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ABSTRACT 

Computer networks form an essential substrate for a 

variety of distributed applications, but they are expensive to build and 

operate. This makes it important to optimize their performance so that users 

can derive the most benefit at the least cost. Though most networks perform 

well when lightly used, problems can appear when the network load 

increases. Loosely speaking, congestion refers to a loss of network 

performance when a network is heavily loaded. Since congestive phenomena 

can cause data loss, large delays in data transmission, and a large variance in 

these delays, controlling or avoiding congestion is a critical problem in 

network management and design. This dissertation work presenting the 

implementation details for congestion control in computer networks. 

Since these networks carry traffic of a single type, and the traffic 

behavior is well known, it is possible to avoid congestion simply by 

reserving enough resources at the start of each call. By limiting the total 

number of users, each admitted call can be guaranteed to have enough 

resources to achieve its performance target, and so there is no congestion. 

However, resources can be severely underutilized, since the resources 

blocked by a call, even if idle, are not available to other calls. 
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CHAPTER 1 

INTRODUCTION 

1.0 Introduction To Congestion control: 
When too many packets are present in the subnet the performance of subnet degrades. 

This situation is called congestion, Fig 1 depicts the symptoms.when no. of 

Packets dumped into the subnet by the hosts is within its carrying capacity,they are 

delivered (except for a few that are afflicted with transmission errors)and the no. of 

delivered packets is proportional to the no. of packets sent. 

However, as traffic increases too far, the routers are no longer able to cope, 

And they begin losing packets. This tends to make matters worse.At very high traffic 

,performance collapses completely,and almost no packets are 

delivered. 

Fig 1. 

---------- Pa9kets Sent_-------~ 
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Fig. I : When too much traffic is offered ,congestion sets in and performance degrades 

sharply. congestion can be brought by several factors. If all of a sudden streams of 

packets begin arriving on three or four input lines and all need the same output line ,a 

queue will build up . If there is insufficient memory to hold all of them , packets will be 

lost. Adding more memory may help up to a point, but important point is takes place here 

is that routers have an infinite amount of meimory,congestion get worse,not better, 

because by the time packets get to the front of the queue,they have already timed out 

(repeatedly), and duplicates have been sent . All the packets will dutifully forwarded to 

the next router, increasing the load all the way to the destination 

Since congestion occurs at high network loads, definitions of congestion focus on 
some aspect of network behavior under high load. We first discuss a scenario 
that leads to network 

1.1 Some reasons to congestion............ 
Slow processors can also cause congestion If the routers CPU's are slow at performing 

the book keeping tasks required of them (queuing buffers ,updating tables etc. ) queues 

can build up ,even though there is excess line capacity. Similarly low bandwidth lines 

can also cause congestion. upgrading the lines but not changing the processors, or vise 

versa ,often helps a little but frequently just shift the bottleneck also upgrading part but 

not all of the system ,often just moves the bottleneck somewhere else. The real problem 

will persist until all the components are in balance. 

The standard definitions of congestion 
are thus of the form: "A network is congested if, due to overload, condition X 
occurs", where X is excessive queueing delay, packet loss or decrease in 
effective throughput. 

(2} 



These definitions are not satisfactory for several reasons. First, delays and losses are 

indices of performance that are being improperly used as indices of congestion, since the 

change in the indices may be due to symptoms of phenomena other than congestion. 

Second, the definitions do not specify the exact point at which the network can be said to 

be congested 

(except in a deterministic network, where the knee of the load-delay curve, and hence 

congestion, is well defined, but that is the trivial case). For example, while a network that 

has mean queueing delays in each switch of the order of 1 to 10 service times is certainly 

not congested, it is not clear whether a network that has a queueing delay of 1000 service 

times is congested or not. It does not seem possible to come up with any reasonable 

threshold value to determine congestion! 

Third, a network that is congested from the perspective of one user is not necessarily 

congested from the perspective of another. For example, if user A can tolerate a packet 

loss rate of I in 1000, and user B can tolerate a packet loss rate of I in 100, and the actual 

loss rate is 1 in 500, then A will claim that the network is congested, whereas B will not. 

A network should be called uncongested only if all the users agree that it is. 

1.2  New definition 

From the discussion above, it is clear that network congestion depends 

on a user's perspective. A user who demands little from the network can tolerate a loss in 

performance much better than a more demanding user. For example, a user who uses a 

network only to send and receive electronic mail will be happy with a delivery delay of a 

day, while this performance is unacceptable for a user who uses a network for real-time 

audio communication. The key point is the notion of the utility that a user gets from the 

network, and how this utility degrades with network loading. 

The concept of `utility' used here is borrowed from economic theory. It is used to refer to 

a user's preference for a resource, or a set of resources (often called a resource bundle). 

(3) 



strictly speaking, the utility of a user is a number that represents the relative preference of 

that user for a resource (or performance) bundle, so that, if a user prefers bundle A to 

bundle B, the utility of A is greater than the utility of B. For example, if A is {end-to-end 

delay of 1 second, average throughput 200 pkts/second}, and B is {end-to-end delay of 

100 seconds, average throughput 20000 pkts/second}, a user may prefer A to B, and we 

would assign a utility to A that is greater than the utility of B, while another user may do 

the opposite. 

In classic microeconomic theory, 

utilities are represented by a function over the resources . Since utilities express only a 

preference ordering, utility functions are insensitive to monotonic translations, and the 

utilities of two users cannot be compared; the function can only be used to relatively rank 

two resource bundles from the point of view of a single user. 

An example of a utility function is 

aT - (1-a)RTT„ 	Ref-no.6 

where a is a weighting constant, 

T is the average throughput over some interval, 

and RTT is the average round-trip-time 

delay over the same interval. As the throughput (T) 

increases, the utility increases, and as delays increase, the utility decreases. The choice of 

a determines the relative weight a user gives to throughput and delay. 

A delay-sensitive user will choose a.-+0„ whereas a delay-insensitive user's a-+1. 
Ref-no. 5 

In practice, a utility function may depend on a threshold. For example, a user may state 

that he or she is indifferent to delay, as long as it is less than 0.1 seconds. Thus, if the user 

gets a delay of 0.05 seconds during some interval of time, and 0.06 seconds in a later 

period, as far as the user is concerned, there has been no loss of utility. However, if some 
user's utility does decrease as a result of an increase in the network load, that user will 

perceive the network to be congested. This motivates our definition. 

Congestion tends to feed upon itself and become worse. If a router has no free buffers, it 

(4) 



must ignore newly arriving packets When a packets is discarded the sending router (a 

neighbor)may time out and retransmit it perhaps ultimately many times. Since it can not 

discard the packet until it has been acknowledged , congestion at the receiver's end forces 

the sender to refrain from releasing the buffer it would have normally freed, in this 

manner, congestion backs up, likes cars approaching a toll booth. 

It is worth explicitly pointing out the difference between congestion control and 

flow control , as the relationship between is subtle . congestion has to do with making 

sure the subnet is able to carry the offered traffic . It is global issue ,involving the 

behavior of all the hosts all the routers, the store and forwarding processing within the 

routers all the other factors that tends to diminish the carrying capacity of the subnet. 

Flow control in contrast ,relates to the point to point traffic between a 

given sender and the receiver .Its job is to make sure that a fast sender can not continually 

transmit data faster than the receiver can absorb it. Flow control nearly always involves 

some direct feedback from the receiver to the sender to tell the sender how things are 

doing at the other end. 

The reason congestion control and flow control are often confused is that some 

congestion control algorithms operate by sending messages back to the various sources 

telling them to slow down when the network gets into the trouble. thus host can get a" 

slow down" message either because receiver can not handle the load , or because the 

network cannot handle it. 

We will come back to this point later. 

1.3  Genrel principles of congestion control 

Many problems in complex systems, such as computer networks, can be viewed 

from a control theory point of view. This approach leads to dividing all solutions into 

two groups : 

(1) open loop. 

(2) Closed loop. 

(5) 



Open loop solutions attempt to solve the problem the problem by good design in essence 

,to make sure it does occur in the first place . once the system is up and running 

,midcourse corrections are not made. 

Tools for doing open loop control include deciding when to accept new traffic, deciding 

when to discard packets and which ones,and making scheduling decisions at various 

points in the network .All of these have in common the fact that make decisions without 

regard to the current state of the network. 

In contrast ,closed loop solutions are based on the concept of a feedback loop. This 

approach has three parts when applied to congestion control 

1. Monitor the system to detect when and where congestion occurs. 

2. Pass this information to places where action can be taken place. 

3. Adjust system operation to current the problem. 

Various metrics can be used to monitor the subnet for congestion. 	Ref-no. IO 

Among these are the percentage of all packets discarded for lack of buffer space,the 

average queue lengths , the number of packets that time out and are retransmitted , 

the average packet delay,and the standard deviation of packet delay.In all 

cases,rising numbers indicate growing congestion. 

The second step in the feedback loop is to transfer the information about the 

congestion from the point where it is detected to the point where something can be 

done about it. The obvious way is for the router detecting the congestion to send 

the packet to the traffic source or sources announcing the problem. Of course, these 

extra packets increase the load at precisely the moment that more load is not 

needed,namely,when the subnet is congested. 

The presence of congestion means that the load is (temporarily) greater than the 
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resources (in the part of the system)can handle. Two solutions come to the mind : 

increases the resources or decreases the load.for example the subnet may start using 

dial-up telephone lines to temporarily increase the bandwidth at between certain 

points In systems like SMDS ,(Switched Multimegabit Data Service )it may ask 

the carrier for additional bandwidth for a while. 

On satellite systems ,increasing transmission power often gives higher ' Ref-no.2 

bandwidth .Splitting traffic over multiple routes instead of always using the best 

one may also effectively increase the bandwidth .finally, spare routers that are 

normally used only as backups (to make the systems fault tolerant) can be put on-

line to give more capacity when serious congestion appears. 

However, sometimes it is not possible to increase the capacity,or it has already 

been increased to the limit. The only way than to beat back the congestion is to 

decreases the load, several ways exist to reduce the load, including denying 

service to some users schedule their demands in a more predictable way. 

(7) 



Congestion Control Schemes 
for TCP/IP Networks 	 Chapter 2 

2.1 Introduction: 

Here we consider few methods for controlling congestion for TCP connections. The first 

three are Slow Start algorithm , DUAL, and TCP Vegas Treat the network as a black 

box, in that the only way to detect congestion is through packet loss and changes in round 

trip time, or throughput. The last two, Random Early Detection and Explicit Congestion 

Notification depend on the gateways to provide indications of congestion. 

The algorithms are judged in several categories: 

Performance. 

The algorithm is judged by increases in throughput and decreases in retransmission as 

compared to other algorithms. 

The algorithm is judged by how well connections share the resources with other 

connections and whether there are any biases towards connections with certain 

characteristics such as burstiness. 

2.2 Compatibility with current technology. 

The algorithm is judged by how well it interacts with current technology. Are the gains of 

this algorithm at the cost of other connections not using this algorithm? How will the 

algorithm perform in the presence of non-compliant sources? 

2.3 Complexity. 

The algorithm is judged by the complexity of implementation. Algorithms with lower 

overhead are preferred. In the first section we will compare algorithms which use changes 
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in performance, i.e., packet loss, 

increase in round trip time, change in throughput, to detect congestion. These algorithms 

have the advantage that they require only a new implementation of TCP and do not 

involve changing the network, 

as opposed to the algorithms discussed in the second section which require changing 

gateways and possibly adding fields to IP packets. 

2.4 Slow Start algorithm: 	Ref-no.3 
Introduction 

Jacobson and Karels developed a congestion control mechanism for TCP 

following a congestion collapse on the internet. Prior to this no congestion control 

mechanism was specified for TCP. Their method is based on ensuring the 'conservation 

of packets,' i.e., that the packets are entering the network at the same rate that they are 

exiting with a full window of packets in transit. A connection in this state is said to be in 

equilibrium. If all connections are in equilibrium, congestion collapse is unlikely The 

authors identified three ways for packet conservation to be violated: 

1.The connection never reaches equilibrium. 

2.A source sends a new packet before an old one exits. 

3.Congestion in the network prevents a connection from reaching equilibrium. 

4.TCP is 'self clocking,' i.e., the source sends a new packet only when it receives an ack 

for an old one and the rate at which the source receives acks is the same rate at which the 

destination receives packets. 

So the rate at which the source sends matches the rate of transmission over the slowest 

part of the connection. 

