
CONGESTION CONTROL AND AVOIDENCE IN
COMPUTER NETWORKS

A DISSERTATION
Submitted in partial fulfilment of the

requirements for the award of the degree

of

MASTER OF COMPUTER APPLICATIONS

By

RAJNEESH KUMAR

11687
.A~c No 	,

1

DEPARTMENT OF MATHEMATICS
INDIAN INSTITUTE OF TECHNOLOGY ROORKEE

ROORKEE-247 667 (INDIA)

JUNE, 2002

CANDIDATE'S DECLARATION

I here by declare that the work presented in the dissertation titled "CONGESTION

CONTROL AND AVOIDANCE IN COMPUTER NETWORKS." In partial fulfillment

of the requirements for award of the degree of Master of Computer Applications,

submitted in the Department of Mathematics, Indian Institute of Technology, Roorkee is an

authentic record of my own work carried out during the period from 1s1 February to 31"

May. Under the guidance of Mr. M. K. Sharma, Senior System Analysis in DENSO

HARYANA PVT. LTD. Gurgaon, Haryana and Prof. Vinod Kumar, Department of

Electrical Engineering, Indian Institute of Technology, Roorkee.

The matter embodied in this dissertation has not been submitted by me for the

award of any other degree of diploma.

Date : June ' ,2002
	

(Raji eesh Kumar)

Place : Gurgaon

*x*X**Xx*X*****xxx*X*X*XXxx**CERTIFICATES`*X*xxxx*****X*X*x*******x

This is to certify that the above statement made by the candidate is correct to the
best of my knowledge and belief.

ll ~
Dr(inod Kumar
(Professor)

Deptt. of Elect. Engg.
Indian Institute of Technology,
Roorkee

Mr. M. K. Sharma
(System Analyst)
Denso Haryana Pvt. Ltd.
Sector # 3, Gurgaon

Date
Place

Date
: r 	 Place Rnnrk&

 Y U7

s 	sq Mith.m*os
U~~-247 47

ACKNOWLEDGEMENT

It is my great pleasure to take this opportunity to express my

appreciation and thanks to my guides Prof. VINOD KUMAR,

Department of Electrical Engineering, IIT-Roorkee, Roorkee and Mr.

M.K. Sharma, Senior System Analyst in DENSO HARYANA Pvt. Ltd.

Gurgaon(HARYANA). They cheerfully spared their valuable time and

effort to Complete this work successfully.

I am also thankful to Prof. R.C.Mittal, Department of

Mathematics , IIT-Roorkee, Roorkee for their valuable suggestions .1 am

very

Thankful to the Lab incharge of BSNL-N. Delhi for their

constant support. It was a unique experience to work under their

guidance because of endless sources of information.

I am also thankful to Dr. H. G. Sharma, Prof. and Head

Department of Mathematics, IIT--Roorkee for his timely support in

completion of my work.

Lastly, I am thankful to all those who helped me directly or

indirectly in the successful completion of this work.

(RA ESH KUMAR)

ABSTRACT

Computer networks form an essential substrate for a

variety of distributed applications, but they are expensive to build and

operate. This makes it important to optimize their performance so that users

can derive the most benefit at the least cost. Though most networks perform

well when lightly used, problems can appear when the network load

increases. Loosely speaking, congestion refers to a loss of network

performance when a network is heavily loaded. Since congestive phenomena

can cause data loss, large delays in data transmission, and a large variance in

these delays, controlling or avoiding congestion is a critical problem in

network management and design. This dissertation work presenting the

implementation details for congestion control in computer networks.

Since these networks carry traffic of a single type, and the traffic

behavior is well known, it is possible to avoid congestion simply by

reserving enough resources at the start of each call. By limiting the total

number of users, each admitted call can be guaranteed to have enough

resources to achieve its performance target, and so there is no congestion.

However, resources can be severely underutilized, since the resources

blocked by a call, even if idle, are not available to other calls.

CONTENTS

Candidate's declarations

Acknowledgement

Abstract

Contents

1. Chapter 1
Introduction
1.0 Introduction to congestion control

1.1 Some reasons to congestion control

1.2 New Definition

1.3 Genrel Principal to congestion control

2. Chapter 2
Congestion control schemes
For TCP/IP Networks.

2.1 Introduction

2.2 Compatiblity with Technology

2.3 Complexity

2.4 Slow start Algo..

2.5 Algorithm

2.6 Performance

2.8 DUAL

2.9 Algorithm

2.10 Performance

2.11 Discussion

2.12 TCP Vegas

2.13 Algorithm

8.

8.

8.

9.

9.

11.

12.

12.

12.

13.

13.

14.

(iv)

2.15 Gateway based schemes 	 15.

2.16 Random Early Detection 	 16.

2.17 Algorithm 	 16

2.19 Performance 	 17.

2.20 discussion 	 17.

Chapter 3
	

18.

3.1 Introduction 	 18.

3.2 TCP review 	 20.

3.4 ACK Division 	 22.

3.5 Dup ACK spoofing 	 24.

3.6 Optimistic ACKing 	 27.

3.7 Desiging Robost protocol
	

30.

3.8 ACK division 	 30.

3.9 Dup ACK spoofing 	 31.

3.10 Optimistic ACKing 	 32.

.3.13 About Misbehaving............ 	 33.

Chapter 4
	

36.

4.1 Introduction 	 36.

4.2 Environment of 	 37.

4.3 What is congestion 	 39.

4.4 New definition 	 40.

4.5 Congestion Control
	

41.

4.5.1 Proactive And reactive ... 	 42.

4.5.2 Time scales of congestion 	 44.

4.5.3 Session 	 46.

4.5.7 Need for congestion........... 	 47.

4.6 Fundamental assumptions 	 48.

4.6.1 Administrative Control •48.

4.6.2 Source complexity 49.

4.6.3 Gateway Complexity 49.

4.6.4 Bargaining Power 50.

4.6.5 Responsibility for congestion control 50.

4.6.7 Traffic Model 51.

4.7.1 Reservation Network 52.

4.7.2 Congestion Detection 52.

4.7.3 communication 52.

4.7.5 Flow control 53.

4.7.7 Reservation — Oriented Network 53.

4.7.9 Delay 54.

4.7.10 Underutilization 54.

4.7.12 Quality of service 55.

Programming Part 	 56.

REFERENCES ' 	 85.

CHAPTER 1

INTRODUCTION

1.0 Introduction To Congestion control:
When too many packets are present in the subnet the performance of subnet degrades.

This situation is called congestion, Fig 1 depicts the symptoms.when no. of

Packets dumped into the subnet by the hosts is within its carrying capacity,they are

delivered (except for a few that are afflicted with transmission errors)and the no. of

delivered packets is proportional to the no. of packets sent.

However, as traffic increases too far, the routers are no longer able to cope,

And they begin losing packets. This tends to make matters worse.At very high traffic

,performance collapses completely,and almost no packets are

delivered.

Fig 1.

---------- Pa9kets Sent_-------~

(1)

Fig. I : When too much traffic is offered ,congestion sets in and performance degrades

sharply. congestion can be brought by several factors. If all of a sudden streams of

packets begin arriving on three or four input lines and all need the same output line ,a

queue will build up . If there is insufficient memory to hold all of them , packets will be

lost. Adding more memory may help up to a point, but important point is takes place here

is that routers have an infinite amount of meimory,congestion get worse,not better,

because by the time packets get to the front of the queue,they have already timed out

(repeatedly), and duplicates have been sent . All the packets will dutifully forwarded to

the next router, increasing the load all the way to the destination

Since congestion occurs at high network loads, definitions of congestion focus on
some aspect of network behavior under high load. We first discuss a scenario
that leads to network

1.1 Some reasons to congestion............
Slow processors can also cause congestion If the routers CPU's are slow at performing

the book keeping tasks required of them (queuing buffers ,updating tables etc.) queues

can build up ,even though there is excess line capacity. Similarly low bandwidth lines

can also cause congestion. upgrading the lines but not changing the processors, or vise

versa ,often helps a little but frequently just shift the bottleneck also upgrading part but

not all of the system ,often just moves the bottleneck somewhere else. The real problem

will persist until all the components are in balance.

The standard definitions of congestion
are thus of the form: "A network is congested if, due to overload, condition X
occurs", where X is excessive queueing delay, packet loss or decrease in
effective throughput.

(2}

These definitions are not satisfactory for several reasons. First, delays and losses are

indices of performance that are being improperly used as indices of congestion, since the

change in the indices may be due to symptoms of phenomena other than congestion.

Second, the definitions do not specify the exact point at which the network can be said to

be congested

(except in a deterministic network, where the knee of the load-delay curve, and hence

congestion, is well defined, but that is the trivial case). For example, while a network that

has mean queueing delays in each switch of the order of 1 to 10 service times is certainly

not congested, it is not clear whether a network that has a queueing delay of 1000 service

times is congested or not. It does not seem possible to come up with any reasonable

threshold value to determine congestion!

Third, a network that is congested from the perspective of one user is not necessarily

congested from the perspective of another. For example, if user A can tolerate a packet

loss rate of I in 1000, and user B can tolerate a packet loss rate of I in 100, and the actual

loss rate is 1 in 500, then A will claim that the network is congested, whereas B will not.

A network should be called uncongested only if all the users agree that it is.

1.2 New definition

From the discussion above, it is clear that network congestion depends

on a user's perspective. A user who demands little from the network can tolerate a loss in

performance much better than a more demanding user. For example, a user who uses a

network only to send and receive electronic mail will be happy with a delivery delay of a

day, while this performance is unacceptable for a user who uses a network for real-time

audio communication. The key point is the notion of the utility that a user gets from the

network, and how this utility degrades with network loading.

The concept of `utility' used here is borrowed from economic theory. It is used to refer to

a user's preference for a resource, or a set of resources (often called a resource bundle).

(3)

strictly speaking, the utility of a user is a number that represents the relative preference of

that user for a resource (or performance) bundle, so that, if a user prefers bundle A to

bundle B, the utility of A is greater than the utility of B. For example, if A is {end-to-end

delay of 1 second, average throughput 200 pkts/second}, and B is {end-to-end delay of

100 seconds, average throughput 20000 pkts/second}, a user may prefer A to B, and we

would assign a utility to A that is greater than the utility of B, while another user may do

the opposite.

In classic microeconomic theory,

utilities are represented by a function over the resources . Since utilities express only a

preference ordering, utility functions are insensitive to monotonic translations, and the

utilities of two users cannot be compared; the function can only be used to relatively rank

two resource bundles from the point of view of a single user.

An example of a utility function is

aT - (1-a)RTT„ 	Ref-no.6

where a is a weighting constant,

T is the average throughput over some interval,

and RTT is the average round-trip-time

delay over the same interval. As the throughput (T)

increases, the utility increases, and as delays increase, the utility decreases. The choice of

a determines the relative weight a user gives to throughput and delay.

A delay-sensitive user will choose a.-+0„ whereas a delay-insensitive user's a-+1.
Ref-no. 5

In practice, a utility function may depend on a threshold. For example, a user may state

that he or she is indifferent to delay, as long as it is less than 0.1 seconds. Thus, if the user

gets a delay of 0.05 seconds during some interval of time, and 0.06 seconds in a later

period, as far as the user is concerned, there has been no loss of utility. However, if some
user's utility does decrease as a result of an increase in the network load, that user will

perceive the network to be congested. This motivates our definition.

Congestion tends to feed upon itself and become worse. If a router has no free buffers, it

(4)

must ignore newly arriving packets When a packets is discarded the sending router (a

neighbor)may time out and retransmit it perhaps ultimately many times. Since it can not

discard the packet until it has been acknowledged , congestion at the receiver's end forces

the sender to refrain from releasing the buffer it would have normally freed, in this

manner, congestion backs up, likes cars approaching a toll booth.

It is worth explicitly pointing out the difference between congestion control and

flow control , as the relationship between is subtle . congestion has to do with making

sure the subnet is able to carry the offered traffic . It is global issue ,involving the

behavior of all the hosts all the routers, the store and forwarding processing within the

routers all the other factors that tends to diminish the carrying capacity of the subnet.

Flow control in contrast ,relates to the point to point traffic between a

given sender and the receiver .Its job is to make sure that a fast sender can not continually

transmit data faster than the receiver can absorb it. Flow control nearly always involves

some direct feedback from the receiver to the sender to tell the sender how things are

doing at the other end.

The reason congestion control and flow control are often confused is that some

congestion control algorithms operate by sending messages back to the various sources

telling them to slow down when the network gets into the trouble. thus host can get a"

slow down" message either because receiver can not handle the load , or because the

network cannot handle it.

We will come back to this point later.

1.3 Genrel principles of congestion control

Many problems in complex systems, such as computer networks, can be viewed

from a control theory point of view. This approach leads to dividing all solutions into

two groups :

(1) open loop.

(2) Closed loop.

(5)

Open loop solutions attempt to solve the problem the problem by good design in essence

,to make sure it does occur in the first place . once the system is up and running

,midcourse corrections are not made.

Tools for doing open loop control include deciding when to accept new traffic, deciding

when to discard packets and which ones,and making scheduling decisions at various

points in the network .All of these have in common the fact that make decisions without

regard to the current state of the network.

