SIMULATION-BASED AIRCRAFT ROUTE PLANNING

A DISSERTATION

Submitted in partial fulfilment of the
requirements for the award of the degree
of
MASTER OF COMPUTER APPLICATIONS

By

ANURAG SINGH

DEPARTMENT OF MATHEMATICS
INDIAN INSTITUTE OF TECHNOLOGY ROORKEE
ROORKEE-247 667 (INDIA)

JUNE, 2002

H CANDIDATE'S DECLARATION II

I hereby certify that the work which is being presented in this project entitled
“"Simulation-Based Aircraft Route Planning” in partial fulfillment of the
requirement for the award of the degree of Master of Computer Applications,
submitted in the Department of Mathematics of the Indian Institute of Technology,
Roorkee, is an authentic record of my work carried out in the period from Jan-2002
to May-2002, under the supervision and guidance of Dr. R.S. Anand, Assistant
Professor, Department of Electrical Engineering, Mrs. Aparna Malhotra, Sc. 'C’,
Defense Research & Development Organization.

The matter embodied in this project has not been submitted by me for the award of
any other degree.

NS
Date : ¢3:06:200% ,}}y\v

Place : IIT, Roorkee. (Anurag Singh)

| CERTIFICATE]

This is to certify that the above statement made by the candidate is correct
to the best of my knowledge.

“/jzé/ €a i s

Mrs. Aparna Maihotra Dr. RS Anand

Sc.'C’ Assistant Professor

Defence R & D Organization Department of Electrical Engineering
New Delhi IIT, Roorkee

Date: Date:

Place: New Delhi Place: Roorkee

anmr/o&ux
H1.G S o

ProfosssrdMesd 1). .oy
Ospartmant of Mathematise
LLY. Roorine-247 087

-

No: ISSA/HRD/08 ,
Institute for Systems Studies and Analys:

Defence R&D Organisation
Ministry of Defence o
Metcalfe House, Delhi - 110 054
Tel: 3818897
Fax: 3819033
DEBASIS DUTTA .
Sc E - Dated: § June 2002

Head, HRD Cell

CERTIFICATE

This is fo certify that Shri Anurag Singh, a student of MCA, Indian Institute of
Technology Roorkee (6" Semester) has undergone training at Institute for
~ Systems Studies & Analyses (ISSA), Defence Research & Development
Organisatioh, Métcalfe House, Delhi —110054 for a duration of six months.
commencing from Jan 2002. During the tfaining, he has been involved in the

development of the project entitled "Simulation Based Aircraft Route Planhing”. .

L2

(Debasis Dutta)

He has completed the work assigned to him satisfactorily.

wfe Tvrey @i ferlivy oem
Meotévue for System Studies & Amalve
oy ey oW fewrw s

B Defence R & D Otganisation
reyl wewTwI/5Sinistry of Defenc
izowbg wwa, feelt-110054.
Aotcalfe House. Delbi-110054

ACKNOWLEDGEMENT

It is my proud privilege to express my profound gratitude to my guide Dr. R.S.
Anand, Assistant Professor, Department of Electrical Engineering for his invaluable
inspiration, guidance and continuous encouragement throughout this project work.

I am grateful to Mrs. Aparﬁa Malhotra, Scientist ‘C’, Defense Research and -
Development Organisation and other staff members for providing the necessary
facilities, support and inspiration for the successful completion of this work. '

I also acknowledge Mr. Debasis Dutta, Scientist ‘E’, Mr. S.B. Taneja, Scientist ‘D’,
Mr. Sanjay Bisht, Scientist '‘B’, DRDO for providing the support and inspiration
throughout the project work.

I also acknowledge Dr. H.G. Sharma, Professor & Head, Department of Mathematics
for providing the necessary facilities, cooperation and inspiration.

I would also like to thank Prof. R.C. Mittal, Department of Mathematics for his

cooperation and support.

In the last but not least I am short of adequate words in expressing thankfulness to
my parents and sisters who are the constant source of encouragement to me, It is
the only love, care and understanding of my parents that have placed me at the

present level of academic career.

:
. o o
k” oot

Anurag Singh
MCA (Final Year)
IIT-Roorkee

I

ABSTRACT

Real war situation causes much of the destruction of human life and property so
there is a need of application that can simulate this type of situation. Simulation
methods are used to plan within environments involving large-scale uncertainty,
multiple interacting elements and complex dynamics which simulates the actions of

agents and intentions of coordinates before committing to a plan.

Simulation Based Aircraft Route Planning application involves multiple interacting
intelligent objects, called agents and their complex dynamics. The project have been
developed in Graphical User Interface (GUI) based scenario editor, with capabilities
to add elements, such as Ammunitions Factory of the enemy (Target), Enemy Fighter
Aircraft, Ground based Radar units, Surface to Air Missiles (SAM) systems. Also, it
vprovides user to edit attributes of the elements, which are required in simulation
process. Further the GUI have capabilities to specify other barameters such as
weights attached to cost of route in terms of distance and probability of detection for
each route, which plays a role in the simulation activity. Appropriate data structures
have been designed to represent the state information as well as the constituent
elements of the system. The route planner module of the application plans to create
different possibie routes. The role of the simulation-based plann'er in each case is to
determine, keeping in view all the available information, the *best route’ or the near
optimal path(s) from a starting point to destroy a specified target or objective and
return back to base, given a number of certain and uncertain threats to the mission
in a defined scenario. The task of finding the near optimal paths can be achieved by
several different techniques, one of which is by use of simuiation methods. Results of
the activities performed by the simulation module and the optimal route have been

displayed using the application’s GUI.

The work has been developed using Visual C++ with MFC (Microsoft. Foundation
Classes) and Win32 API on Windows 98 platform.

v

Table of Contents

Candidate’s Declaration
Certificate

Acknowledgement

Abstract

Chapter 1 Introduction

1.1 About the Organisation
1.2 About the project

Chapter 2 Overview

2.1 Problem Definition
2.2 Goals to be achieved

Chapter 3 Methodologies Adopted

3.1 Simulation
3.1.1 Definition of Simulation
3.1.2 Advantages of Simulation
3.1.3 Areas of Application
3.1.4 Military Simulation

3.2 Object-Oriented Methodology
3.2.1 Benefits of OOP
3.2.2 Applications of OOP
3.2.3 Object-Oriented Programming Approach
3.2.4 Object-Oriented Paradigm
3.2.5 Basic Concepts of OOP
3.3 Software Engineering Methodology
\Y

Page No.

I1
III

v

10
10
12
14

15
15
16
16
17
18
22

Chapter 4

4.1
4.2
4.3
4.4
4.5

Problem-Solving

Agent as a basic unit

Decision making and Planning

Simulation-based Planning

Basic Components of Simuiation-based Route Planning System
SBP Framework

Chapter 5 Logical Design

5.1

5.2
5.3

Data Flow Diagram (DFDs)
5.1.1 . Context Diagram
5.1.2 Top Level Data Flow Diagram
5.1.3 Data Flow Diagram Level 0
Flow-Charts
Class-Cards

Chapter 6 Program Specification

6.1 Design Specification
6.1.1 Data Structure Used
6.1.2 Scenario File Specification
6.2 Implementation '
6.2.1 GUI Development
6.2.2 Simulation Module
Chapter 7 Conclusion & Suggestions for Future Work
7.1 Conclusion
7.2 Suggestion for future work
References
Appendices

VI

25

25
25
26
27
27

65

65
65
67
68
68
79

83

83
83

85

87

CHAPTER -1
INTRODUCTION

1.1 About the Organisation

DRDO (Defence Research and Development Organisétion)
Amalgamating Defence Science Organization and some of the technical development
establishments established defence Research and Development Organization (DRDO)
in 1958. A separate Department of Defer;ce Research and Development was formed
in 1980, which now administers DRDO and its 50 laboratories/establishments.

Dr. V.K. Aatre, currently the Scientific Advisor to the Defence Minister and the
Secretary to the Indian Government for Defence Research, is the head of DRDO. He
renders advice to the Defence Minister and to the organisations in the Ministry of
Defence on all scientific and technological aspects of military operations, logistics,
weapon system & equipment. In addition, DRDO undertakes research, design &
development of weapon systems, equipment, materials and stores. |

The Department of Defence Research and Development formulates and executes
programs of scientific research, design and development in the fields of relevance-t_o
national security leading to the induction of new weabons, platforms and' other
equipment’s required by the Armed Forces. It also functions as the nodal agency for
the execution of fnajor development programs of relevance to Defence through
integration of research, 'development, testing and production facilities with the
national scientific institutions, public sector undertakings and other agencies,

Research and development activities at DRDO cover important> demarcated
disciplines like aeronautics, rockets & missiles, electronics & instrumentation, combat
vehicles, engineering, naval systems, armament technology including explosives .
research, terrain research, advanced computing, artificial intelligence, - robotics,
works study, systems analysis and life sciences including high-altitude agriculture,
physiology, food technology and nuclear medicine. In addition to undertaking
research and development activities, DRDO also assists the services by rendering
technical advice regarding formulation of requirements, evaluation of systems to be

acquired, fire and explosive safety and mathematical and statistical analysis of

operational problems.

ISSA (Institute Of Systems Studies and Analyses)

ISSA is a part of DRDO. It is an inter di§Cplinaw Institute in which scientists from
various fields like Mathematics, Operations Research, Statistics, vCom'puter Science,
Physics,Electronics and Ballistics are employed. Most of these scientists are trained
in more than one discipline and have experience of field units in the operational
areas and industrial applications. The institute is presently organized in different
groups accordving to work specialization. These team functions as a complete study
groups, dedicated to the projects and imparts training to the students of various

-Universities / Organisations.

It was started as a small gro'up named "Weapon Evaluation Group (WEG)" In the
year 1959, primarily to carry ouf Operational Research (OR) studies and weapon
analysis for the three services. In 1963 this group was redesignated as Scientific
Evaluation Group and later named as Directorate of Scientific Evaluation (DSE) In
1968. In 1981 its name was changed to Institute of system Studies and Analysis with
somewhat broader charter of duties. The Institute is presently organized in different
groups as per the expertise.ISSA has to its credit many a succesful projects
undertaken by DRDO. To name a few, the wargahing software’s being used by
Indian Army: Shatranj, Sahgram, MIL GIS and Indian Navy : Sagar. It also involved
with many projects in Wargaming and Mathematical Modelling and Simulation. It now
functions as an establishment similar to other R&D LABS/ESSTS and is located in

Metcaife House Complex.

1.2 About the Project

Simulation based Aifcraft Route Planning is an air interdiction application, which
builds a Graphical User Interface (GUI) scenario editor which encapsulates different
interacting agents actively involved in the interdiction mission. The GUI provides the
facility for the deployment of certain and uncertain enemy objects such as

o Radars

o Surface-to-Air missiles

o Enemy Fighters

which pose threat to friendly forces. The GUI provides the facility to depict the area
in the form of grid so as to simplify the distance-based computations. Further apart
from the default colors used to represent the forces, the GUI provides option to the
user to specify the colors they want. The scenario created can be saved to a file, -
which helps to avoid recreation of the scenario every time simulation is to be done
on the same scenario. GUI also facilitates the creation of different candidate routes
that are to be simulated.

The main task of the interdiction mission is then to find out the best route from a
starting point to a specified target (enemy ammunitions factory) objective, given a
number of certain and uncertain threats to the mission. It contributes in the area &f
planning to develop a method that allows simulation to be used in real time, where
the simulation is embedded within the decision-making system.

Application involves the “use of air strike forces to destroy, delay or disrupt existing
enemy surface forces while they are far from friendly forces”. It involves many
interacting elements including concurrently active adversarial tasks and uncertain
information regarding ground-based anti-aircraft capability. The application create
models for multi-agent systems that are tightly constrained by their environments,
i.e.,

o geometric paths that are to be followed

o a task or mission to be accomplished

o a strict set of operating conditions for all agents

The interdiction mission includes attacks against supplies and lines of
communication. The objective of the air interdiction mission is to reduce the enemy
threat by diminishing enemy combat effectiveness and/or by preventing build up of
enemy combat capabilities. To achieve this objective, careful and comprehensive
planning is required to isolate an area and to stop all support from reaching the
theatre of conflict.

The development of Simulation Based Aircraft Route Planning involves the following
phases:
1. Scenario editor / GUI which supports reading, editing and writing scenario
definition files

Data Structure Design & Text File Format Design module
Simulation and Execution Module

CHAPTER -2

OVERVIEW

2.1 P'rpblem Definition

An Air Interdiction Scenario is basically a combat mission planning where military
operations involving two or more 6ppoéing forces exercising real life combat rules on
data and procedures are involved in the war scenario. The Combat here takes piace
between the Red force (enemy force) and the Blue force (friendly force).