2.5 Algorithm 
To ensure that the connection reaches equilibrium, i.e., to avoid failure (1), a slow-start 
algorithm was developed. This algorithm added a congestion window. The minimum of 

the congestion window and the destination window is used when sending packets. Upon 

starting a connection, or 
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restarting after a packet loss, the congestion window size is set to one packet. The 

congestion window is then increased by one packet upon the receipt of an ack. This 

would bring the size of the congestion window to that of the destination window in 

RTT log2 W time, where RTT is the round-trip-time and W is the destination 

window size in packets. Without the slow start mechanism an 8 packet burst from a 10 

Mbps LAN through a 56 Kbps link could put the connection into a persistent failure 

mode. 

if the retransmit time is too short, making the source retransmit a packet that has not 
been received and is not lost. What is needed is a good way to estimate the round trip 

time: 

Err = Latest_RTT_S ample - RTT_Estimate 

RTT Estimate = RTT Estimate + g*Err 	Ref no• 6 

where g is again' (0 <g < 1) which is related to the variance. This can be done quickly 

with integer arithmetic. This is an improvement over the previous method which used a 

constant to account for variance.The authors also added exponential backoff for 

retransmitting packets that needed to be retransmitted more than once. This provides 

exponential dampening in the case where the round trip time increases 

faster than the RTT estimator can accommodate, and packets, which are not lost, are 

retransmitted. Lost packets are a good indication of congestion on the network. The 

authors state that the probability of a packet being lost due to transit is very rare. 

Furthermore, because of the improved round trip timer, it is a safe assumption that a 

timeout is due to network congestion. A additive increase / multiplicative decrease policy 

was used to avoid congestion. 

Upon notification of network congestion, i.e., a timeout, the congestion window is set to 

half the current window size. Then for each ack for a new packet results in increasing the 
window by 1/congestion windoi,v size. Note that if a packet times out, it is most likely 

that the source window is empty and nothing is being transmitted and a slow-start is 

required. In that case, the slow-start algorithm will increase the window (by one packet 

(10.) 



per ack) to half the previous window size, at which point the congestion avoidance 

algorithm takes over. 

2.6 Performance 

To test the effectiveness of their congestion control scheme, they compared their 
implementation of TCP to the previous implementation. They had four TCP 
conversations going between eight computers on two 10 Mbps LANs with a 230.4 Kbps 

link over the internet. They saw a 200% increase in effective bandwidth with the slow- 

start algorithm alone. The original implementation used only 35% of thef 	 ~ ~` Re -no. 6 , 
available bandwidth due to retransmits. In another experiment, using the same network 

setup, the TCP implementation without congestion avoidance resulted in 4,000 of 11,000 

packets sent were retransmitted packets as opposed to 89 of 8,281 with the new 

implementation.. 

2.7 Discussion 

According to this scheme suffers from oscillations when the network is overloaded. 

Because the window size is increased until a packet is dropped to indicate congestion, the 

bottleneck node is kept at maximum capacity. The window size oscillates between the 
maximum window size allowable by the bottleneck and half that size on timeouts. This 

leads to long queuing delays and high delay variation. 

Wang, et. al., also point out that this scheme is biased toward connections with fewer 

hops. However, this would take many iterations, in which time, the shorter connections, 

with shorter round trip times, would increase faster. 

V 



2.8 DUAL 

Introduction 

In Wang et. al. propose a method called DUAL to correct the oscillation problem 	
Ref-no.9 

associated with the Slow Start algorithm. This is similar to the algorithm described in in 

that it uses the round trip time to detect congestion as well as packet loss as in the Slow 

Start algorithm. 

The round trip time of a packed consists of the propagation delay and the queuing delay. 

The minimum round trip time would be equal to the propagation delay:- 

RTTmin = Dp 

The maximum round trip time would be the sum of the propagation delay and the delay 

for the bottleneck node to process a full queue: 

RTTmax = Dp + Max_Queue Size/Processing_Rate 

The Slow Start algorithm detects congestion when a packet is lost due to a queue 

overflow. The solution used in DUAL is to estimate RTTmin and RTTmax and using a 

threshold, avoid overflowing the queue at the bottleneck node. They defined this 

threshold as follows: 

RTTi = (1-a)RTTmin + aRTTmax . Ref-rro. 9 

for some a < 1. They chose a = 0.5 to stay well away from the maximum queue capacity. 

2.9 Algorithm 
DUAL uses the same slow-start algorithm for initiating and restarting a connection. The 

algorithm differs from Slow Start in that every two round trip times DUAL checks if the 

current RTT is greater than RTTi and reduces the congestion window by 7/8. It also 

recomputes RTTmax and RTTmin with every new RTT measurement. On a timeout, in 

addition to reducing the congestion window to one packet and restarting 

slowly as in the Slow Start algorithm, it resets RTTmax and RTTmin to 0 and infinity 

respectively. 

2.10 Performance 

DUAL was simulated in under three scenarios: 

1) single connection on a path, 

2) two connections share a path but one starts before the other and 

3) two way traffic. 	 (12) 



In the first scenario the DUAL showed an almost identical slow start phase, it did show a 

substantial reduction of oscillations as compared with the Slow Start algorithm. 

The second scenario tests the ability of the algorithm to adjust to the addition of 

connections. The results are similar to that observed in scenario one, except that as the 

algorithms progress, the window sizes of the connections converge. This is exactly what 

is expected. 

The last scenario tests the effect of rapid queue fluctuation on the round trip time based 

algorithm. The algorithm performed well despite the fluctuations. Wang, et. al. attribute 

this to the fact that many of the packets in the queue are ack packets which are small and 

therefore the actual queuing delay change is smooth. 	Ref-no. 3 
2.11 Discussion 

Because the window size is based on RTTmin and RTTmax, their accurate estimation is 

important. The Wang, et. al. noted that RTTmax is fairly accurate when calculated just 

before a buffer overflow. However if RTTmin is estimated when there are multiple 

connections on the path the RTTi threshold would be too high. When different flows 

obtain different RTTmin values the bandwidth is shared unevenly. Wang et. al. claim that 

in their simulations, during a slow start the load is relatively light so 

queuing time is low and that the RTTmin estimate was a reasonable approximation of the 

propagation delay. 

2.12 TCP Vegas 	Ref-no. 3 
Introduction 

TCP Vegas is a new implementation of TCP proposed by Brakmo et. al. in. The authors 

claim an 40 to 70% increase in throughput and one fifth to one half of the packet losses as 

compared to the current implementation of TCP (which implements the Slow Start 

algorithm with the addition of Fast Retransmit and Fast Recovery). Vegas compares the 

measured throughput rate to the expected, or ideal, 

throughput rate. 

(13) 



2.13 Algorithm 
Vegas uses a new retransmission mechanism. This is an improvement over the Fast 

Retransmit mechanism. In the original Fast Retransmit mechanism, three duplicate acks 

indicate the loss of a packet, so a packet can be retransmitted before it times out. Vegas 

uses a timestamp for each packet sent to calculate the round trip time on each ack 

received. When a duplicate ack is received Vegas checks to see 

if the difference between the timestamp for that packet and the current time is greater 

than the timeout value. If it is, Vegas retransmits the packet without having to wait for the 

third duplicate message. This is an improvement in many cases the window may be so 

small that the source will not receive three duplicate acks, or the acks may be lost in the 

network. 

Upon receiving a non-duplicate ack, if it is the first or second ack since a retransmission, 

Vegas checks to see if the time interval since the packet was sent is larger than the 

timeout value and retransmits the packet if so. If there are any packets that have been lost 

since the retransmission they will be retransmitted without having to wait for duplicate 

acks. 

To avoid congestion, Vegas compares the actual 

throughput to the expected throughput. The expected throughput is defined as the 

minimum of all measured throughputs. The actual throughput is the number of bytes 

transmitted between the time a packet is transmitted and its ack is received divided by the 

round trip time of that packet. 

Vegas then compares the difference of the expected and the actual 

throughputs to thresholds a and b. When the difference is smaller than a, the window size 

is increased linearly and when the difference is greater than b the window size is 

decreased linearly, when the bottleneck is finally overloaded, the expected losses are half 

the current window. As network bandwidth increases the number of packets lost in this 

manner will also increase. Brakmo .et. al. propose a modified slow start mechanism where 

the window size is doubled only every other round trip time. So every other round trip 

time the window is not changed which allows for an accurate comparison of the expected 
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and actual throughput. The difference is compared to a new 

threshold called c at which point the algorithm switches to the linear increase / decrease 

mode described above. 

2.14 Performance 

Vegas was simulated to test its performance when used in the same environment as Reno. 

In this experiment, a 1MB file was transferred using one implementation with a 300KB 

file being transferred at the same time with another implementation. In all four 

combinations, Vegas performed better with higher throughput and fewer retransmissions. 

In another experiment the performance of Vegas, with two sets of values for a and b, 
were compared on a network with background traffic. For both configurations of Vegas, 

throughput was increased by more than 50% and the number of retransmissions was 

about half that of Reno. Other experiments included an experiment like the first one but 

with background traffic. The results were similar to that of the first experiment. Again the 

results were similar to those in the second experiment. 

Another experiment was to test the fairness of both schemes by putting multiple 

connections through a bottleneck. They tested the scheme where some connections that 

had different propagation delays and where the propagation delays were the same. 

2.16 Gateway based schemes:- 
A problem with end to end congestion control schemes is that the presence of congestion 

is detected through the effects of congestion, e.g., packet loss, increased round trip time, 

changes in the throughput gradient, etc., rather than the congestion itself e.g. overflowing 

queues. There can also be a problem with fairness and non-compliant sources. It seems 

logical then to place the congestion control mechanism at the location of the congestion, 

i.e., the gateways. The gateway knows how congested it is and can notify 

sources explicitly, either by marking a congestion bit, or by dropping packets. The main 

drawback to marking packets with a congestion bit, as opposed to simply dropping them, 

is that TCP makes no provision for it currently. Floyd in states that some have proposed 

sending Source Quench packets as EN mesages. Source Quench messages have been 

criticized as consuming network bandwidth in a congested network making the problem 

worse. 	 (15.) 



2.17 Random Early Detection:- 

Introduction 
One method for gateways to notify the source of congestion is to drop packets. This is 

done automatically when the queue is full. The default algorithm is when the queue is full 

drop the any new packets. This is called Tail Drop. Another algorithm is when the queue 

is full and a new packet arrives, one packet is randomly chosen from the queue to be 

dropped. The drawback to Tail Drop and Random Drop gateways is that it drops packets 

from many connections and causes them to decrease their windows at the same time 

resulting in a loss of throughput. Early Random Drop gateways are a slight improvement 

over Tail Drop and Random Drop in that they drop incoming packets with a fixed 

probability whenever the queue size exceeds a certain threshold. 

2.18 Algorithm 
Floyd proposes a new method called Random Early Detection (RED) gateways. In this 

method, once the average queue is above a certain threshold the packets are dropped (or 

marked) with a certain probability related to the queue size. In describing this paper we 

will consider only the case were the RED gateway drops packes to indicate congestion 

rather than marking them. In describing the next algorithm we will discuss marking 

packets. 

To calculate the average queue size the algorithm uses an exponentially weighted moving 

average: 

avg = (1 -wq)avg + wq*Queue_Size 

The author goes into detail describing how to determine the upper and lower bounds for 

wq. 
The probability to drop a packet, pb, varies linearly from 0 to maxp as the average queue 

length varies from the minimum threshold, ininth, to the maximum threshold, maxth. The 

chance that a packet is dropped is also related to the size of the packet. The probability to 
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drop an individual packet, pa, increases as the number of packets since the last dropped 

packet, count, increases: 

pb = maxb(avg-minth)/(maxth-minth) 

pb = pb*Packet_Size/Max Packet_Size 

pa = pb/(1-count*pb) 

In this algorithm as the congestion increases, more packets are dropped. Larger packets 

are more likely to be dropped than smaller packets which use less resources. 

2.19 Performance 

Simulations were run for Tail Drop, Random Drop and RED gateways. 

The RED gateway showed higher throughput for smaller buffer sizes than the other 

algorithms. It was also shown that RED was not as biased against burst traffic as were 

Tail Drop or Random Drop. 

