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RESUME 

The unique feature of the transition metals is the presence 

of somewhat tightly bound electrons in d-bands and more mobile 

electrons in the s band. The magnetism of the transition 

metals is presunably associated with the d banns. However 

the electrons in the s band are magnetically polarised due to the 

magnetism associated with the d electrons.. Therefore for the 

discussion of the magnetic properties of the transition metals 

the s and d bands should be considered simultaneously. At 

this early stage of the theory, it is excusable if we ignore 

the fivefold degeneracy of the d-bands. ' Accordingly (re limit 

our study to a single nondegenerate d band described by the 
tight binding form. and a nearly free electron like s band. 

Anderson' s -theory of dilute allays.  of the transition 

metals is able to explain the occurrence of the localized 

magnetic moment on transition metal impurities dissolved in a 

nonmagnetic metal. In .Anderson's model '  the band states of the 

host metal are treated as independent quasi-particles. The 

impurity is introduced as. an extra-localized orbital which 
interacts with the band states by a hybrid matrix element. All 

two-body Coulomb interactions are neglected except the -Coulomb 

interaction between the opposite spin electrons on , the localized 

orbital. As an extension of this model, a transition metal can 

be imagined as a system having a localized d orbital at each 

lattice site. However, this is an approximate picture of a 

transition metal, in the sense that there would be no direct 



interaction between d electrons on the different sites-only 
an indirect coupling via the conduction electrons. It is well 
known that a considerable fraction of the width of the 3d band 
in transition metals arises from the overlap of the 3d wave unction 
on neighboring lattice sites. We assume here that the d 
electrons form a band and they interact among themselves only 
via the Coulomb interaction between opposite spin electrons at 
the same lattice 'site. This i s the Hubbard model for a single 
nondegenerate narrow energy band. The effect of the s band is 
taken into account by adopting the one-particle interaction 
between s and d electrons given by Anderson. Using the Green's 
function technique, the self con $stent ferromagnetic solutions 

of this model are obtained within the Hartree-Fock approximation. 
An approximate solution of the correlation problem is obtained. 
The ferromagnetic solutions for which the correlation effects 
are taken into account are compared with those obtained in the 
Hartree-Fock approximation. The Ynodel is also used to investigate 

the role of the s-d interaction in metal-nonmetal transitions. 
It is possible to understand the difficulty of observing the 
pre ssure-induced- nonmetal-metal transition. 

The Hubbard Hamiltonian, which is certainly 'a gross 
oversimplification for real systems, has been extended by 
including the interatomic Coulomb interactions. An approximate 
so3~ution of the correlation problem for this model is obtained and 

the conditions for ferromagnetism are discussed. 
The dynamical susceptibility for a system of electrons 

in a narrow energy band has been studied. The Hamiltonian of 
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the system consists of single particle energies of , electrons 

in the absence of interactions'  the intraato!nic Coulomb 

interaction and interatomic Coulomb and exchange interactions. 

An approximate expression for the susceptibility is derived by 

using the random phase approximation. Instability of the 

paramagnetic state against the ferro and the antiferromagne tic 

states is discussed. An expression for the' dynamical susceptibil 

ty is derived for a system with strong . intraatomi c interaction. 

In this case the conditions for the paramagnetic instability 

against the Ferro and antiferromagnetic state, and the spin-flip 

excitations are discussed, 

The Hamiltonian, used to study the dynamical susceptibilit 

has been used to investigate the phenomenon of metal-nonmetal 

transitions in the forro and antiferromagnetic systems having 

one. electron per atom. In the ferroir-:agnetic system there exist, 

two phase transitions at two different critical temperatures; 

TM at which a ferromagnetic nonmetal changes into a ferromagnetic 

metal s  and Tc  at which system becomes a paramagnetic metal. 

Tc  is. always higher than TM. In an antiferromagnetic system 

two phase transitions,, as found in ferromagnetic system, do 

not occur; In ferromagnetic system at absolute zero a first 

order phase transition, where a ferromagnetic nonmetal changes 

into a paramagnetic metal, occurs at some particular values of 

interaction parameters. In antiferromagnetic system no phase 

transition is possible at absolute zero. 

In appendices the Hubbard model has been solved using 



iv 

improved decoupling approximations for the higher order Green.' s 

functions: The results agree with the exact results known in some 

limiting cases. It is found that within the Hartree-Fock 

approximation, the Hubbard model for a single nondegenerato band 

gives the exchange spliting of the d band in nickel in close, 

agreement with the value derived from the detailed energy band 

calculations. An expression for the electronic spin polarization 

p`r) due to s-d exchange. interaction between the conduction 

electrons and the localized impurity of spin 1/2 in a dilute 

magnetic alloy is obtained. For large distances p(r) is found 

to exhibit exponentially damped behavior. 
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CHAPTER 	I 

INTRODUCTION 

I. THEORETICAL CONCEPTS IN MAGNETISM 

A. Itinerant versus Localized-Spin Models 

For over forty years the occurence of fe-rromagn.eti n 

or antiferromagneti sm in transition metals have been a subject 

of much speculation. Broadly speaking there have been two 

schools of thought about this problem and all others may be 

considered as variations on these. two themes. The Heisenberg)  

model is based on the assumption that the electrons are localized 

on atoms and the interatomic exchange effects can be treated 

by introducing an interaction - 2 Ji  5i  S between the electrons 

localized on the sites i and J. Here 1 is an exchange 

integral, 5i  and S- are spin operators corresponding to the 

electrons at the sites I and j. The itinerant electron model, 

on the other hand, developed by Bloch ,2  Stoner and Slater,4  

is based on the competition between the kinetic energy of the 

electrons in a band and electron exchange in the Harrtree-Foek 

approximation. The literature on the itinerant electron model 

has been reviewed by Mott $  Herring,6  and Beeby.7  

Experimental facts suggest that neither of these models 

is correct in its naive form.6  Itinerant electron model 

explains, the d band specific heat, nonintegral magneton n n.bersy 

the low entropy of the entiferromagnetic transition in 

chromium and the absence of magnetic disorder scattering of 
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neutrons above its Neel point. On the other hand experimental 

evidences from the critical scattering of neutrons, entropies 

of ferromagnetic transitions, spin waves and the behavior 

of ferromagnetic moments on alloying favor the localized 

picture. In the light of modern refinements of the theories 

such argi.znents are not quite significant. For -example when 

correlation effects are included in the itinerant electron 

theory it provides natural places for spin waves, critical 

fluctuations and other phenomena once considered expli able 

only on the localized . model.. The localized model, in turn, 

has been generalized not only in the d ir.ection of allowing 

conduction electrons to mediate the exchange coupling 

(indirect exchTe), but also in that of allowing the magnetic 

electrons to participate in conduction. Thus each model has 

acquired some of the principal features of the other. However 

a clear residue of evidence remains in favor of an itinerant 

model for iron group metals and a localized model for rare 

earths. For iron group, moreover, galvanomagnetic data and 

other evidences suggest that the d like electrons are quite ,  

mobile and hence the former belief$"lI  that the d electrons 

constitute a low mobility group clearly separable from 

conduction electrons, must now be discarded. 

We restrict our study to the theory of magnetism in 

transition metals and therefore we shall not discuss the 

Heisenberg model which is particularly suited to the case 

of insulators. For a review of exchange in insulators one 



may refer to lnderson. 2  In the next three subsections a 

summary of the literature on the ferromagnetic, collective 

excitations and spin density waves based on the itinerant 

electron model will be given. 

B. Ferromagnetisn 

In 1938 Wigner refining his earlier calculations14  

of the correlation energy of a free electron gas$  argued 

convincingly that, in contrast to Bloch' s Hartree-Fock result, 

such a gas would probably not be ferromagnetic at any density. 

The physical principle involved is that the Coulomb repulsion 

of electrons of antlparallel spin will always keep them 

reasonably well apart. Thus the electrostatic energy of a 

nonferromagnetic state, which has more antiparallel pairs 

than a ferromagnetic state, will not be as positive in an 

exact wave function as in a detenninantal one, for which 

antiparallel electrons are spatially uncorrelated. After 

Wigner's work several authors15 2̀3  concentrated their atten.- 

tion on this problem of electron correlation in free electron 

gas. Apart from the intrinsic interest of this problem, 

the free electron gas serves as a model for the conduction 

bands of metals and alloys. 

When the electrons involved are not free, but merely 

migrate among the rather compact d shells of the various 

atoms of transition metals, the overestimate of the energy 

of the nonmagnetic state relative to the ferromagnetic state 

ought to be even greater. One can of course argue that the 
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narrow width of the d bands reduces the kinetic energy 

relative to the exchange .energy, thus favoring ferromagnetic . 

But this effect by itself is of essentially the same . nature 

as decreasing the density of a free electron gas, and if one -

grants that a correlated electron gas is not ferromagnetic 

at any density, then it is not obvious that a correlated 

assembly of itinerant electrons in narrow bands can be 

ferromagnetic. 

The responses that were made to the challenge posed 

by the problem of correlation may be grouped into those 

which undertook to graft correlation correction onto existing 

theories of the Hartree-Fock type, and those which made on 

entirely new start based on the many electron states of 

individual atoms. Papers of the former group were usually 

rather general and did not undertake quantitative estimates 

of correlation for real metals. Typical of this group is 
the work of Lidiard24  who pointed out the need for a more 

adequate treatment of correlation in the Stoner model'  and 

suggested that use of a screened. Coulomb potential might take 

account of some of the principal correlation effects, A 

subsequent discussion by Wohlfarth25  of the role of correla-

tion in the Stoner- model was also limited in aim. in the 

same period Slater 6  advocated a configuration interaction 

treatment with the band model as a starting point. 

The other approach to correlation actua-Ily started 

some years before Wigner s work. The foundation was laid by 

Slater27  who proposed a model of a metal as an array of 
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atoms,. some neutral with a Heisenberg type coupling of 

their spins and some in the form of positive or negative 

ions. This model was greatly extended by Schubin and 

Von sov ski .28  Although it seems never to have been put into 

a form suitable for practical quantitative calculation'  it 

is appealing in that it keeps electrons with antiparallel 

spins reasonably well apart, and yet allows electrical 

conduction, nonintegraa. magneton niinber etc. Independently 

Wolf29  proposed a model based on neutral many electron 

atoms in ground and excited states, the later having a 

different magnetic moment from the former and the excitations 

on neighboring atoms being coupled. 

An extreme form of this model was discussed in 1941 by. 

Hurwitz 0  but it appeared in literature in 1953 when 

Van Vleck3l  published an elaboration of -it. In its original- 

form, which he called the 'minimun polarity' model, the d 

electrons of a metal like nickel were envisioned as distributed 

anong atoms in states closely resembling d10  and d9  states 

of the free atom, the relative nnbers being chosen to give 

agreement with - the empirical nunber of d holes. The holes 

(d9  configuration) were envisaged as free to migrate through 

the lattice, subject to having to avoid one another. Van Vleck 

generalized the model by showing that these d holes could 

lower their energy appreciably by migrating more freely 

and occasionally occurring in pairs on the same atom giving 

this atom a d8  configuration._ Since a d8  and a d10  configu-

ration together have a much higher energy than two d s, this 



occurrence . should be moderately infrequent. However the 
cost in energy should be somewhat reduced by the screening 
effect of the 4s - 4p electrons% In a rough calculations, 
beset by many difficulties and uncertaintitie s 9 he argued 
that the participation of d8 configuration with their Hund's 
rule coupling of the two d holes, might well be sufficient 
to explain the ferromagneti sm of nickel. 

- It is clear that models such as that of Hurwitz and 
Van Vleck are properly described as correlated itinerant 
models rather than belonging to the localized family. 
Considerable further insight into the properties of such 
highly correlated narrow-band models has been provided by 
some recent theories. These theories are much more mathe-
matical in nature and based on field theoretical techniques. 

In the language of field theory the general Hamiltonian 
for a system of electrons in a solid can be written as 

H = ~f 	(x~) [ - a2/2m + Vct )J To, (1) d3r 

crcrI 1 J'Tc~ (~ x~) F, (a') v(-r) +'(') fr(1) ~ird3
r' 

(1.1) 

2~ Here and hereafter we s.ssune that h = 1 	ms the 

kinetic energy operator for the electrons and Vc(~r) represents 

the periodic potential which an electron experience due 
to the presence of positively charged ions. V(r-r) is the 
Coulomb potential between two electrons. T tor) and per. (r) 

are the creation and the annihilation field operators at 
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the space point r corresponding to spin o, They satisfy 

the usual anticommuta.tion rules for fermions at equal times 

'~..(r), %! (x`11.- = s0.Cr ,6 (.,r 	
(2+2' 

[p0_(),  +o_ , ( j )j ~ = E % ( r) , ~~~, (r' )]~ = 0 

where 	 [AB1+ = AB -f BA, 	 (1.3) 

It is very difficult to develop any theory of 

electron correlation in narrow energy bands by taking into 

account the `hole Haniltonian (l.l): Therefore it is 

preferable to develop a theory with a Haniltonian which 

exhibits the most important features of the system under 

investigation and at the sane time simple enough to treat 

mathematically. An approximate Haniltonian for narrow energy 

bands can be obtained by representing the H .iltoni an (1.1) 

in the Wannier representation. In Wannier representation 

the field operators +,- (r) and *, (r) are expressed as 

4'() r ñ aino- 1in(r) 

sr' 	in ncr- in 

where a 	and a 	are the annihilation and creation 

operators for an electron of spin cr in the band n at the 

lattice site i.. ' These operators satisfy the ant1commutation 



rules 

aina- , a jna- J =. 81 j 6nn, 8o a- ' 	
(1.5) 

	

1 111- 	a OzI+ _ . jncr 	ajn cr + - 0 

is the Wannier function for the band n localized at 
the lattice site i. Then the values of '-!-'a-) and 
from Eq.(1.4) are substituted in q.(1.l), the Hamiltonian 
(1.1) in Wannier representation takes the foxsn 

tflrji 
11=. 	T fl .L 	a. 	+ 1 	ln2n.114 	X i 	'in lo- 	 jn2v' 2 ±jkf 	i jkf, 

nln2 	 hln~r~Zn4 
moo- 	;. 

	

ainla- a Jn2a- i a/ a. 	,., 

(1.6) 

where 	Tiny = !c'in ~~)~o 	d3r,(i.7) 

	

n1n2n~n4_ 	`' 	•+ / -r -~1 	-~ 	3 3 
vi Mkt 	1 '~.nl(r) ~jn2(r 	r) ~ (r) ~:'4(r) d rd r 

(1,8) 

The Hai_ltonien (1.6) serves as a basis to obtain the 

appro I.mate HPmiltoni en exhibiting the most important features 

of the system. A very popular model for the study of electron 

correlation in narrow energy bands is the one bead Haniltonian 
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H = Z Ti 3 aia- ages' + 2 	nio" ni - 	(1.9) 

where I = Viiii  is the intraatomic Coulomb interaction and 

= aicrt aim  • Since we are considering only one band, 

the band indices are dropped out. This H.aniltonian is obtainedd 

on the assunption that interaction between electrons are 

of very short range so that inter-atomic interactions can 

be neglected in comparison to the intraatomic interaction. 

The Hubbard model (Hamiltonian (1.9)) invites the 

attention of the theorists because of its simplicity and 

richness. It we could-  completely understand the physical 

predictions of this model, we would be helped in analysing 

the models which correspond to they real situation. Once we 

have decided to analyse a model'  however, it Is required of 

us to make no distorting approximations. Little real progress 

cen result from an uncertain treatment of a simplified model. 

In search of the exact solution of the Hubbard model several. 

investigators 2-47  have concentrated their attention on the 

study of this model using different approaches and approxima- 

tions. A review of the early approaches, of correlated wave 

function by Gutzwiller, 2  of two-body scattering operator by 

Kenamori X33  and of one particle Green' s function by Hubbard,34  

is given by Herring. G  Later on these approaches have been 

used by many authors 	using different approximations. 

Recently Harris and Lange have devised a method of 

analysing the Hubbard model, Their technique illuminates 

several properties of the spectral weight and density of 
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state functions for the electrons which are unambiguously 
real within this model and not manife stations of an approxima-
tion scheme. Their results therefore shed considerable light 
on the model, the extent to which the model is sound and 
give information about the real narrow energy-band systems 
with which it is associated. Their results can also be used 
to check 'particular aspects of appro~dmation schemes to see 
if the relationship they derive are found to be true for 
such appro Am ate solutions. Pratt and Caron44 suggested 
a cluster type treatment - analogous to the Oguchi48 treatment 
of ferromagneti sm. Esterling and Lan-ge45 applied a degenerate 
mass operator perturbation theory to investigate the 
Hamiltonian (1.9). In spite of all these developments, it is 
not possible to solve the Hubbard model exactly in three 
dimension. However .t. has- been shown that in one dimension 
it is exactly solub7.e.49 

The Hubbard model is too simple to represent the 
real situation in the transition metals. To deal with the 
reality one must consider the degeneracy of the d band y the 
interatomic interactions, and the presence of the s band 
The problem of degeneracy in d band has been discussed. by 
Gutzwi.11er a22 Kananori'22 axk Hubbard2 and Rothe for the 
short range Hamiltonian (1.9) which does not include the 
interatomic interactions. Effect of interatomic interactions 
has been discussed by many authors ©-` 2 The presence of e 
band has been considered by Smith. and Kishore and Joshi 
by taping into account the effect of hybridization of s and 
d .bands on the Hubbard model. 
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C, Collective Excitations 

A very important step in the evolution of itinerant 

electron theories of magnetism was the recognition that in 
a correlated , wave function individual-particle and collective 

type of elementary excitations may co-e i.st. It is experimentall-

found that the spontaneous magnetization decreases with 

increasing temperature T as '1'v/3  at low temperatures,$6  

Theoretically, Bloch has first shown that there exists a 

collective motion of spins in a ferromagnet, so called 'spin 

waves ,' and the excitation of spin waves decreases the 

magnetization as T 3/2  in the Heisenberg model. The absence 

of spin waves on an itinerant model was thought to be a serious 

drawback of the itinerant theory until: _ it was shown by 

Slater 8  in 1937 that spin waves arise quite naturally out 

of a treatment of correlation effects in an itinerant electron 

model and one gets practically identical formulas starting 

from either the itinerant or localized picture. This view 

was later amplified by Herring and Kittel59  and by Herring.60  

The calculations of spin wave energies in a narrow 

energy band have been made by several authors.23537-399  50,61-63 

Most of these calculations are performed within the random 

phase approximations  Sakurai;39  Roth'3'  Nagaoka S and Morris 

have gone beyond the random phase approximation to include 

the correlation effects on the spin wave energies. The 

study of , spin waves has not been confined only to the one, band 

Hamiltonian. :pin waves in multiple band model have been 
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discussed by Mattis, 	Thompsonn I and Yanada and Shimi zu. 

In multiple band model the spin wave spectra consist of one 

a2coustical intra-band branch, some optical intra-band branches 

and other branches due to interband transitions which are 

called interband spin waves. 

It follows from the general considerations that in 
single band model for ferromagnetic metals when the wavelength 

of a spin wave is long,. its energy a must be related to the 

wave number q by to = Dq in which D is a constant. Experiments 

have adequately confirmed the validity of this expression67  

and values of D have been determined in numerous cases. 

Edwards 	has recently given an exact expression for this 
quantity. This expression cannot be evaluated in the general 

case. Calculations of D for some particular models have 

been reported. '70  

It Is well known that there is another collective 

motion due to the density fluctuation of electrons in metals, 

which is called plasma oscillation or a plasnan,71  Thi s 
plasnon is experimentally found by inelastic scattering of 

electrons not only for alkali metals but also for ferromagnetic 

transition metals.71  The plasnons in an electron gas 2kut were 

first studied theoretically by Bohm and Pines, 72 ,73  The 

dispersion relations of pla; non in a ferromagnetic electron 

gas have recently been studied by Yanac1a.74  So 'ar no attempt 

has been made to study the plasnons in narrow energy bands. 



D. Spin Density Waves 

Ever since the original paper by Overhauser75 
suggesting the existence of spin density waves in free 
electron gas there has been much debate on their stability 

in real metals. The foundation of this concept was laid 
down by Slater in 1951. Spin density waves (SDW) are defined 
as the states of uniform, or nearly uniform, electron density 
but nonuniform ddnsity of spin magnetization. The uniform 
states! nonmagnetic and ferromagnetic can be considered 
as special cases of the simple SDW states (where the electron 
density is uniform). Specifically the ferromagnetic state 
can be regarded as a'SDW of wave vector q = 0, The non-
magnetic state, on the other hand ' can be regarded as a simple 
SDW with any arbitrary w°~ve vector q and amplitude zero. 
Several calculations 0'77 	of SDW states for various 
simplified models have been performed. The results of 
these calculations have demonstrated the existence of stable 
finite amplitude SDW s under proper conditions, 

13 

LI 



14 

II, METL-NONNETL TRANSITI®N'8 

We differentiate between metals and nonmetals 

customarily in terms of a model of noninteracting electrons,85  

However this model does not always prove satisfactory and 

in some situations it may become necessary to consider the 

Coulomb interaction between the electrons. Wigner87  in 1938 

specifically introduced the electron-electron Interaction 

into the problem and suggested that at low density a free 

electron gas should crystallize in a nonconducting state. In 

1949 a simple model was introduced by Mott88  for the metal-

nonmetal transition. He considered a lattice of hydrogen 

atoms arranged in a regular lattice. With only one electron 

• per atom, two is states available for them, such a system 

constitute a' half filled band, according to band theory. Thus 

it should be a metal. It i s physically clear, however, that 

for large values of the lattice constant we have a system 

of independent hydrogen atoms and this 'should be an insulator. 

To explain this Mott imagined the system as a lattice 

of electrons and holes. The holes are all. a.tomi'c states not 

occupied by electrons. If an electron wants, to leave its 

atom, or rather its hole '  it feels an attractive potential. 

For a large lattice constant this is a Coulomb attraction 

which can keep the electron and the hole b&und. Also the 

overlap of wavefunctions from one atom to the next Is a.all, 

so the electron and the hole are not much inclined to move. 

As the lattice constant diminishes, the Coulomb attraction 
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becomes screened and also the atomic wavefunctions overlap 

more. So- the electron hole attraction is diminished while- 

their motion is enhanced. Eventually a bound state cannot 

be maintained and the material becomes a metal, 

A more quantitative di scussion of the transition 

proposed by Mott has been given by Kohn89  and Hubbard.34  

Kohn has considered a crystalline array of monovalent atoms 

spaced a distance apart and showed that for large enough 

values of the -lattice constant such an array is a nonconducting. 

Hubbard has analysed the one baud Hamiltonian (1.9). He 

has shown that for vanishingly small bendiidth (atomic 

limit), the band is split into two sub bands, separated by 

an energy gap of order I. Thus, for the case of one electron 

per atom, the lower band is completely filled and the upper 

band is empty at absolute zero. . As the ratio of bandwidth 

to I is increased, the gap decreases until a critical value 

is reached, at which point the two bands overlap and hence the 

system changes from a nonmetal to rietal. Since the gap 

decreases slowly to zero, conductivity will increase gradually 

as we pass through the critical ratio, unless a first order 

transition occurs. This is not a violent transition as 

Mott predicted. .'Later on Kemeny,94  Kemeny and Caron91, and 

Pratt and Caron92  showed the possibility of Mott transition 

in, the Hamiltonian (1.9). Recently Langer et al.93  have 

shot,, the existence of two phase transitions in Hubbard 

model. TC by considered an antiferromagnetic system and showed 

that at a temperature T the system becomes magnetically 
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disordered and at a high temperature TM  the atoms loose 

all. vastige of localized moments and nonmetal-metal transition 

occurs. 

It i s not of course the case that all metal-nonmetal 

transitions are due to eletron-electron interaction and 

inexplicable in the model of noninteracting electrons. 

Naturally a change of crystal structure may lead to a band 

gap, and it has been suggested that this is what happens 

in the vanadium oiidea4'98  Also a metal-nonmetal 

transition can occur at a Neel point, as predicted by Slater 6  

and observed in NiS.96  Then of course in the Wilson model 

of noninteracting electrons any divalent metal will become 

a nonmetal if the lattice constant is increased above a critical 

value. There i s another kind of transition which can be 

described in the model of noninteracting electrons, and 

which Mott97  hn,s termed as the 'Anderson transition.' 

Anderson98  in 1958 considered an array of hydrogen atoms far 

enough apart for the tight binding approximation to be 

applicable and for the band width i' to depend on the interaction 

between nearest neighbors only. He supposed that a potential 

energy V was applied at each atom n ! with a random spread , Vo. 

He showed that when Vof exceeded a critical value, a transirtion 

from a metallic to a nonmetallic state occurred. Also there 

is an excitonic insulator theory of metal-nonmetal transition 

described in a nunber of papers.99-101  The entire subject 

of this theory is reviewed and the latest work is presented 

in the article by Halperin and Bice.102 
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III. PRE; ENT WORK 

Many problems in theoretical physics are attacked 

by considering models with mathematical descriptions which 

are usefully simpler than those of real systems. 	Of eource, 

the model is usually not exactly soluble and consequently 

approximations must be, employed. Thus we often find 

ourselves with approximate solutions to a model problem.. 

When we want to know how to make connection with experiment 

two levels of questions arise. First, how wall do the 

approximate solutions reflect the exact properties of the 

model, end. then second, of course, how well does the model 

reflect the properties of real system? 

The present work directs itself for the most part 

at the second type of question. The Haniltonian (1.9) is 

an oversimplification if applications to real materials are 
contemplated. It does, ho-vreve~ 'urns sh a situation in which 
many approximation schemes which may be applied to actual 
metals can be tested by comparison with exact re suZts for the 

model. In addition s it is possible to extend the model 

either by including other bands, or by extending the range 

of the electron interaction to include nearest neighbor 

lattice sites® 

In Chapter II we extend the Hubbard Haniltonian 
by taking into account the presence of s band through the 

hybridization of s and d bands. The self-consistent 



ferromagnetic solutions are obtained within the Hartree-Fock 

approximation as well as in an approximation which takes 

into account the correlation effects. The ferromagnetic 

solutions for which the correlation effects are taken into 

account are compared 'with those in the Hartree-Pock 

approximation. 

'.In Chapter III the effect of electron correlation 

on the ferromagnetism of a transition metal is investigated 

by taking a model Hamiltonian which includes the interatomic 

Coulomb interactions,in addition to intraatomic interaction 

in the Hubbard model. An approximate solution of the 

correlation problem for this model is obtained and the 

conditions for ferromagne ti sn f®r this solution are discussed. 

In Chapter IV we study the dynanical susceptibility 

for a system of electrons in a narrow energy band, The 

Hamiltonian of the system consists of single particle 

energies of electrons in the absence of interactions, the 

intr atomic Coulomb interaction and interatomic Coulomb 

and ea:chenge interactions. A. approximate expression for 

the susceptibility is derived by using the random phase 

approximation. The instability of the paramagnetic state 

agLnst e-.ferro• and the antiferromagnetic states is 

• discussed. We also study the dynanical susceptibility for 

a system c electrons with strong intraatomic interaction 

• where the validity of the random phase approximation is 

dubious. In this case in addition to the conditions for 
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the paramagnetic instability against the ferro and the 

antiferromagnetic stateswe have also discussed the spin 

flip excitations. 

In Chapter V we study the metal-.nonmetal transitions 

on the basis of the Haniltonians used in Chapters II and 

IV*  The existence of two phase transitions in ferromagnetic 

systems and the difficulty of observing pressure induced 

nonmetal-metal transitions are discussed. 

In appendix A magnetic solutions of Hubbard model 

are obtained using an improved decoupl i g scheme for higher 

order Green's 'functions. Solutions are found to agree 

with the exact results in limiting cases. In appendix B 

exchange splitting of the d band in nickel i s discussed 

within the Hartree-Fork approximation. In appendix C an 

expression for electronic spin polarization due to s-d 

exchange interaction between the conduction electrons and 

the localized .impurity of spin 1/2 in a dilute magnetic 

alloy is obtained. For large distances it is found to 

exhibit the exponentially damped behavior. 



20 

IV. A GREEN" s FUNCTION TECHNIQUE 

In the succeeding chapters our method of calculations 
will be based upon the Green's function technique described 
by Zubarev.103 In order to establish the notation, the 
principal- definitions and basic equations of this technique 
are briefly reviewed in this section. 

Following Zubarev103 the double time temperature 
dependent retarded (+) and advanced (-) Green's functions 
involving two operators A and B are defined by 

<<(t) B(t')>>-~_ - i 0(t-t') <[A(t), B(t')!,> 	(1.10) 

where 

[A'B171 = AB + MBAs 7i = 1 (whichever is more 
convenient). The time dependence of operators is defined 
►A 

A(t) = eiH t A e-iH t 

where 	H = H -/xNP 9 	 (i.11.) 

1w i s the chemical potential and Np is the operator for 

the total niber of particles., 0 (t) is the unit step 
function, unity for positive t and zero for negative t. 
The angular brackets <....> denote a grand canonical 
ensemble sve.tage defined by 

Tr a°PH 0 

Ti' e'~ 
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where, 3 r 1/I BT, kB i s the Boltzmennn' s constant and T is 

the absolute 'temperature. 

The Green's func-tions are the functions of (t-ti ), 

This can easily be seen by writing down the time dependence 

of the operators and using the cyclic property of the 

operators under the Tr. sign. Then one, can define the 

Fourier transform of the Green's functions with respect 
to real 0u 

<<A,B>>{ 1) 	i®0 <<A(t) B(t' )rat 	e41.(0 t t- #'i~) d(ti-t
1 w  2v  ) 

(1.12) 

In the case of the retarded (+) function the integral (1.12) 
converge: also for complex cu provided Im, uo>0, so e~3 

can be defined and is regular function of co in the upper. 

half of the complex w_plane , Similarly' <<A,B>> 	is a 

regular function in the lower half of the complex w-plane.. 

Une may now define 

<CA B> = << ,B» ) 	if lm w > 0 

ifImw<0 

which will be a ftncticn regular throughout the whole 

complex co-plane except on the real aids. By differentiating 

the equation (1,10) 4th th respect to t and then taking the 

Fourier transform (1.12), , it can be shown that GGA9B»w 

satisfies 
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i 
= 2 < [A,BJ,> - << [A,H'] ~ , B>> 	(1.13) 

The correlation function <B(t) A(t)> can be obtained 
from the spectral theorem,1 

'X' << ,B>> e- <<A,B>>0)_ j E -iw (t- t' ) 

(1.14) 

Equations (1.13) and (1.14) together form the essential. 
basis of calculations with these Green's functions. 