In contrast ,closed loop solutions are based on the concept of a feedback loop. This

approach has three parts when applied to congestion control

1. Monitor the system to detect when and where congestion occurs.

2. Pass this information to places where action can be taken place.

3. Adjust system operation to current the problem.

Various metrics can be used to monitor the subnet for congestion. 	Ref-no. IO

Among these are the percentage of all packets discarded for lack of buffer space,the

average queue lengths , the number of packets that time out and are retransmitted ,

the average packet delay,and the standard deviation of packet delay.In all

cases,rising numbers indicate growing congestion.

The second step in the feedback loop is to transfer the information about the

congestion from the point where it is detected to the point where something can be

done about it. The obvious way is for the router detecting the congestion to send

the packet to the traffic source or sources announcing the problem. Of course, these

extra packets increase the load at precisely the moment that more load is not

needed,namely,when the subnet is congested.

The presence of congestion means that the load is (temporarily) greater than the

(6)

resources (in the part of the system)can handle. Two solutions come to the mind :

increases the resources or decreases the load.for example the subnet may start using

dial-up telephone lines to temporarily increase the bandwidth at between certain

points In systems like SMDS ,(Switched Multimegabit Data Service)it may ask

the carrier for additional bandwidth for a while.

On satellite systems ,increasing transmission power often gives higher ' Ref-no.2

bandwidth .Splitting traffic over multiple routes instead of always using the best

one may also effectively increase the bandwidth .finally, spare routers that are

normally used only as backups (to make the systems fault tolerant) can be put on-

line to give more capacity when serious congestion appears.

However, sometimes it is not possible to increase the capacity,or it has already

been increased to the limit. The only way than to beat back the congestion is to

decreases the load, several ways exist to reduce the load, including denying

service to some users schedule their demands in a more predictable way.

(7)

Congestion Control Schemes
for TCP/IP Networks 	 Chapter 2

2.1 Introduction:

Here we consider few methods for controlling congestion for TCP connections. The first

three are Slow Start algorithm , DUAL, and TCP Vegas Treat the network as a black

box, in that the only way to detect congestion is through packet loss and changes in round

trip time, or throughput. The last two, Random Early Detection and Explicit Congestion

Notification depend on the gateways to provide indications of congestion.

The algorithms are judged in several categories:

Performance.

The algorithm is judged by increases in throughput and decreases in retransmission as

compared to other algorithms.

The algorithm is judged by how well connections share the resources with other

connections and whether there are any biases towards connections with certain

characteristics such as burstiness.

2.2 Compatibility with current technology.

The algorithm is judged by how well it interacts with current technology. Are the gains of

this algorithm at the cost of other connections not using this algorithm? How will the

algorithm perform in the presence of non-compliant sources?

2.3 Complexity.

The algorithm is judged by the complexity of implementation. Algorithms with lower

overhead are preferred. In the first section we will compare algorithms which use changes

(8)

in performance, i.e., packet loss,

increase in round trip time, change in throughput, to detect congestion. These algorithms

have the advantage that they require only a new implementation of TCP and do not

involve changing the network,

as opposed to the algorithms discussed in the second section which require changing

gateways and possibly adding fields to IP packets.

2.4 Slow Start algorithm: 	Ref-no.3
Introduction

Jacobson and Karels developed a congestion control mechanism for TCP

following a congestion collapse on the internet. Prior to this no congestion control

mechanism was specified for TCP. Their method is based on ensuring the 'conservation

of packets,' i.e., that the packets are entering the network at the same rate that they are

exiting with a full window of packets in transit. A connection in this state is said to be in

equilibrium. If all connections are in equilibrium, congestion collapse is unlikely The

authors identified three ways for packet conservation to be violated:

1.The connection never reaches equilibrium.

2.A source sends a new packet before an old one exits.

3.Congestion in the network prevents a connection from reaching equilibrium.

4.TCP is 'self clocking,' i.e., the source sends a new packet only when it receives an ack

for an old one and the rate at which the source receives acks is the same rate at which the

destination receives packets.

So the rate at which the source sends matches the rate of transmission over the slowest

part of the connection.

2.5 Algorithm
To ensure that the connection reaches equilibrium, i.e., to avoid failure (1), a slow-start
algorithm was developed. This algorithm added a congestion window. The minimum of

the congestion window and the destination window is used when sending packets. Upon

starting a connection, or

(9.)

restarting after a packet loss, the congestion window size is set to one packet. The

congestion window is then increased by one packet upon the receipt of an ack. This

would bring the size of the congestion window to that of the destination window in

RTT log2 W time, where RTT is the round-trip-time and W is the destination

window size in packets. Without the slow start mechanism an 8 packet burst from a 10

Mbps LAN through a 56 Kbps link could put the connection into a persistent failure

mode.

if the retransmit time is too short, making the source retransmit a packet that has not
been received and is not lost. What is needed is a good way to estimate the round trip

time:

Err = Latest_RTT_S ample - RTT_Estimate

RTT Estimate = RTT Estimate + g*Err 	Ref no• 6

where g is again' (0 <g < 1) which is related to the variance. This can be done quickly

with integer arithmetic. This is an improvement over the previous method which used a

constant to account for variance.The authors also added exponential backoff for

retransmitting packets that needed to be retransmitted more than once. This provides

exponential dampening in the case where the round trip time increases

faster than the RTT estimator can accommodate, and packets, which are not lost, are

retransmitted. Lost packets are a good indication of congestion on the network. The

authors state that the probability of a packet being lost due to transit is very rare.

Furthermore, because of the improved round trip timer, it is a safe assumption that a

timeout is due to network congestion. A additive increase / multiplicative decrease policy

was used to avoid congestion.

Upon notification of network congestion, i.e., a timeout, the congestion window is set to

half the current window size. Then for each ack for a new packet results in increasing the
window by 1/congestion windoi,v size. Note that if a packet times out, it is most likely

that the source window is empty and nothing is being transmitted and a slow-start is

required. In that case, the slow-start algorithm will increase the window (by one packet

(10.)

per ack) to half the previous window size, at which point the congestion avoidance

algorithm takes over.

2.6 Performance

To test the effectiveness of their congestion control scheme, they compared their
implementation of TCP to the previous implementation. They had four TCP
conversations going between eight computers on two 10 Mbps LANs with a 230.4 Kbps

link over the internet. They saw a 200% increase in effective bandwidth with the slow-

start algorithm alone. The original implementation used only 35% of thef 	 ~ ~` Re -no. 6 ,
available bandwidth due to retransmits. In another experiment, using the same network

setup, the TCP implementation without congestion avoidance resulted in 4,000 of 11,000

packets sent were retransmitted packets as opposed to 89 of 8,281 with the new

implementation..

2.7 Discussion

According to this scheme suffers from oscillations when the network is overloaded.

Because the window size is increased until a packet is dropped to indicate congestion, the

bottleneck node is kept at maximum capacity. The window size oscillates between the
maximum window size allowable by the bottleneck and half that size on timeouts. This

leads to long queuing delays and high delay variation.

Wang, et. al., also point out that this scheme is biased toward connections with fewer

hops. However, this would take many iterations, in which time, the shorter connections,

with shorter round trip times, would increase faster.

V

2.8 DUAL

Introduction

In Wang et. al. propose a method called DUAL to correct the oscillation problem 	
Ref-no.9

associated with the Slow Start algorithm. This is similar to the algorithm described in in

that it uses the round trip time to detect congestion as well as packet loss as in the Slow

Start algorithm.

The round trip time of a packed consists of the propagation delay and the queuing delay.

The minimum round trip time would be equal to the propagation delay:-

RTTmin = Dp

The maximum round trip time would be the sum of the propagation delay and the delay

for the bottleneck node to process a full queue:

RTTmax = Dp + Max_Queue Size/Processing_Rate

The Slow Start algorithm detects congestion when a packet is lost due to a queue

overflow. The solution used in DUAL is to estimate RTTmin and RTTmax and using a

threshold, avoid overflowing the queue at the bottleneck node. They defined this

threshold as follows:

RTTi = (1-a)RTTmin + aRTTmax . Ref-rro. 9

for some a < 1. They chose a = 0.5 to stay well away from the maximum queue capacity.

2.9 Algorithm
DUAL uses the same slow-start algorithm for initiating and restarting a connection. The

algorithm differs from Slow Start in that every two round trip times DUAL checks if the

current RTT is greater than RTTi and reduces the congestion window by 7/8. It also

recomputes RTTmax and RTTmin with every new RTT measurement. On a timeout, in

addition to reducing the congestion window to one packet and restarting

slowly as in the Slow Start algorithm, it resets RTTmax and RTTmin to 0 and infinity

respectively.

2.10 Performance

DUAL was simulated in under three scenarios:

1) single connection on a path,

2) two connections share a path but one starts before the other and

3) two way traffic. 	 (12)

In the first scenario the DUAL showed an almost identical slow start phase, it did show a

substantial reduction of oscillations as compared with the Slow Start algorithm.

The second scenario tests the ability of the algorithm to adjust to the addition of

connections. The results are similar to that observed in scenario one, except that as the

algorithms progress, the window sizes of the connections converge. This is exactly what

is expected.

The last scenario tests the effect of rapid queue fluctuation on the round trip time based

algorithm. The algorithm performed well despite the fluctuations. Wang, et. al. attribute

this to the fact that many of the packets in the queue are ack packets which are small and

therefore the actual queuing delay change is smooth. 	Ref-no. 3
2.11 Discussion

Because the window size is based on RTTmin and RTTmax, their accurate estimation is

important. The Wang, et. al. noted that RTTmax is fairly accurate when calculated just

before a buffer overflow. However if RTTmin is estimated when there are multiple

connections on the path the RTTi threshold would be too high. When different flows

obtain different RTTmin values the bandwidth is shared unevenly. Wang et. al. claim that

in their simulations, during a slow start the load is relatively light so

queuing time is low and that the RTTmin estimate was a reasonable approximation of the

propagation delay.

2.12 TCP Vegas 	Ref-no. 3
Introduction

TCP Vegas is a new implementation of TCP proposed by Brakmo et. al. in. The authors

claim an 40 to 70% increase in throughput and one fifth to one half of the packet losses as

compared to the current implementation of TCP (which implements the Slow Start

algorithm with the addition of Fast Retransmit and Fast Recovery). Vegas compares the

measured throughput rate to the expected, or ideal,

throughput rate.

(13)

2.13 Algorithm
Vegas uses a new retransmission mechanism. This is an improvement over the Fast

Retransmit mechanism. In the original Fast Retransmit mechanism, three duplicate acks

indicate the loss of a packet, so a packet can be retransmitted before it times out. Vegas

uses a timestamp for each packet sent to calculate the round trip time on each ack

received. When a duplicate ack is received Vegas checks to see

if the difference between the timestamp for that packet and the current time is greater

than the timeout value. If it is, Vegas retransmits the packet without having to wait for the

third duplicate message. This is an improvement in many cases the window may be so

small that the source will not receive three duplicate acks, or the acks may be lost in the

network.

Upon receiving a non-duplicate ack, if it is the first or second ack since a retransmission,

Vegas checks to see if the time interval since the packet was sent is larger than the

timeout value and retransmits the packet if so. If there are any packets that have been lost

since the retransmission they will be retransmitted without having to wait for duplicate

acks.

To avoid congestion, Vegas compares the actual

throughput to the expected throughput. The expected throughput is defined as the

minimum of all measured throughputs. The actual throughput is the number of bytes

transmitted between the time a packet is transmitted and its ack is received divided by the

round trip time of that packet.

Vegas then compares the difference of the expected and the actual

throughputs to thresholds a and b. When the difference is smaller than a, the window size

is increased linearly and when the difference is greater than b the window size is

decreased linearly, when the bottleneck is finally overloaded, the expected losses are half

the current window. As network bandwidth increases the number of packets lost in this

manner will also increase. Brakmo .et. al. propose a modified slow start mechanism where

the window size is doubled only every other round trip time. So every other round trip

time the window is not changed which allows for an accurate comparison of the expected

(14.)

and actual throughput. The difference is compared to a new

threshold called c at which point the algorithm switches to the linear increase / decrease

mode described above.

2.14 Performance

Vegas was simulated to test its performance when used in the same environment as Reno.

In this experiment, a 1MB file was transferred using one implementation with a 300KB

file being transferred at the same time with another implementation. In all four

combinations, Vegas performed better with higher throughput and fewer retransmissions.

In another experiment the performance of Vegas, with two sets of values for a and b,
were compared on a network with background traffic. For both configurations of Vegas,

throughput was increased by more than 50% and the number of retransmissions was

about half that of Reno. Other experiments included an experiment like the first one but

with background traffic. The results were similar to that of the first experiment. Again the

results were similar to those in the second experiment.

Another experiment was to test the fairness of both schemes by putting multiple

connections through a bottleneck. They tested the scheme where some connections that

had different propagation delays and where the propagation delays were the same.