2.20 Discussion 
When RED is implemented to drop packets 

rather than mark them, it handles misbehaving sources well. If a source is using more 

than its fair share of the'bandwidth, then by the probabilistic function, more of its packets 

will be dropped. However if the gateway marks the packets, it is up to the sources to 

comply. 
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TCP Congestion Control 
with a Misbehaving Receiver 

3.1 Introduction 
The operation of TCP congestion control 

when the receiver can misbehave, as might occur with a greedy 

Web client. We first demonstrate that there are simple attacks that 

allow a misbehaving receiver to drive a standard TCP sender arbitrarily 

fast, without losing end-to-end reliability. These attacks 

are widely applicable because they stem from the sender behavior 

specified in RFC rather than implementation bugs. We then 

show that it is possible to modify TCP to eliminate this undesirable 

behavior entirely, without requiring assumptions of any kind 

about receiver's behavior. This is a strong result: with our solution 

a receiver can only reduce the data transfer rate by misbehaving, 

thereby eliminating the incentive to do so. 

End-to-end congestion control mechanisms, such as those used in 

TCP, are the primary means used for sharing scarce bandwidth resources 

in the Internet. These mechanisms implicitly rely on both 

endpoints to cooperate in determining the proper rate at which to 

send data. Obviously, if the sending endpoint misbehaves, and does 

not obey the appropriate congestion control algorithms, then it may 

send data more quickly than well-behaved hosts — possibly forcing 

competing traffic to be delayed or discarded. Less obviously, a 

misbehaving receiver can achieve the same result. 

While the possibility of such attacks has been hinted at previously 

Chapter 3 
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vulnerability and the potential impact are not fully appreciated. We 

note that the population of receivers is extremely large (all Internet 

users) and has both the incentive (faster Web surfing) and the 

opportunity (open source operating systems) to exploit this vulnerability. 

In this paper, we explore the impact that a misbehaving receiver 

can have on TCP congestion control. We present two kinds of results. 

First, we identify several vulnerabilities that can be exploited 

by a malicious receiver to defeat TCP congestion control. This can 

be done in a manner that does not break end-to-end reliability semantics 

and that relies only on the standard behavior of correctly 

implemented TCP senders. Tests against live Web servers using a 

modified TCP implementation that we produced for this purpose, 

we show that it is possible to modify the design of TCP to eliminate this behavior — 

without requiring that the receiver be trusted in any manner. With our 

the sender to transmit data at a slower rate than it otherwise would, 

thus harming only itself. Because our work has serious practical 

ramifications for an Internet that depends on trust to avoid congestion 

collapse, we also describe backwards-compatible mechanisms 

that can be implemented at the sender to mitigate the effects of untrusted 

receivers. . Ref-no.2~ 

As far as we are aware, the division of trust between sender 

and receiver that has not been studied previously in the context of congestion 

control. While end-to-end congestion control protocols assume 

that both sender and receiver behave correctly, in many environments 

the interests of sender and receiver may differ considerably 

creating significant incentives to violate this "good faith" 

doctrine. For example, in many wide-area data retrieval applications, 

such as Web browsing, the sender's interest is to provide 
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uniform service to all clients requesting data, while the interest of 

each client receiver is to maximize its own data throughput. TCP's congestion control 

specification and consequently undermining the 

fairness and stability provided therein. 

The potential congestion resulting from aggressive senders 
has received significant attention-from the networking community 

and has produced proposals for per-flow bandwidth reservation and mechanisms to 

detect and limit "unfriendly" flows in the network. These 

solutions, if workable, would solve the more general problem of 

unconstrained data transmission and would make the issue of trust 

in end-to-end congestion control less pressing. However, given that 

it is. unlikely that such mechanisms will be widely deployed in the 

near term, we feel it is still prudent to consider the potential impact 

of untrusted receivers on the congestion control mechanisms in today's Internet. 

Vulnerabilities 
By systematically considering sequences of message exchanges, 

we have been able to identify several vulnerabilities that allow misbehaving 

receivers to control the sending rate of unmodified, conforming 

TCP senders. This section describes these vulnerabilities. 

and techniques for exploiting them. In addition to denial-of-service 

attacks, these techniques can be used to enhance the performance 

of the attacker's TCP sessions at the expense of behaving clients. 

3.2 TCP review 	Ref-no.8 

we describe the rudiments of their behavior below to allow those unfamiliar with 

TCP to understand the vulnerabilities explained later. For simplicity, 

we consider TCP without the Selective Acknowledgment option 

(SACK) , although the vulnerabilities we describe 

also exist when SACK is used. 
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TCP is a connection-oriented, reliable, ordered, byte-stream 

protocol with explicit flow control. A sending host divides the data 

stream into individual segments, each of which is no longer than the 

Sender Maximum Segment Size (SMSS) determined during connection 

establishment. Each segment is labeled with explicit sequence 

numbers to guarantee ordering and reliability. When a host 

receives an in-sequence segment it sends a cumulative acknowledgment 

(ACK) in return, notifying the sender that all of the data 

preceding that segment's sequence number has been received and 

can be retired from the sender's retransmission buffers. 

If an outof- sequence segment is received, then 

the receiver acknowledges the next contiguous sequence number that was 

expected. If outstanding data is not acknowledged for a period of time, 

the sender will timeout and retransmit the unacknowledged segments. 

TCP uses several algorithms for congestion control, most notably 

slow start and congestion avoidance. 	 Ref-no. 9 
Each of these algorithms controls the sending rate by manipulating 

a congestion window  (cwnd) that limits the number of outstanding 

unacknowledged bytes that are allowed at any time. When a connection 

starts, the slow start algorithm is used to quickly increase 

cwnd to reach the bottleneck capacity. When the sender infers that 

a segment has been lost it interprets this has an implicit signal of 

network overload and decreases cwnd quickly. After roughly approximating 

the bottleneck capacity, TCP switches to the congestion 

avoidance algorithm which increases the value of cwnd more 

slowly to probe for additional bandwidth that may become available. 

We now describe three attacks on this congestion control procedure 

that exploit a sender`s vulnerability to non-conforming receiver 

behavior. 
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3.4 ACK division 
TCP uses a byte granularity error control protocol and consequently 

each TCP segment is described by sequence number and acknowledgment 

fields that refer to byte offsets within a TCP data stream. 

However, TCP' s congestion control algorithm is implicitly defined 

in terms of segments rather than bytes. For example, the most recent 

specification of TCP' s congestion control behavior, 

states: 

During slow start, TCP increments cwnd by at most 

SMSS bytes for each ACK received that acknowledges 

During congestion avoidance, cwnd is incremented by 1 

full-sized segment per round-trip time (RTT). 

The incongruence between the byte granularity of error control 

and the segment granularity (or more precisely, SMSS granularity) 

of congestion control leads to the following vulnerability: 

Attack 1: 

Upon receiving a data segment containing N bytes, the 
receiver divides the resulting acknowledgment into M, 

where M_ N, separate acknowledgments — each covering 
one ofMdistinctpieces of the received data segment. 

(22.) 



Receiver 

Data  

29 4381 

1584 i 

ax'30 

Figure 1: Sample time line for a ACK division attack. The sender begins 

with cwnc=1, which is incremented for each of the three valid ACKs 

received. After one round-trip time, cwnd=4, instead of the expected value 

of cwnc=2. 
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This attack is demonstrated in Figure 1 with a 

time line. Here, each message exchanged between sender and receiver is shown as 

a labeled arrow, with time proceeding down the page. The labels 

indicate the type of message, data or acknowledgment, and the sequence 

space consumed. In this example we can see that each acknowledgment 

is valid, in that it covers data that was sent and previously 

unacknowledged. 

This leads the TCP sender to grow the 

congestion window at a rate that is M times faster than usual. The• 

receiver can control this rate of growth by dividing the segment 

at arbitrary points — up to one acknowledgment per byte received 

(whenM= N). At this limit, a sender with a 1460 byte SMSS could 

theoretically be coerced into reaching a congestion window in excess 

of the normal TCP sequence space (4GB) in only four roundtrip 

times! I Moreover, while high rates of additional acknowledgment 

traffic may increase congestion on the path to the sender, the 

penalty to the receiver is negligible since the cumulative nature of 

acknowledgments inherently tolerates any losses that may occur. 

3.5 DupACK spoofing Ref-no.10 

TCP uses two algorithms, fast retransmit and fast recovery, to 

mitigate the effects of packet loss. The fast retransmit algorithm detects 

loss by observing three duplicate acknowledgments and it immediately 

retransmits what appears to be the missing segment. However, 

the receipt of a duplicate ACK also suggests that segments 
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are leaving the network. The fast recovery algorithm employs this 

information as follows 

Set cwndto ssthresh plus 3*SMSS.  This artificially "in- 

flates" the congestion window by the number of segments 

(three) that have left the network and which the 

receiver has buffered. 

For each additional duplicate ACK received, increment 

cwnd by SMSS. This artificially inflates the congestion 

window in order to reflect the additional segment that 

has left the network. 

1 Of course the practical transmission rate is ultimately limited by other factors such 

as sender buffering, receiver buffering and network bandwidth. 
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Figure 2: Sample time line for a DupACK spoofing attack. The receiver 

forges multiple duplicate ACKs for sequence number 1. This causes the 

sender to retransmit the first segment and send a new segment for each 

additional forged duplicate ACK. 

There are two problems with this approach. First, it assumes 

that each segment that has left the network is full sized — again an 

unfortunate interaction of byte granularity error control and segment 

granularity congestion control. 
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Second, and more important, 

because TCP requires that duplicate ACKs be exact duplicates, 

there is no way to ascertain which data segment they were sent in 

response to. Consequently, it is impossible to differentiate a "valid" 

duplicate ACK, from a forged, or "spoofed", duplicate ACK. For 

the same reason, the sender cannot distinguish ACKs that are accidentally 

duplicated by the network itself from those generated by a 

receiver . In essence, duplicate ACKs are a signal that can 

be used by the receiver to force the sender to transmit new segments 

into the network as follows: 

Attack 2: 
Upon receiving a data segment, the receiver sends a 

long stream of acknowledgments for the last sequence 
	Ref-no.12 

number received (at the start of a connection this would 
be for the SYN segment). 

Figure 2 shows a time line for this technique. The first four 

ACKs for the same sequence number cause the sender to retransmit 

the first segment. However, cwnd is now set to its initial value 

plus 3*SMSS, and increased by SMSS for each additional duplicate 

ACK, for a total of 4 segments (as per the fast recovery algorithm). 

Since duplicate ACKs are indistinguishable, the receiver does not 

need to wait for new data to send additional acknowledgments. As 

a result, the sender will return data at a rate directly proportional 

to the rate at which the receiver sends acknowledgments. After a 

period, the sender will timeout. However, this can easily be avoided 

if the receiver acknowledges the missing segment and enters fast 

retransmit again for a new, later, segment. 

3.6 Optimistic ACKing 

Implicit in TCP's algorithms is the assumption that the time between 
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times will transfer data more quickly. 

However, the protocol does not use any mechanism to enforce 

its assumption. Consequently, it is possible for a receiver to emulate 

a shorter round-trip time by sending ACKs optimistically for 

data it has not yet received: 

Attack 3: 
Upon receiving a data segment, the receiver sends a 
stream of acknowledgments anticipating data that will 

be sent by the sender. 	 Ref-no,.12 

This technique is demonstrated in Figure 3. Note that while it 

is easy for the receiver to anticipate the correct sequence numbers 

to use in each acknowledgment (since senders generally send fullsized 

segments), this accuracy is not necessary. As long as the 

receiver acknowledges new data the sender will transmit additional 

segments. Moreover, if an ACK arrives for data that has not yet 

been sent, this is generally ignored by the sending TCP — allowing 

a sender to be arbitrarily aggressive in its generation of optimistic 

ACKs. 

Unlike the previous attacks, this technique does not necessarily 

preserve end-to-end reliability semantics — if data from the sender 

is lost it may be unrecoverable since it has already been acknowledged. 

However, new features in protocols such as HTTP-1.1 allow 

receivers to request particular byte-ranges within a data object 

This suggests a strategy in which data is gathered 

on one connection and lost segments are then collected selectively 

with application-layer retransmissions on another. Optimistic 

ACKing could be used to ramp the transfer rate up to the 

bottleneck rate immediately, and then hold it there by sending acknowledgments 

in spite of losses. This ability of the receiver to 
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conceal losses is extremely dangerous because it eliminates the 

only congestion signal available to the sender. A malicious attacker 

could conceal all losses and therefore lead a sender to increase 

ctivnd indefinitely — possibly overwhelming the network with useless packets. 

3.7 Designing robust protocols  Ref no.4- 

We believe TCP's vulnerabilities arise from a combination of unstated 

assumptions, casual specification and a pragmatic need to 

develop congestion control mechanisms that are backward compatible 

with previous TCP implementations. In retrospect, if the contract 

between sender and receiver had been defined explicitly these 

vulnerabilities would have been obvious. 

Principle 1. Every message should say what it means: the interpretation 

of the message should depend only on its content. 