CHAP TER IT 

FERROMAGNETISM. -I. HYBRIDIZATION OF s AND d BANDS 

I. INTRODUCTION 

Anderson's theor °4if dilute alloys of the transition: 

metals is able to explain the occurrence of the localized 

magnetic moment on transition metal impurities dissolved in 

,nonmagnetic metals. in Anderson's model the band states of 

the host metal are treated as independent quasi-particles. 

The impurity is introduced as an extra localized orbital, 

which is mixed with the bend states by a hybrid matrix element. 

All two body Coulomb interactions are neglected except the 

Coulomb interaction between the opposite spin electrons on 

the localized orbital. As an extension of this model a 

transition metal can be imagined as a system having a localized 

d orbital at each lattice site. Recently such a model has. 

been analysed by Smith.5 4  However, this is an -approximate 

picture of a transition metal, in the sense that there would 
be no direct interaction between the d electrons on different 

sites, only an indirect coupling via the conduction electrons. 

It is well lsnown that a considerable fraction of the width of 

the 3d band in transition metals an se s from the overlap of 

the 3d wave -functions on neighbouring lattice sitos.106  

Here we assn ue that the d electrons form a band and 

they interact among themselves only via the Coulomb interaction 

between opposite spin electrons at the sane lattice site. 

The effect of the s band is taken into accounnt ' b°y adopting the 
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the ith lattice site specified by lattice vector 1. I is 

the Coulomb interaction between electrons of opposite spin 

at the same lattice site. n 	and nio„ are, respectively, the 

nunber operators for the s electron of wave vector k and 

spin o and the d electron of spin c- at the lattice site ;. 

N is the total number of atoms in the system. V-d is the 

hybrid matrix element defined by 

V~d = S d3 r +d (r) H0( r) 
	

(2.3) 

where io(r) is the one particle H iiltoni.en for en electron 

in the presence of the periodic lattice. cd(r) is an atomic 

d orbital and fl(r) is a Bloch wave function for the conduction 

band. 

In our analysis we work with Green's functions of the 

form 

G(o) = <<a, 	' aver t >> w 	(i = f 1), 	(2.4 ) 

where ,u and v are either the conduction bend k states or d 

states on particular lattice sites. Thus we shall have here 

four different types of Green' s functions in all. With the 

help of the commutators 

[a10-,fJ = Ti a 0- + I ni-e- aiv' •# F* Vkcl e+ik• ̀  a o . 

(2.5) 

fak+ uj, . = e1 ajv° + V eik.x aia- 	(2.6) 
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Tij ( ,,a_i•  a 	- e io-+ a 

_ E V d eikm 
i aI v-t a 0+ V1 	 a.  aicr+ 

k 

the. equations of motion ' (Eq.1..13) for the Green's functions 
can be written as 

(co u-~ ) G , (may = — 	' + ~  e'\ G ' (o) 	(2.) 
~d 

(w4µ _ 	) 01 (w) _ v11 ®k. 	G 3 •(a)) 	(2.9) 

(w r) Q (c)=) = 	(cu) 	I <<n1-~- aim, I a jO.. > G) 

+ 	Y 	e-i .«, i 	G oo- (w) 	'(2.10) 

(o 	G rT (o) = Z T13 G 	Co + I « n .-o" e3o' ,. 

+ V e . 0 	(w) 	(213) 

We are mainly interested in finding out the Green's 
functions G~ ( (o) and Gd j ° (o3 ).. The later i s defined 

by 
(w) = g~ 	G~ 	(o) ®ik.( - 	) 	(2.12) 
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These Green ® s functions are needed to evaluate the average 

umber <nso? of s electrons and <ndo..> of d electrons per 

atom for spin o• . By taking the limit 't °► t in Eq.,(1.14) 

we get <n> and <nd . > as 

<ns~,> N 

a0 

(2.13) 
- Q0  - 

~n > =- a3.c~± d(r 	i 	.cr> 

o° ®r , 	-1 
= 	Pd (ro) (® 	+ 1) 	 (2. 4) 

11, 00 

where 

eo ) _. z L G 	(m+iC) - G j(w-i€a'- (2.15) 

4

s 	~~ o 

' 	[ Gdk(c +iC) - Gd, (m-ief , 	(2x;6) 

are, -bhe density of states per atom. foi s and d electrons 

corresponding to spin c 	The total average nwnhe r of 

electrons per atom for spin o is given by 

= <f sa > + <ndo., 	 (2.17 ) 

III. HARTREE-FOCK THEORY 

For the sake of comparison with the results of the 
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one particle interaction between s and d electrons given 
by Anderson. In Sec. II we write the Ha~niltonian for such 
a model in the second quantized form. In our analysis we, use 
the Green's function method discussed by Zubarev.•103 In. 

. sec. III the self-consistent ferromagnetic solutions are, 
obtained within the Hartree-Fock approximation for the zero 
and finite widths of the d band. In Sec. IV an approximate 
theory for the electron correlation is developed. The 
self-consistent ferromagnetic solutions for both the zero 
and the finite bandwidths ofd band are obtained. in Sec.V 
the main results are . summarised. 

II. BASIC THEORY 

We consider a system consisting of s and d electrons, 
described by the Haniltonian 

H =C nkv' + E T j aiv-+ a jcf- I nicr ni-or' 

(V  eik. 	
o' a3.c, } v ~' ®-ik. 	aj o + akvr ..,, 	 kd 	-  

kxv 

where 	1E 	eik. ( - j)
s 
 (2.2) 

13  N k dk  

Ek and Ede are the energies of s and d band electrons of 
wave vector k, amt 	a g„ are the creation and- cnnihilation 

operators of the s electron of wave vector k and spin o 

t  , a- the the sane for e d electrons of spin A- at aiv- 	io 
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theory to be developed in the next section for the correlation 
effects, it would be useful to investigate the problem in 
the Hartree-Fock approximation, Actually, we shall not make 
an a austive study of all possible Hartree-F'ock solutions, 
but will restrict ourselves to particularly simple solutions 
which may represent paramagnetic or ferromagnetic states 
but not more complicated spin arrangements. The same 
restriction applies to the scope of the correlation theory 
developed in the next section. 

In terms of the Green's functions, the Hartree-Fock 
approximation corresponds, to the assumption that 

<<ni-er aio- , a t »w 	<ni- r > <<aic; , a 	>)w , (2.18) 

where index is either 3 or k. We restrict ourselves to 
the class of solutions for which <ni_c..> is independent of 
the lattice site i, 

<ni~> = <nda_> for all i. 	 (2.19) 

When we incorporate the assumptions (2.19) and (2.1g) to 
Eqs. (2.10) and (2.11)' , Eqs. (2.8) - (2.11) assume a closed 
form. Solutions of these Eqs. for Gj (w) and Gdk (cu) give 

. I<n 	> 	0 G 	
(o 
	 dk 	d-o Gdk (0). 	(2.20) o k 

- _ 	f2ir 
and 	o 

Gds (a' ) 	 2 

	

w - EdY~ - Z<nd >w.._.e. 	(2,21) 
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where 	and E 	-t • 
a" 	a- 

By substituting the values of Vi (CO) and a (w) from 

Eqs,(2.20) and (2.21) in Eqs.(2.15) and (2.16), we obtain 
the density of states per atom of s and d electrons 
corresponding to spin a- 

0-' 	1 
s 	= 

010 	 1 
 = N 

.6 	- Oj 	+ 	 (2.22) ) A;a- &(di9 cT   

ccO.j 	) + dk 	)J 	(2623) 

where 

dkY 	<fld_O > + Pj 	L<nld_a->) 

+ 4N1V112J 1/2] 

w0 s.Ed 
04 ska- P 	- 

+P 
AP 	P dkr 	 + 

W1 r i&r  

(2.24) 

(2.25 

(2.26) 

Here p is either (*) or (-). 

The expressions (2.28) and (2.23) for the density of 

states per atom of s and d electrons corresponding to spin 

Cr show that s and d bands are admixed into two new bands 



wi th dispersion laws ce = W 	and w = cry' . For an 
unperturbed d band, C, of zero Width, the new bands are 
always separated by an energy , gap. In this case the lower 
band always lies below To 	- I <n 	> while the upper 
band -always lies above this energy. Here T is the mean 
energy of the d band £dk -~ (10e. T = - 	C - ). As the o 	.. 
width of the band Cd-0 . increa.ses a the . gap between the two 
bands decreases and finally they overlap each other. From 
Eqs. `?,2.5) and (2.26) it is clear that A~ 	' 

? ,. Thi s shows that for both the new bands 
the density of states per atom for each spin is always equal 
to one. Therefore if there are two electrons per atom in 
the two bands together' then for the zero Width of the d 
band, system always behaves as an insulator. As we increase 
the d band'width, an insulator to metal transition occurs 
at some critical d band width. In Chapter V we shall discuss 
this type of transition in detail. 

In the liflhit of, the zero band-width, ed = TO £or 
all i. It is easy to show from Eq.(2.24) that 

and 	w 	< (E1+ I<nd..Q„>) < (  

so that A~s 	and Aa~~, 	as a positive. Then by replacing 
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Cdr by To in Fqs. (2.22) and (2,23) , we get 

W + ~u _ To- I<nd a >180  0 0> 	0>-0) 	) ,(2.27) 

	

= 	$ a' °frt ..C1 g s , (W-c' 	)(a) 	M 	~f . 	(2,28) 
k 

For the sake of simplicity we assure that the hybrid matrix 
element V d is independent of k. Then these Eqs c en be 
expressed in terms of the density of states for the s band - 

1 
N (co) 	Z. 6 0) - CO, 	 ) 

ich Is normalized to unity since k is limited to the first 

Brillouin zone and the higher plane wave bands will be 
neglected. In terms of N(a) Eqs. (2.2,7) and (2.28) can be 
written as 

	

pa 	® N c fa° (w +A 
	

(2.3e) 

Pdtu~) = I 	 1 N f (U) /` a s 	(2 31) 
co °~ - To- I<nd-cr > 	

ET 

where 

f0_ (a') =a> - 	
(2.32) 

ui - T® - I (tad~o,,> 
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1v12 	N IV I?' 	 (2.33) 

Finally the average ntbers of s and d electrons per atom for 

spin ca at absolute zero are given by 

<n > = I N f (a dw 	 (2,34) 

cI-r0.,(o) 
and <n > _ 	 N ~ f (co) dw. 	(2.35) dor 	

-Ica  

These Bqs.. give the total average number of electrons per 
atom for spin o at absolute zero. 

<U0.> = <n s0 > + <ndo„ > 

wf(w) 	
.IJNf (a))d0) 

'00 	0) - To- I <ad-cr 
(2.36) 

With the Fermi level as a variable parameter Eq.(2.35) 

for <nda_> must be solved, self-consistently. Then Eq.(2.36) 

can be used to fix the Fermi level from the total number of 
electrons per atom n = (<n+> + <n-> ) which is assumed given. 
The ferromagnetic solutions are possible only when <nd0.> <nd_O 

Solutions of the integrals (2.35) and (2.36) depend on the 
form of the density of states N(o ). For simplicity, we consider 
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the square density of states defined by 

i f 

otherwise 
(2,3?) 

where '( is the width of the s band. For the square density 

Of state S we have 

where 

i <n> P 4(T0  +1 <fld>)+  41v1 

= - 	<fld oa> + p f(T0+ I<rd o >_ 	+ 4Ivt2 J 

How we ubst1tute the values of fa  (co) and N1f (o)] from 

Eqs. (2.32) and (2.38) in Eqs.(2.35) and (2.36) and get 

j
e  (c 	L' 	e 

<n > .f - 	ãa, (2.39: 
d0 

( ca  

- 	1v12 
cr> = (_ c •+ 

d.00 

XZ 	(c' a co_) • e (ca - 	)7 dca 	 (2.40) 
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Integrals (2.39) and (2.40) are easy to evaluate. Limits of 

integrations are controlled by Q functions. 

Now by taking /a as a variable parameter we solve 

1q.(2.39) self-consistently for some perticular choice 

of parameter I, c and To  to obtain <n , > and <n,d-ø.. >. Then 
Eq. (2.40) i s used to fix the value of ,fr for the integral 

values ( n = 1,2 ,3) of the total nunber of electrons in both 

the bands together, We do not consider n = 4 because in this 

case both the bands are completely filled and hence there is 
no possibility of ferromagnetism. In Fig,(2.1) we have' 

plotted Q = 1/T0  V= To/d for three values 0.1, 0.2 and 
1.0 of S = v/To  for a particular value of P = I/T® = 2,0, 

The range of e a. stence of the ferromagnetic solutic s between 

the values of Z from 0 to 1. is shown in Table 2.1. The value 

of Q corresponding. to a particular value of Z can be read 
from Fig.2.l. To show explicitely the magnetic solutions we 

have plotted <nd+> and Andq> in Fig.2.2, Results of our 

calculations show that the range of the ferromagnetic solutions 

decreases as the hybridization of s and d bands increases i.e. 

the hybridization of s and d bands decreases the tendency 

towards ferromagnetism. To have an idea about the variation 

of the ferromagnetic solutions id. t.h. respect to the strength 

of interatomic interaction ! we have plotted, Q vs I in Fi g.2.3 

for. three, dif t'erent values of P, 0.5'  1.0 and 2.0 for a 

particular value of S 0..l. The range of ferromagnetic 

solutions is shown in Table 2.2. It is found that the increase 
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of intraatomic interaction is favorable to ferromagnetiert, 

B. Finite Band- width 

We shall asstne that the form of the d band is the 

same as that of the s band. We represent it by the expression 

A 	/2 	 (2.41) 

where A is some positive constant less. than unity i.e. 

it is assined that the width of d band is smaller than that 

of the s band. A = 0 corresponds to the zero band width. 
Cr 

This choice is made because the density of states r SW 

and 'given by Eqs.(2.,22) and (2.23) can then be 

expressed in terms of the density of states of the s band 

(o). 	usttuting the expression (2.4L) for 	in 

Eqs. (2 .22) and (2.23) and using the approximation (2.33), we 

AE' C1 . T0  i• 

= 
A 

x a .{(g(t1) +JLt) .. 	g;(E) +fr) 

(2.42) 

	

0 	I 	w.74-C 

	

fd 	 ; (g( *,) 	C . ) (g,(co 
k 

(2,43) 
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where 

gam. (w) = '..-' (A .+ 1) w - 	- I <nd-~, > 
2A 

+'p ' (1-A)w-T+A~/2-IGfd > 2 + v- 

(2.44) 

Eqs. (2.42 ). and (2.43) can be written in terms of the density 

of states N(Co): 

cr 	~, Co +/A.. Toy- Aa/2 -I<nd-c , > - A g J (Co +f) 

1. 	
A 

 
g0.. (a t) 	g. (w °A) 

X N ~gc (rte +,~`)1 	, 	(2.45)• 

d(w) = 	I 	I N g~. (w +r )l 
go. ( Co . ti) „ g (w ) 

(2.46) 

For the square density of states for the ixnperCurbed s aband ' 

N 	g0 (w +) is given by 

N 

(2.47) 

where wl~ = 2 	T® - Ac(/2 + I <d-O_ > 	`go-Ao(/2+I<nd-cr y )2G 

(2.48) 
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and 
CO * _ - 2 [(

'  
+ 1) cc + o + I <nd Cr 

p x!`4((2 - 1) a '+ To t I<nd-~>)2+ 4Ivi2j 

(2.49) 

By substituting the values of g 	(M.+ 	and  

from Eqs. (2.44) and (2.47) in Eqs. (2.45) and (2.46) we 

get at absolute zero 

	

<n > = j/ -1— 	1- (l- A)w To 	3 	I <nd-a' > 	1 
scr 	2oc 	f 	p oo 	p = _ 

.1 (l-A)w-To + 	-I<nd-o'>)2+4AIvIO 

x r6(w-w1QP, ) - 0 (w-w2o~ ) 	(2.54) 

(1-A)w-TO + AcS - I<ndcr > 
<n ~o> 1 	p .._..._ .  

d1A 	
_ oo 2. =±

i 	

4(1 

	
-I<na-V >) +4AI 

Y I j 

 (w.wpop.) - e (w-w2_ )] db. 
(2.51) 

As in the case of the zero bandwidth, by taking .,M as 

a variable paraeter <nd.> and <nd cr > are obtained self- 

consistently from Eq.(2.51). Then Eq.(2.17) and (2.50) are 

used to fix the Fermi level for an integral nuaber of 



electrons. In Fig.2®4 Q vs I curves are shown for three 
values 0.1' 0.2 and - 0.4 of A. Values of P. and S are taken 

equal to 2.0 and 01 respectively. Table 2,3 indicates 

that the range of the ferromagnetic solutions diminishes 
as the d -band width increases. 	This shows that the localiza- 

tion of the d electrons favors the a d. stence of ferroma.gne- 

ti • 

IV: CORRELATION THEORY 

In this section we discuss the effect of correlation 

by considering th e equation of motion of the higher order 

Green's function «n g} 	a + >> where 	is either 
i ar Ji. Q 9 ,40- 	w  

j or k. The equation of motion for this• Green's function 

is given by 

w« n j -o- a j a a o- (0 
= < ~1~ ~~ >s ~ /~` 	T

1.~<<ni 

+Y«ni-v' a117, `~ 	>> Co 

k d 	 %t- >> 
+E ~i ~ < (ai-Cr of -a- - a .-v- ai-cry ) 	, 

ii - Z vkde 	<<a. aj a ... , ` /ACr >> k 

t V a 	<< ak v- "i-.° à 3.c- 9 a,Lo- >>W k 
(2,52) 
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We assume that the correlations between electrons at 

different lattice sites and the correlations between s and 

d electrons are very mall as compared to the correlations 

between electrons at the same lattice site, in this 

appro3draation we can decouple the Green's functions on the 

right band side of Fq.(2.52) by replacing the operators at 

the same lattice site by their average values as follows 

<<n 	Cr 
9 a + >>c 	<I cl .cr> << cr 9 a4.. >> g if i . 

GG ai ~ at-cr ai , a a 	 .>'> 	J. 	airs°° X< as -e0" I aNr a 	3 '. 

ai-a- aiQ. , a +>> <ai-cr ai®->C<a ,,e >> if ice', 

S- a >> w = <nds®_> <<a 	, a Er > w t 

ai-v- a, - ' a ca. > c~ _ <a_0. a3.v- X< ak o. , a 	»0 
IL 

"ak-Or ai-(r ai,, 	a Cr > 0) < .-tam e' ><<k ' a a" , 

(2,53) 

We also assume that 

<aj C'ai ,,.> 	<ai-cr aicr> = 0 , . 	(2.54) 

Under these approximations Eq.(2.52 ) becomes 



(a+ [ - To - 1 ) <<ni -6° a10 9 a Cr >> 0) 

r<dcr >1i TIC (o) 

-)  Cl. 

<%-o >  V 	e.ik I . 
Gil k ((ii) (2.55) 

When we substitute the values of the Green's functions 

a4 >> from Eq. (2.55) in Eqso(2,10) and 

(2.11), Egs.(2.8) - (2.11) acquire a closed form. By solving 
these Eqs. for G 	(w) and Gdk (w) we get 

	

~w+ -To) (w-f wT -I) 	- Ti,) 
cr / 	w 	O ®-I (l-<nd-~ >) , 	tr 

G-+-+, { to) 	w 	 w 	 ^w~®awcaa.wc.~ 

G dj  

(2.56) 

Gds (to) = 

	

o' 4` o)(w+ -T0  z) 	 NIV-° I2 
• ,~ ka 

	

cu ~ -T®- ( .-<ndu,(,.>) 	 k. 
(2.57) 

These Green's functions have the sane singularities 

which are simple poles. There are three quasi-particle 

bands which arise from the s Vand crossing and hybridizing 
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with the two pseudo-d-bands. given by the root' of the 
equation, 

(w+-T0 ) (ai n -To-I)-(eak .To)(w+,,-To_I:(1_<' d -,)) = 0 
(2.58) 

In general the roots of the cubic equation which determine s 
the poles of the  Green's f=' c ti on , are not all real. However 
we can avoid this situation by taking the limit I -P °0. In this 
limit the _upper band given by Eq, (2.58) is 'pushed out to 
infinity and we have only two bands to consider. When I -~ ° the 

®" 

	

Groena's functions G 	(c,) and 	(ce) are given by 

w+N- ..T~ 
0" 	1-<nd-cs' > - %k ®T®) ©. 

G* 	(co) =- 	 Gdk Co) 	' 	(2.59) 

1/2w 
0 	 to ~ .T0 	 N(vjd)2 

	

Od -  - 	_ 	2.6 
d-c►~ 	 ~` 

By substituting the values of G  ' (o) and G (o) 

from Egs,(2.59.) and (2.60) in Eqs. (2:15) and (2.16), we -obtain 

Cr 
10 0)! Cap = -- 	[Bo(w  -u~ 	+ ~ s 	(~- 	(2.63. ) 

N 	s 



the number of states per atom for each spin in the lower 
bend is not equal to 1. Therefore a system having two 
electrons per atom will behave as a metal instead of an 
insulator. However for some particular choice of parameters 
I' v' T 	and a( it may behave as an insulator, 	The nunber 
of states per atom for each spin in both the bands together 
3.5 equal to $sko 	Bs Cr + Ed-" + Edk~' " 2-end-cr > 

instead of 2 as in the Hartree-Fock approximation. This 
is due to the fact that the upper band given by Eq. (2,58) 
has been pushed out to infinity, 

in the zero-bandwidth case Eqs. (2,.61) and (2.62) 
take the form 

(2.66) 

ui+ -f C(#, 
j0 fCw) = (1-< dn _ >, J 	~' 	 I N4 f 	(w -f4) 	(2.67) 
 0- 	o+- T 	Cr o 

vI2(3.-<n _ >) 
where 	fC (w) = W - ._.~..~...s~. 	 (2.68 ) 

Egs.(2.66) and (2.67) give the average nunber of s and d 
electrons per atom for spin o- as 

<nSCr > = I N {f0? (u") & ' 	 (2,69) 

2 A 1 °I2 <nd,. > =(1-6nd_®' >) $2 N(f (w 	(2.70) 
- 00 (w- T® ) 



Above equations are used to obtain the fer magnetic 

solutions for square density of states. In Fi g.2.5 Q--versus-Z 

curves are plotted for throe different values of $ 9  0.1, 0,3 q  

1.0. there and in the next subsection we do not, considei the 

case a = 3 because in this case both s end d bands-  arI G. 

completely filled. It is found that ferromagnetic solutions 

are possible only for a = 1«09  6 = 1.0 and Z from 0.01 to 

0d  12. This shows that the square density of states i 

of states studied by nith• t.o found that for n = 1, ferromagnetic etic 

solutions are possible for S = 1.0 and also for .& -- 0,3, 
Thus the ferromagnetic solutions are influenced by the shape 

of the density of states In Fig.2.6 the self consistent 

magnetic solutions are shoes. 

To consider the affect of the width of the d band on 
the f o rrorn agne tic solutions ; we take the d band given by 
Eq. (2.41) The density of states f s(eo) and f d(m) are given 

by 

(w)= °" ,`: Z I(O+,u.T - A(3-<n. 	>)(  
k 

X ( -' 	)(w 	) 	(.71) 

r -,..,.° 	( 1-<n 	>) 4 +  - 	lo (w 	+ ) (a 	-d ) 



m 

If we assine that A(1-<nd-o.,>) 	O,the,se 	equations can bo 

rewritten as 

A(1-<n> 
 co* ©+ 	` — 	 2g~, tc /& 

  go  +,) 	g'm (M+/A) 

N ,'gP (o+,u)1 V 	 (2.3) 

Cw) = 	 ` 	~gpc, (w*it) (2 •`74) 
p 	g(  )V4) - g, (&) ) 

where 

g (w) 	 _ 	~(1<n -~ >) ( A•~' 2 ) 
2 A(1-<nd• a.. 

+ p  

(2,•5) 

From 1 gs.(2.73) and (x.74) we obtain <n .> and <fd >. at 

. absolute zero. 

A~ -<n 
Uu 	~ -

( 
	d VO 	(c(•2gP (o) 

<n ~~ > = - V 	~~` 

A(1-<nd-cr ) • °D p= ` 	g6„ (CO) - g®.. (CO ) 

X N 4 	(cD )l 	(2.76) 
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O— 

k 
6i W 	~d st3 	( 	(2.62) 

where 

+ 	[ek-~ + + (C: -' - T) (1-<n 2 	o dig 0 d-cr 

•- rT--o £d1 -fiO )( -6nd >)-cjf + 1I2(1"'(nd- )J 

°a-fL -T® - (Edk .- o) (1-<nd- . > ) 
P (2.64) 

(fl P 

Bd Q- " P(l-cnd-o->) -  (2.65) _ N 

O)% - cukr 

' Eqs. (2.61) and (2.62) show that both s and d bands 

are split into two bends with dispersion lairs c 	= co 

	

and to =- i „ 	The general form of these bands comes 

out to be similar to that in the HartrE:e--Fock approximation. 

Here again for zero vidth of the d bend, the two bands are 

always separated by an energy_ gap. But in this case the 

two bends are separated by an asymptote at ® - f instead. of 

	

Z <ra 	? in the Hartree-Fork approximation. 

Again the band gap decreases as the d-band kidth increases 

and finally they 'overlap each other. In this cases in general, 
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<n , 	c go- (to) 	I 	r gPc (o 	cb (2.77) do- 	A 	p=+ g0co) -g~{w) 	0 

Equations (2.76) and (2.77) are analysed to get the 
magnetic solutions. For the zero width of the d-band the 

case of parabolic density of states was analysed by #nith 

and square density of states by us in the last section. We 

consider here both the square and the parabolic density of 

states, to get on idea of the change of , the magnetic solutions 

with d band width. In Figs. 2,7 and 2.3 the plots of Q versus 

Z are given for the square and parabolic density of states 

respectively. We have taken A = 0.1' 0.2 and 0.4 and S = 1.0, 

A search for magnetic solutions shows that the ferromagnetic 

solutions are not possible for any of these curves. 

. VI. CONCLUSIONS 

The results of the correlation theory for ferromagnetic 

solutions are in marked disagreement with those of Hartree-

Fock theory. In hartree-Fuck theory, as the strength of 

s-d hybridization increases, the tendency towards ferromag-

netii decreases, while reverse is true for the correlation 

theory. In the Iiartree-Fock theory the ferromagnetic solutions 

are possible for n = 1,2,3 ii1e according to correlation 

theory ferromagnetic solutions are possible only for n = 1. 

'In both the theories the tendency towards ferromagnetism 
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decreases as the band width increases. Our conclusions that 
f°erromagnetisu i s possible - for square density of •states* 
disagrees with the Hubbard's .theory which predicts that for 
this type of density of states ferroma.gnetisn is not possible. 
Furthermore in correlation theory tendency towards 

ferromagnetism increases as the hybridization between the s 
and d bands increases.. Th .s shows the, importance of s-d 
hybridization in the correlation th'ory of ferroniagneti n. 
In the HHartree-Fock theory the strength of the intraator►lc 
interaction favors ferromagnetis~rr,. 

Here we have taken the form of the d band same as that 
of s •band,there'fore the forum of the density of states should 

be the sane for both the bands. Since square density of 
states is taten for s hand, we shall have square density of 

state ford band also. 



w 

Table 2.19. Range of Z for ferromagnetic solutions 
for zero width of the d band 

2.0 	0.1. 	1.0 0.01- 0.45 
2.0 0,05-0.95 
3,0 0.4 	- 1.0 

0.3 	1.0 0.01 - 0.35 
2.0 0.05-0.65 
3.0 0.2 	- 1.0 

1.0 	1.0 0.01 - 0.2 
2..0 0.01 - 0.1 
3.0 0.4 	- 1.0 



Table 2.2: Range of Z, for , ferromagnetic solutions 
for zero width of the d band. 

0.1 	0.5 	1.0 0,01 - 0.35 
2.0- 0.1 - 0.25 
3,0 0.4-1.0 

1,0 	1.0 0,01 - 0.45 
200 0.05 -0.95 
3e0 0.4 -1.0 

2.00 	1.0 0.01 - 0.45 
2.0 0.05 .- 0.95 

3.0 0,04 - 1,0 
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Table 2.31 Range of Z for ferromagnetic solutions 
for the finite width. of the d band 

P? 
	

S 	A. 
o 

* 	n z 
2.0 	0.1 	0.1 1.0 0,05-0.4 

2.0 0.11 - 1.0 
3.0 0.26 - 1.0 

. 0.2 1.0 0,1 - 0.4 
2.0 0.16 - 1.0 
3.0 0,26 - 1.0 

0.1 1.0 0.15 - 0.4 
2,0 '0,26 - 1.0 
3.0 0.21 - 1.0 

I (0  OR 	3 ( + 
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CHAP TER III 

FERROMAGNETISM.iI.INTERATOMIC COULOMB INTERACTION 

I .INTRODUCTION 

In this chapter we discuss the ferromagneti sm in a 

single narrow energy band. The one band Hamiltonian (1.9) Is 

extended by including a term corresponding to the interatomic 

Coulomb interaction, From Eq. (1.6), the general one band 

Hamiltonian in Wannier representation is given by 

S = 	T j ai+cr a 	V1 jkf aia- a jai akcr *''Ta- (3.1) 

Vi 	are in general four center integrals which are 

extremely difficult to compute. For Coulomb interaction, in 

narrow energy bands,, three and four center integrals are 

very shall in comparison to two and one center integrals. We 

therefore simplify (3.1) by retaining only one and two centre 

integrals. Of all the 4 two center integrals we keep only 

one of them, nanely, the interatomic Coulomb interaction 

which is quite large in comparison to other two center integrals 

and for atomic wave functions its magnitude is about 30? to th t 

of one ' center integral viiiV34'53 Within this approximation 

Eq.(3.1) becomes 

H si 	Ti j ar a jcr  

1 nio- ni_®- + 2 Z Ki 

er o-~ (3.2) 
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where Tai i = Vi j ji if i 	j and zero if i 	J. J. We shall also 

assume that 

Ki j = K if i, and j are nearest neighbors 

0 Otherwise. 

In .Section II ' an approximate theory for correlation 
effects in electrons is developed. Here, we have evaluated 
one electron Green's function for the system de scribed by the 
Hamiltoniann (3.2). The higher order Green's functions appearing 
in the equations of motion of Green's function are decoupled 
'within the Hartree-Fock approximation and within the 
approximations similar to that of Hubbard®34 We also find 
the approximate solution of correlation problem in zero 
bandwidth. limit. The some problem is then discussed for 'finite 
bandwidth case.. In Sec. III ' the occurrence of ferromagneti sin 
for square density of states is discussed. Sec. IV summarizes 
our findings. 

