + 3
@ < ng (@), nl-a) >, = =<y @ , n-9) 1>
T

+<<]}1 () ,H _[ ,n(-q) >,

(4,86)

‘ | h - | '
For the Haniltonian (4.1) the commutator [ng (q), H
consists of many terms and a rigorous tresiment is prohibitively
difficult. Accordingly we retain only those temms that can
be transfonned into a form like ak';; g ni’/(q) | and
ignore rest of ‘them. Further. thg chain of successive Green's

functions is cut off by the approximation,

wapt o wt@) , 8D > o <t oo «ng, (@), n+(:<-1)>> .
koo Skom Pp '3/ s BA=Q) 29, Sy - 1

| (4.7)
In this approxi_mation, whlch is called BPA the equation
of motion (4,6) reduces to the fom

1

-+ + = : +—t, =+ Tt
w << nﬁ-(-‘é) R a(-q) >, = -—;;_' <’|_n"-f’ (qa), n(:fs) 1>

_ oo
+[€'¢’- 6"" -(I+J ) Zo-<nfo)2>

1 o + v
* 5 3 Jﬁ»l_g -Ji'gl_g +)< az> oo 2

(
klo-
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1 ‘ : T O -
4+ > >Lpg+"' g~ o)
v BoE S % >]«nf‘( Dol

+l<I+J ><<a-*+aiz <o o

-+ + - .
X 2 <nd) , nl-q) >>

=i

|..a

N +
.~,§--§; —»-»r(( *.D gy o .-
kl l”k % %k # ag l+q_aki+a;>>

X <L n"‘ (q) , n{-3) >

(4.8)
Kg and Jp are defined by
K | -3z xp AEGHE (4.9)
i
- 4 ik.(‘& -TF!
Y3 FE ;, K e ‘ (4.10)

The quanta.ties Vg , 3¢ vary from v 5= I, to v 03J, inside
a Brillouin zone. ‘Hence one may expect the tems, which
contain Vg ang J° s,mcger the sunmation.’f?sign, quifce small. in
comparison to other terms, ”We neglect'ti'xese terms and hOpe
that such an spproximation will aoti affect qualitatively the

nature of the solutions because these solutions involve linear
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~ ¥ +
combination of the Green's functions Kng (é’) 9 n(-g) >>a)

for all 1?.—62 By incorporating this approximation in Eg.(4.8)
‘we get

+—-.

Jo - €+ Ep, -l 3) = a<n(0)>] <<n-> e y n(=0)>>
r

‘. w .
= 2—<[ 02 (@) , n(-D] >

3 o am > - <ackr |
g o ag> - <oply e >
-t
X <<n(q), n(-q)>>d) ,

v - - -
Dﬁviding both sides of thig equation by,‘fm -€k+€'> +G!+T )ZO‘(T’@)}

and summing up over all wave vector I-t?we obtain the Green s

-+ + - .
function <<nfq), n(-q) >> and hence the dynamical
susceptibllity

2 2 r-‘r

-g faw)
A (am) = b Lfew) ;) (4.12)
I+J> Y
.__!.I__G.__ Ef‘;‘”)

1+
g S - <o, o, > |

w0 - €+ eg+->+ (I +3,) zo <n(o)>

vhere r(;,m) =
-+ .

by 1

(4.13)

&n expression similsr to (4.12) has also been obtained
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’by Englert and éntonoff.ﬁg ) In absence of interatomic interac-
tions 1t reduces to an e‘xpreésion obtained by lzuyama et a1.61
The averages <a + ako_> appearing in Eq.(é 13) can be obtained

from the knowledge of one particle Green's function

Kag ak'!,'.» s (M =+ 1), for the Hamiltonian (4.1), its
equation of motion is given by

- I SR , &
® + {‘L e—» K< ar ) O ))m- ‘éﬂ—* ﬁ'_"z_’ <L aﬂ’l_c. ag*gl-%-c- afzcr' ;aEz-»‘

Nﬁkg 1 ei?zcwl %'14:20- ﬁ.klo-, k,,77w

'(4.14)

We decouple the higher order Green's functions according

to the following scheme

(4.18)
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When we incorporate thils approximatipn, called the Hartree-Fock

‘epproximation, in Eq.(4.1&9,. ‘We obtain Ehe Green's function
<Lg

1_ .
ko~ ? %" >>co as

1/27

KL ag7r '>+>>
ko= * “ko- : -G O~
_{mﬂu -ek 1 <n (0)> - Kn + I<n (o) >

1 T
- = ;:&z:ﬁl e %o )

(4.16)
oo | |

~where n = Z<no) > . If we neglect the last term in the
o .

denominator as we have done earlier to obtain the dynamical

susceptibility, we get

/2w
) t . _
<a,]-r ’ a-f >>m . :

-0~ =g~
0)-1-/;-3—5 - I<n (o) > - Kn#J (n(o)>

(4.17)
By substltutlng the value of <a At akc: >>a) in -Eq. (1.12)
we obtain
+ . -G~ 0~
<o a2 = f(el';"" 1 <n(o)> +*Kn-J <n(o) > - M), (4,18)

where f{n) = L 1):1

The denominator of the susceptibility (4.12), gives

the dispersion relations of spin waves and the co_nditions for
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the stabllity of magnetlc phases, Spin wave. exelitations

hav’e been discussed by Engleuz-_t'- and Agtamffsa

et aZL.61 Recently Peml77 has discussed the stability of

and Izgyama
magnetic phases for Hubbard model in the self consistent

field appro:ﬁ.mation. Here ve ghall discuss the effect of
interatomic interactlons on the instability of the paramagnetic
state against the ferro and the antiferromagnetic states,

The insi‘.abili‘by of the paramagnetic state against a spin
dens..ty of wave vector q oceuz-s when the susceptz.bility

X (q,o} = ”)((q,o) in the paramagnetic state diverges. From

BEgl.(4.12) the paramagnetic susceptibility X(q,o) is given

by
- 2 2 Kot |
' -8 (a40)
Y (Do) = ,PB. —— | (4.19)
I +32 3 - »
1 — (0
e +
‘ ey oy 2 - o o> |
vhere r{«é;o) =3 e . - (4.,20)
¥ €r* « € |
ktq K
and <o ap > = £ ,,fega* (@ +a8, - 308 - K] (4.21)

Instablhty of the paranagnetic state against the spin densi ty‘

wave of wa.ve vector q ocecurs. when

: . Laph+ gt > <o ard>
1«*J+  “Bpiq - O %k A

R %y -

1+ €0
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In the absence of interatomic interactlons this result

reduces to that obtained by Morris and Comwell.éo For a

fixed value of n, the chemical potential u is determined by .

s

= &
N

_2 £{Eg @+ 2K, 3) B uf

(4,22)

A, Instability of the Persmagnetic State against the

Ferromaeneiic state

(1) Zero bandwidth case

The papamagne’ci‘c instabllity against the ferromagnetic

state occurs when the static susceptibility((oo) in the

paramagnetic state diverges,

X €co) is given by

From Eqs,(4.19) - (4.21),

£ Mg F(OO) o
X oo} = (4.23)
1+3
1+ "-—'N—'Q"‘—r(oo)
4
%ag aﬁ >
vwhere r(oo) = 3 :
p Kl

P éeig% (@ 2K, - 3, §

oMl
0o

For zero bandwidth 61'&'

B= - — — 5
7 [ep§ef,;*(1 +2K - J)8 -4

=0 for all K.

1
(4.22)
From Eci.(z;.aa)
/0€98 3
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: YRR
éﬂ(:w 2K, - Jo? i /u}* N

s
]

Therefore from (4 24), we get

Y“ o BN(2-n)n
1 €00) = =
S 4

which on substituting in (4,23') '_gives

: c o K
(oo) = j (4,25)
* I-.1T S
22 | N, |
Ng'pp (2-n) n | (I +J,)(2n)n
where C = =———— . and Tg————"

are the Gme constant_ _gpd the Curi;e temperatuze resp‘ectively.'
In the absenlcg:“qf intraatomic interaction I and for one
electron per atom(n _.= 1") the value of T i’s' given by J@é = 4/3 ,
vhere J (J = J /z) is the nearest neigh'bor exchange _
interaction and z ig the number of nearest neighbors. 'For:
sc¢, bee and fee lattices the values of J?ec are 0.66 0.5

and 0,33 respectively. These values can be compared with
values 0,5972, 0.,3903 and 0.2492 obtained by high temperature
series expansion of thé susceptibility for the spin 1/2
Heisenberg m.odell.losl ‘;l‘he values of I8, obtained here are
just double of those ‘gfnt‘ained‘ by the molecular field theory

{

of the Heisenberg qu@é‘i;y , : 7
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(i1i) Finite Bandwidth Case
(&) Zero Temperature theory

At absolute zero of btemperature, the occupation
nunber <agék-‘?v' can be written as

i

it |
. ak ak > = 95/‘._ eg’.. (I L 2K° ™ Jo) n/Z} (4:026)

Therefore from Eq.(4.23) and (4.24), the susceptibility (co)
is given by \ |

N%/“B Pir . -(:weK -3, )n/z}

K (o0) =
1-(+3, )ﬁ{/u-(l +2K-J)n/z}

(4,27) _
more Plo) = -2 5 (-6g) i ' state
ere < 2 -Cr i
jo lm‘ ] E" § €k ) is the density of states
for the band € The dencminator of Eq.(4.27) glves the

Stoner criterion for the instability of the paramagnetic
sta’ce; _
1-(1 + JO)F\”" ?I * 2K0'Jo.) n/Z} _ <0 I
(b) Finite temperature theo:cy

At finite temperature we shall consider only the half
f£illed band case ( n = 1), In this case Egs.(4,22) - (4. 24)‘
ax,;e considé;eably simpiified . Indeed (4.22) is satisfied for

M= (1 + :ZKO; .]'or) n/2 and Eq;.(-.zs) takes the fomm



2 R
Z -
g/‘“B?_, (‘ﬁeﬁr# 2 | S
“XCoo) —£ e 2 1) (4.29)
I4+J) pEr ' |
1-U2 Q:kel?
S O b
Instability of the paramagnetic state occurs at
- . e
R T AN |
L e —— D, a Beﬁ' =0
B
For square density §£ states,
) ﬁ_(m) =1/ Af - 420 < /2
=0  Otherwise ,
| it gives the Curle temperature as .
T, E e (4.30)

a * ;ro)

In Fig.é.l.we have shown the. variation of 4kpT, /I asa
function of «/1 for various values of J /I General feaﬁgrgs

of the curves show that as the bandwidth in»reases the transition

temperature decreases,



B, Instability of the Paramagnetic S’cate against the
Antiferromagnetic State

(1) Zero bandwidth case

Ingtability of the pazjamagnetic state against the
antiferromagnetic state occurs when the depomin'ator of the
paramagnetic swsceptibility ?C(Q',q) becomes zero. Here i |
is half the reciprocal lattice vector. From Eois.(4.19) - (4.21)

we have ‘ ' ‘
L EM Bot{-ogp * (I +2K,-3)n/f2f /oeg
X(B,0) = (o : ‘ :
1 ..,__Ns..__. 5 oefa o-€p + (I+2K -3 /2] [267

k- |
(4.31)

Here we have made use of the fact that e; . €F and

_ JQ? = = J, when Ti;] and Ji;) are nonzero only when i end |
are nearest neighbor lattice sites. For € = 0, with the
help of Eq.(4.22), the above expression reduces to the
Curie, Welss 1awA

c
T - T

X (§,0) = (4.32)

‘ (I - JQ)_B(Z-n)n
where the Neel temperature TN = — ék o« If we
B

compare the Neel temperature Ty with the Curie temperature
I, obtained in the section A, we see that for positive J,,
T, > Ty end for negative Iy T, & Ty. This result can only
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 be obtained by the combined effect of intraatomie and
;nteratmmic'exchange interactions. Either of these two
interactions alone cannot givg such type_of behavior, This
behavior of the model s%ggests that perhaps the combined
effect of intra as well as interatomic intgrac?ions may be

fruitful to explain the magnetic phase diagrams of the rare

earth elements.log

(ii) Finite Bandwidth Case

(2) Zero temperature theory

From Eq.(4.31), at sbsolute zero the instability of
the paramagnetic state is given by

Ao

1- —2- jae —5~ = o 0f-0"€+ -(I+eK, - I, n/2} <o

2 G L
| (2.33)
. For square densitj of states it reduces to
1 J 1 ‘
X2 2+ - : (4.34)
DA nk1-n)| | :

The sign of equality in (4.34) gives the boundary'line v
between the para and the antiferromagnetic states.' In Fig.4 2
we have plotted Iy versus n for various values of J ﬁx.

In the region above the dashed curves antlferromagnetic states
are more stable than the paramagnetie state wnile in dhe“

region below the dashed curves the paramagnetie states are
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more stable than the an‘tiferrom‘agpetic ‘states. We have

va;lso shown by solid line. the boupdgry between i;he para and

the ferroma@etic states (from (4.28) f'c_)rv_sq-uare. density

of states the boundary line between para and ferromagnetic
state 1s given by I;/o(v =1 - Jo/?(), Ihe region ebove the

solid Bin_es correqun‘ds' to the stabllity of the ferromagnetic
state agalnst the paramagnetic 'Sjl;ate agd in the ,revgipn. below
the 'sol;i..df lines the reverse holds good., These curves show -
that positive values of J;)_ are favorable to the ferromagnetlsm
while. antiferromagnetism is favbr»edufor negative v_al}lég of

Jo. For half £illed band the paramagnetic ‘statg is always
unstable against the ferro or antiferromagnetic states where
1< J /*< 0, for <J§/°( < 1 parsmagnetic state is more
stable than both ferro and antife’rromagnetic states Awhen
I/x< 1-'Jo/°(._ Thus the pred:_i.éfcion of Penn that for half
filled band the paramagnetic state is not possible, no more

holds good when we take ixiterafhomic interaction into account,

(b) Finite temperature theory

For half filled band, from Eq.(4.31) the instability
of paramagz;etic state against the antiferromagnetic state
is given by -

—"
I.43  tanh B Skf2
2N ﬁ* 61?

L0 (4.35)

In the absence of interatomic intera_ctions, this ingquality

23

‘has recently been obtained by Langer et al. For simple
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cubic lattice theﬁﬂhave flpttad the transition temperature |
as a function I. From‘ggzﬁéurﬁe,it is clear that if we replace
I by - J,)y then for ecach value of I the transition
ﬁemperature decreases for positive Jb and increases for

negative qu

- III, STRONG INTRAATOMIC INTERACTION THEORY

In thié section we develop a theory for the systans.
where the intraatomic interaction I is very large in absolute
magnitude as compared to the 1nteratomlc couplings Tij’ Kij
end 35 i3 In Hamiltonian (4.1) I repre.nnts the energy
required to bring two elactrons into the seme atomie state
consequently for sufflciently 1arge I( >>|Tij|,i jl l l
such doubly eccupied atomic states cannot occur in the 1ow
lying states of the entire system. Because of the exclusion
of doubly occupied statés, the intraatomic interactions serve
to reducs the pﬁase space'available to the elegtronie systenm,
In order to formulate this effect‘we first repreégnt the
states that are available to the systgm ag vectors in a
- Hilbert spacelscg Gdrresponding}y, the observable are
represented by a sét of operators Q, Cn s&,v'we then take
accomt of the fact that the intraatomic interaction exclude
state vectors from a wall definéd getA;n~S$, which means
that they confine the‘étaﬁeé to a subspaég! S of Sé.
Conseduently.the;opservables are now :gpregented»py Qperators
Q :on4§. These are related to the corresponding primitive

operators Qo by the formula.
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q = PQpP | | (4.36)

wherg P is the projection operator for S. The alge'bra of

the set Q is éu;te different from that of Q) . | Ihis
difference represents the chenges in the prqpértigas of

the system dus to correla_t;ons introduced by intraatomic
interaction., In otherwords the effect of intraatomic interaction
is built into lour formaligm thmugh the new algebra of the

operators on the reduced Hi.lbert space S.

:rl -
Let br_ , b t and Vﬁ:‘.’) be the operators in the
ko koo °©
subspace 8 corresponding to the operators ako- ak; and
,_n(k) in the space S,. It can be shown that the operators

bka't ’ b-o»"' end 7J(k) -satisfy the algebraic relationssl

B » st = g AR 0+ o VED),

Do » b, = By, bped,=0, (4.37)
e . | -
Bgr Y I = 2o Seoy

In terms of the operators in the subspace S the Hamiltonian

| (4.1) can be written as

= e pat SF oy K BT -
HeE 6 bl bp tN ZKpVpipnzap 33y
ko~ k- k Lo
4 o (4.38)
2K - J*
where (Eﬁ= ' kK (4.39)
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Here we dlscuss the dynamical susceptibility for a

model Hamiltonien

&+ < z;‘ . K:lj nicrn;]o-/ *. < b Ji;laio" ajo"’ aicr'/ a.‘l@'
b I | T : :

€4.1)
It is obtained from the one band Hamiltonian (3.1) by |
-neglecting all Vi 3kl corresponding toAt'h;'_e_e_’azid. four center
‘integrals, Of all the two center integrals we have retained
only two of them, namely the interatomic Goulomb interaction
ij,ji Kij and the interatemmc exchenge 1nteraction 1313 'Ii;l’

This Haniltonian differs from that of (3.2) by the inclusion _
of _fourth tem,_corresponding to intera;omic exchange interaction,
on the right hand side of (4.1), The parameters I,K,J ané T
may be taken asphenonienblogical ciuantiti‘e_s.. In .xj__elating their
values to propertiées of real solids, _orie -should realize that
these parameters cbntain contributions due to indirect N
interactiéns involving other bands, for exeample, the interaction
between magné’cic electrons in a metal is sé're'ene'd. by cqpﬁuc-tion
electrons in a higher ‘conductioxi band, Herje.,wg shall assume
thaﬁ_I K gixd. T are positive and J i.s elther positive or negative,
We also assume that Tii 11 = J' 34 = 0._ Throughout this
treatment we shall assune that i i3 K‘i 3 and Ji 4 are nonzero

only when i and j are nearest neighbors., It is a reaAse‘..Aaole
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g =- Jk/é | - | (4.40)
V=3V, - (4.41)

. ‘ .
and B = z { V@ (1:), ;io-V(k), Y& 5 . (4.42)

The dynamical susceptibility")( ('oI, w) 1s given by
—+

~ ‘ —Ff 4 o
AT, @) = - (g pg? V@), V(D) »> (4,43)
-+ : I A
To evaluate fX-(q, w) we proceed in a manner similar
to that adopted in Sec, Il, We write down ‘the equation of
motion for the Green's function << 7/" (q), (-q) >>

oo/
(Vﬁ(Q) = "'C],O" bi?ﬂ',)’

-+ , -

_, — +-
® << V(D ,V(-q)» % <Dp @YDl >

-+ - ' ‘
+<«< Vg @), H] RG> N

(4.24)

For the Hamiltonlan (4.38) we have
—+ - . . : )7 :—_’cr' ..
[Vg @), H] =- § €, (5'k'+",1‘£ (ictq-i7)) bk o
- 1
-0
-z g VAR vl v
5

1

d‘C)_,

) t+
- 22 KI-{ (-k-l) bk'l""l'ElO" k—d‘
ko3
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r-J
- R ¢ V -k b" b*
kl
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N ot ?:'9:
+qg bﬁ"‘{d" bk-ﬂ' ':é;' ekﬂ_ k"' G"' bkl 0" (kl-k)

. bor V(.
-2 T opd g Y G

The right hand side of the above equationcontains many tems
so that a rigrous tre»atz_ngl_flfct is difficult, We retain only

few temms by making on anéatz for the spin density operator

)}o}g‘ =v‘("-'3’ /s-r +V (a.)a-zs (4,45)
07 Ok 4 k,g .

and replacmg the operators bfcl'i‘ bka" s ¥hich are multiplied

d"‘

YV(q) orV—' (Q) , by <bg ko.'f' bt ”ﬁﬁ"&w—’ . In this

approximation tihe equatien of motion (4,44) becomes,



I U L I 1l =t v
o <O @), V-9, = — <Dy @, Gy

-+ 1 + _
* dgg <O @ , Y@ »

.- |
* i’%_ z << V—* (q) VD) >3, (2.46)
R
—-r
Apr = € (1.< v(om - e-» -» (1< V(o)>) + 4 J 2o < V(o)>
4 ° g
(4.47)
s ’ 4 N ' ’
+
- (ek + 4 J’-*) <by, b2 (2.48)

The first term on the right hand side of Eqg.(2.46) is

given by
A : ;
- )} -+ _ . . .
PR, Y] > =< Do > - <bpy b, O

The correlation functions inside the curly brackets corresponds
to creation of two electrons and two holes of the same spin

simultaneously., We assume that there is a very small probahllity
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of occurrerice of such processes and henc_:e we neglecvt these
“terms, The eguation of motion ,(4.46) takes the fomm
, '_.';r N
W - agz ) «<V3@) D) >

B} (,<bg;, br =+ > = <b§a, be, >)/21r

#g- kg
Brs
oy |
kq -4+ -> -i’; _
oy S <@, ) 2, (4.9)

k.

vhen we devide both gides of the above equatlon by (m-A—E’qt')
and sum over k we get the Green's function <<V(q) ’ V(-q) >>
and hence the dynamical susceptibility

b]g*a_ by *c'i' > - <bk* bk_,,

g 2
- ? —+
1 BEs

I ——— 3 (4.50)

N E -t ‘

The averages <b;? ko“' f{'a_ 2> can be obtained from the

i +
khowledge of one particle Green's function (<b§°_ ) bgo_ >>w(n= +1).

