
X

SIMULATION-BASED AIRCRAFT ROUTE PLANNING

A DISSERTATION
Submitted in partial fulfilment of the

requirements for the award of the degree

of

MASTER OF COMPUTER APPLICATIONS

By

ANURAG SINGH

DEPARTMENT OF MATHEMATICS
INDIAN INSTITUTE OF TECHNOLOGY ROORKEE

ROORKEE-247 667 (INDIA)

JUNE, 2002

CANDIDATE S DECLARATION

I hereby certify that the work which is being presented in this project entitled
"Simulation-Based Aircraft Route Planning" in partial fulfillment of the

requirement for the award of the degree of Master of Computer Applications,

submitted in the Department of Mathematics of the Indian Institute of Technology,

Roorkee, is an authentic record of my work carried out in the period from Jan-2002

to May-2002, under the supervision and guidance of Dr. R.S. Anand, Assistant

Professor, Department of Electrical Engineering, Mrs. Aparna Malhotra, Sc. 'C'

Defense Research & Development Organization.

The matter embodied in this project has not been submitted by me for the award of

any other degree.

Date : ~~ •06 2~oZ

Place : IIT, Roorkee. 	 (Anurag Singh)

II CERTIFICATE
1

This is to certify that the above statement made by the candidate is correct
to the best of my knowledge.

Dr. R S Anand

Assistant Professor

Department of Electrical Engineering

IIT, Roorkee

Date:

Place: Roorkee

w Mhsmsi
1.1.E ftWO Ss.147 «?

Mrs. Aparna Maihotra

Sc. 'C'

Defence R & D Organization

New Delhi

Date:

Place: New Delhi

• No: ISSA/HRD/08
Institute for Systems Studies and Analyse
Defence R&D Organisation

* 	* 	 Ministry of Defence
Metcalfe House, Delhi - 110 054

` 	 Tel: 3818897
Fax: 3819033

DEBASIS DUTTA
Sc 'E' 	 Dated: 5 June 2002

Head, HRD Cell

CERTIFICATE

This is to certify that Shri Anurag Singh, a student of MCA, Indian Institute of

Technology Roorkee (6th Semester) has undergone training at Institute for

Systems Studies & Analyses (ISSA), Defence Research & Development

Organisation, Metcalfe House, Delhi —110054 for a duration of six months

commencing from Jan 2002. During the training, he has been involved in the

development of the project entitled "Simulation Based Aircraft Route Planning".

He has completed the work assigned to him. satisfactorily.

(Debasis_Dutta)

so am"Wt"A"Ana
a(I e1 fot ASR $taN & A**1rL.

Defence R & D Ot aniu
ZE~efmt ,

n
r i 	T tf F; inistry
j ø' w~, 1,-110054.
-40'r.e11fe Hoiwi. Delhi-11(1(!x,

ACKNOWLEDGEMENT

It is my proud privilege to express my profound gratitude to my guide Dr. R.S.

Anand, Assistant Professor, Department of Electrical Engineering for his invaluable

inspiration, guidance and continuous encouragement throughout this project work.

I am grateful to Mrs. Aparna Malhotra, Scientist 'C', Defense Research and

Development Organisation and other staff members for providing the necessary

facilities, support and inspiration for the successful completion of this work.

I also acknowledge Mr. Debasis Dutta, Scientist 'E, Mr. S.B. Taneja, Scientist '.D',

Mr. Sanjay Bisht, Scientist 'B', DRDO for providing the support and inspiration

throughout the project work.

I also acknowledge Dr. H.G. Sharma, Professor & Head, Department of Mathematics

for providing the necessary facilities, cooperation and inspiration.

I would also like to thank Prof. R.C. Mittal, Department of Mathematics for his

cooperation and support.

In the last but not least I am short of adequate words in expressing thankfulness to

my parents and sisters who are the constant source of encouragement to me. It is

the only love, care and understanding of my parents that have placed me at the

present level of academic career.

Anurag Singh

MCA (Final Year)

I IT- Roorkee

III

ABSTRACT
Real war situation causes much of the destruction of human life and property so

there is a need of application that can simulate this type of situation. Simulation

methods are used to plan within environments involving large-scale uncertainty,

multiple interacting elements and complex dynamics which simulates the actions of

agents and intentions of coordinates before committing to a plan.

Simulation Based Aircraft Route Planning application involves multiple interacting

intelligent objects, called agents and their complex dynamics. The project have been

developed in Graphical User Interface (GUI) based scenario editor, with capabilities

to add elements, such as Ammunitions Factory of the enemy (Target), Enemy Fighter

Aircraft, Ground based Radar units, Surface to Air Missiles (SAM) systems. Also, it

provides user to edit attributes of the elements, which are required in simulation

process. Further the GUI have capabilities to specify other parameters such as

weights attached to cost of route in terms of distance and probability of detection for

each route, which plays a role in the simulation activity. Appropriate data structures

have been designed to represent the state information as well as the constituent

elements of the system. The route planner module of the application plans to create

different possible routes. The role of the simulation-based planner in each case is to

determine, keeping in view all the available information, the 'best route' or the near

optimal path(s) from a starting point to destroy a specified target or objective and

return back to base, given a number of certain and uncertain threats to the mission

in a defined scenario. The task of finding the near optimal paths can be achieved by

several different techniques, one of which is by use of simulation methods. Results of

the activities performed by the simulation module and the optimal route have been

displayed using the application's GUI.

The work has been developed using Visual C++ with MFC (Microsoft - Foundation

Classes) and Win32 API on Windows 98 platform.

IV

Table of Contents

Page No.

Candidate's Declaration 	 I

Certificate 	 II

Acknowledgement 	 III

Abstract 	 IV

Chapter 1 Introduction 	 1

	

1.1 	About the Organisation 	 1

	

1.2 	About the project 	 2

Chapter 2 Overview 	 5

	

2.1 	Problem Definition 	 5

	

2.2 	Goals to be achieved 	 6

Chapter 3 Methodologies Adopted 	 9

3.1 	Simulation 9

3.1.1 	Definition of Simulation 10

3.1.2 	Advantages of Simulation 10

3.1.3 	Areas of Application 12

3.1.4 	Military Simulation 14

3.2 	Object-Oriented Methodology 15

3.2.1 	Benefits of OOP 15

3.2.2 	Applications of OOP 16

3.2.3 	Object-Oriented Programming Approach 16

3.2.4 	Object-Oriented Paradigm 17

3.2.5 	Basic Concepts of OOP 18

3.3 	Software Engineering Methodology 22

V

Chapter 4 Problem-Solving
	

25

4.1 	Agent as a basic unit
	

25

4.2 	Decision making and Planning
	

25

4.3 	Simulation-based Planning
	

26

4.4 	Basic Components of Simulation-based Route Planning System
	

27

4.5 SBP Framework
	

27

Chapter 5 Logical Design
	

31.

5.1 	Data Flow Diagram (DFDs)
	

31

5.1.1. Context Diagram
	 31

5.1.2 Top Level Data Flow Diagram
	

32

5.1.3 Data Flow Diagram Level 0
	

33

5.2 Flow-Charts
	

41

5.3 Class-Cards
	

51

Chapter 6 Program Specification
	

65

6.1 	Design Specification
	 65

6.1.1 	Data Structure Used
	

65
6.1.2 	Scenario File Specification

	
67

6.2 Implementation
	

68

6.2.1 	GUI Development
	

68

6.2.2 	Simulation Module
	

79

Chapter 7 	Conclusion & Suggestions for Future Work
	

83

7.1
	

Conclusion
	

83

7.2
	

Suggestion for future work
	

83

References
	

E-

Appendices
	

87

VI

CHAPTER - 1

INTRODUCTION

1.1 About the Organisation
DRDO (Defence Research and Development Organisation)

Amalgamating Defence Science Organization and some of the technical development

establishments established defence Research and Development Organization (DRDO)

in 1958. A separate Department of Defence Research and Development was formed

in 1980, which now administers DRDO and its 50 laboratories/establishments.

Dr. V.K. Aatre, currently the Scientific Advisor to the Defence Minister and the

Secretary to the Indian Government for Defence Research, is the head of DRDO. He

renders advice to the Defence Minister and to the organisations in the Ministry of

Defence on all scientific and technological aspects of military operations, logistics,

weapon system & equipment. In addition, DRDO undertakes research, design &

development of weapon systems, equipment, materials and stores.

The Department of Defence Research and Development formulates and executes

programs of scientific research, design and development in the fields of relevance to

national security leading to the induction of new weapons, platforms and other

equipment's required by the Armed Forces. It also functions as the nodal agency for

the execution of major development programs of relevance to Defence through

integration of research, development, testing and production facilities with the

national scientific institutions, public sector undertakings and other agencies.

Research and development activities at DRDO cover important demarcated

disciplines like aeronautics, rockets & missiles, electronics & instrumentation, combat

vehicles, engineering, naval systems, armament technology including explosives

research, terrain research, advanced computing, artificial intelligence, robotics,

works study, systems analysis and life sciences including high-altitude. agriculture,

physiology, food technology and nuclear medicine. In addition to undertaking

research and development activities, DRDO also assists the services by rendering

technical advice regarding formulation of requirements, evaluation of systems to be

I

acquired, fire and explosive safety and mathematical and statistical analysis of

operational problems.

ISSA (Institute Of Systems Studies and Analyses)

ISSA is a part of DRDO. It is an inter discplinary Institute in which scientists from

various fields like Mathematics, Operations Research, Statistics, Computer Science,

Physics,Electronics and Ballistics are employed. Most of these scientists are trained

in more than one discipline and have experience of field units in the operational

areas and industrial applications. The institute is presently organized in different

groups according to work specialization. These team functions as a complete study

groups, dedicated to the projects and imparts training to the students of various

Universities / Organisations.

It was started as a small group named "Weapon Evaluation Group (WEG)" In the

year 1959, primarily to carry out Operational Research (OR) studies and weapon

analysis for the three services. In 1963 this group was redesignated as Scientific

Evaluation Group and later named as Directorate of Scientific Evaluation (DSE) In

1968. In 1981 its name was changed to Institute of system Studies and Analysis with

somewhat broader charter of duties. The Institute Is presently organized in different

groups as per the expertise.ISSA has to its credit many a succesful projects

undertaken by DRDO. To name a few, the wargaming software's being used by

Indian Army: Shatranj, Sangram, MIL GIS and Indian Navy : Sagar. It also involved

with many projects in Wargaming and Mathematical Modelling and Simulation. It now

functions as an establishment similar to other R&D LABS/ESSTS and is located in

Metcalfe House Complex.

1.2 About the Project

Simulation based Aircraft Route Planning is an air interdiction application, which

builds a Graphical User Interface (GUI) scenario editor which encapsulates different

interacting agents actively involved in the interdiction mission. The GUI provides the

facility for the deployment of certain and uncertain enemy objects such as

o Radars

o Surface-to-Air missiles

o Enemy Fighters

2

which pose threat to friendly forces. The GUI provides the facility to depict the area
in the form of grid so as to simplify the distance-based computations. Further apart
from the default colors used to represent the forces, the GUI provides option to the
user to specify the colors they want. The scenario created can be saved to a file,
which helps to avoid recreation of the scenario every time simulation is to be done
on the same scenario. GUI also facilitates the creation of different candidate routes
that are to be simulated.

The main task of the interdiction mission is then to find out the best route from a
starting point to a specified target (enemy ammunitions factory) objective, given a
number of certain and uncertain threats to the mission. It contributes in the area of
planning to develop a method that allows simulation to be used in real time, where
the simulation is embedded within the decision-making system.

Application involves the "use of air strike forces to destroy, delay or disrupt existing
enemy surface forces while they are far from friendly forces". It involves many
interacting elements including concurrently active adversarial tasks and uncertain
information regarding ground-based anti-aircraft capability. The application create
models for multi-agent systems that are tightly constrained by their environments,
i.e.,

o geometric paths that are to be followed

o a task or mission to be accomplished

o a strict set of operating conditions for all agents

The interdiction mission includes attacks against supplies and lines of

communication. The objective of the air interdiction mission is to reduce the enemy
threat by diminishing enemy combat effectiveness and/or by preventing build up of
enemy combat capabilities. To achieve this objective, careful and comprehensive
planning is required to isolate an area and to stop all support from reaching the
theatre of conflict.

The development of Simulation Based Aircraft Route Planning involves the following
phases:

1. Scenario editor f GUI which supports reading, editing and writing scenario
definition files

2. Data Structure Design & Text File Format Design module

3. Simulation and Execution Module

3

CHAPTER -2
OVERVIEW

2.1 Problem Definition

An Air Interdiction Scenario is basically a combat mission planning where military

operations involving two or more opposing forces exercising real life combat rules on

data and procedures are involved in the war scenario. The Combat here takes piace

between the Red force (enemy force) and the Blue force (friendly force).

The mission of the Blue Force Aircraft is to destroy a Red Force Ammunitions Factory

to stop all support from reaching the area of conflict. There are a number of certain

and uncertain hostile resources such as Radars, Surface-to-air Missiles, each with

different detection range and enemy fighters that pose threat to Blue Force Aircraft,

whose aim is to destroy or disrupt Red Force Ammunitions Factory and come back to

its base safely. At a first glance, the problem of guiding the blue force around the

radar, SAM and Aircraft Coverage and toward the factory seems like a simple

problem in computational geometry. Infact this is the manner in which most routes

planning is done. A typical rule might be found - "to locate a path, avoid radar and

SAM fields, and avoid fighting against enemy fighters". However such rule based

reasoning becomes more onerous when uncertainty occurs and for the objects in our

Air Force Mission Planning domain we have categorize the uncertainty into dynamics

are present several types:

• Uncertainty of existence : the object may or may not even exist.