II, SOME PPP ROXIMATE SOLUTIONS 

We consider the Green's function 

G1 o) =« a10. 9 	.>w (vj °•t 1 ) 
	

(3.3) 

The knowledge of this Green's function enables one to evaluate 

the density of states per atom of spin a, which is needed 
to study the condition for fe~romagnetism. Substituting (3.3) 
into (1.14), putting i = k, t - t 09 and sunrn ng over i v 

one obtains for <n0..> ' the mean number of the electrons per 
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<<ni-,' n  ~' tic. a t>>   into <<ni-car' aicr , ate. >> according 

to the following approximation 

<<n1-0- n jo 8icr t a - >>c = <%-> «ni3O. aio- q a »( o 

(3.16) 

Within this approximations, Eq.(3.14) reduces to 

w . ~•~® I I~nz 	 ~~. 

(3.17) 

In a similar way, if we write the equation of motion 
for <<n p.' €i . , a>> 	and decouple the four-operator 

Green's functions according to the approximations used by 
Hubbard34 and six. operator Green's functions into 

<<n .' a1~ 9 a,>> according to the approximation used in 

Eq. (3.16) , we get 

<<u ja„ eta- '. `lam > u 

-To-I<n..(r >-Knz 
	 (3,18) 

Substituting the values of Green's functions <<ni-.' ai0- akt° >i~ 
and <<n o"aicr Ian" >>w from Eqs. (3.17) and (3.18) in Eq.(3.8) 

we find 

y 
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Cr
&ik  

(o p.T0) Gjk(w) 	if(w*,<n.a->) 	* Z TljGjk(w) 
i,j 

(3.3.9) 

where 
i<n > Knz 

4(.i < 	= 	.10 	+ 	 -: 
111 	

w - ¶i .I-Knz 	-T -.I<n 	> ..Kz 
0 	 0 -0- 

(3.20) 

The Fourier transform of the Green's function defined by 

is, therefore, given by 

Cr 
Gi,w) = 	

1+f(0+1k <1_cr>) 
2i 

 

0) f(0+/1L  <n>) 

We shall now consider the correlation effects in the theory 

of ferromagnetisu on the basis of this Green's function 

. pproid.mate.. Solution in Zero 'Bandwidth Limit 

In the limit of zero bandwidth 	for all 
hence, it follows that Tj.j Vir After replacing IT  
by To  In Eq.(3.21) the Green's function in zero bandwidth 

case is 

G Up) 
(c)l- ..T)(co+1v. 0-I-Knz)(co+p ..TO-I<n.1  >.mK) 

(3.,22') 



53 

atom of spin d!" 

<no- > - N 	a1.cr air ~' 

	

v- 	 0- 
I 	 00 . G3.i + iE) -G ;i. (CO. IC) 

=-13.m 

(304 

This shows that 

= 	Urn.~..Z [ 1 ie)  - G 	Cw-. is ] 	(3.5 
E-► 0 i 

gives the density of (pseudoparticle) states per atom of 
spin a° • 

For the Hamiltonian (3.2),, one finds 

fay.' ! 	- = 	 i ~i a~o,, t Ig ,-v- X30- } 	i ~n ~v- air (3.E 

F ., e1 

. 	 fr 
Therefore -,, the. Eq.(1.13) for Gi3(ci) comes out to be 

Cam - )Gj (a) = 	+ Z T G Cw) +1 <n 	 ` k 	21r 	i 	SIB 	 i~.c~ a.a- a r 

	

+ zic <<n ' 	a+ » ~~, 	jer . ' v~ 	cc 	(3.8 



Now we make the Hartree-Fock appro d.mation in which 
the high®r order Green's functions appearing in Eq.(3.2) 
are decoupled as 

n1 _0_ aicr , al± >> `= <ni -a- > Gi k (o) 
(3.9) 

«n jo„ a1 ' a.>> 	<n > Gik (Q) ). 

In this approAmation, Eq.(3.8) turns out to be 

	

Knz) G(to) _ 	+ 71 Ti G 	(c)) 	(3,10) 

Here z is the number of ' nearest neighbors, and we have used 
the translational symmetry of the probleni to write <n> _ 

We do not consider antiferromagnetic ordering. 
This equation may be solved by Fourier transformation. If we 
write 

	

(cn) _ 	, eids. (f~i- R~ G~ k ) 	(3.11) 

and 	1 	 ~- R) i 	N 	Ef o 	i i 	 (3.12) 

we obtain from Eq. (3.10) 

cr 	 1/2  
G (l ,w) 	 (3.13) 

The poles of one-particle Green's function give the energies 

of quasiparticle.s. Eq.(3.]3), therefore, shows that the band 



58 

(to) = (co) - (2T0 •+ I + .Knz) w 

+ I2 <n-~„ > f 3~<n a.,>) _T0(I+T0+Kz) r 	(3.23) 

We substitute the value of G (k ,w) from (3.22) in Eq. (3,5) 
to get the density of states per atom of spin cr 

I2<n 3(1-<n >) 

wiz) ( i<rl"Cri, > * Knz) 

z 	 - + 	6 (o++ - T-I<n > ..Knz) I<n >+ Knz  
r 

Z<n > 
+ ---- Cr 	6 `w+p- -To ~- I - Knz) 	(3.24) 

(I+ Knz) 

This expression shows that system behaves as though it 
has three energy levels at To -frt , (0+ In + Knz - fr'-) and 
( o+ I * Icnz , )containing 

i2 <n-cr >(1_<n >)/(I - z) (I<n-, > -+ Knz), 

Knz/(I<n> Knz), and I<nqc„ >/(I-+ Knz) states per 

atom for spin cr I respectively. This result differs 
strikingly from that of Hubbard. Acording to Hubbard, the 
system behaves as though it has two energy levels at To and 
To+ I containing (1.<n',>) and <n> states respectively. 
It should be noted that because of interatomli:c interaction s 

the nunber of states in a particular energy level depends upon 
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structure is modified;, ,the energy of the (k,or) state now 
being 	-p + I<n-®„> .+ Knz, which reduces to 	Hubbard' s 
expression in the limit k -* 0. 

Now, we shall go beyond the Hartree-Fock approximation 
by writing down the equations of motion (Eq. (1.i4)) for the 
higher order Green's functions <<ni-0,, a I a>> 	and  

a>) . The equation of motion for 

<< i q01 a10_, a >> i s given by 

(w +P -To-I, << r̀ i..cr C - ' akd.> 0) 

8. 
<n.-4r > 	+ z ~i j «ni -o, a j. , ems, >>a) 

Ti ~< ai 	a j-v," liar' ' a'k >>w l 
i 3 

<<a7. s̀ i .c7' Bic" 1 a 	>;? 

Ki; <<ni-d-n jcr aiv- , a 0.>>0) 	 (3.14) 

where 

TO -- Tii N F Ek 	 (3.15) 
k 

We decouple the four operator Green's functions 

<<ni- . e3 cs a1 > 	,<< s~. 	a - , a >> 	and 

<a -,, a1 0 a , >> according to the approximations used 

by Hubbard,~4 and six-operator Green's function 



the strength-of interaction parameters I and K, while these 
are independent of the strength of interatomic interactions 
when interatomic interaction is neglected. 

By finding out the density of states in , each energy 
level, one can find out the nunber of electrons occupying a 
given energy level at absolute zero and, hence, the ground 
state energy of the system. Comparing the energies of 
paramagnetic and ferromagnetic stated one can find out their 
relative stability. In the Hubbard model, it can be shown 
that for n = li the energy of both paramagnetic and 

ferromagnetic states is the same and hence the probability of 
occurrence of both the states is equal. In the present 
case, we find that the energy of the ferromagnetic state is 
smaller than that of the paramagnetic state, and therefore 

the ferromagnetic state is more stable then the paramagnetic 
state. Here and in what follows, for the purpose' of 
calculation, we take To = 0' i.-e. we measure the band energy 
from the middle of the band, and consider a f. c. c- lattice. 
The value of intraatomic interaction parameter I is taken to 
be 10 eV and to study the interatomic correlation effect 
the parameter K is varied from 0 to 3 elI. 

B. Finite Bandwidth Case 

The general nature of the solution given by Eq.(3.21) 
will now be investigated for the finite bandwidth case., The 

o- 
expression (3,21) for G (k~w) may be resolved into partial 



fractions: 

G (ksw) = 	r 	(2) ~- 	J 
c , w-wj   

:.(3.25 ) 

(1)  (2)  (3) Here - w 	> 	> w 	are the roots of the 

equation 

- Knz) 

~- ( P -T) ~I<n.,- >(&-p. -To - I<n-,.. > ° Kn z ) 

2Knz(w+ u ,.T,o-I-Knz)j = 0 	(3.26) 

and 
F 

(3.2'?) 
I + (i) 	(2)), ,(1) 	• (3)) 

F(2) 4µ, 

(cu 2)- w (].))( ,(2) - w 3)) 

I(9 ,53) + ) 
A 3) _ 	 (3e29) 

3~-  ko- 



From (3.25) and (3.5), the density , of states per atom of spin 
a- is , given by 

h' 	 ., 	(1) 	( 	( _ h 	 l ̀w~ hr ) + ~l 
2) s- &(n 2)  ) 

k 

•+ A (3) 6 (co-wk ) )1 	(3.3w). 

The expression (3.30) for density of states per atom 
of spin a- shows that the system behaves as though it has 
three bands with dispersion laws. w = c 	Z) 9 o = w + (2) 

and co = w °~ e3) . From Eqs. (3.27) - (329), it can be shown ko' 
that 	) + 	(~) 	(3) - 1. This equality and 

Eqs. (3.27) .. (3.29) show that the effect of Awn, cannot 
be given any simplar interpretation beyond the statement that 
they regulate the density of states in each band in such a 
way that the total nunber of states in all three bands is just 
one* The general forni of the bsnddw-+ l) , u0 „ (2) and ko- 
is shown in Fig.3.1. The variation of bandwidth of different 
bands with K Is shown in Table 3.1, We note that the 
bandwidth of lowest and highest bands increases as K decreases, 
while bandwidth of middle band diminishes as K decreases. 
This middle band d1s .ppears when K 0, , 

Tow, eh expression more explicit than (3,30) will be 
given for the density of states. If F(wç„ (h')+µ) and  
are positive and F(w 2) ° .) is negative*,then by applying 
the property of S -function 

We have seen that this condition is actually satisfied. 



64gW3 7. 
n 

o(x -an)  

Jg'(a)j 
(3.31) 

where an  are the roots of the equation g'(z) 0 and 
is the modulus of derivative of g(x) with respect to x at 

the density of states can be written as 

/_ o 	'(o)+/( 	 (3.32) 

Here 	 U) 4TO iF  f (CA), <n_0,>) 
g(w,<n 0 >)  

1 f (to <u_>) 

I 
P(w) 	iD(co_ej ) 	 (3.34) 

k 

i s the density of states corresponding to the band structure 

Thus, J_(w) can be obtained frornP(U)) by the transforma-
tion given by Eqs.(3.32) and (3.33). This transformation is 
illustrated graphically in Fig.3.2 which shows a typical g(m) 
curve and .the projection of P(a) into f (w -p).. The curve 

g(o,<n 0_>) splits into three parts. These parts are 

separated by infinities of g(,<n 0..>) at 0) = C.) and 

Ii) = 0) 	(A) and (0 (0) o)')  are the roots of the equation 

(CO-TO ) (coT0 -I-Inz) +1 <n-a> (1-(n,>) 	0 	(3.35) 



The values of ou and to ' are given in Table 3.2 for different 

values of 'I : This table illustrates that these infinities 

come closer as K decreases and the width of the middle band 

is reduced, ' In the limit K 4, both infinities merge together 

and the second band disappears. It is quite clear that the 

appearance of middle band i s due to the effect of interatomic 

interaction within the decoupling scheme used here. 

I the paramagnetic states (<n.... > = <nor> = n/2) 

of the system s  it is found by Hubbard that for square density 

of states, the first band is completely full for n = I and 

therefore, the system behaves' as an insulator. We find that 

in the present , case the system in the paramagnetic state behavess 

as an insulator only at some critical value n = nc  . The 

value of n depends on the value of  K. Table 3,3 shows the 

variation of nc  with K. It is clear from the Table that 

nc  increases as K decreases and it becomes equal to I as K -} 0 

III. CONDITION FOR FERROMAGNETISM 

In Sec.II, we have seen that in case of zero bandwidth, 

the ferromagnetic state is more stable than the paramagnetic 

state. 	In this section, we shall find out the possibility of 

the occurrence of ferromagnetism in the case of finite bandwidth. 

We use the general condition 

P g(w, n/2 )f do 	(3.36) 

which must be satisfied for a system. to east in the 



1 

ferromagnetic state. Th e chemical potential is determined 
by the condition 

n = <n > 4 <n > 	 (.3.37 ) 

and <n>' is given by 

	

<nQ,> = I P g(co,n-<n~>)} do 	 (3.38) 
_ aQ 

It is difficult to manifest the condition (3.36) 

without reference to some specific density of states function 
P(w). We exanine the_eordition (3.36) for a square density of 

states defind by 

P (cu) _ ---- if T _ 	d <c;~T *  p 	® 	o 

0 Otherwise 

For this case, density of state r, (w) can be written as 

16 
Pa. (o) = - --Z(.1) 	a (w+, -cum) 	(3,40) 

where 4< uj < (Dr and o ° < CO4°.~<. c 	are the roots 

of the . cubi.c equations 

g(w, Cn. 	= ®- S/2 	 (3.41) 

and 	g(U, 9 <n..O->) = TO ' ,d /3 	 (3.42) 

respectively, The density of states given by q.(3.4O) when 



used inEq.(3.36),, leads, to the following condition for 

ferrom agne tI t. 

M-~ 

 

&0 	(3643) 

It is not easy to evaluate the right hand. side of 
inequaty (3.43) analytically We have evaluated it 

nunex'ica1Iy. 	It is found that wher. the Fermi level , lies 
in the lowest band 9 ferromagnetimm is not possible, but 
when it lies in the middle band, forromagnetii is 'possible. 
This result i 	quite different from Hubbard's conclusion 
that for a square density of states. ferromagnetiu is not possible 
One may, therefore, infer that the interatomic interaction 

should play an important role in determining the behavior of 

ferromagnetic metals. 

IV. CONCLUSIONS 

In the, preceding sections, we have investigated an 

approximate mode]. for, electron correlation in transition metals. 

It is found that one band splits up into three bands. The 

middle band oecus only because we consider the Interatomic 
interactions. The system behaves as an Insulator at certain 

critical value nc,of n, The value of n depends on K. 

Conditions for the ferromagnetion for the square dansity of  

Calculations are --performed for K O.1'.1 and .3eV, bandwidth 
4 eV and 2 eV, and O<n<11 



states are quite different, from Hubbard's conclusion which 

is based on the assiinption that interatomic interaction 

is negligible. We should mention here that Hubbard's 

decoupling 'approxLmation, which we have used, is not suitable 

for the Hamiltonian (3.2) which emphasizes intersite 

correlations. To have a better insight about the effect of 

interatomic coulomb interaction, one must use a decoupling 

schene whIch takes into account the correlation between 

different lattice sites. However, our conclusions show 

that intersite correlations may be important to explain the 

magnetic properties of transition metals, and should not be 

neglected. 
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" Table 3.33 Comparison of bandwidths of different 
bands for different values of Ka 

K 	 Q1 	 ~2 	 43 
COV) 	6 	-CeV l 	6 	(A '1 	6 	(  

0,0 	2.0 0.0 2.0 

0,1 	1.79 0.75 1,45 

.0.3 	1.40 :. 6 0,87 
0.5 	1.25 2.14 0.58 
0.7 	1.13 2.46 0.43. 
0.9 	1.01 2.68 0,31 

1.0 	0.96 2.77- 0.27 

2.0 	0.64 3.26 0.10 

3.0 	0.50 3.45 0.05 

a ®10 62 and 43 are the bandwidth. s of the bards 

0) = w 	 ' 	y w ua 	{2~and co ° u)° ktr' respectively. 

b® 
cal ci ations are performed for T0 = 0! I = 10 eV, 

12, <n 0..> = ,.n/2 = 0,5 9 and the bandwidth of the 

unperturbed band .(e €j) Is taken equal to 4.0 eV. 



Table 3.23 Pa it ons of infinities. of g(cu,. <))a 

0.0 5.0 5.0 
0.1 8.12 3,08 
0.5 14.24 1.76 
1.0 20.80 1.20 
2.0 33.25 0.75 
3., 0 45.45 0.55 

a 
Cd cuiations are performed for T® = 0'  1 = 10 eV, 

n c„> = n/2 = 0,5 and  z = 12. 



Table 331 Critical value n for differient values of Ka 

n 	 K C 	 (V) 

	

1.0 	 0.0 

	

0.84 	 ba 

	

0.58 	0.5 
0.35 1.0 

0.21 2.0 
0.16 3.0 

a ......... 
Calculations are performed for T0  01  I 10 &T, 

= <ne > = n/2, 7, = 12, and the bandwidth of the 

unperturbed band equal to 4 e't. 
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CHAPTER IV 

ME .'DYN&IICAL SUSCEPTIBILITY IN NARROW ENEMY BANDS 

I. INTRODUCTION 

• The dynanical susceptibility )((cjp) of a metal is 
a quantity of 'considerable interest because it can be used 
to ' discuss a variety Of problems: 6 	determines the 

cross section for inelastic scattering of neutrons, its poles 

give the"-frequenciesT -of-the : Spill ,aes and, the condition 
0) 0 gives the cri't6r;a for the stabi-lity_.of magnetic 

phases. ThIes of 	w) for tJ"i tine rant electron 
''- • : 

nodel based on the Hubbard Haiiiltonian ,have"beèi-discussed 

within the random phase apprcEximation by 	i.61' and 

Doiach 7 The validity of random phase" appromMion (RP'A) 
. 	- .. 	

-.' 	
. 

is doubtful in the strongly correlated systems* 'ecently 

akuraind Hubbard and Jain have gone be'ond FA 'o treat 'the 
. 5 

strongly correlated systems. 

The Hubbard Hamiltonian takes into account only \e, 

intraatomic interaction. The effect of inclusiozi, of inte~ia~"*ic  

interactions on the Hubbard Hamiltonian has been discussed by " 

several authors. 50-53 However there has been no systematic 

investigation on the dynanic-al susceptibility for a Hamiltonian 

which takes into account both'intra as well as--interatomic 
interactions.* 

Englert and .Pntonoff (ref.62) have discussed the 	\\ 
susceptibility within RPA by taking into account te 
interactions. , 	

..' 
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assunption in narrow energy bands. 

We concentrate our attention to the dynamical. 
susceptibility x_ "+ (q9 a) corresponding to a process with 
spin 'flip. It is given by 

•f(q, 0)) 	_ - 2rr (g /LL 	t)2 <<n , 	l) >> 	 (~? = - 1) , 

(4.2) 

where g is the gyromagne.tic ratio of an electron and MB is 
the Bohr magueton, The spin density operators n (Tg'T are 
defined as 

ǹ Jc) N n (q) 	 (4.3) 
k 

(q) = 	.  

The Bloch operators ate,,, and at are defined by 

1 	e  
alp, `n" JN 	av, 

(4.4) 

h G i aiojN 

We shall restrict our analyses to cases ihere nunber of 

electrons per atom n<1 since the cases n>l could equivalently 

be treated in terms of holes in the band, 

In Sec.II we obtain the dynamical susceptibility using 

the random phase approyimation. Instability of the paramagnetic 

state against the ferro and the antiferromagnetic states is 
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discussed, In Sec. III we derive an expression for the 

dyn,cmical susceptibility for strongly correlated systems 

and discuss the stability of magnetic states and spin wave 

dispersions. In Sec. IV we sunmarize our findings. 

II, WEK INTR TOMIC• INTERACTION THEORY 

For the sake of comparison with the results of the 

strong intraatomic interaction theory developed in the next 

section it is desirable to investigate the 'results obtained 

by applying the EPA which is justified only when the intraatomic 
interactio I is small as compared to the band width c( (I << 
To "evaluate the dynnical susceptibility 	o) we follow 
a procedure similar to that of Izuyama et al.C~ We first 
evaluate the retarded Green's function 

w 	 1 

<<n(q) ! n(-q) >> =-j Z «n  (() i n(-q) >> 	(4.5) 

This retarded Green! s function may be obtained by its equation 

of too tion. For each term of the sun of the right hand side 

In fact EPA is justified when all three interactions, 

intratomic interaction I, interatomic Coulomb, interaction Vi 

and the interatomic exchange interaction J . are small as 

compared to the bandwidth a. It can be shown (Ref.34) I > Vi >Ji 

Therefore I <( c implies that Vi ' 3i j « CKo 



?4 

0 

of (4.6) we have 

4- -s- -4 	 _ 	-I--.  
<< nj (q) , n(-q) > = -- <[nj (q) ,  

<<[n(  q) , H 1- n(-~) " >> 

(4.6) 

For, the Haniltonian (4.1) the commutator [n .(q), I j- 
consists of many terns and a rigorous treatment is prohibitively 
difficult. .Accordingly we retain only those terms that can 
be transformed into a form like e ate, a 	nZ,(q) and 
ignore rest of them. Further the, chain of successive Green's 
functions is cut off by the approximation. 

«ate ate nk' (q) s n(-q) >> 	Via- a> <<nip (q),n(-q)»t 

(4.7) 

In this approximation, which is called BPA, the equation 
of motion (4.6) reduces to the form 

-+ 	+ 	1 	-+ , 	4- 
( << nk'(q) , n(-q) >> 	2 <Lnj (q), n() 1+ > 

-(Iii' .) 
c r, 

1 
~' 	(~k k -Jl 	~ - ,< a-~' 	s -* 	> 

_1 	 j ..- <a + - q g1  1~i 
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" F -r _ 
1 	

<ak° f 	- >
J<<ni)'n(-q)» N k 1 	1 	1. 

N (:E+J -) (< a 	+> -< 	'' Z >) 

	

q k~' 	~k ek 	+q g - k+q- 

X E <<npt) ,. n (- 9,) >> (~ 

« n1 ► (q) , of -q) 

	

d~u 	r l  

(4.8) 

Kj and 	are defined by 

Kj 
	 (4.9) 

	

e 1k.(~i- 	(4.10) 
k 

The quantities Vj , J~ vary from - ®'- ® to ®, ® inside 
a Br311ouin zone. Hence one may expect the terms, which 
contain V' s and. J ° s, under the •-o nrn ation. sign, quite sin all in 
comparison to other terms. We neglect - these terms and hope 
that such an appro .oration wa11 not affect qualitatively the. 
nature of the solutions because these solutions involve linear 
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combination of the Green's .fictions <<nj (q) ' n(-q) >> 

for all IZ. 	By incorporating this appro~c i oration in Eq. (4.8) . 

we get 

w - 	P } + (I + 3) ®-<n(o)>f <<n() , 
o- 

+ (I+3) (<a 	+ > - <a . q aZ -t >) 

X <<n( 	_>>t 

siding both sides of this equation by fC) _€+€  

and sunming up over all wave vector k we obtain the Green's 
function <<n(q) , n(-q) >>> and hence the dynamical 
suseep tibi].i ty 

( (q) .~ 
-+ 

1+ 

where f(n)  _ E 
-+  k' 

(4.]3) 

An expression similar to (4.12) has also been obtained 

"g2 He 	[Eg ) 

I 3;' 
N  -+ 

>-<a aj# > 

-w - ' Ek + S , + (I +3)E  Cr <n(o )> 

(4.12) 

m 
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by Englert and Antonoff. 	In absence of interatomic' interac- 

tions it reduces to an expression obtained by Izuyia et al.61 
The averages 	a> appearing in Eq.(4.13) can be obtained ms" 

from the -knowledge of one particle Green'- s function 

(fl = +1). for the Hilton . a r (4.1)' its 
equation of motion is given by 

3 	 w  	lt1 ®' 8'+i4usc' 

Y k 1:< 	1 2°i k-P~1®", kdW 
1 

1 1O 

(4.14) 

We decouple the higher order Green's functions according 

to the following scheme 

<<a 	% 	, 
a >> 

i:Lc7i> 1 	<<%.aP a 
	 >> 

kj% g Ala„ << a c. ' a. >>(D1 

(4.15) 



When we incorporate this approximation, called the ifartree-Fock 

appro d.mation 9 in Eq. (4.14)'. We obtain the Green's function 

«ate , aj . >> as 

1/2?r 

w+/ -C- - I <n (o)> - on. + Jo<n (o) > 

1 	 t 

ki 

(4.16) 

©-a- 	 - 
where n = Z <n(o) > .. If we neglect the last term in the r~- 

denominator as we have done earlier to obtain the dynamical 
susceptibility, we get 

-} ' akD' ice" -a--a- 	 Cr a- 
c~ }N- 	I <n (o) > - K0n+J0(n(o )> 

(4.17) 

By substituting the value of <a.., aj >> in Eq. (1.14) 

we obtain 

<ar 	> =f(E -Z + I <n(o )> + Ko n - J0 <n(o) > - )  (4.18) 

where f(w) = (ems + 1) 1 

The denominator of the susceptibility (4.12).' gives 

the dispersion relations of spin waves and the conditions for 



the stability of magnetic phases. Spin wave.. excitations 

have been discussed by &iglert and Mtoff and Izuyania 

	

et al.61  Recently Penn' 	has discussed the stability of 

magnetic phases for Hubbard model in the self consistent 
field approximation. Here we shall discuss the effect of 

interatomic interactions on the instability of the paramagnetic 

state against the ferro and the antiferromagnetic states. 

The instability of the paramagnetic state against a spin 

density of -  wave vector q occurs when the susceptibility 

(,o) . X(,o) in. the paramagnetic state diverges. From.  

Jq.(4.12) the paranagne tie susceptibility (q,o) is given 
by 

2 2 r 
q,o (4.19) 

1* 	N 	F(q so) 

<a1'eg+q-P 
>-<a ak'> 

here (q.0) = 	- 	 (4.20) 

(1+2K 1.:) 	 (421) 

Instability of the paramagnetic state against. the spin density 
-P 

wave of wave vector q occurs when 

+ I + 	 > a 	(a 
1 	

a> 	
0 

NCt+. 



In the absence of interatomic interactions this result 

reduces to that obtained by Morris and Co rnwell.40 For a 

fixed value of n, the chemical potential fu i s determined by 

= N s; f { e ~ (I + 2r0. J') -~ 	(4.22) 

A. Instability of the _Paramagnetic State against the 
Fer anetic State 

( .) Zero bandwidth case 

The paramagnetic instability against the ferromagnetic 

state occurs when the static susceptibility (oo) in the 

paramagnetic state diverges, From Eqs® (4.19) - (4.21), 

' ( (oo) is given by 

F(Oo  ) 7C (oo - 
i1 r 1+ 	o . I (oo) 
N 

(4.23) 

where Roo) = 
a 

(I®- A 	M1 
C 	

+ +2K J 2 
~ 

(4.24) 

For zero bandwidth 	= 0 for all k. From Eq.(4.22) 
/o6'9g 3 

 



2 	 +2K0J0)2-/' +1. 

Therefore from (4.24), we get 

PRO )n 
oó). 

4 

which on substituting in (4.23) 'gives 

C 
= 

	

	 . 	.. 	 (4.25) 
TT0  

Ng1.L 	+ ;0)   
where C 	 an T=---6-- .. 

4kB 	 4kB 

are the Curie constant and the Curie temperature respectively,'  

In the absence of intraatomic interaction I and for one. 

electron per atom(n 1) the value of T is given by JP 	4/ 

where 3 (J 4T0/z) is the nearest neighbor exchange 

interaction and ,z is the nizmber of nearest neighbors. For 

se, bee and teó lattices the values of To,  are 0.66,. 0.5 

and 0.33 respectively. These values can be compared with 

values 0.5972, 0.39(3 and 0.2492 obtained by high temperature 

series expansion of the susceptibility for the spin 1/2 

Heisenberg model. 	The values of JPc  obtained here are 

just double of those obtained by the m4cu1ar field theory 

of the Heisenberg mod l..• 



(ii) Finite Bandwidth Case 

(a) Zero Temperature theory 

At absolute zero of temperature, the occupation 
number <a> can be written as 

<aZ aZ > = 6~1t&- e., (I + 2K 	o) n/2 	(4.26) 

Therefore froni 1q.(4.23) and (4.24) , the susceptibility (coo) 

is given by 

N 	/ B ( ~/A - (I.` 2K - 3 ) n/2 

2 - (I + Jo ) 	(I + 2K0- 0) n/2' 

(4.27) 

I. 

there 	(to) = N E F (w- C ) is the density of  states 
k 

for the band Cj . The denominator of Eq.(4.27) gives the 
Stoner criterion for the instability of the paramagnetic 

state. 