It is given assl

_— -

_2_... (1- < V(o) > )

'
‘ <<bf°_ y bﬁr >>‘.”- —

® *p- e-+ (1-<¥(o0) >)-2KV-2.T oz o-<o) >
g

(4.51)
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R | | o
vhere VJ = 2<¥Y(0) > is the nunber of eclectrons per atom.
_ -

From the poles of the Green's function (4.51), the single

particle energies are given by

 —aa— e P
ofy =€ (1-<Y(0) >) +2KY %2«1’00-?0' <Y

. (4.52)
—a -G . '
In Eq.(4.52) the factor (1- < M(o) . >) represente a band
narrowing due to restrictions imposed on the electronic
motion by the exclusion of doubly occupied atomic states,

~ oG
while the temms ZKOV and 2.0 2o < ¥Y(0) > represent
(*

additional contributions to the energy of the electrén due to
interatomic Coulomb and exchange interactions. When we
substitute the value of the Green's function in Eq.(1.14)

we get the average <bgr. b, > as

3 - . —-— — g

<opt op > = (1-¢%0) "o e lep lio)y ) + K>
+ 27 o~ g_l_o- <V(o) > -l“} |

(4.53)

From Eq.(4.36) we have <Q> =<Q_>, vhere on the left hand
side the engemble average is taken over the states in(_spac'e
SO while on the right hand side average is over the statés
in gsubgpace S. To compare the results of this section to
the results of weak interaction theory, hereafter we shall
replace the ensemble average of the ope_rators in subspace &

by the ensemble average of the operators in space SO.':«*
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In the limit of zero bandwidth, the dynamical susceptis~
bility (4.50) reduces to

22 Pl
- gy 30" <n(o)>
7((‘13 w) = O__:' — (4,54)
| (g, = J&*) 2o <n(o) -w

¢ :
This is an expressiop which one obtgains for Helsenberg model
,un&er th;‘e-random‘phasé appro:ﬁ.métion,_az_ It chould be noted
that the dmamica; susceptibil;i_.ty obtained in the weak
interaction theory also reduc_;'es to the same form in the limit
of zero bandmadth. |

For & system vl th small number of elec’crons {(n<<1) =nd

Jg->> %/2, Eq.(4.50) thkes the fom

- iy o> - <apy o
-g P‘B a —— - : =
o E -0 -GGy ‘Iq;é(n“))
’X(q,w)= ' s j
_* . v .-
. 3, <ak Py > - <op k'l' k.'l' >
1+ ——— % , —
s
k -w-eg-x-eg—r-i-a’ E‘.o- <n(o)>
| (4.55)
and (4,.53)\ becomes |
< u >=f~ié *Kn. J<n(0)>-'/“’} (2,56)
%o~ Bko- Ak o T Yo A ¢

Eqs.(4.85) and (4.56) are the same as Eqs.(4.12) and (4.18)
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provided I. = 0. Thig similarity petwqen.strong and weak
intraatomic interaction theoriss is very‘similar to that
pointed out’ by Kanamori._33 He has shown that for a system
- of electrons interacting by strong.intraatqnic interact;on,
the random phase approximation ls good provided the density\
of electrons is small and the bare_;ntraatomie ;nteraction
is replaced by 'some effective intraatomic interaction, .
The static paramagnetic susceptibility j((a:o)‘ which is
needed to discuss the instability of pargmagnetic state |
against the spin density wave of wave veétor'a is given by
(from Eé.(e.se)) A

L
. . g/ugi (Ragyd aga > = <ap )/ A,
W@0) Y (G0 = — (4.57)
1* 5 ‘f .
k  Akg
wherg
Agy = (eg-eg ) (1-n/2) - (4.58)

»-.'rg- -+ -)-+> -+'l' J"* <+ P

(4.50)
and <a: aﬁ > = (1-n/2) f,{ & (l-n/2) + 2K n-ﬂ} (4.60)

The chemibal potentiai/n is determined by



/2 f-n/2) = = 'f’i £ {€g (1-n/2) + 2K n- 4} (4.61)

A, Instability of the Paramagnetic State against the
Ferromagnetic State

(1) Zero bandwidth Gase

From Bgs. (4.57) to (4,60) the static parsmagnetic
susceptibility X{oo) is given by |

ea {€g (1-n/2)+ 2"1€°n - 4}

2 2 2 - SR
g u_ p (l-n/2)" = o FOK 0 -2
o M " o [i+ eﬁQQg (1-n/2)+ 2K n ﬁ?]g
X(oo0) = : —
| BIEr (L-n/2)42K 0 - u}
B(1-n/2)2 (e + 4o ) e {ek MR
len# - 2

Noox

.{ g (1—n/2) + 2K n- A

{lﬂ*e _]
(2.62)

For €} = 0 with the help of Eq.( 69) the above equation '
gives the Curie Weiss law given by Eq.(4.25) with C = Ng,uB n/akE
and T, = J,n/2kg. When we compare the values of C and T,
with the \fal,ues'obtained in the weak intraatomic interaction
theory I = 0, we see that both the Curié constant C =nd the

Curie temperature Tc- are enhanced in the strong intraatomic

interaction theory. Recently in the absence of interatomic
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interaction (Hubbard model) Mattucklj.‘o?has also reached to
the. conc;lusién that correlétion effects erih‘ahces the critical
temperature, | ‘ | |

(ii) Finite bandwidth Case

' (a) . Zero temperaturef theory

At abgolute zero of temperature the expression (4.62)
reduces to

M- ZKOn.

232 .
gps N (1-n/2) 2 ( )
‘ o B P len/2
,X (00) - v (40&)
- . o -ZKon
l-n + ( p=2K at+ 4J (1-n/2)) [ ( == )
Instability of the param-agr_xetic_ state is given by
. o A=2Kn
1-n* Spu 2K n + 473 (1-n/2))[( - ' <0 (4,64
g‘gﬂ n + 43 (10 JJK oy ) & - (a.80)

in the absence of interatomic interaction the inequalityf
(4.64) reduces to that obtained by Sa.kuraisg and fiﬁbbard and
41 |

Jain in the limit of strong - intraato_mic interaction.

Sakurai has snalysed the inequality and reached %o the

following conclusions,

(1) The paramagnetic state is unstable for a system with
a snall number of.electrops if the density of states at the
bottom of the band is large enough (For a nearly filled band

the high density of states at the top of the band is required
 for the instability).
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(ii) When the narfowed band is more then half filled,
the parénagnetic sbate is always more stable than the
ferromaghetic state, "

In the presence of interatomic interactions both

the conclusiongs of Sakurail are modified.

(i) When the number of electrons per atom is small

(n €< 1) the inequality (4.64) reduces to
. "ev ~ as
1+ (p 2K+ 4, )f(/*-zxon) <o (4.65)

For small nunber of electrdns per atom the Fermi level

lies below the middle of the narrowed band (i.e."<2K6n),
therefore the inequality (4.65) can be satisfied for the

high density of states at the bottom of the band if»J; >r-2K5n,on
the other Raxg it J'<r*-2K4n, the ineéuality is never

satisfied whatever may be the value of the density of states.

(ii) bor n = 2/3 the band is half filled because in
that case Eq.(4.61) is satisfied for /' = szp; For more
than half £illed bend ( i.e. n > 2/3 or 4> 2Kn) the
paramagnetic shate is stable iF/L;ZK'n > J_Ql-n/?), but
ir p-2Kn < J (1-n/2) paramagnetic state may become
wmstable for large value of ﬁhe density of states. '

To be more specific, we Shall di scuss the 1nequality ‘

(2. 64) for square density of states, In thiscase Eq.(4.61)
.'gives the chemical potential ‘

(3/2n - 1), ' (4,66)

N P

M= 2$b n +

hence the inequality (4.64) becomes
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I /X > 0.5 | (4.67)

(b) Finite temperature theory

We restrict our analysis to hali‘ filled narrowed
bend. As shoun in subsection a for this case eciuatibn
(4.61) is satisfied for n, = 2/3. From (4.62) the condition
for the paranagneticbnstability'is given by

B eg/s

48 (GE* 4J, ) e :
L oo —F - — 0 (4.68)
aN per/3 o A |
(e B ny

For sguare density of states it gives the transition

- temperature

2«/3

1 , 2«13_ (4.69)

kg banh ™t ( —
< 4/33,

This result is exactly similar to the result (4.30) obtained

in the weak interaction theory 1f one replaces « by 2«/3

and (I+J.) by 4:/:33° in Eq.(4.30).

B. Ingtability of the Paramagnetic State against the
Antiferromagnetic State

(1) Zero bandwidth case ‘ |
The static paramagneti‘c susceptibility ’)((3,0), which
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i1s needed to discuss the iﬁstability of the paramagnetié
state against the antiferromagnetic state canwbe obtained
from Eq.(4.57). From Eqs.(4.57) = (4.60) we get

gin“ -‘quf" £ i - ef: <l-n/2'} + 2K n | /€

(2-n) J
Qe e - 2o £f -0 61;* (1-n/2)*2K 0t /ek
ky

X(‘é 90)  =

(4,70)
For zero bandwidth it gives the Curie Weiss law given by
o Jn A
Eq.<4.32) with € = ¢ /‘B N n/2ky and Ty = = 2,
When we ccmpare this value of TN with the value obtained
in weak interaction theory for I = 0, we see that like
Curie temperature, the Neel btemperature is also enhanced due

to strong correlaticns,
(ii) Finite bandwidth case

(a) Zero temperature theory
From (4.70) at absolute zero the instability of

paramagnetic state occurs wvhen

(de- )J
Z E: o f d€ —E-LQ 64/« -2K ot 6(1-:1/2)}

1l -n+

{4.71)

For square denslty of states it gives
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n-1

J’ .
-2~ £ (4.72)

-(l-n/g)'lﬁ 1‘ !

3n-3
The boundary line, given by the equality 51gn in (4 72) :
between the para and the antlferromagnetlc state is shown in
‘Fig.4.3. We have also ghown the line Jb/d = 0,5 given by
(4,67) which gives the bowndary line between para and ferromagnetic
states. For 0<J6/R < 0,5 paremagnetic state is stable for all
values of n. This can-b@ compared'wifhtﬁhe Teguit. of ~the weak
interaction theory (for I = 0) where paramagnetac istate is stable
for 0KJ_/« < 1,0, |

b, Finite tempenature theory
For half filled bend ( n =2/3, =2K n)

the paramagnetic lnstabillity occurs when

43 ' Ex> /2
] « ==L % tanh ik—-/- £ 0 (2,73)
3N K EE»

where Eg" 2/3 61?." . The inequall‘cy (4, 73) reduces to (4.35)

if we replace 4J /3 by (I -Jd,) end E-* by 61;.’ in this inequality.
fhus we sce that the behavlor of the systan for half filled

band is of the same type in both w@ak interaction (n = 1) and

strong interaction (n = 2/3) theories.

C Spln-flip Excltations

The excitations of the system with spin flips are
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expressed as the poles of the dynamical susceptibility (4.50).
In our case they contain Stoner like individual excitations
arfd collective excitations called spin waves. Stoner excitations

are given by

. , , . o
By substituting the value of AL;'&’ from Bqg.(2.47) we get

C, .+ o

g = (e - €2) (Q-n/2) + (To- 2 TR 35 0 enTe)s
o - 2
o
For q = 0 it gives
ms = (Jo- 61-;) io- <n(o) > (4.76)

It shows that if Jb < =_></2, there is no gap in the spectrum

of Stoner excitadions and therefore the spin waves given by

Mo =0 (a,7)

have finlte life time in this region. Fot'Jo> %/2, a gap |

in the spectrum of Stoner excltations occurs }a’c'a = 0 and

hence for small values of 'a we get spin waves with infinite iife
time, Under the assmptibns- J0>> «/2, o satisfying the condition

I, o) > | (6 - Cpl- n/2)!, o,
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and for sma}l a;we get from (4.77) the spin wave dispersieﬁ

relations as

o l-n/é + ' '

= (T = 4 8 > 3 )2 e
®spin (,Ja Ja)<so ,> * ' ;‘3" < O A ? . Vi) %
- ancs > ko*

(1-n/a) U T
'ZNJ <sz 2 ";; <o aki' it PR3 >33 ek

+0(*)*one (4.78)

vhere <Sz > =IC <n(o) >, Here we have assumed that eﬁ =€ =
o .

- For small numoev of elcetrons per atom (n << 1) it reduces to an
expression pbtained within the random phage approx1mation62
if one replaces J& by (I + JB) in the third tem on its

right hand side,

IV, CONCLUSIONS

We have discussed theudynamical ﬁusceptibility for a
model Hemiltonisn which takes into account the interatomic
Coulomb and exchange inte:gction‘pvgrrthe Hubbard Hamiltonian,
For weak intraatomic'in%e@actiop we have obtained an exprasslon
for the dynamical susceptibility.which is very similar to:that

of Englert and Antonoff.ag

It ls found that in the presence
of interatom;c interactions thg\results of'the Hpbbard model .
are congidersbly modified, For example for the square denslty

of states at abgolute zero of temperature according to Hubbard
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model in half filled band (n = 1) the paramagnetic state is
alweys unstable against the ferro and the antiferromagnetic
‘states. In the presence of the interatomic interactions we
find that it i1s possible to have a paramagnetic ground state
for Jb/&)O, At finite temperature for the zero béndwidth the .
Jurie-Weiss law is obtained. It is fowd that for positive J
the Curie temperature‘obtained ?rom the Hubbard model increases
wh;le Neel temperature decreases. For negaﬁive Ja'these
-conclusions are feversed. |

In the strong intraatomic interaction theory we have
obtained an expression for the dynamical susceptibiliﬁy waich
reduces to an expression obtained in the weak_intraatomic
interaction theory for‘I = 0, when tﬁe density-of electrqns’
is small (n <<_1) and Jé > #/2. Here'alsq the results of
the Hubbard model are modified, 'qu examplé at absolute zerc
‘the Hubbard model predicts that for the séuaré density of
states the paramagnetic state is always more steble then the
ferro and the antiferromagnetig states., Here we find ﬁhaﬁvfor
JB/H>O,5 ferromagnetic state is stable for all values of n, for
0<J6/a <0.5 the paramagnetic is stable fof all values of n and
for Ja/& <0 both para end antiferromagnetic states are stable.
in regions shown in Fig.8.3.Whataver may be-the density of
states Hubbard model predicts that for n >2/3 paramagnetic
state is more stable than tﬁe ferromagnetic state. Here we
£ind that the parsmagnetic state is wstable against the
ferromagnetié'states fér higher density of)states if -2K°n<J°(1-n/
For small number of<electr§ns Hubbard modél predicts that |

paramagnetic states is unstable against ferromagnétic state
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"if density of states at the bgttom Qf the band is large. In
presence of interatomic inﬁeractions if J<( ;2K5n),'tha
paremagnetic state 1s alvays stable whatever may be the value
of the density of states,h_Finite temperature theory shows
that for zero bandwidth case Curie and Neel temperatures have
higher va;ues.compared to tha weakmintraatgmic interaction
theory for I =0, For sduaredensity of states and for half
filled narrqﬁed band (n =2/3) the egpressioﬂs for Curie and
Neel temperatures come oub to be very similar to that obtained
in weak interaction theory for n = 1. For J;/H>0.5 spin wave
dispersions are found to be very sinilar tpAthat obtained
in weak intraatomic interaction theory. o

Thus we see that interatomic interaction play an '
important role in the megnetic properties of the system, Our
treatment 1s approximate and Qualitativé but if gives some insight
into the effect of interatomic interactions and reveals that
in any complete theory‘of magnetiém interatomic interactions

should not be neglected.
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GHAPTER V

METAL-NONMETAL TRANSITIONS

Ao METAL«-K.ONMETAL TRANSITIONS IN NARROW ENERGY BANDS

1, INTRODUCTION

In the preceding chapter we have discussed i;he dynamical
susceptlbllity for a model Hamlltonian (4.1) which includes the
interatonic Coulomb and exchange interactions in additien to
the Hubbard Hamiltonian, Here we use this Hamlltonian to
‘investigate the phenomenon of metal-nonmetal tran51tions,

- In Sec. II we examine this model with the he‘llp of one particle
Green's 'f.'uﬁction ‘appx-oach,;.: The higher order AGre‘e‘n'é funé%ions ‘
are decoupled in such a {«Jay that it is possible to take into
account the correlation between an electron and a hele of
opposi te spin. In Sec.III we examine our solutionq for
ferromagnetiq systgm having one eleciron per a_tom-.. We find two .
phase transitions at two different critical temperatures: Ty
at which a ferromagnetic nonmetal c‘har_zges‘ into a ferromagnetic
metal, and T' at wich the system bgcome_s a pa;emagnetic metal,
T is always hlgher than ‘J?M. In Seé; IV we consider the
ani;iferromagnetic system and flnd that, 11ke ferromagnetic
systems, two phase transitions do not oceur. In Sec. V we

sumnarise our conclusions.
II. GENERAL FORMULATION

We consider the one particle Green's function
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!

GO"'O“' _ ' + .