• Uncertainty of location : An area of uncertainty of the object's location is

available but it is not certain of the exact location of the object.

■ Uncertainty of range : The exact detection range or firing range is not known.

■ Uncertainty of firepower: The destruction capability of the object is uncertain.

5

- e X Vii. 	ist 	► w _LeJJ
NinnE~ .. ,- ~•.,,

(A{ iweoer

E11 	Dd-] sz. 1 i Sew"
- - Rau. 	TwlCoet

God 	Tie WeMlw up.w.n

s~z

—I-

F¢y 	largo
I_..

a I ~

(' 1Lll7fl
Jfl

ILid j--

,

H
SWi Roue EM Rab

find p/ r ia kn
J
 _....

Lber Caws
DiM.n 4 YaN
X 631 	lug 	Y 431 	►~.

Locado,k*a
C..Ou 	27 Coadrw~et
LaMd. 775327N 	LW*kift 8735'03E

N1 Seib

1pod.1000w
N

561UAIOM

Figure 2.1 A Overview of Scenario (GUI)

Simulation assumes a significant importance as simulation of military operations

used for research, analysis, education, or recreation is designed for better

understanding of warfare. It involves people in the information processing within an

actual or hypothetical situation who use rules, data and procedures to guide various

military actions.

2.2 Goals to be achieved

An interdiction mission is a very common problem In defence and its role is to

destroy the supply lines of the enemy in order to delay its support. The application

first needs to develop a Graphical User Interface (GUI) that creates an interdiction

scenario providing facility to place different agents actively participating in the

interdiction mission, such as -

~,

• Ammunitions Factory of the enemy (Target)

• Enemy Fighter Aircraft

• Ground based Radar units

• Surface to Air Missiles (SAM) systems,

The GUI based scenario editor should also provide the facility to edit the attributes of
these agents, as well as to delete them. Further the GUI should facilitate the creation
of different routes for the aircraft, which serves as an input for the simulation
module. Prior to the execution of the simulation module, the scenario related
information is to be stored in a file, which can be opened to avoid the recreation of
the scenario every time as long as the placement of the enemy agents remains fixed.

The interdiction mission then needs to identify all the possible (certain and uncertain)
threats such as Radars, Surface-to-Air-Missiles, enemy Fighters to the mission,
determine the set of controllable and uncontrollable variables and determine their
behavior. The complex dynamics of the hostile resources need to be modeled to build
the scenario in order to proceed with the route planner module providing a base for
simulation. The controllable variables or factors are sometimes called as parameters.

The primary objective of the Air Interdiction mission entails the execution of carefully
conceived, comprehensive plan designed to isolate an area and to stop all support
from reaching the area of conflict. Therefore, the task of the Air Strike mission is
thou to gather the effects of the uncontrollable variables by using random numbers,
while varying the parameters to find a near-optimal route which aims at destroying
the target (i.e. Red Force ammunitions factory) and a safe return of the Blue Force
Fighter to its base. Our aim is not just to find the shortest route from Blue Force
base to the target, but the one, which considers various enemy agents to achieve

■ Maximum Destruction

■ Minimum Threat

■ - Minimum Cost

7

CHAPTER -3
Methodologies Adopted

3.1 Simulation

Computer system users, administrators, and designers usually have a goal of highest

performance at lowest cost. Modeling and simulation of system design trade off is

good preparation for design and engineering decisions in real world jobs. Simulation

is used as a tool to better understand and optimize performance and/or reliability of

Systems; it is also extensively used to verify the correctness of designs. Most if not

all digital integrated circuits manufactured today are first extensively simulated

before they are manufactured to identify and correct design errors. Simulation early

in the design cycle is important because the cost to repair mistakes increases

dramatically the later in the product life cycle that the error is detected [6j, [7].

Another important application of simulation is in developing "virtual environments",

e.g., for training. Analogous to the holodeck in the popular science-fiction television

program Star Trek, simulations generate dynamic environments with which users can

interact "as if they were really there." Such simulations are used extensively today to

train military personnel for battlefield situations, at a fraction of the cost of running

exercises involving real tanks, aircraft, etc.

System Simulation is the mimicking of the operation of a real system, such as the

day-to-day operation of a bank, or the value of a stock portfolio over a time period,

or the running of an assembly line in a factory, or the staff assignment of a hospital

or a security company, in a computer. Instead of building extensive mathematical

models by experts, the readily available simulation software has made it possible to

model and analyze the operation of a real system by non-experts, who are managers

but not programmers. A simulation is the execution of a model, represented by a

computer program that gives information about the system being investigated. The

simulation approach of analyzing a model is opposed to the analytical approach,

where the method of analyzing the system is purely theoretical. As this approach is

more reliable, the simulation approach gives more flexibility and convenience. The

activities of the model consist of events, which are activated at certain points in time

and in this way affect the overall state of the system. The points in time that an

9

event is activated are randomized, so no input from outside the system is required.

Events exist autonomously and they are discrete so between the executions of two

events nothing happens.

3.1.1 Definition of Simulation

Simulation is the imitation of a real-world process or system overtime. Simulation

involves the generation of an artificial history of the system and the observation of

that artificial history to draw inferences concerning the operating characteristics, of

the real system that is represented. Simulation Is an indispensable problem-solving

methodology for the solution of many real-world problems. Simulation is used to

describe and analyze the behavior of a system, ask what-if questions about the real
system, and aid in the design of real systems. Both existing and conceptual systems

can be modeled with simulation.

3.1.2 Advantages of simulation

Competition in the computer industry has led to technological breakthroughs that are

allowing hardware companies to produce better products continually. It seems that

every week another company announces its latest release, each with more options,
memory, graphics capabilities, and power what is unique about new developments in

the computer industry is that they often act as a springboard for related industries to

follow. One industry in particular is the simulation software industry. As computer

hardware becomes more powerful, more accurate, faster and easier to use,

simulation software does too. Some of the major advantages are:

• Choose correctly: Simulation lets us test ever aspects of a proposed change or

addition without community resources to their acquisition. This is critical, because

once the hard decisions have been made, the bricks have been laid, or the

material handling systems have been Installed, changes and corrections can be

extremely expensive.

• Compress and expand time: By compressing and expanding time, simulation

allows just speeding up or slowing down phenomenon so that we can investigate

them thoroughly.

I()

• Understand why: With simulation we can determine the answer to the "why"

questions by reconstructing the scene and taking a microscopic examination of

the system to determine why the phenomenon occurs.

• Explore possibilities: Once we have developed a valid simulation model, we can
explore new policies, operating procedures, or methods without the expense and

disruption of experimenting with the real system.

• Diagnose problems: Simulation allows us to better understand the interacting

among the variables that make the complex systems. Diagnosing problems and

gaining insight into the importance of these variables increases our

understanding of their important effects on the performance of the overall

system.

• Identify Constraints: By using simulation to perform bottleneck analysis, we can

discover the cause of the delays on work in process, information, materials, or

other_ processes.

• Develop Understanding: Simulation studies aid in providing understanding about

how a system really operates rather than indicating someone's predictions about

how a system will operate.

• Visualize the plan: Depending on the software used, we might be able to view our

operation from 'various angles and levels of magnification, even in three-

dimensional.

• Build Consensus: Using simulation to present design changes creates an objective

opinion..

• Prepare for change: Interacting with all those what-if questions involved in a

project during the problem-formulation stage gives -us an Idea of the scenarios

that are of interest.

• Invest wisely: The typical cost of a simulation study is substantially less than

10% of the total amount being expended for the implementation of a design or

redesign.

• Train the team: Simulation models can provide excellent training when designed

for that purpose. The team, and individual members of the team, can learn by

their mistakes and learn to operate better. This is much less expensive and less

disruptive than on-the-job learning.

• Specify requirements: The specification for a particular type of machine in a

complex system to achieve a desired goal might be unknown. By simulating

different capabilities for the machine, the requirements can be established.

3.1.3 Areas of Application

The applications of simulation are very vast. Some of the important applications are:

• Manufacturing and Material Handling Applications

Presentations included the following, among many others:

• -Design and analysis of large-scale material handling systems

-Analysis of the effects of work-in-process levels on customer satisfaction

-Assessing the cost of quality

• Public Systems Applications

Presentations included the following, among many others:

1. Health Systems

-Screening for abdominal arotic aneurysms

-Lymphocite development in immune-compromised patients

-Asthma dynamics and medical amelioration

-Timing of liver transplants

-Diabetic retinopathy

-Evaluation of nurse staffing and patient population scenarios

-Evaluation of automated equipment for a clinical processing

laboratory

-Evaluation of hospital surgical suite and critical care area

2. Military Systems

-Airforce support equipment use 	•

-Analysis of material handling equipment for propositioning ships

-Development and implementation of measures of effectiveness

-Reengineering traditional stovepipe- Army staffs for information

operations

12

-Evaluation of theatre airlift system productivity

-Evaluation of C-1141 depot maintenance

-Evaluation of air mobility command channel cargo system

3. Natural Resources
-Non point-source pollution analysis

-Weed scouting and weed control decision-making

-Evaluation of surface water quality data

4. Public Services

-Emergency ambulance system analysis

-Evaluation of field offices with a government agency

• Service System Applications

Presentations included the following, among many others:

• 1. Transportation

-Analysis of intelligent vehicle highway systems

-Evaluation of traffic control procedures at highway work zones

-Evaluation of taxi management and route control

-Evaluation of rapid transit modeling with automatic and manual

controls

2. Computer System Performance

-User transaction processing behavior analysis

-Evaluation of database transaction management protocols

-Evaluation of analytic models of memory queuing

3. Air transportation

-Evaluation of human behavior in aircraft evacuates

-Analysis of airport/airline operations

4. Communications Systems

-Trunked radio network analysis

-Evaluation of telephone. service provisioning process

-Picture archiving and communication system analysis

-Evaluation of modeling of broadband Tele-communication networks

-Analysis of virtual reality for Tele-communication networks

13

3.1.4 Military Simulation

Simulation has been applied extensively and successfully to a wide range_ of military

problems, including war gaming, acquisition, logistics, and communications. For e.g.,

it has been used as a decision support tool to evaluate how a battle force should be
constituted, how it might be deployed, and how the weapon systems should be

acquired and maintainedl2],[51.

Military simulation models are different from others because

• Many of them are highly classified, with details that could not be widely

disseminated.

• Weapon capabilities and use aren't typically used in other modeling and

simulation (M&S) -

• Potential adversaries, closely control certain algorithms to avoid reverse

engineering.

• The use of certain equations isn't typical of commercial M&S.

Classification of Military Simulation

According to Defense Science Board, military simulations are classified into three

categories, i.e., live, virtual, and constructive.

Live simulation involves real people and real systems where every move and every

shot fired between two groups is monitored by a powerful laser engagement system
that records all the signals from the pieces of armor and other equipment that are

participating in the exercise. All of this information is fed into the computer

`;i^'muidtion, and numerous statistics are tallied so that at the end of the exercise,

both teams can be evaluated and areas of improvement can be identified.

Virtual simulation involves real people in a simulated system. This includes aircraft

and tank simulators. This type of simulator is helpful in training and in evaluating

control, decision, and communication skills. Virtual simulation •has become more

popular with developments in computer technology, especially computer graphics.

In constructive simulation, humans might be (or might not be) interact with model,

and everything is simulated. Constructive simulation of-combat include war-games

for training as well as for analytical tools. Constructive simulation training is usually
designed for staff level use and virtual simulation training for operator level use.

14

3.2 Object-Oriented Methodology

Simulation-based Air force Route Mission Planning is an application, which we have

developed in VC++, an object-oriented programming language. An object-oriented

programming (OOP) language has many advantages, which can tackle big 'program

very easily.

3.2.1 Benefits of OOP

OOP offers several benefits to both the program designer and the user. Object-

Orientation contributes to the solution of many problems associated with the

development and quality of software products [3]. The new technology promises

• Greater programmer productivity

• Better quality of software

• Lesser maintenance cost

The principal advantages are:

• Through inheritance, we can eliminate redundant code and extend the use of

existing classes.

• We can build programs from the standard working modules that communicate
with one another, rather than having to start writing the code from scratch.

This leads to saving of development time and higher productivity.

• The principle of data hiding helps the programmer to build secure programs
that can't be invaded by code In other parts of the program.

It is possible to have multiple objects to coexist without any interference.

• It is possible to map objects in the problem domain to these objects in the
program.

• It is easy to partition the work in a project based on objects.

The data-centered design approach enables us to capture more details of a

model in an implementabie form.

• Object- Oriented systems ran he easily upgraded from small to large systems1

• Message passing techniques for communication between objects make the
interface descriptions with external systems mulch simpler.

• Software complexity can be easily managed.

Software that is each to use is hard to build. It is hoped that the OOP language like

VC++ would help manage this problem.

15

3.2.2 Applications of OOP

The most popular application of OOP, up to now, has been in the area of user

interface design such as windows. There are hundreds of windowing systems
developed using OOP techniques.

Real-business systems are often much more complex and contain many more objects

with complicated attributes and methods. OOP is useful in this type of applications
because it can simplify a complex problem. The promising area for application of OOP
includes:

• Real-time systems

• Simulation and modeling

• Object-Oriented databases
• Hypertext, hypermedia and expertext
• AI and expert systems

• Neural networks and parallel programming
• Decision support and office automation systems

• CIM/CAD/CAD system

It is believed that the richness of OOP environment will enable the software Industry

to Improve not only the quality of software systems but also its productivity. Object-

Oriented technology is certainly change the way software engineers think, analyze,

design and implement systems.