1.,-(I-+ ®)PC/- (I+2Ko-®)n/2 	0 
(4.28) 

(b) Finite temperature theory 

At finite temperature we shall consider only the half 
filled band case ( n = 1) . In this case Eqs. (4.22) - (4.24) 

are considerably simfied . Indeed (4.22) is satisfied for 

ilk = (I •+ 2Kg- 3'® ) n/2 and Eq.(4.23) takes the form 



, 

,.. 
X(oo 	- 	k t e  . + 1)2 	 (4.29) 

1 _• - 	s..._._._...__• 
N 	(e +1)2 

Instability of the paramagnetic state occurs at 	 - 

For square density of states, 

if - d/2 <Ott < cX/2 

w 0 

 

Otherwise, 

it gives the Curie temperature as 

  (4.30) 
4k$tanh --= L -r 

0 

In Fig.4.1 we have sh6,  rn the,. variation of 4kBTc/ as a 

function of .I for various values of ;®, ,. General features 

of the curves show that as the bandwidth increases the transition 

temperature decreases'. 	 -, 
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B. Instability of the Paramagnetic State against the 
Antif erromagnetic State 

(i) Zero bandwidth case 

Instability of the paramagnetic state against the 

entiferrornagnetic state occurs when the denominator of the 

paramagnetic stscepti bill ty (Q,o) becomes zero. Here 

is half the reciprocal lattice vector. From Eqs. (4,19) - (4.21) 

we have 

~2/UB 4~t~" _o.. e + 	+ 2K0- J® ) n/2/2e 
~- 	

.~. 
.  I_J Z v-ff- c,-e~-r + (I*2K0-J0)n/2J' /2Cj 

N 

(4.31) 

Here we have made use of the fact that £j . + Q =- a and 

Jq = 	.• J'o when Ti 3 and Ji are nonzero only when i and j 

are nearest neighbor lattice sites. 	For 	= 0, with the 

help of Bq.(4.22), the above expression reduces to the 
Curie, Weiss law 

C 
(4.32) 

(I _ J ).3 (2-n )n 
where the Neel temperature TN = --• , 	. If we 

4kB 
compare the Neel temperature TN with the Curie temperature 

Tc obtained in the section A, we see that for positive J0 , 

Tc > TN and for negative J® , Te - TN. This result can only 



be obtained by the combined effect of intraatom'c and 

interatomic exchange interactions. Either of these two 

interactions alone cannot give such type of behavior. This 

behavior of the model 4gge sts that perhaps the combined 

effect of intra as well as interatomic interactions may be 

fruitful to explain the magnetic phase diagrams of the rare 

earth elements.109  

(ii) Finite Bandwidth Case 

(a) Zero temperature theory 

From Eq. (4.31) , at absolute zero the instability of 

the paramagnetic state is given by 

I_J 	P(E) 1- -= 2 	ide £ X cr• e 4 -Q-e-+ - (I+2K0 - ®/2<O 

(4.33) 

For square density of states it reduces to 

I 
0  + 

1 

lriKl-n)I  
(4.34) 

The sign of equality in (4.34) gives the boundary line 

between the para and the antiferromagnetic states. In Fig.4.2 

we have plotted I/ c versus n for various values  

In the region above the dashed curves antiferromagnetic states 

are more stable than the paramagnetic state utdle in the 

region below the dashed curves the paramagnetic states are 



9 

more stable than the antiferromagnetic states. We have 

also shown by solid line the boundary between the para and 

the ferromagnetic states (from (4,28.) for square density 

of states the boundary line between para and ferromagnetic 

state is given by I/c(= 1 - Jo/ac). The region above the 

solid lines corresponds to the stability of the ferromagnetic 

state against the paramagnetic state and in the region below 

the solid lines the reverse hol:a s good. These curves show 

that positive values of Jo  are favorable to the ferromagnetism 
whale.. antiferroinagne ti n is favored for negative values of 

J0. For half fillQd band the paramagnetic state is always 

unstable against the ferro or antiferromagnetic states where 

I, < ®/cc < 0, for <So% < 1 paramagnetic state is more 

stable than both ferro and antiferromagnetic states when 
I. /a < 1- - Jo%, Thus the prediction of Penn that for half 

filled band the paramagnetic state is not possible, no more 

holds good when we take interatomic interaction into account. 

(b) Finite temperature theory 

For half filled band, from Eq.(4.31) the instability 

of paramagnetic state against the antiferromagnetic state 

is given by 

I _. 	tanh/2 
1 	 E 	 < 0 	(4,35) 

2N  

In the absence of interatomic interactions, this inequality 

has recently been obtained by Langer at al.93  For simple 



Le M 

cubic lattice they have plotted the transition, temperature 

as a function I. From jai s C-ur*e it is clear that if we replace 

I by (I - J0), then for each value of I the transition 

temperature decreases for positive J'o  and increases for 

negative ®. 

III, STRONG INTBAATOMIC INTERACTION THEORY 

In this section we develop a theory for the systems 

There the Intraatomic interaction I is very large in absolute 

magnitude as compared to the interatomic couplings Ti  , K j  

and Jj  . In Haniltoniat (4.1) I "represents the 'energy 

required to bring tw® ee etrons into the sane atomic state 

consequently for sufficiently large I (>> J Tl  j , J Ki j  I , l Ji 1  I 
such doubly occupied atomic states cannot occur in the low 

lying states of the entire system. Because of the exclusion 

of doubly occupied states, the ' intraatomic interactions serve 

to reduce the phase space available to the electronic 'system. 

In order to formulate this effect we first represent the 

states that are available to the system as vectors in a 

Hilbert space 5c. Correspondingly, the observable are 

represented by a set of operators. Q®  On S®. We then take 

account of the fact that the intraatomic interaction exclude 

state vectors from a well defined set in $o a  which means 

that they confine the states to a subspace, C of 11®. 

Consequently the observables are now represented by operators 

Q on C. These are related to the corresponding, primitive 

operators Qo  by the formula. 



Q = PQQP 	 (4.36) 

where P is the projection operator for S. The algebra of 

the set Q is quite different from that of Qo . This 
difference represents the changes in the properties of 

the system due to correlations introduced by intraatomic 

interaction. In otherwords the effect of intraatomic interaction 

is built into our formalism through the new. algebra of the 

operators on the reduced Hilbert space S. 

Let b 	, b 	and v(k). be the operators in the 

subspace ,$ corresponding to the operators aj .~ , -r+ and 

n(k) in the space Sa . It can be shown that the operators 

b-. ' b 	and v(k) satisfy the algebraic relations51 

[b 	' 	}~ + = (6 j , . V(k k) )Oa., o.. ` + aa., 	' y ~ 1i:) , 

-I- . 	t 
Ib 	, b .if = ET ., b .,1 = 3 	 (4.37) . 

2 	1 

In , terms of the operators in the subspace S the Hamiltonian 

(4.1) can be written as 

H =Z £k bj bj + N E Kv kv N 2 J~ sk . 
k  k 

(4.38) 

where  -  (4939) 
4 



Here •we discuss the dynamical susceptibi.Li.tt for a 

model Hamiltonian 

H E 2 a.i t a- 	2 E  crr 	iv- 

---- 	K n n 	#-- E 3 a Ta'' a • 2 	•. • i3 ic- jo" 	2 	i j iv~ 	a3.a~ jCr 

• r" T 	 o` 0 . . 
- 	 (4.1) 

It is obtained from the one band Hamiltonian (3,1) by 
neglecting all V 3 corresponding to three and four center 
integrals, Of all the two center- integrals we have retained 

only two of them, .namely the interatomic Coulomb interaction 
Vl j j1 = Kii and the interatomic exchange interaction Vi 	= 

This Hamiltonian differs. from that of (3.2) by the inclusion 
of fourth term, corresponding to interatomic exchange interaction, 
on the right hand side of (4.1). The parameters I,K,J and T 

may be taken as phenomenological quantities., In relating their 
values to properties of real solids, one. should realize that 
these parameters contain contributions due to indirect 

interactions involving other bands, for example, the interaction 

between magnetic electrons in 'a metal is screened by conduction 
electrons in a higher conduction band. Here .we shall assume 
that I ,K and T are po si tiun and J is either positive or negative. 
We also assume that T  = Kli Jai = 0. Throughout this 

treatment we shall assume that T, .K and Ji are nonzero 

only when I and j are nearest neighbors. It is a rease'-able 



,Tg =- J. 	 (4.40) 

Y = E vCk) 	 (4.41) 
fT 

	

and k = 	 Cr  -icr v(k?, v' V(j) 	 (4.42) 

The dynamical susceptibility Cq' co) is given by 

= - (g 	)2 <fv~zl), v(-q) >> 	(4.43) 
- -r 

To evaluate )<(q, w) we proceed in a manner similar 
to that adopted in Sec. I1. We write down the equation of 
motion for the Green's function << yj + (q), v( q) >>& 

	

Cvk 'q) = 	c 	' 

	

b 	), 

_ 	- <[v (), (q)]_ > k  

+ << 	(q), $j ,V)>>0, 

(4.44) 

For the Hamiltonian (4.38) we have 

	

[V j C), 	Eke 	bklcr' k cr 
kZ 

-z E y (k+q-k1) bQ., bk"' u.. 

r' 

	

2- 	l (..ç) b ++ r. 
k~~-1 
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Cr -Cr  
.11. 

4 2 Tv(.j) 
b 	

bit  

1P4 	k zJ(..•i) 	+*k1o' b, 
k10 

t 
bi  qCrt ZCj 	 VCr 

1' * 	P bP  

+ 22 i bt  

+42J1 bj~. b~ 10, (Ic) 

.22 

The right hand side of the above equationoontains many terms 

so that a rigrous treatment is difficult. We retain only 

few terms by making on ansatz for the spin density operator 

o,us 	•o.o 
)) (k) 	 + V () 	p 	 (4.45) 

and replacing the operators 	 thich are multiplied 

brY() or)'() , by <b 	bj 	> 	 In this 

approximation the equation of motion (444) becomes 



< 	( ), V(.. >> =e1?' {q) , 

+ <<) (q) 	>> w 

v (q) ,'V( 	>> (4.46) 

A 	= Cj (1•( v(o)>) - EZ .-► (1-< '(o)>) + 4 ~'o ~' cT < V(o)> q 	 4 	 Cr 

(4.47) 

Bk- + =: (E-r -q + 4 q) 	 1- . ' q 	 q 	k q- 

	

., (C ' 4 3) <bj bk*}> 	 (4.48) 

The first term on the right hand side of Eq.(4.46) is 
given by 

< vC q 	~( 4) , > _ < b q b 	> - <b + bg,y, > 

	

T, <b l 	))(f.. j) bk~. > 

<b 4 1 %4, 

The correlation functions inside the curly brackets corresponds 
to creation of two electrons and two holes of the same spin 
simultaneously. We asswie that there is a very anall probability 



(4.51) 

19 

of occurrence of such processes and hence we neglect these 
terms; The equation of motion (4.46) takes the form 

Aq 	1  

(<b j_ b-+ 	> a <b. blt~ >)/2v 

kq 	-1$- 

- N 	<< y~ (q)_ , (- ) >>  

when we devide both sides of the above equation by (o -A ) 
and sun over k' we get the Green' s function <<Y(q)  y( q) >> 
and hence the dynamical susceptibility 

g2 2 <bj,j- bj ~ > - <b 

k 	f 

Bkq 
(4.50) 

The averages <bjfr b 	> can be obtained from the 
&lowledge of one particle Green's function <b , ' bgr>>~(a1 +1). 
It is given as51 
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where y = E < "(o) > is the nunber of electrons per atom. 

From the poles of the Green's function (4.51), the single 

particle energies are given by 

. _ 	>) + 2x® *2J~cr 7,v- < V (o )> 
c 

(4.52 ) 

In q(4.52) the factor (1- < V(o) >) represents a band 

narrowing due to restrictions' imposed on the electronic 

motion by the exclusion of doubly occupied atomic states, 

while the terns 2K0 and 2J' o' Z o < '( ) > represent 
a (. 

additional contributions to the energy of the electron due to 

interatomic Coulomb and -exchange interactions. When we 

substitute the value of the Green's function in Eq.(1.14) 

we get the average <b 	b 	>- as 

= (l-Qy(o)  >) f .f. (1-(V(o) ) ) + 2 ' 

+ 2 Joan- Z ci- < y 

(4.53) 

From Eq. (4.35) we have <Q> _ <Q> where on the left hand 

side the ensemble 'average is taken over the states in space 

S® pile on the right hand side average is over the states 

in subspace S. To compare the results of this section to 

the results of weak interaction theory, hereafter we shall 

replace the ensemble average of -the operators in subspace S 

by the ensemble average of the operators in . space So.1 



In the limit of zero bandwidth, the dynamical suscepti-

bility (4.50) reduces to 

9 µB $ o' <n(o)> 
(4.54) 

(Jo p 3-p) E. A <n(o)> - eo 
v- i 

This is an expression which one obtains for Heisenberg model 

under the random phase appro oration, 	It should be noted 

that the dynamical susceptibility obtained in the weak 

interaction theory also reduces to the sane form in the limit 

of zero bandwidth. 

For a system with small number of electrons (n<<l) and 

Jq >> c/2, Eq. (4,50) thkes the form 

'92  

> - <a 
l+-  

- w - Ek + E fq + ~o . E v- <n(o )> 
v- 

(4.55) 

and (4.53) becomes 

Ea 	ak> = f k6k + Kon - o4ra(o)> - 	(4.56) 

Iqs. (4.65) and (4.56) are the sane as Eqs. (4.12) and (4.18) 



provided I, = 0. This similarity between strong and weak 
intraatomic interaction theories is very similar to that 
pointed out by Kanamori.33 He has shown that for a system 
of electrons interacting by strong intraatomic interaction, 
the random phase approximation is good provided the density 
of . electrons is -small and the bare intraatomic interaction 
is replaced by some effective intraatomic interaction. 

The static paramagnetic susceptibility 	o) -which is 
needed to discuss the instability of paramagnetic state 
against the spin density wave of wave vector q is given by 
(from Eq. (4.50).) 

Z (<a aZ+-)- > - <a a)/ -~ ~>)/ q 	q 	k k 
^ry (q 40) = _.... 	,._.... 	 —: --- 	 (4.57) 

1 	~kq 

k `~q 

where 

= 	q) ( 1 - n/2) 	 (4.58) 

- (.6-> + 4J-~ )<a lt > (C 	* 4J) 
kq 	k+q 	q 

4 < a-t
k±q 

s-~-~ > 
k +q k 	q 	k ak 

(4.59) 

and <a a> = (1-n/2) f 	(1-n/2) * 2$ n-, j 	(4.60) 

The chemical potenti al p is determined by 



n/2 A-n/2) = "'"° 	I {€ (1-n/2) - 2K0n-/ 	(4.61) 
N ~ 

A...Instability of the Paramagnetic State against the 
Ferromagnetic State 

(i) Zero bandhridth Case 

From Eqs. (4.57) to (4.60) the static paramagnetic 
susceptibility X(oo) is given by 

N 

(l-n/2 )+ 2Kon -/4 

g u 	(1n/2)2 -+ 	p 4  (1-n/2) 2K n -A 2 o j 
2((oo) _ 

2 	L 	~J 	p 1 vac (1n/2) 42K fl 
(l-n/2) 	o 

) e 
 

Mon. 
l+e 	j 

(4.62) 

For ' ° 0 with the help of Eq.(4.69) the above equation 
gives the Curie Weiss law given by Eq.(4.25) with C = N /" n/2 

and Te= Jon/2kB. when we compare the value s of C and ` c 

with the values' obtained in the weak intraatomlc interaction 
theory I = 0, we see that both the Curie constant C and the 

Curie temperature Tc are enhanced in the strong intraatomie 

interaction theory. Recently in the absence of interatomic 
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interaction (Hubbard model) Mattuekll~ has also reached to 
the conclusion that correlation effects enhances the critical 
temperature,, 

(ii) Finite bandwidth Case 
(a).Zero temperature theory 

At absolute zero of temperature the expression (4.6?) 
reduces to 

-2Kn 
g µ N (1-n/2) P (~0 , 	) 

1-n/2 

	

(oo) r 	(4.63) 
1u -2K®n 

1-n + (t -2I®n* 4J0 (1-n/2)) f( 	) 
1-o n/2 

Instability of the paramagnetic state is given by 

µ _2Kon 

	

1-n+ 	2n n+ 4 (l-n/2 )J 	L'n/2 	) G 0 	(4.64) 1 - 0 	0  

In the absence of interatomic interaction the inequality 
(4.64) reduces to that obtained by Bakuroi39 and l ubbard and 

Jain 	in the limit of strong intraatomic interaction. 
Sakurai has analysed the inequality and reached to the 
following conclusions. 

( .) The paramagnetic state is unstable fora system with 

a snail nunber of electrons if the density of states at the 

bottom of the band is large enough (For a nearly filled band 

the high density of states at the top of the band is required 

for the instability). 



(.i) When the narrowed band is more than half filled, 

the paramagnetic state is always more stable than the 

ferromagnetic state. 

In the presence of interatomic interactions both 

the conclusions of Sakurai are modified. 

(i) When the number of electrons per atom is small 

(n << 1) the inequality (4.64) reduces to 

l+((-2K+4a ) (/`-2Kon) <0 	(4.65) 

For small number of electrons per atom the Fermi level 

lies below the middle of the narrowed band (i.e. (<2K0n), 
therefore the inequality (4.65) can be satisfied for the 

high density of states at the bottom of the band if J >f -2Kon ion 

the ,.t . ha'  i f o< -2I on'  the inequality is never 

satisfied whatever may be the value of the density of states. 

(ii) For n = 2/3 thà band is half filled because in 

that case Eq. (4e  61) I s satisfied for f = ?K0 . Fo1 more 

than half filled band.( i.e. n > 2/3 or >' 2K®n) the 

paramagnetic state is stable ifµ -2 An > J(1-n/2), but 

if  	2K0n  < a(1-n/2) paramagnetic state may become 

'instable for large value of the density of states: 

To be more specific, we shall discuss the inequality 

(4.64) for square density of states. In this case Eq. (4.61) 

gives the chemical potential 

= 2K0  n * 	(3/2n - 1), 	(4.66) 

hence the inequality (4.64) becomes 



s o 

J® /c( > 0,5 	 (4.6?) 

(b) Finite temperature theory 

We restrict our nalysi s to half filled narrowed 

band. As shown in subsection a for this case equation 

(4.651) is satisfied for no = 2/3. From (4.62) the condition 

for the paremagneticistability' is given by 

4 	(ej +41o ) e ~  
1.+ 	s 	 < 0 

3H 	
(e 	

3 +~ )2 

For square density of states it gives- the transition 

temperature 

2c(/3 
Tc 

20(/3 
4kBte h`' (.°  

4/3$ 

(4.69) 

This result is exactly similar to the result (4.30) obtained 

in the weak interaction theory if one replaces 	by 2c/3 

and (ICJ® ) by 4/3J in. Eq. (4.30) . 

B. Instabilityof the Paramagnetic State against the 
Antiferromagnetic State 

(i) Zero bandwidth case 

The static paramagnetic susceptibility ((,o ), which 
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is needed to discuss the instability of the paramagne tic 
state against the antiferromagnetic state can be obtained 
from Eq.(4.57). From Egs.(4.57) •. (4.60) we get 

L 

,X ( ,o) 	4 
er f - cr C (l-n/2) -+ 2K0n I /ej 

(2-n) 
1-n I 	E o- f,' - a Cjj (I,4 Icon le 

(4.70) 

For zero bandwidth it gives the Curie Weiss law given by 
J n 

 q.(4.32) - with C = 	2 N n/2kB and TN = - -~ 	- 
2kB 

When we compare this value of TN Sri th the value obtained 
in weak interaction theory for Z = 9, we see that like 
Curie temperature, the Neel temperature is also enhanced due 
to strong correlations. 

(ii) Finite bandwidth case 

(a) Zero temperature theory 

From (4.70) at absolute zero the instability of 
paramagnetic state occurs when 

CdR-n)a 	• r  
- n •+ 	Z Cr I dC 	64,,L& -2K0n~ o- C(1-n/2 )] 0 

4  

(4.71) 

For square density of states it gives 
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2-n 
(1mn/2) in '1 	" 3n-2 

The boundary line given by the equality sign in (472) 

between the para and the antierromagnetic state is shown in 

Fig.4.3. 	We have also shown the line j/c = 0.5 given by 

(4.67) which gives the bothdary line between para and ferromagnetic 

states. For O(J/o( < 0.5 paramagnetic state is stable for all 

values of -i. This can be compared with the est.JLtf :thG weak 

Interaction theory (for I = 0') there paramagnetic istate is stable 

for 0<3/o( < 1.0. 

b. Finite temperature theory 

For half filled band ( n = 2/3 9  = 2K0  n) 

the paramagnetic instability occurs when 

4J. 
1 - 	Z tanb. 	< 0  

3N 

where 	2/3 	The inequality (4.73) reduces to (4.35). 

If we replace 4J0/3 by 	.J0 ) end E by Cj in this inequality. 

Thus we see that the behavior of the system for half filled 

band is of the same type in both weak interaction (n = 1) and 

strong interaction (n = 2/3) theories. 

C Spin-flip Excitations 

The excitations of the system with spin flips are 
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expressed ` as the poles of the dynamical susceptibility (4.50). 

In our case they contain Stoner like individual excitations 

aid collective excitations called spin waves. Stoner excitations 

are given by 

(4.74) 

By substituting the value of q from Eq. (4.47) we get 

c~ 	k  

<4.75) 

For q = 0 it gives 

0) _(J- 	) ~o- <n(o)> 
	

(4.76) 

It shows that it o < %, there is no gap in the spectrun 
of Stoner excita ions and therefore the spin waves given b r 

B.-- 1 - E~  0  (4.77) 

have finite life time in this region. 'or . 3'0 > c4/2, a gap 

in the spectrta of Stoner excitations occurs, at q '= 0 and 

hence for all values of q we ,get spin waves with infinite life 

time. Under the assumptions J0>> a/2, a) satisfying the condition 

®E o <n(o) > »I (j - C1. )(l- n/2)I, to, 



and for smell q,we get from (4.77) the spin wave dispersion 
relations as 

_ 	Z 	1-n/2 	+ 	 2 
spin' (. 	q)<se > 	z 	Z < a-). alb > ~ v ) 

2N<S® > 

2N Jo<Sa >2 3 

* Q (q4 ) *...,.• 	 (4` 8) 

where <S; > = Z 6' <n(o) 	>. Here we have assuned that  

For small ntnber of electrons per atom (ii << 1) it reduces, to an 
expression obtained within the random phase approximation62 
if one replaces ® by (I * Q) in the third term on its 
right hand side. 

IV. CONCLUSIONS 

We have discussed the dynamical susceptibility for a 
model Hamiltonian friich takes into account the interatomic 
Coulomb and exchange interaction over the Hubbard Hamiltonian. 
For weak intraatomic intetaction we have obtained an expression 
for the dynamical susceptibility which is very similar to that 
of Englert and ntonoff. 	It is found that in the presence 
of interatomic interactions the results of the Hubbard model 
are considerably modified. For excmple for the square density 
of states at absolute zero of temperature according to Hubbard 



model in half filled band (n = 1) the paranagnetic state is 

always unstable against the ferro and the antiferromagnetic 

states. In the presence of the interatomic interactions we 

find that it is possible to have a paramagnetic ground state 

for ®/oc>0. At finite temperature for the zero bandwidth the 

C turie-Aiss law is obtained. It Is found that for positive o 
the Curie temperature obtained from the Hubbard model. increases 

while Neel temperature decreases. For negative ®- these 

conclusions are reversed. 

In the strong intraatomic interaction theory we have 

obtained an expression for the dynamical susceptibility which 

reduces to an expression obtained in the weak intraatomic 

interaction theory for I = 0, when the density of electrons 

is small (n << 1) and Jq  >)' 	Here also the results of 

the Hubbard model are modified. For example at' absolute zero 

the Hubbard model predicts that for the square density of 

states the paramagnetic state is always more stable than the 

Ferro and the antiferromagnetic states. Here we find that for 

J'o/a>0.5 ferromagnetic state is stable for all value's of n.'  for 

4<J'o/a <.0.5 the paramagnetic i s stable for all values of n and 

for Jor/a <0 both para and antiferromagnetic states are stable. 

in regions shown in Fig.4.3.Whatever may be the density of 

states Hubbard model predicts that for n.>2/3  paramagnetic 

state is more stable than the ferromagnetic state. Here we 

find that the paramagnetic state is unstable against the 

ferromagnetic states for higher density of states if -2K0n<J0(l-n/ 
For small nunber of -electrons Hubbard model predicts that 

paramagnetic states is unstable against ferromagnetic state 
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if density of states at the bottom of the band Is large. In 

presence I  of interatomic interactions if ®<( -2 ®n), the 

paramagnetic state is always stable whatever may be the value 

of the density of states. Finite temperature theory shows 

that for zero bandwidth case Curie and Neel temperatures have 

higher values compared to the weak intraatomic interaction 

theory for I = 0. For square density of states and for half 

filled narrowed band (n = 2/3) the expressions for Curie and 

Neel temperatures come out to be very similar to that obtained 

in weak interaction theory for n = 1. For ®/ 0.5 spin wave 

dispersions are found to be very similar to that obtained 

in weak intraatomic interaction theory. 

Thus we see that interatomic interaction play an 

important role in the magnetic properties of the system. Our 

treatment is approximate and qualitative but if gives some insight 

into the effect,  of interatomic interactions and reveals that 

in rsny complete theory of magneti sn interatomic interactions 

should not be neglected. 
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CHAPTER V 

METAL-NONMETAL TRANSITIQNS 

A. MET1,J.ONMETJL TRANSITIONS IN NARROW ENERGY BANDS 

I. INTRODUCTION 

In the preceding chapter we have discussed tb.e . dynemice1 

susceptibility for a model Hamiltonian (4.1) chich includes the 

interatomic Coulomb and exchange interactions in addition to 

the Hubbard Hamiltonian, Here we use this H niltonian to 

investigate the phenomenon of meta.-nonmetal transitions. 

In Sec. II we examine this model with the help of one particle 

Green's function approach., The higher order Green's functions 

are decoupled in such a way that it is possible to take into. 

account the correlation between an electron and a hole of 

opposite spin., In $ec.III we examine our solutions for 

ferromagnetic system having one electron per atom. We find two 

phase transitions at two different critical temperatures: T4 

at Vaich a ferromagnetic nonmetal changes into a ferromagnetic 

metal, and TC 	at thich the system becomes a paramagnetic metal. 

always higher than T,4. Tc 

 

is In Sec. IV we consider the 

antiferromagnetic system and find that, like ferromagnetic 

systems,, two phase transitions do not occur. In Sec. V we 

summarise our conclusions. 

II. GENERAL FORMULATION 

We consider the one particle Green's function 
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G `w) = <<sic„ , a t>> w . 	 (5.1) 

The equation of motion (1.,13) for this Green's function, for 

,a system described by the H niltonien .(4.1), is given by 

v- 	 v- o- 
(uO-N) Gi (w) _ - 

	.~ 	Tl t G j j (w) -*I<<ni -c- 8.o- ' a,(,...'>>. w 

+.~ ic3~ «ne 1~ X10- 9 a j~ »
0) ~ °r1  

a 	' L+j> 

(5,2) 

The above equation contains the higher order. Green's function 

of the form <<a, 	a a;, ai 	' a j I >> . The se Green's functions 

are decoupled as follows 

«a + a~ aio. ' a+I>> 
1 2 3 

` <a4Cr aie„ ) G 	(w) _ (5.3) 

The equation (5.3) includes th term. like <a4 ai_ , > which 
takes. into account the correlation between an electron and a 
hole of opposite spin. The importance of such anomalous correla-
tion functions in the theory- of magnetic systems has recently 
been stressed by Mettuck and Johanson, and Klein.11l Under the 
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d'(7" t 
approximation (5.3) the equation of motion (5.2) of Gi (w) 
becomes 

(&-µ) Gi (w) = 	2~. 	+ ZTie G 0 () +1.  

~ I < e`i _Cr aicr Gi 	(0)) - E Ki~<n 	.> Gi (w) 

i 

Qi 
K1 Q <!4i aicr > 

i 
3<a4.  

~r Ji,Q t C f or > Gii Eu~) a 	(5.4) 

o-a 
• We define the Fourier transform of the Green's function Gib (w) 

as 

o- O 	1 	v° v° 	ikl. k i-x.13, 4 
Gi (w) = Z G 	(G) 

	

-' -r 1Z
-r 
2 	 (5.5) 

r2 

In terms of Fourier transform G 	, the equation of motion 

(5.4) takes the form 

o' cr' kk 	 -M o- 
(uO#~ - 1 )G11 Ew) °— 	~~< a a- &~-,~ a, > G 	- -} 	/Ew 

j'22 	1~9 
1k2 

t 	0-0- ' 
k1-o- ai~ç..ç..cr > iZ/' 

klk, 
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_  
kl 1 

+ 
l 

Irl 

ak 1-kjo- > G 	2' 
~ -'~ j, (w ) 
2~ 

p / v-o- < a''k2 v- e1kk *1i o.> Gg-k~ k (w) 1 	2 	l~ 

N  	 k3. { 	ar-1 e?s-kb0 Gkl+k2,k /(w ) kl 
orl 	 alpi 

- <ar'car a~
i+02cr >Gkkk k'(w) ~2 1  1'  , 

(5.6) 

where, the Bloch operators a- and ate± are defined by (4.4) , 
Ek i s defined by (3.12) , and 	and Jk are defined by (4.10) . 
For the correlation function 4a 	aj i. > we make an ansatz 

>Z E a'
lo- 
- '~ ' 

akcr 
> 6-

kkr -► ~- 	 k~k+ < a-- a-r -0, > -s i~ ► 

	

- 	ko' k+Qa- 	Q 	, 

where Q is half the smallest reciprocal lattice vector. This - 

approximation corresponds to considering the spin density waves 

of wave vector q = o or q = Q. Within the approximation (5.7) , 

Eq.(5.6) becomes 

Cr 	o- cr / 	0 	-a- or- 
i 

(w+µ -e- V,o ) G i(w) + Bk,0 G, (.) 

Cr 	Cr o"i 	a- 	-Cr Cr / 	G kk &a" a-' 
-Aj j GZ49 j' (u~) + Bk ~-+ G~+Q', k / (w) _ 	2ir 

s 
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where 
A-q I nq (- o-- o- ).+ KQ nq - J nt (cr,o" ) 

1 	Cr a 	
(5.9) N k .s-k k+q, k 	N ~~-k k+q tk 9 

Cr 	 1 	-o- o- Br (I+J) n_a-,a-) +.- 
k 

(5.10) 

a-ar 
n(o' a-) = --- 	 k Z Nj -r +q 9k 

.k 

E (5.11) 

Cr o- 
Nk k 	= <ajg, ak Cr 

s 

nq = z q(Cr o- ) 

(5.12) 

We restrict our study to a system with nearest neighbor 
coupling.• In this case the terms under the sunmation sign° 

in Egs.(5.9) and (5.10) are quite small in comparison to other-. 

terms. 	Further we assune that the system. is magnetized in 

the x direction instead of conventional z axis. Such a system 

has also been considered by Morris and Cornwell.4C For this 

system the average values of y and z components of the spin . 

on each lattice site are zero. Since the components Sj , 

Si of the spin operator Si for an electron on the lattice 

si to . i are given by 

Sl 	2 a3.Cr ai-a- 

S1 ' ' 22 	ai ° e1-a- 
51. 	2 	Q- a 	ac~- 
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we have <ai "i-~ >   <81 a-  s'iv- and <aia- aicr > 
 

(5..15) 

From Eqs. (4.4) p (5.11) and (5.12) we have 

n;(o- o-) = N Z <a1, aia- e 	, 	(5.16) 

and therefore from (50-15) we get 

v-) = nq (-r, Cr ) nq (a-, cr) = nq (- a-, - a-) 
(5.17) 

When we use (5.17) and drop the terms inside the summation 
sign in Eqs. (5.9) and (5.10)., the equation (5.8) becomes 

(cu+P - 	- AO ) G '(w) "* B® Gj i(a ) 

a- a-' 	- Cr a- 	kk a- ar- 
- AQ G 	l+ B Gk,Q9-+/ () = 	

27T 	
(5.18) 

where 

= (I + 2V. J P
) n9/2 

(5.19) 
Z -p q 	q q 1 

and 	q = n~ (- v- ., - Q-) = n' (o- , -a-) 
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III. FERROMAGNETIC SYSTEMS 

In a ferromagnetic system the magnetiade and the 

direction of magnetization are independent of the lattice site, 

therefore Eq.(5.16) gives nq (a- , tr') = no Or , a-') 6 (). 