The mission of the Blue Force Aircraft is to destroy a Red Force Ammunitions Factory
to stop all support from reaching the area of conflict. There are a number of certaln‘
and uncertain hostile resources such as Radars, Surface-to-air Missiles, each with
different detection range and enemy fighters that pose threat to Blue Force Aircraft,
whose aim Is to destroy or disrupt Red Force Ammunitions Factory and come back to
its base safely. At a first glance, the problem of guiding the blue force around the
radar, SAM and ‘Aircraft Coverage and toward the factory seems like a simple
prdblem in computational geometry. Infact this is the manner in which most routes
planning is done. A typical rule might be found - “to locate a path, avoid radar and
SAM fields, and avoid fighting against enemy fighters”. However such rule based
reasoning becomes more onerous when uncertainty occurs and for the objects in our
Air Force Mission Planning domain we have categorize the uncertainty into dynamics

are present several types:

= Uncertainty of existence : the object may or may not even exist.

= Uncertainty of location : An area of uncertainty of the objéct’s location is
available but it is not certain of the exact location of the object.

» Uncertainty of range : The exact detection range or firing range is not known.

» Uncertainty of firepower : The destruction capability of the object is uncertain.

Figure 2.1 A Overview of Scenario (GUI)

Simulation assumes a significant importance as simulation of military operations
used for research, analysis, education, or recreation is designed for better
understanding of warfare. It involves people in the information processing within an
actual or hypothetical situation who use rules, data and procedures to guide various

military actions.

2.2 Goals to be achieved

An interdiction mission is a very common problem in defence and its role is to
destroy the supply lines of the enemy in order to delay its support. The application
first needs to develop a Graphical User Interface (GUI) that creates an interdiction
scenario providing facility to place different agents actively participating in the

interdiction mission, such as -

6

= Ammunitions Factory of the enemy (Target)
» Enemy Fighter Aircraft
= Ground based Radar units

= Surface to Air Missiles (SAM) systems,

The GUI based scenario editor should also provide the facility to edit the attributes of
these agents, as well as to delete them. Further the GUI should facilitate the creation
of different routes for the aircraft, which serves as an input for the simulation
module. Prior to the execution of the simulation module, the scenario related
information is to be stored in a file, which can be opened to avoid the recreation of
tlje scenario every time as long as the placemerit of the enemy agents remains fixed.

The interdiction mission then needs to identify all the possible (certain and uncertain)
threats such as Radars, Surface-to-Air-Missiles, enemy Fighters to the mission,
_determine the set of controllable and uncontrollable variables and determine their
behavior. The complex dynamics of the hostile resources need to be modeled to build
the scenario in order to proceed with the route planner module providing a base for
simulation. The controliable variables or factors are sometimes called as parameters.

The primary objective of the Air Interdiction mission entails the execution of carefully
conceived, comprehensive plan designed to isolate an area and to stop all support
from reaching the area of conflict. Therefore, the task of the Air Strike mission is
then to gather the effects of the uncontrollable variables by using random numbers,
while varying the parameters to find a near-optimal route which aims at destroying
the target (i.e. Red Force ammunitions factory) and a safe return of the Blue Force
Fighter to its base. Our aim is not just to find the shortest route from Blue Force
base to the target, but the one, which considers various enemy agents to achieve

:- Maximum Destruction
] Minimum Threat
= . Minimum Cost

CHAPTER -3
Methodologies Adopted

3.1 Simulation

Computer system users, administrators, and designers usually have a goal of highest
performance at lowest cost. Modeling and simulation of system design trade off is
good preparation for design and engnineering decisions in real world jobs. Simulation
is used as a tool to better understand and optimize performance and/or reliability of
systems; it is also extensively used to verify the correctness of designs. Most if not
all digital integrated circuits manufactured today are first extensively simulated
before they are manufactured to identify and correct design errors. Simulation early
in the design cycle is important because the cost to repair mistakes increases
dramatically the fater in the product life cycle that the error is detected [6], [7].

Another important application of simulation is in developing "virtual environments”,
e.g., for training. Analogous to the holodeck in the popular science-fiction television
program Star Trek, simulations generate dynamic environments with which users can
. interact "as if they were really there." Such simulations are used extensively today to
train military personnel for battlefield situations, at a fraction of the cost of running

exercises involving real tanks, aircraft, etc.

System Simulation is the mimicking of the operation of a real system, such as the
day-to-day operation of a bank, or the value of a stock portfolio over a time period,
or the running of an assembly line in a factory, or the staff assignment of a hospita!
or a security company, in a computer. Instead of building extensive mathematical
modeis by experts, the readily available simulation software has made it possible to
modei and analyze the operation of a real system by non-experts, who are managers
but not programmers. A simulation is the execution of a model, represented by a
computer program that gives information about the system being investigated. The
simulation approach of anal;zing a model is opposed to the analytical approach,
where the method of analyzing the system is purely theoretical. As this approach is
more reliable, the simulation approach gives more fiexibility and convenience. The
activities of the model consist of events, which are activated at certain points in time
and in this way affect the overall state of the system. The points in time that an

9

event is activated are randomized, so no input from outside the system is required.
Events exist autonomously and they are discrete so between the executions of two

events nothing happens.

3.1.1 Definition of Simulation

Simulation is the imitation of a real-world process or system overtime. Simulation
involves the generation of an artificial history of the system and the observation of
that artificial history to draw inferences concerning the operating chéracterIStlcs of
the real system that is represented. Simulation is an indispensable problem-solving
methodology for the solution of many real-world problems. Simulation is used to
describe and analyze the behavior of a system, ask what-if questions about the real
system, and aid in the design of real systems. Both existing and conceptual systems
- can be modeled with simulation.

3.1.2 Advantages of simulation

Competition in the computer industry has led to technological breakthroughs ihat are
allowing Hardware companies to produce better products continually. It seems that
every week another company announces its latest release, each with more options,
memory, graphics capabilities, and power what is unique about new developments in
the computer industry is that they often act as a springboard for related industiies to
follow. One industry in particular is the simulation software industry. As computer
hardware becomes more powerful, more accurate, faster and easier to use,

simulation software does too. Some of the major advantages are:

e Choose correctly: Simulation lets us test ever aspects of a proposed Cha,”ge or
addition without community resources to their acquisition. This is critical, because
once 'the hard decisions have been made, the bricks have been laid, or the
material handling 'systems have been installed, changes and corrections can be

extremely expensive.

» Compress and expand time: By compressing and expanding time, simulation
allows just speeding up or slowing down phenomenon so that we can investigate

them thoroughly.

10

Understand why: With simulation we can determine the answer to the “why”
- questions by reconstructing the scene and taking a microscopic examination of

the system to determine why the phenomenon occurs.

Explore possibilities: Once we have developed a valid simuiation model, we can
explore new policies, operating procedures, or methods without the expense and

disruption of experimenting with the real system.

'Diagnose problems: Simulation allows us to better understand the interacting'
among the variables that make the complex systems. Diagnosing problems and
gaining insight into the importance of these variables increases our
understanding of their important -effecfs on the performance of the overall

system.

Identify Constraints: By using simulation to perform bottleneck analysis, we can

discover the cause of the delays on work in process, information, materials, or

other processes.

Develop Understanding: Simulation studies aid in providing understanding abgut:
how a system really operates rather than indicating someone’s predicti_ons about

how a system will operate.

Visualize the plan: Depending on the software used, we might be able to view our
operation from various angles and levels of magnification, ~even in three-

dimensional.
Build Consensus:.Using simulation to present design changes creates an objective
opinion.. o |

Prepare for change: Interacting with all those what-if questions involved in a
project during the problem-formulation stage gives us an ldea of the scenarios

that are of interest.

Invest wisely: The typical cost of a simulation study is substantially less than
10% of the total amount being expended for the implementation of a design or

redesign.

Il

e Train the team: Simulation models can provide excellent training when designed .
for that purpose. The team, and individua! members of the team, can learn by
their mistakes and learn to operate better. This is much less expensive and less
disruptive than on-the-job learning.

o Specify requirements: The specification for a particular type of machine in a
complex system to achieve a desired goal might be unknown. By simulating
different capabilities for the machine, the requirements can be established.

3.1.3 Areas of Application

The applications of simulation are very vast. Some of the important applications are:
e Manufacturing and Material Handling Applications
Presentations inciuded the following, among many others:
-Design and analysis of large-scale material handling systems
-Analysis of the effects of wofk-in-process levels on customer satisfaction

-Assessing the cost of quality

e Public Systems Applications
Presentations included the following, among many others:
1. Heaith Systems

-Screening for abdominal arotic aneurysms
-Lymphocite development in immune-compromised patients |
-Asthma dynamics and medical amelioration
-Timing of liver transplants
-Diabetic retinopathy
-Evaluation of nurse staffing and patient population scenarios
-Evaluation of automated equipment for a clinical processing
laboratory _
-Evaluation of hospital surgical suite and critical care area

2. Military Systems
-Airforce support equipment use
-Analysis of material handling equipment for propositioning ships
-Development and implementation of measures of effectiveness
-Reengineering traditional stovepipe - Army staffs for information

operations

-Evaluation of theatre airlift system productivity
~-Evaluation of C-1141 depot maintenance ,
-Evaluation of air mobility command channel cargo system

3. Natural Resources
-Nonpoint-source poliution analysis
-Weed scouting and weed control decision-making
~-Evaluation of surface water quality data

4. Public Services
-Emergency ambulance system analysis
-Evaluation of field offices with a government agency

Service System Applications
Presentations included the following, among many others:
1. Transportation)
-Analysis of intelligent vehicle highway systems
-Evaluation of traffic cbntrol procedures at highway work zones
-Evaluation of taxi management and route control ‘
~Evaluation of rapid transit modeling with automatic and manual

controls

- 2. Computer System Performance
~User transaction processing behavior analysis
~Evaluation of database transaction management protocols
~Evaluation of analytic models of memory queuing

3. Air transportation
-Evaluation of human behavior in aircraft evacuates

-Analysis of airport/airline operations

4. Communications Systems ‘
~Trunked radio network analysis
-Evaluation of.telebhone_service provisioning process
-Picture archiving and communication system analysis
-Evaluation of modeling of broadband Tele-communication networks
-Analysis of virtual reality for Tele-communication networks

13

3.1.4 Military Simulation

Simulation has been applied ext‘ensiv'ely and successfully to a wide range. of military .
problems, including war gaming, acquisition, logistics, and communications. For e.g.,
it has been used as a decision support tool to evaluate how a battle force should be
constituted, how it might be deployed, and how the weapon systems should be
acquired and maintained!2],{5].

Military simulation models are different from others because

¢ Many of them are highly classified, with details that could “not be widely
disseminated. '

e Weapon capabilities and use aren‘t typically used in other modeling and
simulation (M&S)

e« Potential adversaries closely control certain algorithms to avoid reverse
engineering. '

e The use of certain equations isn’t typical of commercial M&S.

Classification of Military Simulation

According to Defense Science Board, military simulations are classified into three
categories, i.e., live, virtual, and constructive.

Live simulation involves real people and real systems where every move and every
shot fired between two groups is monitored by a powerful laser engagement system
that records all the signals from the pieces of armor and other equipment that are
participating in the exercise. All of this information is fed into the computer
simulation, and numerous statistics are tallied so that at the end of the exercise,
both teams can be evaluated and areas of improvement can be identified.

Virtual simulation involves real people in a simulated system. This includes aircraft
and tank simulators. This type of simulator is helpful in training and in evaluating
control, decision, and communication skills. Virtual simulation has become more
popular with developments in computer technology, especially computer graphics.

In constructive simulation, humans might be (or might not be) interact with model,
and everything is simulated. Constructive simulation of.combat include war-games
for training as well as for analytical tools. Constructive simulation training is usually
designed for staff level use and virtual simulation training for operator level use.

14

3.2 Object-Oriented Methodology

Simulation-based Air force Route Mission Planning is an application, which we have
developed in VC++4, an object-briented programming Ianguagé. An object-oriented
programming (OOP) language has many advantages, which can tackle big program
very easily.

3.2.1 Benefits of O0OP

QOP offers several beneﬁts to both the program designer and the user. Object-
Orientation contributes to the solution of many problems associated with the
development and quality of software products [3]. The new technology promises

= Greater programmer productivity
= Better quality of software
= lLesser maintenance cost

The principal advantages are:

. Thrdugh inheritance, we can eliminate redundant code and extend the use of
existing classes. ‘

e We can build programs from the standard working modules that communicate
with one another, rather than ha\iing to start writing the code from scratch.
This leads to saving of development time and higher productivity. '

« The principle of daté hiding helps the programmer to build secure programs
that can't be invaded by code in other parts of the program.

It is possible to have multiple chjects to coexist without any interference.

e It is possible to map objects in the problem domain to these objects in the
program. :

o Itis easy to partition the work in a project baséd on -objects.

= The data-centered design approach enables us to capture more details of a

model in an implementable form.

hiect- Qrien ystem n ily ungraded from small to large systems,

e Message passing techniques for communication between objects make the
interface descriptions with external systems much simpler.

e Software cbmplexity can be easily managed.

rr

is easy to use is hard to build. It is hoped that the OOP language like

’,
VC++ would help manage this problem.

I5

3.2.2 Applications of QOP

The most p'ovpular application of OOP, up to now, has been in the area of user
interface design such as windows. There are hundreds of windowing systems
developed using OOP techniques.