3.2.3 Object-Oriented Programming Approach

One characteristic that is constant in the software industry today is the "change".

Change is one of the most critical aspects of software development and

management. The Impact of these developments is often very extensive and raises a

Number off issues that must be addressed by the software engineers. Most important

among them are:

• Maintainability
■ Reusability
■ Portability
■ Security
- Integrity
■ User friendliness of software products

16

Since the invention of the computer, many programming approaches have been

tried. These include techniques such as modular programming, top-down

programming, Bottom-top programming and structured programming. The primary

motivation in each case has been the concern to handle the increasing complexity of

programs that are reliable and maintainable. These techniques became popular

among programmers over the last two decades.

With the advent of languages such as C, structured programming became very

popular and was the paradigm of the 1980s. Structured programming proved to be a

powerful tool that enabled programmer to write moderately complex programs fairly

easily. However as the programs grew larger, even the structured approach failed to

show the desired results in terms of bug free, easy-to-maintain, and reusable

programs.

Object-Oriented Programming (OOP) is an approach to program organization and

development, which attempts to eliminate some of the pitfalls 	of conventional

programming methods by incorporating the best of structured programming features

with several new concepts. Also, OOP is an approach that provides a way of

modularizing programs by creating partitioned memory area for both data and

functions that can be used as templates for creating copies of such modules on

demand. This means that an object is considered to be a partitioned area of

computer memory that stores data and a set of operations that can access that data.
Since the memory partitions are independent, the objects can be used in a variety of

different programs without modification. It is a new way of organizing and

developing programs and has nothing to do with any particular language. However,

not all languages are suitable to implement the OOP concepts easily. Languages that

support OOP features include Smalitalk, C++, Ada, VC++, Object Pascal and java.

3.2.4 Object-Oriented Paradigm

The fundarilerilal idea behind Objeci.-Oriented languages is to corribirie into a siiiglc
unit both data and the functions that operate on that data. Such a unit is called an

object. 	a r data
as •~ critical clement i 	e prog 	a 	pm/~ f 	`s

J ` OOP treat- dat as 4 %.11M%-%A 	.i~ the program Cii d~;~L-~io it.G~a. and d~

not allow it to flow freely around the system. It ties data more closely to the
functions that operate on it and protects it from unintentional modification by other

functions. OOP allows us to decompose a problem into a number of entities called

17

Objects and then build data and functions around these entities. The combination of

data and functions make up an object.

The data of an object can be accessed only by the functions associated with that

object that is member functions. If we want to read a data item in an object, we
have to call a member function in the object. It will read the item and return the

value. We can't access the data directly. The data is hidden, so it is safe from
accidental alteration. Data and its functions are to be encapsulated into a single

entity. If we want to modify the data in an object we have to exactly what functions

interact with it: the member functions in the object, no other functions can access
the data. This simplifies writing, debugging and maintaining the program. However,

functions of one object can access the functioned of other object. Some of the

features Object-Oriented Paradigm are:

• Emphasis is on data rather than procedure

• Programs are divided into what are known as objects
■ Data structures are designed such that they characterize the objects

• Methods that operate on the data of an object are tied together In the data

structure
■ Data is hidden and can not be accessed by an external functions

• Objects may communicate with each others through functions

■ New data and methods can be easily added whenever necessary

• Follows bottom-up approach in program design

3.2.5 Basic Concepts of OOP

It is necessary to understand some of the concepts used extensively in OOP.

- Objects and Classes

Objects are the basic runtime entities in an object-oriented system. What kinds of

things become objects in OOP? The answer to this is limited only by our imagination,

but here are some typical categories to start us thinking:

Physical Objects
o Automobiles in a traffic-flow simulation

o Electrical components in a circuit design program

o Aircraft in an air-traffic-control system

is

> Elements of the computer-user environment

o Windows

o Menus

o Graphics objects (lines, rectangles, circles)

o The mouse and the keyboard

Programming constructs

o Customize arrays

o Stacks

o Linked-Lists

o Binary trees

➢ Connections of data

o An inventory

o A personnel file

o A dictionary

o * A table of latitudes and longitudes of world cities

User-defined data types

o Time

o Angles

o Complex numbers

o . Points on the plane

Components in computer games

o Ghosts in a maze game

o Positions in a board games (chess, checkers)

o Animals in an ecological simulation

o Opponents and friends in adventure games

Program objects should be chosen such that they match closely with the real -world

objects. When a program is executed the objects. interact by sending messages to

one another. For example 'customer' and 'account' are two objects in a banking

program, then the customer object may send a message to the account object

requesting for the balance. Each object contains data and code to .manipulate the

data. Objects can interact without having to know the details of each other data or

code. It Is sufficient to know the type of message accepted and the type of response

returned by the objects.

19

0

Data Abstraction and Encapsulation

The wrapping up of data and functions into a single unit (called class) is known as
encapsulation. Data Encapsulation is the most striking features of a class. The data
isn't accessible to the outside world and only those methods, which are wrapped in
the class, can access it. These methods provide the interface between the objects

data and the program. This insulation of the data from direct access by the program

is called data hiding. Encapsulation makes it possible for objects to be treated pike
'black boxes', each performing a specific task without any concern for internal

implementation.

Abstraction refers to the act of representing essential features without including the

background details or explanations. Classes use the concept of abstraction and are
defined as a list of abstract attributes such as size, weight, and cost and functions
that operate on these attributes. They encapsulate all the essential properties of the

objects that are to be created.

Inheritance

Inheritance is the process by which of one class acquire the properties of objects of

another class. Inheritance supports the concept of hierarchical classification. For e.g.,

the class of animals is divided into mammals, amphibians, insects, birds," and so on.

The class of vehicles is divided into cars, trucks, buses, and motorcycles.

The principle in this sort of division is that each subclass shares common

characteristics with the class from which it's derived. Cars, trucks, buses and

motorcycles all have wheels and a motor; these are the defining characteristics of

vehicles. In addition to the characteristics shared with other members of the class,
each subclass also has its own particular characteristics: buses, for instance, have

seats for many people, while trucks have space for hauling heavy loads.

In OOP, the concept of inheritance provides the idea of reusability. This means that

we can add additional features to an existing class without modifying it. This is

possible by deriving a new class from the existing one. The new class will have the

combined features of both the classes. Thus the real appeal and power of the

inheritance mechanism is that it allows the programmer to reuse a class, that is

,most, but not exactly, what one wants, and to tailor the class in such a way that it
does not introduce any undesirable side effects into the rest of the classes.

20

Polymorphism

Polymorphism is another OOP concept. Polymorphism (one thing with several distinct

forms) means the ability for a new object to implement the base functionality of a
parent object in a new way. An operation may exhibit different behavior in different
instances. The behavior depends upon the types of data used in the operation.

Polymorphism plays an important role in allowing objects having different internal
structures to share the same external interface. This means that a general class of

operations may be accesses in the dame manner even though specific actions -
associated with each operation may differ. Polymorphism is extensively used in
Implementing Inheritance.

Dynamic Binding

Binding refers to the linking of a procedural Ca!! to the rnrle to be executed in

response to the call. Dynamic Binding means that the code associated with a given

procedure call isn't known until the time of the call at runtime. It is associated with
polymorphism and inheritance. A procedure call associated with a polymorphic

reference depends on the dynamic type of that reference.

Message Communication

An Object-Oriented program consists of a set of objects that communicate with each

other. The process of programming on an Object-Oriented language, therefore,
involves the following basic steps:

1. Creating classes that define objects and their behavior
2. Creating objects from class definitions
3. Establishing communication among objects

Objects communicate with one another by sending and receiving Information much

the same way as people pass message to one another. A message for an object is a

request for execution of a procedure, and therefore, will invoke a procedure in the
receiving object that generates the desired result. Message passing involves

specifying the name of the object, the name of the method (message) and the
information to be sent. For e.g., consider the statement

radars. display (position);
Here, radars is the object, display is the message and position is the parameter that

contains information.

21

3.3 Software Engineering Methodology

The various phases of software life cycle are:

1. Requirements Analysis

2. Software design

3. Coding

4. Testing

5. Maintenance

Requirement Analysis

Requirement Analysis is done In order to understand the problem, which the software

system is to solve. The emphasis is on identifying what is needed from the system

and not how the system will achieve its goals. There are two parties involved in

software development a client and a developer. The developer has to develop the

system to satisfy the client's needs. The developer usually does not understand the

client's problem domain, and the client often does not understand the issues Involved

in software systems. This causes a communication gap, which has to be adequately

bridged during requirements analysis.

In most software projects, the requirements phase ends with a document describing

all the requirements. Hence the goal of requirements phase is to produce a software

requirements specification document. The person responsible for the requirements

analysis Is often called the analyst. There are two activities in this phase:

1. Analysis or problem understanding

2. Requirements specification

In problem analysis, the analyst has to understand the problem and its context.

Once the problem is analyzed and the essential understood, the requirements must

be specified in the requirement specification document.

Software Design

The purpose of the design phase is to plan a solution of the problem specified by the

requirements document. This phase is the first step in moving from the problem

domain to the solution domain. The output of this stage is the design document. This

22

document is a plan for the solution and is used later during implementation, testing

and maintenance.

The design phase has two separate activities:

1. System design-top level design

2. Detailed design

During design phase, two separate documents are produced: one for system design

the other for detailed design. Together these specify the design. That is, they specify

the models and the internal logic of each* of the modules.

Coding

The goal of the coding phase is to translate the design of the system in a given

program language. For a given design, the aim in this phase is to implement the

design in the best possible manner. The coding phase comes before testing and

maintenance. Since the testing and maintenance costs of say much higher than the

coding cost, the goal of coding should be to reduce testing and maintenance effort.

Testing

Testing is the major quality control measure employed during development. Its basic

function is to detect errors in the software. After coding phase, computer programs

are available that are executed for testing. Testing uncovers errors introduced in

requirement, design, coding programs. Consequently different levels of testing are

employed.

The first level of testing is unit testing. In this a module is tested and is often

performed by the coder himself simultaneously with the coding module. The aim is to

execute the different parts of the module coding and coding errors. After this the

modules are Integrated into subprograms then Integrated themselves to eventually

form the actual system programs.

During Integration of modules, integration testing is performed. This testing is to

detect design errors, while focusing on testing the interdependency between the

modules. After the system is put together, system testing is that, the system is

tested against the system requirement, to see if all the requirements are met and

23

the system performs as specified by the system requirements. Finally, acceptance

testing is performed to demonstrate to the client, on the real life data of the client,

the operation of the system.

Maintenance

Maintenance is not a part of software development, but is an extremely important

activity in the life of a software product. Maintenance includes all the activities after

the installation of software that is performed to keep the system operational. The

four major forms of maintenance activities are adaptive maintenance, corrective

maintenance, perfective rnainlenance and preventive maintenance.

0

24

• CHAPTER -4
Problem-Solving

4.1 Agent as a Basic Unit

The Air Force is expanding its modeling and simulation activities as a practical

solution to improve readiness and lower costs. Modeling and simulation save millions

of dollars by cutting the need to deploy actual forces and equipment, as in the case

of command and control exercises. Not only American forces, but also those of other

countries, can be included in simulated conflicts. The Air Force has identified several

desired capabilities that encompass both Improvements In existing models and the

development of new types of modeling. To satisfy these needs, scientists at the

Human Effectiveness Directorate are conducting research to discover efficient ways

to simulate intelligent behavior in existing and new models.

Furthermore, Air Force requirements call for the development of completely new

capabilities, such as models capable of accurately simulating the conduct of

information operations. Information operations mean the execution of information

warfare (i.e., an activity designed to manipulate, degrade, deny, or destroy

information) with the goal of influencing an opponent battle staff or civilian

authority's ability to make decisions.

The basic unit of Simulation is an agent. An agent is "any actor in.a system, any

entity that can generate events that affect it and other agents". Agents define the

basic objects in the system, the simulated components. Simulations consist of groups

of many Interacting agents. For example, an ecosystem simulation could consist of

agents representing coyotes, rabbits, and carrots. In an economic simulation, agents

could be companies, stockbrokers, shareholders, and a central bank.

4.2 Decision Making And Planning

Decision making and planning are critical operations for all military missions.

Moreover, planning occurs over several different time scales depending on the

amount of time one has to plan prior to committing to a particular plan. Planning is a

hierarchical enterprise. Our long term- goal is to explore this hierarchy of planning

25

approaches, and our first step towards this goal is to provide high-level planner with

a technique we call Simulation Based Planning (SBP). Military mission involve many

interacting elements including concurrently active adversarial tasks and uncertain

information regarding ground-based anti-aircraft actability. As the complexity of the

mission increases, it is valuable to use computer simulation. Hence we introduce

simulation-based planning as a methodology for addressing the complexity involved

in Air Force missions.

4.3 Simulation Based Planning

Simulation Based Planning extends and improves the planning horizon in three

aspects. First, it handles probalistic uncertainty through detailed and replicated

simulation of models instead of solving them analytically using probability theory.

Second, simulation can naturally extend the level of execution and thereby often

discovering subtleties (which would have been missed by a higher lever planner) that

may lead to failure of a plan. Finally, a multi-agent adversarial planning is easily

achieved through object-oriented multimode simulation where each agent or
adversary is simulated [1].