The equation of motion (1.13) for this Green's function, for
a system described by the Hamiltonian (4,1), is given by
_ o

oo 6; 6
(eotn) Gij (w) = _é.gﬂ_g;m,,. 2Ty c’—(’_;) (w) *I((ni JE. PR aj;

F DR g Ay aji_/» >

L9
. < at ; ot
+{§:1 Jiﬂ <<- ggo_l aio_l a{w ’ aja-'))m

The above squation contains the higher order,-Greeh' s funetion

of the form (Sa/(; a,QO'é 3105 ’ ag_v 22 e ‘These Green's functions -

are decoupled as follows

oot .
«aXO'i aoé aioé ’ ajo-'?>m
; .
0-20"' ' '
‘l‘ 32 (m) - < > . (6.3
The equation (5.3) includes the temm like <z, & . 2> which

takes into account 'Ghe correlatlon between an electron and a
hole of oppos:.te spi.n. The _importance of such anomalous correla-
tion nmctions in the theory of magnet:.c systems has recently

been stressed by Mattuck and Johanson, and Klain.ll; Under the
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{

. ’ " T " h
approximation (5_,3) the equation of motion (5.2) of Gi;-*.(w)
becomes |

6., 8 /
14 /
(wtA) G 3 (co) -—%;-rg-—o:* z Tif G“""(w) +1<ny °_>e°‘3°‘(m)
g g
e a
+3 3,<aT > 67 ()
Loy e fiey 7S 1)
i t 7 ()
,Q:JE' J£<?€a_1 gQO_>G 13 (o) . (5.4)
/

' oo
We define the Fourier transform of the Green's function Gy 3 ()

as

/

/ o -+
Gy @) =52 ‘E‘f ) ol
J kg kz (5.5)

In temms of Fourier transform Gk1k2 , the equation of motion

(5.4) takes the fomm

& yongy : _ /

/

/
(o -€">) "’r(ﬂ)) = -
(u Gﬁk 257 - & kl, o0 iy

ky Ky
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1 + 030
- ﬁ-_-a'Z_' Ki’{'].%(al'{;c_l ak-k10'> Gl-ii-l g ,,E’(w)
Kk
%1
- /
< -r+ > Gc—: - =/ ( )}
s 8, ()]
03 “K 0y k-l k
. 1 + . oo '
o : -
LR {“Ez"i oy Gl )
L ‘
o3 . a0 /
- <o @ > G 2/ w)
o3 akl‘"kzo- k-lz. 4K }

(5.6)

- where, the Bloch operators g, and aﬁ: are defined by (4.4),
€ is defined by (3.12), and K and J7 are defined by (4.10).

For the correlation function (ago:" ajt/y. > we make en ansatz

<apfape >x <ap¥ ap. > oppr <epfapa > opmg

(5,7)

where -é is half the smallest reciprocal lattice vector, This b
approximation corregponds to considering the spi_n density waves

of wave vector i'= o or a = E}'. Within the approximation (5.7) ,

Eq.(5.6) becomes

' o~ oo/ o~  =0-0~
(ot u -eg- Al’&’,o ) G-ﬁ-{h(w) + Bi{' Gi'kjb (a))

J / 6+";8 /
o oo o oo _ kk (5.2)
73 O @ TREE Ry @ = o

b}
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wvhere
A = I > - 4+ K*rn= =
i nq( o~= 0~ ) Kq.nq I na(a-,o- )
1 oo 1 -0=0~ (5.9
‘- == T Kt b Nor/r ) e S Fr > Nt/ o> 5.9,
" E/Kk-k’ ThET oy g B TErGE

c*
1
BE&T = (I*Ja) n'a(-d",O“ ) + E f(—ﬁ_l-:r /Nig_;,g,in , (5.10)

/ 1 0'0;'/ ’ 4
nfoo~ ) = _«?; Nﬁﬁ,i S (5.11)
.k .
o . '
N»?:/ = (a-r+ a®/ > , ? - (5.12)
k,k ko~ “k o - .
n* = 3 nrlco) ’ (5,13)

We restrict our study to a system with nearest neighbor
coupling., In this case thg ‘terms uhder the summation sigﬁ’ -
in Eqs.(5.9) and (5.105 are éuite' small i.n comparison to other.
terms. Further we assume that the system 1s magnetized in

- the x direction Iinstevad of conventional z .al:cls. Such a system
hag also been considered by Morris and Comv:ell.40’Fo.r this
system the average values of y and z components of the spin.
on each lattice site are zero. $Since the components S;: ’ S‘ir ’

Sf of the spin operator %i for an electron on the lattice

site 1 are given by

2 -1 5.t
85f T2 28458 & |
ic- Q;.ie/)
7 = o +
Si -2 io'aicr % e
55 = 5 Zo al_ aie
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we have <eii.' Yo =‘<a.i-t' ?10'? and <'a‘.|.i" 8 o7 =<a‘;\:-d'a“""

(5.15)
From Egs. (4,4), (5.11) and (5.12) we have
. / 1 ' >
nqkwo-) =T iZ <a.ii_ aia_’> e iq.'ﬁi y (5.16)

and therefore from (5.15) we get

ng o, = o) =nar(-o—,of),«n;(o-,q-) =07 (- oy - 07) .

(5.17)

When we use (5.17) and drop the terms inside the summation

sign in Egs. (5.9) and (5.10), the equation (5.8) becomes

' oo~ -
(o p-€F - &) Gpprin) + By Gpprdm)

, G240 /
s S e 0T ) = ST
- Aa G _;5’-}2. BQ i ,k’ w) = o ) (5.18)
where _
A+= (I +2V>e J=*) n=,
q q q q/2
_ / ’ (5.12)
- = + J-) A
Bg=@+dg) 4z
and Aa = nr (-o-_,o-)=na'(o',-a-) .
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III., FERROMAGNETIC SYSTEMS

In a ferromagnetic system the magnetiide and the
direction oi‘ magnetizatipn are-independent of the lattice site,
therefore Eq.(5.16) gives n&' (o, =) = n, (o, ') 62

q40°
' An-d. EQQ(Sng) 'takes the form

: / 7 S8 .
+ o) + B G (@) = (5.20
(0 =€ -4 ) Cprlw) + B G (0) = o «20)
: .- - wf - .
‘We solve this equatlon for G (w) and get
oo’ (ot p -€37 'Ao)ao-o" Bo% -oma 8 i o
G2 (o) = 4 ' ; . (5.21)

(w+p-€p- A )2 - B 2r

/
o~o~

Poles of the Green's function G35, (w) give two quasi-particle

bands
of = -pt 6 *ALB . (5.22)

" - | _ .
The bands “’1? and wyF are separated by an energy gap

G =2 Bo - , (5.23)

where « is the width of the band €. " When the lower band o
is completely filled, the upper band wf’ 1s completely empty,

and the two bands are separated by a positive energy gap, the
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system behaves as a nonmetal othervise it'behaveslas a ﬁetal. ..
Hex;me to_kno'w whether a s:,;stem-with a'given,nmnber of "electrons
per atom is a metal or nonmetal we muét know the density of
st’ates‘ in the b;mds. The density of states per atom for the
energy w and spin ¢~ is gi%’ren' by (See Eqs(2.15) and (2.165)

OO0 oo |
(G i) - G (o - 1€)] | (5.24)

| o . oo
By substituting the value of the Green's function Gy (w) from
Eq. (5,21) in Eq.(5.24) we get

AN

ot 1 S 4 '
' f (w) = -;-_Ei 8 (-0t ) * & (w-of ] (6.25)
k- .

The above eduatioh shows fhai; nunber of states per atom

in each band is eciual to 1.ineachrband. Therei‘gre a éystem
having one electron per a,tom behaves as a nonmgztal if' the tw_o
bands are sep'arated» bjr a po.siti've gap and it ma.ke:s tranglition
fromvvé nonmetal to metal when the gap goes to zero.

To evaluate the nunber of electrons per atom n, and
the éVerage X componé'nt of the spin per atom 4, we reéuire the
lm'owledge of <a§;;/ aﬁ'&, > B'y substi.’cuting the value of the
Green's function G%;:(m) from EQ.(5.21) in Eq,(1.14) we obtain th

correlation function asg
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S !

{affg_/ aﬁ’b_>"j? (@) 2 -[.{6(«)-0% ) *’js‘-(w-wé )} Cpap—g

- folog) ooz )] 8_o o ] o .
~ (5.26)

With the help of Eq.(S.li),_‘_foz_v one eiectionlper atom, the above

_ equation gives two self consi stehcj:'edndition-s

oo -
1=— = L £ (eg-p+a~B)+e(ep-pra*B)] |
k . : -
(5.27)
1+ | N
vBO - ‘QN iﬁ(eﬁ"pﬂlo "Bo)" f(ei"'u*%d- Bo)] . (5.28)

k

9& Tij is nonzero only when i and j are nearest neighbors,

€7@ = - € end therefore

£(-€3 ) , .‘ | | (5.29)

and B, = e E tanh§-2— (%‘;*Bo)z‘(

i

m(€) tenh {B(e+B )/27 Q€ , (5.30)



115

- . ’ N l - L . . ) . - -
vhere 7(¢€) = -ﬁ- b 8 (w -Gi' ) is the density of states per

- . B
atom for the band ek To discuss the solution of Eq.(5.30) one
has to choose a partlcu;ér_fqm of the density of states.
For convenience we choosg .‘a; square dl_ensit'y' ‘gfﬂstates ‘definéd by
n(€) = 1/xX if -x/2 < € £ /2 and zero otherwise. For this type of
density of states Eq.(5.30) takes the form

1 B
8= g [ In cosh =3 <2 + 1+ ]

- 1n cosh "%"{- d/é + (I*Jo)j 1.

(5.31)

We first exauine the solution of Eq. (5. 31) at absolute
zero, For o(/(I+J' ) <.1,0, 1t has two solutions 4o = 1/2 snd

A = O In section V we shall show that energy of the system
corresponding to the solution 4y = 1/2 is Iower than that
corresponding to 4, =0, And therefore the solution 4= 1/2 is
a stable solution., Eq.(5,23) shows that for this solution band
gop is greater than zero and‘ g0 the system behaves as a |
.i‘erromagnetic nonmetal, For zero bandwid’th (G"‘ o, for all 1_*:’)
and in the absence of interatomic interaction ﬁ-q.(S 22) gives

two states at « p and - p #1, I‘his result is in perfect agreement
wlth the exact zero bandmd’ch result obtalned by Hubbard.aé For
o(/(Id*J ) > 1.0 Bq, (-1.31) has only one solution 4,= 0, This

shows that for ferromagnetic system a first order phase transition
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cccurs atb ?(/(I--«%'Jo} = 1,_0 vhere the long”range order parameter
changes d4i écqntinuously £ rom a f‘ini.te value 1/2 to zero.
To discuss the p.l_l_enomena of vmetal;non_-;mletal tran.si tion

at fini te temperatures we h’ave s’hoxm/' the \f‘inite temperature
solution of Eg:i‘, (5.31)__ in Figs. 5.1 - 5.3. In Fig.S.l we have
plotted 4, agé:_inst ZI%T/(I*JQ) for various values bf_ e(/(.I«fl'Jo‘),.
At zero temperature ’cheré is always a nonzez'o average magne’cic
moment (Ap= 1/2) and as the tcmperature increages the average
magneivlc moment gradually decreasss and :Lt disappears at a
critical temperature"l‘ﬁ where & phage transition from a
ferromegnetic state to a parannagnetic state occurs, In Fig.s 2 we
show the plot of & = 535~ ,_J versus ZKBT/(I~=!-J ) for various values
of °£/(I+J )o At zero tenperature there 1s always a nonzero

band gap (different for different c(’/(I‘ﬂ'Jo)‘.)_ and as the
temperature is ;'ai sed the gap gradualiy d.i §a§pea:s and the
s?stgm undergoes a nonmetal-metal transition at a temperature TM‘
Ihe solutions of Eq-.(5_».31). for 4, = 0 and 4, 0(/2(I+J ) give

the +{ransition temperaturesT, and Ty as

T, = /ky tazm’l(oc/;;«ﬂc))} | (5.32)
o 1+J « |
' = =—=2 In cosh ( (5.33)

2kpTy . RBTM

The variations of ZkBTc/(I~71~J°) and 21:BTM/(I+JO) ag a functions of
°€/(I-*J°) are shown in Figs5..'3¢ For finite bandwidth Iy is
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- always less than Tc' It shows that a ferromagnetic nonmetal first
changes ihto a fefromagnetic metal at Ty end then finally into a

paranagnetic metal at T = Tc‘ ‘
%/(I+J,) < 1.0, For oc/(I-vh-Io) » 1.0 only solution for 4, is

All these curves are plotted for

Ap = 0,; and hence in this fegion the system behaves as a
paramagnetic metal,

The expression (5.32) for the transition temperature T,
is the same as that‘obtained”i‘n the preceding chapter (Eci.(4.30)).
It should be n_f.":‘c.eq that inteifafqomi.c; g'xcha;;g_e inte;'actiop along
can predi_ct the. exi st__encc_—:j_of two phase transit_ionsbeeause
- everyvhere ;.'an_d Jo appear together in the fom _(I-*Jb).' It
will be sho;@n in section V that, however, Hubbard model (JQ'*’ 0)
does An?t«,_ pfedic_t the two phase' t.rans_i.tions' because‘ in this model
for‘ a 'system ha,ving__-one elgctrqn per atom, the ferromagnetié

state 1s never the ground state.

IV, ANTIFERROMAGNETIC SYSTEMS
In antiferromagnetic systems, the spins in the neighboring

lattice gites are aligned opposite to each other so that‘_the

average magnetization is zero. Therefore BEg.(5.16) gives

ng(a“,o‘) =n, (cr,a-)a-'?

1,0
. o / . ' /
na('w,o-')"-"-né’(c-,c")sg’* for o~ # o~

and Eq.(5.18) takes the fomm
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G‘G" -G'o'“ 580/ |
-l - * , = — K
(w#p 6 A) (w) BQ k‘*‘Q (w) o '(5 34)
In the 'reduced zone scheme we have
o-o- cna— -

/

-

‘ oo |
By solving Eq.(5.34) for G‘ﬁ;/(w) end using the relation

el—;;@ = -.’eg wve get

o (m--rrweg - A LT o~ BT R4 —

27 [-(m‘*k ek-.zx)(mmﬂ-:k A);B%]

!
oo
Poles of the Green s function Gy ,(m) give= the quasi-particle

' bands

w

?.-MVAO:-J‘(%*B% ) (5.37)

w4+

A+ = ~ _
The bends mg‘ and Wy, are separated by an energy gap
-G =30-3) a8 | (5.38)

When we subgtitute the value of G%E'o-(w) from Eé. (5.,36) in Eq-.(:5..24]
we get the density of states 'pe;r atom in each band eciual to 1.
Therefore for one electron per atom the system behaves as a
nonmetal for positive band gap. Like Ithe ferromagnetic ;ystem

:{
in this case the system cannot show two phage transitions
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| . because the band gap goes to zero only _when the long range
order parameter Az goes to zero. The self-consistency

conditions are given by

= ;N_izz; E‘(_-,p.--‘_l-Ao_ J‘{_Q%-+B%) +f (-pa J'(Gi’ *B%)):[ , (5.39)

£(ap #4 ‘-J'(C%‘* 4B ) _ £(-p+A d‘ﬂ&%* 5% ) :
Aa:é%z e 2 (5.00)

k Jcef-; + B%)

Equation (5.39) is satisfied for = A, and therefore Eq.(5.40)

becomes
| . . .
1-y bk g (R (1-3)%0g)

1= —=2 z - - ‘  (5.41)
Ny

(& + (1-3,)24g)

Recently this eduation has been obtaine/d by Langer et a1,%3
in the absence of interatomic interactions, (J°= 0), Theyhave
plotted thev order parameter 47 as & function of <«/I at various
temperatures. At absolute zero it is found that Ay changes
from 1/2 + 0 as «/I changes from 0 = %, Thu;s we see - .- that
at absolute zero in antiferromagnetic system nonme tal-metal
transition is not possible. At finite temperatures A goes

t0 zero at some value 61‘ /I =nd shows the nonmetal-metal

transi tion-
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V. STABILITY OF THE MAGNETIC PHASES

In the previous sections we have discussed the metal-
nonmetal transition by assuming that the ground state igs either
ferromagnetic or antiferrbmaénetic-. Here we find out the-
conditions under which a given ground state is ferromagnetic
or sntiferromagnetic, . To det:ermine'theu stability of the ground

state we evaluate the ground state energy of different magnetic

phases.

~

The ground state energy of the system described by the
Hemiltonian (4.1) can be expressed in terms of the one particle
Green's function. The equation of motion of the operator

845 (t) for the Hamiltonian (4.1) is

d
3T %o (B

L oy (80, 87 _

= ? (Tij paij)aio,,(t) In o_('b) ay - (t)
SR TENOINOIE S 3y o ge)a (Bag (6)

(5.42)

i: from the left and

sum over the lattice site i and spin o we get

When we multiply the above equation by ay

. ) ot |
L 2 o G (O lj,.‘T;tj "fsis’ Aig- 230 ()
+
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+ 3 3{‘1.‘1 aig.'. aio_‘(-t) njo_"(t)

ijo~o~

’ + +, 't . .
+izj:o-o-i“5 4o ;]o'(t?aiO'(t) ajd"(t)f . (5.42)

By taking the ensemble average of _bbth the sides using Eq.(1.14),
end taldng the limit t= 0 ve geb o

N . oo
/) -G:}.;L (m;*ie) - C’ii (m-ie)
limi =2 § o - i - | -
€>¢" ig= - )

eﬁw + 1
Go-d'- S - ak > 2t
oo i (wi+ig) 'Gj:l. (w-1€)
= 2<H> - 1}.‘. (Tij*"psij) ) mm— : ’ v ,
W - e+ O_r oo Bw .
@ + 1
. Using the relations (3.12) snd (5.5) we get the energy of the
- gystem per atom as ' |
. SHZ g : oo (wﬂ* +€k )[G-H (coﬁﬁ) - G-*" (w«-:l.eﬂ -
E==ssnz J . ~ = &
€>Q* fq- o

| | B“‘ +1
- (5.43)
It gives the ground state energy per atom as
: o G (¥ Gt € é]
B = == 1 = # @G > i€)-G2~ (0~
B=—=ln . 2 [ e ek)[_kkv@m )-Gpi (0-1€)] @ |

(5.44)
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Now we‘e-valuate the expression (5.44) for para, ferro and anti-
ferromagnetic states usin‘g séuare density of stateé.
From Eq.(5.,18) the Graenis function GZ‘;’ET(Q)) for the
paramagnetic state is given by |
oo 1/2x |
G (w) = — : (5.45)

&D"'[ﬂ- —‘Eg -

Using this Green's function in Eq.-‘$5.454) we get the 'ground. state

energy of the paramagnetic stai:e as
B, = —%- = (5.46)

‘Here we have used the relation T = ~d— 3 Gi‘:" = 0
ii .,

oo
For ferromagnetic gystem the Green s fmction Gﬁk-* (@)

is given by Eq.(5.21‘). By »st;lbsti’tuting this in Eq.(s.éé) we
get ' | '

1 o0 , : |
By = — g I (wrpreg ){a{mp -6 - A, = B,)

*6(«» -H* ek A * B, )} . (5.47)

For one electron per atom it has been shown in sec, III that

k= Ao and

1 « .
By = = for < 1.0
2 I+J,
= 0 . othervwlse .



T 123

Hence Eq.(5.47) gives

A, I+J L
Bp = —2 - —=2 for —2—— < 1.0
4 IHJ '
A (5.48)
= EP = —g— : otherwvise .

.In an antiferromagnetic system, by subst:.tuting the ,
value of the Green s function Gf&"(«n) from Eq.(5.36) in Eq.(5.44)

we get

1 . (e )
Eyp = — 3 € it

AF 2n-»®.n%*B%)

(g 1k + 500 s -6 -4yl
+( e *B%)4eg>a§m+p4€§ -A s Jik 8)] |

(5.49)

Using the relation g = A, for one electron ’per. atom in

Eq.(5.41) we get at absolute zero of temperature

L. B3T3 ap €

DN S 2

(5.50)

When the relations (5.50) and M = A  are used in Eq.(5.49) it
takes the form

A '
S S S A Ny«
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Integrals in Egs.(5.50) end (5.51) are easy to evaluate.
After integration Bq.(5.50) gives
«/2

B = — — (5.52)
Sinh (xAL-J,)) |

Using this relation in BEq.(5.51) and performing the integration

we gev
A < « : .
- -—3 - - STB——————— .'