And Eq.(5.18-.) - takes the form 

o- a- / 	-a-a- 	8i +8o-a- 
G - (w) i1 B® G, (o) = 	 (5.20) 

- 	 e- ar- 
We solve this equation for Gs (w) and get 

00' GA, (w) _ 
(+&..,-'.A)8.  6 	 '-B8 

0 Cr a- 0 -0~0 

Ao )2 - B; 

Ski 
....,~ , (5X21) 

2i- 

o,.° 0 i 
Poles of the Green's function Gam, (cu) give two quasi-particle 

bands 

w 	_ -/A* C + ., 0 Bo 	 (5.22) 

t 
The bands cud and (0 are separated by an energy gap 

(5.23) 

where o( is the width of the band C. When the lower band 

is completely filled, the upper band cod is completely empty, 

and the 'two bands are separated by a positive energy gap, the 
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system .behaves as a nonmetal otherwise it behaves as a metal. 
Hence to .know whether a system with a given number of electrons 
per atom is a metal or nonmetal we must know the density of 
states in the bands. The density of states per atom for the 
energy to and spin a is given by (See Egs(2.15) and (2,l6)) 

(w) ° —°"-oUrn Z [G Co)+i ) _ G ' (w - I C)j 	(5.24) 

By substituting the value of the Green's function G (co) from 
Eq. (5.21) in Eq. (5.24) we get 

(co) = 	
a 

C (0 	) + 6 (cu—toy )j . 	(5.25) 
k 

The above equation shows that number of states per atom 
in each bend is equal to 1. av o3 	. Therefore a system 
having one electron per atom behaves as a nonmetal if the two 
bands are separated by a positive gap and it makes transition 
from a nonmetal to metal when the gap goes to zero. 

To evaluate the number of electrons per atom no and 
the average x component of the spin per atom A0 we require the 
knowledge of <aiti i ako~ >. By substituting the value of the 

j . 

Green's function G (n) trom Eq.(5.21) in Bq.(1.14) we obtain th 

correlation function as 
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< -P4 / aj> .-1 g (w, ------ [ (w 	) + o(.4 )  

- 5 (w - 	) -6 (o - o )  s -a . tr 'j SLfr`,' 

(5.26) 

With the help of Eq.(5.11)1 for one electron-per atom, the above 
equation gives two self cons3 stency condi tion-s 

1 = ----- E [r (F,k- P + A®. ®) + f(e~ _ µ +A®+ B® )1 ? 
~1 k 

(5.2?) 

T-J Bo == ':' ? 	[f(e = A® -B® )- f(Ek - -A®+ B® ) 	(5.28) 
3N k 

Tj is nonzero only when i . and j are nearest neighbors' 
e . 	_ - 	and therefore 

f (er) = f(-Ck ) 	 (5,29) 

	

k 	k 

With the help of this relation Eq. (5.2?) and (5.28) yield 

i+J 
and 	BO 	Z tank 2 (C + Bo 

-2N 

!f(C) tank p(e+Bo )/21  
2 
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where vi(e) = N 7- & (w - 	) is the density of states per 
k 

atom for the band : C. To discuss- the solution of Eq. (5.20) one 

has to choose a particular form of the density of states. 

For convenience we choose . a square density of states defined by 

= 1/( if -cc/2 < E < X/2 and zero otherwise. - For this type of 

density of states Jq.(5.20) takes the form 

n ® 	In cosh 2 	-  

- in cosh 2 - ct/2 + (I+Jo ) j 

(5.31) 

We first examine the solution of Eq.(5.31) at absolute 

zero, For c(/(I+J'® ) <.1.0, it has two solutions ao  =1/2 and 

L1b  = 0. In section V we shall show that energy of the system 

corresponding to the solution 4n l/3 is lower than that 

corresponding to 4b  = 0. And therefore the solution do ° 1/2 is 

a stable solution. Eq. (5.23) shows that for this solution band 

•gap is greater than zero and so the system behaves as a 

ferromagnetic nonmetal. For zero bandwidth (Cj ° 0, for all k) 

and in the absence of interatomic interaction Eq.(5.22) gives 

two states at 	and - f +I. This. result is in perfect agreement 

with the exact zero bandwidth result obtained by Hubbard.34  For 

> 1.0 q.(5.31) has only one solution 4n  0. This 

shows that for ferromagnetic system a firs: order phase transition 
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occurs at a/(I-*J0) = 1.0 where the long range order parameter 
changes discontinuously from a finite value 1/2 to zero. 

To discuss the phenomena of metal-non-metal transition 
at fini to temperatures we have shot~n1 the finite temperature 
solution of Eq0 (5,31). in Figs. 5,1 - 5.3. In Fig,5.1 we have 
plotted Qn against 2 /(I+ 0) for various values of  
At zero temperature there is always a nonzero average magnetic 
moment (eo= 1//2) and as the temperature increases the. average 
magnetic moment gradually decreases and it disappears at a 
critical te: perature To where a phase transition from a 
ferromagnetic state to a par .a.agnetic state occurs. In Fig.5.2 we 

	

show the plot of 	= Z  - versus 2KBT/(I+J® ) for various values 
0. 

of ot/(I.+J0 ) At zero temperature there i s always a nonzero 
band gap (different for different a/(I,+J'o )) and as the 
temperature is raised the gap gradually disappears and the 
system undergoes a nonmetal-metal transition at a temperature TM. 
The solutions of q.(5.31) for do = 0 and A _ Qc/2(I+J0) give 

e transition temperatures T. and TM as 

Te = ®t/ .kB tarih'~'('C/$I- 'J® ) ) 	(5.32) 

a 	I- Jo 	 C' 
in co 	` 	) 	(5.33) 

	

3kBT Z 	 2kBTM  

The variations of 2kBTo/(I•*ao ) and 2k3TM/(ItJo ) as a functions of 

are shown in Fi g.5.3. For finite bandwidth TM is 
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always less than To. It shows that a. ferromagnetic nonmetal first 

changes into a ferromagnetic in®tal at TM  and then finally into a 

pare-  magnetic metal,  at T = T0. All these curves are plotted for. 

< 1.0. For /(I *J) > 1.0 only solution for q o  is 

4 b = 0, and hence in this region the system behaves as a 

paranagneti.c meta. 

The expression (5.32) for the transition temperature Tc  
is the some as that obtained in the preceding chapter (Eq. (4.30) ). 

It should be noted that interatomic exchange interaction along 

can predict the. end. stence of two phase transitions because 

everywhere I and J appear together in the form (I+J0). It 

will be shown in section V that, however, Hubbard model (J ~ 0) 

does not predict the two phase transitions because in this model 

for a system having_ one electron per atom s  the ferromagnetic 

state is never the ground state 

IV. 1NTIFERROMAGNETIC SYSTEMS 

In anti ?erromagnetic systems, the spins in the neighboring 

lattice sites are aligned opposite to each other,  so that the 

average magnetization is zero. Therefore q. (5.l6) gives 

n (a-i 9  0-°) = o  (" ,  

for or j cr 

and Eq. (5.18) takes the form 



a 

' 	-Cr cy ° 	o" a- 

(03*µ 
 

-A0) 
G ,(o) } B Gj+Q9i'(o) _ 22 	

(5.34) 

.In the reduced zone scheme we have 
r 	 / 

Gjt /(w) = G (cu ) 	 (535) 

CrO' 
By solving q.(5.34) for ( '(w) and using the relation 

C%+ -I,Q =-E we get 

(dui- N 	-A )~-► s 	B 	r 
a-Gli 	 (5.36) 

IT {(w+ - -Ao) 	- AA) - 4 

o- a- 	 - 
Poles of the Green ® s function G ,(co) give;, the quasi-particle 

(J) 	= 	+ A® ' wr ( 	+ 4Q ) 	 (5.37) 

The. bands wi and cok are separated by an energy gap 

G = 2(I-J'0) 	 (5.38) 

a-a- 

When we substitute the value of G (w) from Eq. (5.36) in Eq. (5.24 

we get the density of states per atom in each band equal to 1. 

Therefore for one electron per atom the system behaves as a 

noazmetal for positive -band gap. Like the ferromagnetic system 
F.' 

in this case the system cannot show two phase transitions 
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because the band gap goes to zero only when the long range 
order parameter as goes to zero. The self-consistency 
conditions are given by 

1 	- 
1 =z [f (~ +A®- 	+B ) 1-f  (- µ +AAA' / (e +BQ ))J , (5.39 ) 

2N k 

f (- µ +A®= r( +4) - f (- µ ++J( + B ) 
• (5,40) 

2N -* 

	

1- 	+N.P) 
Equation (5.39) is satisfied for µ = Ao and therefore Eq. (5.40) 
becomes 

•tanh Z 	(I-J® )2 40 ) 
1 = 	 (5.41) 

k 	('+ (I-J®)2 ) 

Recently this equation has been obtained by Langer et al.93 
in the absence of interatomic interactions., (Jo° 0). Th.eyha~►e 
plotted the order parameter va-~ as a function of cC/I at various 
temperatures. At absolute zero it is found that 4d changes 
from 1/2 -+ 0 as cc/I changes from 0 -' 00. 	Thus we see that 
at absolute zero in antiferromagnetic system nonmetal-metal 
transition is not po=5sible. At finite temperatures La$ goes 
to zero at some value of cc/I and shows the nonmetal-meta 
transition. 
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V. STABILITY OF THE MAGNETIC PHASES 

In the previous sections we have discussed the metal. 

nonmetal transition by assuning that the ground state is either 

ferromagnetic or sxntiferromagnetic. Here we find out the 

conditions under which a given ground state is ferromagnetic 

or antiferromagne•tic. To determine the stability of the ground 

state we evaluate the ground state energy of different magnetic 

phases. 

The ground state energy of the system described by the 

Hamiltonian (4.1)' can be expressed in terms of the one particle 

Green's function. The equation of motion of the operator 

a10. (t) for the Haniltonian (4.1) is 

d 
t a 0. (t) = ['air(t) H] 

E (T1~°p`di~)a10. (t) ~- I n. (t) a10. (t) 

a , ( t)n(t)+ E ,Jj a3 (t)ajd(t)a - Ct) 

(5,42) 

When we multiply the above equation by aid" from the left and 

sum over the lattice site i and spin cr we get 

i - 	Z a , a10. (t) -- E (Ti j -µ&j .) a10 . a jo.' (t) 
.0' 	 ijQ" 

I 	a.c3'° a 	(t) n1 .. (t ) 
io-° 
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81 a(. t) n"(t) 

* ZJa1 J(r,(t) 	a2  (t) 
	

(5.42). 

By taking the ensemble average of both the sides using Eq. (1,14), 
and taking the limit t 	0 we get 

.G 	(o*jC) .. 	çQ.4e) 
liniiZ io -dw 

epw 

00 	a_o 
(w*i) _G 1  (w-iC) 

do = 2<H>- jE (Ti(T • 1 	)lim j 00 
I 

ijø- c-p 0-oo 

• Using the relations (3.12) and (5.5) we get the energy of the 
• system per atom as 

3 = 	

' 
=  p 	 - 

kc- 

(5.43) 

It gives the ground state' energy 'per atom as 

ao-' 
= ,:- ILni • E jO ((O+ 	)[a((o+i  c)((o-ie)1 c 

00 2N C 

(5.44) 
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Now we 'evaluate the expression (5.44) for para, Ferro and anti. 

ferromagnetic states using square density of states, 
e- 

From Eq.(5.18) the Green's function G(o) for the 

paramagnetic state is given by 

00.1• 	1/21r 
Ca 	(w) _ 	 (5 45 ) 

0 

Using this Green's function in Eq..(5.44) we get the ground. state 

energy of the paramagnetic state as 

A p= '. 	 (5.46) 
2 

Here we have used the -relation ~i$ = 	E 	= 0. 
kk 

For ferromagnetic system the Green's function G (CO) 

is given by 1q.(5.21). By substituting this in Eq. (5.44) we 

get 	` 

~F r 

	

2N 	. 	tuu - µ 	. 	. 	I A .. B ) 

8 (w + -Ilk .- A® - ~ ) dw 	(5.47) 

For one electron per atom it has been shown in sec. III that 
µ= . and 

ao = 	for 	< 1.0 
2 , 	1 + 

0 	Otherwise 
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Hence Eq.(5.47) gives 

for °( 	< 1.0 
4 

	

A . 	 (5.48) 

	

2 
	 otherwise . 

In an antiferromagnetic system, by substituting the 

value of the Green's function G j (w) from Eq. (5.'36) in Eq,. (5.44 ) 

we get 

E1  2N 	6  + 	F( " 	+ EQ ))O c0+µ - -Ao  ? nay) 

€ +4). E')& cn +f& - 	- A+J 	eJ 

(5.49) 

Using the relation IA = Ao  for one electron per atom in 

Eq. (5.41) we get at absolute zero of temperature 

- 
1=  — 

 2{T dQ 	OC/2 	dE 	 (5.50) 

When the relations (5.50) and = A®  are used in Eq. (5.49) it 

takes the form 

d6 - 
y{:1 	 - (I — © a. 

/A 

U  7 — 	j 	 `5.51 ) 2  
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Integrals in Eqs. (5.5O) end (5.51) . are easy to evaluate. 

Ater integration Eq. (5.50) gives 

	

cc/2
B = 	 	 4. 	 (5.52) 

Binh  

Using this relation in Eq. (5.51) and performing the integration 

we get 

F 	_ 	- 	Co tai 	) I 	 (5.53) 

The energies of the Para, ferro and antiferromagnetic states 

are evaluated from Eqs. (5.46)., (5,48) end (5.53). The 

regions of stability of these magnetic phases are shown as 

a &,/Y Vs o/I diagrmn in Fig.5.4. This figure clearly 

shows that for Hubbard model ( Q/I = o ) the ground state is 

antiferromagnetic and hence in this model the question of two 

phase transitions in ferromagnetic system does not arise. 

Vi. CONCLUSIONS 

In the preceding sections we have discussed the 

phenomena of metal-nox .etal transitions. in ferromagnetic 

as well as in antiferromagnetic systems having one electron per 

atom. We 'found that in ferromagnetic system, for c/(I+J0 )<1.0 
two phase transitions occur at two different critical temperatures 
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Tc  and TM  (TM  < Tc), for 	+J0  1.0 no phase transition 

is possible. Two phase transitions are possible only when the 

interatomic interaction is finite because in the absence of 

interatomic interaction (i.e. for Hubbard model) ground state is 

never the ferromagnetic state. At absolute zero of temperature 

a first order phase transition occurs at oc/(I-+J0 ) = 1.0 where 

the long range order par. arneter 4o  changes from 1/2 to zero 

and the system changes from a ferromagnetic nonmetal to 

paramagnetic metal. 

{ 	In antiferromagnetic system, at absolute zero, phase 

transitions do not occur. The system remains antiferromagnetic 

nonmetal for all values of interaction .parameters. At finite 

temperatures the antiferromagnetic nonmetal changes into a 

paramagnetic metal at some critical temperature. Like the 

ferromagnetic 'system, in this case two phase transitions 

do not occur because the band gap goes to zero only when the 

long range order parameter 4a goes to zero. 
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B. METJ&L-NONMETAL TRANSITIONS IN HYBRIDIZED s AND c3 BANDS 

Mott88  proposed a theory for metal-nonmetal transitions 

and predicted the existence of a nonmetal-metal transition 

under pressure when the lattice parameter passes through a 

critical value. Such a transition has not yet been observed.94  

Here we discuss qualitatively how the s-d hybridization stiffens 

the conditions for the pressure induced nonmetal-metal transition. 

We consider a system described by the Hamiltonian (2.;1). 

First .,we restrict our study to the case I = 0 i.e. we drop out 

the third term in (2.;i.), This term represents the Coulomb inter-

action between d electrons of opposite spin, at the sane lattice 

site. In this case equations. of motion (2 :8) - (2.11) for .the s 

and d electron Green' s functions are exactly soluble. s and d 

electron Green's functions are given by 

`W) 	 (5.54) 

(r 	 (W 	' l/2ir 
Gdk (0) ) = 	 - 	 (5.55) 

(co— 	) (co—Ed) — NIVI 

These Green's functions are independent of the spin index v° 

and hence the system behaves as a paramagnet. The poles of the 



A at which the transition from the nonmetallic to metallic state 

occurs. When we apply pressure on a nonmetallic substance, the 

lattice parameter decreases, consequently A increases, therefore 

a transition from nonmetallic to metallic state should occur 

eta critical pressure when A crosses the critical value 

determined by the choice of S and B. But it should be remembered 

that S increases as we increase the pressure, because the 

overlapping of a and d wavefunctions increases due to compression 

of the lattice. Fig. - 5.6 clearly shows th, t .this increase in 

S does not favor the nonmetal-metal transition. Thus the 

s-d interaction opposes the pressure induced nonmetal transition. 

This -behavior of s-d hybridization may help in understanding 

the difficulty of observing the pressure induced nonmetal-metal 

transitions. 

Now we extend our study to the Hamiltonian (2.2) with 

the in-traatomic interaction I 0 . In chapter II we have 

investigated this Haniltonian within the Hartree-Fock approxima-

tion. It is found that in this approximation, due to 's-d 

hybridization, s and d bands give rise to two hybridized bands 

given by Eq. (2.24). Number of states per atom for each spin 

is found to be 1 in each hybridized band. Therefore, as we 

have seen earlier, a system having two electrons per atom 

in the s and d bands together, will show nonmetal-metal transition 

when the band gap between the lower and upper hybridized bands 

goes to zero, Here we shall consider only the paramagnetic 

case. Under the assumptions (2.33) and (2.41) the condition for 

zero band gap is given by 
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A 	 <n > 
(A+].)2  ` -A 	(A+2) .B2  + B(.1+P d ) 

- (.1''P - 2 —r )2  ] ° 0 	 (5.58) 

where P = T and - 2 _ <ndo„ > _ <nd-o- >• The value 
a 

of <nd> must be evaluated self-consistently from Eqs. (2.50) 

and (2.51) in a way such that the total number of electrons 
<ne> = 2. To do this we take 	as a variable 

parameter and evaluate <n.d> self-consistently from Eq.(2.50). 

This value of <nd> is substituted in Eq. (2.51) to get <ns> 

and consequently n. The process is continued till we get n = 2. 
To obtain the transition curve this value of <nd> corresponding 
to n 2 is substituted in Eq.(5.58). For B = 2.0 we have 

plotted the transition curves between S and A for various values 

of P in Fig.5.8. The regions above and below a transition curve 

correspond to nonmetallic and metallic behaviors respectively. 

These curves show that as we increase the intraatomic interaction, 

the nonmetallic region increases 	thus tendency of a system 

towards nonmetallic behavior increasesi, This result one might 

have guessed in the very begining from the fact the intraatomic 

interaction tries to, keep apart the two electrons of opposite 

spins at the sane lattice site and thus lowers the tendency of 

metallic behavior. 

When the intraatomic interaction I is very large, the 

validity of the Hartree-Fock approximation is dubious. In this 

case one must take into account the effect of correlation between 
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d electrons. We have already developed a correlation theory 

in chapter II.. By proceding in a manner similar to the Hartree-

Fock approximation, we have investigated the phenomenon of metal-

nonmetal transition for I -°° with the help of Eqs. (2.61)- (2.65). 

We find that nonmetal-metal transition occurs when the number of 

electrons in both s and d bands together is equal to 1.67. The 

transition curve coincides wi th the curve P = 0 in Fi g.5.8. 

In the. absence of s-d hybridization it is easy to show 

from Egs.(2.23), (2.23), (2.61) and (2.62) that in the 

Hartree-Fock theory, ci and s bands are half filled when 

<nd> = <ns> _ 1p0 and in the correlation theory they are half 

filled when <nd> = 0.67 and <n s> = 1.0 respectively. This shows 

that nonmetal-metal transition occurs in the presence of s-d 

hybridization only when the d and s bands are half filled. 
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above Green's functions give the hybridized. bands 

4 	[CZ + Edk' ± 6dk - E-)2+4N 8 V I2] 
~ L 

-1L (5.56) 

The Green's functions (5.54) and (5.55) , when 'substituted in the 

equations (2.15) and (2.16) give the number of states per atom 

for s and d electrons together in each hybridized band equal to 

unity for each spin. Thus if we choose a system with two 

electrons per atom in s and d bands together, the system will  

behave as a non-metal if there ' is a gap between the lower and 

upper hybrid bands, otherwise it will behave as a metal. A 

nonmetal-metal transition occurs when the band gap becomes zero. 

Under the assumptions (2.33) for V and (2.41) for C , we 

obtain from (5.56) the following condition for zero band 
gap. 

(A+1)252 - A 	(Ma) B2 + B - 1 = 0 	(5.57) 

where B . a/To and S = !vi/To. q.(5.57) contains three 

paraneters. By fixing a. particular parameter, one can plot a 

transition curve for the remaining two parameters. 	In Figs. (5,5) 

to (5.7) we have plotted S - B, S - A and B - A curves for differen 

values of A, B and S respectively. In Figs. 5.5 and 5.6 the 

regions above and below a transition curve correspond to 

nonmetallic and metallic behaviors respectively while in Fig.5.7 

situation is just the reverse. These curves show that for a 

particular choice of values of S and B we get a critical value of 



• 

0.5 

0.4 

A0' 

0.2 

0.2 	0.4 0.5 
F/ 

FIG. Si A PLOT OF d o  VE-RSuS Y = 2k.8  T/ (I --J0 ) FOR VARIOUS VAWWES OF  



1.0 

G 

0.2 0.4 05 
Y 

FIG. S2 A PLOT OF G - G/(1+J,) 1'ERSuS y = LkBT/(j ) f'OR VARIOUS 
VALUES  



0.5 

0.4 

0.2 

01 	► 	1 	► 	► 
0 	0.4 	0.8 1.0 

x 

FIG• 5.3 VAR/AT/ON OF YC  _ kB  Tc  / ( I -t ✓0 ) AND YM  2 k8  Tay  /(ItJ,) AS A F )NCT/ON 
OF  



W 

W 
ti 

O 

V  ~ 

QQ  Q  O  W 



O' 

Q~ 

S 
1.2 

•: 

0.4 

0 	4.0 	8.0 
I 

F16-5. S S-.B CURVES FOR DIFFE-RENT VALUES of A 

2.0 



S 
•: 

0.4 

M 
•0 0.2 	0.4 

m 
FIG. 5.6   S-A CURVES FOR DIFFERENT VALUES OF B 



1.6 

1.2 

0.8 

0.4 

. '24 

0.0  L#_- 
0.0 	0.2 	0.4 

1  A 

FIG- 5.6 S-A CURVES FOR DIFFERENT VALUES OF B 



V• V 

0.6 

s 
0.4 

0.2 

0.0 	0.2 	0.4 0.5 
A 

FIG. 5.8  S-A CURVES FOR D/FrrRrNT VALUES OF. P AND 8=  2.0 

I 



i 

16.0 

12.0 
•1 I 

~20 

40 
 

7.0 

S=O.5 

0.01 	 1 
0.0 	0.2 	0.4 

A 
FIG. £7 B-A CURVES FOR DIFFERENT VALVES OF 5 



131  

EPILOGUE 

The pre sent work is qualitative in nature. The 

which have been studied y do not represent the actual situ 

in the transition' metals. To deal with the reality one must 

take into account the degeneracy of the d bands, the electro- 
static .interactions between s and d electrons and among them-

selves,, the interaction of s and d electrons with the lattice 
vibrations, and the relativistic effects (i.e. spin orbit 
coupling etc: 19 'However the present work may help in 

finding the -ways to deal$ with the more complex situation. in 

the transition. metals., Extension of the present work in the 

theory of magnetism and metal-nonmetal transitions, within the 

framework of the models considered here, can be made in several 

directions. 	S. 

Fora system described by the Hamiltonian .(2,1)..we have 

discussed the spatially uniform magnetic solutions at absolute 

zero although the formulation is valid for all temperl  atures , 

,A natural extension is to study the spatially nonuni form magnetic 

•  solutions (spin density waves) and their relative stability 

at absolute zero. This will give a qualitative unde standing 

• of the effect of s-d hybridization on the ground state stability 

of spin. density waves described by the Hubbard Hail nian, 

The second extension. is the investigation of the col ective 

• excitations for a system having spin density wave as its ground 

state. The third ,extension is to develope the finit temperature 
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<<a, 'A. 
-V 	V 	a.,~ e'O 	aj-V r a -V > G (CO) r< a_+ i ,. 	 c>LTI j (o) 

<< a/- 90' ai M0' atiicr ate- >> < a -o- ai-c~- >Gi (o)) _< a. 4 sib, >Gi (w ) 

(A.3) 

These approximations differ from that of Hubbard's approximations 
in the sense that they include the term' like < 	;a > which 
represent the correlation between an electron and a hole of 
opposite spin. Similar approximations were made in iSec.V where 
such correlation functions play an important role in the theory of 
metal-nonietal transitions. Further we shall assume that 
the correlations between an electron and a hole at different 
lattice sites are snail so that we may take <aia_ aaa t> = 0 
if i ~t 

Substituting the approximations (A.3) in (A,) one 
obtains 

(w*µ _I®T) <<n 	9 

(fin 	> s 	' - < a -+ a,,, > -er cr , 1 /2~ s'  

} <ni-ar > .Z Ti Gg j (c,)) - <` i-c~° aicr >  

".4) 
whence 

it3  
- o 

21r 	e I. 
(A05) 
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3.52 

The electron. ,spin _polarization can be written in terms 
o- 

of the Green's function G- ' (w) as 

	

i(k k , 
).r ®o 	c9' 

p (r) _ - lira Z Cr e 	 Im ~G-vi1' (i + i e) I f (w i n 

	

4 	 00 

(0132) 

where 

 

f() _ (e~w + 1). By substituting the value of 
G ,l from Eq. (0.11) in Eq. (C.12), we get 

3( 	+> -<fld_>) 	e' 	Ao ~w~.µ --F )f (aJ )dui 

1#  
4 

(C.13) 

where we have assumed that. C _ 	and F((D) = i 
r(w) _ 	0 ew- , ) is the density of states per atom for 

the conduction band. By assuming the energies of the conduction 

electrons as c = k2/2 	9 others m is the effective mass of 
the electron, the electronspin polarization in the ground state 
is given by 

' 

	

* 2 	 Sin 2r bf(2 t* co) 	do) 
p()---- 

 ~ m v (<nd ,>-<nd. >) 	~~` 

8ir3r2 	 .o , 
.2 2 	w 
8 

(C. 14) 
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where v is the atomic volune. Eq. (C*l4) can be rewritten as 

0 J I vv<2m* )3l2 
r  Sir a 

- + 2((nd,+>_<n~ >) 	8tr 	x in (— Jam* 	) ctx 
rJm r 

(C.15) 

For large r,. the upper limit of the integration can be taken 

as °0. A straight forward integration then gives 

i- r 

t r = (
<nd'> - End >) e 

Jm* r2 	 V 	 (C.16) 

Thus the electron spin polarization shows exponentially damped 
behavior similar to that obtained. by Bose, et el., although 
the numerical factor in the power of exponential and the r 
dependence of the factor multiplying the exponential are different, 
These differences are due to the differences in the approximations 
used by us and by Bose at al. 
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~co+Z" .To.(Cl.%)(1-no/2 )1~ (1-no/2)8(r o=sue'+4is -o-a;8nt ,n 

*44(1...n /2  )S 	~--r -~ - Haag 	,.s-~►°~, (C- - T)/2v  o 	-~ G~'" ~+~ ak ~t c~- 	o 
Cr v' 

[a~+µ -T -(€ -T® ) `1-no/2)H m+/,& -To-(C -T0 ) (1-no/2) 

4 (E' - T0 ) (€j4 T0 )I1 	(A. 18) 

TII. J NERGY OF THE SYSTEM 

As shown in chapter V a the ground state energy per atom 
of the system described by. the Hmiltonian (1.9) is given by 

E _ 	urn + 	SO (cu+p +€-) 	(cut° iC) - GW (w- ie)J dC 

•(A.19) 

arc- 
From ]q. (A.].8) the Green' s function G GO) i s given by 

w /u - 

 

(1-n./2)j (1-n0/2) + Zf Ek+ ] /2i- 
 

G-rkj t (rn) = 	 2 
f*iLL —E (1—n0/2)7f -µ ..€j4 (1_n0/2)}— 6e Ek EI4 

(A.20) .. 