2.16 Gateway based schemes:-
A problem with end to end congestion control schemes is that the presence of congestion

is detected through the effects of congestion, e.g., packet loss, increased round trip time,

changes in the throughput gradient, etc., rather than the congestion itself e.g. overflowing

queues. There can also be a problem with fairness and non-compliant sources. It seems

logical then to place the congestion control mechanism at the location of the congestion,

i.e., the gateways. The gateway knows how congested it is and can notify

sources explicitly, either by marking a congestion bit, or by dropping packets. The main

drawback to marking packets with a congestion bit, as opposed to simply dropping them,

is that TCP makes no provision for it currently. Floyd in states that some have proposed

sending Source Quench packets as EN mesages. Source Quench messages have been

criticized as consuming network bandwidth in a congested network making the problem

worse. 	 (15.)

2.17 Random Early Detection:-

Introduction
One method for gateways to notify the source of congestion is to drop packets. This is

done automatically when the queue is full. The default algorithm is when the queue is full

drop the any new packets. This is called Tail Drop. Another algorithm is when the queue

is full and a new packet arrives, one packet is randomly chosen from the queue to be

dropped. The drawback to Tail Drop and Random Drop gateways is that it drops packets

from many connections and causes them to decrease their windows at the same time

resulting in a loss of throughput. Early Random Drop gateways are a slight improvement

over Tail Drop and Random Drop in that they drop incoming packets with a fixed

probability whenever the queue size exceeds a certain threshold.

2.18 Algorithm
Floyd proposes a new method called Random Early Detection (RED) gateways. In this

method, once the average queue is above a certain threshold the packets are dropped (or

marked) with a certain probability related to the queue size. In describing this paper we

will consider only the case were the RED gateway drops packes to indicate congestion

rather than marking them. In describing the next algorithm we will discuss marking

packets.

To calculate the average queue size the algorithm uses an exponentially weighted moving

average:

avg = (1 -wq)avg + wq*Queue_Size

The author goes into detail describing how to determine the upper and lower bounds for

wq.
The probability to drop a packet, pb, varies linearly from 0 to maxp as the average queue

length varies from the minimum threshold, ininth, to the maximum threshold, maxth. The

chance that a packet is dropped is also related to the size of the packet. The probability to

(16.)

drop an individual packet, pa, increases as the number of packets since the last dropped

packet, count, increases:

pb = maxb(avg-minth)/(maxth-minth)

pb = pb*Packet_Size/Max Packet_Size

pa = pb/(1-count*pb)

In this algorithm as the congestion increases, more packets are dropped. Larger packets

are more likely to be dropped than smaller packets which use less resources.

2.19 Performance

Simulations were run for Tail Drop, Random Drop and RED gateways.

The RED gateway showed higher throughput for smaller buffer sizes than the other

algorithms. It was also shown that RED was not as biased against burst traffic as were

Tail Drop or Random Drop.

2.20 Discussion
When RED is implemented to drop packets

rather than mark them, it handles misbehaving sources well. If a source is using more

than its fair share of the'bandwidth, then by the probabilistic function, more of its packets

will be dropped. However if the gateway marks the packets, it is up to the sources to

comply.

(17.)

TCP Congestion Control
with a Misbehaving Receiver

3.1 Introduction
The operation of TCP congestion control

when the receiver can misbehave, as might occur with a greedy

Web client. We first demonstrate that there are simple attacks that

allow a misbehaving receiver to drive a standard TCP sender arbitrarily

fast, without losing end-to-end reliability. These attacks

are widely applicable because they stem from the sender behavior

specified in RFC rather than implementation bugs. We then

show that it is possible to modify TCP to eliminate this undesirable

behavior entirely, without requiring assumptions of any kind

about receiver's behavior. This is a strong result: with our solution

a receiver can only reduce the data transfer rate by misbehaving,

thereby eliminating the incentive to do so.

End-to-end congestion control mechanisms, such as those used in

TCP, are the primary means used for sharing scarce bandwidth resources

in the Internet. These mechanisms implicitly rely on both

endpoints to cooperate in determining the proper rate at which to

send data. Obviously, if the sending endpoint misbehaves, and does

not obey the appropriate congestion control algorithms, then it may

send data more quickly than well-behaved hosts — possibly forcing

competing traffic to be delayed or discarded. Less obviously, a

misbehaving receiver can achieve the same result.

While the possibility of such attacks has been hinted at previously

Chapter 3

(18.)

vulnerability and the potential impact are not fully appreciated. We

note that the population of receivers is extremely large (all Internet

users) and has both the incentive (faster Web surfing) and the

opportunity (open source operating systems) to exploit this vulnerability.

In this paper, we explore the impact that a misbehaving receiver

can have on TCP congestion control. We present two kinds of results.

First, we identify several vulnerabilities that can be exploited

by a malicious receiver to defeat TCP congestion control. This can

be done in a manner that does not break end-to-end reliability semantics

and that relies only on the standard behavior of correctly

implemented TCP senders. Tests against live Web servers using a

modified TCP implementation that we produced for this purpose,

we show that it is possible to modify the design of TCP to eliminate this behavior —

without requiring that the receiver be trusted in any manner. With our

the sender to transmit data at a slower rate than it otherwise would,

thus harming only itself. Because our work has serious practical

ramifications for an Internet that depends on trust to avoid congestion

collapse, we also describe backwards-compatible mechanisms

that can be implemented at the sender to mitigate the effects of untrusted

receivers. . Ref-no.2~

As far as we are aware, the division of trust between sender

and receiver that has not been studied previously in the context of congestion

control. While end-to-end congestion control protocols assume

that both sender and receiver behave correctly, in many environments

the interests of sender and receiver may differ considerably

creating significant incentives to violate this "good faith"

doctrine. For example, in many wide-area data retrieval applications,

such as Web browsing, the sender's interest is to provide

(19.)

uniform service to all clients requesting data, while the interest of

each client receiver is to maximize its own data throughput. TCP's congestion control

specification and consequently undermining the

fairness and stability provided therein.

The potential congestion resulting from aggressive senders
has received significant attention-from the networking community

and has produced proposals for per-flow bandwidth reservation and mechanisms to

detect and limit "unfriendly" flows in the network. These

solutions, if workable, would solve the more general problem of

unconstrained data transmission and would make the issue of trust

in end-to-end congestion control less pressing. However, given that

it is. unlikely that such mechanisms will be widely deployed in the

near term, we feel it is still prudent to consider the potential impact

of untrusted receivers on the congestion control mechanisms in today's Internet.

Vulnerabilities
By systematically considering sequences of message exchanges,

we have been able to identify several vulnerabilities that allow misbehaving

receivers to control the sending rate of unmodified, conforming

TCP senders. This section describes these vulnerabilities.

and techniques for exploiting them. In addition to denial-of-service

attacks, these techniques can be used to enhance the performance

of the attacker's TCP sessions at the expense of behaving clients.

3.2 TCP review 	Ref-no.8

we describe the rudiments of their behavior below to allow those unfamiliar with

TCP to understand the vulnerabilities explained later. For simplicity,

we consider TCP without the Selective Acknowledgment option

(SACK) , although the vulnerabilities we describe

also exist when SACK is used.

(20.)

TCP is a connection-oriented, reliable, ordered, byte-stream

protocol with explicit flow control. A sending host divides the data

stream into individual segments, each of which is no longer than the

Sender Maximum Segment Size (SMSS) determined during connection

establishment. Each segment is labeled with explicit sequence

numbers to guarantee ordering and reliability. When a host

receives an in-sequence segment it sends a cumulative acknowledgment

(ACK) in return, notifying the sender that all of the data

preceding that segment's sequence number has been received and

can be retired from the sender's retransmission buffers.

If an outof- sequence segment is received, then

the receiver acknowledges the next contiguous sequence number that was

expected. If outstanding data is not acknowledged for a period of time,

the sender will timeout and retransmit the unacknowledged segments.

TCP uses several algorithms for congestion control, most notably

slow start and congestion avoidance. 	 Ref-no. 9
Each of these algorithms controls the sending rate by manipulating

a congestion window (cwnd) that limits the number of outstanding

unacknowledged bytes that are allowed at any time. When a connection

starts, the slow start algorithm is used to quickly increase

cwnd to reach the bottleneck capacity. When the sender infers that

a segment has been lost it interprets this has an implicit signal of

network overload and decreases cwnd quickly. After roughly approximating

the bottleneck capacity, TCP switches to the congestion

avoidance algorithm which increases the value of cwnd more

slowly to probe for additional bandwidth that may become available.

We now describe three attacks on this congestion control procedure

that exploit a sender`s vulnerability to non-conforming receiver

behavior.

(21.)

3.4 ACK division
TCP uses a byte granularity error control protocol and consequently

each TCP segment is described by sequence number and acknowledgment

fields that refer to byte offsets within a TCP data stream.

However, TCP' s congestion control algorithm is implicitly defined

in terms of segments rather than bytes. For example, the most recent

specification of TCP' s congestion control behavior,

states:

During slow start, TCP increments cwnd by at most

SMSS bytes for each ACK received that acknowledges

During congestion avoidance, cwnd is incremented by 1

full-sized segment per round-trip time (RTT).

The incongruence between the byte granularity of error control

and the segment granularity (or more precisely, SMSS granularity)

of congestion control leads to the following vulnerability:

Attack 1:

Upon receiving a data segment containing N bytes, the
receiver divides the resulting acknowledgment into M,

where M_ N, separate acknowledgments — each covering
one ofMdistinctpieces of the received data segment.

(22.)

Receiver

Data

29 4381

1584 i

ax'30

Figure 1: Sample time line for a ACK division attack. The sender begins

with cwnc=1, which is incremented for each of the three valid ACKs

received. After one round-trip time, cwnd=4, instead of the expected value

of cwnc=2.

(23.)

This attack is demonstrated in Figure 1 with a

time line. Here, each message exchanged between sender and receiver is shown as

a labeled arrow, with time proceeding down the page. The labels

indicate the type of message, data or acknowledgment, and the sequence

space consumed. In this example we can see that each acknowledgment

is valid, in that it covers data that was sent and previously

unacknowledged.

This leads the TCP sender to grow the

congestion window at a rate that is M times faster than usual. The•

receiver can control this rate of growth by dividing the segment

at arbitrary points — up to one acknowledgment per byte received

(whenM= N). At this limit, a sender with a 1460 byte SMSS could

theoretically be coerced into reaching a congestion window in excess

of the normal TCP sequence space (4GB) in only four roundtrip

times! I Moreover, while high rates of additional acknowledgment

traffic may increase congestion on the path to the sender, the

penalty to the receiver is negligible since the cumulative nature of

acknowledgments inherently tolerates any losses that may occur.

3.5 DupACK spoofing Ref-no.10

TCP uses two algorithms, fast retransmit and fast recovery, to

mitigate the effects of packet loss. The fast retransmit algorithm detects

loss by observing three duplicate acknowledgments and it immediately

retransmits what appears to be the missing segment. However,

the receipt of a duplicate ACK also suggests that segments

(24.)

are leaving the network. The fast recovery algorithm employs this

information as follows

Set cwndto ssthresh plus 3*SMSS. This artificially "in-

flates" the congestion window by the number of segments

(three) that have left the network and which the

receiver has buffered.

For each additional duplicate ACK received, increment

cwnd by SMSS. This artificially inflates the congestion

window in order to reflect the additional segment that

has left the network.

1 Of course the practical transmission rate is ultimately limited by other factors such

as sender buffering, receiver buffering and network bandwidth.

(25.)

RTT

txw%e= I V

Figure 2: Sample time line for a DupACK spoofing attack. The receiver

forges multiple duplicate ACKs for sequence number 1. This causes the

sender to retransmit the first segment and send a new segment for each

additional forged duplicate ACK.

There are two problems with this approach. First, it assumes

that each segment that has left the network is full sized — again an

unfortunate interaction of byte granularity error control and segment

granularity congestion control.

(26.)

Second, and more important,

because TCP requires that duplicate ACKs be exact duplicates,

there is no way to ascertain which data segment they were sent in

response to. Consequently, it is impossible to differentiate a "valid"

duplicate ACK, from a forged, or "spoofed", duplicate ACK. For

the same reason, the sender cannot distinguish ACKs that are accidentally

duplicated by the network itself from those generated by a

receiver . In essence, duplicate ACKs are a signal that can

be used by the receiver to force the sender to transmit new segments

into the network as follows:

Attack 2:
Upon receiving a data segment, the receiver sends a

long stream of acknowledgments for the last sequence
	Ref-no.12

number received (at the start of a connection this would
be for the SYN segment).

Figure 2 shows a time line for this technique. The first four

ACKs for the same sequence number cause the sender to retransmit

the first segment. However, cwnd is now set to its initial value

plus 3*SMSS, and increased by SMSS for each additional duplicate

ACK, for a total of 4 segments (as per the fast recovery algorithm).

Since duplicate ACKs are indistinguishable, the receiver does not

need to wait for new data to send additional acknowledgments. As

a result, the sender will return data at a rate directly proportional

to the rate at which the receiver sends acknowledgments. After a

period, the sender will timeout. However, this can easily be avoided

if the receiver acknowledges the missing segment and enters fast

retransmit again for a new, later, segment.