Ihe energies of the para, ferro and antiferromagnetic states
are evaluated from Eqs. (5.&6), (5+48) and”(S.SB). The
regions of stabi;ity of these magnetic phases are shown as

a /I va JE/I dliagran in Fig.5.4. This figure clearly

shows that for Hubbard model (36/1'= o ) the ground state is
antiferrcmagnetig and hence in this“mpdel the4questiop of two

phase transitions in ferromagnetic system does not arise,
Vi, CONCLUSIONS

In the preceding séctiqns.we have discussed the
phenomeﬁa‘of metal-nopme;al transitions.;nAferromagnetic 4
as well ag in antiferromagnetic systems having.one electron per
atom, We found that in ferromagnetic system, for %/(1+3,)<1.0

two phase transitions occur at two different critical temperatures
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T, and Ty (T, < T ), for «/I+J>1.0 no phase transition
1s possible. Two phase trahsitions are_possiblé only when the
interatomic interaction is finlte because in the absence of

interatomic interaction (i.e. for Hubbard model) ground state is

never the ferromagnetic state. At absolute zero of temperature

a first order phgseitransition occurs atmd/li*ﬂb)‘z 1.0 where
the long range order parameter Ao changes £ rom 1/2.t0 Zero
and the system changes from a ferromagnetic nonmetal to
paramegnetic metal, o | | - |

~ In antiferromagnetic system, at.absolptg zero, phase
transitions do not oceur, The system remains antiferromagnetic
nonme tal for ail values of interactionQpafaméters.A At finite

temperatures the antiferromagnetic nonmetal changes into &

- paramagnetic metal at smne‘criticai temperature. Like the

ferromegnetic system, in this case twp phase{transitions
do not occur because the band gap goes tolzgro only when the

long range order parameter 47 goes to zero.
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B, METAL-NONMETAL TRANSITIONS IN HYBRIDIZED s AND d BANDS

Mott?S proposed a theory for metal-nonmetal trensitions

and predicted the existence of a nonmetal-metal transition
under pressure when the 1a§t;ce paramgter passés thrOUgh.a
critical value. Such a transition has not yet been obse?ved.g4'
Here we discuss dualitative;y.how the s;d hybridization stiffens
the conditions for the pressure induced nonme tal-metal transition.
_ we_cpnsider a system described_by the'HamiltqnianA(Z.m).
First.we restrict our study to the caself.= 0 i.,e, we drop out
the third term in (2.1), ‘This term represents the Coulomb inter;
action between d elecirons of epposite cpin at the same lattice
sltes In this case equations of motion (2‘3).- (2411) for the s
and d eiectron Greenfs fupctions are exactly-soluble. s and 4

electron Green's functions are given by

(v - Eg Y/ 2n

o
Gt () = — _ - » (5.54)
(o-B ) o=Bgg ) NV,
- (w—Eﬁ')/Zv :
f N e
z' ((D-Ei; ) (w-Edg J " va l

->
kd

These Green's fugétidns are_indepen@egt_of the spin index o

and hence thetsystém behaves as & paramagnet., The poles of the
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A at vhich the transition from the nonmetallic tolmetallic state
occurs. When we apply pressure on a nonmetallic‘substance, the
lattice parameter decreases, consequ_ently A i-ncreaseé, therefore
a transition from nonmetallic to met_allic state should occur
at a critical pressure when A crosses the critical value
determined by the choice of S and B, But it should be remembered
that 8 increases as we increase 'the”pres‘s_ur}e, because the
overlapping of s and d wavefunctions increa’ses due tp Acor‘npression
of the lattice. Fig. 5.6 clearly shows thst this increase in
$ does not favor the nonmetal-metal transition. Thus thé o
s-d interaction opposes the pressure inéuced nonmetal transition,
This behavior of s-d hybridization may help in understanding
the diff‘iculty of observing the pressure induced nonmetal-metal
transitions, o

Now we extend our study to the Hamiltonian (!202) with
the intraatomic intetaction I #Z 0 . In chapter II we have
investigated this Hamiltoniah within_ the Hartree-Fock approxlma;
tione It is found that in this_applrpximatipri, due ito ‘s=d
hybridization, s and d bands give rise to two hybr_i%dized bands
given by Eq;.(2.24), Nunber of éta_tes pé~r atom for :each_ spin
1s found to be 1 in each hybridized band. Therefore, as we
have seen earlier, a system having two electrons per atom
in the s and d bands together, will show nonmetal-metal transition |
when the band gap between the lower and upper hvbrldlzed bands
goes to zero, Here we sheall consider only the paramagnetlc
case. Under the assunptions (2.33) and (2.41) the condition for

Zero pand gap 1s given by
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2
(a+1)% &% -a [4 (at2) B + B ﬁg_ )

-G —-@— 2 = (5.58)
: S T
where P = —F~ and -3 - Dge-? = Ry 2o The:value

of <ny> must be evaluated self-consistently from Edé. (2,50)

and (2,51) in a way such that the total number of electrons

n = <nd>-%‘<né> =2, To do thig we take as a variable
parameter and evaluate <nd> self;eonsistently £ rom Eq.(2,50).
This value of <ng> is substituted inEé.(Z.Sl) to get <ny> |
and consequently:ng The process i; continued till we get n=2a,
. To obtain the trensition curve this value of <ng> cérresponding
ton =2 is éubstituted in Eq.(5.,58). For B =2,0 Qg have | |
plotted the trensition curves between S and A fof vérious values
of P in Fig.5.8. The regions azbove and below a“tfapsition eurve
correspohd to nonmetallic and metallic behaviors reépectively.
These curves show that as we increase the intraatgmie interaction,
the nonmetallie‘region‘increases,amﬁ ﬁhus tendéncyiof é system
towards‘nonmetallic behavior increases. This resuit one’might
have guessed in the very begining from the facéf;g; intragtoﬁic
interaction tries to keep apart_the twp elecyrons of opposite
spins at the same lattiée site and thus lowers the tendency of
metallic behavior, ) _ ' ?

| When the intraatomic interaction I is very large, the
validity of the Hartree-Fock approximation is dubious. In this

case one must take into account the effect of cofrqlation between
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d electrons. We have already develpped.a'correlation theory

in chapter Il. By proceding_in a manner similar to the Hartree-
Fock approxbhation, we have investigated the phenpmenpn of metal- .
nonme tal transifion‘for I+ yith the help of Eés. (2,61)- (2.65).
We find that nonmetal-metal transition occurs when the number of |
electrons in both s and d bands together is eéual to l.é7.‘ The
trensition curve coincideswith the curve P = 0 in Fig.5.8.

In the. absence of s-d hvbridization it is easy to show .
from Egs.(2.22), (2.23), (2.61) and (2,62) that in the
Hartree-Fock theory, d and s bands are half filled when
<nd> = <ns> = 1¢0 and in the correlation theory they are half
filled when <nd> = 0,67 and <né> = 1,0 respectively. .This shows
that nonmetal-metal traﬁsition occurs in the presence of s;d

hybridization only vhen the d and s bands are half filled.
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above Green's functions give the hybridized bands

A
n

. : _ 2 2.1 -
= [31?* €gim t legyr - ep) AN |V, |77 /& (5.56)

The Green's functions (5.54) and (5.55), when substituted in the
equations (2.15) =nd (2,16) give the nunber of states per atom
for s and é electrons together in each hyb:idized_band edual to
unity for each spin, ihus if we choose a system»with two
electrons per atom in é and d.bands together, the system will
behave asia:non-mgtal'if there:is & gap between the lbwer and
upper hybrid_bands,”otherwise iF{will behave as a metal., A
nonme_tal;m'epgl trans;tign occurs when_:the band gap ‘becomes zZ8ro,
Under the assmptions (2,33) for vl-zd and (2.41) for €., e
obtain frgm'(5.56) the foliowing condition for zero band

- gape.

(w1)%® - alf )P +B -1l =0 (5.57)

vhere B =4«/Té and § = ]v]/Té. Eq.(5.57) contains three
parameters. By fixng a partiéulgr parameter, one can plot a
transition curve for the remaining two'parametefg. -In Figs.(S.S)
to (5.7) we have plotted 8 - By, § - A and B - A curves for differen
. values of A,'B and S respectively, In Figs. 5;5 and 5,6 the
regions above and‘below a tiansitipn curve correspond to
nonmetallic and metallic bghaviors regpectively while in Eig.5.7
situation is just tne reverse. These curves show that for 2

particular choice of wvalues of 8 and B we get a critical value of
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EPILOGUE

'v'l‘he present work ie quelitgtive in nature, ATk’le‘
 which have been studiedﬂ_, do not represent the' ectueii sl tugwm
:Ln the trensition'metals,: "Tomt_ie_el with the reality one must
take into accownt the degeneracy of ‘bh;e,d_'banés,b the electros
static .interactione between s and d electrons and among them-
selves, the interaction of s and 4 electrons with the lattice
' vibrations, and- the relativistic effects (i.e. spin orbit
coupling etc. ). However the present work may help in
i‘inding ‘the we:ys to- dea:D with the more complex situal:ion in
the tran_sit.f‘lonlmetale, Extension of the present work in the

_ theory of nagn,etism and metal-nonmetal trensitions, wi thin the =

 framework of the models considered here, can be made in several

. directions,

For a system described by the Hamiltonian (2 1) we have
diecussed the spatiall-y unifom magnetic solutions at absolute‘
zZero although the fomulation is valid for a1l tempeﬁatures. :

A natural extension ls to study the spatially nonunif orm magnetic
'solutions (spin density waves) and their relative stability

at absolute zero._ Ihis will give a. qualitative understanding

of the effect of s-d hybridization on the ground state ‘stabllity
of spbn density waves de scrl_bed )oy the Hubbard Hanilt.onian%u

The s‘_e}condnextenms.ion_is .tn_e‘inye___stigation oi; the collective
exoltatlons for a ,system_ h_eving spin“densivty wave as its gro;md _

gtate. The third extension is to 'de_velone the finite temperature
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/ |

<<ai-f§- 8 aio" a;;i-'»” <31-3’- 7o 2 Gi;;(w’*ail?:-ai >ij ‘f”)

o, ta s ot w>eccat oo e ( Jo< 'i" >5°-°.()
-0 30m B0t Bjo 2% g Biug 28 yl0d- oo B 7M1y

(A.3)

These approximations differ frbm that of Hubbard',.s approximations
in the sense that they 1nclude the_'terms’ 1ike <ai-0'j?%(’c;'> vhich
represent the correlation between an electron and a hole of
_opposite f;pin, Similar approx:;mgtion_s were made in_ ;Sec?V where

such correlation functions play an important role in the theory of
metal-nonmetal transitions, Further we shall assume that

the correlations between an electron and a hole at differen’c
lattice sites are small so that we may take <aio_ %ﬁ@’> 0.

it i fly |

- |
Substltuting uhe approm.mauions (A, 3) in (A.?) one
obtaine '

I
|
(o*u -.-.L»TQ) «n;,,-o- Mo 2 Bjo- "% |

- (_<ni-d""> Soro='" <91-o' a_i.c'-> 6.—.0'0-) 613'/2'” ;
r | /
g g~ + =-J" 0%

+ <ni_o_>/e§% if sz (o) - <a, o Yo7 ii T C‘(j (m)

f (4,2)
whence |
/ 4 (85 B’
<n at i = S [<ni_°2£=2-.:ﬁa;q:,,, z T ﬁ%i (‘”)}
o Y 2 0" a g U e

6
? _:.L'ﬁ_f_g.'g- ETE%Q-@}}

(4.5)
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The eclectron spin polarization can be written in temms

O- .
of the Green's function Gy (w) as

I I

' 1(k—k )or o0 vy - | .
- _ ;_[_ . , > ‘ ‘
p(r) = - § Jéim JIoe J, {Gi;/l-; (w+ 3€)] £(w)an

* 0 Xk o A
| (C.12)

whore flw) = (eﬁw + l)'l._ By substituting the value of
Gehg from Bq.(CG,11) in Eq.(C.lBI we get

ECSORNd

J(<ni*"> ?<nd:')' e .).I" fm 5 jw+u f-g;" ) (o) -

, .~_k‘é k 1*—%L/)(m+/,¢,)

N2

44
R

(C.13)

where we have assumed that €f = 6_1; ‘and Flw) =1 7 (o),

(°(oo) = g{ ES (m-eﬁ- ) is the denslty of states per atom for
Xk __ - |

the cOnducfcior; b'and.-A _B.y.as.suning the energies of the gonduction
= :z: :
electrons 'as‘ei’g = ka/.?m' 9 vihere m - 1s the effective mass of

the electron, the electronspin polarization in th'_e ground state

- is given by
- - . - %
> _ dm Va“”w’““’d,’)‘ " 8in 2r -/ (2m Q) a»
p(r) = — _ .
S o L BEgd

8
(C.14)
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wvhere v ig the atomic volume, Eq.(Cel4) cen be rewritten as

|| wam*)®/2
r
8r x
a8 y
p(;) _ 2(<Fdﬁ)'<ndp>) f x 8in ( Tone ) ix
7 Jmr 1° ° i
{C.15)

For large r, the upper 1imit of the integration can be taken

as®, A straight forward integration then glves

8r T

oy = R = e2)  |glv w
Jn* 12 - (C.16)

Thus the eleciron spin polarizét;on“shows_exponentially damped
behavior similar to that obtained by Bose, et al., aiﬁhough'

the numerical factor in the power of exponentiel and the r
dependence of the factor muliiplying thse exponential are different,
These differences are due to the differences in the approximations

used by us and by Bose et al.
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111, ENERGY OF THE SYSTEM
As. shown .fi'.n_.chapte{cj V, th»eA ground»_state energy per atom
of the system described by the Hamiltonian (1.9) is giveh by
= (o -+ + ' c—,;-?- . Go-:—rq- ] .
s=gla § 12 Greeg) s @3 16) - o (o- 16)] ae
-(A,19)

oo
From Eq.(.&.ls) the Green s function Gy (w) is given by

[fm*,u -61“?_ (l-n /2)} (1-n /2) + A»a € *]/21:
G () = T e
‘V w‘»"# -€2 (1-n /2)}{ w*,u -e Fad (l—n /2)} A(ge‘f' ek+q

(4.20)

Here we have assumed that T°= 0 i.e., we meagure the energy from

the middle of the band er , Eq.(A.20) can be rewritten as

> . |
£ (o7 1 £ (o) 1
C(’- )='-j'- —k (mlé, ) e y =Lk
ar + - -+ = * -
- 0g - e ® - o of - Ok @ =9

(A.21)



a2

+ 1 | '
op = -P“ + [(1-11 /2)(6'* + Gg.,:* )iy J{(...-n /2)(e5- e,%)wéﬂée %Afﬁ

(A.22) .
and £ @) =fwtp e (1-%n°/2 )} (1-n/2)+47 N (4.23)

It is easy to see that yfff{ (w};"’) ; £ (wi’ )}/@)ﬁ’ - m—]';"j= (l-hO/B).
Therei‘ore number of states per atom for each spin is ‘éqjual
to (l-n /2) and hence for a system with one electron per .atom
‘ ( = 1) both the bends (mi't") ar% completely filled and the
Fenni level’ lles at the top of the ‘band cof . o

| When we substz tute the value of the G:ceen 8 function
G?‘;" (w) Trom Eq.(& 21) in Eq.(A 19), the energy of the system
per atom is given by

1 ((0+’A+€i3? ) _ “ R S L
] ° 0 - ’ . - .-
E=g 2 7 —5—— [ 27 (o} 6 (a-ng )-ffop 1 (0w ) ja
‘x0T % |

(A.24)
For n,= 1 =nd sév.are dgnsity__qf states it can e.agz_i'.ly ’_oe jshqwn _that
for éJ.l magnetic phases we héq_;;e E = 0, wvhich shows that all the
| states (paz'anagnet;i..c., ferrgma_gneti_c and antiferfoma_gpetig) afe
degene;*ate. This .rehsu-."l,’c is independentpf the Qiﬁlensibnality of .
the system _and‘ agrge_s‘,‘r_rgith _the one dimens;oﬁal _;'e_sult of ILi€b and
Wu49 and that of Kemeny46 mentioned in the begining of this

chapter,



1V, CONCLUSIONS

The shove treatment feveals that our results agree
with the exact resuips_ébﬁéinéd_in the limiting cases. We
hope_oﬁrwdeqoupling_gpppqx@mat;on.may_be able_tq’give better .
insight about the genergl.gq}qﬁioggﬂo?_Hubbapd model, 1%t would
be illwminating if the solutions are analysed for finite

intreatomic interaction I,
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APPENDIX B

EXCHANGE SPLITTING OF THE d-BAND IN NICKEL

The exchange splitting of the bands is an important
concept for the itinerapt mpz_iel of a fe:rom;agneté. However
there is a lot of controversy about this éw_mtity‘ in case of
Ni,.lla The earliest estimate of the exchange splitting in Ni
is due to Slater4 who assinhed that the splitting is due to the
intraatomic exchange' be tween electrons in'prthogonal d-q;bitals_,
He fomda E = Jan, vwhere A4 E 1s the exchange splitting, A n is
the difference in the mean mumber of up and down spin ‘\d-.-e::Le__c.t_rA'ons
per atom and J is a suitable average of the exchange integrals
vith m # m; m being the _azimuthal‘ ciuan’cum‘ number, Using,daij.a
derived from the atomic spectra, Slater estimated J = 0.85 eV
which gave AE = 0.5 eV for Ni, |

It was pointed out by Van VieckoT

that, because of

the quenchiﬁg of the orbitsl angular momentum in the metal, J
would be more éccurately given by a weighted mean of the Jmm’
including the term m = m. The integral Jm.m is numerically

very large (about 12 eV) and even if the emallest possible
wtight-factor (1/5 for d;eleptrons) is_ésspciated.w.ith it in

the average, one obtains J . 2.5 eV which is much greater than
Slater's estimate,? It‘ié known4’31’113 that the value of

- Jpp 18 considerably reduced due to shielding effect of 4s and 3d

electrons. Van Vleck o 112

and Hubbard obtained I ~ 7,5 eV |
(I is the shielded value of J_). On the other hand Herring

éétimated that I = 0.31 Thus according to these estimations



145

I for Ni mey be anyvwhere in the range from O to 7.5 eV,
Hubbardlls pointed out that if A is the band width, (2 5 eV
for Ni) is a critical value for I. If I is.appreeiably less
than this critical value, the interaction may be regarded as
weak and Slater's estd.maté4 of the exchange splitting should
be good;l On the other hand, if I is appreciablj greater than
the critical value one will be déaling with the stgong interaction
model; Congldering the d-band as fi#e;fold degenerate, Hubbardl;a
found that in the strong interaction 1limit the exchange splitting
comes out to be 0.4 eV at the top of the d;-barid. Thus both
1imits give almost the same resulb. _ ' v

In this note an intermediate situation is considered.
Within the Hartree-Fock approximatien, the Hubbard model for
single nondéegenerate bza\nd:?'4 glves the exchange split’cin_g as
A E=1AN, vhere AN is the difference in the number of
up and down spin electrons per atom in ﬁhe‘sihgle-nondegenerate
band, Recently 11ul? hag shown that I = 5 oV glves the right
order of the Curie temperature for Ni, Morrisaa also found
that for Ni I =5 eV, This value 1ieé within the range of
earlier egtimates mentidried above. Ni has a magnetic moment
of 0.6 Bohr magneton per atom. If woe use I =5 oV andd ¥ = 0,6
for Ni ag Liu had done, we get A E = 3,0 eV, This value of
exchange splltting is six tumes the value ( A E >0.5 eV) given
by the energy band caleculation, This gives an impression that
the Hartree-Fock approximation is.not capable of glving the
correct sxchenge splitting. 'Howe#er one should note that for Ni;
A N = 0.6 and the d band is five fold degenerate, The Hubbard

 model is developed for single nondegenerate band. One should

A
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therefore use the vaiue of a N:for a sing}e nondegenerate band.
This means 2 ¥ = (0.6/5) = 0,12, If we use this value of 4N,

we get exchange splitting AE =0, 6 eV waich is in close |
sgroement with the result of the band calculations.lm Thus

for a situation vhere 1 is not very large or very small,

| Hubbard model is capable of giv1ng the correct exchange splitting
within the Hartree-Fock approximations, When Iisquite )

large the Hsrtrge-Fock;approximation fails and one should take

into account the correlation effects,
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APPENDIX C

ELECTRON SPIN POLARIZATION DUE TO s-d EXCHANGE INTERACTION

The ground state‘of a dilute magnetic alloy has been
studied by many authors 116-119 by using the s-d exchange
Hamiltonian, In general in the ground state the localized o
- magnetic ﬁmpurity'moment ig fomd vo interact antiferfomagnetically
with the conduction electron spin and boundZStgtg is fo;med‘
between them, Thg 1oealized‘magn§tic moment is'supposed to be
almost éuenchedJés a result of its spin correlations with the
conduction eleé;rons. Therefore it is of interest to study the
" behavior of this spin compensated state in space in particular
to calculate the electron spih‘pqlarization; Recently‘Bpse‘et al}2
have calculated magnetic’impyrity spin-conduction electron spin
correlation function wh;ch‘is directly related to_electrén spin

121

polarization.™ = By using the method of cluster variation

of the co-operative phenpména they obtained an exponentially
demped behavior of impurity=spin-pgnductiéﬁgeleqt:on-spin S
correlation function. In this paper we consider a systenm having
é localized magnetic impurity-of spin 1/2 and show that the
exponentlally demped behavior of electron spin polarization can
also be obtaluned by one particle Green's function approgch.