Simulation is defined as "the discipline of designing a model of an actual or

theoretical physical system, executing the model on a digital computer and analyzing
the execution output".

Once the plan is chosen for execution, the simulation data that Was generated during

the planning process can be used to match with the current real world state.

Our focus is near-optimal route planning. Route planning is in-between the higher

level of symbolic Al planning and the lower -level of intelligent control. There are

several application areas that are related to route planning. Mission planning within

the military domain almost always involves route planning. Routes can greatly affect

the success of the whole mission, whether the mission takes place on ground or in

the air. If the goal is to select a route that is shortest in distance, we can use any of

the standard algorithms that exist for finding the shortest paths in the graph. But, if

the problem Is in an environment that is unknown or uncertain, we must use

different ways to evaluate each path such as simulation.

26

4.4 Basic Components Of Simulation-Based Route Planning

System

The simulation based route planner has three main components: -

1. The Route generator

2. The Simulator

3. The Plan Evaluator/Selector

The Route Generator: The route generating component gathers information about

the source and the destination in order to generate candidate routes between them

linking source to the target.

The Simulator : The main task of the simulator module is to simulate each

candidate route taking into account all the possible threats . The simulation monitors

various controllable and uncontrollable factors to analyze each route and generates a

score for each route.

The Evaluator : The evaluator mainly evaluates the results of the simulation and

then selects the best route amongst the given candidate routes for execution.

4.5 SBP Framework

We present SBP framework in terms of three components

1. The Simulation component

2. The Experimental Design Component

3. The output Analysis Component

1. Simulation Block

To use simulation in planning we, first need to identify the set of controllable and

uncontrollable variables. Speeds, routes, actions of objects are controllable, whereas

any kind of uncertainty such as uncertainty of positions conditions, range of radars

and outcome of combat are uncontrollable. The controllable variables or factors are

sometimes called parameters in simulation process. The main objective of the plan

simulation is to gather the effects of the uncontrollable through randomness while

varying the parameters to find a near-optimal combination of controllable values in

spite of the uncertainty. We say near optimal because we can never guarantee the

optimality of a plan given the uncertainties of actual plan execution.

27

In addition to parameters there are artificial factors such as simulation specific
variables like the initial state of the system, termination conditions and random
number streams. Due to nature of our problem, the user gives artificial factors such

as initial state of the environment and termination conditions of plans.

We now define the following:

• Let W = W1, W2,, ... Wk be the set of all objects in the environment. And let Q

(t) = q1 (t) * q2 (t) * ...* qk(t) be the world state at time,t where qi(t) is the
state of object Wi at time t, a finite set of world states. Also we define Ai(t)

as the set of actions Wi can take at time t and zero or more actions may be
chosen from this set to be simulated at time t.

• Let R be set of routes that need to be simulated and chosen from. The total
number of routes is N and Rj denotes the jth route where 1 < j< N.

• Stationary Object refers to an object that remains physically in the same

location, throughout the simulation and objects that do not have the ability to

physically change location. Ground radars, missile sites are some examples.

• Moving Objects refers to the object that has the ability to physically move

and change its location during simulation such as fighter.

• Planner Object refers to the object, which is planning entity itself.

• Let 0 be the set of uncertain stationary objects. Then, these objects can have

one or more of the following uncertainties:
--Initial location
-Type (e.g. type of plane, type of missile)

-Configuration (e.g. speed, range)

Then the simulation algorithm follows:

• Determine the score for each route R1, comprising of -

a. Cost of each route in terms of distance

b. Detection probability

• For each route Rj,

While (there are more routes)

Get the cost and detection probability of the route

Calculate the score for the route

• Find the route with the smallest cost.

P7

28

2. Experimental Design Block

In simulation, experimental design is a method of choosing which configurations (i.e.

parameter values) to simulate so that the desired information can be acquired with

the least amount of simulating. In experimental design terminology, the input

parameters and structural assumptions composing a model are called factors and, the

output performance measures are called responses. The route simulation algorithm

models two factors - cost of the route in terms of distance that directly affects the

fuel consumption and the probability of friendly aircraft being detected by the enemy

units. Thus the objective function is given as: -

Route [i] = wi * route cost [i] + w2* route prob [i]

Where,

i = Route No.

Route [i] = Total cost of the route i

route cost [1] = Total cost of route i in terms of distance

route prob [i] = Total probability of being detected on route

wl = Weight attached to cost of route i

w2 = Weight attached to probability of detection for route i

3. Analyzer

Based upon the selection criteria (i.e. simulation factors) we consider several

different plans/routes and choose the best plan for execution. The tasks of this

component are to analyze the results obtained from alternate routes and select the

one with the minimum score. The selection criteria largely depends upon the weights

attached to the factors associated with the route. Assignment of different weights to

factors could lead to selection of a different route each time, despite the fact that

their scores remain the same.

29

CHAPTER -5

Logical Design

5.1 Data Flow Diagram (DFDs)

5.1.1 Context Diagram

Input Parameters 	 Scenario/GUI
of Objects,

Simulation-based
Execution Module 	Save Simulation

Reiw1ts Database

Figure 5.1 Context Diagram

31

5.1.2 Top Level DFD

USER
I
	

7

	

Place Radar
	

Grid (on/off)

	

2
	

6
Place SAM
	

Create New
Route

3
Place Red
(Enemy)
Aircraft

/ 4
Target

(Ammunitions
Factory)

/ 5
Place Uncertain
Radar/SAM/Red

Aircraft

Scenario/GUI

Load
Scenario

Weightage '
attached to cost
of distance &

nrob. detection
0

0
Simulation
Execution
Module

Save Simulation
Resuits

Database

Figure 5.2 Top Level Data Flow Diagram

w

32

5.1.3 Data Flow Diagram Level-2

Figure 5.3 Detailed DFD for radar operation

33

Figure 5.4 Detailed DFD for SAM operation

34

Figure 5.5 Detailed DFD for enemy aircraft operation

35

4.1
Place the

Target
(Ammunition

Factory)

4.2
Create a node

& attach to
Linked-List

4.3
Display

theTarget

Save the
position

Figure 5.6 Detailed DFD for target operation

36

6.1
Place the
Uncertain

Radar/ SAW
Aircraft

5.2
Generates
location &

range
randomly

5.3
Create a node

& attach to
Linked-List

Validates
Duplicity &
Saves all
Attributes

5.4
Display the
Uncertain

Radar/ SAM/
Aircraft

Figure 5.7 Detailed DFD for uncertain radar/Sam/Aircraft operation

37

6.1 	 6.2 Generate New 	 Enter Name Route 	 for the route

4

6.3
Get the

waypoints for
the route

6.4
Create a node

& attach to
Linked-List

6.5
Display the

route

Validates
Duplicity &
Saves all
Attributes

Figure 5.8 Detailed DFD for route operation

38

7.1
To make Grid

of 50km/
100krn

7.2
Create a node

& attach to
Linked-List

7.3
Display the

Grid

Save the
grid

Figure 5.9 Detailed DFD for Grid Formation

39

4
Route Cost

Module

6
Probability
Detection
Module

Scenario/GUI

1'
Run

Simulation

.2
	

3
Weightage
	 Weightage

attached to 	 attached to
cost of
	 the prob. of

Distance
	 Detection

6
Optimal
Route

Selection
module

Database

7
Simulation

Results

Figure 5.10 Level-2 DFD for Simulation Module

l(1

5.2 Flow Charts
Start

l 	Click on "Certain Radar"
button to place radar

Left Click on Client Area
where to place certain radar

Enter the Name, Range,
Effectiveness

Create a node & attach to
Linked-List

Validates the duplicity
of name

Display the Radar

Yes 	Want to place
more radar?

Store the scenario in
the File

Want to edit
any radar? N0 A

r

Click on the arrow button

Check the radar radio button &
click updateldelete button

Click over the icon

Change the attributes

1
Updates the Linked-List &

File

Figure 5.11 Flow Chart for radar operation

41

Start

Click on "Certain SAM"
button to place SAM

Left Click on Client Area
where to place certain

SAM

Enter the Name, Range, 	Create a node & attach
Hit Probability 	 to Linked-List

Validates the
duplicity of name

Display the SAM 	Store the scenario
in the File

Want to 	 Want to ec
place more 	N0 	any SAM?
SAM?

Click on the arrow
button

Check the SAM radio button &
click update/delete button

I 	Click over.the icon

~ Change the attributes

Updates the Linked-List
& File

Figure 5.12 Flow Chart for SAM operation

r,I

42

Start

Click on "Certain Aircraft"
button to place aircraft

Left Click on Client
Area where to place

certain aircraft

Enter the Name, Speed, 	Create a node & attach
Fuel, Height 	 to Linked-List

Validates the
duplicity of name

Display the Red Aircraft 	Store the scenario
in the File

Want to 	 Want to edit
place more 	 any aircraft?

	
A

enemy
aircraft?

Click on the arrow
button .

Check the fighter radio button &
click update/delete button

I 	Click over the icon

I Change the attributes ~

Updates the Linked-List
& File

Figure 5.13 Flow Chart for4e iemy aircraft operation

Start

Click on "uncertain
radar/SAM/Aircraft" button to

place icon on scenario

Left Click on the client
area

Generates location & range by
random number generator

Create a node & attach the
location, range to linked-list

Display the uncertain I 	I 	Store the
radar/SAM/Aircraft 	I 	scenario in

the file

Want to\
Y/7 	more

icons?

0 z

A

Figure 5.14 Flow Chart for Uncertain radar/SAM/Aircraft operation

44

Start

Click on "Target" button to
place target on scenario

Left Click on the client
area

Create a node & attach the
location, range to linked-list

Display the Target 	 Store the
scenario in

the file

Figure 5.15 Flow Chart for Target Placing

ZI 5

Yes

Start

Click on "Start Route "
button to create new route

Enter the Name for the
route

Validates the duplicity
of the name

Left Click on Client Area to
get waypoints 	i

Create a node & attach
to Linked-List

	

Display the Route between 	 Store the scenario
the waypoints 	 in the File

Further 	 Click on "End Route"
nodes on 	No 	button to stop getting
the same 	 waypoints for the same
route? 	 route

create
Want to

Yes /\ crea new
route?

0 z

n

Figure 5.16 Flow Chart for route operation

46

Start

Click on "Grid" button to make grid over client area

Check radio button for 50km wide grid
(1 km = 1 pixel)

Display the Grid of 50km width

Want to change
grid size? 	 r1

Check radio button for 100km wide grid
(1 km = 1 pixel)

Display the Grid of 100km width

Figure 5.17 Flow Chart for Grid Formation

47

A

Scenario/GUI

L.
Run Simulation

Enter Weightage attached to
the cost of distance & prob.

detection
(Say wl & w2)

Figure 5.18(a) Run Simulation & Assign
Weightage Get the normalized route

cost from the Linked-List
(Say NormVal (Cost))

Get the normalized prob. of
detection from the Linked-List

(Say NormVal (Prob))

Calculate Total Route Cost
A. 	 i,e., wl*NormVal(Cost) +

w2*NormVal(Prob)

Is more
routes on

the
scenario?

Create a node & attach
Total Route Cost to the

Linked-List

Determine the least 	 Blue Aircraft follow the
total route cost i.e., 	 optimal route to 	Stop

optimal route 	 achieve the qoal

Figure 5.18(b) Flow Chart for Simulation Module

48

B

Get the waypoints of route from
linked-list to calculate the cost of

distance

Calculate the cost of distance
between the waypoints

' Is more

	

waypoints 	Yes
for the same

route?

0 z

Create a node & attach the total cost
for the route in the Linked-List

Is more

	

routes on 	Yes
the

scenario?

0 z

Determine the maximum
route cost

Normalize each route cost by dividing
with Maximum route cost

Create node &
attach normalized

route cost to linked-
list

C

Figure 5.19 Route Cost Module

49

C

Get the waypoints of route from Linked-
List to calculate probability of detection

Is pixel
Get next pixel using 	No 	detected by

Bresenhams Algorithm 	 radar/SAM?

Calculate the distance of
pixel from the position of
radar/SAM (say DIST)

Calculate the Probability
of Detection (i.e.,

1 /DIST)

Create a node & attach the total prob.
Of detection for the route in the

Linked-List

T
Is more

waypoints
for the same

route?

Yes

Is more
routes on

the
scenario?

Yes

0 z

Determine the maximum
prob. detection

Normalize each route prob. _______
	node & attach

Detection by dividing with
normalized prob. of

detection to linked-list
Maximum urob. detection

FAcc.
LI$R9

Figure 5.20 Probability Detection Mo 1 	
..•...

50/

C

5.3 Class Cards

Class Name: CGeographicCoord

Variable Name
Data Type/Class Type Name of the Variable/Object

int Degree
ml Minute

float Second
char Direction

Function name
Type of the Function Name of the Function

constructor CGeographicCoord()
destructor CGeographicCoord()

Description of this class

This class basically initializes the co-ordinate position in the form of degree, minute,

second and direction.

Class Name: CLoc

Variable Name
Data Type/Class Type Name of the Variable/Object

CPoint Point
CGeographicCoord Latitude
CGeographicCoord Longitude

Function name
Type of the Function Name of the Function

CPoint GctLoc()
void SetLoc()
char* Get Latitude_Str()
char* Get Latitude_Str()

Description of this class

This class sets and gets the x,y co-ordinates of object as well as latitude.