Here 	have assured that To= 0 i.e.. we measure the energy from 

the middle of the band Ek . Eq. (A.20) can be rewritten as 

g_ cwk _ 	_! ' 
kk 	2~r eu 	- wj 	CO — e~4'~ 	euk — e 	eO — wk 

(A.21)  



where 

= 	+ 4 {(l-n0/2)(c + +q )i $ I _n/2) 	44 3 

(A.22). 

and f (w) = w ~-µ - Cj (1-no/2) J (1-no/2) +4 k+q 	(A.23) 

It is easy to see that ~~ (iu j - f (w 	4ls " c fr (l no/2) • 
Therefore nuinber of states per atom for each spin is equal 
to (1.-n0/2) and hence for a system with one electron e r atom 
(no= 1) both the bends (w Z) are complo tely filled and the 

t 	- 
Fermi level ' lies at the top of the band w~ • 

i hen we substitute the value of the Green' s function Cr v"  
Gj (w) fro c Eq. (.x.21) in Eq. (A,19), the energy of the system 
per atom is given by 

EZ jo  {  f (o )d (w-w' )-f (w1 )a (G)-P )]d 
k 

(A.24) 

For no 1 and square density of states it can easily be shown that 
for all magnetic phases we have E = 0, which shows 'that all the 
states (paranagneti.c, ferromagnetic and entiferromagnetic) are 
degenerate. This result .s independent of the dianensionality of 
the system and agrees . .th the one dimensional result of Lib and 
Wu49 and that of Kemeny 6 mentioned in the begining of this 

142 

chapter., 



IV CONCLUSIONS , 

The above treatment reveals that our results agree 

with the exact results obtained in the limiting cases. We 

hope our decoupling approxirftation may be able to give better 

insight about the general solutions of Hubbard model. It would 

be illuminating if the solutions are analysed for finite 

intreatomic interaction I. 
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EXCHANGE SPLITTING OF THE d-BAND IN NICKEL 

The exchange splitting of the bands is an important 

concept for the itinerant model of a ferromagnet6. However 

there is a lot of controversy about this quantity in case of 

Ni..l13 The earliest estimate of the exchange splitting in Ni 
is due to Slater who assumed that the splitting is due to. the 
intraatomic exchange between electrons in orthogonal d-orbitals. 
He founds E = .'p n, -where Q E is the exchange splitting, 4 n is 
the -difference in the mean number of up and down spin d-electrons 
per atom and J is a suitable average of the exchange integrals 
with m m; m being the azimuthal quantum number. Using . data 
derived from the atomic spectra, - Slater estimated J = 0.85 eV 
which gave z E = 0.5 eV for Ni. 

It was pointed out by Van Vleck21 that, because of 
the quenching of the orbital angular momentum in the metal, J 
would be more accurately given by a weighted mean of the J~ 
including the term m = m. The integral J is numerically 
very large (about 12 eV) and even if the smallest possible 
wibight-factor (1/5 for d-electrons) is associated with it in 
the average, one obtains J. 2.5 eV which is much greater than 
Slater's estimate.4 it is known4,31,123 that the value of 
JT is considerably reduced due to shielding effect. of 4s and 3d 
electrons. Van Vleck 	and Hubbard 	obtained I = 7.5 eV 
(I is the shielded value of Jam). 	On the other hand Herring 

estimated that I = 0. Thus according to these estimations 



for Ni may be anywhere in the range from 0 to 7.5 eV. -  

Hubbard 	pointed out that if Q is the band width, a (2.5 eV 

for Ni) .is a critical value for 1. If I is appreciably less 

than this critical value, the interaction may be regarded as 

weak and Slater' s estimate4  of the exchange splitting should 

be good. On the other hand, if I is appreciably greater- than 

the critical value one will be dealing with the strong interaction 

model, 	Considering the d-band as five-fold degenerate, Hubbard 

found that in the strong interaction limit the exchange splitting 

comes out to be 0.4 eV at the top of the d-band. Thus both 

limits give almost the same result® 

In this note an intermediate situation is considered. 

Within the Hartree-Foek approximation, the Hubbard model for 

single nonddgenerate band34  give's the exchange splitting as 

A 	= I lA N '  where L1 N is the difference in the niinber of 

up and down spin electrons per atom in the single- nondegenerate 

band. Recently Liu 	has shown that I = 5 eV - gives the ri gh t 

order 'of the Curie temperature for Ni. Morris 	also found 

that for Ni I = 5 eV. This value lies within the range of 

earlier estimates mentioned above. 'NI has a magnetic moment 

of 0.6 Bohr magneton Per atom. If we use I = 6 eV and d N = 0.6 

for Ni as Liu had done, we get E -= 3.0 eV. This value of 

exchange splitting is six times the value (A E :0.5 eV) given 

by the energy band calculation. This gives an impression,  that 

the Hartree-Fock approximation is not capable of giving the 

correct exchange splitting. However one should note that for Ni, 

N = 0,6 and the d band is five fold degenerate. The Hubbard 

model is developed for single nondegenerate band. One should 
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therefore use the value of. N for a single nondegenerate band. 

This means . a N _ (O.6/5) = 0.12. If we use this value o f ®N , 

we get exchange. splitting 4 E = 6, 6 eV which i s in close 

agreement with the result of the band calculations.l15  Thus 

for a situation where I is not very large or very small, 

Hubbard model is capable of giving the correct exchange splitting 

within the Har.tree-Fock appro .orations., When 1, is quite 
large the Hcrtree- 'ock appro imation fails and one should, take 

into account the correlation effects, 
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APPENDIX C 

ELECTRON SPIN POLARIZATION DUE TO s-d EXCHANGE INTERACTION 

The ground state of a dilute magnetic alloy has been 

studied by.many authors 116-119 by using the s-d exchange 

(Hamiltonian. In general in the ground state the localized 

magnetic impurity moment is found to interact antiferromagnetically 

with the conduction electron spin and bound - state is formed 

between them. The localized magnetic moment is supposed to be 

almost quenched as a result of its spin correlations with the 

conduction electrons. Therefore it is of interest to study the 

behavior of this spin compensated state in space in particular 

to calculate the electron spin polarization. Recently Bose at all, 

have calculated magnetic' impurity spin-conduction electron spin 

correlation function which is directly related to electron spin 

polarization, . . By using the method of cluster variation 

of the co-operative phenomena they obtained an exponentially 

damped behavior of impurity- spin-conduction-electron- spin 

correlation function. In this paper we consider a system having 

a localized magnetic impurity of spin 1/2 and show that the 

exponentially damped behavior of electron spin polarization can 

also be obtained by one particle Green's function approach. 

The }ianiltonian for the system incorporating the s-d 

exchange interaction between the conduction electrons and the 

localized magnetic impurity of spin 1/2 is given by 



T H = Ek`' a~ , akca- 	N - 	 2 ( aka- a1 ~'a.. - ak=cr ak Cr ) ncio' '  

	

ak '-cr• ad-v- ado-, 	(C.l) 

where. C1 is the energy of the conduction electrons of wave 
vector k! a . ' ate,. are the creation and annihilation 

. 	 =r operators for the conduction electrons of wave vector k and spin 
a— .; ado 9 adu, are the sane for the impurity electrons and 

J is the coupling constant of the s-d ndv~ 	gdo° adrr 	 .- 	 - 
exchange interaction and N is the total nunber of atoms in the 
crystal. 

In order to calculate the electron spin polarization 

-, 	1 	 i(k..k )or 
p(r) = 	Z. o a 	 <a ,J aj >, 	(C.2) 

kk ~Cr 

One requires tkza knowledge of the correlation function 
<aj i'a 7.>which can be obtained from the one particle Green's 
f unc tionl03 

	

GZ (co) = <<aj 	., a )>. 	 (C.3) 

CTM 
The Green's function Gj i (w) can be found by writing its 

equation of motion 

w G,(w)=k+ «rai.$ H,a 	>> 	(C.4) 

For the Hamiltonian (C.1) the commutator raj. ' H]is given by 
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H 	= (-N` C )a1,_  - 	a_ `ndcr k 

ak-~ ad-a a 	(C.5) 

When- this is substituted in q. (C.4) we get the higher order 
Green's functions Z «ate (nd®- - d-0 -' akta >> s'nd k 

E <<ak r° 	v ad ¢. ado_ S ei,_ >>. to evaluate these Green' s 

functions we consider the following equations of motion 

(w* µ - 6 ) «ate (nda, - nd-a ) 9 a~ ~a »cc 

6117;!, <nd-(r >) 2v 

N ~721__  << al „ (nda - 'd-o- )2 a 	>> 

'<< ak-o- ad-,? ado. ' ek'c ) J~ 

_ 2 	o '«- gj. ek$ -v a 	' ad/ ada~'° ' a a I t >> 
N 	

k1 

(C.6) 

(cu+(t -E) «e'er (ndcr - nd-a' )2 a 	' >> 

<(ndtT - ad -a.' )2 > 6, ♦f /27 

.. . E 	<< aj. (nda_ - nd-®.,) 9 air+ >>> . << a -a- ad-cs' adO.. ' 1 >> 
(C.7) 



t tw(w..Cj .+,) <(a-' o., - 	a + 
d-o ad cr , ak la- »w 

~ 	Z 
`~ -. 2 << ak tr ad-~ adcr I ak /o± >> 

• k 

_GE alp' a( ad-a' ad-o- ado, ' 	> w 

1 ~ 	-- 	r► C a-* 	a-~~, 	- ~r + -,,r )ad.;+ 	- O f + N- .~ .~ { — 2 << a " 	 a ,~ a
° 

yr  	 ad dcr ' e'k a- 	cu 
"~ 

Zk2 

	

«e1w0 all1 -u 	ad. sda. ' a 	>> 

- 	z { 2 <<a lo„ ad-G (ak 	- ak - a - .) ado° 9 ak~'~ >> 
zk2 

	

< ak-~' ad-v .aft 	a~ 0- ad C11 ' a1 ., >> 

(C.8) 

In. these equations of motion we have used the identity (nd.. )2- 7►,ca-

Sqs. (C.6), (C.7) and (C.2) are solved to obtain the Green' s 
functions Z . << of (udo~ ` nd-tom ) ' 	j >> 2nd 

k 
7, << ak-v- ad-o- ad0. , .ak ~Q„ >> in terms of higher o'rde r 
k  
Green's functions. By substituting the values of these Green's 
functions in Eq.(C.4) we get 

Cr' , 	`fl&r°' < d-o, >) 2 F(Co )< (ndo - "d-'a- )2> 

	

4~rN (eu+,a - 	) (w+A- ) 1-(--- F(co ) )2J 
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cc`s) ..~ ako- adcF ad-o' ad-d' aä0.., a1 '  »Q) 
N(.w+P-Ek)cl+ U_JF(w))2 	k 

.. N 	---------- 

	

~<<al o`(ak0- 	er -a• aj ta')a ,ad 

- . a
j j ~- (ndcr ` nd-0- ' ak/B' >)e~ 

1  ~ 

i 
Cr 

~ N2(0+u 	1-(2 F(w)) 	13 2 	~kk.2.l"  

	

mss' 	0-  

(C.9) 

where 	F(w) 	- 	£ 	 ' 	 (C.10) 

0 
To evaluate 	(w.) one has to evaluate the higher order 
Green's functions appearing in (C.9). However if we assie that 

is snail and neglect all the terms containing the power of 3 
. 0- 

greater than unity, we get an expression for Cry/(w) which is 

exact upto the first power in J. This is given by 

or- 	l 	 0 C / 	 J(<nda. > .r<nd-~ > ) 
kk 	 41J 	 4irN (0)+(t ,.E ) (0)+4 - Ej) { 1- (~ F(0))) 

(0.11) 
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n® (-o -tom )~ . ®!- I n® (-o a- )a ~r c~-  (j_8 

cr 	 27r 

I 
I 
	~nQ (-a-, -cam )s cr Cr- - 	(-Cr, cr -0 o=j' 2ir 

(A,7) 

where the spin density. operators n~ (cr - ) are defined by the 

Eqs. (5..11), (5.12) and (5.16). Now we assume that the system 
is magnetized in the x direction instead of conventional z axis. 
Such a system has been considered in chapter V. For this case 

there it is shown that 

n (v- , -vr) = n (-o- , o-) = J ; nq o- ,c—) = nq (-v- ,-cr- )= q/2 

Using these relations in Eq. (A.?), we get 

a'cr 

	

-T - (EZ-To ) (1+ 	o/2 	)J. G-'-'(,o) 
w+µ -T -I -~ 

+ 	(e - T) 
au -µ .,T1 

n Q 	 a-a- 

co* tk _To-g 	Q 	 s 



WTO 

122/2 	'o 

27 w*p.uT0  -I 

-. 	' 2 oa" &o  

(8) 

From this equation we can obtain the Green's function Gj' (co) 

for para, ferro and antiferromagnetic states. 

	

For parainagnetic state 4 = 	n = 0, Therefore. 

frori(Ars)-ma .b.aivo 

C" all 

	

(T0 )(co+/4 -T0-I)-(E 	 ..T01.iI(1_n0/2)j 

".9) 

This result Ls the same 'as that obtained by Hubbard i.e. in 
parnagnetic case our approximations are equivalent to that 
of Hubbard. 

In ferromagnetic state 4r rr = 0, hence from Eq,(A,8) 

we have 

1n2 	Cr a",  
Gj 	(co) 

+ +j(A T 	
T0 

-I 	
) Gç', (co) 
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By solving this equation for G' (w) we obtain 

k+Q 	o 	(r Q' kk Q 	-cra- k+Q'k j2v 
( ej - To ) 

(w)s~o8 '} 2~r 
- 

°u) 	- 0u) .~ 	 2 () ( Ak 	 ~ w 	-~ - 	. - ~k 	( `~ 	~k 	) ( 	T o ) 

(A. 16) 

Eqs. (A.- 9) ' (A,11) and (A,166) can be combined into one 
equation 

Pj) 	 i~ti]h/21r' 

-D°¢ (co)B► O )6 	,S .. 	.~`, D' ` c) 	~~.~-► (~-. _T c 	o (c 	 - 	( 	E 

	

'  c3" ~'k 	q 	~° 	kk' k+q o )  
G ,(w) =  

2 

	

A(  co) A -. (a) - D(  a)) ( 	- ®) (Ej +.+q -to ) 

(I:17) 

Here parenagnetic state corresponds tee = 09 ferromagnetic 

and antiferromagnetic states correspond to q = 0 and q = Q respec-

tively. We shall restrict our study to the strongly correlated 

systems so that T -P °. In this case q. (A.1?) becomes 
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theory. At present most of the theories of magnetic phase 

transitions are developed on the .localized electron models- 

Ising and Heisenberg models. The mathematical progress on the 

critical behavior of nonlocalized magnetic models islac1c1.ng, 2  

The extension of our study to finite temperatures may help 

in the study of the critical behavior of the transition metals 

where magnetic electrons are itinerant. The phenomenon of 

metal-nonmetal transitions discussed in chapter V on the basis 

of the Hamiltonian (2.1) may also be extended to finite temperatures 

The fourth extension is to develop a more refined theory of 

correlation for finite intraatomic interaction. This can be 

done by writing down the equations of motion for the higher 

order Green's functions and using a decoupling scheme so that 

one can take the correlation between s and d electrons and the 

correlation between the d electrons at different lattice sites' 

which have been neglected in the present study. 

The study of the Hamiltonians (3.2) end (4.) can be 

extended on lthe similar lines. In chapter IV we have shown 

that for zero bandwidth, both in weak and strong intraatomic 

interaction-  theories t  the dynamical susceptibility of a system 

described by the Hamiltonian (4.1) reduces to an expression 

obtained in the Heisenberg model within the random phase 

approximation. Thus the .model Hamiltonian (4,1) may serve as a 

bridge between the itinerant model and localized one. And in 

this respect an improved analysis of the model may be of vales 

because it has long been realized that the properties of the 

transition metals can be explained by a model which is a 

compromise between the itinerant model and the Heisenberg one. 



s3 

APPENDIX 1 

MAGNETISM IN ,A STRONGLY CORRELATED NARROW ENERGY BAND 

I. INTRODUCTION 

As  pointed out in chapter 1, 	the Hubbard model has 

been analysed by many authors using different approaches and 

approxmations. But so far it has not been possible to solve 

it exactly. However in some limiting eases exact results of 

this model have been found out. For example for zero bandwidt q  

for zero intraatomic interaction, and in one dimension. exact 
46 

solutions are now known. In addition to this Kemeny has given 

an exact proof that for half filled band the ferromagnetic state 

with maxi inn spin is never, by itself, the ground state but 

for I 	cO it must at best be degenerate with a manifold of 

other states with one electron on each lattice site and arbitrary 

spin projection. 	These exact results can be used to check 

the particular aspects of appro' ximation schemes to see if these 

results are found to be true for such approximate , solutions. 

Keeping this view in mind we havea tried to improve the Hubbard's 

decoupling scheme and find that in some limiting cases the results 

of our theory reduce to the exact results. 

In Sec, II we have obtained the one particle Green's 

functions for para, ferro and antiferromagnetic states using 

improved decoupling scheme. In Sec. III the energies of the 

magnetic phases are obtained for the half filled band and I 

using the square density of states. In Sec. IV we sunm ari se 

our results. 



II,  GB► ' S FUNCTIONS 

We consider the Green's function (5.1). The equation 
of motion (1.13) for this Green's function, for a system 
described by the Hubbard Hamiltonian (1.9) , is given by 

o"cr ' 	i f a- Cr ' 	 a a-' 
(w - µ) ~* j Cw) _ 	~- Ti G,~ (co)* I <ni-ca' aia° , e ja '»w 2~r 

(A.1) 

The 'Green's function <<ni-Q„ aia. p €~~~, ` >> satisfies the 
equation of motion 

(o -µ -I-T®) «ni-cr- aj - , a,. I >> 

<ni-er > s 1 j 6c° 	ias' 	i j _Cr o- 

E Ti «C s3 -o- a'i-," a~.-c° 	) ajar , a / »w 

	

-+ E T «ni-cs' $La- , a ,~ >> 	 (A.2 ). 

In order to break off the sequence of G.reen's function equations, 
the Green's functions on the right hand side of (A.2) are 
decoupled as 

<<n3-d" asa- , a ja->>w <ni-er > Gt j (w) - c ` .-®" at V > Gi 



13.6 

which when substituted in (A.1) gives 

I< 	> a >I~ 	> 	a  
tau msµ•. To) Gi fw) = [(l*'....')0„ -crcTJ. e-µ 

i (I* —......_.i.. r— _)E T G(au 
ar+f,~... TO .►I 	. e/i I e 	) 

It is easy to see that in both the zero. bandwidth limit 

T bj ) and for I -= 0:, the above expression reduces 
to the exact solutions; By taking- the Fourier transform (5.5) of Ik 

• the Green's function Gi j' .(w) and using the ansatz (5.7) , Eq.(A.6) 
becomes. 

Irit.a,,-o-g 	o-0. 
w . µ To- I 

'  r 

-:r. ~_..._.._....,_. (-► „ •4) G, (co)  

+ 
	( js' ~-T) Gam` 	, (o) 

- I 	4. °. 	Ik 

0 
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General expressions for the electron and phonon energy shift and widths are derived with 
the helpf  of the double time temperature dependent Green's function by using a Hamiltonian 
which includes both anharmonicity and electron—phonon interaction. The expression for the 
phonon width shows that Green's function technique provides an understanding of Matthies-
sen's rule. Well known temperature dependence of the electron and the phonon relaxation 
times is reproduced by a simple calculation of the elctron and the- phonon widths at low 
and high temperature limits. It is found that the effect of anharmonicity on the electronic 
transport properties of metals is negligible. Its effect on the lattice transport properties is 
predominant at high temperature and at low temperature the effect of electron—phonon 
interaction is predominant. 

Allgemeine Ausdrucke fur die Energieversehiebung der Elektronen and Phononen and 
fur die;Elektron- and Phononenbreite werden mit der zweizeitigen, temperaturabhangigen 
Greenschen Funktion durch einen Hamiltonian abgeleitet, der sowohl Anharmonizitats-
effekte1 als auch Elektron—Phononwechselwirkung beri cksichtigt. Der Ausdruck fur die 
Phononenbreite zeigt, daB die Technik der Greenachen Funktion das Verstandnis der 
Matthiessenschen Regel ermoglicht. Die gut bekannte Temperaturabhangigkeit der Elek-
tronen- and Phononenrelaxationszeiten wird durch eine einfache Berechnung der Elektro-
nen- and Phononenbreiten bei niedrigen and hohen Grenztemperaturen reproduziert. Es 
wird gefunden, daB der AnharmonizitatseinfluB auf die Elektronentransporteigenschaften 
von Metallen vernachlassigbar ist. Sein EinfluB auf die Gittertransporteigenschaften ist 
bei hohen Temperaturen vorherrschend, bei niedrigen Temperaturen ist der EinfluB der 
Elektron--Phononwechse1wirkung vorherrschend. 

1. Introduction 
The metals are different from insulators in that they have conduction electron 

which are free to move about the crystal. These electrons interact with the 
lattice vibrations. The lattice vibrations cause a change in the potential energy 
of the crystal. The change in potential energy is usually expanded in a power 
series of ionic displacements from equilibrium positions. In the harmonic approxi-
matibn one retains only the quadratic terms and then the problem is solved 
exactly in terms of the normal modes of vibration of the crystal. The system 
can be quantized and each quantum of normal mode is known as `phonon'. 
All the terms beyond the quadratic ones are known as anharmonic terms. These 
terms contain phonon—phonon interactions which can be used to explain some 
of the properties of the crystal which harmonic approximation fails to explain. 

Recently the theory of enharmonic insulators [1, 2] and effect of electron—
phonon interaction on the properties of metals [3, 4] are discussed by a number 

53* 
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of authors, but so far we have not come across any published work where 
simultaneously both anharmonicity and electron-phonon interaction are taken 
into account to explain the transport properties of metals. For the evaluation 
the transport coefficients the central quantity which we require is the relaxa-
tion time. In the present work we have evaluated one electron and one 
phonon Green's function for a Bravais crystal whose Hamiltonian contains 
both anharmonicity and electron-phonon interaction. When we examine the 
Green's function in the complex energy plane, it is found that there are poles 
that lie above and below the real axis. The real part of the pole in the positive 
half plane is identified as the perturbed mode and the imaginary part as the 
half width of the mode [3]. The electron and -phonon width obtained re-
spectively from one electron and one phonon Green's function are the in-
verse of respective relaxation times. To explain the transport properties one 
generally assumes the total inverse of relaxation time as the sum of the in-
verse of relaxation times due to different scattering mechanisms [5]. Here we 
show that Green's function technique gives an insight into the nature of this 
assumption A hieh. is called Matthiessen's rule. A simple calculation of the 
electron and the phonon widths reproduces the well known temperature de-
pendence of the electron and the phonon relaxation times at low and high tem-
perature limits. 

2. Hamiltonian 
. We consider our system' as an assembly of electrons and phonons interacting 
with each other. The Hamiltonian for such a system can be written as 

H 	I 	+ _ ~ coq (bq b~, + 2 + ~ sip a~~ are + ~ V ( 3 )(g1 , q 2, q 3 ) A~r j Aqa Any + 
g 	 1; 	 91, q,,110 

+ ~' 	V( )(q1, q2, q3, ('4) Aq, Aq, A-q, A 	_F q. + Z . a+ ak-n Aq • 	(1) 
q,, q,, q,, q4 	 k, q 

Here first term is due to phonons under harmonic approximation, second term 
represents the kinetic` energy of electrons, third and fourth terms are due to 
anharmonicity and correspond to cubic and quartic terms in the expansion of 
potential energy in powers of ionic displacements from their equilibrium posi-
tions and fifth term represents the electron-phonon interaction. We confine 
overselves only to quadratic, cubic and quartic term in the potential energy. 
U)q , bq, and bq are the frequency, annihilation,,and creation operators for phonon 
of wave vector q; ak and a are the annihilation and creation operator for elec-
trons of wave vector k, el, _ (k2 /2 m) — It where mn is the mass of electron and 
It is the chemical potential; V(3) and V(4) are the Fourier transform of the third 
and fourth order atomic force constants respectively; F. describes the coupling 
of the electron to the phonon field and Aq = bq + bq. The explicit expressions 
for the coefficients V3 and V(4) are given by Maradudin and Fein [1]. P+q is 
given as [6] 

w 
(2) 

where F is a constant and V is the volume of the crystal. For simplicity here 
and in what follows we omit the polarization index for phonons and spin index 
for electrons and take ?i = 1. 
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3. Green's Functions 

We define the one-electron Green's function Gkk-(t, t') and the one phonon 
Green's function Dq q' (t, t') as [3]  

Gkk'(t, 1') = Kak(t), a(t')))= —i 0 (t — t') <[ak(t), a',(t')]+> , 	( 3 ) 

Dqq'( t,l t' ) _ ~( bq( t ); bq'( t' ))) _ —2 0 (t — t' ) <[bq(t), bq'(t' )-> , 	( 4 ) 
where 

[A,B]± =AB.-f- BA, 

1 for r>0 
0(x) — 0 for x <0, 

and angular brackets (> denote the average over canonical or grand canonical 
ensemble. The Fourier transforms GkL ,,,(a)) and Dgq'(cw) of one-electron and one-
phonon Green's functions are defined as 

00 

Gk,e(t, t') =f Gkk'(W) e-zC'(t-t') dco , 	 (5) 

00 

Dgq,(t , t') = f Dgq,( co ) e-ic,(c-a') dco . 	 (6) 
-DO 

For convenience we also define the operator Bq = bq — bq. 
In evaluating the Green's function we shall need the equations of motion for 

the operators ak, a+ , bq, and bq. These equations of motion are given as 

i dt l̀  _ [a,,, H]- = el. ak + S Fq ak-q Aq , 	 ( 7 ) q 
da 

i d 1̀  = [at , Hj- _ — Ek aL+ — 	a +q Aq , 	 (8) 
I 	 q 

i 

	

d
bq = [bq, H]- = Wq bq -I- XFq a ak+q -f- 3 	V(3)( —q, qi, q'2) Aq1 Aq2 I 

+ 4 1 V(4)( —q, q1, q2, q3) Aq, Aq, Ag3 , 	 ( 9 ) 

i dd+ = [bq, H]- _ — coq bq — I Rq ak ak-q — 3 S V(3)(q, q1, q2) A4i Aq, 
k 	 q,,92 

— 4 	V(4)( — q, q1, q2, (13) Aq1 A42 Aqs . 	 (10) 
q,, q,, 4'3 

	

3.1 Electron Green's function 	 I 

The equation of motion for the Green's function Gk k' is 

Z ~Gdtk, = bkk, 6 (t — t') + ek Gkk' + G F7((al:-q A,; af'(t' )) . 	(11) 

To evaluate the higher order Green's function Gl = ((ak _q Aq ; a+k., (t' )) we shall 
need the Green's function. G2 = (ak-q Bq ; a+, (t'))). The equations of motion 
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for G1 and 02 are 

Z da 1 = 6k-q Gl + aq 02 + ~ Fq,,((ak-q-qi A qx Aq; ak'(t' )~) , 	(121 
4, 

i dG2 = 
—8k-.-q G2 + COq Gl + X Fqi(\ak-q-qi A,i Bq; 4.(t'))) + q, 

+ 2 	Fq((ak-q air• al.l-~-q; ar'(t' ))) 
k, 

+ 6 	V(3)(—q, q1, q2) ((ak.-q A., Aq,; ak+'(t')) + 
M, q2 

+ 8 	' V(4) ( —q, qv q2, q3) 	Aqj Aqz A93; a~'(t'))) . (13 
q1, q1 q, 

Apart from Green's functions Gl and 02 (12) and (13) contain also higher 
order Green's functions for which we should in turn construct equations of 
motion and continue the process further. In this way we shall get infinit( 
number of equations of motion for the Green's functions. We can break thi, 
chain of equations and decouple the higher order' Green's functions into lower 
order Green's functions by making some kind of approximations. Here we 
decouple the higher order Green's function containing four and five operator 
according to the following scheme [3, 7] 

((abc;d))_<ab>((c;d))±<ac>((b;d))+<bc>((a;d)), 	 (14) 

((abcd;e))=(ab>((cd;e))±<ac>((bd;e))+ 

-+- <ad>-(bc;e))+<bc>((ad;e))± 
±<bd>((ac;e))+<ca)((ab;e)), 	 (15) 

where plus sign is for the case when the two operators inside the angular brackets 
<) are either bosons or the combination of bosons and fermions and minus sign 
is for the case when these two operators are fermions. In addition to this de-
coupling scheme we also assume that 

<bq bq') = iq Uq q' a ak')  <k = nk ak 
<bq bq'> _ <.bq bq'> _ <a+ a+ > = <ak ax', = 0, 	(16) 

_ <4 a> _ <bq ak> _ <bq a*+&.) = 0, 
where 

vq = <bq bq> and nk _ (a, a,> 

With the help of these decoupling approximations, and from (11), (12), and 
(13) we get the following set of equations for the Fourier transform of Green's 
function 

(w — sl,) GkL, (co) = 61zI + . ' F9 G(w) , 	 (17) 
q 

(w — erg-q) G1(w) _ (q G2(w) + Eq Nq Gk,' (w) , 	 (18) 
(w — 8k-q) G2(w) = [N; + 2 (1 — nl,-q)] Eq GL,l.'(CO) + 

+ 
 [
a), + 24 ~' V(4)( —q,q, —q1, qi)N9~ G1(w) 	 (19) 
 q~ 
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where 	 Nq = <A+ Aq ), Nq = <A+ Bq> 

We solve these equations for Gkk; (w) and get 
~.•/2 	

/20 Gk1( co )   = 	
1 ) 

where 
[N' -{- 2 (1 — nI~ –g)] wg H Tq (w — s –g) 

M,e(w) _ 	.Fq 	 2 	~ L 24 	 (21) q 	(w — E~.-. 	— wq {1 t 	y 
TJ 

(4) (—q, , — q1, q1) N qi} llllll 	w4 q1 

It is shown by Klemens [8] that V( 4 )(—q, q, —ql , q1 )= 96 ~L N where is 

a dimensionless parameter. N is the number of atoms in the crystal and co 
is the maximum phonon frequency. Therefore the quantity inside the curly 
bracket in (21) is independent of q. We denote it by A2 . Now let us define 

114 (w ± i E) = dk.(co) 	i 1'(w), 	 (22) 

where 47z(w) and I(w) are the energy shift and half width of the electron of 
wave vector k. The explicit expressions for d,(w) and .Fk(w) are given as 

xF2 [Ng + 2 (1 — nk–g)] coq ---E-- Ng (CO — EL-g) 	 (23) 
q 4 	(w — 8k,—q)2 — A2 wq 

-Pk.(a)) = 2 	F2 [{.N + 2 (1 — nk_-q) + A Nq} a (CO — EL,—q — A wq) - 
q 

— {Nq + 2 (1 — nk-s) — A N Q} S (c) — Ek—q + A coq)] , 	(24 ) 

where P denotes the principal value. 
The above expressions reduce to that obtained by Zubarev [3] if the effect 

of anharmonicity is neglected. It should be noted that in these expressions the 
effect of anharmonicity comes only through V(4) coefficient which is smaller 
than V(3) coefficient in the expansion of potential energy. Hence the anharmo-
nicity does not! contribute noticeably to the electronic properties of metals and 
therefore for qualitative discussions one may neglect its effect. 