Real-business systems are often much more complex and contain many more objects
with complicated attributes and methods. OOP is useful in this type of applications
because it can simplify a complex problem. The promising area for application of OOP
includes:

= Real-time systems

= Simulation and modeling

= Object-Oriented databases

= Hypertext, hypermedia and expertext

= Al and expert systems

» Neural networks and parallel programming

= Decision support and office automation systems
» - CIM/CAD/CAD system

It is believed that the richness of OOP environment will enable the software industry
to improve not only the quality of software systems but also its productivity. Object-
Oriented technology is certainly change the way software engineers think, analyze,

" design and implement systems.

3.2.3 Object-Oriented Programming Approach

One characteristic that is constant in the software industry today is the “change”.
Change is one of the most critical aspects of sof’cware development and
management. The impact of these developments is often very extensive and raises a
number off issues that must be addressed by the software engineers. Most important

among them are:

» Maintainability

» Reusability
« Portability
= Security

~ Integrity

* User friendliness of software products

16

Since the invention of the computer, many programming approaches Have been
tried. These include techniques such as wmodular programming, top-down
programming, Bottbm-top programming and structured programming. The primary
motivation in each case has been the concern to handle t'hé in\creasing complexity of
programs that are reliable and maintainable. These techniques became popular

among programmers over the last two decades.

With -the advent of languages such as C, structured programming became very
popular and was the paraqigm of the 1980s. Structured programming proved to be a
powerful tool that enabled progl;ammer to write moderately complex programs fairly
easily. However as the programs grew larger, even the structured approach failed to
show the desired results in terms of bug free, easy-to-maintain, and reusable
programs. A ' ' ‘ o

Object-Oriented Programming (OOP) is an approach to program organization and
_ development, which attempts to eliminate .some of the pitfalls of conventional
programming methods by incorporating the best of structured programming features
with several new concepts. Also, OOP is an approach that provides a way of
modularizing programs by creating partitioned memory area for both data and
functions that can be used as templates for creating copies of $uch modules on
demand. This means that an object is considered to be a partitioned area of
computer memory that stores data and a set of operations that can access that data.
Since the memory partitions are independent, the objects can be used in a variety of
different programs without modification. It is a new way of organizing and
developing programs and has nothing to do with any particular’ language. However,
not all languages are suitable to implement the OOP concepts easily. Languages that
support OOP features include Smalitalk, C++, Ada, VC+4, Object Pascél and java.

3.2.4 Object-Oriented Paradigm

The fundamental idea behind Objecl-Oriented languages is lo combine inlo a single -
unit both data and the functions that operate on that data. Such a unit is called an .
object. QOP treats data as a critical clement in the program development and does
not allow it to flow freely around the system. It ties data more closely to the

functions that operate on it and protects it from unintentional modification by other

functions. OOP allows us to decompose a problem into a number of entities called

17

Objects and then build dats and functions around these entities. The combination of
data and functions make up an object. '

The data of an object can be accessed only by the functions associated with that
object that is member functions. If we want to read a data item in an object, we
have to call a member function in the object. It will read the item and returmn the
value. We can't access the data directly. The data is hidden, so it is safe from
aCCidental alteration. Data and its functions are to be encapsulated into a single
entity. If we want to modify the data in an object we have to exactly what functions
interact with it: the member functions in the object, no other functions can access
the data. This simplifies writing, debugging and maintaining the program. Howe\(er,
functions of one object can access the functioned of other object. Some of the
features Object-Oriented Paradigm are: '

» Emphasis is on data rather than procedure

= Programs are lelded into what are known as objects

» Data structures are designed such that they characterize the obJects

= Methods that operate on the data of an object are tied together in the data

structure
= Data is hidden and can not be accessed by an external functions

= Objects may communicate with each others through functions
» New data and methods can be easily added whenever necessary
= Follows bottom-up approach in program design

3.2.5 Basic Concepts of OOP

It is necessary to understand some of the concepts used extensively in OOP.

. Objects and Classes

QObjects are the basic runtime entities in an object-oriented system. What kinds of
things become objects in OOP? The answer to this is limited only by our im'agination,‘
but here are some typical categories to start us thinking:

> Physical Objects
o Automobiles in a traffic- _flow simulation
o Electncal components in a circuit design program
o Aircraft in an air-traffic-control system

18

> | Elements of the computer-uéer environment
- o Windows '
o Menus
o Graphics objects (lines, rectangles, circles)
o The mouse a_nd the keyboard

» Programming constructs
o Customize arrays
o Stacks
o ' Linked-Lists
- o Binary trees

» Connections of data
o Aninventory
o A personnel file
o A dictionary _
o A table of latitudes and longitudes of world cities

> User-defined data tvpes
o Time
o Angles

o Complex numbers

0Q

. Points on the plane

» Components in computer games
o Ghosts in a maze game »
o Positions in a board games (chess, checkers) .
o Animals in an ecological simulation
o Opponents and friends in adventure games

Program objects should be chosen such that they match closely with the real -world
objects. When a program is executed the objects interact byvsending messages to
one another. For example ‘customer’ and ‘account’ are two objects in a banking
program, then the customer object may send a message to the account object
requesting for the balance. Each object contains data and code to manipulaie the
data. Objects can interact without having to know the details of each other data or
code. 1t is sufficient to know the type of meséage accéptéd énd the type of response
returned by the objects. .

19

Data Abstraction and Encapsulation

The wrapping up of data and functions into a- single unit (called class) is known as
encapsulation. Data Encapsulation is the most striking features of a class. The data
isn't accessible to the outside world and only those methods, which are wrapped in -
the class, can access it. These methods provide the interface between the objects
data and the program. This insulation of the data from direct access by the brogr‘am
is called data hiding. Encapsulation makes it possible for objects to be treated llke
‘black boxes’, each performing a specific task without any concern for internal
implementation. ' '

Abstraction refers to the act of representing essential features without inclixding the
background details or explanations. Classes use the concept of abstraction and are
defined as a list of abstract attributes such as size, weight, and cost and functions
that operate on these attributes. They encapsulate all the essential properties of tne
objects that are to be created. |

Inheritan‘be

Inheritance is the process by which of one class acquire the properties of objects of
~ another class. Inheritance suppoits the concept of hierarchical classification. For e.g.,
the class of animals is divided into mammals, amphibians, insects, birds, and so on.
The class of vehicles is divided into cars, trucks, buses, and motorcycles. '

‘The principle in this sort of division is that each subclass shares common
characteristics with the class from which it's derived. Cars, trucks, buses and
motorcycles all have wheels and a motor; these are the defining characteristics of
vehicles. In addition to the characteristics shared with other members of the class,
| each subclass also hés its own particular characteristics: buses, for instance, have
seats for many people, while trucks have space for hauling heavy loads. '

In OOP, the concept of inheritance provides the idea of reusability. This means that
we can add additional features to an existing class without modifying it. This is
possible by deriving a new class from the existing one. The new class will have the .
combined features of both the classes. Thus the real appeal and power of the
inheritance mechanism is that it allows the programmer to reuse a cléss, that is
atmost, but not exactly, what one wants, and to tailor the class in such a way that it
does not introduce any undesirable side effects into the rest of the classes.

20

Polymorphism

Polymarphism is another OOP concept. Polymaorphism (one thing with several distinct
forms_) means the ability for a new object to implement the base functionality of a
parent object in a new way. An operation may exhibit different behavior in different

instances. The behavior depends upbn the types of data used in the operation.

Polymorphism plays an important role in allowing objects having different internal
structures to share the same external interface. This means that a general class of
operations may be accesses in the dame manner even though specific actions N
associated with each operation may differ. Polymorphism is extensively used in
implementing inheritance.

Dynamic Binding

Binding refers to the linking of a procedural call to the code to be executed in
response to the cali. Dynamic Binding means that the code associated with a given
procedure call isn’t known until the time of the call at runtime. It is associated with
polymorphism and inheritance. A procedure call associated with a polymorphic
reference depends on the dynamic type of that reference.

 Message Communication

An Object-Oriented program consists of a set of objects that communicate with each
other. The process of programming on an ObJect-Onented language therefore,
involves the following basic steps:

1. Creating classes that define objects and their behavior
2. Creating objects from class definitions ‘
3. Establishing communication among objects

Objects communicate with one another by sending and receiving information much
the same way as people pass message to one another. A message for an object is a
request for execution of a procedure, and therefore, will invoke a procedure in the
reéceiving object that generates the desired result. Message passing involves
specifying the name of the object, the name of the method (message) and the
information to be sent. For e.g., consider the statement

radars. display (position);
- Here, radars is the object, display is the message and position is the parameter that
contains information.

21

3.3 Software Engineering Methodology

The various phases of software life cycle are:
Requirements Analysis

Software design

Coding

Testing

Maintenance

vk wn e

Requirement Analysis

Reguirement Analysis is done in order to understand the problem, which the software
system is to solve. The emphasis is on identifying what is needed from the system
and not how the system will achieve its goals. There are two parties involved in
software development a client and a developer. The developer has to develop the
system to satisfy the client's needs. The developer usually does not understand the
client's problem domain, and the client often does not understand the issues involved
in software systems. This causes a communication gap, which has to be adequately
bridged during requirements analysis.

In most software projects, the requirements phase ends with a document describing
all the requirements. Hence the goal of requirements phase is to produce a software
requirements specification document. The person responsible for the requirements
analysis is often called the analyst. There are two activities in this phase:

1. Analysis or problem understanding
2. Requirements specification

In problem analysis, the analyst has to understand the problem and its context.
Once the problem is analyzed and the essential understood, the requirements must
be specified in the requirement specification document.

Software Design

The purpose of the design phase is to plan a solution of the problem specified by the
requirements document. This phase is the first step in moving from the problem
domain to the solution domain. The output of this stage is the design document. This

22

document is a plan for the solution and is used later during implementation, testing

and maintenance.
The design phase has two separate activities:

1. System design-top level design
2. Detailed design

During design phase, two separate documents are produced: one for system design
the other for detailed design. Together these specify the design. That is, they specify
the models and the internal logic of each of the modules.

Coding

The goal of the coding phase is to translate the design of the system in a given
program language. For a given design, the aim in this phase is to implement the
design in the best possible manner. The coding phase comes before testing and
maintenance. Since the testing an‘d maintenance costs of say much higher than the
coding cost, the goal of coding should be to reduce testing and maintenance effort.

Testing

Testing is the major quality control measure employed during development. Its basic
function is to detect errors in the software. After coding phase, computer programs
are available that are executed for testing. Testing uncovers errors introduced in
requirement, design, coding programs. Consequently different levels of testing are

employed.

The first level of testing is unit testing. In this a module is tested and is often
performed by the coder himself simhltaneously with the coding module. The aim is to
execute the different parts of the module coding and coding errors. After this the
modules are integrated into subprograms then Integrated themselves.to eventuaily

form the actual system programs.

During Integration of modules, integration testing is perfgrmed. This testing is to
detect design errors, while focusing on testing the interdependency between the
modules. After the system is put together, system testing is that, the system is
’tested against the system require'menf, to see if all the requirements are met and

23

the system performs as specified by the system requirements. Finally, acceptance
testing is performed to demonstrate to the client, on the real life data of the client,

the operation of the system.

Maintenance

Maintenance is not a part of software development, but is an extremely important
activity in the life of a software product. Maintenance includes all the activities after
the installation of software that is performed to keep the system operational. The
four major forms of maintenance activities are adaptive maintenance, corrective

maintenance, perfective maintenance and preventive maintenance.

24

CHAPTER -4

Problem-Solving

4.1 Agent as a Basic Unit

The Air Force is expanding its modeling and simulation activities as a practical
solution to improve readiness and lower costs. Modeling and simulation save millions
of dollars by cutting the need to deploy actual forces and equipment, as in the case
of command and control exercises. Not only American forces, but also those of other
couinitries, can be included in simulated conflicts. The Air Force has identified severat
desired capabilities that encompass both improvements in existing models and the
development of new types of modeling. To satisfy these needs, scientists at the
Human Effectiveness Directorate are conducting research to discover efficient ways
to simulate intelligent behavior in existing and new models.

Furthermore, Air Force requirements call for 'the developmenf of completely new
capabilities, such as models capable of accurately simulating the conduct of
information operations. Information operations mean the execution of information
warfare (i.e., an activity designed to manipulate, degrade, deny, or destroy
information) with the goal of influencing an opponent battle staff or civilian
authority’s ability to make decisions. .

The basic unit of Simulation is an agent. An agent is “any actor in_a system, any
entity that can generate events that affect it and other agents”. Agents define the_
basic objects in the system, the simulated components. Simulations tonsist of groups
of many interacting agents. For examplé, an ecosystem simulation could consist of
agents'représenting coyotes, rabbits, and carrots. In an economic simulation, agenté
couid be companies, stockbrokers, shareholders, and a central bank.