Principle 2. The conditions for a message to be acted upon should 

be clearly set out so that someone reviewing a design may see 

whether they are acceptable or not. 

Principle 3. If the identity of a principal is essential to the meaning 

of a message, it is prudent to mention the principal's name 

explicitly in the message. 

3.8 ACK division 

This vulnerability arises from an ambiguity about how ACKs 

should be interpreted — a violation of the second principle_ TCP' s 

error-control allows an ACK to specify an arbitrary byte offset in 

the sequence space while the congestion control specification assumes 

that an ACK covers an entire segment. 

There are two obvious solutions: either modify the congestion 

control mechanisms to operate at byte granularity or guarantee that 



segment-level granularity is always respected. The first solution 

is virtually identical to the "byte counting" modifications to TCP 

discussed in If cwnd is not incremented by a full 

SMSS, but only proportional to the amount of data acknowledged, 

then ACK division attacks will have no effect. The second, perhaps 

simpler, solution is to only increment cwnd by one SMSS when 

a valid ACK arrives that covers the entire data segment sent. 

3.9 DupACK spoofing 

During fast recovery and fast retransmit, TCP's design violates the 

first principle — the meaning of a duplicate ACK is implicit, dependent 

on previous context, and consequently difficult to verify. 

TCP assumes that all duplicate ACKs are sent in response to 

unique and distinct segments. This assumption is unenforceable 

without some mechanism for identifying the data segment that led 

to the generation of each duplicate ACK. The traditional method for 

guaranteeing association is to employ a nonce . We present 

a simple version of such a nonce protocol below (we will extend it 

shortly): 

Singular Nonce: 

We introduce two new fields into the TCP packet formal: 

Nonce and Nonce reply. For each segment, the sender 

fills the Nonce field with a unique random number generated 

when the segment is sent When a receiver generates 

an ACK in response to a data segment, it echoes 
the nonce value by writing it into the Nonce Reply field. 

The sender can then arrange to only inflate cwnd in response 

to duplicate ACKs whose Nonce Reply value corresponds to a data 

segment previously sent and not yet acknowledged. 

We note that the singular nonce, as we have described it so 
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far, is similar to the Timestamps option with two important 

differences. First,, the Nonce field preserves association for 

duplicate ACKs, while the Timestamps option does not (preferring 

instead to reuse the previous timestamp value). Second, and 

more important, because Timestamps is a option, a receiver has the 

choice to not participate in its use. We cannot rely on misbehaving 

clients to voluntarily participate in their own policing. For the same 

reason, we cannot rely on other TCP options, such as proposed extensions 

to SACK, to eliminate this vulnerability. 

ACK Division 

Unfortunately, our fix requires the modification of clients and 

servers and the addition of a TCP field. While it is the only complete 

solution we have discovered, there are sender-only heuristics 

which can mitigate, although not eliminate, the impact of the DupACK 

spoofing attack in a purely backward compatible manner. In 

particular, the sender can maintain a count of outstanding segments 

sent above the missing segment. For each duplicate acknowledgment 

this count is decremented and when it reaches zero any additional 

duplicate acknowledgments are ignored. This simple fix 

appears to limit the number of segments wrongly sent to contain no 

more than cwnd — SMSS bytes. Unfortunately, a clever receiver 

can acknowledge the missing segment and then repeat the process 

indefinitely unless other heuristics are employed to penalize this 

behavior (e.g. by refusing to enter fast retransmit multiple times in 

a single window as suggested. 

3.10 Optimistic ACKing 

The optimistic ACK attack is possible because ACKs do not contain 
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any proof regarding the identity of the data segment(s) that 

caused them to be sent. In the context of the third principle described 

earlier, a data segment is a principal and an ACK is the 

message of concern. 

This problem is also well addressed using a nonce. If a nonce 

can't be guessed by the receiver, than ACKs with valid nonces imply 

that a full round-trip time has taken place (man-in-the-middle 

attacks notwithstanding). 

However, the singular nonce we have described is imperfect 

because it does not mirror the cumulative nature of TCP. Acknowledgments 

can be delayed or lost, yet the cumulative property of 

TCP' s sequence numbers ensures that the most recent ACK can 

cover all previous data. In contrast, the singular nonce only provides 

evidence that a single segment was received. A misbehaving 

sender could still mount a denial of service attack by concealing 

lost data, yet still sending back ACKs with valid nonces. 

Ref-n0.4  

3.13 About Misbehaving receiver... 
we have described how a receiver can manipulate the 

TCP congestion control function managed by the sender, and how 

the sender can prevent these manipulations. Our work highlights 

two results that we believe are significant yet not widely appreciated: 

TCP, which was originally designed for a cooperative environment, 

contains several vulnerabilities that an unscrupulous 

receiver can exploit to obtain improved service at the expense 

of other network clients or to implement a denial-of-service 

attack. 
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We have described ACK division, DupACK spoofing 

and Optimistic ACK mechanisms and implemented them to 

demonstrate that the attacks are both real and widely applicable. 

The design of TCP can be modified, without changing the 

nature of the congestion control function, to eliminate these 

vulnerabilities. We have described the workings of a new Cumulative 

Nonce approach that accomplishes this in a simple 

yet effective manner. We have also identified and described 

sender-only modifications that can be deployed immediately 

to reduce the scope of the vulnerabilities without receiver-side 

modifications. 

Our work can readily be extended to other protocols. While 

the Cumulative Nonce was defined in the context of TCP, it could 

be adapted to any sender-based congestion control scheme. This 

might prove fruitful for unreliable transports, for example, either 

those that are explicitly TCP-friendly, or 

other rate adaptive mechanisms, like those employed by RealAudio. 

A Cumulative Nonce could also be used more widely to aid 

in the design of other kinds of protocols. This is because it effectively 

defines a sequencing mechanism between untrusted parties 

that, because it is lightweight, idempotent and cumulative, is well 

suited to network environments. 

Beyond these immediate results, our work raises more speculative 

protocol design issues. TCP was originally designed for a cooperative 

environment, and its evolution through the years has built 

on this base. Given this, it is perhaps not so surprising that we were• 

able to find the vulnerabilities we did, because they naturally arise 

when the sender and receiver represent different interests. With the 
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growth of the Internet, however, it is arguable that "separate interests" 

should be assumed by default. Protocol functions that are 

managed by one party would then be designed to minimize the trust 

they place in other parties. We observe that this kind of "separation 

of interests" will require new mechanisms, such as a Cumulative 

Nonce, to guarantee that different parties respect a common behavioral 

contract. 
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Congestion avoidance and control 	 Chapter 4 

4.1 Introduction 
Congestion refers to a loss of network performance when a 

network is heavily loaded. Since congestive phenomena can cause data loss, large delays 

in data transmission, and a large variance in these delays, controlling or avoiding 

congestion is a critical problem in network management and design. This dissertation 

presents some approaches for congestion control . 

Early research in computer data networking led to the development of 

reservationless store-and-forward data networks. These networks are prone to congestion 

since neither the number of users nor their workload are regulated. Essentially, the 

efficiency gained by statistical multiplexing of network resources is traded off with the 

possibility of congestion. This problem was recognized quite early, and a number of 

congestion control schemes were proposed; references provide a detailed review of 

these. 

In the past three years, there has been a 

renewed interest in congestion control, We feel that at least three factors have been 

responsible. First, the spread of networks such as ARPANET and their interconnection, 

has created a very large Internet whose size has made it unmanageable. The large number 

of users and a complete decentralization of network management made it inevitable 

that congestion would pose problems sooner or later. 

Transmission Control Protocol (TCP) to intelligently react to congestion, and to recover 

from it . The success of these efforts brought congestion control into focus as a major 

research area in the Internet community. 	 Ref-no. 4 

The other factor is social, rather than technological. The networking community has long 

been divided into two camps: the computer data networking community, and the 

telecommunications community. However, in recent years, the telecom community has 

realized the 
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benefits of packet switching, resulting in the Asynchronous Transmission 

Mode (ATM) . Similarly, data networking researchers have realized that they need to 

provide realtime bounds on data transfer for services such CD-quality audio and 

interactive video 

The present time appears to be critical for the design of future high speed 

networks, and in particular, their congestion control mechanisms. In this dissertation, we 

propose a number of ideas that we believe are useful for high speed networks. We hope 

that our work will contribute to the ongoing debate about congestion control. 

4.2. Environment of discourse 

We survey congestion control techniques in two types of wide-area 

networks (though the dissertation is limited to techniques suitable for the first type). In 

both networks, data is sent from sources of data to sinks through intermediate store-and-

forward switching nodes. Sources of data could be human users, transferring characters in 

a remote login session, or transferring files. 

For our purposes, we will refer to processes at OSI layer five and above as data 

sources. Sinks are the ultimate destinations of the data. They are the peer processes of the 

sources that receive and consume the received data, and they are typically assumed to 

acknowledge the receipt of each packet. Switches route and schedule incoming packets 

on outgoing lines, placing data in output buffers when the arrival rate exceeds the service 

rate. The simplex stream of packets between a source of data and its sink is called a 

conversation. Usually, a conversation corresponds to a pair of transport level endpoints, 

for example, two BSD sockets. 

The first type of network under consideration, called a reservationiess network, is an 

abstract model for networks such as the Internet. In such a network, while intermediate 

switches may reserve buffers (which does not reduce statistical multiplexing of the 

bandwidth), they may not reserve bandwidth (which does). Hosts on reservationless 

networks are assumed to be connected... 
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... directly to switches, that in turn connect to other switches or 

hosts. A switch could be a piece of software that resides in a host, or could be a separate 

piece of hardware. The other type of networks are those where switches reserve both 

bandwidth and buffers 

on behalf of Virtual Circuits (VCs) (such as in Datakit ). We call these reservation-

oriented networks. We assume that these networks carry two types of traffic: 

performance-oriented traffic, which usually needs some form of real-time delay, 

bandwidth and jitter guarantees, and best-effort data traffic, which does not make such 

demands . 

Since no bandwidth is reserved on behalf of best-effort traffic, the best-

effort component of a reservation-oriented network can be modeled as a reservationless 

network. Hence, schemes that are designed for reservationless networks can be 

transferred, with appropriate modifications, to reservation oriented 

networks. 

We believe that most future generation networks will tend to be reservation-oriented. 

Nevertheless, there are still some valid reasons to study congestion control in 

reservationless networks. 	 Ref-no-5 
First, reservationless networks will always be able to use bandwidth 

more efficiently than reservation-oriented networks due to the gain from statistical 

multiplexing. So, network providers who want to optimize cost will continue to build 

reservationless networks. Second, the techniques that are developed for congestion 

control can be applied to control best-effort traffic in reservation-oriented networks. 

Thus, the results of this work will apply even in those networks. 

Third, reservationless networks are currently the mostcommon type of computer 

network. We believe that because of inertia, and a desire to stay with known and proven 

technology, they will continue to exist in the future. 
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4.3 What is congestion? 

we are not aware of a satisfactory definition of congestion. We now discuss some 

common definitions,point out their flaws, and then propose a new definition that we 

consider to be superior. 

Some common definitions of congestion 

Since congestion occurs at high network loads, definitions of 

congestion focus on some aspect of network behavior under high load. We first discuss a 

scenario that leads to network congestion in reservationless networks, and then motivate 

some definitions. 

Consider a reservationless network, where, due to some reason, the short term packet 

arrival rate at some switch exceeds its service rate. (The service rate is determined by the 

processing time per packet and the bandwidth of the output line. Thus, the bottleneck 

could be either the switch's CPU or the outgoing line: in either case, there is congestion.) 

At this point, packets are buffered, leading to delays. The additional delay can cause 

sources to time out and retransmit, increasing the load on the bottleneck. This feedback 

leads to a rapidly deteriorating situation where retransmissions dominate the traffic, and 

effective throughput rapidly diminishes. Further, if there is switch to switch flow control 

(as in ARPANET etc.), new packets may not be allowed to enter the switch, and so 

packets might be delayed at a preceding switch as well. This can lead to deadlock, where 

all traffic comes to a standstill . 

Note that three things happen simultaneously. First, the queueing delay 

of the data packets increases. Second, there may be packet losses. Finally, in the 

congested state, the traffic is dominated by retransmissions, so that the effective data rate 

decreases. The standard definitions of congestion are thus of the form: "A network is 
congested if, due to overload, condition X occurs", where X is excessive queueing 

delay, packet loss or decrease in effective 

throughput. The first definition is used in references, the second in reference, and the 

third in reference . 
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These definitions are not satisfactory for several reasons. First, delays and losses are 

indices of performance that are being improperly used as indices of congestion, since the 

change in the indices may be due to symptoms of phenomena other than congestion. 