3.6 Optimistic ACKing

Implicit in TCP's algorithms is the assumption that the time between

(27.)

a data segment being sent and

	

segment returning is at least 	

wledgment for that
 one round-trip time since TC ' window a

~roMh is a function
function 	 of round-trip time (an 	 P congestion

	

during slog, start and
	 an exponential
a Linear function doing CON-

Figure 3: Sample time

The A,C3 fo 	line for optimistic A
rthe second se 	 CKing attack

the rec 	 gment is sent before elver to grow car 	 the segment itself is received exam 	 more quickly than example
c' IzdL-3, rather than the expected

	
v~,rSe At the 	, leading

gestion 	value of c~, 	
end of this avoidance) sender an

 nd---pairs
with shorter round-tnp

(28.)

times will transfer data more quickly.

However, the protocol does not use any mechanism to enforce

its assumption. Consequently, it is possible for a receiver to emulate

a shorter round-trip time by sending ACKs optimistically for

data it has not yet received:

Attack 3:
Upon receiving a data segment, the receiver sends a
stream of acknowledgments anticipating data that will

be sent by the sender. 	 Ref-no,.12

This technique is demonstrated in Figure 3. Note that while it

is easy for the receiver to anticipate the correct sequence numbers

to use in each acknowledgment (since senders generally send fullsized

segments), this accuracy is not necessary. As long as the

receiver acknowledges new data the sender will transmit additional

segments. Moreover, if an ACK arrives for data that has not yet

been sent, this is generally ignored by the sending TCP — allowing

a sender to be arbitrarily aggressive in its generation of optimistic

ACKs.

Unlike the previous attacks, this technique does not necessarily

preserve end-to-end reliability semantics — if data from the sender

is lost it may be unrecoverable since it has already been acknowledged.

However, new features in protocols such as HTTP-1.1 allow

receivers to request particular byte-ranges within a data object

This suggests a strategy in which data is gathered

on one connection and lost segments are then collected selectively

with application-layer retransmissions on another. Optimistic

ACKing could be used to ramp the transfer rate up to the

bottleneck rate immediately, and then hold it there by sending acknowledgments

in spite of losses. This ability of the receiver to

(29.)

conceal losses is extremely dangerous because it eliminates the

only congestion signal available to the sender. A malicious attacker

could conceal all losses and therefore lead a sender to increase

ctivnd indefinitely — possibly overwhelming the network with useless packets.

3.7 Designing robust protocols Ref no.4-

We believe TCP's vulnerabilities arise from a combination of unstated

assumptions, casual specification and a pragmatic need to

develop congestion control mechanisms that are backward compatible

with previous TCP implementations. In retrospect, if the contract

between sender and receiver had been defined explicitly these

vulnerabilities would have been obvious.

Principle 1. Every message should say what it means: the interpretation

of the message should depend only on its content.

Principle 2. The conditions for a message to be acted upon should

be clearly set out so that someone reviewing a design may see

whether they are acceptable or not.

Principle 3. If the identity of a principal is essential to the meaning

of a message, it is prudent to mention the principal's name

explicitly in the message.

3.8 ACK division

This vulnerability arises from an ambiguity about how ACKs

should be interpreted — a violation of the second principle_ TCP' s

error-control allows an ACK to specify an arbitrary byte offset in

the sequence space while the congestion control specification assumes

that an ACK covers an entire segment.

There are two obvious solutions: either modify the congestion

control mechanisms to operate at byte granularity or guarantee that

segment-level granularity is always respected. The first solution

is virtually identical to the "byte counting" modifications to TCP

discussed in If cwnd is not incremented by a full

SMSS, but only proportional to the amount of data acknowledged,

then ACK division attacks will have no effect. The second, perhaps

simpler, solution is to only increment cwnd by one SMSS when

a valid ACK arrives that covers the entire data segment sent.

3.9 DupACK spoofing

During fast recovery and fast retransmit, TCP's design violates the

first principle — the meaning of a duplicate ACK is implicit, dependent

on previous context, and consequently difficult to verify.

TCP assumes that all duplicate ACKs are sent in response to

unique and distinct segments. This assumption is unenforceable

without some mechanism for identifying the data segment that led

to the generation of each duplicate ACK. The traditional method for

guaranteeing association is to employ a nonce . We present

a simple version of such a nonce protocol below (we will extend it

shortly):

Singular Nonce:

We introduce two new fields into the TCP packet formal:

Nonce and Nonce reply. For each segment, the sender

fills the Nonce field with a unique random number generated

when the segment is sent When a receiver generates

an ACK in response to a data segment, it echoes
the nonce value by writing it into the Nonce Reply field.

The sender can then arrange to only inflate cwnd in response

to duplicate ACKs whose Nonce Reply value corresponds to a data

segment previously sent and not yet acknowledged.

We note that the singular nonce, as we have described it so

(31.)

far, is similar to the Timestamps option with two important

differences. First,, the Nonce field preserves association for

duplicate ACKs, while the Timestamps option does not (preferring

instead to reuse the previous timestamp value). Second, and

more important, because Timestamps is a option, a receiver has the

choice to not participate in its use. We cannot rely on misbehaving

clients to voluntarily participate in their own policing. For the same

reason, we cannot rely on other TCP options, such as proposed extensions

to SACK, to eliminate this vulnerability.

ACK Division

Unfortunately, our fix requires the modification of clients and

servers and the addition of a TCP field. While it is the only complete

solution we have discovered, there are sender-only heuristics

which can mitigate, although not eliminate, the impact of the DupACK

spoofing attack in a purely backward compatible manner. In

particular, the sender can maintain a count of outstanding segments

sent above the missing segment. For each duplicate acknowledgment

this count is decremented and when it reaches zero any additional

duplicate acknowledgments are ignored. This simple fix

appears to limit the number of segments wrongly sent to contain no

more than cwnd — SMSS bytes. Unfortunately, a clever receiver

can acknowledge the missing segment and then repeat the process

indefinitely unless other heuristics are employed to penalize this

behavior (e.g. by refusing to enter fast retransmit multiple times in

a single window as suggested.

3.10 Optimistic ACKing

The optimistic ACK attack is possible because ACKs do not contain

(32.)

any proof regarding the identity of the data segment(s) that

caused them to be sent. In the context of the third principle described

earlier, a data segment is a principal and an ACK is the

message of concern.

This problem is also well addressed using a nonce. If a nonce

can't be guessed by the receiver, than ACKs with valid nonces imply

that a full round-trip time has taken place (man-in-the-middle

attacks notwithstanding).

However, the singular nonce we have described is imperfect

because it does not mirror the cumulative nature of TCP. Acknowledgments

can be delayed or lost, yet the cumulative property of

TCP' s sequence numbers ensures that the most recent ACK can

cover all previous data. In contrast, the singular nonce only provides

evidence that a single segment was received. A misbehaving

sender could still mount a denial of service attack by concealing

lost data, yet still sending back ACKs with valid nonces.

Ref-n0.4

3.13 About Misbehaving receiver...
we have described how a receiver can manipulate the

TCP congestion control function managed by the sender, and how

the sender can prevent these manipulations. Our work highlights

two results that we believe are significant yet not widely appreciated:

TCP, which was originally designed for a cooperative environment,

contains several vulnerabilities that an unscrupulous

receiver can exploit to obtain improved service at the expense

of other network clients or to implement a denial-of-service

attack.

(33.)

We have described ACK division, DupACK spoofing

and Optimistic ACK mechanisms and implemented them to

demonstrate that the attacks are both real and widely applicable.

The design of TCP can be modified, without changing the

nature of the congestion control function, to eliminate these

vulnerabilities. We have described the workings of a new Cumulative

Nonce approach that accomplishes this in a simple

yet effective manner. We have also identified and described

sender-only modifications that can be deployed immediately

to reduce the scope of the vulnerabilities without receiver-side

modifications.

Our work can readily be extended to other protocols. While

the Cumulative Nonce was defined in the context of TCP, it could

be adapted to any sender-based congestion control scheme. This

might prove fruitful for unreliable transports, for example, either

those that are explicitly TCP-friendly, or

other rate adaptive mechanisms, like those employed by RealAudio.

A Cumulative Nonce could also be used more widely to aid

in the design of other kinds of protocols. This is because it effectively

defines a sequencing mechanism between untrusted parties

that, because it is lightweight, idempotent and cumulative, is well

suited to network environments.

Beyond these immediate results, our work raises more speculative

protocol design issues. TCP was originally designed for a cooperative

environment, and its evolution through the years has built

on this base. Given this, it is perhaps not so surprising that we were•

able to find the vulnerabilities we did, because they naturally arise

when the sender and receiver represent different interests. With the

(34.)

growth of the Internet, however, it is arguable that "separate interests"

should be assumed by default. Protocol functions that are

managed by one party would then be designed to minimize the trust

they place in other parties. We observe that this kind of "separation

of interests" will require new mechanisms, such as a Cumulative

Nonce, to guarantee that different parties respect a common behavioral

contract.

(35.)

Congestion avoidance and control 	 Chapter 4

4.1 Introduction
Congestion refers to a loss of network performance when a

network is heavily loaded. Since congestive phenomena can cause data loss, large delays

in data transmission, and a large variance in these delays, controlling or avoiding

congestion is a critical problem in network management and design. This dissertation

presents some approaches for congestion control .

Early research in computer data networking led to the development of

reservationless store-and-forward data networks. These networks are prone to congestion

since neither the number of users nor their workload are regulated. Essentially, the

efficiency gained by statistical multiplexing of network resources is traded off with the

possibility of congestion. This problem was recognized quite early, and a number of

congestion control schemes were proposed; references provide a detailed review of

these.

In the past three years, there has been a

renewed interest in congestion control, We feel that at least three factors have been

responsible. First, the spread of networks such as ARPANET and their interconnection,

has created a very large Internet whose size has made it unmanageable. The large number

of users and a complete decentralization of network management made it inevitable

that congestion would pose problems sooner or later.

Transmission Control Protocol (TCP) to intelligently react to congestion, and to recover

from it . The success of these efforts brought congestion control into focus as a major

research area in the Internet community. 	 Ref-no. 4

The other factor is social, rather than technological. The networking community has long

been divided into two camps: the computer data networking community, and the

telecommunications community. However, in recent years, the telecom community has

realized the

(36.)

benefits of packet switching, resulting in the Asynchronous Transmission

Mode (ATM) . Similarly, data networking researchers have realized that they need to

provide realtime bounds on data transfer for services such CD-quality audio and

interactive video

The present time appears to be critical for the design of future high speed

networks, and in particular, their congestion control mechanisms. In this dissertation, we

propose a number of ideas that we believe are useful for high speed networks. We hope

that our work will contribute to the ongoing debate about congestion control.

4.2. Environment of discourse

We survey congestion control techniques in two types of wide-area

networks (though the dissertation is limited to techniques suitable for the first type). In

both networks, data is sent from sources of data to sinks through intermediate store-and-

forward switching nodes. Sources of data could be human users, transferring characters in

a remote login session, or transferring files.

For our purposes, we will refer to processes at OSI layer five and above as data

sources. Sinks are the ultimate destinations of the data. They are the peer processes of the

sources that receive and consume the received data, and they are typically assumed to

acknowledge the receipt of each packet. Switches route and schedule incoming packets

on outgoing lines, placing data in output buffers when the arrival rate exceeds the service

rate. The simplex stream of packets between a source of data and its sink is called a

conversation. Usually, a conversation corresponds to a pair of transport level endpoints,

for example, two BSD sockets.

The first type of network under consideration, called a reservationiess network, is an

abstract model for networks such as the Internet. In such a network, while intermediate

switches may reserve buffers (which does not reduce statistical multiplexing of the

bandwidth), they may not reserve bandwidth (which does). Hosts on reservationless

networks are assumed to be connected...

(37.)

... directly to switches, that in turn connect to other switches or

hosts. A switch could be a piece of software that resides in a host, or could be a separate

piece of hardware. The other type of networks are those where switches reserve both

bandwidth and buffers

on behalf of Virtual Circuits (VCs) (such as in Datakit). We call these reservation-

oriented networks. We assume that these networks carry two types of traffic:

performance-oriented traffic, which usually needs some form of real-time delay,

bandwidth and jitter guarantees, and best-effort data traffic, which does not make such

demands .

Since no bandwidth is reserved on behalf of best-effort traffic, the best-

effort component of a reservation-oriented network can be modeled as a reservationless

network. Hence, schemes that are designed for reservationless networks can be

transferred, with appropriate modifications, to reservation oriented

networks.

We believe that most future generation networks will tend to be reservation-oriented.

Nevertheless, there are still some valid reasons to study congestion control in

reservationless networks. 	 Ref-no-5
First, reservationless networks will always be able to use bandwidth

more efficiently than reservation-oriented networks due to the gain from statistical

multiplexing. So, network providers who want to optimize cost will continue to build

reservationless networks. Second, the techniques that are developed for congestion

control can be applied to control best-effort traffic in reservation-oriented networks.

Thus, the results of this work will apply even in those networks.

Third, reservationless networks are currently the mostcommon type of computer

network. We believe that because of inertia, and a desire to stay with known and proven

technology, they will continue to exist in the future.

(38.)

4.3 What is congestion?

we are not aware of a satisfactory definition of congestion. We now discuss some

common definitions,point out their flaws, and then propose a new definition that we

consider to be superior.

Some common definitions of congestion

Since congestion occurs at high network loads, definitions of

congestion focus on some aspect of network behavior under high load. We first discuss a

scenario that leads to network congestion in reservationless networks, and then motivate

some definitions.