Class Name: CTarget

Variable Name
Data Type/Class Type Name of the Variable/Object_

CLoc Loc
Bool is set

51

Function name
Type of the Function Name of the Function

constructor CTarget()
void DrawTarget()
void SaveTargcl()

destructor CTarget()

Description of this class

This class is used to set, draw the target (i.e. enemy ammunitions factory) and also

to save it to a file.

Class Name: CWaypt

Variable Name
Data Type/Class Type Name of the Variable/Object

CWaypt* Next
CLoc Loc

int waypt_number
char* route name
float Height
float Speed

Crime Time
static float x, y
static int deltaY, dcltaX
static int xs.vs.xf.vf
static int DIRflag
static int countPOJNT
static int reverseCountPOlNT
static int stopFlag

Function name
• Type of the Function Name of the Function

constructor CWaypt()
void SetRouteName()
char*
void

GetRouteName()
addnode()

CWaypt* getnode()
virtual void delnode()

void moveFighter()
void savelist()

char* ToString()
virtual void display()

void SetSpeed()
float GetSpeed()
void SetHeight()

52

float GetHeight()
CTime GetTime()
void SetTime()

destructor CWaypt()

Description of this class

This class sets the location of the waypoints of the route, the height and speeds of

the fighter, provides facility to specify event time in the scenario and saves all the

data on Flat File using Linked list concept as well as load all the information from flat

fire. This class also takes care about editing and moving fighter concept.

Class Name: CRoute

Variable Name
Data Type/Class Type Name of the Variable/Object

CWaypt* waypoints
char* route_name
float cost-of distance
float normal cost
float prediction cost

CRoute* next
int count

Function name
Type of the Function Name of the Function

constructor CRoute()
void SetRouteName()
char* GetRouteName()

CRoute* getnode()
void add_new_route()
void routeMovement()
void display()
void savelist()

char* ToString()
CRoute* get_route byname()

Void Add WayPt()
Void DeleteWaypt()

Destructor CRoute()

Description of this class

This class creates the route for the Blue Force (friendly) fighter, displays it and saves

it to the scenario file. It also contains the module for fighter movement.

53

Class Name: CGraphObject

Variable Name ,
Data type/Class Type Name of the Variable/Object

char* name
Float info

CGraphObject* next
CLoc Loc
char* Type

Function name
Type of the Function Name of the Function

Constructor CGraphObject()
Void addnode()

CGraphObject* getnode()
virtual void delnode()

char* Search node()
Boo! Search _Wnode()
Void delnode()
char* Search_node_by_pos()

CRoute* Get_route_by_name()
CPoint Search node pos()
Void SetType()
char* GetType()

virtual void display()
Destructor CGraphObject()

Description of this class
This forms the base class for the enemy objects such as Radars, Surface-to-Air
missiles and Fighters containing the features that are common to all of them i.e.
location, type of the object and its name.

Class Name: CSensor

Function name
Type of the Function Name of the Function

Constructor CSensor()
virtual void display()
Destructor CSensor()

Description of this class
This class is a base class for CRadar class.

54

Class Name: CRadar

Variable Name
Data Type/Class Type Name of the Variable/Object

float range
int ID

float Detect Radius
float -- E fectvncss 	 -
Boot Active
int certain

Function name
Type of the Function F 	Name of the Function

constructor CRadar()
virtual void display()

CRadar* getnode()
void addnode()

virtual void savelist()
virtual char* ToString()

void Set Dctcct Radius()
float Get Detect Radius()
void Set Efectvness()
float Get Efectvness()
void Set Active()
void Set Passive()
void update()

destructor CRadar()

Description of this class

This class encapsulates the entire attributes specific to radars and describes their

functionality related to the application. It also provides functions for addition of its

objects to a linked list thereby providing dynamicity, updation of the attributes of

radars during execution, drawing the objects on to the screen and also to save the

information about them in the scenario file which can opened to load the scenario

when required.

Class Name: CFighter

Variable Name
Data T pe/Class Type Name of the Variable/Ob ect

float Speed
float Fuel_level

CRgn Region
float Height

55

Function name
Type of the Function Name of the Function

Constructor CFigliter()
void display()
void addnode()

CFighter* getnode()
void savelist()
char* ToString()
void uncertdisplay()
void Set_Speed()
float Get_Speed()
void Set_Fuel_Level()
float Gct_Fucl_Lcvel()
void Set Region()

CRgn Get_Region ()
void Set Height ()
float Get_Height()
void update()

destructor CFighter()

Description of this class

This class encapsulates the fighter specific features such as .their height, speed, fuel

level. It provides functions for adding it to the list of fighters, setting and getting its

attributes, modification or deletion of their attributes during execution, drawing the

objects on to the screen and also to save the information about them in the scenario

file which can be opened to load the scenario when required.

Class Name: CSam

Variable Name 	 __
Data Type/Class Type 	Name of the Variable/Object

float 	 Detect Radius
float 	 Hit Prob

Function name
Type of the Function Name of the Function

Constructor CSam()
char* ToString()
void savelist()
void Set-Detect Radius()
float Gel-Detect Radius()
void Set_Hit Prob()
float Get Hit_prob()
void display()
void addnode()

56

CSam* getnode()
void update()

destructor CSasn()

Description of this class

This class encapsulates the features specific to SAMs such as their hit probability and

range. It also provides functions for adding it to the list of SAMs, setting and getting

its attributes, modification or deletion of their attributes during execution, drawing

the objects on to the screen and also to save the information about them in the

scenario file which can be opened to load the scenario when required.

Class Name: CFighterDialogbox

Variable Name
Data Type/Class Type Name of the Variable/Object

Float m fuel_level
Float m_height
Float m_speed

CString m_name

Function name
Type of the Function Name of the Function

constructor CFighterDialogbox(CWnd * pParent)
destructor ---CFighterDialogboxO

Description of this class

The function of this class is to provide an interface to the user to specify the

parameters of the fighter such as its speed, which can vary according to the

situation.

Class Name: CFi hterEdit

Variable Name
• Data Type/Class Type Name of the Variable/Object

float in-fuel-level-edit
float m_height_edit
float m_speed_edit

CString m name edit
int m 	value
int m ` vahie

57

Function name
Type of the Function Name of the Function

constructor CFighterEdit(CWnd * pParent)
destructor ---CFightcrEdit ()

Description of this class

The purpose of this class is to allow the user to modify the values of the parameters

of the fighter that have been set during the scenario creation time.

Class Name: CHorzDialogBair

Variable Name
Data Type/Class Type Name of the Variable/Object

int m_x_pos
int rn y_pos

Function name
Type of the Function Name of the Function

constructor CHorzDialogBaro
void On ClearCanvasO
void OnRunSimO

destructor — CHorzDialogBa r()

Description of this class

This class specifies the buttons that have been created in order to provide a better

user interface and the functions that are invoked on their selection to perform the

related task.

Class Name: CRadarDialogbox
Variable Name

Data Type/Class Type Name of the Variable/Object
float rn Detect Radius, m Efectvness
int m Active

CString m_name

Function name
Type of the Function Name of the Function

constructor CRadarDialogBar()
destructor — CRadarDialogBar()

Description of this class

The function of this class is to provide an interface to the user to specify the

parameters of the Radar such as its name, range, and effectiveness at the time of

scenario creation.

5R

Class Name: CVertDialogBar
Variable Name

Data Type/Class Name of the Variable/Object
Type
UINT New_Command,select_type

int grid_length, i
static int Flag
CBitmap b8,b9,b l O.b l 2

Bool grid_on
HBITMAP hb1,hb2,lab3.hb4,hb5,hb6.hb7,hb5,hb9,hbIQ,hbII,hbl2,hbl

3
HICON hlcon_enemy_target,hlcon_feiendly_fighter,hlcon enemy_

iigliter_certain,lilcon_enemy_fighter uncertain.hlcon_radar
_certain,hicon_radar_uncertain,hl con_timer,hlcon_wve,,tther.
hlcon_goal,lilcon_sam certain,hlcon_sam_uncertain,lilcon

arrow

Function name
Type of the Function Name of the Function

constructor CVertDialogBar()
void SclSelectionPanclActiveO
void SetSelectionPanelInactive()
void OnCertainPlaneO
void OnUncertainPlane()
void OnCertainRadarO
void OnCertainSamO
void OnUncertainSam()
void On GridO
void OnCreacRoutc()
void OnArrow()
void OnGoal()
void OnSetTime()
void OnWeatherO
void OnTargct()
void OnFriendlyFighter()
void OnEndRoute()
void OnSelectRadar()
void OnSelectSam()
void OnSelectFighter()
void OnSelectRoute()
void On l OOKm()
void On5OKm()
void OnEditUnit()
void OnDeleteUnitO

destnictor - CVertDialogBar()

59

Description of this class

This class specifies the buttons that have been created in order to provide a better

user interface and the functions that are invoked on their selection to perform the

related task.

Class Name: CWaypoint

Variable Name
Data Type/Class Type Name of the Variable/Object

float m_Speed, m Height
CTime m time

Function name
Type of the Function Name of the Function

constructor CWaypoint(CWnd* pParent)
destructor - CWaypoint ()

Description of this class

This class is used to specify the parameters at each waypoint.

Class Name: CScenarioAreaDlhbox
Variable Name

Data Type/Class Type Name of the Variable/Object
float rn—second—latitude,m_second_longitude

CTirne rn mission time,
int m_degree_latitude,m_degree_longitude,in

_minute latitude, m_minute_longitude
COLORREF friendColor,enemyColor

UTNT m_x extents, m.y_extents
CString m_direction_latitudc,m_direction_longitu

de

Function name
Type of the Function Name of the Function

constructor CScenarioAreaDlgbox(CWnd* /Parent)
void OnFriendColor()

BOOL OnlnitDialogO:
void OnFriendColorrefPaint()
void OnEncm_yColorreiPaintO
void OnEnemyColor()

destructor —CScenarioAreaDlgbox()

Description of this class

This class is related to the dialog box that appears in the beginning that specifies the

extent of the client area, latitude and longitude, provides facility to change the

default colors of the forces involved in the air interdiction mission.

60

Class Name: CRadarEdit

Variable Name
Data Type/Class Type Name of the Variable/Object

float m detect radius edit,rn efectvness edit
int m_x_edit, m x edit

CString m_name_edit

Function name
Type of the Function Name of the Function

constructor CRadarEdit(CWnd* pParent)
destructor —CRadarEdit()

Description of this class

The purpose of this class Is to allow the user to modify the values of the parameters

of the radars that have been set during the scenario creation time thereby making

the application flexible.

Class Name: CSamEdit

Variable Name
Data Type/Class Type Name of the Variable/Object

float m edit_radius. m edit hit_prob
int m_x_value, m_y_value

CString m_name_edit

Function name
Type of the Function Name of the Function

constructor CSamEdit(CWnd* pParent)
destructor -CSarEdito

Description of this class

The 'purpose of this class is to allow the user to modify the values of the parameters

of the SAMs that have been set during the scenario creation time thereby making

the application flexible.

Class Name: CsamDialogbox

Variable Name
Data Type/Class Type Name of the Variable/Object

float m_detect_radius, m hit_prob
CSlring in name

61

Function name
Type of the Function Name of the Function

constructor CSamDialogbox (CWnd* pParent)
void OnRcset()

destructor -CSamDialogbox ()

Description of this class

The function of this class is to provide an interface to the user to specify the

parameters of the SAM such as its name, range, and effectiveness at the time of

scenario creation.

Class Name: CMydlgbarpoe

Variable Name

Data Type/Class
Type_

Name of the Variable/Object

HBRUSH RADAR BRUSH,SAM BRUSH
HPEN hDashPen,hSolidPen

COLORREF ENE,MY COLOR, FRIEND COLOR
Int x extents, v extents

CRoute * route 1
CTarget * target
HICON hIcon cnemy_target,hlcon_feiendly_fighter,hlcon_enc

my_f ighter_certain,hlcon_enemy_fighter_uncertain,hlc
on_radar_certain, lilcon_radar_uncertain, hlcon_sanr_ce

rtain,lilcon sam uncertain
CGraphObject * GraphObject

CRadar * Radars
CFighter * Fighters

CSam * Sams

Function Name
Type of the Function Name of the Function

constructor CMydlgbarpoc()
void Draw_All_Items(CDC* pDC)
void SaveGloballnfo(const char *filename)

virtual BOOL OnNewDocumentO
virtual BOOL OnSaveDocument(LPCTSTR 1pszPatliName)
Virtual void Serial ize(CA rchive& ar)

virtual BOOL OnOpcnDocumcnt(LPCTSTR 1pszPathNamc)
Virtual destructor -CMydlgbarpoc()

02

Class Name: CMydlgbarView
Variable Name

Data Type/Class
Type

Name of the Variable/Object

UINT uid
int x_extents, y_extents

CPoint s_point, pt
float speedfuel_level,height
Bool valid

HCURSOR hCursor my_arro-tw',hCursor_my_cross
HUCON fighterl ,fight er2,fighter3,fighter4,fighter5,f ghter6, tighter7,

fighters
LOGFONT CurrentFont

COLORREF ENEMY COLOR
HFONT hFont
CString pararn 1

Function name

Type of the Function Name of the Function
constructor CMydlgbarView()

void nm_Simulation()
CMydlgbarpoc * GetDocumentO

void OnAlphaCall()
void InitParams()
void Crcate_New_RouteO
void set _normal cost()
void detection_cost()

CMydlgbar void normal ized_detect cast()
CPoint GetLogicalPoint(CPoint point)
float calculate_cost();
void OnTimer(UINT niDEvent)

BOOL OnEraseBkgnd(CDC* pDC)
void OnMouseMove(UINT nFlags, CPoint point)
void OnLButtonDown(UINT nFlags, CPoint point)

Virtual void OnEndPrinting(CDC* pDC, CPrintlnfo* pinfo)
Virtual void OnBegirPrinting(CDC* pDC, CPrintlnfo* pinfo)

virtual BOOL OnPreparePrinting(CPrintlnfo* pinfo)
Virtual void OnInitialUpdate()

virtual BOOL PreCreateWindow(CREATESTRUCT& cs)
Virtual void void OnDraw(CDC* pDC)

UINT getData()
float Gct_rangc(float afloat b)

CPoint Generate_random_pos(float a,float b)
destructor — CMydlgbarView()

63

CHAPTER - 6

Program Specification

6.1 Design Specifications

To accomplish the task of the interdiction mission, modeling the attributes and

complex dynamics of various interacting elements is a critical issue. In order to

achieve this, the attributes and behavior of each agent has been encapsulated in a

structure called a class thereby following an object-oriented approach. This seems a

simple task where the dynamics of the interacting elements remain the same

throughout the application. But, complexity arises where there is uncertainty

Involved in the process. For the objects in our air force mission-planning domain, we

can categorize the uncertainty into several types:

1. Uncertainty of existence : The object may or may not exist.

2. Uncertainty of location : An area of uncertainty of the object's location is

available but it is not certain of the exact location of the object.