4.2 Decision Making And Planning

Decision making and planning are critical operations for ali military missions.
Moreover, planning occurs over several different time scales depending on the
amount of time one has to plan prior to committing to a particular plan. Planning is a
hierarchical enterprise. Qur long term goal is to éxplore this hierarchy of planning

25

approaches, and our first step towards this goal is to provide high-level planner with
a technique we call Simulation Based Planning (SBP). Military mission involve many
interacting elements including concurrently active adversarial tasks and uncertain
information regarding ground-based anti-aircraft actability. As the complexity of the
mission increases, it is valuable to use computer simulation. Hence we introduce
simulation-based planning as a methodology for addressing the complexity involved

in Air Force missions.

4.3 Simulation Based Planning

Simulation Based Planning extends and improves the planning horizon in three
aspects. First, it handles probalistic uncertainty through detailed and replicated
simulation of models instead of solving them analytically using probébility theory.
Second, simulation can naturally extend the level of execution and thereby often
discovering subtleties (which would have been missed by a higher lever planner) that
may lead to failure of a plan. Finally, a multi-agent adversarial planning is easily
achieved through object-oriented multimode simuiation where each agent of

adversary is simulated [1].

Simulation is defined as “the discipline of designing a model of an actual or
theoretical physical system, executing the model on a digital computer and analyzing

the execution output”.

Once the plan is chosen for execution, the simulation data that was generated during
the planning process can be used to match with the current real world state. -

Our focus is near-optimal route planning. Route planning is in-between the higher
level of symbolic Al planning and the lower -level of intelligent control. There are
several arjplication areas that are related to route planning. Mission planning within
_ the military domain almost always involves route planning. Routes can greatly affect
the success of the whole mission, whether the mission takes place on ground or in
the air. If the goal is to select a route that is shortest in distance, we can use any 6f
the standard algorithms that exist for finding the shortest paths in the graph. But, if
the broblem is in an environment that is unknown or uncertain, we must use
different ways to evaluate each path such as simulation. ’

26

4.4 Basic Components Of Simulation-Based Route Planning
System

The simulation based route planner has three main components: -
1. The Route generator
2. The Simulator
3. The Plan Evaluator/Selector

The Route Generator : The route generating component gathers information about
the source and the destination in order to generate candidate routes between them
linking source to the target.

The Simulator : The main task of the simulator module is to simulate each
candidate route taking into account all the possible threats . The simulation monitors
various controllable and uncontrollable factors to analyze each route and generates a
score for each route.

The Evaluator : The evaluator mainly evaluates the results of the simulation and
then selects the best route amongst the given candidate routes for execution.

4.5 SBP Framework

We present SBP framework in terms of three components :
1. The Simulation component
2. The Experimental Design Component
3. The output Analysis Component

1. Simulation Block

To use simulation in planning we, first need to identify the set of controllable and
uncontrollable variables. Speeds, routes, actions of objects are controllable, whereas
any kind of uncertainty such as uncertainty of positions conditions, range of radars
and outcome of combat are uncontrolliable. The controllable variables or factors are
sometimes called parameters in simulation process. The main objective of the plan
simulation is to gather the effects of the uncontrollable through randomness while
varying the parameters to find a near-optimal combination of controilable values in
spite of the uncertainty. We say near optimal because we can never guarantee the
optimality of a plan given the uncertainties of actual plan execution.

In addition to parameters there are artificial factors such as simulation specific
variables like the initial state of the system, termination conditions and random
number streams. Due to nature of our problem, the user gives artificial factors'such
as initial state of the environment and termination conditions of plans.

We now define the following:

Let W = Wy, W,,, ... Wk be the set of all objects in the ehvironment. And let Q
() = a1 (t) * g2 () * ..* qi(t) be the world state at time.t where gi(t) is the
state of object Wi at time t, a finite set of world states. Also we define Ai(t)
as the set of actions Wi can take at time t and zero or more actions may be
chosen from this set to be simulated at time t.

~ Let R be set of routes that need to be simulated and chosen from. The total

number of routes is N and Rj denotes the jth route where 1 < j< N.

Stationary Object refers to an object that remains physically-in the same
location. throughout the simulation and objects that do not have the ability to
physically change location. Ground radars, missile sites are some examples.

Moving Objects refers to the obJect that has the ability to physucally move
and change its location during simulation such as fighter.

_ Planner Object refers to the object, which is planning entiiy }.tself.

Let O be the set of uncertain stationary objects. Then, these objects can have
one or more of the following uncertainties:

-~Initial location _

-Type (e.g. type of plane, type of missile)

-Configuration (e.g. speed, range)

Then the simulation algorithm follows:

Determine the score for each route k;, comprising of -
a. Cost of each route in terms of distance
b. Detection probability

For each route Rj,
While (there are more routes)
Get the cost and detection probability of the route
Calculate the score for the route

Find the route with the smallest cost.

2. Experimental Design Block |

In simulation, experimental design is a method of choosing which configurations (i.e.
parameter values) to simulate so that the desired information can be acquired with
the least amount of simulating. In experimental design terminology, the input
parameters and structural assumptions composing a model are called factors and the
output performance measures are called responses. The route simulation algorithm
models two factors - cost of the route in terms of distance that directly affects the
fuel consumption and the probability of friendly aircraft being detected by the enemy -
units. Thus the objective function is given as: -

Route [i] = w1 * route cost [i] + w2 * route prob [i]
Where, "
i = Route No. .
~ Route [i] = Total cost of the route i
route cost [i] = Total cost of route i in' terms of distance
route prob [i] = Total probability of being detettéd on route |
w1l = Weight attached to cost of route i
w2 = Weight attached to probability of detection for route i

3. Analyzer

Based upon the selection criteria (i.e. simulation factors) we consider several
different plans/routes and choose the best plan for execution. The tasks. of this
component are to analyze the results obtained from alternate routes and select the
one with the minimum score. The selection criteria largely depends upon the weights
attached to the factors associated with the route. Assignment of different weights to
factors could lead to selection of a different route each time, despite the fact that

their scores remain the samae.

CHAPTER -5

Logical Design

5.1 Data Flow Diagram (DFDs)

5.1.1 Context Diagram

| Sceaario/GUI

my

symsay
Aoydsiq
uoyemillg

Results

Figure 5.1 Context Diagram

31

5.1.2

Top Level DFD

1

7

4
Target
(Ammunitions

Grid (on/off)

Scenario/GUI

Load

e e e e e

Weightage
attached to cost
2 of distance &
i\, prob. detection

Scenario

oLRYSOS

Simulation
Execution
Module

. Save Simulation
Resuits

Figure 5.2 Top Level Data Flow Diagram

aneg

-

5.1.3 Data Flow Diagram Level-2

1.1
Place the

1.2
f Enter Name,
i Range,

é Effecliveness

1.3
Create a node
& attach to
Linked-List

1.4
Display the
Radar

Validates
Duplicacy
& Saves all
Attributes

16
Edit or Delete
the Radar

Figure 5.3 Detailed DFD for radar operation

33

21
Place the
SAM

......

2.2
Enter Name, .

Range, Hit
Probability

2.3
Create a node
& attach to
Linked-List

24
Display the
SAM

’ v;gizl‘v:‘;sh" Kﬁ),‘..‘

Validates
Duplicity &
Saves all
i Attributes
23th .

GEH AR

P
P

‘ e f‘ EZ)", e A '- 2

25
Update or
Delete the

Figure 5.4 Detailed DFD for SAM operation

34

3.1
Place the Red
Aircraft
(enemy)

i
oy
(3aen,,

3.2
Enter Name,
Speed, Fuel,
Height

4 3.3

Create a node
& attach to
Linked-List

34

Display the
Aircraft

Validates
Duplicity &
Saves all
Attributes

3.5 _
Update or

4
Delete the
i Aircraft

Figure 5.5 Detailed DFD for enemy aircraft operation

4.1
Place the
Target
(Ammunition
Factory)

4.2
Create a node
& attach to

Linked-List

4.3
Display
theTarget

Save the
position

Figure 5.6 Detailed DFD for target operation

36

5.1
Place the

.gi Uncertain
g\ Radar/ SAW/

Aircraft

5.2
Generates
location &
range
randomly

Create.a node
& attach to
Linked-List

Validates
Duplicity &
Saves all
i Attributes
5.4 e Tiltos otcresad

4 Display the
i Uncertain
¥l Radar/ SAM/

Aircraft

=

Figure 5.7 Detailed DFD for uncertain radar/Sam/Aircraft operation

37

6.1
Generate New -
Route

6.2
Enter Name

for the route

6.3

£ Get the
B waypoints for
the route

6.4
Create a node
& attach to

Linked-List

6.5

i Display the

4

!';'i

> 4

; Validates

e # Duplicity &

¥ Savesall
B Atiributes

Figure 5.8 Detailed DFD for route operation

74
To make Grid
of 50km/

7 - 7.2

Create a node
& attach to
Linked-List

7.3
Display the
Grid

Figure 5.9 Detailed DFD for Grid Formation

39

Run
Simulation

.2
Weightage
attached to
" cost of

4
Route Cost
Module

4 Optimal
£l Route
£\ Selection
W\ module

Simulation
7 Resuits

W3,
e 319074 rerc 2l

il

_Seenario/lGUL

'3

Detectio

Weightage
attached to
the prob. of

n

f Probability
Detection
T Module

Database

3hre
ivy,t stes exitad

Figure 5.10 Level-2 DFD for Simulation Module

40

5.2 Flow Charts ' .
Click on “Certain Radar”
button to place radar

-Left Click on Client Area -
where to place certain radar

4

Effectiveness

_ Enter the Name, Range, »| Create a node & attach to

Linked-List

. Validates the duplicity |

of name

Display the Radar

<

Store the scenario in

the File

!

Want to place

Yes .
more radar?

Want to edit
any radar?

Click on the arrow button

L

Check the radar radio button &
click update/delete button

T

L

Click over the icon

!

Change the attributes

}

Updates the Linked-List &
’ ’ File

Figure 5.11 Flow Chart for radar operation

41

Y

Click on "Certain SAM"
button to place SAM

\ 4

Left Click on Client Area

1 where to place certain
SAM

l

Enter the Name, Range,
Hit Probability

Create a node & attach

to Linked-List

Validates the "~ - |

duplicity of name

Display the SAM

A 4
Store the scenario

l

Want to
place more
SAM?

Yes

A

in the File

Click on the arrow
button -

Check the SAM radio button &

click update/delete button

y

Click over the icon

Change the attributes

y

Updates the Linked-List
& File

Figure 5.12 Flow Chart for SAM operation

42

Click on “Certain Aircraft”
button to place aircraft

‘
Left Click on Client

Area where to place
certain aircraft

y

Enter the Name, Speed, Create a node & attach
Fuel, Height . to Linked-List

\ 4

Validates the <
duplicity of name

) A Y -

Display the Red Aircraft | Store the scenario
| in the File

v

Want to

Yes place more

* enemy
aircraft?

Click on the arrow
button

¥

Check the fighter radio button &
click update/delete button

Click over the icon

Y
Change the attributes

4

Updates the Linked-List
& File

Figure 5.13 Flow Chart fordc;nemy aircraft operation

A4

Click on "uncertain
radar/SAM/Aircraft” button to
place icon on scenario

y

Left Click on the client
area

y

Generates location & range by
random number generator

y

Create a node & attach the
location, range to linked-list

y Y

Display the uncertain Store the
radar/SAM/Aircraft < scenario In
‘ the file

Want to
place more
icons?

Yes

Figure 5.14 Flow Chart for Uncertain radar/SAM/Aircraft operation

44

Click on “Target” button to

place target

on scenario

y

Left Click on the client
area

e

y

Create a node & attach the
location, range to linked-list

y

Display th

e Target <

A

Store the
scenario in
the file

Figure 5.15 Flow Chart for Target Placing

Click on “Start Route "

button to create new route

Enter the Name for the
route

r

Validates the duplicity
of the name

\d
Left Click on Client Area to

A 4

get waypoints

y

Create a node & attach

to Linked-List

’
Display the Route between

y

Store the scenario

A

the waypoints

in the File

Further

Yes hodes on

the same

route?

Click on "End Route”
button fo stop getting
waypoints for the same
route

Yes

46

Want to
create new
route?

(D

Figure 5.16 Flow Chart for route operation

Click on “Grid” button to make grid over client area

Check radio button for 50km wide grid
(1km = 1 pixel)

X
Display the Grid of 50km width

Want to change

grid size? No

Check radio button for 100km wide grid
(1km = 1 pixel)

Disptay the Grid of 100km width

Y

Figure 5.17 Flow Chart for Grid Formation

Scenario/GUI

- Run Simulation

y

Enter Weightage attached to
the cost of distance & prob.
detection
(Say wi & w2)

Figure 5.18(a) Run Simulation & Assign
Weightage

y

v
D
>

Is more
routes on
the
scenario?

Determine the least

Get the normalized route
cost from the Linked-List
(Say NormVal (Cost))

v

Get the normalized prob. of
detection from the Linked-List
(Say NormVal (Prob))

v

Calculate Total Route Cost
i.e., wi*NormVal(Cost) +
w2*NormVal(Prob)

y

Create a node & attach
Total Route Cost to the
Linked-List

total route cost i.e.,
optimail route

Blue Aircraft follow the
> optimal route to

achieve the goal

Figure 5.18(b) Flow Chart for Simulation Module

48

Get the waypoints of route from

linked-list to calculate the cost of ;
distance

A

Calculate the cost of distance
between the waypoints

Is more
waypoints

Yes

for the same
route?