Consider a reservationless network, where, due to some reason, the short term packet

arrival rate at some switch exceeds its service rate. (The service rate is determined by the

processing time per packet and the bandwidth of the output line. Thus, the bottleneck

could be either the switch's CPU or the outgoing line: in either case, there is congestion.)

At this point, packets are buffered, leading to delays. The additional delay can cause

sources to time out and retransmit, increasing the load on the bottleneck. This feedback

leads to a rapidly deteriorating situation where retransmissions dominate the traffic, and

effective throughput rapidly diminishes. Further, if there is switch to switch flow control

(as in ARPANET etc.), new packets may not be allowed to enter the switch, and so

packets might be delayed at a preceding switch as well. This can lead to deadlock, where

all traffic comes to a standstill .

Note that three things happen simultaneously. First, the queueing delay

of the data packets increases. Second, there may be packet losses. Finally, in the

congested state, the traffic is dominated by retransmissions, so that the effective data rate

decreases. The standard definitions of congestion are thus of the form: "A network is
congested if, due to overload, condition X occurs", where X is excessive queueing

delay, packet loss or decrease in effective

throughput. The first definition is used in references, the second in reference, and the

third in reference .

(39.)

These definitions are not satisfactory for several reasons. First, delays and losses are

indices of performance that are being improperly used as indices of congestion, since the

change in the indices may be due to symptoms of phenomena other than congestion.

Second, the definitions do not specify the

exact point at which the network can be said to be congested

(except in a deterministic network, where the knee of the load-delay curve, and hence

congestion, is well defined, but that is the trivial case). For example, while a network that

has mean queueing delays in each switch of the order of 1 to 10 service times is certainly

not congested, it is not clear whether a network that has a queueing delay of 1000 service

times is congested or not. It does not seem possible to come up with any reasonable

threshold value to determine congestion!

Third, a network that is congested from the perspective of one user is not necessarily

congested from the perspective of another. For example, if user A can tolerate a packet

loss rate of lin 1000, and user B can tolerate a packet loss rate of 1 in 100, and the actual

loss rate is 1 in 500, then A will claim that the network is congested, whereas B will not.

A network should be called uncongested only if all the users agree that it is

4.4 New definition
	 Ref-no. 5

From the discussion above, it is clear that network congestion depends on a user's

perspective.

A user who demands little from the network can tolerate a loss in performance much

better than a more demanding user. For example, a user who uses a network only to send

and receive electronic mail will be happy with a delivery delay of a day, while this

performance is unacceptable for a user who uses a network for real-time audio

communication. The key point is the notion of the utility that a user gets from the

network, and how this utility degrades with network loading.

The concept of `utility' used here is borrowed from economic theory. It is used to refer to

a user's preference for a resource, or a set of resources (often called a resource bundle).

(40.)

Strictly speaking, the utility of a user is a number that represents the relative preference

of that user for a resource (or performance) bundle, so that, if a user prefers bundle A to

bundle B, the utility of A is greater than the utility of B. For example, if A is (end-to-end

delay of 1 second, average throughput 200 pkts/second}, and B is {end-to-end delay of

100 seconds, average throughput 20000 pkts/second}, a user may prefer A to B, and we

would assign a utility to A that is greater than the utility of B, while another user may do

the opposite. In classic microeconomic theory,

utilities are represented by a function over the resources . Since

utilities express only a preference ordering, utility functions are insensitive to monotonic

translations, and the utilities of two users cannot be compared; the function can only be

used to relatively rank two resource bundles from the point of view of a single user.

An example of a utility function is aT-(1-aT)RTT, where a is a weighting constant, T is

the average throughput over some interval, and RTT is the average round-trip-time delay

over the same interval. As the throughput increases, the utility increases, and as delays

increase, the utility decreases. The choice of a determines the relative weight a user

gives to throughput and delay.

A delay-sensitive user will choose a->0, whereas a delay-insensitive user's a—>1.

In practice, a utility function may depend on a threshold. For example, a user may state

that he or she is indifferent to delay, as long as it is less than 0.1 seconds. Thus, if the user

gets a delay of 0.05 seconds during some interval of time, and 0.06 seconds in a later

period, as far as the user is concerned, there has been no loss of utility. However, if some

user's utility does to be congested.

Definition

A network is said to be congested from the perspective of user i if the utility of i

decreases due to an increase in network load.

Remarks:
1. A network can be congested from the perspective of one user, and uncongested from

the perspective of another.

2. A network can be said to be strictly uncongested if no user perceives it to be

congested.
(41.)

3. A user's utility may decrease due to something other than network load, but the user

may not be able to tell the difference. The onus on the user is to determine the cause of

the loss of utility, and to take appropriate corrective action. This definition is better than

existing definitions since it avoids the three problems raised earlier.

First, we make a clear distinction between a performance index and a

congestion index. It is possible for a performance metric to decrease (for example, for

RTT to increase), without a change in the congestion index. Second, the definition makes

it clear that congestion occurs from the point of view of each individual user. Finally, the

point of congestion is precisely the one where the user detects a loss of utility. No further

precision is necessary,

since, if the users are not dissatisfied with the available service, then the network

performance, no matter how poor it is in absolute terms, is satisfactory. Our definition

places congestion control in a new light. A network that controls congestion,

by our definition, must be responsive to the utility function of the users, and must be able

to manage its resources so that there is no loss of utility as the load increases. Thus, the

network must be able to differentiate between conversations, and prioritize conversations

depending on the stringency of their owner's utility. A naive approach that ignores the

user's quality-of-service requirements is automatically ruled out by this definition.

4.5 Congestion control

The previous section presented a new definition of congestion; this

section describes congestion control. Two styles of control, proactive and reactive

control, are presented. It is shown that congestion control must happen at several

different time scales.

4.5.1. Proactive and reactive control

Congestion is the loss of utility to a user due to an increase in the

network load. Hence, congestion control is defined to be the set of mechanisms that

prevent or reduce such a deterioration. Practically speaking, a network can be said to

control congestion if it provides each user with mechanisms to specify and obtain utility

(42.)

from the network. For example, if some user desires low queueing delays, then the

system should provide a mechanism that allows the user to achieve this objective. If the

network is unable to prevent a loss of utility to a user, then it should try to limit the loss to

the extent possible, and, further, it should try to be fair to all the affected parties. Thus, in

reservationless networks, where a loss of utility at high loads is unavoidable,

we are concerned not only with the extent to which utility is lost, but also the degree to

which the loss of utility is fairly distributed to the affected users.

A network can provide utility in one of two ways. First, it can request that

each user specify a performance requirement, and can reserve resources so that this level

of performance is always available to,the user. This is proactive or reservation-oriented

congestion control. Alternatively, users can be allowed to send data without reserving

resources, but with the possibility that, if the network is heavily loaded, they may receive

low utility from the network. The second method is applicable in reservationless

networks. In this case, users must adapt to changes in the network state, and congestion

control refers to ways in which a network can allow users to detect changes in network

state, and corresponding mechanisms that adapt the user's flow to

changes in this state.

In a strict proactive scheme, the congestion control mechanism is

to make reservations of network resources so that resource availability is

deterministically guaranteed to admitted conversations. In a reactive scheme, the owners

of conversations need to monitor and react to changes in network state to avert

congestion. Both styles of control have their advantages and disadvantages. With

proactive control, users can be guaranteed that they will never experience loss of utility.

On the other hand, to be able to make this guarantee, the number of users has to be

restricted, and this could lead to underutilization of the network. Reactive control allows

much more flexibility in the allocation of resources. Since users are typically not

guaranteed a level of utility by the network, resources can be statistically multiplexed.

However, there is always a chance that correlated traffic bursts will overload the network,

causing performance degradation, and hence, congestion.

It is important to realize that proactive and reactive control are not mutually exclusive.

(43.)

Hybrid schemes can combine aspects of both approaches. One such hybrid scheme is for

the network to provide statistical guarantees . For example, a user could be guaranteed an

end to end delay of less than 10 seconds with 0.9 probability. Such statistical guarantees

allow a network administrator to overbook resources in a controlled manner. Thus,

statistical multiplexing gains are achieved, but without completely giving up performance

guarantees.

Another hybrid scheme is for the network to support two types of users: guaranteed

service users and best-effort users. Guaranteed service (GS) users are given a guarantee

of quality of service, and resources are reserved for them. Best-effort (BE) users are not

given guarantees and they use up whatever resources are left unutilized by GS users.

Finally, a server may reserve some minimum amount of resources for each user. Since

every user has some reservation, some minimum utility is guaranteed. At times of heavy

load, users compete for resources kept in a common pool. Assuming some degree of

independence of traffic, statistical multiplexing can be achieved without the possibility of

a complete loss of utility.

4.5.2. Time scales of control 	Refno.11

Congestion is a high-load phenomenon. The key to congestion control lies in determining

the time scale over which the network is overloaded, and taking control actions on that

time scale. This is explained below. Consider the average load on a single point-to-point

link. Note that the `average load' is an interval.-based metric. In other words, it is

meaningless without also specifying the time interval over which the average is

measured. If the average load is high over a small averaging interval,

then the congestion control mechanism (for example, the reservation mechanism) has to

deal with resource scheduling over the same small time scale. If the average load is high

over a longer time scale, the congestion control mechanism needs to deal with the

situation over the longer time scale as well as on shorter time scales.

An example should clarify this point. Consider a conversation on a unit capacity link. If

(44.)

the conversation is bursty, then it could generate a high load over, say, a lms time scale,

though the average load over a 1 hour time scale could be much smaller than 1. In this

case, if the conversation is delay-sensitive, then the congestion control scheme must take

steps to satisfy the user delay requirement on the 1ms time scale. Over longer time scales,

since the average demand is small, there is no need for congestion control.

On the other hand, if the conversation has a high average demand

on the 1 hour time scale as well as the Ims time scale, then congestion control has to be

active on both time scales. For example, it may do admission control (which works over

the 1 hour time scale) to make sure that network resources are available for the

conversation.

Simultaneously, it may also make scheduling decisions (which work on the lms

time scale) to meet the delay requirements. This example illustrates three points. First,

congestion control must act on several different time scales simultaneously. Second, the

mechanisms at each level must cooperate with each other. Scheduling policies without

admission control will not ensure delay guarantees. At the same time, the admission

control policy must be aware of the nature of the scheduling policy to decide whether or

not to admit a conversation into the network. Third, the time

scale is the time period over which a user sees changes in the network state. A congestion

control mechanism that is sensitive to network state must operate on the same time scale.

We now discuss five times scales of control: those of months,

one day, one session, multiple round trip times (RTTs), and less than one RTT. We

believe that the design of congestion control mechanisms for each time scale should be

based on sound theoretical arguments. This `has the obvious advantages over an ad hoc
approach: general applicability, ease of understanding, and formal provability of

correctness. At each time scale of control, a different theoretical basis is most

appropriate, and this is discussed below.

(45.)

4.5.3 Session

In connection-oriented networks, a session is the period of time between a call set-up and

a call teardown. Admission control in connection oriented-networks is essentially

congestion control on the time scale of a session: if the admission of a new conversation

could degrade the quality of service of other conversations in the network, then the new

conversation should not be admitted. This is yet another form of congestion control.

At the time a conversation is admitted to the network, the network should ensure that the

resources requested by the conversation are what it really needs. Thus, the admission

control scheme should give incentives to users to declare their resource needs accurately .

4.5.4 Multiple round trip times

One round trip time (RTT) is the fundamental time constant for

feedback flow control. It is the minimum time that is needed for a source of data to

determine the effect of its sending rate on the network. Congestion control schemes that

probe network state and do some kind of filtering on the probes operate on this time

scale. Examples are various window adjustment schemes. The theoretical bases for these

approaches lie in queueing theory and control theory. The queueing theory approach is

well studied, but requires strong assumptions about the network.

such as: Poisson arrivals from all sources, exponential service time distribution at all

servers, and independence of traffic. Since observations of real networks have shown that

none of these assumptions are satisfied in practice about traffic behavior, service rates

and so on, that do not hold in practice.

Assuming that each packet is acknowledged, multiple

acknowledgements can be received each RTT. If information about the state of the

network is extracted from each acknowledgement,

4.5.6 Less than one RTT

On a scale of less than once per RTT, congestion control can be considered to be

(46.)

identical to scheduling data at the output queues of switches. The goal

of a scheduling policy is to decide which data unit is the next to be delivered on a trunk.

This choice determines the bandwidth, delay, and jitter received by each conversation,

and hence the choice of the scheduling discipline is critical. A scheduling discipline that

does not vary its allocations as a function of the network load is hence a congestion

control mechanism. Examples are the Virtual Clock scheme and Stop-and-Go queueing

4.5.7 Need for congestion control in future networks

Congestion is a severe problem in current reservationless networks. However, in future

networks the available bandwidths and switching speeds will be several orders of

magnitude larger. Why should congestion arise in such networks? There are several

reasons:

Speed Mismatch : If a switch connects a high speed line to a slower line, then a bursty

conversation can, when sending data at the peak rate, fill up its buffer share, and

subsequently lose packets at the switch. This creates congestion for loss-sensitive

conversations.

This source of congestion will persist in high-speed networks, in fact, it is probably more

likely in such networks.