3. Uncertainty of range : The exact detection range or firing range is not

known.

4. Uncertainty of number: The number of interacting objects is user specific.

Since the deployment of agents in the mission is user specific, the data structure

that best suits the development of our application is a Linked list as it allow

• creation of objects during execution of the application thereby providing flexibility

and dynamically.

6.1.1 Data Structure Used

A critical issue to be dealt with during the development of an application is the data

structure used since it largely affects the performance of the application. Keeping in

view of the uncertainty defined in terms of the number, range, location and existence

of objects a linked list appears to be the optimal choice

65

Linked List

A linked list is a dynamic data structure. Each item in the list is called a node and

contains a minimum of two fields and an address field. The Information field holds

the actual data on the list while the address field contains the address of the cieici

node in the list. The entire list is accessed from an external pointer that points to

(contains the address of) the first node In the list (an "external pointer" means one

that isn't Included within a node rather its value can be accessed directly by

referencing a variable). The next address field of the last node in the list contains a

special value known as NULL, which Isn't a valid address. This NULL pointer is used.

to signal the end of a list.

Advantage of Linked-List over array implementation

Under array implementation, a fixed set of nodes represented by an array is

established at the start of the execution. A pointer a node Is represented by the

relative position of the node within the array. The disadvantage of this approach is

two fold:

o •The number of nodes that are needed often cannot be predicted when a

program is written. Usually, the data with which the program is executed

determines the number of nodes necessary. Thus no matter how many

elements of the array of nodes contains, it is always possible that the

program will be executed with input that requires a larger number.

o Whatever numbers of nodes are declared must remains allocated to the

program throughout its execution?

The solution to this problem is to allow nodes that are dynamic rather than static i.e.,

when a node is needed, storage is reserved for it and when it is no longer needed the

storage is released. The storage for nodes that are no longer in use is available for

another purpose. Also, no predefined limit on the number of nodes is established. As

long as sufficient storage is available to the job as a whole, part of that storage can

be reserved for use as a node.

Iel

6.1.2 Scenario File Specification

The idea behind maintaining a scenario file is to provide the user with the facility to

restore the scenario so long as the deployment of the enemy objects that are certain

remains fixed during the simulation process. The file not only contains the global

parameters of the scenario such as the extents of the client area, the complete

description of various enemy units including their name, type, location, and other

information specific to each of them, but also the complete details of the routes to be

simulated. This file serves as an input for the simulation module.

Scenario File Format:

Global parameters #

$ radarl : attribl : attrib2 :attrib3 $

$ radar2 : attribl attrib2 :attrib3 $

$ fighterl : attribl : attrib2 :attrib3 $

$ fighter2 : attribl : attrib2 :attrib3 $

$ same.: attribl : attrib2 :attrib3 $

$ sam2 : attribl : attrib2 :attrlb3 $
6

$ routel : waypti : waypt2 : waypt3 $

$ route2 : waypti : waypt2 : waypt3 $

The # symbol is used to mark the header and trailer of the block specifying the

global parameters.

The $ symbol is used to ,mark the header and trailer of the records for each object

whose attribute are separated by colons (:).

67

6.2 Implementation

This phase deals with the preparation of the Graphical User Interface. (GUI) to

provide the user with an environment exhibiting air interdiction mission, where the

target is to destroy the enemy ammunitions factory.

We categorize the phases involved in the development of the application as:

I GUI development phase

II Simulation module

6.2.1 GUI Development

The GUI for the interdiction mission is designed taking into consideration the input

output requirements of the application as well as the relationship that exists

between various objects actively involved in the interdiction mission. The GUI

focuses on the setting of the client area where the simulation can proceed.

Features supported by the GUI include: -

1. Scenario Map Extents Dialog Box

The interface for the scenario map extents shown in Fig 6.1 specifies

o The extents of the client area indicating the span of the mission.

o It provides facility to the user to specify the color for the two .forces

involved in the mission apart from the default color i.e. red for the

enemy and blue for the friendly forces.

o Values for latitude and longitude can also be specified.

.-. ------- , -
M# 	NO '000 	i Fue.,rfly 	(

1000
HO Sterttime 	12:on oo rte+ -- !

'Chutiv►eFes ScerranolJripn

LM u a 27

ja

,. or- . 	Restit

Figure 6.1 Scenario Map Extents

68

2. Dialog Bars

Dialog bars derived from Control bars greatly enhance a program's usability
by providing quick, one-step command actions. As in a dialog box, the user
can tab among the controls. Dialog bars can be aligned to the top, bottom,

left, or right side of a frame window.

Left Dialog Bar:

Interface for the vertical dialog bar shown in Fig 6.2(a) includes:
• Buttons for the certain and uncertain Red force (i.e. enemy) units i.e.

Radars, Surface-to-Air missiles and enemy fighters.

• Button that depict the Target i.e. Red Force ammunitions Factory.

• Buttons that invoke the functionality for route creation.
• Button that shows the Blue Force (friendly) fighter.

• Buttons associated with the modules for editing and deletion of objects

during execution.

• Buttons to specify the goal of the interdiction mission.

• Button to record the time taken for simulation.

• Button to indicate weather condition.

• Button for the grid specification.

Fail§abn Ect

C"' Fis~hte~

Updét 	D~ei®te

' ErtviroririTe~it'
6oe1 . .Time . Weathe+i

.. . Erj+s}~}reg FciiQe+~

F~yfit .. 	7 ar t

Ce tmin Unc a ti In

Lie1 [I1
t.-

.Rdaia Ples~iilny

S n Rout, End Routs

 - 56 km . .
Qtid ON 	!" I OI] km

Figure 6.2(a) Left Dialog Bar

Right Dialog bar:

Right dialog bar depicted in Fig 6.2(b) serves as an interface to record the

result of the simulation module. This dialog bar provides facility for:

• Recording the route name and the total score calculated for each route.

This score is. calculated based upon two factors - the cost of the route in

terms of distance and the probability of getting detected on that route.

Figure 6.2(b) Right Dialog Bar

70

'~•iLFii 	Edi 	Yidv.41rda+. $etP.'.,: 	 ~' 	'- 	•.i,.;::.:.~_..: 	.:•.r..~z ~~ 	~•r.~~~

a R 	.r.sire ! 	I 	!
51M1~o11 . 	Rdihittl

]
aye : 	nay I 	I 	I 	I 	I 	I 	I S1

Ta~t!es!
Enkasee~t I 	I 	{ 	I 	 I 	 t

I

I 	I 	I 	! 	! 	I

4e • _-. 	•
f Irii1:J ~_.I — 	_.~_ 	---- (___ 	~. 	_ _... _ 	.-_ { 	iI

1! 	I' 	r 	i 	i

l] 	I 	i

6taitROiGe -EMRaee• ' 	 i 	i 	;!

OwCbiwa

f0 	ria 	 'o
• _ - •IM

 Y 	
(

eZ7K23'N 	 i 	10fhm _ 	i . 9llILII.AiIOFr ••

Figure 6.2(c) An Overview of Scenario

3. Interface for the initializing the attributes of Red Force Units: -
a. Radar:

Fig 6.3 shows the interface for setting the attributes of the radars that
donot includes any uncertainty to be modeled. The attributes of the radar
include:

- Name of the radar
- Range of the radar
- Effectiveness
- Active/Passive to indicate whether its active or passive

= Name 	radarl

Detect Radius m 74
Effèlivenes 	105

' Active 	r Passive

j.Corrxn?t 	gaset

Figure 6.3 Parameters for Hostile Radar

7!

Entity already aiaM !t
Select c fteient name

Figure 6.4 Check-Box for duplicity in name

SNP+ '7 	.,t1MP 	 .i xl
FiNsionEA!" 	! 	3 	I' 	 •

	

i 	I 	i 	i 	 5~shlien i4h fle~ult

GclflOH r iMIJ 4!

C1wCanva,
oki 	fmft 	ofbh

I k 4% 	k~. 	YAM
rmv+akdcomanm., -- 	 - 	MtS 	..__......

1 k 	 s,09`T 	; 	1OW-I000m SlMiflArlQN

Figure 6.5 Hostile Radar Creation

b. Fighter:

Fig 6.6 shows the interface for initializing the attributes of the Fighters

that don't involve any uncertainty to be modeled. The attributes of fighter,.

include:
- Name of the fighter

- Height
- Speed of the fighter

- Fuel-level

72

Naii* 	tfthter1

Fut..emI(bj 1(10

EIN

rL_ 	
V 	

e,[mt*j I 181

Figure 6.6 Parameters for Enemy Fighter

-ova fica

• I 	t\ J)
Da Yk,

Fi T.iF
 ni ~

I dI;;.

qi I
- 	 1

	

O1d1tflcJCoIrf.aIs* 	- ------- 	Ucati ----- 11 Lm)4e 27 	23 N 	Lmi 	WE

Figure 6.7 Enemy Fighter Creatiofl

c. SAM (Surface-to-Air Missile):

Fig 6.8 shows the interface for initializing the attributes of the Fighters
that dont Involves any uncertainty to be modeled. The attributes of
fighter include:

- Name of the SAM

— Range

- Hit-Probability

— Fuel-level

73

amei 1am1

• DitAackti I _____

• tF! et1

Figure 6.8 Parameters for Hostile SAM

• _. }j1

_____ 	_______ 	-. 	•• . -
PO ---- 	 ---• 	- r.

liii 	V 144 Ir I L. 2 	2 ii 	LouM 	fflt 	1j4ul.1Cm 	th4uLAflON

Figure 6.9 Hostile SAM Creation

4. Interface providing editing and deleting facility:

Editing:

The GUI presents the user,with the facility to edit the attributes of the units

deployed including their location to modify the scenario prior to the execution

of the simulation module.

74

c 4 	PJime 	Jfighter4

Speed 	RE
Fuel-Level
Heiit(mk)

Loceioh Iñfthnat,on

XValue pgi

YV&ue 1150

Conimit ne1

Figure 6.10 Fighter Edit Box

T.

--H+-H---f-H

I 	 I

Figure 6.11 Scenario after Editing Fighter

75

Name 	m1

b e Radio (km3 ' _

'Ilzx r HiL pfo

	

V ue 	fr31
`._ 	Y Vakie 	11352 _..

 : cnmk(lcice1J 	
I

Figure 6.12 SAM Edit Box

+ 	.a~i 	lip
I 	I

RwJEi ` F' 	L ~ I 	+ 	I 4foJitien Ain

?: ,W_.~~., II
Y11
,~"R• I

 - 	TddCatr

t4° rite W 1d 	I 	I

ELF. 	f

Pith[.. ?eiy~e 	 I 	 i

Ce thi Uriaataii

4.771..1 	-
	 - 	 .. .

110yer1
s~ . ..

Stiihelr:tn 	 t 	t'

I 	I 	I 	II 	1

f~abdll ar~~ - i

Dsrn+eelioe~dyn .. 	a G.og~tcelCna3des 	 ~~ Liepseal. 	E 	f#X)

°'1"

	 J(Q§ kd1 	r V 19 I 	Li~di' 27'ti! 73II 	 LL !!at.4. l2 33 038 	1 	-tOmm 	jSIMtUTA11dN

Figure 6.13 Scenario after Editing SAM

p

76

I 	 1 luhi' / c 	ma Wsh., 	i

I I(\ H) -M Idol

H
.1 	 .

-
• I•• 	- 	.

I 	I

Defect facka (km)
EffeH'mne 105

ffithOn

XVaIue 12*)
VVekie

I tommIneetI

Figure 6.14 Radar Edit Box

thcw*1 	;rr. 	V At 6 	27 	uroa& 826

Figure 6.15 Scenario after Editing Radar

Deleting:

The GUI also provides support for deleting the deployed units if any one of
thrn becomes useless (i.e. looses its significance) for the interdiction

77

mission. This could happen if any of the units gets destroyed or losses its

effectiveness.

p 	!M1; . lit 	i Rm AU6

1YJd f'

l

I

i 	i I ________

Curtin 	tht twi ;

rrtfta;~r. Enas~aoe.. _ 	~ { I
i

I}4lr.h OdDi+—: _ 	— 6gap. ed[oa3u~w 	._..._..._..___) '4cdi 	f 	AQf tb*ra 	i It 54 kie 	Y 210 in 	Ldiuli 27'!$'2 	LB BP1!'Q3"E 	1p1w1.1O m 	, i Sd1UlAt10N

Figure 6.16 Scenario after Deleting Radar

5. Interface for route creation:
The aim of the interdiction mission is to guide a Blue Force (friendly fighter)

to destroy Red Force (enemy) ammunitions factory to delay its supply and to

come back to its base safely given a number of threats to the mission. This

Interface allows the user to create a number of routes that are simulated and
a best route Is then selected depending upon the score of each route. The

interface allows the user to specify the name of the route as well as the speed

with which the fighter will travel.