Second, the definitions do not specify the 

exact point at which the network can be said to be congested 

(except in a deterministic network, where the knee of the load-delay curve, and hence 

congestion, is well defined, but that is the trivial case). For example, while a network that 

has mean queueing delays in each switch of the order of 1 to 10 service times is certainly 

not congested, it is not clear whether a network that has a queueing delay of 1000 service 

times is congested or not. It does not seem possible to come up with any reasonable 

threshold value to determine congestion! 

Third, a network that is congested from the perspective of one user is not necessarily 

congested from the perspective of another. For example, if user A can tolerate a packet 

loss rate of lin 1000, and user B can tolerate a packet loss rate of 1 in 100, and the actual 

loss rate is 1 in 500, then A will claim that the network is congested, whereas B will not. 

A network should be called uncongested only if all the users agree that it is 

4.4 New definition 
	 Ref-no. 5 

From the discussion above, it is clear that network congestion depends on a user's 

perspective. 

A user who demands little from the network can tolerate a loss in performance much 

better than a more demanding user. For example, a user who uses a network only to send 

and receive electronic mail will be happy with a delivery delay of a day, while this 

performance is unacceptable for a user who uses a network for real-time audio 

communication. The key point is the notion of the utility that a user gets from the 

network, and how this utility degrades with network loading. 

The concept of `utility' used here is borrowed from economic theory. It is used to refer to 

a user's preference for a resource, or a set of resources (often called a resource bundle). 
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Strictly speaking, the utility of a user is a number that represents the relative preference 

of that user for a resource (or performance) bundle, so that, if a user prefers bundle A to 

bundle B, the utility of A is greater than the utility of B. For example, if A is (end-to-end 

delay of 1 second, average throughput 200 pkts/second}, and B is {end-to-end delay of 

100 seconds, average throughput 20000 pkts/second}, a user may prefer A to B, and we 

would assign a utility to A that is greater than the utility of B, while another user may do 

the opposite. In classic microeconomic theory, 

utilities are represented by a function over the resources . Since 

utilities express only a preference ordering, utility functions are insensitive to monotonic 

translations, and the utilities of two users cannot be compared; the function can only be 

used to relatively rank two resource bundles from the point of view of a single user. 

An example of a utility function is aT-(1-aT)RTT, where a is a weighting constant, T is 

the average throughput over some interval, and RTT is the average round-trip-time delay 

over the same interval. As the throughput increases, the utility increases, and as delays 

increase, the utility decreases. The choice of a determines the relative weight a user 

gives to throughput and delay. 

A delay-sensitive user will choose a->0, whereas a delay-insensitive user's a—>1. 

In practice, a utility function may depend on a threshold. For example, a user may state 

that he or she is indifferent to delay, as long as it is less than 0.1 seconds. Thus, if the user 

gets a delay of 0.05 seconds during some interval of time, and 0.06 seconds in a later 

period, as far as the user is concerned, there has been no loss of utility. However, if some 

user's utility does to be congested. 

Definition 

A network is said to be congested from the perspective of user i if the utility of i 

decreases due to an increase in network load. 

Remarks: 
1. A network can be congested from the perspective of one user, and uncongested from 

the perspective of another. 

2. A network can be said to be strictly uncongested if no user perceives it to be 

congested. 
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3. A user's utility may decrease due to something other than network load, but the user 

may not be able to tell the difference. The onus on the user is to determine the cause of 

the loss of utility, and to take appropriate corrective action. This definition is better than 

existing definitions since it avoids the three problems raised earlier. 

First, we make a clear distinction between a performance index and a 

congestion index. It is possible for a performance metric to decrease (for example, for 

RTT to increase), without a change in the congestion index. Second, the definition makes 

it clear that congestion occurs from the point of view of each individual user. Finally, the 

point of congestion is precisely the one where the user detects a loss of utility. No further 

precision is necessary, 

since, if the users are not dissatisfied with the available service, then the network 

performance, no matter how poor it is in absolute terms, is satisfactory. Our definition 

places congestion control in a new light. A network that controls congestion, 

by our definition, must be responsive to the utility function of the users, and must be able 

to manage its resources so that there is no loss of utility as the load increases. Thus, the 

network must be able to differentiate between conversations, and prioritize conversations 

depending on the stringency of their owner's utility. A naive approach that ignores the 

user's quality-of-service requirements is automatically ruled out by this definition. 

4.5 Congestion control 

The previous section presented a new definition of congestion; this 

section describes congestion control. Two styles of control, proactive and reactive 

control, are presented. It is shown that congestion control must happen at several 

different time scales. 

4.5.1. Proactive and reactive control 

Congestion is the loss of utility to a user due to an increase in the 

network load. Hence, congestion control is defined to be the set of mechanisms that 

prevent or reduce such a deterioration. Practically speaking, a network can be said to 

control congestion if it provides each user with mechanisms to specify and obtain utility 
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from the network. For example, if some user desires low queueing delays, then the 

system should provide a mechanism that allows the user to achieve this objective. If the 

network is unable to prevent a loss of utility to a user, then it should try to limit the loss to 

the extent possible, and, further, it should try to be fair to all the affected parties. Thus, in 

reservationless networks, where a loss of utility at high loads is unavoidable, 

we are concerned not only with the extent to which utility is lost, but also the degree to 

which the loss of utility is fairly distributed to the affected users. 

A network can provide utility in one of two ways. First, it can request that 

each user specify a performance requirement, and can reserve resources so that this level 

of performance is always available to,the user. This is proactive or reservation-oriented 

congestion control. Alternatively, users can be allowed to send data without reserving 

resources, but with the possibility that, if the network is heavily loaded, they may receive 

low utility from the network. The second method is applicable in reservationless 

networks. In this case, users must adapt to changes in the network state, and congestion 

control refers to ways in which a network can allow users to detect changes in network 

state, and corresponding mechanisms that adapt the user's flow to 

changes in this state. 

In a strict proactive scheme, the congestion control mechanism is 

to make reservations of network resources so that resource availability is 

deterministically guaranteed to admitted conversations. In a reactive scheme, the owners 

of conversations need to monitor and react to changes in network state to avert 

congestion. Both styles of control have their advantages and disadvantages. With 

proactive control, users can be guaranteed that they will never experience loss of utility. 

On the other hand, to be able to make this guarantee, the number of users has to be 

restricted, and this could lead to underutilization of the network. Reactive control allows 

much more flexibility in the allocation of resources. Since users are typically not 

guaranteed a level of utility by the network, resources can be statistically multiplexed. 

However, there is always a chance that correlated traffic bursts will overload the network, 

causing performance degradation, and hence, congestion. 

It is important to realize that proactive and reactive control are not mutually exclusive. 
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Hybrid schemes can combine aspects of both approaches. One such hybrid scheme is for 

the network to provide statistical guarantees . For example, a user could be guaranteed an 

end to end delay of less than 10 seconds with 0.9 probability. Such statistical guarantees 

allow a network administrator to overbook resources in a controlled manner. Thus, 

statistical multiplexing gains are achieved, but without completely giving up performance 

guarantees. 

Another hybrid scheme is for the network to support two types of users: guaranteed 

service users and best-effort users. Guaranteed service (GS) users are given a guarantee 

of quality of service, and resources are reserved for them. Best-effort (BE) users are not 

given guarantees and they use up whatever resources are left unutilized by GS users. 

Finally, a server may reserve some minimum amount of resources for each user. Since 

every user has some reservation, some minimum utility is guaranteed. At times of heavy 

load, users compete for resources kept in a common pool. Assuming some degree of 

independence of traffic, statistical multiplexing can be achieved without the possibility of 

a complete loss of utility. 

4.5.2. Time scales of control 	Refno.11 

Congestion is a high-load phenomenon. The key to congestion control lies in determining 

the time scale over which the network is overloaded, and taking control actions on that 

time scale. This is explained below. Consider the average load on a single point-to-point 

link. Note that the `average load' is an interval.-based metric. In other words, it is 

meaningless without also specifying the time interval over which the average is 

measured. If the average load is high over a small averaging interval, 

then the congestion control mechanism (for example, the reservation mechanism) has to 

deal with resource scheduling over the same small time scale. If the average load is high 

over a longer time scale, the congestion control mechanism needs to deal with the 

situation over the longer time scale as well as on shorter time scales. 

An example should clarify this point. Consider a conversation on a unit capacity link. If 
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the conversation is bursty, then it could generate a high load over, say, a lms time scale, 

though the average load over a 1 hour time scale could be much smaller than 1. In this 

case, if the conversation is delay-sensitive, then the congestion control scheme must take 

steps to satisfy the user delay requirement on the 1ms time scale. Over longer time scales, 

since the average demand is small, there is no need for congestion control. 

On the other hand, if the conversation has a high average demand 

on the 1 hour time scale as well as the Ims time scale, then congestion control has to be 

active on both time scales. For example, it may do admission control (which works over 

the 1 hour time scale) to make sure that network resources are available for the 

conversation. 

Simultaneously, it may also make scheduling decisions (which work on the lms 

time scale) to meet the delay requirements. This example illustrates three points. First, 

congestion control must act on several different time scales simultaneously. Second, the 

mechanisms at each level must cooperate with each other. Scheduling policies without 

admission control will not ensure delay guarantees. At the same time, the admission 

control policy must be aware of the nature of the scheduling policy to decide whether or 

not to admit a conversation into the network. Third, the time 

scale is the time period over which a user sees changes in the network state. A congestion 

control mechanism that is sensitive to network state must operate on the same time scale. 

We now discuss five times scales of control: those of months, 

one day, one session, multiple round trip times (RTTs), and less than one RTT. We 

believe that the design of congestion control mechanisms for each time scale should be 

based on sound theoretical arguments. This `has the obvious advantages over an ad hoc 
approach: general applicability, ease of understanding, and formal provability of 

correctness. At each time scale of control, a different theoretical basis is most 

appropriate, and this is discussed below. 
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4.5.3 Session 

In connection-oriented networks, a session is the period of time between a call set-up and 

a call teardown. Admission control in connection oriented-networks is essentially 

congestion control on the time scale of a session: if the admission of a new conversation 

could degrade the quality of service of other conversations in the network, then the new 

conversation should not be admitted. This is yet another form of congestion control. 

At the time a conversation is admitted to the network, the network should ensure that the 

resources requested by the conversation are what it really needs. Thus, the admission 

control scheme should give incentives to users to declare their resource needs accurately . 

4.5.4 Multiple round trip times 

One round trip time (RTT) is the fundamental time constant for 

feedback flow control. It is the minimum time that is needed for a source of data to 

determine the effect of its sending rate on the network. Congestion control schemes that 

probe network state and do some kind of filtering on the probes operate on this time 

scale. Examples are various window adjustment schemes. The theoretical bases for these 

approaches lie in queueing theory and control theory. The queueing theory approach is 

well studied, but requires strong assumptions about the network. 

such as: Poisson arrivals from all sources, exponential service time distribution at all 

servers, and independence of traffic. Since observations of real networks have shown that 

none of these assumptions are satisfied in practice about traffic behavior, service rates 

and so on, that do not hold in practice. 

Assuming that each packet is acknowledged, multiple 

acknowledgements can be received each RTT. If information about the state of the 

network is extracted from each acknowledgement, 

4.5.6 Less than one RTT 

On a scale of less than once per RTT, congestion control can be considered to be 
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identical to scheduling data at the output queues of switches. The goal 

of a scheduling policy is to decide which data unit is the next to be delivered on a trunk. 

This choice determines the bandwidth, delay, and jitter received by each conversation, 

and hence the choice of the scheduling discipline is critical. A scheduling discipline that 

does not vary its allocations as a function of the network load is hence a congestion 

control mechanism. Examples are the Virtual Clock scheme and Stop-and-Go queueing 

4.5.7 Need for congestion control in future networks 

Congestion is a severe problem in current reservationless networks. However, in future 

networks the available bandwidths and switching speeds will be several orders of 

magnitude larger. Why should congestion arise in such networks? There are several 

reasons: 

Speed Mismatch : If a switch connects a high speed line to a slower line, then a bursty 

conversation can, when sending data at the peak rate, fill up its buffer share, and 

subsequently lose packets at the switch. This creates congestion for loss-sensitive 

conversations. 

This source of congestion will persist in high-speed networks, in fact, it is probably more 

likely in such networks. 