Create a node & attach the total cost
for the route in the Linked-List

Is more
routes on

Yes

Y

the
scenario?

Determine the maximum
route cost

;

Normalize each route cost by dividing
with Maximum route cost

Figure 5.19 Route Cost Module

49

Create node &
attach normalized
route cost to linked-
list

Get the waypoints of route from Linked- |

List to calculate probability of detection («

Is pixel
detected by
radar/SAM?

Calculate the distance of
pixel from the position of
radar/SAM (say DIST)

Get next pixel using
Bresenhams Algorithm

y

Calculate the Probability
of Detection (i.e.,
1/DIST)

Is more

waypoints
for the same
route?

Create a node & attach the total prob.
Of detection for the route in the
Linked-List

Is more
routes on

the Yes

scenario?

Determine the maximum
prob. detection

y

A Create node & attach
Normalize each route prob. normalized prob. of
Detection by dividing with | detection to linked-list
Maximum prob. detection

<110

Figure 5.20 Probability Detection Mo

50

5.3 Class Cards

Class Name: CGeographicCoord

Variable Name

Data Type/Class Type Name of the Variable/Object
int Degree
int Minute
float Second
char : Direction

Function name :
Type of the Function Name of the Function

constructor CGeographicCoord()
destructor CGeographicCoord()

Description of this class
This class basically initializes the co-ordinate position in the form of degree, minute,

second and direction.

Class Name: CLoc

Variable Name

Data Type/Class Type Name of the Variable/Object
CPoint Point
CGeographicCoord Latitude
CGeographicCoord Longitude
Function name
Type of the Function Name of the Function

CPoint GetLoc()
void SetLoc()
char* ~ Get_Latitude_Str()
char* Get_Latitude_Str()

Description of this class

This class sets and gets the x,y co-ordinates of object as well as latitude.

Class Name: CTarget

Variable Name
Data Type/Class Type Name of the Variable/Object
CLoc Loc

Bool is_set

Function name

Type of the Function Name of the Function
constructor CTarget()
void DrawTarget()
void SaveTarget()
destructor CTarget()

Description of this class

This class is used to set, draw the target (i.e. enemy ammunitions factory) and also

to save it to a file.

Class Name: CWaxp. t

Variable Name

Data Type/Class Type Name of the Variable/Object
CWaypt* Next
CLoc Loc
int waypt_number
char* route_name
float Height
float Speed
CTime Time
static float X,y
static int deltaY, deltaX
static int xs,ys, xf,vf
static int DIRflag
static int countPOINT
static int reverseCountPOINT
static int stopFlag

Function name

Type of the Function Name of the Function
constructor CWaypt()
void SetRouteName()
char* ‘GetRouteName()
o - void) addnode()
CWaypt* getnode()
virtual void * delnode()
void moveFighter()
void savelist()
char* ToString()
virtual void display()
void SetSpeed()
float GetSpeed()
void SetHeight()

float GetHeight()
CTime GetTime()
void SetTime()
destructor CWaypt()

Description of this class

This class sets the location of the waypoints of the route, the height and speeds of
the fighter, provides facility to specify event time in the scenario and saves all the
data on Flat File using Linked list concept as well as load all the information from flat
fle. This class also takes care about editing and moving fighter concept.

Class Name: CRoute

Variable Name

Data Type/Class Type Name of the Variable/Object
CWaypt* waypoints
char* route_name
float cost_of_distance
float normal_cost
float prediction_cost
CRoute* next
int count -
Function name
Type of the Function Name of the Function
constructor CRoute()
void SetRouteName()
char* GetRouteName()
CRoute* getnode()
void) add new_route()
void routeMovement()
void display()
void ' savelist()
char* ToString()
CRoute* get_route_by name()
Void AddWayPt()
Void DeleteWaypt()
Destructor CRoute()

Description of this class

This class creates the route for the Blue Force (friendly) fighter, displays it and saves
it to the scenario file. It also contains the module for fighter movement.

Class Name: CGraphObject

Variable Name .

Data Type/Class Type Name of the Variable/Object
char* ~ name
Float info
CGraphObject* next
CLoc Loc
char* | Type
Function hame
Type of the Function Name of the Function
Constructor : CGraphObject()
Void addnode()
CGraphObject* ‘ getnode()
virtual void) delnode()
char* Search_node()
Bool Search _node()
Void : delnode()
char* Search_node_by pos()
CRoute* Get_route_by_name()
CPoint Search_node pos()
Void : SetType()
char* GetType()
virtual void display()
Destructor CGraphObject()

Descriptlon of this class
This forms the base class for the enemy objects such as Radars, Surface-to-Air
missiles and Fighters containing the features that are common to all of them i.e.

location, type of the object and its name.

Class Name: CSensor

Function name

Type of the Function Name of the Function
Constructor ’ CSensor()
virtual void ' display()
Destructor CSensor()

Description of this class
This class is a base class for CRadar class.

54

Class Name: CRadar

Variable Name

Data Type/Class Type Name of the Variable/Object
float range
int D
float - Detect_Radius
float Efectvness
Bool Active
int certain
Function name
Tvpe of the Function Name of the Function
constructor CRadar()
virtual void display()
CRadar* getnode()
void addnode()
virtual void savelist()
virtual char* ToString()
void : Set_Dectect_Radius()
float Get_Detect_Radius()
void Set_Efectvness()
float Get_Efectvness()
void Set_Active()
void Set_Passive()
void : . update() i
destructor CRadar() l

Description of this class

This class encapsulates the entire attributes.speciﬁc to radars and describes their
functionality related to the application. It also provides functions for addition of its
objects to a linked list thereby providing dynamicity, updation of the attributes of
radars during execution, drawing the objects on to the screen and also to save the
information about them in the scenario file which can opened to load the scenario

when required.

Class Name: CFighter

Variable Name

Data Type/Class Type Name of the Variable/Object
float Speed
float ’ Fuel_level
CRgn Region
float Height

Function name

Type of the Function Name of the Function

Constructor CFighter()
void display()
void addnode()

CFighter* getnode()
void savelist()
char* ToString()
void uncertdisplay()
void Set Speed()
float Get_Speed()
void Set_Fuel_Level()
float Get_Fucl_Level()
void Set Region()
CRgn Get_Region ()
void Set_Height ()
float Get_Height()
void update()

destructor CFighter()

Description of this class

This class encapsulates the fighter specific features such as their height, speed, fuel
level. It provides functions for adding it to the list of fighters, setting and getting its
attributes, modification or deletion of their attributes during execution, drawing the
objects on to the screen and also to save the information about them in the scenario

file which can be opened to load the scenario when required.

{lass Name: CSam

Variable Name

Data Type/Class Type

Name of the Variable/Object

float

Detect_Radius

float

Hit_Prob

Function name

Type of the Function Name of the Function
Constructor CSam()

char* ToString()
void savelist()
void Set_Detect_Radius()
Moat Get_Defect_Radius()
void Set_Hit_Prob()

L_ float Get_Hit_prob()
void display()
void addnode()

56

CSam* getnode()
void update()
destructor CSam()

Description of this class

This class encapsulates the features specific to SAMs such as their hit probability and
range. It also provides functions for adding it to the list of SAMs, setting and getting
its attributes, modification or deletion of their attributes during execution, drawing
the objects on to the screen and also to save the information about them in the
scenario file which can be opened to load the scenario when required.

Class Name: CFighterDialogbex

Variable‘Name

Data Type/Class Type | Name of the Variable/Object
Float m_fuel level
Float m_height
Float m_speed
CString Im_name

Function name

Type of the Function

Name of the Function

constructor

CFighterDialogbox(CWnd * pParent)

destructor

~CFighterDialogbox()

Description of this class

The function of this class is to provide an interface to the user to specify the
parameters of the fighter such as its speed, which can vary according to the

situation.

Class Name: CFighterEdit

Variable Name

Data Type/Class Type

Name of the Variable/Object

float m_fuel level_edit
float m_height_edit
float m_speed_edit
CString m_name_edit
int m_x_value
int m_y_value

57

Function name

Type of the Function

Name of the Function

constructor

CFighterEdit{CWnd * pParent)

destructor

~CFighterEdit ()

Description of this class

The purpose of this class is to allow the user to modify the values of the parameters

of the fighter that have been set during the scenario creation time.

Class Name: CHorzDialogBar

Variable Name

Data Type/Class Type

Name of the Variable/Object

int

m_x_pos

int

m_y_pos

Function name

Type of the Function Name of the Function
constructor CHorzDialogBar()
void On ClearCanvas()
void OnRunSim()
destructor ~ CHorzDialogBar()

Description of this class

This class specifies the buttons that have been created in order to provide a better
user interface and the functions that are invoked on their selection to perform the

related task.

Class Name: CRadarDialogbox

Variable Name

Data Type/Class Type Name of the Variable/Object
float m_Detect_Radius, m_Efectvness
int m_Aclive
CString m_name

Function name

Type of the Function

Name of the Function

constructor

CRadarDialogBar()

destructor

~ CRadarDialogBar()

Description of this class

The function of this class is to provide an interface to the user to specify the
parameters of the Radar such as its name, range, and effectiveness at the time of

scenario creation.

58

Class Name: CVertDialogBar
Variable Name

’

Data Type/Ciass Name of the Variable/Object
Type
UINT New_Command,select_type
int grid_length, i
static int Flag
CBitmap b8,b9.b10.bl12
Bool grid_on
HBITMAP hb1,hb2 kb3 hb4,hb5 hb6.hb7 hb8 hb9,hb10,hb11,hb12,hb!
: 3
HICON hicon_enemy_target,hlcon feiendly fighter,hlcon -enemy
fighter_certain,hlcon_enemy _fighter_uncertain hlcon_radar
_certain hicon_radar_uncertain hicon_timer,hlcon_weather.
hicon_goal,hlcon_sam_certain,hlcon_sam_uncertain,iiicon
arrow
Function name
Type of the Function Name of the Function
constructor CVertDialogBar()
void SctSclcctionPanclActive()
void SetSelectionPanellnactive()
void OnCertainPlane()
void OnUncertainPlane()
void OnCertainRadar()
void OnCertainSam()
void OnUncertainSam(}
void On Grid()
void OnCreacRoute()
void OnArrow()
void OnGoal()
void OnSetTime()
void OnWeather()
void OnTargcet()
void OnFriendlyFighter()
void OnEndRoute()
void OnSelectRadar()
void OnSelectSam()
void OnSelectFighter()
void - OnSelectRoute()
void On100Km()
void On350Km()
void OnEditUnit()
void OnDeleteUnit()
destructor ~ CVertDialogBar()

59

Description of this class
This class specifies the buttons that have been credted in order to provide a better
user interface and the functions that are invoked on their selection to-perform the

related task.

Class Name: CWavypoint

Variable Nanie

Data Type/Class Type

Name of the Variable/Object

float

m_Speed, m_Height

CTime

m_time

Function name

Type of the Function

Name of the Function

constructor

CWaypoint(CWnd* pParent)

destructor

~ CWaypoinl ()

Description of this class

This class is used to specify the parameters at each waypoint.

Class Name: CScenarioAreaDlgbox

Variable Name

Data Type/Class Type Name of the Variable/Object
float m_sccond latitude,m_second_longitude
CTime m_rnission_time,
int m_degree latitude,m_degree longitude,m
‘ _minute_latitude,m minute longitude
COLORREF friendColor,enemyColor
UINT m_X_exfents, m_y_extents
CString m_direction_latitude,m_direction_longitu
de

Function name

Type of the Function Name of the Function
constructor CScenarioAreaDIgbox(CWnd* pParent)
void OnFriendColor()
BOOL OninitDialog():
void OnFriendColorrefPaint()
void OnEncmyColorrefPaint()
void OnEnemyColor()
destructor ~CScenarioAreaDlgbox()

Description of this class

This class is related to the dialog box that appears in the beginning that specifies the
extent of the client area, latitude and longitude, provides facility to chénge the

default colors of the forces involved in the air interdiction mission.

60

Class Name: CRadarEdit

Variable Name

Data Type/Class Type Name of the Variable/Object
float m_detect_radius_edit.m_efectvness_edit
int m_x_edit, m_x_edit
CString : m_name_edit
Function name .
Type of the Function Name of the Function
constructor CRadarEdit(CWnd* pParent)
destructor ~CRadarEdit()

Description of this class
The purpose of this class is to allow the user to modify the values of the parameters
of the radars that have been set during the scenario creation time thereby making

the application flexible.

Class Name: CSémEdit

Variable Name

Data Typé/Class Type Name of the Variable/Object
float . m_cdit_radius. m_cdit_hit_prob
int m_x_value, m_y_value
CString m_name_edit
Function name
Type of the Function Name of the Function
constructor CSamEdit(CWnd* pParent)
destructor ~CSamEdit()

Description of this class
The purpose of this class is to allow the user to modify the values of the parameters
of the SAMs that have been set during the scenario creation time thereby making

the application flexible.