78

Si d b. R1 . Rwd4

I. 	1atllCeu 	i

Fdrr Now RipAe: s--,

1 	- - 	Route 1

Start time:', 5.-M.00,4M

 __± j_i

Figure 6.17 Parameters for new Route

LE FaYom+4l

	

.1 	I 	I

_. 	I 	 3

4 	 kmfi

	

I 	i 	I 	Pam 1 I 	.
K.J *000DOm 11 	07:30:00

.:62 	I 	 t 	iP•~ & J i krtM ` 	.

t
<u. z

+ sb m m 	 r~ . 	I *.+d4 eoo.00 ~ , SEO OO km 	ow h 	 a
3 fjpeed WOAD kM. 800 OO m

Trr'r RS: ~:00] 	 fp..O 6oO.W kmi~

Rdee won5 m
--' -- '- 	--- - r 	._ 	t _ 	...i 	--- 	--- -- 	

--- 	:- -
-tPrdE00D0kmR.- 	3 	_

2 Mm. 06;]0: W 	I. 	~9
I 	I Htldi am 00 m

- ! c t ew.ao 	A ~,. ,pi.e Eoorn

1I..0: 	:d0 	2
M"0B:3o:00

f i mob0 	60000 m:
• 600 00

• • 4m. 	 0 00

	

i 	Arai Rm oo m _ 	 I

A- 05.30 .00

I 	f 	i 	i 	 lPwd000.W isun 	I 	' 	.
0 	 11M 06:30:00

Nrde s0oA0 m 	R 	 R

tiro" 	SM(W 50003 Z. 	pou.2 	 j 	I 	f ~My

` 	71mi o0:30:bO 	fidd+l B0D.00 m_.. 	..._ _ 	_ ..- 	__... IktW X0000 ql •

IJ
Lpoacnlnfolw+bl - 	- - 	-`- ' - = -' 	

-------__-:__. ... _ .

	

:DO oOr+ 	•9~anddco..L lii— 	- 	-= Y 'r149
$1 :lu. 	V CIS 6. 	LAW& 27.35'23N 	L&OA Kr 5 W"E 	1pIr1.1000m 	6Mp1UTTbN

Figure 6.18 A scenario Created for Simulation

6.2.2Simulation Module

Once the GUI has been created, it is then ready to be provided as an input to the

simulation module. Prior to invoking the module associated with the simulation

button uncertainties in terms of the existence, range etc of the objects has to 'be

resolved. Click on the uncertain radar/SAM button to place the same on the scenario.

This causes a function associated with these buttons to invoke and random number

streams are used to resolve the uncertainties related to the selected objects

79

regarding their existence, range etc. Now the function associated with the' Run

Simulation button is invoked and a dialog box appears asking the user to give

weightage to the factors upon which the simulation module operates. These factors

are: -

• The weight attached to the cost of the route in terms of distance

• The weight- attached to the probability of being detected on the route.

cf of piiuIe (w1j : 3

tt 	 ititata fw2~ : ~

Figure 6.19 Weight Assignment

After specification of the weights associated with the guiding factors each route is

examined to fine out the total cost of the route in terms of distance, the total

probability of detection- and the normalized cost and detection probability. Once all

the routes have been examined calculate the total score for each route by

multiplying the costs with their respective weights. Finally, the route with the

minimum score is selected to be the best route, which the Blue Force fighter will

follow to reach the target.

Thus the objective function is given as: -

Route [I] = wi * route cost [i] + w2 * route prob [i]

where,
i = Route No.

Route [I] = Total cost of the route I

route cost [i]' = Total cost of route i In terms of distance

route prob [i] = Total probability of being detected on route I

wi = Weight attached to cost of route i

w2 = Weight attached to probability of detection for route I

The simulation algorithm is as follows: -

1. Assign the weights wi and w2 to the factors guiding the simulation process.

OW 00 hM
:30:00

im m
OW kmlh
: 30:00

,

Hddi 800e

1ptwd-f000m S~t(MTtDN

2. For each route do

2.1.1 calculate total cost of distance

2.1.2 calculate the total probability of detection

2.1.3 divide total cost of distance with the maximum cost of all the routes

examined so far to find out the normal cost

2.1.4 divide total probability of detection with the maximum probability of

all, the routes examined so far to find our the normal probability.

1. Using the objective function calculate the score for each route and select the

path with the minimum score as the optimal path.

2. Make the fighter to follow the selected path to reach the target for its

destruction.

0 0• rt8 	n±' Ham. :: - .:

'.rtai
_ 	I 	1

	

Cdr- 	
-,.__; 	 z

	

I 	~

	

±`, iic~m:' r' •ltd` 	_ Si'd4• Ru+ Rat

	

r r;.tr. 	
'... 	

.i 	- 	 . 	 - 	. 	i 	--- 	 .
n oe:ao:ou 1 yZ 	 ! 	r

	

Uodde 	i 	I bm. W:iD:00 	 Rate 	Td~Co.t

y '.~1M- 	► 	 1 41)0W5. 	 Revco1 	o•686

	

i 	 11 05.30:00 9oDDOm 	ROUTE.Z- 0.256 1 co.:dW.60kW
~ ~.y • ~ 	 bm" 	 'N , oS :30 : o0 	r ROUi£3

a
io..3ei0 ao .a. - 	a

	

2 	
71nr 00:70:00 	M,ks3

• rcav T.9d 	 : 	 "man FM 0o m
r 	F 	500.00 tp 	 6P.d 5:30: 0

_ I
..tl..Z 600. D 7wr OD:~O:00

	

EbflNll - {~.hiiil 	 ! 	I 	 d•f2 oo m 	f2 	2
e 	 ootma, 	a 	 {

	

""11 .,' 	' 	1 ~0 90 	80000m

- -
""~ 	 Ralf 1

• rwb eoo 00 ~mn
- I n 	I f 17 00:90.00

A.1e2
y p 	- 	 H.IH SW OOs

. . Oo.W 600A0 NrnM
p 	 M-06 ao-m

i~ ~ i

•. 	0

	

- \ 	p5.a.,
SNiMRale EedRaur 	wa+eoom m

. 	- - ' Spy00000tMA 	 2
:..

	

CISION rr 10

r 50 ~,i~ 	 nm oa:3o:bo 	d,e eoo oem

k,i ri

Cwdndn
X 1@9- km 	Y 7.4. kn 	LaYlude 27`5!•23!4 	Lics V3d'03'E

Figure 6.20 Scenario after Simulation '

CHAPTER - 7

Conclusion & Suggestions for Future Work

7.1 Conclusion

The application developed in VC++ compiles successfully and simulate the aircraft

route planning for the optimal path on which an aircraft can move to achieve the

target decided. The target which had to attain during this period for this application

was successfully achieved.

This application has been developed for military training purpose which will be used

to train the military personnel for finding optimal route from the different possible.

route to hit the target in the war scenario where the certain/uncertain radars and

SAMs of different ranges with red fighter (enemy fighter) are ready to detect and hit

the blue fighter (friendly fighter).

7.2 Suggestions for Future Work

There is no restriction for modification in the software or application which has been

made.

1. Currently this application has been developed for the resolution of

1024x780, but It can be developed resolution free.

2. The method for the detection of probability can be use other than what we

have used.

3. Some other factors like fuel, speed etc can also be incorporated in the

simulation.

m

References

[1]

Fishwick,P.A., Kim,G., and Lee, J.J., SIMULATION. Nov. 1996, "Improved

Decision Making Through Simulation-Based Planning".

[2] Law, A.M., and Kelton,W.D. 1991, "Simulation Modelling and Analysis"

McGraw-Hill, New York.

[3] Kruglinski,D.J., 1997, "Inside Visual C++", 4th Edition, Microsoft Press,
U.S.A.

(4] 	MSDN (Micro-Soft Developer Networks), Jan. 2002.

[5] htto ://www.combatalrcraftsi m I ion. DhD4hostina.com

[6] http://www.afrlhorizons.com/index.html

[7] http://ubmail.ubalt.edu/,harsham/simulation

[8] http://www.santafe.edu

85

APPENDIX-A

Introduction to VC++ Architecture

Visual C++ is a powerful and complex tool for building 32-bit applications for Window

95 and Windows NT. These applications are far larger and more complex than their

predecessors for 16-bit Windows,_ or older programs that did not Use a graphical user

interface. Yet as program size and complexity has grown, programmer effort has

actually decreased, at least for programmers who are using the right tools.

Visual C++ is one of the right. tools. With its code generating Wizards it can produce

the shell of a working Windows application in seconds. The class library included with

Visual C++, the Microsoft Foundation Classes, has become the industry standard for

Windows software development in a variety of C++ compilers. The visual editing

tools make layout of menus and dialogs a snap.

Visual C++ doesn't just compile code, it generates code. You can create a Windows

application in minutes by telling AppWizard to make you a "starter app" with all the

Windows boilerplate code you want. AppWizard is a very effective tool. It copies code

that almost all Windows applications need into your application. An application with

resizable edges, minimize and maximize buttons, a File menu with Open, Close, Print

Setup, Print, and Exit options etc.. AppWizard makes skeleton, executable Windows

programs in less than a minute.

Other Applications AppWizard Can Make

Other application generating wizards can make DLLs, ActiveX controls, console

applications, libraries, make file, Internet Server extensions and filters, and more.

Microsoft Windows was designed long before the C++ language became popular.

Because thousands of applications use the C-language Windows application-

programming interface (API), that interface will be maintained for the foreseeable

future. Any C++ Windows interface must therefore be built on top of the procedural

C-language.API. This guarantees-that C++ applications will be able to coexist with C

applications. The Microsoft Foundation Class Library is an object-oriented interface to

Windows that meets the following design goals:

87

• Significant reduction in the effort to write an application for Windows.

• Execution speed comparable to that of the C-language API.

• Minimum code size overhead.

• Ability to call any Windows C function directly.

• Easier conversion of existing C applications to C++.

• Ability to leverage from the existing base of C-language Windows

programming experience.

• Easier use of the Windows API with C++ than with C.

• Easier-to-use yet powerful abstractions of complicated features such as

ActiveX, database support, printing, toolbars, and status bars.

• True Windows API for C++ that effectively uses C++ language features.

MFC: Overview

The Microsoft Foundation Class Library (MFC) is an "application framework" for

programming in Microsoft Windows. Written in C++, MFC provides much of the code

necessary for managing windows, menus, and dialog boxes; performing basic
input/output; storing collections of data objects; and so on. All you need to do is add

your application-specific code into this framework. And, given the nature of C++

class programming, it's easy to extend or override the basic functionality the MFC

framework supplies.

The MFC framework is a powerful approach that lets you build upon the work of

expert programmers for Windows. MFC shortens development time; makes code

more portable; provides tremendous support without reducing programming freedom

and flexibility; and gives easy access to "hard to program" user-interface elements

and technologies, like ActiveX, OLE, and Internet programming. Furthermore, MFC

simplifies database programming through Data Access Objects (DAO) and Open

Database Connectivity (ODBC), and network programming through Windows

Sockets. MFC makes it easy to program features like property sheets ("tab dialogs"),

print preview, and floating, customizable toolbars.

What MFC Can Do for You

The classes in MFC, taken together, constitute an "application framework". It is the

framework of an application written for the Windows API. Your programming task is

RR

to fill in the code that is specific to your application. Despite its generality, MFC does

support you in many specialized ways support for

• OLE visual editing.

• Automation.

• ActiveX Controls

• Internet programming.

• Windows Common Controls.

• DAO Database Programming.

• ODBC Database Programming.

• Multithreaded Programming.

• Windows Sockets for Network Programming.

• Portability

General Class Design Philosophy

MFG supplies class CWnd to encapsulate the HWND handle of a window. The CWnd

Figure a(i) The portion of the

Microsoft Foundation Class Library

that deals with applications and

windows.

object is a C++ window object, -distinct from the HWND that represents a Windows

window, but containing it. Use CWnd to derive your own child window classes, or use

one of the many MFC classes derived from CWnd. Class CWnd is the base class for all.

s9

windows, including frame windows, dialog boxes, child windows, controols, and control

bars such as toolbars.

MFC uses classes CFrameWnd, CMDIFrameWnd, and CMDIChIldWnd to represent

single document interface (SDI) and multiple document interface (MDI) frame

windows.

MFC manages windows, but you can derive your own classes and use CWnd member

functions to customize these windows. You can create child windows by constructing

a CWnd object and calling its Create member function, then manage the child

windows with other CWnd member functions. You can embed objects derived from

CView, such as form views or tree views, in a frame window. And you can support

multiple views of your documents via splitter panes, supplied by class CSplitterWnd.

There are several things to notice in Figure above. First, most classes in MFC derive

from a base class called CObject. This class contains data members and member

functions that are common to most MFC classes. The second thing to notice is the

simplicity of the diagram. The CwinApp class Is used whenever you create an

application and it is used only once in any program. The CWnd class collects all the

common features found in windows, dialog boxes, and controls. The CFrameWnd

class inherits from CWnd and implements a normal framed application window.