The Hamiltonian for the system incorporating the s-d
exchange interaction between the conduction eleétrons and the

localized magnetic impurity of spin 1/2 is given by
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* al?oj- K mg .ad-; ado--'% (G.1)

where e]-; ig the enei'gy of the con'duc':tion electronsv of wave
vector ﬁ,’ %+ y 8. are the cre_aftigﬁ and ennihilation
operators f{)r the conduction electrons of wave vector i; and spin
0~ 3 8449 834 2re the same for the impurity electroﬁs énd

Do = Bgo 2o ° J is the”coupling_const'ant‘ of the s-d |
exchange interaction and N is the total number of atoms in the

crystal.

In order to célculat_:e the electron spin polarization

/

1(%-k ).T

- 1 - + |
pr) = -2 .0 @ <ag ' ap’ >, (c.2)
Xk ‘o~ " |

6ne requires me knowledge of the correlation function
<a1‘€'a_+ag’ > which can be obtained from the one particle Green s

funeti on193

e" _ N A
Gt () -<(ai?°_ apnt O . | (‘c.a)

. . ? . ‘ . .- . . N
The Green's function G/ (w) ean be found by writing its

equation of mo‘cion103
a

' : -r-n
o G, (o) -"'"kk"" + <<[al+- R H_}, a-n+ >> (C.4)

For the Hamiltonian (C.1) the commutator faf{b- ’ ﬁ]_is given by
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. When this is substituted in Eq.(C.4) we get the higher order

' ’ ( ' ','
Green's functions 13 Kagr, (ndo- - Ny o ), agr >>, and
k.
+ + : L ' 1
§<< a7 d oo 330~ % °R'o 22,¢ ro evaluate these Green's
functions we congider the following equations of motion

(ot p .eg ) <<aj'kr (ndu" Ny o ) ak'/i-_- >>m

&>,
- Fod
(Cng> = <ng_ o >) —ho—
- -‘-T— 'J'- Lo (n -n )é azl >
N 1_{, ko~ > do d=g~ ¢ ?* "k ®
w<ar ot s
e o Bgeor Bdom o b ]
230 s tia ot )
- B o «ako-ak -0 akao- 236~" %d-0~"? *R'e w0
.N k o..I 1
13‘2
(C.8)
Un -n )2 > 5 '/21;'
Rl o d-o~ kk

g 1 N . + +
N2 é?«aka-(ndo-' g2 2f'g>% «ak o 24-0- 20 %R 5 "%
k

(C.?7)
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In these equations of motion we have used the identity (nda-) = Mot o

Eqs. (Cc. 6), (C 7) and (C 8) are solved to obitain the Green's
: .t
funct:?ons §.<<ak¢, (ndc' o ) % >>, and

+ + | ' '
f‘*«aﬁ-o-ad-o- %0 o >> in terms of higher order
Green's functions. By substltuting the velues of these Green's

functions in Eq.(C.4) we get

2

- s J '{<ndo_,>-<_nd_o_,>)- F(m)<(ndo"_nda')>

Gy ()=
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vhere Flw) = -&_ g -k | (C.10)

z otk -5

- . . o
To evaluate G (w) one has to evaluate the higher order
Green's functions appearing in (C, 9). However if we agsume that
J is small and neglect all the terms containing the power of J
greater than um.ty, we get an expression for Gﬁif(w) which is

gxact upto the first power in J, This is given by

sﬁh _ J(<ngg_ ~<n;_ o->)

(C.11)
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whgre the spin density.ope;'atozfs nc'i'(c'o-,) are defined byu-‘che
Egs. (5.11), (5.12) and (5.16), Now we assume that the system

| is magnetized in_ the x direction in_steaqu of _conventi“onal Z a_xis.

Such g sysj:e;g has been considered in chapter V, For this case

there 1% is shown that
na' (o=, =0~) = n;’ (-o—, o-) =425 n&“o- o) = n&' (-é- ,=0~ )= n-a/Z

Using these relatlons in Eq.(A.‘?), we get

: - B Inw'
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From this equation we can obtain the Green's function G (w) '

for para, ferxq and ant:.?e;rgmagnetic sna‘;es. A o
For paremagnetic state 4, = 4@?? 'né’ = 0, Therefore

from (A,8)wa have

o {m*p-cc I (1-n /2)} 5 :s-rer,/ 2
Oyt (wlp =

(w*,AA-T Mot oI -I) (ek ) )(m—,q -1 -I(l-n /2)}

(4,9)

This result 1s the same as that obtained by Hubherd i.e. in
Parsmagnetic case our approvimations are eéuivalent to that
.oi-' Hubbards - - _ |

- In ferromagnetic state Ag= n-a = 0; hence from Ed,(A,B)

we have

(w*,’u ..T - (ek ..T )(1—." ‘. jG (w)

I

e (e -1 G
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S |
By solving this equation for G (m) we obtain

Afeg (én){Bo(m)s 6}&*1?-13"(03)6 o O RG, }211'

e - (e -T,)
,_ -Dq-(w){ﬁo‘“’?a-o-c-’sk-ré*1?"96 (go)ﬁ 5—»..3-—-*-0———

oo
Oty (0 pp =

N . . . 2 . . ) . ‘
ag) bgg @) - 0 () (e ~T)06g -To)}
| (4.16)

Eqs. (4.2), (A.ll) and (A 16) can be combined into one
equatlon |

R @0 8- 0 @)oo T /o

. / -Da’ ((D){BQ'(CUL)B _a-'a-lﬁ g_‘.g,ﬁ, - Dé?» (w )50_ 0"’61;]2,3( Gﬁ‘;’q.TO )4
GE.E’I () = ' ' '

(w) APy (m) - D" (w) (Ek =T, I(EF> =T)

(A,17)
Hereﬂparanggpeﬁj_.(_: state __g‘o:re'spgin_d;s_ thqj =0, fer.?_omagnetic

and entiferromagnetic s'_t‘?fc'e s correspond o q

= .0, and c‘f = é’ regpec=
tively.

”We‘ shall restrict our study to the strongly correlated

systems so that I +, In this case Eq,(A.17) becomes
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theo;'y. At present m°:‘3t4 of fche_ theories Qf magnetic phase
t;'ansipioﬁs are developed on the localized electron model s-
Ising and Hel senberg models_. Th_e mathematical progress bn the
éritical béhavior of nor_z.lgcalized magnetic .r‘nodevl's is_laa:k:h:xg.112
The extension of our study to finite _temperatur'es'may help
in the study of the critical behavior of the traﬁsition metals
where magnetic electrons are itinerant, The phenomenon of
metal-nonmetal transitions di scussed in chapter V on the ba.‘sis. N
of the Hemiltonlan (2.;!.) may also bg extended to \finite. temperatures
The fourth extension is to develop a more refined theory of
correlation for finite intraatomic interaction. ‘l’hi's can be
done by lwri‘cing down the J_eéuafcipr‘ls» of motion fo_r_ the highez_'. |
order Grecn's functions and using a dgc,o}lpling sche_me“ SO that
one can teke the correlatlon between s and d electrons and the:
correlation between the d electron's at different lattice sites,
which have been neglected in the Dresent study.

~ The study of the Hamiltonians (3.2) and (4. ]) can be
extended onlthe similar lines. In chapterA IV we have shown
that for zero bandwidth, bbth in'weak' and strong irhltzvaa’comic‘
1nte1jactioﬁ- theories, the..dynam:':c.al_ suscep;tibi_lity of a system
described by the Hapilton;an (4.1) reduces to an expre_ss:l.on
obtained in the Heisenberg model within the random ph'.:;se” |
appronmation. 'Thus the model Hafniltonian (4.1) may serve as a
bridge between the itinerant model and locallzed one., And in
this respect an improved analysis of the model may bg of value
because it has long been reali_zed thgt the propertiesA of the
transition metals can be _explgined by a_model which is 2

compromise between the itinerant model and the Heisenberg one.
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APPENDIX & .

MAGNETISM IN 4 STRONGLY CORRELATIED NARROW ENERGY BAND

1. INTRODUCTION

As pointed out in chapter I,RM@ the Hubbard model has
been analysed by meny autlgq_rslus:‘i.pg' different approaches ah.d
appro:d.mat_ions_. But_ $0 ;'a;f it has nq'b.‘pvee.r’x possible_to solve
it exac'l;ly. “I,iowever ‘in_sgme 1imitinvg cases exact re‘sults of
this model have been fownd out, lE‘or example for zero bénduridth,‘
for zero intraatomic interaction, and in one dimension exact
solutions are now known. In addition to this Kemeny has glven
an exact proof that' for'ha.lf filled band thgwferromagnetlc state
with maximum spin is never, by ;tselﬁ‘, the ground state but
for I+ it rhust at best be degenerate with a manifold of '
other staﬁes w:Lth one electron on each 1attice site and arbirtrary
spin projeetion. B These exact results can be used to check |
the particular aspects of appronmation schemes to see if these
results are fomq to be jtrue fgr _suqh. a.ppro:d._matg ,solutions,

» Keeping this view :!_.n mihd‘we f;lawe tried to improve the Hubbard's |
decouplihg scheme end i‘ind that in some limiting cases the resultsd
of our theory reduce to the exact results, o )

In Sec. II we have obualned the one particle Green s
fmctj.ons i‘or‘para? ferrouand anti;‘erromagnetlc statgs using
improved decoupling scheme. In Sec. III the enerigiesqu the
magnetic phéses are pbtginéd. for the half filled bapd and I -+ °°
using the séuarg density of states. In Sec. IV we summarise

our results.,
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II, GREEN'S FUNCTIONS

We consider the Green's function (5.1). Thé equation
of motion (1.13) for thié Green's function, for a system

described by the Hubbard Hemiltonian (1.9), is given by

oo’ Pifoo 7 ' +
(o+ &) Gij (w) = - 4+ % Tﬂ 4.‘] (w)+ I<<n1 - Mo ,a‘,}o_z»(‘0
'(Ae-‘l)

The Green's function <<ni -0 aio- ’ ajo- >>c;§ satisfies the

equation of motion

(ﬂ)“'P ‘I-To) <<ni -0~ aic' ’ ag"»m

- . ' / : + . -
=<n; o2 513 Sg-0='" <a:i.-a' B ge? ‘613 S o’

&+ ): .Ti,ﬂ<<(ai-;ai;ﬂ"- a/f.-i' . )&lo. . aj;/ 22,

L

e +/ >>‘

,‘é,o

In order to break'off *;he ‘sequence of_ Green"s'fmct'ion'equations,
the Green’s’ functions on the right hand side of (A.2) are

decoupled as

¥} .. /

<<n a a+>>—<n >G (w)-< + >Go-%-)
imo= Mo~ Bjo-"0" “Pioo 1;1 Yo ¥ 13
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which when substituted in (A.1) gives

‘a—o-’ig_, ._ | I¢n;, > : I<+ '> . 8sy
R R R [ e S

T - T wt, S -o~o-} 27
# (L ———de RTUNCE

(Tij = T 813) end for 1= 0 :l:he above expression reduces |

" to the exact solutions. By taking the Fourier transform (5 5) ofli
Kzl 2l
the Green's function (}13 (co) and using the ansatz (5 7)), Eq.(A 6)

becomes.

: et "I"'ri‘(-'-a'."-.v,v-a-‘)
{o# p-Tym (62 -T)) (1 —3A—
A > whp ol - I

) { o )

" In(-o-,o") ('__»" _T--)a",‘-"“"zﬁ)»
“’"'I‘* -1, €2 07 "kk'™

(-o- o) I o’ ’
Wl M, >
: w+p»...‘.1: -1 <ek*Q -T°? o ":5 kl ((.o)

I n"’ (-o— -c.) oo )
Q ) . ,
m*p «I =1 “ (61""@ ) ) GRed, X ("’)
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[ Green Function Theory of Transport Properties
; of Anharmonic Metals
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: .

]

General expressions for the electron and phonon energy shift and widths are derived with
the help of the double time temperature dependent Green’s function by using a Hamiltonian
which includes both anharmonicity and electron—phonon interaction. The expression for the
phonon width shows that Green’s function technique provides an understanding of Matthies-
sen’s rule. Well known temperature dependence of the electron and the phonon relaxation
times is reproduced by a simple calculation of the eletron and the phonon widths at low
and high temperature limits. It is found that the effect of anharmonicity on the electronic
transport properties of metals is negligible. Its effect on the lattice transport properties is
predominant at high temperature and at low temperature the effect of electron—phonon
interaction is predominant.

Allgememe Ausdriicke fiir die Energieverschiebung der Elektronen und Phononen und
fitr die Elektron- und Phononenbreite werden mit der zweizeitigen, temperaturabhingigen
Greenschen Funktion durch einen Hamiltonian abgeleitet, der sowohl Anharmonizitdts-
effekte’ als auch Elektron-Phononwechselwirkung beriicksichtigt. Der Ausdruck fiir die
Phononenbreite zeigt, daBl die Technik der Greenschen Funktion das Verstindnis der
Matthiessenschen Regel ermdéglicht. Die gut bekannte Temperaturabhingigkeit der Elek-
tronen- und Phononenrelaxationszeiten wird durch eine einfache Berechnung der Elektro-
nen- und Phononenbreiten bei niedrigen und hohen Grenztemperaturen reproduziert. Es
wird gefunden, daB der AnharmonizititseinfluB auf die Elektronentransporteigenschaften
von Metallen vernachlissigbar ist. Sein EinfluB auf die Gittertransporteigenschaften ist .
bei hohen Temperaturen vorherrschend, bei niedrigen Temperaturen ist der Einflufl der
Elektron-Phononwechselwirkung vorherrschend.

Il

1. Introduction

The metals are different from insulators in that they have conduction electron
which are free to move about the crystal. These electrons interact with the
lattice vibrations. The lattice vibrations cause a change in the potential energy
of the crystal The change in potential energy is usually expanded in a power
series of ionic displacements from equilibrium positions. In the harmonic approxi-
mation one retains only the quadratic terms and then the problem is solved
exactly in terms of the normal modes of vibration of the crystal. The system
can be quantized and each quantum of normal mode is known as ‘phonon’.
All the terms beyond the quadratic ones are known as anharmonic terms. These
terms contain phonon-phonon interactions which can be used to explain some
of the properties of the crystal which harmonic approximation fails to explain.

Recently the theory of anharmonic insulators [1, 2] and effect of electron—
phonon interaction on the properties of metals [3, 4] are discussed by a number

53*
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of authors, but so far we have not come across any published work where
simultaneously both anharmonicity and electron—phonon interaction are taken
into account to explain the transport properties of metals. For the evaluation
the transport coefficients the central quantity which we require is the relaxa-
tion time. In the present work we have evaluated one electron and one
phonon Green’s function for a Bravais crystal whose Hamiltonian contains
both anharmonicity and electron—phonon interaction. When we examine the
Green’s function in the complex energy plane, it is found that there are poles
that lie above and below the real axis. The real part of the pole in the positive
half plane is identified as the perturbed mode and the imaginary part as the
half width of the mode [3]. The electron and ‘phonon width obtained re-
spectively from one electron and one phonon Green’s function are the in-
verse of respective relaxation times. To explain the transport properties one
generally assumes the total inverse of relaxation time as the sum of the in-
verse of relaxation times due to different scattering mechanisms [5]. Here we
show that Green’s function technique gives an insight into the nature of this
assumption which. is called Matthiessen’s rule. A simple calculation of the
electron and the phonon widths reproduces the well known temperature de-
pendence of the electron and the phonon relaxation times at low and high tem-
perature limits.

2. Hamiltonian

We consider our system' as an assembly of electrons and phonons interacting
with each other. The Hamiltonian for such a system can be written as

1
H = %‘wq (b; by + 2) + Z erafar + 2 VONqy, gy q;) Ag, Aq, Aq, +

93,2 9
+ 2 V(4)(q1’ qs; q3; q11) AQl ‘A‘h Aqs Aqa + _Z‘ F'I a'k Ak —q A‘I * (]')

q9:,,92,9:, 9

Here first term is due to phonons under harmonic approximation, second term
represents the kinetic energy of electrons, third and fourth terms are due to
anharmonicity and correspond to cubic and quartic terms in the expansion of
potential energy in powers of ionic displacements from their equilibrium posi-
tions and fifth term represents the electron—phonon interaction. We confine
overselves only to quadratie, cubic and quartic term in the potential energy.
wq, bq, and by are the frequency, annihilation, and creation operators for phonon
of wave vector q; a5, and af, are the annihilation and creation operator for elec-
trons of wave vector k, ¢, = (k*/2 m) — u where m is the mass of electron and
u is the chemical potential; V®) and V® are the Fourier transform of the third
and fourth order atomic force constants respectively; Iy describes the coupling
of the electron to the phonon field and 44 = by + b5. The explicit expressions
for the coefficients V3 and V® are given by Maradudin and Fein [1]. Fq is
given as [6]

F._,:Flg%'. @)

where F is a constant and V is the volume of the crystal. For simplicity here
. and in what follows we omit the polarization index for phonons a,nd spin index
for electrons and take 2 = 1.