Class Name: CsamDialogbox

Variable Name
Data Type/Class Type Name of the Variable/Object
float m_detect_radius, m_hit_prob

CString m_name

61

Function name

Type of the Function Name of the Function
constructor CSambDialogbox (CWnd* pParent)
void OnResct()
destructor ~CSamDialogbox ()

Description of this class
The function of this class is to provide an interface to the user to specify the

parameters of the SAM such as its name, range, and effectiveness at the time of

scenario creation.

Class Name: CMydlgbarDoc

Variable Name

Data Type/Class Name of the Variable/Object
Type :
HBRUSH RADAR BRUSH,SAM BRUSH
HPEN hDashPen, hSolidPen
COLORREF ENEMY_COLOR, FRIEND COLOR

Int X_extents, y_extents

CRoute * routel

CTarget * target

HBICON hIcon_cnemy_target,hlcon_feicndly fighter,hlcon_enc R

my_fighter_centain ,hlcon_enemy_fighter_uncertain hlc
on_radar_certain hlcon_radar uncertain hlcon_sam_ce
rtain,hlcon samt uncertain

CGraphObject * GraphObiject
CRadar * Radars
CFighter * Fighters
CSam * Sams

Function Name

Type of the Function Name of the Function
constructor : CMydlgbarDoc()
void Draw_All_Items(CDC* pDC)
void SaveGloballnfo(const char *filename)
virtual BOOL OnNewDocument()
virtual BOOL OnSaveDocument(LPCTSTR IpszPathName)
Virtual void Serialize(CArchive& ar) '
virtual BOOL OnOpcnDocument(LPCTSTR IpszPathNamc)
Virtual destructor ~CMydigbarDoc()

62

Class Name: CMydlgbarView

Variable Name

Data Type/Class Name of the Variable/Object
Type
UINT uid
int x_extents, y_extents
CPoint s_point, pt
(loat speed, fuel_level height
Bool valid
. HCURSOR hCursor_my_arrow.hCursor_my_cross
HICON fighter1, fighter2.fighter3, fighter4.fighter5,fighters, fighter7,
fighter8
LOGFONT CurrentFont
COLORREF ENEMY_COLOR
HFONT hFont
CString param}

Function name

Type of the Function Name of the Function
constructor CMydlgbarView()
void run_Simulation()
CMydigbarDoc * GetDocument()
void OnAlphaCall()
void InitParams()
void Crecate_New_ Route()
void set_normal_cost()
void detection_cost()
CMydigbar void normalized_detect_cost()
CPoint GetLogical Point(CPoint point)
float calculate cost();
void OnTimer(UINT nIDEvent)
BOOL OnEraseBkgnd(CDC* pDC)
void OnMouseMove(UINT nFlags, CPoint point)
void OnLButtonDown(UINT nFlags, CPoint point)
Virtual void OnEndPrinting(CDC* pDC, CPrintinfo* plnfo)
Virtual void OnBeginPrinting(CDC* pDC, CPrintInfo* pInfo)
virtual BOOL OnPreparePrinting(CPrintInfo* pInfo)
Virtual void OnlnitialUpdate()
virtual BOOL PreCreateWindow(CREATESTRUCT& cs)
Virtual void void OnDraw(CDC* pDC)
UINT getData()
float Get_range(float a,float b)
CPoint Generate_random_pos(float a,float b)
destructor ~ CMydlgbarView()

63,

CHAPTER - 6"
Program Specification

6.1 Design Specifications

T0 accomplish the task of the interdiction mission, modehng the attributes and
complex dynamics of various interacting elements is a critical issue. In order to
achieve this, the attributes and behavior of each agent has been encapsulated in a
structure called a class thereby following an object-oriented approach. This seems a
Simiple task where the dynamics of the interacting elements remain the same
throughout the application. But, corhplexity arises where there is uncertainty
involved in the process. For the objects in our air force mission- plannmg domain, we
-can categonze the uncertainty into several types:

1. Uncertainty of existence : The object may or may not exist.

2. Uncertainty of location : An area of uncertainty of the object’s location is
available but it is not certain of the exact location of the object.

3. Uncertainty of range : The exact detection range or firing range is not
known.

4. Uncertainty of number : The number of interacting objects is user specific.

Since the deployment_ of agents in the mission is user specific, the data structure
- that best suits the development of our application is a Linked list as it allow
. creation of objects during execution of the application thereby providing flexibility
and dynamically.

6.1.1 Data Structure Used

A critical issue to be dealt with during fhe ,develdpment of an application is the data
structure used since it largely affects the performance of the application. Keeping in
view of the uncertainty defined in terms of the number, range, location and existence
of objects a linked list appears to be the optimal choice.

Linked List

A linked list is a dynamic data structure. Each item in the list is called a node and
contains a minimum of two fields and an address field. The information field holds
the actual data on the list while the address field contains the address of the next
node in the list. The entire list is accessed from an external pointer that points to
(contains the address of) the first node in the list (an “external pointer” means one |
that isnt included within a node rather its value can be accessed directly by
referencing a variable). The next addreés field of the last node in the list contains a
spécial value known as NULL, which isn‘t a valid address. This NULL pointer is used .

to signal the end of a list.

Advantage of Linked-List over array implementation

Under array implementation, a fixed set of nodes represented by an array is
established at the start of the execution. A pointer a node is represented by the
‘relative position of the node within the array. The disadvantage of this approach is
two fold: ' ‘ .

o -The number of nodes that are needed often cannot be predicted when a
program is written. Usually, the data with which the program is executed
determines the number of nodes necessary. Thus no matter how many
elements of the array of nodes contains, it is always possible that the

program will be executed with input that requires a larger number.

o Whatever numbers of nodes are declared must remains aflocated to the

program throughout its execution?

The solution to this problem is to allow nodes that are dynamic rather than static i.e.,
when a node is needed, storage is reserved for it and when it is no longer needed the
storage is released. The storage for nodes that are no longer in use is avéilab!e fqr
another purpose. Also, no predefined limit on the number of nodes is established. As
long as sufficient storage is available to the job as a whole, part of that storage can

be reserved for use as a node.

66

6.1.2 Scenario File Specification

The idea behind mainfaining a scenario file is to provide the user with the facility to
restore the scenario so long as the deployment of the enemy objects that are certain
remains fixed during the simulation process. The file not only contains the glcbal
parametel;s of the scenario such as the extents of the client area, the complete
description of various enemy units including their name, type, location, and other .
information specific to each of them, but also the complete details of the routes to be
simulated. This file serves as an input for the simulation module. -
Scenario File Format -

Global parameters

$ radarl : attribl : attrib2 :attrib3 $

$ radar2 : attribl : attrib2 :attrib3 $.

$ fighterl : attribl : attrib2 :attrib3 $
$ fighter2 : attribl : attrib2 :attrib3 %

$ sam1 : attribl : attrib2 :attrib3 $
$ sam2 : attribl : attrib2 :attrib3 $

$ routel : wayptl : waypt2 : waypt3 $
$ route2 : wayptl : waypt2 : waypt3 $

The # symbol is used to mark the header and trailer of the block specifying the

global parameters.
The $ symbol is used to mark the header and trailer of the records for each object
whose attribute are separated by _colons (:).

67

6._2 Implementation

This phase deals'with the pfeparation of the Graphical User Interface (GUI) to
provide the user with an environment exhibiting air interdiction mission, where the
target is to destroy the enemy ammunitions factory.

_We ca'tegbrizé thé phases involved in the development of the application as:
I GUI development phase
II Simulation module

6.2.1 GUI Development

The GUI for the interdiction mission is designed téking. into consideratioh the ianut
output requirements of the application as well as the relationship that exists
bet_fveeh various objects actively involved in the interdiction mission. The GUI
focuses on the setting of the client area where the simulation can proceed.

Features supported by the GUI include: -

1. Scenario Map Extents Dialog Box

The interface for the scenario map extents shown in Fig 6.1 specifies
o The extents of the client area indicating the span of the mission.
o It provides facility to the user to specify the color for the two forces
involved in the mission apait from the default color i.e. red for the
- enemy and blue for the fnendly forces.

o Values for latitude and longitude ¢an also be specnﬁed

(mnnp :cr nfmu an | <ignts

Cnlcutmwerﬁau ’

17

_.'. ! an@ !]

¥ Eskeiat Gmj 1000 g Hml !]
l

Siattime [12 0000 PM i

. -_'Cm” ofScmano U'ﬂ"‘ ~ i ywnet it oo A aamt =t ps e

s FORECR R
Honjiie B2 (51 "

e LEJmwf

Figure 6.1 Scenario Map Extents

68

2. Dialog Bars

Dialog bars derived from Contro! bars greatly enhance a program’s usability
by providing quick, one-step command actions. As in a dialog box, the user
can tab among the controls. Dialog bars can be aligned to the top, bottom,

left, or right side of a frame window.

Left Dialog Bar:
Interface for the vertical dialog bar shown in Fig 6.2(a) includes:
» Buttons for the certain and uncertain Red force (i.e. enemy) units i.e.
Radars, Surface-to-Air missiles and enemy fighters.
» Button that depict the Target i.e. Red Force ammunitions Factory.
e Buttons that invoke the functionality for route creation.
s Button that shows the Blue Force (friendly) fighter.
« Buttons associated with the modules for editing and deletion of objects
during execution.
e Buttons to specify the goal of the interdiction mission.
e Button to record the time taken for simulation.
« Button to indicate weather condition.
s Button for the grid specification.

— Mizaion Edit

& Finder b BAM
€ Figheor. ‘
_Ubdate| Delote J.'

'“F—- Envirotirvent -

sl

i Engegirg Foicee
“Fightat T upat

Slan F!outa End Routes

< 50 tcm
. “‘“""”I e 10omkm |

Figure 6.2(a) Left Djalog Bar

69

\

Right Dialog bar: _ .

Right dialog bar depicted in Fig 6.2(b) serves as an interface to record the .

result of the simulation module. This dialog bar provides facility for: '

o Recording the route name and the total score calculated for each route.
This score is. calculated based upon two factors — the cost of the route in
terms of distance and the probability of getting detected on that route.

‘Sinwdation Rim Résuits
Reéute - Tetsl Cost .
15

H
L

Figure 6.2(b) Right Dialog Bar

70

.:. An Stuke Planna & Lyofuator 1554, DRDY IMuidigbt) R . . e T T T YT T e e S T %

(156 ER View Widow Hep- o i : : RPN 1
; i ! ! H N i ! I.‘J i .
S R A R B Lo 3 I o
i { ! ‘ | . ! |] ee———
: » \ | ,) AL mdsn nReas
et o gL L :

A Y T S S B SR j Seored R
X L. X ‘ ; Foude Fomrboa: !
I A ool ' ' .
! ! ! ‘ !] I . f
{ ! . ' ’ ! | i
o ? ; 3
RS S R "
A
R
P
N N
I | !
* H i '
1 food |
! | f 5

[.wm_ fhode 37 852370

SRR

o]

Figure 6.2(c) An Overview of Scenario

3. Interface for the initializing the attributes of Red Force units: -
" a. Radar:
Fig 6.3 shows the interface for setting the attributes of the radars that
donot includes any uncertainty to be modeled. The attributes of the radar
include: '
- Name of the radar
- Range of the radar
- Effectiveness
- Active/Passive to indicate whether its active or passive

, oAl |
4} - Namé fredart
. DetectRadics fkm) [0
Effectivensss r65__

& Active € Passive
Comm] Reset

Figure 6.3 Parameters for Hostile Radar

71

I{Iydlgbal

. . Entiy akeady sidste f
" gelect & difaient nams -

Figure 6.4 Check-Box for duplicity in name

e e L E e ahester = ISGAL OB [Mudigh]

o} |

[e [T
| -
| | Semtaton fun Resuls
. Rt Tetal Cont | :
: i
!
. J
] : !
l 1 ! t !5 | ! i
l | ! ' | 5
S
! J
1 1 ‘) ! I
l t
f o .
, : i
{ : : ‘ i
i l :
{M '(DistorcotomOrigh - -~~~ ~-{ |- Goograthiod Coordinoes - o) MoSos -l AU
| OweComvar [X B Y MO ke) LaGek TR Longhcde EYIIRTE | tokele1000m 0| smATION

Figure 6.5 Hostile Radar Creation

b. Fighter:
Fig 6.6 shows the interface for initializing the attributes of the Fighters
that don't involve any uncertainty to be modeled. The attributes of fighter.
include: ' '

- Name of the fighter

- Height

- Speed of the fighter
- Fuel-level '

72

Figurée 6.6 Parameters for Enemy Fighter

e A b Plantezt B L valustor @ 10SA, DRDUY - IMydigbi}

[o £ Vew ; Whidow: Hebp - rtasitt s

1ttt z7-mvzamh e Bk l‘ma.m.s J ! MAATION

c. SAM (Surface-to-Air Missile):

Fig 6.8 shows the interface for initializing the attributes of the Fighters
thét don't involves any uncertairity to be modeled. The attributes of
fighter include:

- Name of the SAM

- Range

- Hit-Probability

- Fuel-level

e SIS

1 Mol
H mu".’!nmni -

o e

Liide, 2991 43°N. lohgluds B2 B'0O7E

Figure 6.9 Hostile SAM Creation

4. Interface providing editing and deleting facility:
Editing: _ . ‘
The GUI presents the user with the facility to edit the attributes of the units
deployed including their location to modify the scenario prior to thg execution

of the simulation module.