3.2 Phonon Green's function 

The equation of motion for the phonon Green's function Dqq' is 

i dt Dqq' = q' (t — t') + wq D44' + Z F ((atL ak.±4; bq'(t'))) + 

+ 3 G V(s) ( — q, qI, q2) ((A4'1 Aqa; b~I'( t' ))) + 
Ali, 9'a 

+ 4 1 V(4)( —q, q., q2, q3) ((AIL Aq: Aq,; b' (t') 
' 41,9',.4, 

(25) 

The Green's function of last term can be decoupled according to equations (14), 
(15), and (16). To evaluate the Green's functions DI = (ate ak+q ; bq,(t'))) and 
D2 = ((Aq1 Aq2 ; bQ. (t' ))) contained in third and fourth terms, we need the Green's 
functions D3 = ((Bql Aq2; bq'(t'))), D4 = ((Aqx Bq.; b4'(t'))), and D5 = (CBgz Bq.; 



oiuotax,euui oigairnb argq. puoSoq 	so ati,4 jo .f.Wsauo teiqua~.od otr4 jo uoisurndxa 
.apxo 	uzoag asiat- ut-a 4 3t suorgnqu uoo aqq. o-4 olq atduioo oxe suzaol 
rions osn~oaq taau4 gaaj.3au ot 	aq.auieaed Vuitdnoo or~sunb puu orgna jo 4onp 
-oad atrj. jo iopao c q. jo 2uioq jp ms a ru suoiq.ounj s,uaaa-j sogxaado aazj aq4 Vui 
-Zdn000p uroIJ pauitegqo staxaj. OTAq moxg suotqngraq.uoa atr 	paoi~ou ~jts~a st ~I 
(m)(7 xoj uor~our jo suoi~,Unb 	OAJOS off. paaao~d uUa auo uUaojsunsq. saisnos 

Ouup puu (91) puts `(ui) `(fi) suoi4vnba oq. WuipiooDv (08) oq. (9g) uzoaj 
suoxprnba Utz .Vuixteaddv suorgaunJ s,uaaa-D aapao ,iar{ rq aqp j 	urtdnooap aagjy~ 
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(K(17)4 Gig 9bb' V '- v)) (qi ̀ ~L `Eb '9i—)A) 7 8 + 

+ {(~(,j),l+q !'IV gbV ibo (r'b `Eb `"b— )(~)A + 
r j'b 
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term. We obtain following equation for Dgq•(04. 

Dgq,(CO) — CO _6wq''2 P(w) 	 (31) 
where 

 
Pq(0j) =" I Eq CO — Er+ 

— 

n~x
lc 

+
+g 

+ 3 q a I V(3)( —q 91 92)12 VJ(gl, 4'2' w) + 

+ 12 ~ V(4)(q1, —q1, q, —q) Nq j 	 (32) 
q1I 

and 
wq, + C0 g2 	 _ 	wq, — 0%. 

`(ql, q2, w) = 6 (Nq, + lvq.) 
CO

2 _ (w
q 1 w4a)2 + 6 (N9, 	91) ~2 — (CV9i — w9x)2 

(33) 
Now we define 

Pq( 0)+ie)=dq(w)-I- 2 rq(w), 

where phonon frequency shift dq(co) and half-width rq(co) are given as 

dq(w) = A (w) + A, h(w) , 	 (34) 

rq(w) = rqP lam) + rgnh(w) , 	 (35) 

where superscripts e.p. and anh. denote the contributions due to electron—phonon 
interaction and anharmonicityrespectively. dqr, , dq ~', I'qP., and rgnh are given 
by 

A 
P.(a)) 	P 2 F" n~ — nL+g 	 (36) 

k 

4q (w) = 18 P 2; V(3)(—q, q, q2)~2 [ (Ng + 1Yg2) 
2 wq, + Wqa 2 

q3, q2 	 w 	(wq, + Wq,) 

Wq, Wga 

I+ (Nq, — N9,)2 — (a)q1 — wq,)2 

+ 12 2 V(4)( —q, q, — qv q1) Nq j , 	 ( 37 ) 
qi 

-Vqp (a)) = -r Lr Fj ( nlc — n/C+q) 6 (w — 	+ £k') , 	 (38) 
k 

rgnh (w) = 18 n e(w) ; IV(3)( —q, %, g2)12 X 
q',. qa 

X L(Ngi + Nq,) (Wqi + W4'2) 6 (CO2 — (wq, + cogx)2} 

+ (Nqa 	Nqi) (COq% — coq.,) 6 {CO2 — (ag1I— LUga)2}] , 	(39) 
where 

I for co > 0 

(w) 	—1 for w < 0 . 
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The equations (34) and (35) reduce to the equations obtained by Zubarev 
[3] if effect of anharmonicity is neglected. Also one obtains the expressions 
obtained by Pathak [2] if effect of electron phonon interaction is neglected. 
In the theory of transport properties it is generally assumed that the total 
inverse of relaxation time is the sum of the inverse of relaxation times due to 
different scattering mechanisms. From (35) it is clear that Green's function 
theory gives an insight about the nature of this assumption. 

4. Electron Width 
To evaluate electron width we substitute the value of Fq from (2) iii (24) and 

replace summation over wave vector q by integration. After performing the 
angular integration with the help of delta function we get 

2A;-2mA.c 

	

I'2 mc 	 2 	 2 	 2A 

	

rk(Ek) = 8 n A k 	f q 1+ ̀g 	eR(E►.--Awq) + 1 +" efltuq 1 dq 
 

2k + 2 vA  
— r 2 	2  2A d 

J q 1 — A — eR (E►~+A coq) 	1 	e~ Wq _ 1 q . 
0 

(40) 

Since k > m A c, the upper limit of integration in both the integrals of (40) 
can be taken as 2 k. Also since sk > A coq, the Fermi distribution functions 
1/(exp {fl (Ek. -- A cwq)} + 1) and 1/(exp {f (E , + A coq)} + 1) can be replaced 
by 1/(exp (f E►; ) + 1). Within these approximation (40) reduces to 

2k 

F2 n,c  
r11)= 

4 k 	1 + w2q 1 2 dq. 	 (41) 
e   

0 

At low temperature (k$T < wq ) we get 
P2 n2 I 

	

rh(E►~) = i n c fl3 k , 	 (42) 
where 

c 

	

I — J x2 coth 2 dx . 	 (43) 
0 

In (43) the upper limit 2 k fi c is replaced by oo which is perfectly justified in 
this range of temperature. At high temperature (a), < kBT < 1C) we replace 
phonon distribution function 1J(exp (fi coq) — 1) by 1/fl co,, and get [9] 

I'k(e,,) _ F2 ,m k 	 (44) 

The expressions (42) and (44) give the well known temperature dependence of 
electron relaxation time at low and high temperature respectively [5]. These 
expressions are independent of anharmonic parameter A and thus one can 
safely neglect the effect of anharmonicity on the electronic transport properties 
of metals. 
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5. Phonon Width 

To evaluate I',7 (a)) we note from (35) that it is a sum of two terms l'qr' and 
a .I~gnh . The contribution to I'q(w) from I'gnh' has been evaluated by Pathak [2]. 

and is given by 
~,2nh.(wq) = 32 ~3 

(k a)2 0 (km — k) , 	 (45) 

where A is a dimensionless parameter and a is a lattice constant. We evaluate 
r p- at low and high temperature as follows. 

At low temperature (T -* 0) the electron distribution functions n,, and 
nl,_q can be replaced by 0 (kr — k2) and 0 (kr — k — q2 ) respectively. Here kF 
is the electron tivave vector at the Fermi surface. After replacing the summa-
tion over k by integration and summing over spin index (38) reduces to 

I'q(cu) = 2 	r k2 dk J B (1— x) 0 (1 + x) {8 (kr — k2 ) - 
0  -00 

9(k —k2 --g2 + 2kqx)} 6 (a) -2m k m f ~dx 	(46) 

After performing the integration over x and k we get 
F2 cm2 w 

r(w) = 	2 yr 
when q < 2 kF (47) 

when q > 2 k . 	 (48) 

Boltzmann distribution function and get 
At high temperature (T -* oo) we replace Fermi distribution function by 

ep 	r2mc 	 p (m O, _ q )2 

r(  w) = 	e~F (1 — e— P W) e 2 m q 	2 	 (49) 

If we examine (45), (47), (48), and (49) we come to the conclusion that the 
effect of anharmonicity is predominant only at high temperature (T - oo) 
and at low temperature (T -* 0) the effect of electron-phonon interaction is 
predominant. When we consider these points, we find that these expressions 
give the well known temperature dependence of phonon width at low and high 
temperature limit. 
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Electrical Conductivity of Metals 

By 

R. ASHORE1) 

With the help of Kubo formula an expression for the electrical conductivity of metals is 
obtained within the Hartree-Fock approximation using the method of double time tempera-
ture dependent Green's function. A simple calculation of the relevant relaxation time 
appearing in the expression is presented. This gives a reasonably good estimate of the 
electrical conductivity of metals. 

Mittels der Formel von Kubo wird ein Ausdruck fur die elektrische Leitfahigkeit der Metalle 
gewonnen, wobei in der Hartree-Fock-Naherung die Methode der doppelt zeit-temperatur-
abhangigen' Greenschen Funktion benutzt wird. Eine einfache Berechnung wird fiir die in 
dem Ausdruck erscheinende Relaxationszeit angegeben. Damit ergibt sick eine ziemlich 
gute Abs chatzung der elektrischen Leitfahigkeit von Metallen. 

We start with the Kubo formula [1] of the electrical conductivity 
00 16 

a~„=lim f e- Etdt f d~1<Jt, Jµ (t+iA)>, 	 (1) 
ea00 	0 

where = l/kBT ; J9 is the v-th cartesian component of the electron current 
density operator and is given by 

J„=—eE nk,0 , 	 (2) 
kCr al:v 

where s, = (k2J2 m) — ,u and nkQ — al,a a&.Q. k, m and It are the wave vector, 
mass and the chemical potential of the electron respectively. ak' , and ak..Q are 
the creation and annihilation operators of the electron of wave vector k and 
spin o. Here and in what follows we take h — 1. The angular brackets in 
equation (1) denote an ensemble average, namely for any operator 0 

O 	tr e- d O 	 (3) 
= tre-,6g ' 

where H is the Hamiltonian of the system. 
For our particular problem of electrons in a crystal, the system is described 

by the Hamiltonian [2] 
H= 'cog bqbq + JsL, a'ak, +XAgak+qak(bq+bq) -f- 

q 	 h 	 k. q 

+ 2 L Vka;+haq_kaga, 	 (4) 
p,q,A 

where wq, b+ and bq are the energy, creation and annihilation operators of the 
phonon of wave vector q respectively. Aq is the coupling constant for the 

1) Present address: Department of Physics, University of Rooskee, Rooskee, India. 
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electron-phonon interaction. Vk is the Fourier transform of the Coulomb 
interaction between the electrons and is given by 

4 e2 
Vk= k2 

For simplicity here and in what follows we have omitted the spins and polari-
zations of electrons and phonons respectively. 

In fact taking the equation of motion of the density fluctuation of the electron 
in the random phase approximation (R.P.A.) one gets [2] 

	

+ 	 Ak£(~~ w)—I 	± 	 5 k)~ 	 ( ) q U 	E~l~, CO; 
  

where the frequency dependent dielectric constant is given as 

E(Ie,ca) = 1 + VkX 	nP —nv+k p W —Ep +ep+k+1S 
After substituting the value of ' a1 .. k aq from equation (5) in equation (4), 

q 
the Hamiltonian of the system reduces to 

H 	wgbqbq+Ecka++ak + ZAef ak+g ak(bq+b± q ) , 	(6 ) q 	 k 	 k, q 
where 

eff_ Aq 
Aq 	8(k, r)) 	 (7 ) 

For d.c. electrical conductivity the energy of the applied field cc = 0 and so in 
this case Aq f = Aq/s(k, 0). To evaluate Aq we take the simplified Jellium' 
model in which all effects associated with periodicity of the ions are neglected. 
In this model after applying R.P.A. one obtains [2] 

eff — 	2 Z y 	n 112 

	

Aq 	
— (3 n  ~ k M v) 	(2w)1/2 ' 	 (8) 

where n is the number of electrons per unit volume, v is the number of elec-
trons per atom, Z is the number of charges of an ion and M is the mass of an 
ion. For phonon frequency coq we take the Debye model and obtain from equa-
tion (8) 

eff 	2 Zµ 	nq 
Aq=G 3 n ~21YIvc)1/2

. 

 
(9) 

For an isotropic solid the expression for the electrical conductivity can be 
written as 

0 
e2 	a&L aEk, 	

r  ( ) Cr = lizn 3 ' ele e►c' f e- sc dt J dA. <nk nk' (t + i 2)> . 	10 
s-~0 	k,k 

0 	 0 

It is evident from equation (10) that the evaluation of electrical conductivity 
essentially involves the evaluation of the correlation function of two electron 
number density operators at different times. This correlation function can be 
expressed in terms of the Fourier transform G,;,,,-(w) of the one-particle Green's 
function [3] 

Gk,k-(t) = — i 0 (1.) < {ak(t), a''(0 )}> 	 (11) 



Electrical Conductivity of Metals 	 135 

where 0(t) is, the Heaveside unit step function and curly brackets denote the 
anticommutator 

{A, B}=AB+BA. 
Now within the Hartree Fock approximation and neglecting the correlation 
between two creation and the annihilation operators the electrical conductivity 
can easily be shown to be (4) 

00 
eZ 	! 	aE/~ aE' r 	eP w 

6 3 lim ,~ ~, a 3k' J da' (eu ' -}-1)2 X 

X {Gt', k' (co + i e) — G,,e (w — i e) } €Gr p, k (cu -{- i e) — Gk- (o — i c) } . (12) 

For our system of electrons in a crystal described by the Hamiltonian (6) 
one can obtain the expression for the Fourier transform of the Green's function 
[3] as 

G (w) = 1 	 (13) 

	

k, ~e 	2 n w -- Ek — 111k(CO) ' 
where M, (co) gives the effect of electron phonon and electron—electron inter-
action on the single-particle energy and is explicitly given as 

Mk(w) _ ' (A0 )2 <Vg> E— <nk — g -}- 
q 

where 
rq = b bq . 

<nk - q> + <vq> 

CO — Ek - q+wq 
(14) 

Now we substitute the Green's function Gk ,k-(w) from equation (13) in equa-
tion (12) and obtain the expression for the electrical conductivity as 

8 s 2 	e~ 1k 	1 or = 	k ale } (ePEk + 1)2 2 lk(Ek) ' 	 (15) 

where the renormalized electron energy Ek is 

Ek = Ek + A k (Ek) ; 
dk and Ti, are the real and imaginary part of M&(a) which can be obtained 
from equation (14). 

In general the shift in energy A,,(Ek ) is very small and therefore we assume 
Ek „ e,,. In this case equation (15) for the electrical conductivity reduces to 

CO 
e~ 1(2 	 of aE a = 6n2m 	 rE)312 —  

	r(8— 	 16µ) 	 ( ) 
0 

where f = 1/(eIEkk + 1) and s = k2 f2 m. 
For temperatures well below the Fermi temperature (kBT <,a) equation (16) 

reduces to the usual relaxation time expression of electrical conductivity 

or _ne2z 	 (17) 
m ' 

where the relaxation time x = 1/2 T(0) ; I'(0) is the half-width of the electron 
distribution function at the Fermi surface_ 
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The expression for the electron width I',(co) can easily be obtained from equa-
tion (14) and one gets (3) 

Tk,(w) = n X (A4f ), (Vq + 1 " nla — 9') 6 (a) — 8k — q — v ,) q 
+ (ni, --- q + vvq) 6 (co — EL, — 7 + co,) . 	 (18) 

Now we evaluate the electron width fk,(co) in the temperature range w,q < kBT C 
1u. In this range of temperature the phonon distribution function P. can be 

approximated by 1/fl Wq and the Fermi distribution function nk. - q by unity. 
Within these approximations and with the help of equation (9) the expression 
for the electron width can be written as 

µ2 Z2 	r 
rk(c' ) — 18~nMc2v~ J g2dq 

2V 

J sin0do{o w +it+cq 
o 	 ` 

( 
k2- 

I-g22mkq cos B) 	
k2+g22mq 

kcosB1 
~-S c̀o+ 1u— cq— 	 J -f- 

Ir 

+ 	 2 Z2 	r q3 dq 	 fc + c q k2 -f- q2 - 2 k q cos O\ 
(19), 187rnMcv J 	J 	 2m 

0 
where we have replaced the summation over the phonon wave vector q by 
integration over a Debye sphere. •The evaluation of integrals in equation (19) 
is discussed in the Appendix where finally we get 

2 Z2 , u2 m kg 	m3 02 ,u2 Z2 	m 1u2 Z2 
9oznMe2 v + 3nnMe2 v flk f + 54atnMcvk f 

X 

	

[8k+14m3 c3 +24k?rnc± 30 m2 e2 kf + 1 2 c4 J- 3 2/4  5if' 
	(20) 

where kf is the wave vector at the Fermi surface. In this equation all terms 
inside the curly bracket are small in comparison to the first term, so after 
neglecting them we get 

2 m ,u2 Z2 k f 
r(~) - 9nnMczv# ' 	 (21) 

Now -after substituting the value of F(0) from equation (21). in equation (17) 
we get an expression for the electrical conductivity as 

_ e2 Mc2 v 
d 	ZZ k Z, (2 m y)112 . 	 (22) 

After substituting the values of different quantities and taking v = 1 in 
equation (22) we have calculated the electrical conductivity for Li, K, Na, Cu, 
Ag, and Au at 0 °C. The calculated and experimental values in e.s.u. are given 
in the following table: 

Li I K 	Na 	Cu 	Ag 	Au 

acal X10 17 	0.82 	f 	1.4 	~ 	1.02 	10.2 	1 4.8 	8.8 
clexp X 10-17 	1.06 	` 	1.47 	2.09 	5.76 	6.12 	4.37 
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From the above table it is clear that the calculated values of electrical con-
ductivity of Li, K, and Ag are in reasonably good agreement with the experi-
mental values, but in case of Na, Cu, and Au the agreement is somewhat poor. 
This discrepancy may be due to two reasons: Firstly our model for the coupling 
constant Aq f is not very realistic and secondly the value of v may not be equal 
to unity for all elements. To get a better agreement with experimental results 
we must know more accurate value of v and use a more realistic model for the 
calculation of coupling constant. To our knowledge, this type of first principle 
estimates of the electrical conductivity is not available at present. 
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Appendix 

In equation (19) putting cos 0 = x we get 
Co 

z Zz 

P(co)18 anM02 v 	g2dq f 0 (1 — x) 0 (1 + x) x 
_ 00 

k2 +gz-2kgx X co— 2m  

+S (
C0

k̀2 } g2m2/cqx
+/Z+cq)}dx+ 

Co 

+ 'u2 Z2 18nMc f 	.I 
q3 dq r 0 (1 — x) 0 (1 + x) X ~  

Co 

X 	
k2+ 2 	dx. 	 (23) 

After performing the integration over x we obtain 

I'x(cv)= 
	u2 Z2 
	J qdq{0(1—xz)0(1 +xi)+0 (1—xz)0 (1+ xz)}± 18zn1YIc v~4k 

,t2 
Z2 m 	

J 	
24 + 18 r u li c v k 	~2 dq 0 (1 — x2) 8 (1 + xz) , 	 ( ) 

where 
x _12 +g2 — (w+u--cq)"z 	

(25a) 1 — 21cq 	kq 
x _ k 2 ±g2 — (co +1z+cq)m. 	 (25 b) z  2kq  kq 

The limits of integration in equation (24) are determined by 0 functions. For 
example the limits of integration f q dq 0 (1 — x1) 0(1 + xi) are obtained by 
the conditions 

1 — x1 > 0 	 (26 a) 
and 

1+x1>0. 	 (26b) 



138 	 R. IIsH0RE: Electrical Conductivity of Metals 

Substituting the value of xi from equation (25 a) into the inequalities (26) we get 

	

(q — a) (q — b) <0 	 (27 a) 

and 

	

(q—a')(q—b')>0, 	 (27b) 
where 

a=k—mnc+V[m2 c2 +2nz(a+ 11—ck)], 

b=1c— Inc.__V[m2 c2 +2m (a) +µ — ck)], 

a' _ — (k+mnc)+V[m2 c2 +2m(co+y+ck)], 
and 

b'_ —.{k } mc)—V[m2 c2 +2m(co+y+ck.)]. 

It is easy to see that both the inequalities (27 a) and (27 b) will be satisfied 
simultaneously only when a' <q < a. Similarly the limits of other integrals 
can be determined. Integrating the equations (24) under these limits and re-
taining only the first two terms in the expression of the quantities under the 
square root sign, we get the expression (20). 
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With the help of the Kubo formula an expression for the transverse electrical conducti-
vity of metals is obtained within the Hartree-Fock approximation using 'the method of 
the double-time temperature-dependent Green's function. It is observed that the expres-
sion is the same as that obtained by Leribaux with the help of perturbation theory using 
the Feynman diagram technique if the change in the energy of the electrons due to electron—
phonon interaction is neglected. 

• Mit Hilfe der Formel von Rube wird in der Hartree-Fock-Naherung ein Ausdruck fur 
die transversale elektrische Leitfahigkeit von 11letallen erhalten, wobei die Methode der 
zweizeitigen, temperaturabhangigen Greens then Funktion benutzt wird: Es wird gefunden, 
daL der Ausdruck mit dem von Leribaux mit Hilfe der Storungstheorie unter Benutzung 
der Feynmanschen Diagrammtechnik erhaltenen ubereinstimmt, wenn die Energieanderung 
der Elektronen durch Elektron=Phonon-Wechselwirkung vernachlassigt wird. 

Tile problem of electrical conductivity is usually treated, by two quantum 
mechanical approaches. These are Boltzmann transport equation [1] and Kubo 
[2] approaches. Instead of using the Boltzmannn equation or solving in a parti-
cular representation the density matrix equation of motion, we shall start 
from an exact expression (within the linear approximation in the electric field) 
for the conductivity (the so-called Kubo formula). The advantage of this for-
malism is its independence of the particular representation. , The explicit eval-
uation of the conductivity from the Kubo formula has been done by many 
authors [3 to 7] using the thermodynamics Green's function technique. In the 
conductivity problem however, efforts have been directed mostly towards ob- 
taming the diagonal elements of the doneuetivity tensor. In some cases such as 
in the evaluation of the Hall coefficient we need transverse (or off diagonal) 
components of the tensor [7]. 

In this paper we present the calculation of the transverse electrical conducti-
vity of metals from the Kubo formula within the Hartree-Fock approximation 
using the method of double-time temperature dependent Green's function. 
Here the electron transport is assumed to be limited by electron-phonon inter-
action. It is found that the final expression for the conductivity is the same as 
that obtained by Leribaux [7] with the help of perturbation' theory using dia-
gram technique if the change in energy of the electrons due to electron-phonon 
interaction is neglected. 

The Kubo formula for the electrical conductivity is 

cr,„=limVfe-et dtfdA(J,,J,i (t+iA)>, 	 (1) 
E-10 0 	0 

where j9 = (kBT)-1; V the volume of the system, J,, is the with cartesian compo-
nent of electron current density operator and angular brackets denote the 
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grand canonical ensemble average, namely for any operator 

<0> 
	Tr e- d(a -') 	 (2) 

where H is the Hamiltonian of the system, N is the number of particles in the 
system and ~u is the chemical potential. Here and in the following we take h = 1. 

In the second quantized representation, the Hamiltonian of the system of 
electron interacting with the system of phonon is l8] 

H 	Wgbqbq+ 'Eaai at+' Aga;at.(bq+b,), (k1 k2 = q) 	(3) 
q 	a 	1,t2q 

where at, az are respectively the creation and annihilation operators of an elec-
tron in state 1; bq, bq are . the same for a phonon with wave-vector q, coq is the 
energy, of the phonon with wave vector q; Z = (n, k), where n stands both for 
the band level and the spin quantum number and lc is the wave vector of the 
electron; Ei -= EL — 1u, where et are the eigenvalues of any suitable chosen one-
electron Hamiltonian, Aq describes the coupling of the electrons to the phonon 
field. The second quantized form of current density operator is 

Jz _ — 	(v)tt ai at . 	 (4 ) 

Here e is the charge of the electron and v,2 is the ,ath cartesian component of 
electron velocity. The diagonal matrix elements are 

The-off diagonal matrix'elements may be written in the form [9] 

(v,,.)tt' = i C.wltr(xu )at' _ = Wit' Jµn'(le) .5(k, k') , l 4 1' 	( 6 ) 
with 

ill.=gt —er 
and 

= r w, , (r) a 	w.,', (r) d3r, 	 (7 ) 
J 	 JU V, 

where w,z z are the periodic parts of the Bloch eigenfunction of one electron Hamil-
tonian. 

When we combine equation (4) and (1), the expression for the electrical con-
ductivity reduces to 

C 
e2 

d,, V = lim 	r e- E t dt f d2. 	(v)t i' (vµ)t t' x .1 	 z  
0 	0 

x <a ~ a,, a (t -f- i A) ate (t + i A)> 	 ( 8 ) 

within the Hartree-Fock approximation and neglecting the correlation between 
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creation and annihilation operator, the , conductivity is given by [10] 
c 

a e  
_ - - lim; 	e-Et dt fdAf f (v,,)1 1' ( v, )1 1 x 

V ,E~p 
.0 	0 
	 1,1' Z_l2 

.cu 

X r f dw dw 	eP (02 e-z(~,~ - w.) (t + i~) X 

	

J 	1 	2 (ef-i + 1) (e#~2 + 1) 
-co -co 

X {Gl2 1, (w1 + i e) - 0' (w1 — 2e)}
Gll l_ (w2 + 2 E) —G11  (w2 —i)},  

(9) 

where Gi l (w) is the Fourier transform of the Green's function 
G1= 12(t, t') = -i B (t - t') <{ai1(t), at(t')}> , 	 (10)

. 

where 0(t) is the Heaviside unit step function and curly brackets denote the 
anticommutator.• In the present case when the electron in a crystal is described 
by the Hamiltonian (3), the expression for the Fourier transform of the Green's 
function is [8] 

_ 1 	Sid 
G(w) 	2 w - Eta - M 1(w) ' 	 ( I1 ) 

where M(w) gives the effect of electron-phonon interaction on the single par-
ticle energy. 

If we substitute G(w) from (11) in (9) and perform the integration over t 
and 2., we get 

2 
- i e 	(v )aa ( 'v,')aa - 	(v )rit~ ( v,L)l lj - X 

.r•1. V 	l 	 11 12 

cx, cc 
d,+IY 

/' fX J 	d(01 dw2 (w — (02 )2 (e°' + 1) (efl 02 + 1) X 

r (w2) I'i,(w2) 	 12 X 
(wi)} f(cw2 - E1,)2 + I't (w2)} ' 	 ( ) 

where Et = Ei + d t(Ei); d l and Pt are the real and imaginary parts of the 
M(w), it can be shown that for v + u, the first term on the right hand side of 
equation (12) vanishes. After substituting the values of the matrix elements of 
the componeints,lof velocity from equation-(6) in equation (12); integrating over 
co:, and w2 and assuming r1(w) a small quantity we get' 

	

6 p v — 	i e2 	wl, l.. wl2 i1 5(1g.1, k2
) X V 11 t2 (Eal 

_:E;)2  

X 	(k1) ̀ r.i ' n2(k'1) — 	 1n2(II1) -µ2n1(k1)] 11, (1f- 112) s 	 (13) 
where 

-  _ 1 

fl eflEI+1' 

The expression (13) gives the , transverse electrical conductivity under elec-
tron-phonon interaction. If we neglect the effect of electron-phonon interaction 
i.e. if we take Ei -_ El = sl - 1c we get the same expression as obtained by 
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Leribaux [7] in Zeroth order in electron—phonon interaction. Leribaux used 
the perturbation theory and diagram technique. We feel this derivation more 
satisfactory because it considers the contribution'of electron—phonon interaction 
on the transverse electrical conductivity in a more complete manner.. Leribaux 
study becomes a special' case of our investigations. 
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for viscosity tensor becomes 
32Mc4 k,,, k2e0ck 
N 	 lm n2Jlm= 	 dk 	(I i;cm—Y4 Y ) 	( 22 ) 

3coLy2az o 	(e -1)1,ok z 

where 

1 f

[~ (23) 
rt;tm=— dY L+ Yksiy-Yks_' 

122r 	s 

For the crystals having cubic symmetry there are 
three independent coefficients of viscosity. For the cal-
culation of the longitudinal and transverse attenuation 
we shall require only two of them. Using abbreviated 
notations" for the coefficients of viscosity and elasticity, 
we write 

	

4iri 2Mc4 	 m 	k2e~ok 

r1~i=3w2a2 (In—Y2)It dk(egcx_1)2(24) Ly

and  
47rR2Mc4 	km 	k2eoek 

	

4144= N 1441 dk 	(25) 
3wLy2a2 	0 	(eflok-1)2 

At low temperature, Eqs. (24) and (25) reduce to 

16'irMkBT 
'111= 	(Iii—'y2) , 	(26) 

3y2a 

161rMkBT 
1144= 	144. 	 (27) 

3'2a 

	

ATTENUATION 	- 

The longitudinal and transverse attenuations of sound 
waves in a crystal having cubic symmetry are given ass$ 

w2 	AT72\ 
ac= 	?1,,+ 	I , 	(28) 

2pct \ 	cc
2 
 

w2 
ae= 	?744, 	 (29) 

2pci3 

17 R. N. Thurston and K. Brugger, Phys. Rev. 133, A1604 
(1964). 

18 L. P. Landau and E. M. Lifshitz, Theory of Elasticity (Per-
gamon Press, Ltd., London, 1959), p. 126. 

TABLE I. Theoretical and experimental attenuations. The 
numbers in parentheses are the frequencies of the sound waves 
in Mc/sec. 

at(dB/cm) ! 	a c(dB/cm) 

Ge (caic) 2.92 (306) 	; 0.54 (306) 
Ge (Devault) 1.34 (306) 	! 0.42 (306) 
Ge (expt) 2.75 (306) 0.73 (306) 

Si (talc) 2.20 (480) 0.42 (495) 
Si (Devault) 1.18 (480) 0.33 (495) 
Si (expt) 2.20 (480) 0.62 (495) 

where o is the frequency of the sound waves, p is the 
density of the system, X is the thermal conductivity, 
and ct, cc are the longitudinal and transverse velocities 
of sound waves in the system. Now by using the calcu-
lated values of I,,, 144, and -y obtained by Devault9 and 
experimental values of the thermal conductivity, we 
calculate the longitudinal- and transverse-wave attenu-
ation for Ge and Si at room temperature_ (300°K) from 
the above expressions. The results of these calculations 
are compared with the experimental results of Mason 
and Bateman' and the theoretical :results of Devault9 
in Table I. 