Topology : If several input lines simultaneously send data through a switch to a single 

outgoing line, the outgoing line can be overloaded, leading to large queueing delays, and 

possible congestion for delay-sensitive traffic. This is a special case of the speed 

mismatch problem noted earlier. 

Increased Usage : Memory sizes have increased exponentially during the last decade. 

Yet, the demand for memory has remained, since larger memory sizes have made it 

feasible to develop applications that require them. Drawing a parallel to this trend, we 

postulate that as bandwidth increases, new applications (such as real time video) will 
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demand these enormous bandwidths. As the available bandwidth gets 

saturated, the network will be operated in the high-load zone, and congestive problems 

are likely to reappear. 

Misbehavior: Congestion can be induced by misbehaving sources (such as broken 

sources that send a stream of back-to-back packets). Future networks must protect 

themselves and other sources from such misbehavior, which will continue to exist. 

Dynamics : As network speeds increase, the dynamics of the network also changes. 

Since queues can build up faster, congestive phenomena can be expected to occur much 

more rapidly, and perhaps have catastrophic effects . From these observations, we 

conclude that even though future networks will have larger trunk 

bandwidths and faster switches, congestion will not disappear. 

4.6. Fundamental assumptions 

Underlying any congestion control scheme are some implicit assumptions about the 

network environment. These unstated assumptions largely determine the nature of the 

control scheme and its performance limits. We consider some of these assumptions in this 

section. 

4.6.1. Administrative control 

Can we, as designers of congestion control mechanisms, assume 

administrative control over the behavior of sources Or, can we assume administrative 

control only over the behavior of switches? Some schemes assume that we can control 

sources but not switches e.g. Others assume that we can control both the sources and the 

switches . Still others assume complete control over the switches, and the ability to 

monitor source traffic, but no control over source traffic. 
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This assumption should be constrained by reality. In our work, we assume that we have 

administrative control over switches. However, source behavior is assumed to be outside 

our direct control (though it can be monitored, if needed). The implication is that the 

network must take steps to protect itself and others from malicious or misbehaving users. 

(Of course, users that abuse the network because of a hardware failure, such as a jammed 

ethernet controller, are always a threat, even when the sources can be controlled 

administratively.) 

4.6.2. Source complexity 	Ref-no. 7 

How complex should one assume sources to be? Since we do not have 

administrative control over sources, we assume that sources will perform actions that will 

maximize their own utility from the network. If the congestion control scheme allows 

intelligent users to manipulate the scheme for their own benefit, they will do so. On the 

other hand, users may not have the capability to respond to complex directives from the 

network, so we cannot assume that all users will act intelligently. In other words, while a 

congestion control scheme should not assume sophisticated behavior on the part of the 

users, at the same time, it should not be open to attack from such users. 

4.6.3. Gateway complexity 
Some authors assume that switches can be made complex 

enough to set bits on packet headers, or even determine user utility functions, whereas 

others assume that switches simply route packets. Ignoring monetary considerations, 

since we have administrative control, we can make switch control algorithms as complex 

as we wish, constrained only by speed requirements. 

It has been claimed that for high speed operation, switches should be 

dumb and fast. We believe that speed does not preclude complexity. What we need is a 

switch that is fast and intelligent. This can be achieved by 

l .having hardware support for rapid switching 

2. optimizing for the average case 

3. removing signaling information from the data path 



4. choice of scheduling algorithm 

5. an efficient call processing architecture. 

Thus, we will assume that a switch can make fairly intelligent decisions, provided that 

this can be done at high speeds. 

4.6.4. Bargaining power 

The ultimate authority in a computer network lies in the ability to drop 

packets (or delay them). Since this authority lies with the switches, they ultimately have 

all the bargaining power. In other words, they can always coerce sources to do what they 

want them to do (unless this is so ridiculous that a source would rather not send any data). 

Any scheme that overlooks this fact loses a useful mechanism to control source behavior. 

Thus, schemes that treat switches and sources as peer entities are fundamentally flawed: 

they need to posit cooperative sources precisely because they ignore the authority that is 

automatically vested in switches. 

4.6.5. Responsibility for congestion control 	Re  fylo. l l 

Either the sources or the switches could be made responsible 

for congestion control. If sources are responsible, they must detect congestion and avert 

it. If switches are responsible, they must take steps to ensure that sources reduce their 

traffic when congestion occurs, or allocate resources to avert congestion. 

We believe that congestion control is a network function. If we leave the responsibility 

for it to sources that are not under our administrative control, then we are endangering the 

network. 

Further, the congestion detection and management functionality has to be duplicated at 

each of the (many) sources. In contrast, it is natural to make the fewer, controllable 

switches responsible for congestion control. Note that responsibility is not the same as 

functionality. In other words, having responsibility for congestion does not mean that the 

switches have to actually perform all the actions necessary for congestion control 

switches can enforce rules that make it incentive compatible for Sources to help in 

containing congestion. For example, a Fair Queueing switch has the responsibility for 
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congestion control, but it does congestion control by forcing sources to behave 

correctly during congestion. 

4.6.7. Traffic model 	 Ref-no. I 

The choice of a traffic model influences the design of a congestion 

control scheme, since the scheme is evaluated with respect to this model. There are 

hidden dangers here: for example, 

schemes that assume Poisson sources may not robust, if, in practice, traffic does not obey 

this distribution. It is best to design schemes that are insensitive to the choice of the 

traffic model. This is achieved if a scheme does not make assumptions about the arrival 

distribution of packets at the switches. 

What should be the traffic model? We do not have much data at our disposal, since there 

are no high-speed WANs yet available to measure. However, there are three trends that 

point to a reasonable model. First, the move towards integration of data, telephony and 

video services indicates that some number of sources in our environment will be phone 

and video sources. 

These can generate high bandwidth traffic over periods of time spanning minutes or 

hours. Second, existing studies have shown that data traffic is very bursty . This tendency 

will certainly be exaggerated by increases in line speeds. Finally, we note that current 

applications are mostly of two sorts - low bandwidth interactive conversations, and high 

bandwidth offline bulk data transfer. At higher speeds, the bulk data transfers that last 

several seconds today will collapse into bursts. This reinforces our belief that future 

traffic will basically be bursty. 

To sum up, we expect that the traffic will be generated by two kinds of sources: one that 

demands a sustained high bandwidth, and the other that generates bursts of traffic at 

random intervals of time. We call these sources 'FTP' and 'Telnet' in this thesis (these 

terms are probably outdated, but we use them for convenience). This model is fairly 

simple, and does not involve any assumptions about packet arrival distributions. 
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Thus, schemes that work for this model will probably work for a large variety of 

parametrically constrained models as well (e.g. for traffic where the bursts are 

exponentially or uniformly distributed). Since the traffic characteristics for 

future networks are still unknown, this model is speculative. However, we think that it is 

as reasonable as any that have so far been studied. 

4.7.1. Reservationless networks 
In reservationless networks, control has to be reactive. A 

reactive congestion control scheme is implemented at two locations: at the switches, 

where congestion occurs, and at the sources, which control the net inflow of packets into 

the network. Typically, a switch uses some metric (such as overflow of buffers) to 

determine the onset of congestion, and implicitly or explicitly communicates this problem 

to the sources, which reduce their input traffic. 

4.7.2 Congestion detection 
How is a switch or source to detect congestion? There are 

several alternatives. The most common one is to notice that the output buffers at a switch 

are full, and there is no space for incoming packets. If the switch wishes to avoid packet 

loss, congestion avoidance steps can be taken when some fraction of the buffers are full. 

A time average of buffer occupancy can help smooth transient spikes in queue occupancy 

.A switch may monitor output line usage. It has been found that congestion occurs when 

trunk usage goes over a threshold (typically 90%) and so this metric can be used as a 

signal of impending congestion. The problem with this metric is that congestion - 

avoidance could keep the output line underutilized, leading to possible inefficiency. 

4.7.3 Communication 

Communication of congestion information from the congested switch 

to a source can be implicit or explicit. When communication is explicit, the switch sends 

information in packet headers or in control packets such as Source Quench packets, 

choke packets , state-exchange packets , rate-control messages , or throttle packets to the 

source. Implicit communication occurs when a source uses probe values, retransmission 

timers , throughput monitoring, or delay monitoring to indicate the (sometimes only 
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suspected) occurrence of congestion. 

Explicit communication imposes an extra burden on the network, since the network needs 

to transmit more packets than usual, and this may lead to a loss in efficiency. On the 

other hand, with implicit communication, a source may not be able to distinguish 

between congestion and other performance problems, such as a hardware problem. Thus, 

the communication channel is quite noisy, and a cause of potential instability. 

4.7.5 Flow control 

A number of congestion control schemes have been proposed that operate at the 

sources. These schemes use the loss of a packet (or the receipt of choke information) to 

reducethe source sending rate in some way. The two main types of schemes are choke 

schemes and rate-control schemes. 

In a choke scheme, a source shuts down when it detects congestion. After 

some time, the source is allowed to start up again. Choking is not efficient, since the 

reaction of the sources is too abrupt. The stability of the choke scheme has not been 

analyzed, but the simple 

In a rate-control scheme, when a source detects congestion it reduces the rate at which it 

sends out packets, either using a window adjustment scheme or a rate adjustment 

scheme. The latter is particularly suitable for sources that do rate based flow control. The 

advantage of rate control schemes over choke schemes is that rate control allows a 

gradual transition between sending no packets at all to sending full blast. Rate control 

seems to be an attractive 

4.7.7 Reservation-oriented networks 	Ref-no.I 

In reservation-oriented networks, network resources can be allocated 

at the start of each session. Then, the network can guarantee a performance level to a 

conversation by performing admission control: This can guarantee congestion control, but 

perhaps at the cost of underutilization of network resources. 
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Here, the network places a limit on the size of the flow control window of each 

conversation, and the connection establishment packet reserves a full window's worth of 

buffer space at each intermediate switch. Thus, every virtual circuit, once established, is 

guaranteed to find enough buffers for each outstanding packet, and packet loss is 

avoided. 

The complementary scheme is to reserve bandwidth instead of buffers. This is the 

approach taken by Zhang in the Flow Network, by Ferrari et al in their real-time channel 

establishment scheme, In a hybrid scheme described in reference a source makes a. 

reservation for buffers at the beginning of a call, and a reservation for bandwidth before 

the start of each burst. This allows bandwidth to be efficiently shared, but each burst 

experiences a round trip time delay. 

There are four major problems with any naive reservation scheme: scaling, queueing 

delay, underutilization and enforcement. 

4.7.9 Delay 
In a proactive scheme, at overload, a full window could be buffered at 

the bottleneck. When this happens, the queueing delay could be unacceptable. Delays can 

be bounded by computing the worst-case delay at the time of call set-up, and doing 

admission control. 

4.7.10 Underutilization 	Ref no. -1 

The major problem with reservations is that the network could be 

underutilized: an overzealous admission control scheme could prevent congestion by 

allowing only a few conversations to enter. This is not acceptable. The crux of the 

problem lies in determining how many conversations can be admitted into the network 

without reducing the performance guarantees made to the existing conversations. This 

has been studied by Ferrari et al . One solution to the problem is to define statistical 

guarantees, where some degree of performance loss can be tolerated. 
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An efficient way to monitor, (if necessary), reshape user traffic behavior to make it less 

bursty, is the leaky-bucket scheme. 

Other schemes do enforcement at each switch. This is through some form of round-robin 

like queueing discipline at each switch. In the Flow network, the Virtual Clock 

mechanism is used. 

4.7.12 Quality of service 

One can view congestion control as being able to guarantee quality of 

service at high loads. There has been some previous work in guaranteeing quality of 

service in networks. Postel made an early suggestion for reservationless networks, though 

this was not studied in any depth. Stop-and-go queueing provides conversations with 

bandwidth, delay, and is similar in spirit to Hierarchical Round Robin scheme. 
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CONCLUSION 

Computer 'networks have an explosive _, growth over the past : ;few'" years and with that •. 

growth have come severe congestion problems. For example, it is now' common tb see 
Internet gateways drop 1'0% of the incoming packets because.of local buffer overflows. 

Our investigation of some of these problems has shown that much of the cause lies in 

transport protocol implementations (rot in the protocols themselves): The `obvious' ways 

to iinp'ement a- window-based transport protocol can result in exactly the wrong behavior 

in response to network congestion. 

The Equation-based congestion control for 

unicast traffic. Most best-effort traffic in the current Internet is well-served by the 

dominant transport protocol, TCP. However, traffic such as best-effort unicast' streaming 

multimedia could find use for a TCP-friendly congestion control mechanism 

that refrains from reducing the sending rate in half in response to a single packet drop. 