Green Function Theory of Transport Properties of Anharmonic Metals 819

3. Green’s Functions

We define the one-electron Green’s function Gy (f, #') and the one phonon
"Green’s function Dgg (2, ') as [3]

Grrltt') = Qan(t); @A) = =i 0 (6 — ) anlt), )]s, (3)
Dyor(t]#) = (bal0): ) = —3 0 ¢ — ) <[ba(®) B> ()
. [4,Bly =A B+ BA,

: {1 for x>0
0(x) =
0 for 2 <0,

where

and angular brackets { > denote the average over canonical or grand canonical
ensemble. The ;Fourier transforms Gy (w) and Dy g(w) of one-electron and one-
phonon Green’s functions are defined as ~

[+.0]

Gt ) = [ Grro(e) e=10=1) dgy 6

-0

Dug(t, t'y = [ Dgg(w)e—tet-)dep . (6)

— O

For convenience we also define the operator By = by — by.
In evaluating the Green’s function we shall need the equations of motion for
the operators ay, ai, by, and bg. These equations of motion are given as

d <
v da' [ar, H]—’:Ek ak+-qZ'Fq ar g Aq: (7)
da+ i
KT [a:,H]—=—8kaE—Zan;E+qu, (8)
db
@—q = [bq, H]- = wq by + ZF ar: Otq + 3 2 VO(—q,q,,9,) Aq, Ag, +
9,49,
+4 3 VU(—q, q1, 95, q3) Ag, g, 4q, . (9)
91,9293
by
b & = [bg, H- = — wq b§ — ZF arpor_q —3 2 VO(—q,q5,q,) 4 Ag,—
qu'a
—4 3 V®(—q, q;, 95 q5) Ag, Aq, 4q, - (10)
Gy, 92, 93

3.1 Electron Green's function )
The equation of motion for the Green’s function Gy, is

- ng'lv' ’ ’

7 — d’tk =00t —¢) + e Grp + %’Fq((ak_q Ag; ar(t)) . (11)
To evaluate the higher order Green’s function G, = {ax_q Aq; ai(t')) we shall
need the Green’s function G, = {ay_q By; aiz (£')). The equations of motion




820 ’ R. KISHORE

for G, and @G, are
.déG,;

"’W"*Ek q Gy + wq Gy +2qu<<ah q— q:quAm“k‘ W (12]
dG
dt ‘— er—q Gy + wq Gy +ZF Lan—q—q, Aq, Bq,aﬁ'(t’)»—{—

+ 2 %‘ Folar—q e’ A, +q; aj(t ) +

+6 3 VO(—q, g1, 9) (g Aq, Aq,; ai(t')) +

q,q:

+ Sq qu VE(—q, Qu: 92 9s) {On—g Aq, Ag, Ag,; aie(¥)) . (13
Apart from Green’s functions G; and G, (12) and (13) contain also highes
order Green’s functions for which we should in turn construct equations of
motion and continue the process further. In this way we shall get infinite
number of equations of motion for the Green’s functions. We can break thi:
chain of equations and decouple the higher order Green’s functions into lowes
order Green’s functions by making some kind of approximations. Here we
decouple the higher order Green’s function contalmng four and five operator
according to the following scheme [3, 7]

(ade; d) = <abd{c;d) & <ac){b; d) + (bod(a; d)) (14)
(abodse) = (aby(cd;ey =+ Cacy(bd;e) +
+ Cady (bose) + by (ad;e) +
b d>{ac;e) +{cay{ab;e), (15)
where plus sign is for the case when the two operators inside the angular brackets
( > are either bosons or the combination of bosons and fermions and minus sign

is for the case when these two operators are fermions. In addition to this de-
coupling scheme we also assume that

<bq bq’> = Vq qq’ P <ai apry = My Orr »
{bg by> = (bg byy = ar aizy = {ap ay) =0, (16)
(b ey = b aky = {bg ary = <{by afy =0,
where '
vg = bg bg> and mny = {aja) .

With the help of these decoupling approximations, and from (11), (12), and
(13) we get the following set of equations for the Fourier transform of Green’s
function ‘

(@ — o) (@) = 3o + 3 Fy Galo), am
(@ — ek —q) Gu() = g Gal®) + Fy Ny Grrel®) , (18)

(0 — er—q) Go(w) = [Nq + 2 (1 — n—q)] Fq Grw(w) +
+ [wq + 24 3 V(—q, q, —q,, ‘h)Nq] Gh(w) , (19)

q;
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where Ny, =<df 4y, Ng=<A45 By .
We solve these equations for G p(w) and get
- Sreae ]2
Grere (@) = —— 2% (20)

0 — &g — Mp(w)’
where

N' + 2 1—fn, 4 Ng (0 — €r—gq)
My(w) = 3 3 g 20 = me-all 0 L e
q

((0 —_ Sk._.q) —_— wq {I + _ 2 V('L) (_q, q, qlr Q1) N ql}
g q,

(21)

It is shown by Klemens [8] that V((—q. g, —gi, 92)= 36“—‘;\, where 7 is

a dlmensmnless parameter. N is the number of atoms in the crystal and g,
is the maximum phonon frequency. Therefore the quantity inside the curly
bracket in (21) is independent of ¢. We denote it by A2 Now let us define

My (0 £ 7 &) = Au(w) F ¢ [i(w) , (22)

where Ai(w) and I'w(w) are the energy shift and half width of the electron of
wave vector k. The explicit expressions for 4, (w) and I',(w) are given as

—p ZF2 [Nq 4+ 2(1 — ng—gq)] wg + Ng (@ — er—gq)
(w — €k — q)2 AZ wq

AL(CU)

, | (23) .

Ti(w) =5 SF NG +2 (1 — mueg) + 4 Ng) 6 (@ — g — A wg) —
Vgt 20— myg) — ANG 8 (0 — eng+ Awg)], (24)

where P denotes the principal value. ,

The above expressions reduce to that obtained by Zubarev [3] if the effect
of anharmonicity is neglected. It should be noted that in these expressions the
effect of anharmonicity comes only through V® coefficient which is smaller
than V@ coefficient in the expansion of potential energy. Hence the anharmo-
nicity does not’contribute noticeably to the electronic properties of metals and
therefore for qualitative discussions one may neglect its effect.

3.2 Phonon Greer's function

The equation of motion for the phonon Green’s function D4 is

.d ' ’ . ’
’l&qu' = ‘Sqd’ 0(t —¥) + wqg Dgg + ’Z"Fq ((a;; ar:+-q5 b;'(t » +

—J[“ 3 Z V(S) (—Q> ql: QZ) ((A'h A‘Iz; bjl_'(tl)» +

91, 49>

+ 4'1 qZ'q VEO(—q, g1, 4, @3) {Ag, Ag, Ag,; b)) . (25)
The Green’s function of last term can be decoupled according to equa,tlons (14),
(15), and (16). To evaluate the Green’s functions D, — {af; artq; by () and
D, = {Adq, Aq,; by t’))) contained in third and fourth terms, we need the Green’s
funetlons Dy = ((Bq a.; 0g )y, Dy = {Aq, Bq,; bg(t')), and Dy = {Bq, Bq.;
b)) - _



oTuouLIeyUR 2191enb o) puoleq [e3sdro oy jo £Z1ous [Byuajod oy Jo uorsurdxo
I9PI0 IOYSI oY) WO OSIIB ULD 1Y) SUOMIIIFU0D oUs 03 o[quiedwoo aIe SWI9y
([oNS 95N¥0I( WAYY 309[5oU 9p\ 's1sgowrered Suridnoo orgrenb pue orquo jo jonp
-01d 919 JO IOPIO Y] JO BUIOQ ‘[[BWS 9% SUOIFOUNJ § USLY) I03BIodO 2ATJ 0Yj Jul
-[dn0o9op WOIJ poure)qo SWIdY 9YG WOIJ SUOTINIIFUOI 9T} JBYY POOIJOU A[IS®O ST 4]
()PP 10F uoOU JO SUOIIEN DO 95973 0ATOS 04 Poe0oi1d UEO OUO WLIOFSUWEI) ISLINO [

oty Suryey pue (91) pue ‘(¢1) ‘($1) suomenbs oy Surpioooe (0g) 0% (gg) woiy
suorpenbo ut Surresdde suorgouny §,U931Y) I9PI0 IAYIIY 273 [[B Surjdnooop 1095y

(0g)

(63)

(% Py Py Py P (O 7B b Ch—)gA +

shvh sh
+ {(02q g Py Py Py (5B D h h—)pnat K 8+

+ {{(3)2q Py Py Pgy (*h b bh—)pA +

l‘b ‘Sb

+ L% PG Py PEY b b h—)pa} X 9+

o
+ () I B B K g+

B ot L ] z
(g g B )y F g+ g P 40 o = 2y

gbdb mb

CDRe P By Py PR Y (5B Th 4b b—)md T 8+

*hh

+ {2 7 Py Py OB b h—)ga X 9+

()R P W Py By g A S P 4 G Po = %%
(g 9 14 £ — gbdb‘nb
KD2e Py Py Py PR (BB b Th—)png K 8+
g ? € o
+LD2g Py Py Py) b b b—)ed T 9+
+ €(D%Rq Py Prp o) “i;[z g+ g o+ g™ %?

3 1 P
a T7 = gp’

‘ {<<(13)'£q f‘b‘V bty Ib+:‘-{”>> .

— (D% Py P )} By Z 4 (e — P) —%@

MO[9q USALS UOTOTI JO SUOIJENDe OYq WOIJ Ud9s 9q ULd Se

THOHSIS " ' GG8



Green Function Theory of Transport Properties of Anharmonic Metals 823
term. We obtain following equation for Dy 4 (w).

Dyg(w) = 29727 (31)

where

Py(w) =/ 3 Fy 22210 1 3 3 |70 (—q, qu, g0)* P41, 42 @) +

W — Er+q 1 &k @, 0
!+ 12 Z; V(4)(‘II» —4q1, 9, —Q) NQ’; (32)
L 8%

~and !'

(g, Qo ) = 6 (N, + V) e W20 g 6 (N, — Ng) 20—

a)z—(wa—[— wqg)2 w* — (wa - qu)z )

: (33)
Now we define
' Py(wtie) = Adg(w) F i Ty(w),
where phonon frequency shift 4,(w) and half-width [, (w) are given as
.' Ag(@) = A3 (@) + 43"(w) , (34)
' Ty(w) = Ig™ (@) + I3 (@), (35)

where supeﬁscripts e.p. and anh. denote the contributions due to electron—phonon

interaction and anharmonicity respectively, Ag®, A", I'e®, and '™ are given
by

A W — Ekt+q T €k

A (w) = P 3 Py ot - (36)

anh. : r‘
A7) = 18 P X |V (—gq, gy, u)I° [(qu + Nt

i 91,9 - (wa + qu)z

2 — (wfh - wﬂz)z

+(N‘Is__'Nq1)w P, — Ya, ]+

+ 12 g, Ve —q, q, —q, q1) Ny, , (37)
Ig™(w) = 3 Ty (e — irq) 8 (@ — srq + aa) COR
F“"""xw) = 1876(0) 3 [V(~, ¢, Ga)* X

| X [N, + o) (s, + 00 6 (08 — (oo, + )7} +
o (N, — N (0g, — 0q) 8 {0 — (o= 00 (39)

where
1 for w>0

é(@) 2{—1 for w < 0.
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The equations (34) and (35) reduce to the equations obtained by Zubarev
[3] if effect of anharmonicity is neglected. Also one obtains the expressions
obtained by Pathak [2] if effect of electron phonon interaction is neglected.
In the theory of transport properties it is generally assumed that the total
inverse of relaxation time is the sum of the inverse of relaxation times due to
different scattering mechanisms. From (35) it is clear that Green’s function
theory gives an insight about the nature of this assumption.

4. Electron Width

To evaluate electron width we substitute the value of F, from (2) in (24) and
replace summation over wave vector ¢ by integration. After performing the
angular integration with the help of delta function we get

2k—2mde

Pme | - 2 24 .
Fk(sk) T 8ndlk f q {1 + 4 o (epe—4 wg) +1 + fPa l}dq
0
2k+2mde
9 24
—_— 2 _ I -
f g {1 4 flrtdog) | 1 ofoq__ 1}dq

0
(40)

Since k>>m A ¢, the upper limit of integration in both the integrals of (40)
can be taken as 2 k. Also since g >A g, the Fermi distribution functions
1/(exp {# (e&r, — A wg)} + 1) and 1/(exp {f (e + 4 wg)} + 1) can be replaced
by 1/(exp (B &) + 1). Within these approximation (40) reduces to

2k
- Li(er) = ﬁ:f,: f(l + quz_l) g*dg . (41)
0
At low temperature (kT <€ wq) we get
- Tien) = o (42)
where
I= fx‘? coth%d% . (43)
0

" In (43) the upper limit 2 k § ¢ is replaced by oo which is perfectly jﬁstified in
this range of temperature. At high temperature (wq << kg7 <€ u) we replace
phonon distribution function 1/(exp (f wq) — 1) by 1/ wq and get [9]

2mk
mef '

The expressions (42) and (44) give the well known temperature dependence of
electron relaxation time at low and high temperature respectively [5]. These
expressions are independent of anharmoniec parameter A and thus one can
safely neglect the effect of anharmonicity on the electronic transport properties
of metals.

Fk(&'}c) =

(44)
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5. Phonon Width

To evaluate I'q(w) we note from (35) that it is a sum of two terms I'y® and
2™ The contribution to I'y(w) from I'y™ has been evaluated by Pathak [2]
and is given by

T3 (0g) = o (h a)? 0 (b — k) , (45)

where A is a dimensionless parameter and o is a lattice constant. We evaluate

I'g® at low and Iﬁgh temperature as follows.

At low temperature (7' —0) the electron distribution functions =, and
7y —q can be replaced by 6 (k% — k?) and 8 (K% — k — q?) respectively. Here kg
is the electron wave vector at the Fermi surface. After replacing the summa-
tion over k by integration and summing over spin index (38) reduces to

Ty(w) =%ffk2dkf6(1—x)0(1 T x) {6 (s — K?) —
4]

LBk — k2 — g? _ ¢ kgx
- 0 (k% — & q —{—qux)}é(w 5 m m)dx. (46)
After performing the integ:rat.ion over x and k we get
em?o
: ———— when 2k (47)
| IMe) =1 2% 12
. 0 when ¢q > 2 ky. (48)

At high temperature (T — o) we replace Fermi distribution funection by
Boltzmann dlstrlbutlon function and get

MPme —i-(”‘ig—":;f*)2

P""(w) efr (1 —e—Boyeg 2m

(49)

If we examine (45), (47), (48), and (49) we come to the conclusion that the
effect of anharmonicity is predominant only at high temperature (7' — oo)
and at low temperature (7' — 0) the effect of electron—-phonon interaction is
predonuna,nt When we consider these points, we find that these expressions
give the well known temperature dependence of phonon width at low and high
temperature lqult
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Eleetrical Conductivity of Metals
By -
R. K1SHORE 1)

With the help of Kubo formula an expression for the electrical conductivity of metals is
obtained within the Hartree-Fock approximation using the method of double time tempera-
ture dependent Green’s function. A simple caleulation of the relevant relaxation time
appearing in the expression is presented. This gives a reasonably good estimate of the
electrical conductivity of metals.

Mittels der Formel von Kubo wird ein Ausdruck fiir die elektrische Leitfahigkeit der Metalle
gewonnen, wobei in der Hartree-Fock-Niherung die Methode der doppelt zeit-temperatur-
abhéngigen Greenschen Funktion benutzt wird. Eine einfache Berechnung wird fiir die in
dem Ausdruck erscheinende Relaxationszeit angegeben. Damit ergibt sich eine ziemlich
gute Abschitzung der elektrischen Leitfdhigkeit von Metallen.

r

We start with the Kubo formula [l] of the electrical conductivity

» = lim f e~ st dtf dA {J, J, (¢ + M.)) (1)
e—0 0
where 8 = 1/kgT'; J, is the »-th cartesian component of the electron current
density operator and is given by
' g
Jy = e a:.h Mo » (2)

: ko
where &, = (B*/2 m) — u and s = @i ars. K, m and p are the wave vector,
mass and the chemical potential of the electron respectively. az, and a, are
the creation and annihilation operators of the electron of wave vector k and
spin 0. Here and in what follows we take # = 1. The angular brackets in
equation (1) denote an ensemble average, namely for any operator O

tre-FHQO
0> = Sre—FH ’ (3)
where H is the Hamiltonian of the system.

For our particular problem of electrons in a crystal, the system is described
by the Hamiltonian [2]
H = 3 wgbgby + _,:_?ska;;ak —|—"Z'Aqai:+qak (bg + b2 q) -+
q ' : cq
1 + +
+“2_ ZVkap+kaq—kaqap: : (4)
»ak

where wgq, by and b, are the energy, creation and annihilation operators of the
phonon of wave vector g respectively. 44 is the coupling constant for the

1) Present address: Department of Physics, University of Rooskee, Rooskee, India.
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electron-phonon interaction. V¥ is the Fourier transform of the Coulomb
interaction between the electrons and is given by

47 e?
Vi ==
For simplicity here and in what follows we have omitted the spins and polari-
zations of electrons and phonons respectively.
In fact taking the equation of motion of the density fluctuation of the electron
in the random phase approximation (R.P.A.) one gets [2]

. Ay ek, 0) — 1 .
X aGonag = — G bty )

q
where the frequency dependent dielectric constant is given as

Np — N I
k,w) =1+ V; LR B L —
e(ke, ) + '§w_8p+sp+k+"-6

After substituting the value of Y aq — 1 @q from equation (5) in equation (4),

q
the Hamiltonian of the system reduces to

H = )} wg by by + {_7&- ar. a +LZ A" af g ag (bg + b 4), (6)
q < 5 q

where

eff -Aq

T 7 gk, ) - (@

For d.c. electrical conductivity the energy of the applied field @ = 0 and so in
this case Ay = Ag4le(ke, 0). To evaluate Azﬁ we take the simplified ‘Jellium’
model in which all effects associated with periodicity of the ions are neglected.
In this model after applying R.P.A. one obtains [2] :

eff (2 Zu n \12 1
Ag = — 7’(?79-') (Mv) (2 wg)' 2’ (8)

where n is the number of electrons per unit volume, » is the number of elec-
trons per atom, Z is the number of charges of an ion and M is the mass of an
ion. For phonon frequency wg we take the Debye model and obtain from equa-
tion (8) : '

ot . 2Zuf mg \2
4q = °?T(2ch) ' )

For an isotropic solid the expression for the electrical conductivity can be

written as
o0

. |
¢ = lim &y Dok Oew fe—st dtfd}. (g g (E 3 2) (10)
0

cs0 3 x5 0k oK .
It is evident from equation (10) that the evaluation of electrical conductivity
essentially involves the evaluation of the correlation function of two electron
number density operators at different times. This correlation function can be
expressed in terms of the Fourier transform Gy, j(w) of the one-particle Green’s

function [3]
G, i (t) = — 2 0(t) {{axn(t), @i (0)}>, (11)
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where 0(t) is' the Heaveside unit step function and curly brackets denote the
anticommutator

(A,By—AB+ BA.

Now within the Hartree Fock approximation and neglecting the correlation
between two creation and the annibilation operators the electrical conductivity
can easily be shown to be (4)

[ee]

7 e? v 08k dgpr efo
0 = ——lim —_— —
J 0 G

3 5—%0’6 k 6'@ 6’6

X (Gt (@ +i€) — G (@ —i6)} {Gvn (@ +i€) — G (@ —ie)}. (12)

For our system of electrons in a crystal described by the Hamiltonian (6)
one can obtain the expression for the Fourier transform of the Green’s function
[3] as !

: 1 Ok, 1’

G, w(w) = 27 @ — ex — Mi(w)’

(13)

where Mp(w) gives the effect of electron—phonon and electron—electron inter-
action on the single-particle energy and is explicitly given as

eff. g Pq> g — q> g — q> + g 14
Mule) = q(A )w—e,, q—wq‘}._w—sk—q‘l"wq’ (14
where
vg = bg by .

Now we substitute the Green’s function G, r(w) from equation (13) in equa-
tion (12) and obtain the expression for the electrical conductivity as

ﬁez dep\2 P B 1
o= 3 %(Bla) (efER 4 1)2 2 I'y(Eg) ° (1_5)

where the renormalized electron energy Ej, is
By =& + AI(EI-)

Ay and F . are the real and imaginary part of M )(w) which can be obtained
from equation (14).