Topology : If several input lines simultaneously send data through a switch to a single

outgoing line, the outgoing line can be overloaded, leading to large queueing delays, and

possible congestion for delay-sensitive traffic. This is a special case of the speed

mismatch problem noted earlier.

Increased Usage : Memory sizes have increased exponentially during the last decade.

Yet, the demand for memory has remained, since larger memory sizes have made it

feasible to develop applications that require them. Drawing a parallel to this trend, we

postulate that as bandwidth increases, new applications (such as real time video) will

(47.)

demand these enormous bandwidths. As the available bandwidth gets

saturated, the network will be operated in the high-load zone, and congestive problems

are likely to reappear.

Misbehavior: Congestion can be induced by misbehaving sources (such as broken

sources that send a stream of back-to-back packets). Future networks must protect

themselves and other sources from such misbehavior, which will continue to exist.

Dynamics : As network speeds increase, the dynamics of the network also changes.

Since queues can build up faster, congestive phenomena can be expected to occur much

more rapidly, and perhaps have catastrophic effects . From these observations, we

conclude that even though future networks will have larger trunk

bandwidths and faster switches, congestion will not disappear.

4.6. Fundamental assumptions

Underlying any congestion control scheme are some implicit assumptions about the

network environment. These unstated assumptions largely determine the nature of the

control scheme and its performance limits. We consider some of these assumptions in this

section.

4.6.1. Administrative control

Can we, as designers of congestion control mechanisms, assume

administrative control over the behavior of sources Or, can we assume administrative

control only over the behavior of switches? Some schemes assume that we can control

sources but not switches e.g. Others assume that we can control both the sources and the

switches . Still others assume complete control over the switches, and the ability to

monitor source traffic, but no control over source traffic.

(48.)

This assumption should be constrained by reality. In our work, we assume that we have

administrative control over switches. However, source behavior is assumed to be outside

our direct control (though it can be monitored, if needed). The implication is that the

network must take steps to protect itself and others from malicious or misbehaving users.

(Of course, users that abuse the network because of a hardware failure, such as a jammed

ethernet controller, are always a threat, even when the sources can be controlled

administratively.)

4.6.2. Source complexity 	Ref-no. 7

How complex should one assume sources to be? Since we do not have

administrative control over sources, we assume that sources will perform actions that will

maximize their own utility from the network. If the congestion control scheme allows

intelligent users to manipulate the scheme for their own benefit, they will do so. On the

other hand, users may not have the capability to respond to complex directives from the

network, so we cannot assume that all users will act intelligently. In other words, while a

congestion control scheme should not assume sophisticated behavior on the part of the

users, at the same time, it should not be open to attack from such users.

4.6.3. Gateway complexity
Some authors assume that switches can be made complex

enough to set bits on packet headers, or even determine user utility functions, whereas

others assume that switches simply route packets. Ignoring monetary considerations,

since we have administrative control, we can make switch control algorithms as complex

as we wish, constrained only by speed requirements.

It has been claimed that for high speed operation, switches should be

dumb and fast. We believe that speed does not preclude complexity. What we need is a

switch that is fast and intelligent. This can be achieved by

l .having hardware support for rapid switching

2. optimizing for the average case

3. removing signaling information from the data path

4. choice of scheduling algorithm

5. an efficient call processing architecture.

Thus, we will assume that a switch can make fairly intelligent decisions, provided that

this can be done at high speeds.

4.6.4. Bargaining power

The ultimate authority in a computer network lies in the ability to drop

packets (or delay them). Since this authority lies with the switches, they ultimately have

all the bargaining power. In other words, they can always coerce sources to do what they

want them to do (unless this is so ridiculous that a source would rather not send any data).

Any scheme that overlooks this fact loses a useful mechanism to control source behavior.

Thus, schemes that treat switches and sources as peer entities are fundamentally flawed:

they need to posit cooperative sources precisely because they ignore the authority that is

automatically vested in switches.

4.6.5. Responsibility for congestion control 	Re fylo. l l

Either the sources or the switches could be made responsible

for congestion control. If sources are responsible, they must detect congestion and avert

it. If switches are responsible, they must take steps to ensure that sources reduce their

traffic when congestion occurs, or allocate resources to avert congestion.

We believe that congestion control is a network function. If we leave the responsibility

for it to sources that are not under our administrative control, then we are endangering the

network.

Further, the congestion detection and management functionality has to be duplicated at

each of the (many) sources. In contrast, it is natural to make the fewer, controllable

switches responsible for congestion control. Note that responsibility is not the same as

functionality. In other words, having responsibility for congestion does not mean that the

switches have to actually perform all the actions necessary for congestion control

switches can enforce rules that make it incentive compatible for Sources to help in

containing congestion. For example, a Fair Queueing switch has the responsibility for

(50.)

congestion control, but it does congestion control by forcing sources to behave

correctly during congestion.

4.6.7. Traffic model 	 Ref-no. I

The choice of a traffic model influences the design of a congestion

control scheme, since the scheme is evaluated with respect to this model. There are

hidden dangers here: for example,

schemes that assume Poisson sources may not robust, if, in practice, traffic does not obey

this distribution. It is best to design schemes that are insensitive to the choice of the

traffic model. This is achieved if a scheme does not make assumptions about the arrival

distribution of packets at the switches.

What should be the traffic model? We do not have much data at our disposal, since there

are no high-speed WANs yet available to measure. However, there are three trends that

point to a reasonable model. First, the move towards integration of data, telephony and

video services indicates that some number of sources in our environment will be phone

and video sources.

These can generate high bandwidth traffic over periods of time spanning minutes or

hours. Second, existing studies have shown that data traffic is very bursty . This tendency

will certainly be exaggerated by increases in line speeds. Finally, we note that current

applications are mostly of two sorts - low bandwidth interactive conversations, and high

bandwidth offline bulk data transfer. At higher speeds, the bulk data transfers that last

several seconds today will collapse into bursts. This reinforces our belief that future

traffic will basically be bursty.

To sum up, we expect that the traffic will be generated by two kinds of sources: one that

demands a sustained high bandwidth, and the other that generates bursts of traffic at

random intervals of time. We call these sources 'FTP' and 'Telnet' in this thesis (these

terms are probably outdated, but we use them for convenience). This model is fairly

simple, and does not involve any assumptions about packet arrival distributions.

(51.)

Thus, schemes that work for this model will probably work for a large variety of

parametrically constrained models as well (e.g. for traffic where the bursts are

exponentially or uniformly distributed). Since the traffic characteristics for

future networks are still unknown, this model is speculative. However, we think that it is

as reasonable as any that have so far been studied.

4.7.1. Reservationless networks
In reservationless networks, control has to be reactive. A

reactive congestion control scheme is implemented at two locations: at the switches,

where congestion occurs, and at the sources, which control the net inflow of packets into

the network. Typically, a switch uses some metric (such as overflow of buffers) to

determine the onset of congestion, and implicitly or explicitly communicates this problem

to the sources, which reduce their input traffic.

4.7.2 Congestion detection
How is a switch or source to detect congestion? There are

several alternatives. The most common one is to notice that the output buffers at a switch

are full, and there is no space for incoming packets. If the switch wishes to avoid packet

loss, congestion avoidance steps can be taken when some fraction of the buffers are full.

A time average of buffer occupancy can help smooth transient spikes in queue occupancy

.A switch may monitor output line usage. It has been found that congestion occurs when

trunk usage goes over a threshold (typically 90%) and so this metric can be used as a

signal of impending congestion. The problem with this metric is that congestion -

avoidance could keep the output line underutilized, leading to possible inefficiency.

4.7.3 Communication

Communication of congestion information from the congested switch

to a source can be implicit or explicit. When communication is explicit, the switch sends

information in packet headers or in control packets such as Source Quench packets,

choke packets , state-exchange packets , rate-control messages , or throttle packets to the

source. Implicit communication occurs when a source uses probe values, retransmission

timers , throughput monitoring, or delay monitoring to indicate the (sometimes only

(52.)

suspected) occurrence of congestion.

Explicit communication imposes an extra burden on the network, since the network needs

to transmit more packets than usual, and this may lead to a loss in efficiency. On the

other hand, with implicit communication, a source may not be able to distinguish

between congestion and other performance problems, such as a hardware problem. Thus,

the communication channel is quite noisy, and a cause of potential instability.

4.7.5 Flow control

A number of congestion control schemes have been proposed that operate at the

sources. These schemes use the loss of a packet (or the receipt of choke information) to

reducethe source sending rate in some way. The two main types of schemes are choke

schemes and rate-control schemes.

In a choke scheme, a source shuts down when it detects congestion. After

some time, the source is allowed to start up again. Choking is not efficient, since the

reaction of the sources is too abrupt. The stability of the choke scheme has not been

analyzed, but the simple

In a rate-control scheme, when a source detects congestion it reduces the rate at which it

sends out packets, either using a window adjustment scheme or a rate adjustment

scheme. The latter is particularly suitable for sources that do rate based flow control. The

advantage of rate control schemes over choke schemes is that rate control allows a

gradual transition between sending no packets at all to sending full blast. Rate control

seems to be an attractive

4.7.7 Reservation-oriented networks 	Ref-no.I

In reservation-oriented networks, network resources can be allocated

at the start of each session. Then, the network can guarantee a performance level to a

conversation by performing admission control: This can guarantee congestion control, but

perhaps at the cost of underutilization of network resources.

(53.)

Here, the network places a limit on the size of the flow control window of each

conversation, and the connection establishment packet reserves a full window's worth of

buffer space at each intermediate switch. Thus, every virtual circuit, once established, is

guaranteed to find enough buffers for each outstanding packet, and packet loss is

avoided.

The complementary scheme is to reserve bandwidth instead of buffers. This is the

approach taken by Zhang in the Flow Network, by Ferrari et al in their real-time channel

establishment scheme, In a hybrid scheme described in reference a source makes a.

reservation for buffers at the beginning of a call, and a reservation for bandwidth before

the start of each burst. This allows bandwidth to be efficiently shared, but each burst

experiences a round trip time delay.

There are four major problems with any naive reservation scheme: scaling, queueing

delay, underutilization and enforcement.

4.7.9 Delay
In a proactive scheme, at overload, a full window could be buffered at

the bottleneck. When this happens, the queueing delay could be unacceptable. Delays can

be bounded by computing the worst-case delay at the time of call set-up, and doing

admission control.

4.7.10 Underutilization 	Ref no. -1

The major problem with reservations is that the network could be

underutilized: an overzealous admission control scheme could prevent congestion by

allowing only a few conversations to enter. This is not acceptable. The crux of the

problem lies in determining how many conversations can be admitted into the network

without reducing the performance guarantees made to the existing conversations. This

has been studied by Ferrari et al . One solution to the problem is to define statistical

guarantees, where some degree of performance loss can be tolerated.

(54.)

An efficient way to monitor, (if necessary), reshape user traffic behavior to make it less

bursty, is the leaky-bucket scheme.

Other schemes do enforcement at each switch. This is through some form of round-robin

like queueing discipline at each switch. In the Flow network, the Virtual Clock

mechanism is used.

4.7.12 Quality of service

One can view congestion control as being able to guarantee quality of

service at high loads. There has been some previous work in guaranteeing quality of

service in networks. Postel made an early suggestion for reservationless networks, though

this was not studied in any depth. Stop-and-go queueing provides conversations with

bandwidth, delay, and is similar in spirit to Hierarchical Round Robin scheme.

1***:: ?C:F `S 3: X iC***** *Y.*X3:$C'.v.*$i :F ::* Y*'.}** X**Y'.?".?:** `.t* * ?'. ***3i'?: 'l** *?C* *****:C ?C****

~kx9e:t:e;:~.katiLrxi::ELY:~~t~~kk~-~cX~cx'-xztx~ta~~:F*:F~eic~:~t:F:R~Fxicoc~~:~itiexiekscx~'cx:@~~x~~F~'eXk9e:F~:9:x~YSc/

(55.)

CONCLUSION

Computer 'networks have an explosive _, growth over the past : ;few'" years and with that •.

growth have come severe congestion problems. For example, it is now' common tb see
Internet gateways drop 1'0% of the incoming packets because.of local buffer overflows.

Our investigation of some of these problems has shown that much of the cause lies in

transport protocol implementations (rot in the protocols themselves): The `obvious' ways

to iinp'ement a- window-based transport protocol can result in exactly the wrong behavior

in response to network congestion.

The Equation-based congestion control for

unicast traffic. Most best-effort traffic in the current Internet is well-served by the

dominant transport protocol, TCP. However, traffic such as best-effort unicast' streaming

multimedia could find use for a TCP-friendly congestion control mechanism

that refrains from reducing the sending rate in half in response to a single packet drop.

With Our mechanism, the sender explicitly adjusts its sending rate as a function of the

measured rate of loss events, where a loss ci'enl consists of one or more packets dropped

within a single round-trip time (RTT). We use both simulations and experiments

over the Internet to explore performance.

Since congestion occurs at high network loads,. congestion focus on some aspect of

network behavior under high load. A scenario that leads to network congestion in

reservationless networks,

Consider a reservationless network, where, due to some reason, the short term packet

arrival rate at some switch exceeds its service rate. (The service rate is determined by the

processing time per packet and the bandwidth of the output line. Thus, the bottleneck

could be either the switch's CPU or the outgoing line: in either case, there is congestion.)