CDialog handles the two normal flavors of dialogs: modeless and modal,

respectively. Finally, Windows supports six native control types: static text, editable

text, push buttons, scroll bars, lists, and combo boxes (an extended form of list).

The other classes In the MFC hierarchy implement other features such as memory

management, document control, database support, and so on.

Each object derived from class CWnd, contains a message map, through which you

can map Windows messages or command IDs to your own handler functions for

them.

Messages,and Commands: Overview

In traditional programs for Windows, Windows messages are handled in a large

switch statement in a window procedure. MFC instead uses message maps to map

direct messages to distinct class member functions. Message maps are more efficient

than virtual functions for this purpose, and they allow messages to be handled by the

91)

most appropriate C++ object—application, document, view, and so on. You can map

a single message or a range of messages, command IDs, or control IDs.

WM_COMMAND messages—usually generated by menus, toolbar buttons, or

accelerators—also use the message-map mechanism. MFC defines a standard routing

of command messages among the application, frame window, view, and document

objects in your program. You can override this routing if you need to.

Message maps also supply a way to update user-interface objects (such as menus

and toolbar buttons), enabling or disabling them to suit the current context.

MFC Fundamentals

MFC's strong suit is its fundamental support for programming for. Microsoft Windows.

The following programming areas are of common interest:

• Frame windows

• Documents

o Views of documents

• Multiple views

• Special view types, such as scroll views and form views

• Dialog boxes and property sheets

• Windows Common Controls

• Mapping Windows messages to handler functions

• Toolbars and other control bars

• Printing and print preview

• Serialization of data to and from files and other media

• Device contexts and GDI drawing objects

• Exception handling

• Collections of data objects

• Diagnostics

• Strings, rectangles, and points

• Date and time

• And considerably more

91

Document

Part of document
currently visible

Appendix - B

MFC Document/View Architecture

The parts of the MFC framework most visible both to the user and to the developer,

are the document and view. Most of the work in developing an application with the

framework rework goes into writing document and view classes. This article describes, the

purposes of documents and views and how they interact in the framework.

The . CDocument class provides the basic functionality for programmer-defined

document classes. A document represents the unit of data that the user typically

opens with the Open command on the File menu and saves with the Save command

on the File menul4l,js1.

The CView class provides the basic functionality for programmer-defined view

classes. A view is attached to a document and acts as an intermediary between the

document and the user: the view renders an Image of the document on the screen

and interprets user input as operations upon the document. The 'view also renders

the image for both printing and print preview.

The following figure shows the relationship between a document and its view.

Figure ib(1) Document and View

The document/view implementation in the class library separates the data itself from

its display and from user operations on the data. All changes to the data are

92

managed through the document class. The view calls this interface to access and

update the data.

A document template creates documents, their associated views, and the frame

windows that frame the views. The document template is responsible for creating

and managing all documents of one document type.

A Portrait of the Document/View Architecture

Application Object
	

Main Window
Handles the 	 Object
interface to windows 	 Handles the main

Window itself

Document Object 	 View Object
Handles storing of 	 Handles Display of
program data 	 program data

Figure b(ii) A portrait of Document/View Architecture

Documents and views are paired in a typical MFC application. Data is stored in the

document, but the view has privileged access to the data. The separation of

document from view separates the storage and maintenance of data from its display.

Gaining Access to Document Data from the View

The view accesses its document's data either with the GetDocument function, which

returns a pointer to the document or by making the view class a C++ friend of the

document class. The view then uses its access to the data to obtain the data when it

is ready to draw or otherwise manipulate it. For example, from the view's OnDraw

member function, the view uses GetDocument to obtain a document pointer. Then it

uses that pointer to access a Cstring data member in the document. The view passes

the string to the TextOut function.

9.3

User Input to the View

The view might, also interpret a mouse click within itself as either selection or editing

of data. Similarly it might interpret keystrokes as data_ entry or editing. Suppose the

user types a string in a view that manages text. The view obtains a pointer to the

document and uses the pointer to pass the new data -to the document, which stores.

it In some data structure.

Updating Multiple Views of the Same Document

In an application with multiple views of the same document - such as a spiitter

window In a text editor - the view first passes the new data to the document. Then it

calls the document's UpdateAllViews member function, which tells all views of the

document to update themselves, reflecting the new data. This synchronizes the

views.

Dialog Bars

Control bars, greatly enhance a program's usability by providing quick, one-step

command actions. Class CcontrolBar provides the common functionality of all
toolbars, status bars, and dialog bars. CcontrolBar provides the functionality for

positioning the control bar In its parent frame window. Because a control bar Is

usually a child window of a parent frame window, it is a "sibling" to the client view or

MDI client of the frame window. A control-bar object uses information about its

parent window's client rectangle to position itself. Then it alters the parent's

remaining client-window rectangle so that the client view or MDI client window fills

the rest of the client window.

A dialog bar is a control bar, based on a dialog-template resource, with the

functionality of a modeless dialog box. Dialog bars can contain any Windows control.

As in a dialog box, the user can tab among the controls. Dialog bars can be aligned

to the top, bottom, left, or right side of a frame window. Dialog bars are control bars

with both toolbar and dialog-box characteristics. They behave like toolbars, but

because they are based on dialog templates, they can have any control that a dialog

box can. MFC supports dialog bars with class CdialogBar.

94

There are several key differences between a toolbar and a CdlalogBar object. A

CdlalogBar object Is created from a dialog-template resource, which we can create

with the Visual C++ dialog editor and which can contain any kind of Windows

control. The user can tab from control to control. And we can specify an alignment

style to align, the dialog bar with any part of the parent frame window or even to

leave it in place if the parent is resized.

While it is normal to derive our own dialog classes from Cdlalog, we do not typically

derive our own class for a dialog bar. Dialog bars are extensions to a main window

and ' any dialog-bar control-notification messages, such as BN_CLICKED or

EN CHANGE, will be sent to the parent of the dialog bar — the main window.

Dialog Boxes

Creating a dialog object is a two-phase operation. First, construct the dialog object,

then create the dialog window. Modal and modeless dialog boxes differ somewhat in

the process used to create and display them. During the life cycle of a dialog box,

the user invokes the dialog box, typically inside a command handler that creates and

initializes the dialog object, the user interacts with the dialog box, and the dialog box

closes. The following table lists how modal and modeless dialog boxes are normally

constructed and displayed.

Dialog Creation

Dialog type How to create it

Modeless 	Construct Cdiialog, then call Create member function.

Modal 	Construct Cdialog, then call DoModal member function.

Table i

Creating Modeless Dialog Boxes

For a modeless dialog box, we must provide our own public constructor in our dialog

class. To create a modeless dialog box, call our public constructor and then call the

dialog object's Create member function to load the dialog resource. We can call

Create either during or after the constructor call. If the dialog resource has the

property WS VISIBLE, the dialog box appears immediately. If not, we must call its

ShowWlndow member function.

95

For modeless dialog boxes, we might often extract data from the dialog object while

the dialog box is still visible. At some point, the dialog object is destroyed; when this

happens depends on our code.

Creating Modal Dialog Boxes

To create a modal dialog box, call either of the two public constructors declared in

Cdlalog. Next, call the dialog object's DoModal member function to display the

dialog box and manage interaction with it until the user chooses OK or Cancel. This

management by DoModal is what makes the dialog box, modal. For modal dialog

boxes, DoModal loads the dialog resource.

For modal dialog boxes, our handler gathers any data the user entered once the

dialog box closes. Since the dialog object exists after its dialog window has closed,

we can simply use the member variables of our dialog class to extract the data.

Initializing the Dialog Box

After the dialog box and all of its controls are created but just before the dialog box

(of either type) appears on the screen, the dialog object's OnInit'Dlalog member

function is called. For a modal dialog box, this occurs during the DoModal call. For a

modeless dialog box, OnlnitDialog is called when Create is called. We typically

override OnlnitDialog to initialize the dialog box's controls, such as setting the initial

text of an edit box. We must call the OnInitDialog member function of the base

class, Cdialog, from our OnInitDialog override.

Retrieving Data from the Dialog Object

Dialog data exchange (DDX) lets us exchange data between the controls in the

dialog box and member variables in the dialog object more easily. This exchange

works both ways. Dialog data -exchange (DDX) is an easy -way to initialize the

controls in your dialog box and to gather data input by the user. To initialize the

controls ,in the' dialog box, we can set the values of data members in the dialog

object, and the framework will transfer the values to the controls before the dialog

box is displayed. Then we can at any time update the dialog data members with data

entered by the user. At that point, we can use the data by referring to the data

member variables. To use DDX, we define member variables in the dialog box, form

view, or record view class, and associate each of them with a dialog box control. The

96

framework transfers any initial values to the controls when the dialog box, is

displayed. When we click OK, it updates the variables with the data that we entered.

To use the DDX mechanism, we have to set the initial values of the dialog object's

member variables, typically in our OnlnitDialog handler or the dialog constructor.

Immediately before the dialog is displayed, the framework's DDX mechanism

transfers the values of the member variables to the controls in the dialog box, where

they appear when the dialog box itself appears in response to DoModa! or Create.

The default implementation of OnlnitDialog in Cdialog calls the UpdateData "member

function of class CWnd to initialize the controls in the dialog box.

The same mechanism transfers values from the controls to the member variables

when the user clicks the OK button (or whenever we call the UpdateData member

function with the argument TRUE).

The following figure illustrates dialog data exchange.

initialize variables in 	r1fl1tiaZe controls in
dlabg constructor 	'On! nitDiarog

Dialog box on screen
Member
Variables 	 thin Pen Width: 0

Thick Pen Width: 0 	 Controls

Default 	OK 	Cancel

Dialog Object

Retrieve valueswhen 	Retrieve control values
they are updated , 	with UpdateData

Figure b(iii) Dialog Data Exchange

UpdateData works in both directions, as specified by the BOOL parameter passed

to it. To carry out the exchange, UpdateData sets up a CDataExchange object and

calls our dialog class's override of CDialog's DoDataExchange member function.

DoDataExchange takes an argument of type CDataExchange. The CDataExcharige

object passed to UpdateData represents the context of the exchange, defining such

information as the direction of the exchange. 	 "

When we (or ClassWizard) override DoOataExchange, we have to specify a call to

one DDX function per data member (control). Each DDX function knows how to

exchange data in both directions based on the context supplied by the

CDataExchange argument passed to our DoDataExchange by UpdateData.

97

We can also arrange for the values of dialog controls to be validated automatically

with dialog data validation (DDV). Dialog data validation (DDV) is an easy way to

validate data entry in a dialog box. To take advantage of DDX and DDV in our dialog

boxes, use ClassWizard to create the data members and set their data types and

specify validation rules. With DDV, dialog box information entered by the user is

validated automatically. We can set the validation boundaries: the maximum length

for string values In an edit-box control or the minimum or maximum numeric values

when we expect a number to be entered. The DDV function typically alerts the user

with a message box if the validation fails and puts the focus on the offending control

so the user can reenter the data.

DDV Variable Types

Variable type 	 Data validation

Cstring 	 Maximum length

Numeric (int, UINT, long, Minimum value, maximum value

DWORD, float, double)

Table 2

We can define the maximum length for a CString DDX variable or the minimum or

maximum values for a numeric DDX variable at the time we created it.

At run time, if the value entered by the user exceeds the range we specified, the

framework automatically displays a message box asking the user to reenter the

value. The validation of DDX variables takes place all at once when the user clicks OK

to accept the entries in the dialog box.

For a modal dialog box, we can retrieve any data the user entered when DoModal

returns IDOK but before the dialog object is destroyed. For a modeless dialog box,

we can retrieve data from the dialog object at any time by calling UpdateData with

the argument TRUE and then accessing dialog class member variables

Closing the Dialog Box

A modal dialog box closes when the user chooses one of its buttons, typically the OK

button or the Cancel button. Choosing the OK or Cancel button causes Windows to

send the dialog object a BN_CLICKED control-notification message with the button's

ID, either IDOK or IDCANCEL. CDialog provides default handler functions for these

messages: OnOK and OnCancel.

9K

I

SDI (Single Document Interface)

When an application runs under Microsoft Windows, the user interacts with
documents displayed_ in frame windows. A document frame window has two major

components: the frame and the contents that it frames. A document frame window:

can be a single document interface (SDI) frame window or a multiple document

interface (MDI) child window. Windows manages most of the user's interaction with

the frame window: moving and resizing the window, closing it, and minimizing and

maximizing it. We can manage the contents inside the frame.

Frame Windows and Views

The MFC framework uses frame windows to contain views. The two components—

frame and contents—are represented and managed by two different classes In MFC.

A frame-window class manages the frame, and a view class manages the contents.

The view window is a child of the frame window. Drawing. and other user interaction

with the document take place in the view's client area, not the frame window's client

area. The frame window provides a visible frame around a view, complete with a

caption bar and standard window controls such as a control menu, buttons to

minimize and maximize the window, and controls for resizing the window. The
"contents" consist of the window's client area, which is fully occupied by a child

window—the view. The following figure shows the relationship between a frame

window and a view.

Bane 	 merit area Wi 	 Allocate! to vi env Object I (a cwindow)

H

Mew
O

Cf~ildd Mow)

Document
Oed

Figure b(iv) Relation between Frame Window and View

99

	Title
	Abstract
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Chapter 7
	References
	Appendix