In general the shift in energy A,(Ey) is very small and therefore we assume
By ~ g,. In this case equation (15) for the electrical conductivity reduces to

of de
6n2mf 2m83/2( BS)P(S—[A) (16)

where f = 1/(ef*r 4 1) and & = k2/2 m.
For temperatures well below the Fermi temperature (kg1 < 1) equation (16)
reduces to the usual relaxation time expression of electrical conductivity

2
O_:ner, (17)

m

where the relaxation time v = 1/2 I'(0); 17(0) is the half-width of the electron
distribution function at the Fermi surface.
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The expression for the electron width /% (w) can easily be obtained from equa-
tion (14) and one gets (3)

Ii(w) == X (4g') (g +
q

+ (Mg + 7¢) 0 (0 — & _ g + g) - (18)

Now we evaluate the electron width I';(w) in the temperature range wq < kT &
<K . In this range of temperature the phonon distribution function »4 can be
approximated by 1/8 wgs and the Fermi distribution function g _ 4 by unity.
Within these approximations and with the help of equation (9) the expression
for the electron width can be written as

1 -—nk_q)é(w — & —gq —wq) +

2Z2 . J’S.
. 0

KB+ g —2kqgcosf 124 q2—2%kqcosB .
2m 2m +

)+6(w+u—cq—

u2 Z? 3 . B +q*?—2kqcos®
+ 18zn Mo fq dquIHGdG(S(w+y+Gq— 2m
0

where we have replaced the summation over the phonon wave vector ¢ by
integration over a Debye sphere. ‘The evaluation of integrals in equation (19)
is discussed in the Appendix where finally we get

272 utm ks m® ¢? u2 Z*
Ymndcrvf |3nnMEvfhk

). a9,

m pt Z®

1'(0) = Bamn Movk

4 .4 3 o5
x [8 kf+14m3 ¢+ 24k mc+ 30m2ek,+ 15210 + 3;”}; ]} R (20)
_ t
where k; is the wave vector at the Fermi surface. In this equation all terms
inside the curly bracket are small in comparlson to the first term, so after
neglecting them we get
2m uZ2 ky

10) =9nnMczvﬁ'

(21)
Now -after substituting the value of I(0) from equation (21) in equation (17)
we get an expression for the electrical conductivity as

e2 Mcy

= i CmH" (22)

After substituting the values of different quantities and takmg » =1 in
equation (22) we have calculated the electrical conductivity for Li, K, Na, Cu,
Ag, and Au at 0 °C. The calculated and experimental values in e.s.u. are given
in the following table:

Li K Na Cu Ag Au
Ocal X 10717 0.82 1.4 1.02 10.2 4.8 8.8
Oexp X 10717 1.06 1.47 2.09 5.76 6.12 4.37
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From the above table it is clear that the calculated values of electrical con-
ductivity of Li, K, and Ag are in reasonably good agreement with the experi-
mental values, but in case of Na, Cu, and Au the agreement is somewhat poor.
This discrepancy may be due to two reasons: Firstly our model for the coupling

constant Aq is not very realistic and secondly the value of » may not be equal
to unity for all elements. To get a better agreement with experimental results
we must know more accurate value of » and use a more realistic model for the
calculation of coupling constant. To our knowledge, this type of first principle
estimates of the eléctrical conductivity is not available at present.
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. Appendix
In equation (19) putting cos 6 = 2 we get

2Z2 B - . :
Tio) = e tr fqqu f@(l —2)6(1 + 2) X

x{a(w Bt _2kqx-}—.tt—cq)+

2m
B4 —2kqgax

2m

+m—ch3dqfe (=200 +a) x

k2 — 2%k
xé(w— + ¢* gz
2m

+6(a>— +,u+cq)}dx+

+M+cq)dx- (23)

After performing the integration over & we obtain

2Z2“
Tiw) =18ﬂijc’f,,qudq{e(1 — @) 6(1+ @)+ 0 (1 —ap) 6 (L +a)}+

1* 42 m 2 _ _
+ Town ATevE [ea0a —m)00 +a, (24)
where '
_FBP+¢ (otpu—cqgm
1= Tokg kg’ (25a)
P+ (wtpetcgm
T= g, T, : (25D)

The limits of integration in equation (24) are determined by 6 functions. For
example the limits of integration [gdg 0 (1 — ;) 6(1 +- z;) are obtained by
the conditions
1—2,>0 (26a)
and :
14+a,>0. ' (26b)
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Substituting the value of z; from equation (25a) into the inequa]ities (26) we get

(g— a)(g— b <0 (27a)
and
(g—a)(@—b)>0, (27Db)
w here ‘ _
a=k—mec+ Jm?c+2m(w+p—ck)],
bzk—mc—-]/[m262—|—2m(w+p,—ck)],
@ =—(k+me)+}m2e?+2m(w+p+ck)],
and _
b= —{k+mec)—)[m2e®+2m(w-+u—+ ck)].

It is easy to see that both the inequalities (27a) and (27b) will be satistied
simultaneously only when o < ¢ < a. Similarly the limits of other integrals
can be determined. Integrating the equations (24) under these limits and re-
taining only the first two terms in the expression of the quantities under the
square root sign, we get the expression (20).
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On Transverse Electrical Conductivity of Metals
| By

| : R. K1isnorE
Wit}jl,a the help of the Kubo formula an expression for the transverse electrical conducti-
vity of metals is obtained within the Hartree-Fock approximation using ‘the method of
the dojlble-tuime temperature-dependent Green’s function. It is observed that the expres-
sion is the same as that obtained by Leribaux with the help of perturbation theory using
the Feynma.n diagram technique if the change in the energy of the electrons due to electron—
phonon interaction is neglected.

Mit Hilfe der Formel von Kubo wird in der Hartree-Fock-Niherung ein Ausdruck fir
~ die transversale elektrische Leitfahigkeit von Metallen erhalten, wobei die Methode der
zweizeitigen, temperaturabhingigen Greenschen Funktion benutzt wird; Es wird gefunden,
daf der Ausdruck mit dem von Leribaux mit Hilfe der Stérungstheorie unter Benutzung
der Feynmanschen Diagrammtechnik erhaltenen iibereinstimmt, wenn die Energlea,nderung
der Dlektronen durch Elektron-Phonon-Wechselwirkung vernachlissigt wird.

|

_ Tllie problem of electrical conductivity is usually treated. by two gquantum
mechanical approaches. These are Boltzmann transport equation [1] and Kubo
[2] approaches. Instead of using the Boltzmannn equation or solving in a parti-

cular representation the density matrix equation of motion, we shall start

from an exact expression (within the linear approximation in the electric field)
for the conductivity (the so-called Kubo formula). The advantage of this for-
malism is its independence of the particular representation. The explicit eval-
uation of the conductivity from the Kubo formula has been done by many
authors [3 to 7] using the thermodynamics Green’s function technique. In the
conductivity problem however, efforts have been directed mostly towards ob-
ta1mng the diagonal elements of the doncuctivity tensor. In some cases such as
in the evaluation of the Hall coefficient we need transverse (or off diagonal)
components of the tensor [7].

In this paper we present the calculation of the transverse electrical conducti-
Viby of metals from the Kubo formula within the Hartree-Fock approximation
using the method of double-time temperature dependent Green’s function.
Here the electron transport is assumed to be limited by electron—phonon inter-
action. It is found that the final expression for the conductivity is the same as
that obtained by Leribaux [7] with the help of perturbation theory using dia-
gram techmque if the change in energy of the electrons due to electron—phonon
interaction is neglected.

The Kubo formula for the electrical conductiviﬁy is

—hm er““ dtfdl(JJ ¢+ P40, (1)

e>0 0

where § = (kgT)~1; V the volume of the system, J, y is the »th cartesian compo-
nent of electron current density operator and angular brackets denote the
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grand canonical ensemble average, namely for any operator

Tre— BT —-ulN) (O ’
<0> = Tr o— ﬁ(H al) (2)

where H is the Hamiltonian of the system, N is the number of particles in the
system and y is the chemical potential. Here and in the following we take # = 1.
In the second quantized representation, the Hamiltonian of the system of
“electron interacting with the system of phonon is [8]

H= qub+bq+TEaal al+ZA al;alg(b +b) (B, —ky=14q), (3)

Lig

where aj, a; are respectively the creation and annihilation operators of an elec-
tron in state I; by, by are the same for a phonon with wave-vector g, wq is the
energy, of the phonon with wave vector q; 1= (n, k), where n stands both for
the band level and the spin quantum number and k is the wave vector of the
electron; F, = ¢ — u, where ¢ are the eigenvalues of any suitable chosen one-
electron Hamiltonian, A, describes the coupling of the electrons to the phonon
field. The second quantized form of current density operator is ‘

I

J, = 2 Wiy az a . ‘ (4)

14

Here ¢ is the charge of the electron and v, is the uth cartesian component of
electron velocity. The diagonal matrix elements are

v = 7 . (5)

—~The off dia;gon.;ﬂ matrix elements may be written in the form [9]

@ = i opledw = — ww I () ok, k), 1T (6)
with /
and _ -
, ' ) :
Tzn (k) =f Wy, x(7) @:wn,.k(r) dsr,. : (7

where w1, are the periodic parts of the Bloch e1genfunct10n of one electron Hamil-
tonian.

When we combine equation (4) and (1), the expression for the electrical con-
ductivity reduces to '

e
o',,,,=lim-:-,—fe“” de dzz 2 Dot

e->0 3 Ly Lls

X Caay af (b + §2) ay (6 4§ A (8)

within the Hartree-Fock approximation and neglecting the correlation between
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creation and annihilation operator, the conductivity is given by [10]

o B
62
Oup = — —17 hm e~ dt dﬂ. 2 Z (’l),,)l I ﬂ)lglé X
&0 3 b1 Ll
l | dw, dw ef @ e— z:(wl—wﬂ) (t-+i2) %
, 1R (eBen 1) (eBer 4 1)
— 0 —1C0
X {Cr’l/2 L (w;,+28) — Gi;z, (0, — @'e)} {Gl'll2 (wy 42 &) — l1 ]3 7,8)}

(9)

“where Gy, (w) is% the Fourier transform of the Green’s function
Gt ) = —i 6 (¢ — &) (a1, a (D) (10)

Wll,el_"e 6(t) is th%e Heaviside unit step function and curly brackets denote the
anticommutator. In the present case when the electron in a crystal is described
by the Hamlltoman (3), the expression for the Fourier transform of the Green’s

function is 8] .

. 1 o1,1,

o G = e T ) (1)
where M; (w) gives the effect of electron—phonon interaction on the smgle par-
ticleé energy.

If we substltute G(w) from (11) in (9) and perform the integration over ¢
and 2, we get

Oy = — ilee {IZ () (wu — > (vv)lllal(vu)lzll}' «

2 .
4
V 1 1 2[2

@ °°d d efw, _ pfw; . 1 -
* f f 1802 Y, — wp)? (eF @ + 1) (ef: £ 1) 8
Ti(w,) Tyfey) '
{(wl “E; )2 +F2 (CUJ)} { @y _E; 2+ I7 (wz)} ’
. where B} = E; + A,(E;); 4; and I, are the real and imaginary parts of the
M;(w), it can be shown that for » &= u, the first term on the right hand side of
- equation (12) vanishes. After substituting the values of the matrix elements of

the components!of veloclty from equation-(6) in equation (12); integrating over
w; and @, and assuming [ (w) a small quantity we get

(12)

' el WL, 1, 01
Opy = — — > —2=2 22 _§(k,, k,) X
g 14 lle; (&, — £)* (B
X [Them(ley) Thme(le) — Tma(ky) TR f, ' — ), - (13)
where '
. 1
T eBEI 1

The expression (13) gives the transverse electrical conductivity under elec-
tron—phonon interaction. If we neglect the effect of electron—phonon interaction .
i.e. if we take B}~ E, = ¢ — u we get the same expression as obtained by .
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Leribaux [7] in Zeroth order in electron—phonon interaction. Leribaux used
‘the perturbation theory and diagram technique. We feel this derivation more
satisfactory because it considers the contribution of electron—phonon interaction
-on the transverse electrical conductivity in a more complete manner. Leribaux
study becomes a special case of our investigations. :
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for viscosity tensor becomes

4rMc* [Fm
J, @

3wryia?

k2 eB ck

22)
(e 1): (

\I Glm ¥y 1m)

Nijlm™=

where .
! 3 (23)
Lijtn=— fdf 3 Yre ™t
127 s

For the crystals having cubic symmetry there are
three independent coefficients of viscosity. For the cal-
culation of the longitudinal and transverse attenuation
we shall require only two of them. Using abbreviated
notation!” for the coefficients of viscosity and -elasticity,
we write

4uB2M k2efck

7]11—

(Tu—7?) (24)

3wryla? 0 (eﬂ ck—1)2

and

(25)

N44=

dnPMct (hm o ook
Tss [ dk
o

3wryiat ghek—1)2 |

At low temperature, Egs. (24) and (25) reduce to

16wM kT
M= (I11-72) ) (26)

3va
160M kgT

N4s= —— 1.
3v2%a

27

ATTENUATION -

Thelongitudinal and transverse attenuations of sound
waves in a crystal having cubic symmetry are given as'®

w? AT?
az=—*—<’nn+ ) ) (28)
2,0613 612
w?
Q= ”44, (29)
2pC¢3
7R, N. Thurston and K. Brugger, Phys Rev. 133, Al1604

(1964).
18T, P. Landau and E. M. Lifshitz, Theory of Elasticity (Per-
gamon Press, Ltd., London, 1959), p. 126.

ACOUSTIC ATTENUATION IN SOLIDS

173

Tasre I. Theoretical and expenmental attenuations. The

numbers in parentheses are the frequencies of the sound waves

in Mc/sec. . )

a(dB/em) | a.(dB/cm)
Ge (calc) 2.92 (306) :  0.54 (306)
Ge (Devault) 1.34 (306) | 0.42 (306)
Ge (expt) 275 (306) | 0.73 (306)
Si (calc) 2.20 (480) | 0.42 (495)
Si (Devault) 118 (480) |  0.33 (495)
Si (expt) 220 (480) | 0.62 (495)

t

where w is the frequency of the sound waves, p is the
density of the system, A is the thermal conductivity,
and ¢, ¢, are the longitudinal and transverse velocities
of sound waves in the system. Now by using the calcu-
lated values of I11, I44, and y obtained by Devault® and
experimental values of the thermal conductivity, we
calculate the longitudinal- and transverse-wave attenu-
ation for Ge and Si at room temperature (300°K) from
the above expressions. The results of these calculations
are compared with the experimental results of Mason
and Bateman! and the theoretical results of Devault®
in Table I.

CONCLUSION§

From Table I it is clear that our calculations are in
very good agreement with the experimental values of
the longitudinal attenuation, and that for the transverse
attenuation the agreement is somewhat poorer, but still
better than that of Devault’s calculation. In this calcu-
lation we have not assumed that thé relaxation time for
longitudinal attenuation is twice that for transverse
attenuation. We therefore feel thatithe conjecture that
the relaxation time for longitudinal attenuation should
be about twice that for transverse attenuation derives
no support from the data considered.
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after substituting the values of Hy, Ji;, and a(J;;)/
d(H,) from Egs. (5), (7), and (9), respectively, we get

1
== 2 OksYis (M) +7)
V ke

v

+? % wis(s— (es)) -+ (11)

Now we use the values of J;; and J s from Eqgs. (7) and
(11) in Egs. (1) and get the expression for the viscosity
tensor as

0

di et Z WksWk s Yks
0 ks, k’s’

X (s =y ) i) (Mo o= (M) )+ + +

It is evident from Eq. (12) that the evaluation of the
viscosity tensor essentially involves the evaluation of
the correlation function of two phonon number oper-
ators. Within the Hartree-Fock approximation this cor-
relation function can be decoupled as's

(s (D) (e o — (1)) ) = (0T (D035 Ko (D030 )
+{arst (D as s Yo ars) - -

In most normal processes the functions (@g.'(f)aw 1)
and {@xs(f)ar ) which depend on the correlation be-
tween two creation and two annihilation operators are
negligibly small (in superconductivity?® or superfluidity,
they are no longer so negligible). Confining ourselves to
the normal case and expressing the correlation functions
(erst(Daw ) and {(ax,(Hawyt) in terms of the Fourier
transform Gy ** (w) of the one-phonon Green function.®

Gkk:”'(t)—_——io(t)([aks(t);ak’S’T]>) (14)

where 0(f) is the Heaviside step function, we get the
expression for the viscosity tensor as

B
Mijtm=— 2, OkeWirs Yk (Yo ™ —y"")
V ks, k’s

o 0 00 e[ﬁua+i(w1—u2+'it)t}
Xlim/ / [ didwidwsy
= I A (1) (e 1)
X[Gre**(wrtie) = Girr* *(w1—ie€)]

X[Grir** (wati€)—Grpr* (wr— 16):] SRR

For the Hamiltonian (4) the expression for the Green’s
function Gyx-**'(w) can be written as®?

Nistm=— lIm
V €0

(12)

(13)

(15)

Bk Busr/ 27

G ,as’(w) -
s wo—toge— M)

(16)

18D, N. Zubarev, Usp. Fiz. Nauk 71, 71 (1960) [English

transl.: Soviet Phys.—Usp. 3, 320 (1960)].
16 C, Bloch and C. De Dominicis, Nucl. Phys. 7, 459 (1958).
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where My,(w) gives-the effect of perturbation on the
self-energy of one particle. Let us define

Mks(w:tie) =Ak8(w) :‘F’!:I‘k;(w) s (17)
where Ag,(w) and Iy,(w) are the frequency shift and
half-width of the phonon of wave vector k and polari-
zation s. After substituting the Green’s function from
Eq. (16) in the viscosity expression (15), we see that the
integrals over 4, wi, and ws can be easily evaluated.?
For small values of T'x, we get

. gﬁiks
viy =t 2 sii slm_. m\_____
Tiin =" E R )(eﬂm_ -
2T ys(exs)

where S
€xs= Wks+ Aks(eks) .

It can be easily shown that this expression is the
same as that obtained by Devault® if one neglects the
phonon frequency shift and takes the relaxation time
as Tx;=1/2Tk,. In general the phonon frequency shift is
very small, so we assume that ey, = wy,. The expression
for the frequency width is given by

o= (3Ns/328) (ka)*0(km—F) , (19)
where ¢ is the lattice constant and A, is a dimensionless
parameter. We shall introduce one more parameter,
called the Griineisen constant, defined as

1
v=iEyie— [T s )

@ 3671‘ T8

. It has been shown by Devault® that the Griineisen

constant for Ge and Si obtained by this expression is in
quite good agreement with the experimental value ob-
tained by the relation y=ax/C,, where a is the volume
thermal expansion coefficient, « is the bulk modulus,
and C, is the specific heat per unit volume. For this
parameter we shall use Klemens’s model, ' according to
which )
48w \

?\K—M——'yc2 ,

where M is the mass of the atom on the lattice site and

¢ is a suitably averaged velocity of sound waves. Now
using the Debye model and replacing

(21)

N
Z——)——/k%kdﬂ,
k Q

where Q is the volume of the first Brillouin zone and N
is the total number of unit cells in the crystal, Eq. (18)
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it is easily noticed that (J;;)= 0if i 7. After performing
the angular integration, the expression for the shear
viscosity (9= 17:;i;) reduces to

B ]
n=—r f dk KeePes(br4-1) 27y, (14)
0

1572m?

where we have assumed that &= ¢, and that 7= (2T';)!
may be identified as the relaxation time. Equation (12)
can be rewritten as

1571-12m2 /: (2m6)5f2<_‘;_f>,<e) de,  (15)

where f=(¢f®41)"1 and e=k?/2m. In the low-

n=
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temperature limit (k57<<u), the derivative of the Fermi
function can be replaced by 8(e—wu), and we obtain

(16)

where 7 is the number of electrons per unit volume and
the relaxation time is to be evaluated at the Fermi
surface. At high temperatures the Fermi function can be
replaced by the Boltzman factor, and assuming that
the relaxation is independent of the energy, one can
obtain from Eq. (15) the usual kinetic-theory expression
of the viscosity in the classical limit. The expression
(16) is rigorously derived here by an entirely different
method. We consider the present derivation more
satisfactory.

-2
= FNUT,
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of the electron subsystem, where 7x= ax'ax is the elec-
tron number operator. After substituting for the mo-
mentum flux operator J;; from Egs. (4) in (1), we ob-
tain the expression for the viscosity tensor as

1 0 m) 0T tm)
(—k;’km' —Vepr- V- )

g
ijtm=—— 2 kik; -
i 2 kki\ aHy) AN

mV kK

><¥E%_/' dt e (8) (0’ —(mie))). (5)

Tt is evident from Eq. (5) that the evaluation of the
viscosity tensor essentially involves the evaluation of
the correlation function of two electron number oper-
ators at different times. Note the similarity of the above
expression of the viscosity tensor to that of the electrical
conductivity.® In the Hartree-Fock approximation the
two-particle correlation function can be decoupled as

() (ma )y (Daw ) {ar(Dar")
— (@t e a®ar). (6)

In normal metals the correlations between two annihi-
lation and two creation operators are negligibly small,
and therefore we neglect them. The other two correla-
tion functions, {(al()ar) and {ex()aw'), can be
expressed in terms of the Fourier transform G (w) of
the one-particle Green’s function®

G (t)= —i0(t){Lex() 0" ]1) , M

where 0(f) is the Heaviside unit step function, and
square brackets denote the anticommutator. After
these appropriate substitutions, the result for the vis-
cosity tensor can easily be shown to bet®

LI
o(Ho) (V)

4B 1
Difim=—— 2 kikj(‘_kl,km’— |4
m

mV kx’

xlin(} f do e"“’(e""-{-l)"zflmGkk'(w+i€)]2; (8)

—a

where Im stands for the imaginary part.