At this point, packets are buffered, leading to delays. The additional delay can cause

sources to time out and :::transmit, increasing the load on the bottleneck . This feedback

leads to a rapidly deterioi ating situation where retransmissions dominate the traffic, and

effective throughput rapidly diminishes. Further, if there is switch to switch flow control

(as in ARPANET etc.), new packets may not be allowed to enter the switch, and so

packets might be delayed at a preceding switch as well. This can lead to deadlock, where

all traffic comes to a standstill . Note that three things happen simultaneously. First, the

queuing delay of the data packets increases. Second, there may be packet losses. Finally,

in the congested state, the traffic is dominated by retransmissions, so that the effective

data rate decreases. The potential congestion resulting from aggressive senders has

received significant attention from the networking community ' has produced proposals

for per-flow bandwidth reservation and mechanisms to detect and limit "unfriendly"

flows in the network . These solutions, if workable, would solve the more general

problem of unconstrained data transmission and would make the issue of trust in end-to-

end congestion control.

REFERENCES

[1] EDGE, S. W. An adaptive timeout algorithm for retransmission across a packet

switching network. In Proceedings of SIGCOIvM '99 (Mar. 1999), ACM.

[2] FELLER, W. Probability Theory and its Applications, second ed., vol. H. John Wiley

& Sons, 1999.

[3] HA.rn.K, B. Stochastic approximation methods for decentralized control of multiaccess

communications. IEEE Transactions on Information Theory IT-31, 2 (Mar.

1996).

[4] HAJEK, B., AND VAN LOON, T. Decentralized dynamic control of a multiaccess

broadcast channel. IEEE Transactions on Automatic Control AC-27, 3 (June 2000).

[51 Proceedings of the Sixth Internet Engineering Task Force (Boston, MA, Apr. 1998).

Proceedings available as NIC document IETF-87/2P from DDN Network Information

Center, SRI International, Menlo Park, CA.

[6] INTERNATIONAL ORGANIZATION FOR STANDARDIZATION. ISO International Standard

8473, Information Processing Systems — Open Systems Interconnection -
Connectionless-mode Network Service Protocol Specification, Mar. 1999

[7] JACOBSON, V. Congestion avoidance and control. In Proceedings of SIGCOMM '88

(Stanford, CA, Aug. 1999), ACM.

[81 JAIN, R. Divergence of timeout algorithms for packet retransmissions. In Proceedings

Fifth Annual International Phoenix Conference on Computers and Communications

(Scottsdale, AZ, Mar. 1996).

[9] JAIN, R. A timeout-based congestion control scheme for window flow-controlled

networks. IEEE Journal on Selected Areas in Communications SAC-4, 7 (Oct. 1986).

(85.)

[10] JAIN, R., RAMAKRISIINAN, K., AND Cinu, D.-M. Congestion avoidance in computer

networks with a conncctionless network layer. Tech. Rep. DEC-TR-506, Digital

Equipment Corporation, Aug. 1998.

[11] KARN, P., AND PARTRIDGE, C. Estimating round-trip times in reliable transport

protocols. In Proceedings of SIGCOMM '87 (Aug. 1999), ACM.

[12] KELLY, F. P. Stochastic models of computer communication systems. Journal of the

Royal Statistical Society B 47, 3 (1999), 379-395.

[14] KI.EINROCK, L. OueueingSystems, vol. II. John Wiley & Sons, 1976.

[15] KLING, C. Supercomputers on the Internet: A case study. In Proceedings ofSIGCOIvIM

87 (Aug. 2000), ACM.

[16] LJUNG, L., AND S ODI:'RSTR OM, T. Theory and Practice of Recursive Identification.

MIT Press, 1983.

[17] LUENBERGER, D. G. Introduction to Dynamic Systems. John Wiley & Sons, 2001:

[18] MILLS, D. Internet Delay Experiments. ARPANET Working Group Requests for

Comment, DDN Network Information Ccntcr, SRI International, Menlo Park, CA,

Dec. 1988. RFC

[19] NAGLE, J. Congestion Control in IP/TCP Internetworks. ARPANET Working Group

Requests for Comment, DDN Network Information Center, SRI International, Menlo

Park, CA, Jan. 1984. RFC-896.

[20] PRUE, W., AND POSTEL, J. Something A Host Could Do with Source Quench.

ARPANET Working Group Requests for Comment, DDN Network Information Center,

SRI International, Menlo Park, CA, July 1987. RFC-1016.

[21] ROM KEY, J. A Nonstandard for Transmission of IF Datagrams Over Serial Lines:

Slip. ARPANET Working Group Requests for Comment, DDN Network Information

Center, SRI International, Menlo Park, CA, June 1988. RFC-1055.

[22] ZIIANG, L. Why TCP timers don't work well. In Proceedings ofSIGCOMM '86

(Aug. 1986), ACM.

APPENDIX

Programming Part

Language Used: Visual Basic 6.0

Dim i As Integer, a As Integer, b As Integer, c As Integer, d As Integer, e As Integer

Private Sub Command1_Click() I/ integer declaration and click interface

t.Enabled = True

tl.Enabled = True

End Sub

Private Sub Command2 ClickO

t2.Enabled = True

tl.Enabled = True

End Sub

Private Sub Command3 Click()

t3.Enabled = True

tl.Enabled = True

End Sub

Private Sub Commando ClickO

t4.Enabled = True

tl.Enabled = True

End Sub

Private Sub Command5_Click()

t5.Enabled = True

tI.Enabled = True

End Sub

Private Sub Command6_Click()

t7.Enabled = True 	If Pixel arrangement.

End Sub

Private Sub Form Load()

End Sub

Private Sub t Timer()

If i <= 3 Then

If 11(0).Left < 4600 Then

11(0).Visible = True

11(0) ;Left = 11(0).Left + 100

End If

Else

t6.Enabled = True

End If

End Sub

Private Sub tl_Timer()

Text1 =i

If a = 0 Then

If 11(0).Left > 4560 Then

i=i+1

a=a+1

End If

End If

If b = 0 Then

If 11(1).Left > 4560 Then

i=i+1

b=1

End If

End If

If c = 0 Then

If 11(2).Left > 4560 Then

i=i+1

c=1

End If

End If

If d = 0 Then

If 11(3).Left > 4560 Then

i=i+1

d=l

End If

End If

If e = 0 Then

If 11(4).Left -> 4560 Then

i=i+1

e=1

End If

End If

End Sub

Private Sub t2_Timer()

If i <= 3 Then

If 11(1).Left < 4600 Then

11(1).Visible = True

11(1)Left =11(1).Left + 100

End If

Else

t6.Enabled = True

End If

End Sub

Private Sub t3_Timer()

If i <= 3 Then

If 11(2).Left < 4600 Then

11(2). Visible = True

11(2).Left = 11(2).Left + 100

End If

Else

t6.Enabled = True

End If

End Sub

Private Sub t4_Timer()

If i <= 3 Then

If 11(3).Left < 4600 Then

11(3).Visible = True

11(3).Left =11(3).Left + 100

End If

Else

t6.Enabled = True

End If

End Sub

Private Sub t5 Timer()

If i <= 3 Then

If 11(4).Left < 4600 Then

11(4).Visible = True

11(4).Left = 11(4).Left + 100

End If

Else

t6.Enabled = True

End If

End Sub

Private Sub t6 Timer()

If 11(0).Left < 4560 Then

If 11(0)_Visible = True Then

11(0).Visible = False

Else

II(0).Visible = True

End If

End If

If 11(1).Left < 4560 Then

If 11(1)Visible = True Then

11(1).Visible = False

Else

11(1)Visible = True

End If

End If

If 11(2).Left < 4560 Then 	// Label visiblity.

If 11(2).Visible = True Then

11(2).Visible = False

Else

11(2). Visible = True

End If

End If

If 11(3).Left < 4560 Then

If 11(3).Visible = True Then

11(3).Visible = False

Else

1I(3).Visible = True

End If

End If

If 11(4).Left < 4560 Then

If 11(4).Visible = True Then

11(4).Visible = False

Else

11(4). Visible = True

End If

End If

End Sub

Private Sub t7 Timer()

If 11(0).Left < 10000 And 1l (0).Left > 4600 Then

11(0) = LoadPicture("c:\teer 1.bmp")

11(0).Left = 11(0).Left + 210

11(0).Top = 11(0).Top - 120

End If

If 1l(1).Lefft < 10000 And 11(1).Left > 4600 Then

11(1).Left =11(1).Left + 210

End If

If 11(2).Left < 10000 And 11(2).Left > 4600 Then

11(2) = LoadPicture("c:\teer2.bmp")

11(2).Left = 11(2).Left + 210

11(2).Top = 11(2).Top + 85

End If

If 11(3).Left < 10000 And 11(3).Left > 4560 Then

11(3) = LoadPicture("c:\teer3.bmp")

11(3).Left = 11(3).Left + 210

11(3).Top = 11(3).Top + 30

End If

If 11(4).Left < 10000 And 11(4).Left > 4560 Then

11(4).Left =11(4).Left + 210

End If

If i > 3 Then

i=i-1

t6.Enabled = False

End If

If 11(0).Lef . >= 10000 Then

11(0).Picture = LoadPicture(" c:\teer.bmp")

11(0).Left = 120

11(0). Top = 2160

End If

If 11(1).Left >= 10000 Then

11(1).Picture = LoadPicture("c:\teer.bmp ")

11(1).Left = 120

11(1).Top = 2160

End If

If 11(2).Left >= 10000 Then

11 (2).Picture = LoadPicture("c:\teer.bmp ")

11(2).Left = 120

11(2). Top = 2160

End If

If 11(3)Left >= 10000 Then

11(3).Picture = LoadPicture("c:\teer.bmp")

11(3).Left = 120

11(3).Top = 2160

End If

If 11(4).Left >= 10000 Then

11(4).Picture = LoadPicture("c:\teer.bmp")

11(4).Left = 120

11(4).Top = 2160

End If

End Sub

Private Sub Timerl_Timer()

If 11(6).Visible = True Then

11(6).Visible = False

Else

11(6).Visible = True

End If

If 11(7).Visible = True Then

11(7).Visible = False

Else

11(7).Visible = True

End If

If 11(8).Visible = True Then

11(8).Visible = False

Else

11(8). Visible = True

End If

If 11(9). Visible = True Then

11(9). Visible = False

Else

11(9). Visible = True

End If

If 11(10).Visible = True Then

11(10).Visible = False

Else

I1(10).Visible = True

End If

End Sub

Private Sub tt_TimerQ

If 11(17).Left < 960 Then

11(17).Left = 11(17).Left + 100

End If

If 11(17).Left > 960 Then

11(17).Left = Default

End If

If 11(15).Left < 2160 And 11(16).Top > 1400 Then

11(15). Visible = True

11(15).Left = 11(15).Left + 300

End If

If 11(15).Left > 2060 Then

11(11).Picture = LoadPicture("c:\teer.bmp")

11(15).Left = 720

End If

If 11(16).Top < 2150 Then

11(16). Visible = True

11(16).Top =11(16).Top + 100

End If

If 11(16).Top > 2150 Then

11(16).Top = 1320

11(16).Visible = False

End If

If 11(16).Top > 1500 Then

11(14).Picture = LoadPicture("")

End If

If 11(14).Picture = Empty Then

ll(13).Picture = LoadPicture("")

11(14).Picture = LoadPicture("c:\teer.bmp")

End If

If 11(13).Picture = Empty Then

11(12).Picture = LoadPicture(" ")

11(13).Picture = LoadPicture("c:\teer.bmp")

End If

If 11(12).Picture = Empty Then

11(11).Picture = LoadPicture(" ")

11(12).Picture = LoadPicture("c:\teer.bmp")

End If

End Sub
/xx****xxx* *** ;c ,<xxxx*a * * * * * ;c***** ;cx***x*x*** ,Y:y **x*xx*xxx*****xxX*xxx x/

Programm for different sources sending packets to aperticular destion

Dim i As Integer, x As Integer, a As Integer, b As Integer, z As Integer, c As Integer, d

As Integer, e As Integer, f As Integer, g As Integer

Dim al As Integer, b 1 As Integer, c 1 As Integer, dl As Integer, el As Integer, fl As

Integer, gl As Integer, zl As Integer

Private Sub Commandl_ClickO

Command1.Enabled = False

For i = 0 To 6

l(i).Top = 2800

1(i).Left = 800

1(i).BackColor = vbBlack

Next i

t.Enabled = True

t2.Enabled = False

End Sub

Private Sub Command2 ClickO

Command2.Enabled = False

For i=0To6

11(i).Top = 1500

11(i).Left = 5900

11(i).BackColor = vbBlack

Next i

t1.Enabled = True

t3.Enabled = False

End Sub

Private Sub Form Click()

Command 1 .Enabled = True

Cornmand2.Enabled = True

End Sub

Private Sub t_Timer()