With Our mechanism, the sender explicitly adjusts its sending rate as a function of the 

measured rate of loss events, where a loss ci'enl consists of one or more packets dropped 

within a single round-trip time (RTT). We use both simulations and experiments 

over the Internet to explore performance. 

Since congestion occurs at high network loads,. congestion focus on some aspect of 

network behavior under high load. A scenario that leads to network congestion in 

reservationless networks, 

Consider a reservationless network, where, due to some reason, the short term packet 

arrival rate at some switch exceeds its service rate. (The service rate is determined by the 

processing time per packet and the bandwidth of the output line. Thus, the bottleneck 

could be either the switch's CPU or the outgoing line: in either case, there is congestion.) 

At this point, packets are buffered, leading to delays. The additional delay can cause 

sources to time out and :::transmit, increasing the load on the bottleneck . This feedback 

leads to a rapidly deterioi ating situation where retransmissions dominate the traffic, and 



effective throughput rapidly diminishes. Further, if there is switch to switch flow control 

(as in ARPANET etc.), new packets may not be allowed to enter the switch, and so 

packets might be delayed at a preceding switch as well. This can lead to deadlock, where 

all traffic comes to a standstill . Note that three things happen simultaneously. First, the 

queuing delay of the data packets increases. Second, there may be packet losses. Finally, 

in the congested state, the traffic is dominated by retransmissions, so that the effective 

data rate decreases. The potential congestion resulting from aggressive senders has 

received significant attention from the networking community ' has produced proposals 

for per-flow bandwidth reservation and mechanisms to detect and limit "unfriendly" 

flows in the network . These solutions, if workable, would solve the more general 

problem of unconstrained data transmission and would make the issue of trust in end-to-

end congestion control. 
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APPENDIX 



Programming Part 

Language Used: Visual Basic 6.0 

Dim i As Integer, a As Integer, b As Integer, c As Integer, d As Integer, e As Integer 

Private Sub Command1_Click() I/ integer declaration and click interface 

t.Enabled = True 

tl.Enabled = True 

End Sub 

Private Sub Command2 ClickO 

t2.Enabled = True 

tl.Enabled = True 

End Sub 

Private Sub Command3 Click() 

t3.Enabled = True 

tl.Enabled = True 

End Sub 

Private Sub Commando ClickO 

t4.Enabled = True 

tl.Enabled = True 

End Sub 

Private Sub Command5_Click() 

t5.Enabled = True 

tI.Enabled = True 

End Sub 

Private Sub Command6_Click() 



t7.Enabled = True 	If Pixel arrangement. 

End Sub 

Private Sub Form Load() 

End Sub 

Private Sub t Timer() 

If i <= 3 Then 

If 11(0).Left < 4600 Then 

11(0).Visible = True 

11(0) ;Left = 11(0).Left + 100 

End If 

Else 

t6.Enabled = True 

End If 

End Sub 

Private Sub tl_Timer() 

Text1 =i 

If a = 0 Then 

If 11(0).Left > 4560 Then 

i=i+1 

a=a+1 

End If 

End If 

If b = 0 Then 

If 11(1).Left > 4560 Then 

i=i+1 

b=1 

End If 

End If 



If c = 0 Then 

If 11(2).Left > 4560 Then 

i=i+1 

c=1 

End If 

End If 

If d = 0 Then 

If 11(3).Left > 4560 Then 

i=i+1 

d=l 

End If 

End If 

If e = 0 Then 

If 11(4).Left -> 4560 Then 

i=i+1 

e=1 

End If 

End If 

End Sub 

Private Sub t2_Timer() 

If i <= 3 Then 

If 11(1).Left < 4600 Then 

11(1).Visible = True 

11(1)Left =11(1).Left + 100 

End If 

Else 

t6.Enabled = True 

End If 

End Sub 

Private Sub t3_Timer() 



If i <= 3 Then 

If 11(2).Left < 4600 Then 

11(2). Visible = True 

11(2).Left = 11(2).Left + 100 

End If 

Else 

t6.Enabled = True 

End If 

End Sub 

Private Sub t4_Timer() 

If i <= 3 Then 

If 11(3).Left < 4600 Then 

11(3).Visible = True 

11(3).Left =11(3).Left + 100 

End If 

Else 

t6.Enabled = True 

End If 

End Sub 

Private Sub t5 Timer() 

If i <= 3 Then 

If 11(4).Left < 4600 Then 

11(4).Visible = True 

11(4).Left = 11(4).Left + 100 

End If 

Else 

t6.Enabled = True 

End If 

End Sub 

Private Sub t6 Timer() 

If 11(0).Left < 4560 Then 



If 11(0)_Visible = True Then 

11(0).Visible = False 

Else 

II(0).Visible = True 

End If 

End If 

If 11(1).Left < 4560 Then 

If 11(1)Visible = True Then 

11(1).Visible = False 

Else 

11(1)Visible = True 

End If 

End If 

If 11(2).Left < 4560 Then 	// Label visiblity. 

If 11(2).Visible = True Then 

11(2).Visible = False 

Else 

11(2). Visible = True 

End If 

End If 

If 11(3).Left < 4560 Then 

If 11(3).Visible = True Then 

11(3).Visible = False 

Else 

1I(3).Visible = True 

End If 

End If 



If 11(4).Left < 4560 Then 

If 11(4).Visible = True Then 

11(4).Visible = False 

Else 

11(4). Visible = True 

End If 

End If 

End Sub 

Private Sub t7 Timer() 

If 11(0).Left < 10000 And 1l (0).Left > 4600 Then 

11(0) = LoadPicture("c:\teer 1.bmp") 

11(0).Left = 11(0).Left + 210 

11(0).Top = 11(0).Top - 120 

End If 

If 1l(1).Lefft < 10000 And 11(1).Left > 4600 Then 

11(1).Left =11(1).Left + 210 

End If 

If 11(2).Left < 10000 And 11(2).Left > 4600 Then 

11(2) = LoadPicture("c:\teer2.bmp") 

11(2).Left = 11(2).Left + 210 

11(2).Top = 11(2).Top + 85 

End If 

If 11(3).Left < 10000 And 11(3).Left > 4560 Then 

11(3) = LoadPicture("c:\teer3.bmp") 

11(3).Left = 11(3).Left + 210 

11(3).Top = 11(3).Top + 30 

End If 

If 11(4).Left < 10000 And 11(4).Left > 4560 Then 

11(4).Left =11(4).Left + 210 

End If 



If i > 3 Then 

i=i-1 

t6.Enabled = False 

End If 

If 11(0).Lef . >= 10000 Then 

11(0).Picture = LoadPicture(" c:\teer.bmp") 

11(0).Left = 120 

11(0). Top = 2160 

End If 

If 11(1).Left >= 10000 Then 

11(1).Picture = LoadPicture("c:\teer.bmp ") 

11(1).Left = 120 

11(1).Top = 2160 

End If 

If 11(2).Left >= 10000 Then 

11 (2).Picture = LoadPicture("c:\teer.bmp ") 

11(2).Left = 120 

11(2). Top = 2160 

End If 

If 11(3)Left >= 10000 Then 

11(3).Picture = LoadPicture("c:\teer.bmp") 

11(3).Left = 120 

11(3).Top = 2160 

End If 

If 11(4).Left >= 10000 Then 

11(4).Picture = LoadPicture("c:\teer.bmp") 

11(4).Left = 120 

11(4).Top = 2160 

End If 



End Sub 

Private Sub Timerl_Timer() 

If 11(6).Visible = True Then 

11(6).Visible = False 

Else 

11(6).Visible = True 

End If 

If 11(7).Visible = True Then 

11(7).Visible = False 

Else 

11(7).Visible = True 

End If 

If 11(8).Visible = True Then 

11(8).Visible = False 

Else 

11(8). Visible = True 

End If 

If 11(9). Visible = True Then 

11(9). Visible = False 

Else 

11(9). Visible = True 

End If 

If 11(10).Visible = True Then 

11(10).Visible = False 

Else 

I1(10).Visible = True 

End If 



End Sub 

Private Sub tt_TimerQ 

If 11(17).Left < 960 Then 

11(17).Left = 11(17).Left + 100 

End If 

If 11(17).Left > 960 Then 

11(17).Left = Default 

End If 

If 11(15).Left < 2160 And 11(16).Top > 1400 Then 

11(15). Visible = True 

11(15).Left = 11(15).Left + 300 

End If 

If 11(15).Left > 2060 Then 

11(11 ).Picture = LoadPicture("c:\teer.bmp") 

11(15).Left = 720 

End If 

If 11(16).Top < 2150 Then 

11(16). Visible = True 

11(16).Top =11(16).Top + 100 

End If 

If 11(16).Top > 2150 Then 

11(16).Top = 1320 

11(16).Visible = False 

End If 

If 11(16).Top > 1500 Then 

11(14).Picture = LoadPicture("") 



End If 

If 11(14).Picture = Empty Then 

ll(13).Picture = LoadPicture("") 

11(14).Picture = LoadPicture("c:\teer.bmp") 

End If 

If 11(13).Picture = Empty Then 

11(12).Picture = LoadPicture(" ") 

11(13).Picture = LoadPicture("c:\teer.bmp") 

End If 

If 11(12).Picture = Empty Then 

11(11).Picture = LoadPicture(" ") 

11(12).Picture = LoadPicture("c:\teer.bmp") 

End If 

End Sub 
/xx****xxx* *** ;c ,<xxxx*a * * * * * ;c***** ;cx***x*x*** ,Y:y **x*xx*xxx*****xxX*xxx x/ 

Programm for different sources sending packets to aperticular destion 

Dim i As Integer, x As Integer, a As Integer, b As Integer, z As Integer, c As Integer, d 

As Integer, e As Integer, f As Integer, g As Integer 

Dim al As Integer, b 1 As Integer, c 1 As Integer, dl As Integer, el As Integer, fl As 

Integer, gl As Integer, zl As Integer 

Private Sub Commandl_ClickO 

Command1.Enabled = False 

For i = 0 To 6 

l(i).Top = 2800 

1(i).Left = 800 



1(i).BackColor = vbBlack 

Next i 

t.Enabled = True 

t2.Enabled = False 

End Sub 

Private Sub Command2 ClickO 

Command2.Enabled = False 

For i=0To6 

11(i).Top = 1500 

11(i).Left = 5900 

11(i).BackColor = vbBlack 

Next i 

t1.Enabled = True 

t3.Enabled = False 

End Sub 

Private Sub Form Click() 

Command 1 .Enabled = True 

Cornmand2.Enabled = True 

End Sub 

Private Sub t_Timer() 

If l(0).Left < 11100 And 1(0). Visible = True Then 

1(0).Left =1(0)Left + 100 

End If 

If l(0).Left > 1000 And 1(1) Left < 11100 And 1(1).Visible = True Then 

1(1).Left =1(1).Left ± 100 

End If 

If l(1).Left > 1000 And 1(2).Left < 11100 And 1(2).Visible = True Then 

1(2).Left =1(2).Left + 100 

End If 



If 1(2).Left> 1000 And 1(3).Left < 11100 And 1(3).Visible = True Then 

1(3).Left =1(3).Lefl + 100 

End If 

If 1(3).Left > 1000 And 1(4).Left < 11100 And 1(4).Visible = True Then 

1(4).Left = 1(4).Left + 100 

End If 

If 1(4).Left > 1000 And 1(5).Left < 11100 And 1(5). Visible = True Then 

1(5).Left = 1(5).Left + 100 

End If 

If 1(5).Left > 1000 And 1(6).Left < 11100 And 1(6).Visible = True Then 

1(6).Left = 1(6).Left + 100 

End If 

If al = 0 Then 

If 1(0).Left > 10900 And I(0).Visible = True Then 

z1=z1+1 

al = 1 

End If 

End If 

Ifbl =0 Then 

If 1(1).Left > 10900 And 1(1).Visible = True Then 

z1=z1+1 

bl=1 

End If 

End If 



If c l = 0 Then 

If 1(2).Left > 10900 And 1(2).Visible = True Then 

z1=z1+1 

cl=1 

End If 

End If 

If d l = 0 Then 

If 1(3).Left > 10900 And 1(3).Visible = True Then 

z1=z1+1 

dl = 1 

End If 

End If 

If el = 0 Then 

If 1(4).Left > 10900 And 1(4).Visible = True Then 

zl=zl+1 . 