For the system of electrons in a crystal described by
the Hamiltonian (3), or even more generally, the ex-
pression for the Fourier transform of the one-electron
Green’s function is given as®

O/ 2ar

Gy () =——————
wlo) co—ek—Mk(w)’

9

where M (w) gives the effect ‘of perturbation on the
electron self-energy. For the present problem it is

® D, N. Zubarev, Usp. Fiz. Nauk 71, 71 (1960) [English transl.:
Soviet Phys.—Usp. 3, 320 (1960)].

10B. Deo and S. N. Behera, Phys. Rev. 141, 738 (1966); see
also P, Gluck, Proc. Phys. Soc. (London) 90, 787 (1967).
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explicitly given as?

1 Vg Nk—q kg Vq
)+ ){( )+ )>’ (10)

00— €x_q—Wq

M=% Aq2<

w—€x_qtWq

where vq=>b,'b, is the phonon number operator. We
define My(w+ie)= Ax(w) —iT'k(w), where the real part
Ax(w) will be again given by Eq. (10), except that now
the principal value of the summation must be taken, and
the imaginary part is

Iy(w)=m Zq AL (14 {pq) — (m—q)) 80— €x—q—Wq)
+((”k—q>+(Vq>)5(w—€k—q+°-’q)]- (11)

Substituting for the imaginary part of the Green’s
function Giw(w-+ie) from (9) into Eq. (8), we obtain
the expression for the viscosity tensor as

B 1 3 im A im
Mijim =—— 2, kikj<"_klkm_'V€k i >—V Ve >)
my m 9(Ho) (V)

><E f ) dw e84 (efo+4-1)72
- I(w)
X .
{[oo—ex— Ag (o) P-Ti2(w) }2

Note that for small values of I'w(w) the integrand in
(12) is peaked around the point where w—ex—Ax(w)=0.
If the solution of this equation is at w= & and electron
damping T'x(w) is small at this point, then the integral
can be easily evaluated and we get

(12)

B 1 O my  Jim
Nijim=——2_ kikj<_klkm_'VEk in) V- Ve )>
mV x m d(Ho) N)
exp(Bé)

X . (13)
[exp(8 Ek?‘i'l]z 2T (&)

The expression (13) is believed to be the new result
of the viscosity of the electron gas in metals. This is
what one would expect in the usual relaxation-time
approximation provided we identify (2I'x(é))~ as the
relaxation time. The only difference is that here the
effect of renormalization of the electron energy is also
taken into account. In addition, we have derived Eq.
(13) starting from correlation-function formula which
is known to be more general than the usual Boltzman
transport equation.

As a simple application of our general result (13),
we shall now obtain the expression of the shear viscosity
of the electron gas in isotropic metals. Introducing the
spherical polar coordinates (k,0,¢) for the wave vector k,
and replacing summation over k by integration as

5 2V
£ ()

f k* dk slinB dé d¢,
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The correlation-function calculation of the shear viscosity of the electron gas in metals is presented within
the Hartree-Fock approximation. The usual expressions of the viscosity obtained by using the Boltzmann
transport equation are recovered in the appropriate limits.

HE absorption of ultrasonic waves in solids is
attributed to various interaction processes. In the
case of insulating crystals, a significant contribution to
the attenuation coefficient is due to the lattice viscosity.
In recent years, the phonon contributions to the vis-
cosity of a solid have been discussed by several
authors™* using the correlation-function formula of
McLennan.’ In metals at low temperatures, the major
contribution to the attenuation of ultrasonic waves is
due to the scattering of the conduction electrons by
phonons. The mechanism proposed by Mason® for the
attenuation is based on the concept that in the normal
state a lattice vibration can communicate energy to the
electron gas by transfer of momentum and is damped
by the viscosity of the gas. Steinberg” has presented the
calculation of the shear viscasity of the electron gas by
using the Boltzman transport equation.

In this paper, we present the correlation-function
calculation of the shear viscosity of the electron gas in
metals using the method of double-time temperature-
dependent Green’s functions. We deduce an expression
for the electronic viscosity tensor within the Hartree-
Fock approximation. It is found that the relaxation time
appears in the expression for the viscosity in a natural
way as the reciprocal of the imaginary part of the self-
energy of the electrons. This result is wvalid at all
temperatures. The usual kinetic-theory expressions of
viscosity are recovered in the appropriate limits, Thus
it provides an alternative derivation of the usual
kinetic-theory expressions of the viscosity.

We start with the correlation-function expression for
the viscosity tensor®

st =0V Iy [ IO T}, (D)

[
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T Present address: Department of Physics, Northwestern Uni-
versity, Evanston, Ill. 60201.
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(1965).

2 M. J. Rise, Proc. Phys. Soc. (London) 89, 373 (1966).

3 G. P. Devault, Phys. Rev. 155, 875 (1967).

4R, Kishore and K. N. Pathak, Phys. Letters 25A, 201 (1967);
see also R. Kishore, Phys. Rev. 173, 856 (1968).

57, A. McLennan, in Advances in Chemical Physics, edited by
1. Prigogine (John Wiley & Sons, Inc., New Vork, 1963), Vol. 5.
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attenuation of ultrasonic waves in metals is discussed in detail by
solving the Boltzmann transport equation without assuming the
relaxation-time approximation for the collision term.
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where V is the volume 8= (k57")~%, kp being the Boltz-
man constant and 7 the absolute temperature. The
angular brackets denote the grand canonical ensemble
average appropriate to the Hamiltonian H of the system
in equilibriumnd, J4;(Z) is the microscopic momentum flux
operator in the Heisenberg representation, and

¢ i3 (- o i) . )
o) —(H)+———()). (2)

Jiy={T i)+ o

In Eq. (2), the second and third terms arise due to
fluctuations in energy and total particle number & in
a grand canonical ensemble. The Hamiltonian for our
particular problem, that of electrons in a crystal, may
be taken as

H=3} ealact2] wq(by'de+3)
k q
—{*—kz Aqakﬂ*ak(bq—l—b_qT) . (3)
q

In Eq. (3), e is the energy of an electron in the crystal
with wave vector k. In the free-electron approximation
ex=k2/2m—yu, where m is the electronic mass and g is
the chemical potential. ay', @ and b ', b, are the creation
and annihilation operators for electrons and phonons,
respectively. 44 is the electron-phonon coupling con-
stant and w, is the energy of phonon of wave vector q.
In writing the Hamiltonian (3), we have suppressed
the spin and polarization indices for electrons and
phonons, respectively, and have put #Z=1. It is to be
pointed out that in the random-phase approximation,
the electron-electron interaction can also be included
in the Hamiltonian (3) simply by replacing 4, with
Ag°t, This has been discussed by one of us earlier. One
of the effects of electron-electron interaction is to
modify the electron-phonon coupling constant. In the
representation in which the one-electron Hamiltonian
is diagonal, the momentum flux operator and J;; are
given by

1
Jiy=—2 kikjata,
mV k

(4a)
and

. 97 45)
Jy= i+

O(Ho)
In (4h), Ho=2_« ek is the unperturbed Hamiltonian

®R. Kishore, Phys. Status Solidi 26, 133 (1968).
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(Ho— (Il M) vy, @
0— o))+m( —(N)). (4b)
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cubic anharmonic momentum-flux operator and ob-
tained an expression for the lattice viscosity and atten-
uation of sound waves in Ge and Si. In this calculation
he has made two assumptions for the relaxation time:
The first assumption is that relaxation time is indepen-
dent of the phonon wave vector, and the second is that
the relaxation time for longitudinal-wave attenuation
should be about twice that for transverse-wave attenua-
tion. This second assumption was also suggested by
Mason and Bateman and by Klemens.!? These assump-
tions are not well understood theoretically. Therefore
it is desirable to consider the problem without making
these assumptions.

In this paper we present a correlation-function calcu-
lation of the lattice viscosity within the Hartree-Fock
approximation using the cubic anharmonic momentum-
flux operator obtained by Devault.’® This expression is
the same as that obtained by Devault® if one neglects
the change in frequency due to anharmonicity. For the
relaxation time we have used the expression obtained
by Pathak.!® Klemens’s!* model is used for estimating
the parameter appearing in that expression. The solu-
tions for the coefficients of viscosity at low temperature
are obtained in the Debye approximation for phonons.
From these solutions the attenuations of longitudinal
and transverse waves for Ge and Si is calculated. In
this calculation the assumptions made by Devault?® con-
cerning relaxation times are not made. It is found that
at room temperature (300°K) the longitudinal atienu-
ation is in very. good agreement with the experimental
value obtained by Mason and Bateman,!! and the
agreement for the transverse attenuation is better than
obtained in the calculation of Devault.®

COEFFICIENTS OF VISCOSITY

We start with the correlation-function formula for
the viscosity tensor?:

.;dfj;nl:ﬁV lim j dl T ) Tim—Tw) -+, (1)

where V is the volume of the crystal, 8= (kpT)",
denotés the microscopic momentum-flux operator for
the lattice, and

(Jis)
a(H)

where H is the Hamiltonian of the system, and the
angular brackets denote the canonical ensemble average,

Jii={T3)

(2)

W, P. Mason and J. B. Bateman, J. Acoust. Soc. Am. 36,
644 (1964).

2P, G. Klemens, in Physical Acoustics, edited by W. P. Mason
(Academlc Press Inc New York, 1965), Vol. 3.

18K, N. Pathak, Phys Rev. 139 A1369 (1965).

HP G, Klemens, in Solid State P/zysics, edited by F. Seitz and
D. Turnbull (Academic Press Inc., New York, 1958), Vol. 7, p. 1
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namely,
(0)="TrePEQ/Tre #1, (3)

In second-quantized form the Hamiltonian of the sys-
tem can be written as

H= H0+H1, (4)
where
Ho=) wks(aksraka_{_%) . (5)
ks
and .
H,= Z V(3>(k151,k252,k353)A klslA kzszA k3s3
Py
+ Z v @ (1(181,k232,1(333_,k.;$4)
Ky Ko, ks, k4

$1,82,83,54

X A klslA kzszA ksesA k4s4- (6)

Here wys, @xsT, axs are the frequency and the creation
and annihilation operators for a phonon of wave vector
k and polarization s, respectively; V@ and V9 are the
Fourier transforms of the third- and fourth-order atomic
force constants; and Ayg,=ay,+ax.T. We have used a
notation where #=1.

An expression for cubic anharmonic momentum-flux
operator is obtained by Devault® and is given by

1 -
Ji=—2>_ wks(nks—i‘%)'yksﬁ: @
V ks

where #yg,=ay, ey, and yri/ is the generalized
Griineisen parameter, which in the long-wavelength
limit is given as

bk,
i L.y
Yra'=—€rs"trs —3 Z eksleksp( )

imp Pwk32
X[Gijlmpr'i‘cijmralp]' Ty (8)

where cx," is the ith component of the polarization vector
of a phenon of wave vector % and polarization s; ¢;jm,
and c¢iimps are the second- and third-order elastic con-
stants. If we assume that the polarization vectors do not
depend on the magnitude of k, but only on the direction
k=Lk/k, and that all polarization for a given k contribute
equally to the thermal energy, then we can approximate
the ensemble average of (7) by

(Jiy=1/V)(Hopy¥, 9
where

1
yii=—
127

aQ Z ')’k (10)

(H o) is the total thermal energy of the solid, and d2
is an element of solid angle in k space. In Eq (2) for
Ji; we approximate H by its harmonic part H,, and
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With the help of the correlation-function formula given by McLennan, an expression for the viscosity
tensor is obtained within the Hartree-Fock approximation using the cubic anharmonic momentum-flux
operator. In the Debye approximation for phonons and with a simple expression for relaxation time, solutions
are obtained for the coefficients of viscosity at low temperature. These solutions are used to calculate the
attenuation of longitudinal and transverse sound waves at 300°K. The calculations are compared wnth

experiment for Ge and Sj, and good agreement is found, R

INTRODUCTION

"N solids sound waves are damped by thermal con-
duction and internal friction or viscosity. The cor-
relation-function expression for the viscosity has been
obtained by many authors.~* Here we shall use the
expression for the viscosity obtained by McLennan*
to calculate the attenuation of sound waves in solids.
In the case of insulating solids, a significant contribution
to the attenuation of sound waves is due to lattice
viscosity which arises from the scattering of phonons.
Recently the phonon contribution to the viscosity has
I M. S. Green, J. Chem. Phys. 22, 398 (1954).
?R. Kubo, M. Yokota, and S. Nakajima, J. Phys. Soc. Japan
12, 1203 (1957).

3 H. Mori, Phys. Rev. 111, 694 (1938).
¢J. A. McLennan, Advan. Chem. Phys. 5, 261 (1968).

been discussed by several authors,*® using t
relation-function formula given by McLenqa "yome
authors®® have derived the expression for th
by using the harmonic part of the momentum-flux oper-
ator, which is the central quantity in the calculation of
viscosity. Devault!® has shown that the harmonic part
of the momentum-flux operator vanishes, so all the
treatments given by these authors are wrong, and it is
necessary to reconsider the problem using the anhar-
monic momentum-flux operator. Devault® has used the

( ;G) P. Devault and J. A. McLennan, Phys. Rev. 138, A856
1965
¢ M. J. Rice, Proc. Phys. Soc. (London) 89, 373 (1966).
™ P, Gluck, Proc. Phys. Soc. (London) 90, 787 (1967).
8 R. Kishore and K. N. Pathak, Phys. Letters 254, 201 (1967).
9 G. P. Devault, Phys. Rev. 155 875 (1967).
0GP Devault Phys. Rev. 149 624 (1966).
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creation and annihilation operator, the conductivity is given by [10]

‘ . B
| ez
Ouv = — 3 lim e~ di dl Z Z (”9)1 1 (vﬂ)lzln X
=0 417 ll
1| 0 0 1%1 2
, | dw, d __efe —&w = @) (E+12)
‘s, * f f ®1 002 (B 1) (oFen 1 1) © g
i —00 —oo

Ql

"_ X {Gy,, (wﬂL ie) — G 1e)} {6y, “’2‘1"’ &) — Gy, ( z‘9)}

(9)

vhere Gy, 1,(w) is the Fourier transform of the Green’s function
v - G 1) = —i 0 (8 — ) {ag(t), ag (')}, (10)

where 0(f) is the Heaviside unit step function and cu:ly brackets denote the
anticommutator.. In the present case when the electron in a crystal is deseribed
by the Hamiltonian (3) the expression for the Fourier transform of the Green’s
function is [8] 4
G ! out 11
wl®) = G T I, — M) (1)
where M, (w) gives the effect of electron—phonon interaction on the smgle par-
ticle energy.
If we substitute G(w) from (11) in (9) and perform the integration over ¢
and 4, we get

g = i {; @ @dn — 3 (o (vﬂ)zzz,} «

2 )
7T 1f2
|4 L+l

~ °°d d efwy _ efiew, 1 ’
~ f f “1 908 Ty — )t (efen + 1) (Fen + 1)
Iy (,) T (wy)
| " @ =B T @) {(ea— B+ Tf @n)}”
where By = E; + Ay(E;); 4; and I are the real and imaginary parts of the
M z( ), it can be shown that for » == u, the first term on the right hand side of
~equation (12) vanishes. After substituting the values of the matrix elements of

the Fomponents of velocmy from equation (6) in equation (12); integrating over
w, and wy and assuming I'(w) a small quantity we get

(12)

8 2 Wy, 1, Wi, 1,
0',‘,, = — Z (E—f_—E'—)'a(lﬂl, kz) X
X [T3"(Ry) 17”‘”’-‘( ) — Ttk Tk A, L —fr), - (13)
where
' . 1
PB4 1

The expression (18) gives the transverse electrical conductivity under elec-
tron-phonon interaction. If we neglect the effect of electron—phonon interaction .
e. if we take Ey~ B, = 5 — u we get the same expression as obtained by .




698 R. KiSHORE: On Transverse Electrical Conductivity of Metals

Leribaux [7] in Zeroth order in electron—phonon interaction. Leribaux used
‘the perturbation theory and diagram technique. We feel this derivation more
satisfactory because it considers the contribution of electron—phonon interaction
-on the transverse electrical conductivity in a more complete manner. Leribaux
study becomes a special case of our investigations. :
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A simple force model calculation of the shear viscosity of insulating solids is presented within the Hartree
Fock approximation. It gives a very good estimate of the shear viscosity at high temperatures.

Recently Rice [1] has discussed the shear
riscosity of insulating crystals using the corre-
lation function formula of Mclennan. After mak-
ing some approximations Rice obtained the ex~-
pression for the viscosity tensor in terms of the
correlation function of two number density ope-
rators. It is evident from eq. {2.7) of Rice that
the evaluation of viscosity tensor essentially in-
volves the evaluation of correlation function of
two number density operators. In this respect it
is very similar to the calculation of the lattice
thermal conductivity.

Following the analysis of Deo and Behera [2]
one can express the viscosity tensor in terms of
the Fourier transforms of the one phonon Green
function

G % (0 =-16 () ([ags®s apper @D (D)

For the anharmonic crystals [3] the expression
for the Green function can easily be obtained and
finally one gets the relaxation time expression
for the viscosity tensor as

(kBT)_l 2
Ngilm = 50— 24 Y ks €i(Ks) ejlks) X
Glm =74 kZS ks 7 J @)

37,2, exp(e g o/kpT)
3 “{exp(ey /kpT)-1}12T

where €. and T’y are the renormalized phonon
frequency and half width respectively. Here and
in what follows we use the notation of Rice.

In ref. 3 we have evaluated the phonon frequen-
cy shift and width for a very simple anharmonic
model of solids. To relate the viscosity to the
interatomic forces in solids and make an expli-
cite calculation, we here choose the anharmonic
coupling parameters given by Leibfried and
Schlomann [4] for a nearest neighbour central

X (e (Ks) e,y (ks)-262

force model. After comparing this model to eq.
(56) of ref. 3 we get

Nj/wpj = 6%/36y3 (3

where v and 8 are the harmonic and cubic fdrce
constants respectively. Substituting this value of
Aj/wL]’ we obtain from eq. (59) of ref. 3

Ty = 02k T (ka)2wy ¢ 0 (k,, - 7)/384/3 (4)

We now evaluate the viscosity tensor for an
isotropic solid using € = €5 ¢ sin 3nka and eq.
(4). 1t is clear from the analysis of ref. 3 that we
can write €7 o = wy J(1+AT), where the coeffi-
cient A essentially involves the anharmonic pa-
rameters. We thus obtain for the shear viscosity
at high temperatures as

52 y3 Y,
N=—5 o5 —5kmax. (5)
572 6202 g2 o
This can be written as
26 3 1.
n= 522 S(1-24T) (6)

where v is the sound velocity. This is a very im-
portant result. It relates the shear viscosity to
the atomic force constants. Therefore, experi-
mental study of acoustic attenuation in solids
will be useful to understand the interatomic forc-
es in solids. The conclusion of Rice [1] that the
shear viscosity is independent of temperature at
high temperatures is not quite correct, if one
takes into account the effect of phonon frequency
shift.

We estimate the values of shear viscosity of
solids taking a Morse potential. Using the sub-
limation energy data to evaluate the Morse pa-
rameter, we obtain from eq. (6) for gold the val-
ue of the shear viscosity about 2 millipoise. This
value is the same as reported by Rice [1] by a

201



	Title
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	References
	Appendix