74

Fighter Edit Box

FuetLevel i)+ 100
“Heghttre) [e00

[P —
S veue [T

vy

S -2

Figure 6.10 Fighter Edit Box

SoAn ek e Bl 140k by e w A DELD (Madinghig
7 a—

|

| AT

Figure 6.11 Scenario after Editing Fighter

o ek 0 oLnee & Do cgater 2 1A DY leih\hH

Rolert
- F T
N N
v _T" St s miT 'l."

Ll

;WW

1
!Llludiﬂm'zi" " ogiude 87550078 ii
1

’r
f s

“apSe*
uu ~fomm

Figure 6.13 Scenario after Editing SAM

76

T
T
f

; ‘
f SULATION ,

[Radar EditBox K]
-Detectnadhu[km] [__
f_EffncEiverms T rﬁ‘ﬁ—-ﬁ

("' Aclrve~ . Passwe
" Location Information :-
CRvsae "

'Hegetl

._E' ’
of-

Lwdu:b &'5 UJ'E

Deleting:

o

Flgure 6.15 Scenario after Edltmg Radar

The GUI also provides support for deleting the deployed units if any one of

them becomes useless (i.e.

77

looses its significance) for the interdiction

mission. This could happen if any of the units gets destroyed or losses its

effectiveness.

| : ; f : ' : O | I
o R . o=
.3 . - s I "_.!.rj___._';ﬂ_‘,._._.‘_._. o ._:._ ——
: i : MumSea-—i— | |
; Tpwlat0006 ¢

Figure 6.16 Scenario after Deleting Radar

5. Interface for route creation: _
The aim of the interdiction mission is to guide a Blue Force (friendly fighter) |
to destroy Red Force (enemy) ammunitions factory to delay its supply and to
come back to its base safely given a number of threats to the mission. Thié
Interface allows the user to create a number of routes that are simulated and
a best route is then selected depending upon the scoré of each route. The
interface allows the user to specify the name of the route as well as the speed
with which the fighter will travel. ' h |

78

Mew Route

st LB IMyd b}

Sowdotion Mun Redty
[Sodw oo i
{Poute Totil Coet -
| !
é j
i ;
£
§
i
SO
y |
|
.-'-- diae A FRea i ’;_ | it
[o | Lekde 27°%5°2°N Lonphed XBDVE |, frkelafO00m || | SMOATION
s FRR IRArs CTC MLy Al TR R S I v S | R I .

Figiire 6.18 A scenario Created for Simufation

6.2.2Simulation Module

Once the GUI has been created, it is then ready to be provided as an input to the
simulation module. Prior to invoking the module associated with -the simulation
button uncertainties in terms of the existence, range etc of the objects has to be
resolved. Click on the uncertain radar/SAM button to place the same on the scenario.
This causes a function associated with these buttons to invoke and random number
streams are used to resolve the uncertainties related to the selected objects

79

regarding their existence, range etc. Now the function associated with the Run
Simulation button is invoked and a dialog box appears asking the user to give
weightage to the factors upon which the simulation module operates. These factors

are: - \
» The weight attached to the cost of the route in terms of distance

e The wélght- attached to the probability of being detected on the route.

Weright ;Assignment

Figure 6.19 Weight Assignment

After sbeciﬁcation of the weights associated with the guiding factors each route is
examined to fine out the total cost of the route in terms of distance, the total
' probability of detection and the normalized cost and detection probability. Once all
the routes have been examined calculate the total score for each route by
multiplying the costs with their respective weights. Finally, the route with the
minimum score is selected to be the best route, which the Blue Force fighter wil

follow to reach the target.

Thus the objective function is given as: - - !
Route [i] = w1 * route cost [I] + w2 * route prob [i] '

“where,

= Route No.

Route [i] = Total cost of the route i

route cost [i} = Total cost of route i in terms of distance

route prob [i] = Total probability of being detected on route i

wl = Weight attached to cost of routei - :

w2 = Weight attached to probability of detection for route |

The simulation algorithm is as follows: -

1. Assign the weights w1 and w2 to the factors guiding the simulation process.

30

2. For each route do

2.1.1 calculate total cost of distance

2.1.2 calculate the total probability of detection _

2.1.3 divide total cost of distance with the maximum cost of all the routes
examined so far to find out the normal cost -

2.1.4 divide total probability of detection with the maximum probability of
all the routes examined so far to find our the normal probab_illty..

1. Using the objective function calculate the score for each route and select the

path with the minimum score as the optimal path.
2. Make the fighter to follow the selected path to reach the target for its

destruction.

 ne [

Siuision Fn Resuts

B - . b s
Y 2 ’3!.“-21‘55'23""_ il i SRULATION

Figure 6.20 Scenario after Simulation

81

CHAPTER -7
Conclusion & Suggestions for Future Work

7.1 Conclusion

" The application developed in VC++ compiles successfully and simulate the aircraft
route planning for the optimal path on which an aircraft can move to achieve the
target decided. The target which had to attain durjng this period for this application
was successfully achieved. |

This ép’plication has been developed for military training purpose which will be used
to train the military personnel for finding optimal route from the different possible.
route to hit the target in the war scenario where the certain/uncertain radars and
- SAMs of different ranges with red ﬁghter (enemy fighter) are ready to detect and hit
the blue fighter (friendly fighter). '

7.2 Suggestions for Future Work

There is no restriction for modification in the software or application which has been

made. _
1. = Currently this application has been developed for the resolution of
1024x780, but it can be developed resolution free. '
2. The method for the detection of probability can be use other than what we
have used. , |
3. Some other factors like fuel, épeed etc can also be incorporated in the
simulation.

83

References

[1]
Fishwick,P.A., Kim,G., and Lee,].]J.,, SIMULATION. Nov. 1996, “Improved
Decision Making Through Simulation-Based Planning”.

[2] Law, A.M., and Kelton,W.D. 1991, “Simulation Modelling and Analysis”
McGraw-Hill, New York.

[3] Kruglinski,D.J., 1997, “Inside Visual C++", 4" Edition, Microsoft Press,
U.S.A.

(4] MSDN (Micro-Soft Developer Networks), Jan. 2002.

[5] http://www.combataircraftsimulation.php4hosting.com

[6] http://www.afrlhorizons.com/index.html

[71 http://ubmail.ubait.edu/~harsham/simulation

[8] http://www.santafe.

8S

APPENDIX-A

Introduction to VC++ Architecture

Visual C++ is a powerful and complex tool for building 32-bit apblications for Window
95 and Windows NT. These applications are far larger and more complex than their
predecessors for 16-bit Windows, or older programs thét did not use a graphical user
interface. Yet as program size and complexity has grown, programmer effort has
actually decreased, at least for programmers who are using the right tools. |

~ Visual C++ is one of the right tools. With its code generating Wizards it can produce
the shell of a working Windows applicatibn in seconds. The class library included wit__h
Visual C++, the Microso_ft Foundation Classes, has become the industry sta’ndard for
Windows software development in a variety of C++ compilers. The visual editing

tools make layout of menus and dialogs a snap.

Visual C++ doesn't just compile code, it generates code. You can create a Windows
application in minutes by felling AppWizard to make you a "starter app" with all thé
Windows boilerplate code you want. AppWizard is a very effective tool. It copies.code
that: almost all Windows applications need into your application. An application with
resizable edges',‘ minimize and maximize buttons, 2 File menu with Open, Close, Print
Setup, Print, and Exit optionsvetc.. AppWizard makes skeleton, executable Wlndbws
programs in less than a minute. ' |

Other Applications AppWizard Can Make

‘Other application generating wizards can make DLLs, ActiveX controls, console
application-s,' libraries, make file, Internet Server extensions and filters, and more.

Microsoft Windows was designed long before the C++ language became popular.
Because thousands of applications use the C-language Windows application-
programming interface (API), that intérface will bé maintained for the'foreseea_b_le
future. Any C++ Windows interface must therefore be built on top of the procedural
C-language API. This guarantees that C++ applications will be able to coexist with C
a’pplicatio’ns. The Microsoft Foundation Class Library is an object-oriented interface to

Windows that meets the following design goals:

87

e Significant reduction in the effort to write an application for Windows.

¢ Execution speed comparable to that of the C-language API.

e Minimum code size overhead.

e Ability to call any Windows C function directly.

+ Easier conversion of existing C applications to C++.

o Ability to leverage from the existing base of C-language Windows
programming experience.

e Easier use of the Windows API with C++ than with C.

o Easier-to-use yet powerful abstractions of complicated features such as
ActiveX, database support, printing, toolbars, and status bars.

e True Windows API for C++ that effectively uses C++ language features.

MFC: Overview

The Microsoft Foundation Class Library (MFC) is an "application framework” for
programming in Microsoft Windows. Written in C++, MFC provides much of the code
necessary for managing windows, menus, and dialog boxes; performing basiC
input/output; storing collections of data objects; and so on. All you need to do is add
your application-specific code into this framework. And, given the nature of C++
class programming, it's easy to extend or override the basic functionality the MFC

framework supplies.

The MFC framework is a powerful approach that lets you build upon the work of
expert programmers for Windows. MFC shortens development time; makes code
more portable; provides tremendous support without reducing programming freedom
and flexibility; and gives easy access to "hard to program" user-interface elements
and technologies, like ActiveX, OLE, and Internet programming. Furthermore, MFC
simplifies database programming through Data Access Objects (DAO) and Open
Database Connectivity (ODBC), and network programming through Windows
Sockets. MFC makes it easy to program features like property sheets ("tab dialogs"),
print preview, and floating, customizable tooibars.

What MFC Can Do for You

The classes in MFC, taken together, constitute an "application framework”. It is the
framework of an application written for the Windows API. Your programming task is

]8

\

i

to fill in the code that is specific to y'our application. Despite its generality, MFC does
support you in many specialized ways support for -

e OLE visual editihg. '

« Automation.

« ActiveX Controls

o Internet pfogramming.

. Wihdbws Common Controls.

e DAO Database Programming.

o ODBC Database Programming.

e Multithreaded Programming.

s Windows Sockets for Network Programming.
e Portability '

Geneial Class Design Philosophy

MFC supplies class CWnd to encapsulate the HWND handle of a window. The CWnd

' I CODLJact I .
LI CC|:l1dI£:rg(—3l I

;'-I CWIinApDy> I

—I cwicl l
_1 CFromeaWincd l
—‘ CDlaloy I
_‘1 CStallc

Figure a(i) The portion of the

—'I CButon I

Microsoft Foundation Class Library
LI Clistinx I that deals with applications and

—1 C:ComboBox I Wind6WS.
—'I CSscroltBan I
_"‘] CEcIit I

object is a C++ window object, distinct from the HWND that represents a Windows
window. but containing it. Use CWnd to derive your own child window classes, or use
one of the many MFC classes derived from CWnd. Class CWnd is the base class for all

89

windows, including frame windows, dialog boxes, child windows, controls, and control

bars such as toolbars.

MFC uses classes CFrameWnd, CMDIFrameWnd, and CMDIChildWnd to represent
single document interface (SDI) and multiple document interface (MDI) frame
windows. '

- MFC manages windows, but you can derive your own classes and use CWnd member
. functions to customize these windows. You can create child windows by constructing
'}a CWnd object and calling its Create member function, then manage the child
windows with other CWnd member functions. You can embed objects derived from
CView, such as form views or tree views, in a frame window. And you can support
muitiple views of your documents via splitter panes, supplied by class CSplitterWnd.

There are several things to notice in Figure above. First, most classes in MFC derive
from a base class called CObject. This class contains data members and member
functions that are common to most MFC classes. The second thing to notice is the
simplicity of the diagram. The CwinApp class is used whenever you create an
application and it is used only once in any program. The CWnd class coliects all the
common features found in windows, dialog boxes, and controls. The CFrameWnd
class inherits from CWnd and implements a normal framed application window.
CDialog handles the two normal flavors of dialogs: modeless and modal,
respectively. Finally, Windows supports six native control types: static text, editable
text, push buttons, scroll bars, lists, and combo boxes (an extended form of list).
“The other classes In the MFC hierarchy implement other features such as memory -
management, document control, database support, and so on.

Each object derived from class CWnd contains a message map, through which you
can map Windows messages or command IDs to your own handler functions for

them.

Messages and Commands: Overview

In traditional programs for Windows, Windows messages are handled in a large
switch statement in a window procedure. MFC instead uses rnessage maps to map
direct messages to distinct class member functnons Message maps are more efficient
than virtual functions for this purpose, and they allow messages to be handled by the

90

most appropriate C++ object—application, document, view, and so on. You can map
a single message or a range of messages, command IDs, or control IDs.