If l(0).Left < 11100 And 1(0). Visible = True Then

1(0).Left =1(0)Left + 100

End If

If l(0).Left > 1000 And 1(1) Left < 11100 And 1(1).Visible = True Then

1(1).Left =1(1).Left ± 100

End If

If l(1).Left > 1000 And 1(2).Left < 11100 And 1(2).Visible = True Then

1(2).Left =1(2).Left + 100

End If

If 1(2).Left> 1000 And 1(3).Left < 11100 And 1(3).Visible = True Then

1(3).Left =1(3).Lefl + 100

End If

If 1(3).Left > 1000 And 1(4).Left < 11100 And 1(4).Visible = True Then

1(4).Left = 1(4).Left + 100

End If

If 1(4).Left > 1000 And 1(5).Left < 11100 And 1(5). Visible = True Then

1(5).Left = 1(5).Left + 100

End If

If 1(5).Left > 1000 And 1(6).Left < 11100 And 1(6).Visible = True Then

1(6).Left = 1(6).Left + 100

End If

If al = 0 Then

If 1(0).Left > 10900 And I(0).Visible = True Then

z1=z1+1

al = 1

End If

End If

Ifbl =0 Then

If 1(1).Left > 10900 And 1(1).Visible = True Then

z1=z1+1

bl=1

End If

End If

If c l = 0 Then

If 1(2).Left > 10900 And 1(2).Visible = True Then

z1=z1+1

cl=1

End If

End If

If d l = 0 Then

If 1(3).Left > 10900 And 1(3).Visible = True Then

z1=z1+1

dl = 1

End If

End If

If el = 0 Then

If 1(4).Left > 10900 And 1(4).Visible = True Then

zl=zl+1 .

el = 1

End If

End If

If fl = 0 Then

If 1(5).Left > 10900 And 1(5).Visible = True Then

z1=z1+1

fl=1

End If

End If

If gl = 0 Then

If 1(6).Left > 10900 And 1(6).Visible = True Then

z1=z1+1

gl=1

End If

End If

If 1(6).Lef$ >= 11100 Then

1(0).Left = 11100

l(1).Left = 11100

t.Enabled = False

t2.Enabled = True

End If

Text6 = zl

End Sub

Private Sub t1_TimerO

If 11(0).Top < 2800 Then

11(0). Visible = True

11(0)Top = 11(0).Top + 100

End If

If 11(0).Left > 700 And 11(0).Top >= 2800 Then

11(0)Left =11(0).Left - 100

End If

If 11(0).Top > 1700 Then

If 11(1).Top < 2800 Then

11(1).Visible = True

11(1).Top =11(1).Top + 100

End If

If 11(1).Left > 700 And 11(1).Top >= 2800 Then

11(1).Left =11(1).Left - 100

End If

End If

If 11(1). Top > 1700 Then

If 11(2). Top < 2800 Then

11(2). Visible = True

11(2).Top =11(2). Top + 100

End If

If 11(2).Left > 700 And 11(2). Top >= 2800 Then

11(2).Left =11(2).Left - 100

End If

End If

If 11(2).Top > 1700 Then

If 11(3).Top < 2800 Then

11(3). Visible = True

11(3).Top =11(3).Top + 100

End If

If 11(3).Left > 700 And 11(3).Top >= 2800 Then

1l(3)Left = 11(3).Left - 100

End If

End If

If 11(3).Top > 1700 Then

If 11(4).Top < 2800 Then

11(4).Visible = True

11(4).Top 11(4).Top + 100

End If

If 11(4).Left > 700 And 11(4).Top >= 2800 Then

11(4).Left = 11(4).Left - 100

End If

End If

If 11(4).Top > 1700 Then

If 11(5).Top < 2800 Then

11(5).Visible = True

11(5).Top = 11(5).Top -1 100

End If

If 11(5).Left > 700 And 11(5).Top >= 2800 Then

11(5).Left =11(5).Left - 100

End If

End If

If 11(5).Top > 1700 Then

If 11(6).Top < 2800 Then

11(6).Visible = True

11(6). Top 11(6).Top + 100

End If

If 11(6).Left > 700 And 11(6).Top >= 2800 Then

11(6).Left = 11(6).Left - 100

End If

End If

If a = 0 Then

If 1I(0).Left < 800 And 11(0).Visible = True Then

z=z+l

a=1

End If

End If

If b = 0 Then

If 11(1).Left < 800 And 11(1).Visible = True Then

z=z+l

b=1

End If

End If

If c = 0 Then

If 11(2).Left < 800 And 11(2).Visible = True Then

z=z+1

c=1

End If

End If

If d = 0 Then

If 11(3)Left < 800 And 11(3).Visible = True Then

z=z+1

d=1

End If

End If

If e = 0 Then

If 11(4).Left < 800 And 11(4). Visible = True Then

z=z+l

e=1

End If

End If

If f= 0 Then

If 11(5).Left < 800 And 11(5).Visible = True Then

z=z+l

f=1

End If

End If

If g = 0 Then

If 11(6).Left < 800 And 11(6).Visible = True Then

z=z+1

g=1

End If

End If

If 11(6).Left < 800 Then

tl.Enabled = False

t3.Enabled = True

End If

Text5=z

End Sub

Private Sub t2_Timer()

If 1(0).Left > 700 Then

I(0).BackColor = vbGreen

1(0).Visible = True

1(0).Left = 1(0).Left - 100

End If

If z l <7 Then

If I(1).Left > 700 And 1(0).Left < 10600 Then

l(1).BackColor = vbBlue

1(1).Visible = True

l(1).Left = 1(1).Left - 100

End If

End If

If 1(1).Left <= 700 Then

t2.Enabled = False

Timerl.Enabled = True

End If

End Sub

Private Sub t3 Timer()

If 11(0).Left < 5900 Then

11(0).BackColor = vbGreen

11(0). Visible = True

11(0).Left =11(0).Left + 100

End If

If 11(0).Left >= 5900 And 11(0). Top >= 1500 Then

11(0). Top =11(0). Top - 100

End If

If z <7 Then

If 11(1).Left < 5900 And 11(0).Left > 1000 Then

I1(1).BackColor = vbBlue

11(1).Visible = True

I1(1).Left =11(1).Left + 100

End If

If 11(1).Left >= 5900 And 11(1). Top >= 1500 Then

11(1).Top =11(l).Top - 100

End If

End If

If11(1).Top <= 1500 Then

11(1).Visible = False

ttt.Enabled = True

t3.Enabled = False

End If

End Sub

Private Sub t4_Timer()

For i = 0 To 6

Text3 =1(0).Left

Text4 =11(0).Left

Textl = 1(0).Top

Text2 =11(0).Top

If 1(0).Top = 11(i).Top And 1(0).Visible = True And l(0).BackColor = vbBlack Then

If 1(0).Left = 11(i).Left Then

sl.Visible = True

s 1. Top = l(0). Top - 200

s 1.Left =1(0)Left

1(0).Visible = False

I1(i).Visible = False

t5.Enabled = True

End If

End If

Next i

Fori=0To6

Text3 = l(0).Left

Text4 = 11(0).Left

Textl =1(0).Top

Text2 =11(0).Top

If 1(1).Top =11(i).Top And l(l).Visible = True And 1(1).BackColor = vbBlack Then

If 1(1).Left = 11(i).Le$ Then

sl.Visible = True

sl.Top =1(1).Top - 200

sl.Left = I(1).Left

l(l).Visible = False

11(i).Visible = False

t5.Enabled = True

End If

End If

Next i

For i = 0 To 6

Text3 = 1(0).Left

Text4 =11(0).Left

Textl = I(0).Top

Text2 = 11(0).Top

If 1(2).Top = 11(i).Top And 1(2).Visible = True And 1(2).BackColor = vbBlack Then

If 1(2).Left =11(i).Left Then

s l .Visible = True

s l .Top = 1(2). Top - 200

sl.Left = 1(2).Left

1(2).Visible = False

1l(i)Visible = False

t5.Enabled = True

End If

End If

Next i

For i=0To6

Text3 = 1(0).Left

Text4 =11(0).Left

Textl = 1(0).Top

Text2 =11(0).Top

If 1(3).Top = I1(i).Top Then

If 1(3).Left = 11(i).Left Then

End If

End If

Next i

For i = 0 To 6

Text3 =1(0).Left

Text4 = I1(0).Left

Textl =1(0)Top

Text2 = 11(0).Top

If 1(4).Top =11(i).Top Then

If 1(4).Left = 11(i).Left Then

End If

End If

Next i

For i = 0 To 6

Text3 = 1(0).Left

Text4 =11(0).Left

Textl =1(0).Top

Text2 =11(0).Top

If 1(5). Top =11(i). Top Then

If 1(5).Left = 11(i).Left Then

End If

End If

Next i

For i = 0 To 6

Text3 = 1(0).Left

Text4 = I 1(0).Left

Textl = 1(0).Top

Text2 = 11(0). Top

If 1(6).Top =11(i).Top Then

If 1(6).Left =11(i).Left Then

End If

End If

Next i

End Sub

Private Sub t5 Timer()

If x < 6 Then

If sl.Visible = True Then

sl.Visible = False

Else

sl.Visible = True

End If

x=x+1

End If

If x> 5 Then

t5.Enabled = False

sl.Visible = False

x=0

End If

End Sub

Private Sub Timerl Timer()

Select Case zl

Case I

Case 2

Case 3

Case 4

If l(0).Left < 11100 And 1(0). Visible = True Then

l(0).BackColor = vbBlack

l(0).Left = l(0).Left + 100

End If

If 1(0).Left > 1000 And 1(1).Left < 11100 And 1(1).Visible = True Then

l(1).BackColor = vbBlack

11(1).Visible = True

1(1).Left = 1(1).Left + 100

End If

If 1(1).Left > 1000 And 1(2).Left < 11100 And 1(2).Visible = True Then

1(2).BackColor = vbBlack

11(2).Visible = True

1(2).Left = 1(2).Left + 100

End If

Case 5

If 1(0).Left < 11100 And 1(0)Visible = True Then

1(0).BackColor = vbBlack

11(0).Visible = True

l(0).Left = 1(0).Left + 100

End If

If 1(0).Left > 1000 And 1(1).Left < 11100 And 1(1).Visible = True Then

1(1).BackColor - vbBlack

11(1).Visible = True

l(1).Lefft =1(1).Left + 100

End If

Case 6

If 1(0).Left < 11100 And 1(0). Visible = True Then

1(0).BackColor = vbBlack

11(0).Visible = True

l(0).Left = l(0).Left + 100

End If

End Select

End Sub

Private Sub ttt TimerO

For i = 0 To 6

11(i).BackColor = vbBlack

Next i

Select Case z

Case 3

If! 1(2). Top > 1700 Then

If 11(3).Top < 2800 Then

11(3).Visible = True

11(3).Top =11(3).Top + 100

End If

If 11(3).Left > 700 And 11(3).Top >= 2800 Then

11(3).Left =1l(3).Left - 100

End If

End If

If 11(0).Top <2800 Then

11(0). Visible = True

11(0).Top = 11(0).Top + 100

End If

If 11(0).Left > 700 And 11(0).Top >= 2800 Then

11(0).Left = 11(0).Left - 100

End If

If 11(0).Top > 1700 Then

If 11(1).Top < 2800 Then

11(l).Visible = True

11(1).Top = 11(1).Top + 100

End If

If 11(1).Left > 700 And 11(1).Top >= 2800 Them

11(1)Left= 11(1).Left - 100

End If

End If

If 11(1).Top > 1700 Then

If 11(2).Top < 2800 Then

11(2).Visible = True

11(2).Top =11(2). Top + 100

End If

If 11(2).Left > 700 And 11(2).Top >= 2800 Then

11(2).Left = 11(2).Left - 100

End If

End If

Case 4

If 11(0).Top < 2800 Then

11(0).Visible = True

11(0).Top = 11(0).Top + 100

End If

If 11(0).Left > 700 And 11(0).Top >= 2800 Then

11(0).Left =11(0).Left - 100

End If

If 11(0).Top > 1700 Then

If 11(1)Top < 2800 Then

11(1). Visible = True

11(1).Top = 11(1).Top + 100

End If

If 11(1).Left > 700 And 11(1).Top >= 2800 Then

11(1).Left = 11(1).Left - 100

End If

End If

If 11(1).Top > 1700 Then

If 11(2).Top < 2800 Then

11(2). Visible = True

11(2).Top = 11(2).Top + 100

End If

If 11(2).Left > 700 And 11(2). Top >= 2800 Then

11(2).Left = 11(2).Left - 100

End If

End If

Case 5

If 11(0).Top < 2800 Then

11(0). Visible = True

11(0).Top = 11(0).Top + 100

End If

If 11(0)_Left > 700 And 11(0).Top >= 2800 Then

11(0).Left =11(0).Left - 100

End If

If 11(0).Top > 1700 Then

If 11(1). Top < 2800 Then

11(1).Visible = True

11(1).Top =11(1).Top + 100

End If

If 11(1)Left > 700 And 11(1).Top >= 2800 Then

11(1).Left =11(1).Left - 100

End If

End If

Case 6

If 11(0)Top < 2800 Then
11(0).Visible = True

11(0). Top =11(0). Top + 100
End If

If I I (0).Lef > 700 And 11(0). Top >= 2800 Then

11(0).Left =11(0).Left - 100
End If
End Select

End Sub

	Title
	Abstract
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	References
	Appendix