el = 1 

End If 

End If 

If fl = 0 Then 

If 1(5).Left > 10900 And 1(5).Visible = True Then 

z1=z1+1 

fl=1 

End If 

End If 

If gl = 0 Then 

If 1(6).Left > 10900 And 1(6).Visible = True Then 

z1=z1+1 



gl=1 

End If 

End If 

If 1(6).Lef$ >= 11100 Then 

1(0).Left = 11100 

l(1).Left = 11100 

t.Enabled = False 

t2.Enabled = True 

End If 

Text6 = zl 

End Sub 

Private Sub t1_TimerO 

If 11(0).Top < 2800 Then 

11(0). Visible = True 

11(0)Top = 11(0).Top + 100 

End If 

If 11(0).Left > 700 And 11(0).Top >= 2800 Then 

11(0)Left =11(0).Left - 100 

End If 

If 11(0).Top > 1700 Then 

If 11(1).Top < 2800 Then 

11(1).Visible = True 

11(1).Top =11(1).Top + 100 

End If 

If 11(1).Left > 700 And 11(1).Top >= 2800 Then 

11(1).Left =11(1).Left - 100 

End If 

End If 



If 11(1). Top > 1700 Then 

If 11(2). Top < 2800 Then 

11(2). Visible = True 

11(2).Top =11(2). Top + 100 

End If 

If 11(2).Left > 700 And 11(2). Top >= 2800 Then 

11(2).Left =11(2).Left - 100 

End If 

End If 

If 11(2).Top > 1700 Then 

If 11(3).Top < 2800 Then 

11(3). Visible = True 

11(3).Top =11(3).Top + 100 

End If 

If 11(3).Left > 700 And 11(3).Top >= 2800 Then 

1l(3)Left = 11(3).Left - 100 

End If 

End If 

If 11(3).Top > 1700 Then 

If 11(4).Top < 2800 Then 

11(4).Visible = True 

11(4).Top 11(4).Top + 100 

End If 

If 11(4).Left > 700 And 11(4).Top >= 2800 Then 

11(4).Left = 11(4).Left - 100 

End If 

End If 



If 11(4).Top > 1700 Then 

If 11(5).Top < 2800 Then 

11(5).Visible = True 

11(5).Top = 11(5).Top -1 100 

End If 

If 11(5).Left > 700 And 11(5).Top >= 2800 Then 

11(5).Left =11(5).Left - 100 

End If 

End If 

If 11(5).Top > 1700 Then 

If 11(6).Top < 2800 Then 

11(6).Visible = True 

11(6). Top 11(6).Top + 100 

End If 

If 11(6).Left > 700 And 11(6).Top >= 2800 Then 

11(6).Left = 11(6).Left - 100 

End If 

End If 

If a = 0 Then 

If 1I(0).Left < 800 And 11(0).Visible = True Then 

z=z+l 

a=1 

End If 

End If 

If b = 0 Then 

If 11(1).Left < 800 And 11(1).Visible = True Then 

z=z+l 

b=1 



End If 

End If 

If c = 0 Then 

If 11(2).Left < 800 And 11(2).Visible = True Then 

z=z+1 

c=1 

End If 

End If 

If d = 0 Then 

If 11(3)Left < 800 And 11(3).Visible = True Then 

z=z+1 

d=1 

End If 

End If 

If e = 0 Then 

If 11(4).Left < 800 And 11(4). Visible = True Then 

z=z+l 

e=1 

End If 

End If 

If f= 0 Then 

If 11(5).Left < 800 And 11(5).Visible = True Then 

z=z+l 

f=1 

End If 

End If 



If g = 0 Then 

If 11(6).Left < 800 And 11(6).Visible = True Then 

z=z+1 

g=1 

End If 

End If 

If 11(6).Left < 800 Then 

tl.Enabled = False 

t3.Enabled = True 

End If 

Text5=z 

End Sub 

Private Sub t2_Timer() 

If 1(0).Left > 700 Then 

I(0).BackColor = vbGreen 

1(0).Visible = True 

1(0).Left = 1(0).Left - 100 

End If 

If z l <7 Then 

If I(1).Left > 700 And 1(0).Left < 10600 Then 

l(1).BackColor = vbBlue 

1(1).Visible = True 

l(1).Left = 1(1).Left - 100 

End If 

End If 

If 1(1).Left <= 700 Then 

t2.Enabled = False 

Timerl.Enabled = True 

End If 



End Sub 

Private Sub t3 Timer() 

If 11(0).Left < 5900 Then 

11(0).BackColor = vbGreen 

11(0). Visible = True 

11(0).Left =11(0).Left + 100 

End If 

If 11(0).Left >= 5900 And 11(0). Top >= 1500 Then 

11(0). Top =11(0). Top - 100 

End If 

If z <7 Then 

If 11(1).Left < 5900 And 11(0).Left > 1000 Then 

I1(1).BackColor = vbBlue 

11(1).Visible = True 

I1(1).Left =11(1).Left + 100 

End If 

If 11(1).Left >= 5900 And 11(1). Top >= 1500 Then 

11(1).Top =11(l).Top - 100 

End If 

End If 

If11(1).Top <= 1500 Then 

11(1).Visible = False 

ttt.Enabled = True 

t3.Enabled = False 

End If 

End Sub 

Private Sub t4_Timer() 

For i = 0 To 6 

Text3 =1(0).Left 



Text4 =11(0).Left 

Textl = 1(0).Top 

Text2 =11(0).Top 

If 1(0).Top = 11(i).Top And 1(0).Visible = True And l(0).BackColor = vbBlack Then 

If 1(0).Left = 11(i).Left Then 

sl.Visible = True 

s 1. Top = l(0). Top - 200 

s 1.Left =1(0)Left 

1(0).Visible = False 

I1(i).Visible = False 

t5.Enabled = True 

End If 

End If 

Next i 

Fori=0To6 

Text3 = l(0).Left 

Text4 = 11(0).Left 

Textl =1(0).Top 

Text2 =11(0).Top 

If 1(1).Top =11(i).Top And l(l).Visible = True And 1(1).BackColor = vbBlack Then 

If 1(1).Left = 11(i).Le$ Then 

sl.Visible = True 

sl.Top =1(1).Top - 200 

sl.Left = I(1).Left 

l(l).Visible = False 

11(i).Visible = False 

t5.Enabled = True 

End If 

End If 

Next i 



For i = 0 To 6 

Text3 = 1(0).Left 

Text4 =11(0).Left 

Textl = I(0).Top 

Text2 = 11(0).Top 

If 1(2).Top = 11(i).Top And 1(2).Visible = True And 1(2).BackColor = vbBlack Then 

If 1(2).Left =11(i).Left Then 

s l .Visible = True 

s l .Top = 1(2). Top - 200 

sl.Left = 1(2).Left 

1(2).Visible = False 

1l(i)Visible = False 

t5.Enabled = True 

End If 

End If 

Next i 

For i=0To6 

Text3 = 1(0).Left 

Text4 =11(0).Left 

Textl = 1(0).Top 

Text2 =11(0).Top 

If 1(3).Top = I1(i).Top Then 

If 1(3).Left = 11(i).Left Then 

End If 

End If 

Next i 

For i = 0 To 6 



Text3 =1(0).Left 

Text4 = I1(0).Left 

Textl =1(0)Top 

Text2 = 11(0).Top 

If 1(4).Top =11(i).Top Then 

If 1(4).Left = 11(i).Left Then 

End If 

End If 

Next i 

For i = 0 To 6 

Text3 = 1(0).Left 

Text4 =11(0).Left 

Textl =1(0).Top 

Text2 =11(0).Top 

If 1(5). Top =11(i). Top Then 

If 1(5).Left = 11(i).Left Then 

End If 

End If 

Next i 

For i = 0 To 6 

Text3 = 1(0).Left 

Text4 = I 1(0).Left 

Textl = 1(0).Top 

Text2 = 11(0). Top 

If 1(6).Top =11(i).Top Then 

If 1(6).Left =11(i).Left Then 



End If 

End If 

Next i 

End Sub 

Private Sub t5 Timer() 

If x < 6 Then 

If sl.Visible = True Then 

sl.Visible = False 

Else 

sl.Visible = True 

End If 

x=x+1 

End If 

If x> 5 Then 

t5.Enabled = False 

sl.Visible  = False 

x=0 

End If 

End Sub 

Private Sub Timerl Timer() 

Select Case zl 

Case I 

Case 2 

Case 3 

Case 4 

If l(0).Left < 11100 And 1(0). Visible = True Then 

l(0).BackColor = vbBlack 

l(0).Left = l(0).Left + 100 

End If 



If 1(0).Left > 1000 And 1(1).Left < 11100 And 1(1).Visible = True Then 

l(1).BackColor = vbBlack 

11(1).Visible = True 

1(1).Left = 1(1).Left + 100 

End If 

If 1(1).Left > 1000 And 1(2).Left < 11100 And 1(2).Visible = True Then 

1(2).BackColor = vbBlack 

11(2).Visible = True 

1(2).Left = 1(2).Left + 100 

End If 

Case 5 

If 1(0).Left < 11100 And 1(0)Visible = True Then 

1(0).BackColor = vbBlack 

11(0).Visible = True 

l(0).Left = 1(0).Left + 100 

End If 

If 1(0).Left > 1000 And 1(1).Left < 11100 And 1(1).Visible = True Then 

1(1).BackColor - vbBlack 

11(1).Visible = True 

l(1).Lefft =1(1).Left + 100 

End If 

Case 6 

If 1(0).Left < 11100 And 1(0). Visible = True Then 

1(0).BackColor = vbBlack 

11(0).Visible = True 

l(0).Left = l(0).Left + 100 

End If 

End Select 

End Sub 



Private Sub ttt TimerO 

For i = 0 To 6 

11(i).BackColor = vbBlack 

Next i 

Select Case z 

Case 3 

If! 1(2). Top > 1700 Then 

If 11(3).Top < 2800 Then 

11(3).Visible = True 

11(3).Top =11(3).Top + 100 

End If 

If 11(3).Left > 700 And 11(3).Top >= 2800 Then 

11(3).Left =1l(3).Left - 100 

End If 

End If 

If 11(0).Top <2800 Then 

11(0). Visible = True 

11(0).Top = 11(0).Top + 100 

End If 

If 11(0).Left > 700 And 11(0).Top >= 2800 Then 

11(0).Left = 11(0).Left - 100 

End If 

If 11(0).Top > 1700 Then 

If 11(1).Top < 2800 Then 

11(l).Visible = True 

11(1).Top = 11(1).Top + 100 

End If 

If 11(1).Left > 700 And 11(1).Top >= 2800 Them 



11(1)Left= 11(1).Left - 100 

End If 

End If 

If 11(1).Top > 1700 Then 

If 11(2).Top < 2800 Then 

11(2).Visible = True 

11(2).Top =11(2). Top + 100 

End If 

If 11(2).Left > 700 And 11(2).Top >= 2800 Then 

11(2).Left = 11(2).Left - 100 

End If 

End If 

Case 4 

If 11(0).Top < 2800 Then 

11(0).Visible = True 

11(0).Top = 11(0).Top + 100 

End If 

If 11(0).Left > 700 And 11(0).Top >= 2800 Then 

11(0).Left =11(0).Left - 100 

End If 

If 11(0).Top > 1700 Then 

If 11(1)Top < 2800 Then 

11(1). Visible = True 

11(1).Top = 11(1).Top + 100 

End If 

If 11(1).Left > 700 And 11(1).Top >= 2800 Then 

11(1).Left = 11(1).Left - 100 

End If 



End If 

If 11(1).Top > 1700 Then 

If 11(2).Top < 2800 Then 

11(2). Visible = True 

11(2).Top = 11(2).Top + 100 

End If 

If 11(2).Left > 700 And 11(2). Top >= 2800 Then 

11(2).Left = 11(2).Left - 100 

End If 

End If 

Case 5 

If 11(0).Top < 2800 Then 

11(0). Visible = True 

11(0).Top = 11(0).Top + 100 

End If 

If 11(0)_Left > 700 And 11(0).Top >= 2800 Then 

11(0).Left =11(0).Left - 100 

End If 

If 11(0).Top > 1700 Then 

If 11(1). Top < 2800 Then 

11(1).Visible = True 

11(1).Top =11(1).Top + 100 

End If 

If 11(1)Left > 700 And 11(1).Top >= 2800 Then 

11(1).Left =11(1).Left - 100 

End If 

End If 



Case 6 

If 11(0)Top < 2800 Then 
11(0).Visible = True 

11(0). Top =11(0). Top + 100 
End If 

If I I (0).Lef > 700 And 11(0). Top >= 2800 Then 

11(0).Left =11(0).Left - 100 
End If 
End Select 

End Sub 
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