WM_COMMAND messages—usually generated by menus, toolbar buttons, or
accelerators—also use the message-map mechanism. MFC defines a standard routing
of command messages among the application, frame window, view, and document

objects in your program. You can override this routing if you need to.

Message maps also supply a way to update user-interface objects (such as menus
and toolbar buttons), enabling or disabling them to suit the current context.

MFC Fundamentals

MFC's strong suit is its fundamental suppoit for programming for Microsoft Windows.

The following programming areas are of common interest:
e Frame windows |
e Documents .
s Views of documents
e Multiple views
» Special view types, such as scroll views and form views
o Dialog boxes and property sheets
o Windows Common Controls
 Mapping Windows messages to handler functions
» Toolbars and other control bars
e Printing and print preview

e Serialization of data to and from files and other media
« Device contexts and GDI drawing objects
e Exception handling
« Collections of data objects
- e Diagnostics

e Strings, rectangles, and points
o Date and time
e And considerably more

91

£

Appendix —

MFC Document/View Architecture

The parts of the MFC framework most visible both to the user and to the developer,
are the document and view. Most of the work in developing an application with the
framework goes into writing document and view classes. This article describes, the
purposes of documents and views and how they interact in the framework.

The CDocument class provides the basic functionality for programmer-defined
document classes. A document represents the unit of data that the user typically
opens with the Open command on the File menu and saves with the Save command

on the File menu[4],[é].

The CView class provides the basic functionality for programrner-defined view
classes. A view is attached to a document and acts as an intermecliary between the
document and the user: the view renders an image of the document on the screen
and interprets user input as operations upon the document. The view also renders
the image for both printing and print preview.

The following figure shows the relationship between a document and its view.

View

Document _ » ~ [

—— Part of document
currently visible

Figure b(i) Document and View

The document/view implementation in the class library separates the data itself from
its display and from user operations on the data. All changes to the data are

92

managed through the document class. The view calls this interface to access and
update the data. | '

A document template creates documents, their associated views, and the frame
windows that frame the views. The document template is responsible for creating
and managing all documents of one document type.

A Portrait of the Document/View Architecture

Application Object Main Window

Handles the Object

interface to windows . Handles the main
Window itself

Document Object ' ' View Object

Handles storing of Handles Display of

program data program data

Figure b(ii) A portrait of Document/View Architecture -
Documents and views are paired in a typical MFC applicati'on. Data is stored in the
document, but the view has privileged access to the data. The separation of
document from view separates the storage and maintenance of data from its display.

Gaining Access to Document Data from the View

The view accesses its document’s data either with the GetDocument function, which
returns a pointer to the document or by making the view class a C++ friend of the
- document class. The view then uses its access to the data to obtain the data when it
is ready to draw or otherwise manipulate it. For example, from the view’s OnDraw
member function, the view uses GetDocument to obtain a document pointer; Then it
uses that pointer to access a Cstrihg data member in the docuiment. The view passes
the string to the TextOut function.

93

User Input to the View

~ The view might also interpret a mouse click within itself as either selection or editing
of data. Simila'rly it might interpret keystrokes as data entry or editing. Suppose the
user types a s'tring' in a view that manages text. The view obtains a polntér to the
document and uses the pointer to pass the new data to the document, which stores.

it in some data structure.

Updating Muitiple Views of the Same Document

- In an application with multiple views of the samé document — such as a splitter
-window in a text editor — the view first passes the new data to the document. Then it
calls the document’s UpdateAllViews member function, which tells all views of the
document to‘update themselves, reflecting the new data. This synchronizes the
views.

Dialog Bars

Control bars greatly enhance a program’s usability by providing quick, one-step
command actions. Class CcontrolBar provides the common functionality of all |
toolbars, status bars, and dialog bars. CcontrolBar provides the functionality for
positioning the control bar in its parent frame window. Because a control bar Is
usually a child window of a parent frame window, it is a “sibling” to the client view or
MDI client of the frame window. A control-bar object uses information about its
“parent window’s client rectangle to position itself. Then it alters the parent’s
remaining client-window rectangle so that the client view or MDI client window fills

the rest of the client window.

A dialog bar is a control bar, based on a dialog-tempfate» resource, with the
functionality of a modeless dialog box. Dialog bars can contain any Windows control.
As in a dialog box, the user can tab among the controls. Dialog bars can be aligned
to the top, bottom, left, or right side of a frame window. Dialog bars are control bars
with both toolbar and dialog-box characteristics. They behave like toolbaris, but
because they are based on dialog templates, they can have any control that a dialog
box can. MFC supports diglog bars with class CdialogBar.

94

There are sevéral key differences between a toolbar and a CdialogBar object. A
CdialogBar Objéct is created from a dialog-template resource, which we can create .
with the Visual C++ dialog editor and which can contaln any kind of Windows -
control. The user can tab from control to control. And we can specify an alignment
style to align the dialog bar with any part of the parent framé window or even to>
leave it in place if the parent is resized. ' '

While it is normal to derive our own dialog classes from C,d'lalog,vwe do not typically
derive our own class for a dialog bar. Dialog bars are extensions to a main window
and "any dialog-bar control-notification messages, such as BN_CLICKED or
EN_CHANGE, will be sent to the parent of the dialog bar — the main window.

Dialog Boxes

Creating a dialog object is a two-phase operation. First, construct the dialog object,
then create the dialog window. Modal and modeless dialog boxes differ somewhat in
the process used to create and display them. During the life cycle of a dialbg box,
- the user invokes the dialog box, typically inside a command handler that creates and
~ initializes the dialog object, the user interacts with the dialbg box, and the dialog bo_x
closes. The following table lists how modal and modeless dialog boxes are normally
constructed and displayed. |

Dialog Creation

Dialog type How to create it

'Modéless ~ Construct Cdialog, then call Create member function.
Modal Construct Cdialog, then call DoModal member function.
e e e e . Table 1

Creatmg Modeless Dialog Boxes

For a modeless dialog box, we must provide our own public constructor in our dialog
class. To create @ modeless dialog box, call our public constructor and then call the
dialog object’s Create member function to load the dialog resource. We can call
Create elther during or after the constructor call. If the dlalog resource has the
property WS VISIBLE, the duaiog box appears immediately. If not, we must call its
ShowWindow member function.

For modeless dialog boxeé, we might often extract data from the dialég object while
the dialog box is still visible. At some point, the dialog object is destroyed; when this
happens depends on our code.

Creating Modal Dialog Boxes

To create a modal dialog box, call either of the two public constructors declaredl in
Cdialog. Next, call the dialog object’'s DoModal member function to display the.
dialog box and manage interaction with it until the user chooses OK (ir Cancel. This
management by DoModal is what makes the dialdg box modal. For modal diaiog
boxes, DoModal loads the dialog resource.

~ For modal dialog boxes, our handler gathers any data the user entered once the
dialog box closes. Since the dialog object exists after its dialog window has closed,
we can simply use the member variables of our dialog class to extract the data. .

Initializing the Dialog Box

After the dialog box and all of its controls are created but just before the diaiog box
_{of either type) appears on the screen, the dialog object’s OnInitDlalog ‘member
function is called. For a modal dialog box, this occurs during the DoModal call. For a
modeless dialog box, OnInitDialog is called when Create is calied. We typica"y
override OnlnitDialog to initialize the dialog box’s controls, such as setting the initial
" text of an edit box. We must cali the O,nIhitDiang member function of the base
class, Cdialog, from our OnInitDialog override. '

Retrieving Data from the Dialog Object

Dialog data exchange (DDX) lets us exchange data between the controls in the
dialog box and member variables in the dialog object more easily. This exchange
works both ways. Dialog data -exchange (DDX) is an easy -way to initialize the
controls in your dialog box and to gather data input by the user. To initialize thé
controls .in the dialog box, we can éet the values of data members in the dialog
object, and the framework will transfer the values to the controls before the dialog
- box is displayed. Then we can at any time update the dialog data members with data
entered by the user. At that point, we can use the data by referring to the data
member variables. To use DDX, we define member variables in the dialog box, form
view, or record view class, and associate each of them with a dialog box control. The

/

96

framework transfers any initial values to the controls when the dialog box is
displayed. When we click OK, it updates the variables with the data that we entered. |
' To use the DDX mechanism, we have to set the initial values of the dialog object’s
member variables, typically in our OnInitDialog handler or the dialog constructor.
Immediately before the dialog is ,c_iisplayed, the framework’s DDX mechanism
transfers the values of the member variables to the controlé;_ in the dialog box, where
they appear when the dialog box itself appears in response to DoModal or Create.
The default implementation of OnlInitDialog in Cdialog calls the UpdateData ‘member
function of class CWnd to initialize the controls in the dialog box.

The same mechanism transfers values from the controls tb thé member variables ~
when the user clicks the OK button (or whenever we call the UpdateData member
function with the argument TRUE).

The followmg figure lllustrates dialog data exchange.

~initialize vanables in - Initialize controls in
- chalog constructor ‘OninilDialog
Dialog box on screen
—_— Member - ——»
“T {Yariables ¢ ThinPenWidth: [
Thick PenWidth: [Controls
[Default | [OK] [Cancel H-
Dialog Object

| Retrieve values when LRet-rleve control values
they are updated with UpdateData

_ Figure b(iii) Dialog Data Exchange
UpdateData works in both dlrectrons_, as specified by the BOOL parameter passed
fo it. To carry out the exchange, UpdateData sets up a CDataExchange object é‘nd
calls our dialog class’s override of CDialog’s DoDataExchange member function.
DoDataExchange takes an argument of type CDataExchange. The CDataExchaiige
object passed to UpdateData represents the context of the exchange, defining such

information as the direction of the exchange.

When we (or ClassWizard) overric_je DoDataExchange, we have to speci?y a call to
one DDX function per data member (control). Each DDX fu"nction knows how to
exchange data in both diréctions based on the context supplied by the
CDataExchange argument passed to our DoDataExchange by UpdateData. ‘

97

We can also arrange for the values of dialog controls to be validated automatically
with dialog data validation (DDV). Dialog data validation (DDV) is an easy way to
validate data entry in a dialog box. To take advantage of DDX and DDV in our dialog
boxes, use ClassWizard to create the data members and set their data types and
specify validation rules. With DDV, dialog box information entered by the user is
validated automatically. We can set the validation boundaries: the maximum length
for string values in an edit-box control or the minimum or maximum numeric values
when we expect a number to be entered. The DDV function typically alerts the user
with a message box if the validation fails and puts the focus on the offending control
so the user can reenter the data.

DDV Varlable Types
Variable type Data validation
Cstring Maximum length

Numeric (int, UINT, long, Minimum value, maximum value
DWORD, float, double)

Table 2
We can define the maximum length for a CString DDX variable or the minimum or
maximum values for a numeric DDX variable at the time we created it.

At run time, if the value entered by the user exceeds the range we specified, the
framework automatically displays a message box asking the user to reenter the
value. The validation of DDX variables takes place all at once when the user clicks OK
to accept the entries in the dialog box.

For a modal dialog box, we can retrieve any data the user entered when DoModal
returns IDOK but before the dialog object is destroyed. For a modeless dialog box,
we can retrieve data from the dialog object at any time by calling UpdateData with
the argument TRUE and then accessing dialog class member variables.

Closing the Dialog Box

A modal dialog box closes when the user chooses one of its buttons, typically the OK
button or the Cancel button. Choosing the OK or Cancel button causes Windows to
send the dialog object a BN_CLICKED control-notification message with the button’s
1D, either IDOK or IDCANCEL. CDialog provides default handler functions for these
messages: OnOK and OnCancel.

98

' SDI (Single Document Interface)

When an application runs under Microsoft Windows, the user interacts with .
documents _displaYed_in frame windows. A document frame window has two major
components: the frame and the contents that it frames. A document frame window
can be a single document interface (SDI) frame window or a multiple document
interface (MDI) child window. Windows manages most of the user’s interaction with
the frame window: moving and resizing the window, closing it, and minimizing and
maximizing it. We can manage the contents inside the frame. o

Frame Windows and Views _
The MFC framewofk uses frame windows to contain views. The two components— -
frame and contents—are represented and managed by two different classes in MFC.
A frame-window class manages the frame, and a view class manages the contents.
The view window is a child of the frame window. Drawing and other user interaction
with the document take place in the view’s client area, not the frame window’s client
area. The frame window provides a visible frame around a view, complete with a
caption bar and standard window controls such as a control menu, buttons to
minimize and maximize the window, and controls for resizing the window. The
“contents” (;onsist of the window’s client area, which is fully occupied by a child
winAdow—the' view. Thé following figure shows the relationship between a frame

window and a view.

+]a]
Frame
—+t—Cilert aea -
“gb]' ous ‘ | Alocated to view
' , {2 chidwindow)

]
.

View
Q:ng?rjder?iow)
4 A

|

Documert
Object

Figure b(iv) Relation between Frame Window and View

99

	Title
	Abstract
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Chapter 7
	References
	Appendix