CONCLUSIONS 

From Table I it is clear that our calculations are in 
very good agreement with the experimental values of 
the longitudinal attenuation, and that for the transverse 
attenuation the agreement is somewhat poorer, but still 
better than that of Devault's calculation. In this calcu-
lation we have not assumed that the relaxation time for 
longitudinal attenuation is twice that for transverse 
attenuation. We therefore feel that the conjecture that 
the relaxation time for longitudinal attenuation should 
be about twice that for transverse attenuation derives 
no support from the data considered. 
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after substituting the values of Ho, J;j, and 3(J~5)/ where Mk (w) gives the effect of perturbation on the 
O(H o) from Eqs. (5), (7), and (9), respectively, we get 	self-energy of one particle. Let us define 

p 
Jij 	WksTksEI((nks)+2) 

V ka 

 (11) 
V ka 

Now we use the values of Jij and .Tij from Eqs. (7) and 
(11) in Eqs. (1) and get the expression for the viscosity 
tensor as 

R 
?tijlm '— liinf di e - 

V '-'° 	ka•k's' 

X(7'k's' lm— Y Im)(ytks(t)(nks'—(nk''))).... (12) 

.It is evident from Eq. (12) that the evaluation of the 
viscosity tensor essentially involves the evaluation of 
the correlation function of two phonon number oper-
ators. Within the Hartree-Fock approximation this cor-
relation function can be decoupled as" 

(nka(t)(nk's' — (nk's'}))' (akst(t)ak'a'}(aka(t)ak.,,t) 

T(¢kst(t)¢k'a't)(¢k,(t)ak's')... 	(13) 

In most normal processes the functions (akat(t)ak,8,t) 
and (ak3(t)ak- 8') which depend on the correlation be-
tween two creation and two annihilation operators are 
negligibly small (in superconductivity" or superfluidity, 
they are no longer so negligible). Confining ourselves to 
the normal case and expressing the correlation functions 
(akat(t)ak'a') and (aka(t)ak ,,,t) in terms of the Fourier 
transform Gkk' 88' (w) of the one-phonon Green function.'' 

Gkk. aa' (t) = — iO(t) ([aka(t),ak'a' tl) , 	(14) 

where 0(t) is the Heaviside step function, we get the 
expression for the viscosity tensor as 

- L WksWk's'7ksi'(_Yk's'lm—.},lm) 
Vkak's' 

v 	w 	ao 	elfi 	(1- 2 1it)h) 

Xlim f If didw ldw 2 

X [Gk'k8'8(W,+i) — Gk'k8's(W1. _i€)] 

X[Gkk ,as'(CO2+iE)—Gkk' ss' (W2—ie)]... (15) 

For the Hamiltonian (4) the expression for the Green's 
function Gkk'88'(w) can be written as" 

Skk'l~8s'/21r 
Gkk,as'(w)= 	(16) 

w — Wks—Mkslw) 

	

Mka\W~ZE) =0k$(W)~2rks(W) , 	 (i7) 

where Oka(w) and Pk(w) are the frequency shift and 
half-width of the phonon of wave vector k and polari-
zation s. After substituting the Green's function from 
Eq. (16) in the viscosity expression (15), we see that the 
integrals over t, W1, and w2 can be easily evaluated.? 
For small values of I'ka we get 

0 	 cgtk. 
s 	F,, w]gs27k8z1(7ks tm-71m) 

V ka 	 (e"'-1)' 

X  1  ...  (18) 
2rks(Eks) 

where 

Eks — Wks+11ks\Eks) 

It can be easily shown that this expression is the 
same as that obtained by Devault9 if one neglects the 
phonon frequency shift and takes the relaxation time 
as rk3=1/2rk ,. In general the phonon frequency shift is 
very small, so we assume that Eka Wk3. The expression 
for the frequency width is given by13 

	

1'k8= (3X,132/3) (ka)20(km— k) , 	(19) 

where a is the lattice constant and Xa is a dimensionless 
parameter. We shall introduce one more parameter, 
called the Griineisen constant, defined as 

1 
(20)  

i  36r  i 8 

It has been shown by Devault9 that the Gruneisen 
constant for Ge and Si obtained by this expression is in 
quite good agreement with the experimental value ob-
tained by the relation -y=arc/Cv, where a is the volume 
thermal expansion coefficient, x is the bulk modulus, 
and Ca is the specific heat per unit volume. For this 
parameter we shall use Klemens's mode1,14 according` _to 
which 

48wLs 
(21)  

Mc' 

where M is the mass of the atom on the lattice site and 
c is a suitably averaged velocity of sound waves. Now 
using the Debye model and replacing 

N 
— J k 2dkdR, 

k  lJ 

"B. N. Zubarev, Usp. Fiz. Nauk 71, 71 (1960) [English where Sl is the volume of the first Brillouin zone and N trans'.: Soviet Phys.—Usp. 3, 320 (1960)]. 
16 C. Bloch and C. Be Dominicis, Nucl. Phys. 7, 459 (1958). 	is the total number of unit cells in the crystal, Eq. (18) 
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it is easily noticed that (J)= 0 if iX j. After performing temperature limit (kBT«µ), the derivative of the Fermi 
the angular integration, the expression for the shear function can be replaced by 6(e—y), and we obtain 
viscosity (_ ;;ti;) reduces to 

a 	°° 	 n= 512µT' 	 (16) 

rdie ksesEk(eaFk+1)-2Tk 	(14) 
15x2m2 0 

where we have assumed that ek= Ek and that Tk= (2rk)—' 
may be identified as the relaxation time. Equation (12) 
can be rewritten as 

a 
(2mE) 	

—
519 	— T(E) dE, 	(15) 

157r2m2 JO 	 8E~ 
r  

where 	 and €=k 2/2m. In the low- 

where n is the number of electrons per unit volume and 
the relaxation time is to be evaluated at the Fermi 
surface. At high temperatures the Fermi function can be 
replaced by the Boltzman factor, and assuming that 
the relaxation is independent of the energy, one can 
obtain from Eq. (15) the usual kinetic-theory expression 
of the viscosity in the classical limit. The expression 
(16) is rigorously derived here by an entirely different 
method. We consider the present derivation more 
satisfactory. 
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of the electron subsystem, where nk= aktak is the elec-
tron number operator. After substituting for the mo-
mentum flux operator .~s; from Eqs. (4) in (1), we ob-
tain the expression for the viscosity tensor as 

 

a 1  t3(Jim) 	3(J1m) 
17i;dm=— E kikj —kl'km'— VEk, ' 	—V 

mV k.k' 	\m 	a(Ho) 	a(N( 

Xlim fo dt eE ~(nk(t)(nk'—(nk'• (5 ) 

It is evident from Eq. (5) that the evaluation of the 
viscosity tensor essentially involves the evaluation of 
the correlation function of two electron number oper-
ators at different times. Note the similarity of the above 
expression of the viscosity tensor to that of the electrical 
conductivity.$ In the Hartree-Fock approximation the 
two-particle correlation function can be decoupled as 

(nk(t) (nk')))—(akt( t )dk') (akl t)ak ,t ) 
— (akt(t)ak't )(ak(t )ak')• (6 ) 

In normal metals the correlations between two annihi-
lation and two creation operators are negligibly small, 
and therefore we neglect them. The other two correla-
tion functions, (akt(t)ak,) and (dk(t)ak,t), can be 
expressed in terms of the Fourier transform Gkk'(w) of 
the one-particle Green's functions 

	

G'(1)= — i0(t)([ak(t ),ak't 1+) , 	(7 ) 

where 0(t) is the Heaviside unit step function, and 
square brackets denote the anticommutator. After 
these appropriate substitutions, the result for the vis-
cosity tensor can easily be shown to bell 

explicitly given as° 

Mk(w) _ A 
g2(1+(v)+ (nk—g) ~ 	(10) 

~ 	 -L 
4 W— Ek-4 —Wq W—Ek—q+W9 

where v9 =bgtbq is the phonon number operator. We 
define Mk(w+iE) = Ok(W) —iTk(w), where the real part 
~k(w) will be again given by Eq. (10), except that now 
the principal value of the summation must be taken, and 
the imaginary part is 

A42[(1+(v9) — (nk—q))3(W—Ek-4 —W4) 
9 	 -I- 

+((nk-4)+(v4))S(W—Ek-4+W 4)]• (11) 

Substituting for the imaginary part of the Green's 
function Gkk'(W+iE) from (9) into Eq. (8), we obtain 
the expression for the viscosity tensor as 

a  1  a(Jim)  r3(Jim)
77ijim=--- ~, k{k;( —kckm — VEk 	— V 

mV k 	\m 	3(Ho) 	a(N) 

1.'° X_ f dw esW(e,5w+'1)-2 
irJ~ 

xJ  Fk2(W) 	( l . (12 ) 
tLW —Ek—Ak(W)]2+Fk2(W)) 2 

Note that for small values of rk(W) the integrand in 
(12) is peaked around the point where W—Ek —Ok(w)= 0. 
If the solution of this equation is at w= ek and electron 
damping I'k(w) is small at this point, then the integral 
can be easily evaluated and we get 

a 1  a(J1,) a(Jim) 
77ijIm=—E k~k;(—k~km—VEk 	—V

) mV k 	\m 	8(Ho) 	3(N) 

47r(3 	1 	 a(Jcm) 	a(Jim) 
31m 	kaki( ki km'— VEk. 	— V 

mV k.k' 	m 	a(Ho) 	3(N) 

xlim I do.,e(e+1)-2CImGkk,(w+iE)]', (8) 
e-o 

where Im stands for the imaginary part. 
For the system of electrons in a crystal described by 

the Hamiltonian (3), or even more generally, the ex-
pression for the Fourier transform of the one-electron 
Green's function is given as9 

Skk,/2~r  
Gkk' (W) = 	 > 	

(9) 
 

— Ek —Mk(W) 

where Mk(w) gives the effect of perturbation on the 
electron self-energy. For the present problem it is 

'D. N. Zubarev, Usp. Fiz. Nauk 71, 71 (1960) [English transl.: 
Soviet Phys.—Usp. 3, 320 (1960)]. 

'°B. Deo and S. N. Behera, Phys. Rev. 141 738 (1966); see 
also P. Gluck, Proc. Phys. Soc. (London) 90, 78~' (1967). 

X exp_(6Ek) 	1 	I3 ( ) 
[exp(3NEk)+1]2 2rk(Ek) 

The expression (13) is believed to be the new result 
of the viscosity of the electron gas in metals. This is 
what one would expect in the usual relaxation-time 
approximation provided we identify (2Fk (ek))—I as the 
relaxation time. The only difference is that here the 
effect of renormalization of the 'electron energy is also 
taken into account. In addition, we have derived Eq. 
(13) starting from correlation-function formula which 
is known to be more general than the usual Boltzman 
transport equation. 

As a simple application of our general result (13), 
we shall now obtain the expression of the shear viscosity 
of the electron gas in isotropic metals. Introducing the 
spherical polar coordinates (k,0,¢) for the wave vector k, 
and replacing summation over k by integration as 

2V r 
E. 	

J 
k2 dk sine dd d¢, 

k 	(27r)' 
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The correlation-function calculation of the shear viscosity of the electron gas in metals is presented within 
the Hartree-Fock approximation. The usual expressions of the viscosity obtained by using the Boltzmann 
transport equation are recovered in the appropriate limits. 

THE absorption of ultrasonic waves in solids is 
attributed to various interaction processes. In the 

case of insulating crystals, a significant contribution to 
the attenuation coefficient is due to the lattice viscosity. 
In recent years, the phonon contributions to the vis-
cosity of a solid have been discussed by several 
authors1-4 using the correlation-function formula of 
McLennan.5 In metals at low temperatures, the major 
contribution to the attenuation of ultrasonic waves is 
due to the scattering of the conduction electrons by 
phonons. The mechanism proposed by Masons for the 
attenuation is based on the concept that in the normal 
state a lattice vibration can communicate energy to the 
electron gas by transfer of momentum and is damped 
by the viscosity of the gas. Steinberg' has presented the 
calculation of the shear viscosity of the electron gas by 
using the Boltzman transport equation. 

In this paper, we present the correlation-function 
calculation of the shear viscosity of the electron gas in 
metals using the method of double-time temperature-
dependent Green's functions. We deduce an expression 
for the electronic viscosity tensor within the Hartree-
Fock approximation. It is found that the relaxation time 
appears in the expression for the viscosity in a natural 
way as the reciprocal of the imaginary part of the self-
energy of the electrons. This result is valid at all 
temperatures. The usual kinetic-theory expressions of 
viscosity are recovered in the appropriate limits. Thus 
it provides an alternative derivation of the usual 
kinetic-theory expressions of the viscosity. 

We start with the correlation-function expression for 
the viscosity tensors 

cc 
l{jlmi3V lim fo  dl e (J+9(t)(Jlm —Jm)) 	(1) 

* Physics Department, University of Roorkee, Roorkee, India. 
t Present address: Department of Physics, Northwestern Uni-

versity, Evanston, Ill. 60201. 
'G. P. Devault and J. A. McLennan, Phys. Rev. 138, A856 

(1965). 
1 M. J. Rise, Proc. Phys. Soc. (London) 89, 373 (1966). 

G. P. Devault, Phys. Rev. 155, 875 (1967). 
R. Kishore and K. N. Pathak, Phys. Letters 25A, 201 (1967); 

see also R. Kishore, Phys. Rev. 173, 856 (1968). 
6 J. A. McLennan, in Advances in Chemical Physics, edited by 

I. Prigogine (John Wiley & Sons, Inc., New York, 1963), Vol. 5. 
6 W. P. Mason, Phys. Rev. 97, 557 (1955). 
7 M. S. Steinberg, Phys. Rev. 111, 425 (1958); see also A. B. 

Bhatia and R. A. Moore, ibid. 121, 1075 (1961), in which the 
attenuation of ultrasonic waves in metals is discussed in detail by 
solving the Boltzmann transport equation without assuming the 
relaxation-time approximation for the collision term. 

where V is the volume f3= (kl3T)—', kB being the Boltz-
man constant and T the absolute temperature. The 
angular brackets denote the grand canonical ensemble 
average appropriate to the Hamiltonian H of the system 
in equilibriurri, Jij(l) is the microscopic momentum flux 
operator in the Heisenberg representation, and 

o(J 1) 
lij=(Jij)+ a(H) (H—(a))+ a(N) (N—(.A')). (2) 

In Eq. (2), the second and third terms arise due to 
fluctuations in energy and total particle number N in 
a grand canonical ensemble. The Hamiltonian for our 
particular problem, that of electrons in a crystal, may 
be taken as 

H= Ekaktak+Y_ Wq(bgtbq+2) 
k 	q 

+r_ A gak+9tak(bq+b-9t) • (3) 
k,q 

In Eq. (3), ek is the energy of an electron in the crystal 
with wave vector k. In the free-electron approximation 
ek= k 2/2m—/s, where m is the electronic mass and is 
the chemical potential. akt, ak and bqt, bq are the creation 
and annihilation operators for electrons and phonons, 
respectively. Aq is the electron-phonon coupling con-
stant and wq is the energy of phonon of wave vector q. 
In writing the Hamiltonian (3), we have suppressed 
the spin and polarization indices for electrons and 
phonons, respectively, and have put h= 1. It is to be 
pointed out that in the random-phase approximation, 
the electron-electron interaction can also be included 
in the Hamiltonian (3) simply by replacing Aq with 
A gell. This has been discussed by one of us earlier.8 One 
of the effects of electron-electron interaction is to 
modify the electron-phonon coupling constant. In the 
representation in which the one-electron Hamiltonian 
is diagonal, the momentum flux operator and Jji are 
given by 

J11=—> k,k,aktak 	 (4a) 
mV k 

and 
8(JI~) 	 9(J15) 

= (Jtj)+a(go) (Ho — (Ho))+ a(N) (N— (N)) . (4b) 

In (4b), Ho = F_ k Eknk is the unperturbed Hamiltonian 
'R. Kishore, Phys. Status Solidi 26, 133 (1968). 
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cubic anharmonic momentum-flux operator and ob-
tained an expression for the lattice viscosity and atten-
uation of sound waves in Ge and Si. In this calculation 
he has made two assumptions for the relaxation time: 
The first assumption is that relaxation time is indepen-
dent of the phonon wave vector, and the second is that 
the relaxation time for longitudinal-wave attenuation 
should be about twice that for transverse-wave attenua-
tion. This second assumption was also suggested by 
Mason and Bateman" and by Klemens.12 These asst:mp- 
tions are not well understood theoretically. Therefore 
it is desirable to consider the problem without making 
these assumptions. 

In this paper we present a correlation-function calcu-
lation of the lattice viscosity within the Hartree-Fock 
approximation using the cubic anharmonic momentum-
flux operator obtained by Devault.1° This expression is 
the same as that obtained by Devault9 if one neglects 
the change in frequency due to anharmonicity. For the 
relaxation time we have used the expression obtained 
by Pathak.13 Klemens's14 model is used for estimating 
the parameter appearing in that expression. The solu-
tions for the coefficients of viscosity at low temperature 
are obtained in the Debye approximation for phonons. 
From these solutions the attenuations of longitudinal 
and transverse waves for Ge and Si is calculated. In 
this calculation the assumptions made by D evault9 con-
cerning relaxation times are not made. It is found that 
at room temperature (300°K) the longitudinal attenu-
ation is in very. good agreement with the experimental 
value obtained by Mason and Bateman," and the 
agreement for the transverse attenuation is better than 
obtained in the calculation of Devault.9 

COEFFICIENTS OF VISCOSITY 

We start with the correlation-function formula for 
the viscosity tensor4: 

~ij1.=0V 
lim 
 m f 

di e E'(Jij(I)(Jtm—./2m)).. , , (1) 
0 

where V is the volume of the crystal, 3=(kBT)-', J;; 
denotes the microscopic momentum-flux operator for 
the lattice, and 

Jij _ (Ji5)-f 	(H— (H)) , 	(2 ) 
0(H) 

where H is the Hamiltonian of the system, and the 
angular brackets denote the canonical ensemble average, 

11 W. P. Mason and J. B. Bateman, J. Acoust. Soc. Am. 36, 
644 (1964). 

12 P. G. Klemens, in Physical Acoustics, edited by W. P. Mason 
(Academic Press Inc., New York, 1965), Vol. 3. 

14 K. N. Pathak, Phys. Rev. 139, A1569 (1965). 
" P. G. Klemens, in Solid State Physics, edited by F. Seitz and 

D. Turnbull (Academic Press Inc., New York, 1958), Vol. 7, p. 1. 

namely, 
(0)=Tre"0/Tre-0rf . 	(3) 

In second-quantized form the Hamiltonian of the sys-
tem can be written as 

H= H o+H I, 	 ( 4 ) 
where 

Ho = E wk4(ak4tak2+2) 	 (5) 
ks 

and 

H1= E, V (3)(kisi,k2S2,k3S3)Ak,s1Ak282A k3s3 
ki,k,.k, 
Si, S2,Sa 

-f- E 	iT (4) (k,s„k2s2,k3S3,k4s4) 
ki,k2,ka,k4 
S1,S2.S7,S4 

X A k111A k 242A k3s3A k4s4 • (6) 

Here wk,, akst, ak8 are the frequency and the creation 
and annihilation operators for a phonon of wave vector 
k and polarization s, respectively; V 3 and V 4 are the 
Fourier transforms of the third- and fourth-order atomic 
force constants; and Aka= ak,+aksf . We have used a 
notation where h=1. 

An expression for cubic anharmonic momentum-flux 
operator is obtained by Devault10 and is given by 

Jij_" Z Wk3(nks+2)7kSt2 , 	 (7) 
V ks 

where 1oks=aka+aks and yksi5 is the generalized 
Gruneisen parameter, which in the long-wavelength 
limit is given as 

(pCokmkr / 
'Yjei'=—er8ieks'-2 ~ cke l eksP 

imp 	 ks2 

X [Ci5dmpr+Cijmrbip] ... , (8) 

where ck,i is the ith component of the polarization vector 
of a phonon of wave vector k and polarization s; Cjjmr 
and cijlmpr are the second- and third-order elastic con-
stants. If we assume that the polarization vectors do not 
depend on the magnitude of k, but only on the direction 
h= k/k, and that all polarization for a given k contribute 
equally to the thermal energy, then we can approximate 
the ensemble average of (7) by 

	

(J5)= (1/ V) (Ho) y i , 	 (9) 
where 

I 

yii 12~r 
~dZ F_ 7k81i• 	(10) a 

(Ho) is the total thermal energy of the solid, and dS2 
is an element of solid angle in k space. In Eq. (2) for 
J;; we approximate H by its harmonic part H0, and 
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With the help of the correlation-function formula given by McLennan, an expression for the viscosity 
tensor is obtained within the Hartree-Fock approximation using the cubic anharmonic momentum-flux 
operator. In the Debye approximation for phonons and with a simple expression for relaxation time, solutions 
are obtained for the coefficients of viscosity at low temperature. These solutions are used to calculate the 
attenuation of longitudinal and transverse sound waves at 300°K. The calculations are compared with 
experiment for Ge and Si, and good agreement is found. 

INTRODUCTION 

N solids sound waves are damped by thermal con-
I duction and internal friction or viscosity. The cor-
relation-function expression for the viscosity has been 
obtained by many authors.1-4 Here we shall use the 
expression for the viscosity obtained by McLennan' 
to calculate the attenuation of sound waves in solids. 
In the case of insulating solids, a significant contribution 
to the attenuation of sound waves is due to lattice 
viscosity which arises from the scattering of phonons. 
Recently the phonon contribution to the viscosity has 

'M. S. Green, J. Chem. Phys. 22, 398 (1954). 
z R. Kubo, M. Yokota, and S. Nakajima, J. Phys. Soc. Japan 

12, 1203 (1957). 
'H. Mori, Phys. Rev. 111, 694 (1958). 
' J. A. McLennan, Advan. Chem. Phys. 5, 261 (1968). 

been discussed by several authors,5-9 using4

alcosity

I 
relation-function formula given by McLenne 
authors'—s have derived the expression for th  
by using the harmonic part of the momentum-flux oper-
ator, which is the central quantity in the calculation of 
viscosity. Devault10 has shown that the harmonic part 
of the momentum-flux operator vanishes, so all the 
treatments given by these authors are wrong, and it is 
necessary to reconsider the problem using the anhar- 

monic momentum-flux operator. Devatilt9 has used the 

5 G. P. Devault and J. A. McLennan, Phys. Rev. 138, A856 
(1965) . 

M. J. Rice, Proc. Phys. Soc. (London) 89, 373 (1966). 
'P. Gluck, Proc. Phys. Soc. (London) 90, 787 (1967). 
8 R. Kishore and K. N. Pathak, Phys. Letters 25A, 201 (1967). 

G. P. Devault, Phys. Rev. 155, 875 (1967). 
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creation and annihilation operator, the , conductivity is given by [10] 

e2 	r 
6~ v = — 	limf e- E c dt 

J 
d2. ' ,Z (V) ci (v,~)tx  x 

 o 	tltl t_ t2 

X J J dco dco 	 (e 	
+

e- i(Wi - w~ )(1+i2)  X i 	2 (eflWl + 1) ~W2 	1) 

X €Gl 2 tl (Col + i e) — G i2 it (col — is)} {Gli l ~ (602 + - i E) - Gt i 12 (OJ2 -i)} 
(9) 

,vhere Gt,i,(co) is the Fourier transform of the Green's function 
Gt112(t, t') = —i 0 (t — t') <{a11(t), a (t')}> , 	 (10) 

where 0(t) is the Heaviside unit step function and curly brackets denote the 
mnticommutator.• In the present case when the electron in a crystal is described 
by the Hamiltonian (3), the expression for the Fourier transform of the Green's 
Function is [8] 

_ 1 	81~t 
G1, 2(w) — 	Eta — Me1(w) ' 	 (11) 

wliere M11(cw) gives the effect of electron-phonon interaction on the single par-
tic'ie energy. 

If we substitute G(cw) from (11) in (9) and perform the integration over t 
and 2, we get 

~uv — — 
	(vv)it (v,)11 — .~' (v)1, (vµ)t2 t1 X 

2 y 	t 	 tl 12 t,+tz 
oo Co 
r (' 	 1 eR w~ — e~ ~~  x J J dwl dco2 {cux —(02)2 (es wl + 1) (e~ "'' + 1) 

X 	 r11(w1) I'i(w2) 	 12 
lr)2 +Fz, (w)} {(w2 — El_) 2 + r (w2)}' 	 ( 

where E't = Ei + Az (E'c ) ; A, and I't are the real and imaginary parts of the 
1'I1(w), it can be shown that for v = ,u, the first term on the right hand side of 
equation (12) vanishes. After substituting the values of the matrix elements of 
the components of velocity from equation (6) in equation (12)'; integrating over 
col and 602 and assuming I' (w) a small quantity we get 

a v=—ie2~, 
	
ó(k1, lca ) X '~ 	y 1113 (Etl — W; )2  

X `.'_ zl(k£1) T'In2(k1) — rf=n=(Icx ) z 2n1(k£1)] fcl (1 — 112) 	(13) 
where 

fl — ePB1+1 

The expression (13) gives the ,transverse electrical conductivity under elec-
tron-phonon interaction. If we neglect the effect of electron-phonon interaction 
.e. if we take E l ,- Bz = st — µ we get the same expression as obtained by 
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Leribaux [7] in Zeroth order in electron—phonon interaction. Leribaux used 
the perturbation theory and diagram technique. We feel this derivation more 
satisfactory because it considers the contribution-of electron—phonon interaction 
on the transverse electrical conductivity in a more complete manner. , Leribaux 
study becomes a special case of our investigations. 
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quite different method. Thus we conclude that the 
eq. (6) is a very useful expression for estimating 
the shear viscosity of solids at high tempera-
tures. 

Recently Gluck [5] has also used the anharmon-
ic model proposed by one of us [3] to estimate 
the shear viscosity of rare gas crystals. 

We are thankful to Professors R. P. Singh and 

141 August 1967 

B. N. Bhattacharya for their enc acements. 

References 
1. M.J. Rice, Proc. Phys. Soc. 89 (1966) 373. 
2. B. Deo and S. N. Behera. Phys. Rev. 141 (1966) 738. 
3. K. N. Pathak, Phys. Rev. 139 (1965) Ail 1569. 
4. G. L. Leibfried and E. Schlomann. Nachr. Akad. 

Wiss. Gott. Maths. Phys. Kill a (1954) 71, 
5. P. Gluck, Proc. Phys. Soo. 91 (1967) 199. 

202 



Volume 25A, number 3 	 PHYSICS LETTERS 	 14 August 196' 

SHEAR VISCOSITY OF INSULATING SOLIDS 

R. KISHORE and K. N. PATHAK 
Indian Institute of Technology, Bombay, India 

Received 6 July 1967 

A simple force model calculation of the shear viscosity of insulating solids is presented within the Hartree 
Pock approximation. It gives a very good estimate of the shear viscosity at high temperatures. 

Recently Rice [1] has discussed the shear 
viscosity of insulating crystals using the corre-
lation function formula of Mclennan. After mak-
ing some approximations Rice obtained the ex-
pression for the viscosity tensor in terms of the 
correlation function of two number density ope-
rators. It is evident from eq. (2. 7) of Rice that 
the evaluation of viscosity tensor essentially in-
volves the evaluation of correlation function of 
two number density operators. In this respect it 
is very similar to the calculation of the lattice 
thermal conductivity. 

Following the analysis of Deo and Behera [2] 
one can express the viscosity tensor in terms of 
the Fourier transforms of the one phonon Green 
function 

Gkk' (t) _ - i e (t) ([aks(t), ak+s+ (0)]) 	(1) 
For the anharmonic crystals [3] the expression 
for the Green function can easily be obtained and 
finally one gets the relaxation time expression 
for the viscosity tensor as 

(kBT) -1 	2 1?ijlm 	4~ T wks ei(ks) e~(ks) x 
s  (2) 

 exp(Eks/kBT) 
x (el(ks) e

m 
(ks)-25Z 	) 
 aW°) {exp(Eks/kBT)-1}2I'ks 

where Eks and rks are the renormalized phonon 
frequency and half width respectively. Here and 
in what follows we use the notation of Rice. 

In ref. 3 we have evaluated the phonon frequen-
cy shift and width for a very simple anharmonic 
model of solids. To relate the viscosity to the 
interatomic forces in solids and make an expli-
cite calculation, we here choose the anharmonic 
coupling parameters given by Leibfried and 
Schlomann [4] for a nearest neighbour central  

force model. After comparing this model to eq. 
(56) of ref. 3 we get 

Xj/wLj = 62/36y3 	 (3 

where y and S are the harmonic and cubic force 
constants respectively. Substituting this value of 
X. j /wLj we obtain from eq. (59) of ref. 3 

Fks = b2kBT (ka)2WLs 6 (k fn - k)/384y3 (4) 

We now evaluate the viscosity tensor for an 
isotropic solid using Eks = ELs sin hka and eq. 
(4). It is clear from the analysis of ref. 3 that we 
can write ELs = WLS(l +AT), where the coef)fi-
cient A essentially involves the anharmonic pa-
rameters. We thus obtain for the shear viscosity 
at high temperatures as 

52 y3 wL 

5u 2 b 2a2 
2 kmax. 	(5) 

EL 
This can be written as 

3 
26 b2a2 I (1 - 2A T) 	(6) 

where v is the sound velocity. This is a very im-
portant result. It relates the shear viscosity to 
the atomic force constants. Therefore, experi-
mental study of acoustic attenuation in solids 
will be useful to understand the interatomic forc-
es in solids. The conclusion of Rice [1] that the 
shear viscosity is independent of temperature at 
high temperatures is not quite correct, if one 
takes into account the effect of phonon frequency 
shift. 

We estimate the values of shear viscosity of 
solids taking a Morse potential. Using the sub-
limation energy data to evaluate the Morse pa-
rameter, we obtain from eq. (6) for gold the val-
ue of the shear viscosity about 2 millipoise. This 
value is the same as reported by Rice [1] by a 
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