
ENTERPRISE MANAGEMENT SYSTEM-

A DISSERTATION
Submitted in partial fulfilment of the

requirements for the award of the degree

of

MASTER OF COMPUTER APPLICATIONS

LOKESH GANDHI
~ 	r

4~ ioo~

X

DEPARTMENT OF MATHEMATICS
INDIAN INSTITUTE OF TECHNOLOGY ROORKEE

ROORKEE-247.667 (INDIA)

MAY, 2002

CANDIDATE'S DECLARATION

I hereby certify that the work which is being presented in this

dissertation entitled "ENTERPRISE MANAGEMENT SYSTEM" in partial

fulfillment of the requirement for the award of the degree of Master of

Computer Applications, submitted in the Department of Mathematics of the

Indian Institute of Technology, Roorkee, is an authentic record of my work
carried out in the period from Jan 2002 to May 2002,under the supervision

and guidance of Dr. Mohan Lai and Mr. Rajagopalan Srinivasan

The matter embodied in this project has not been submitted by me for

the award of any other degree.

Date: May 29 , 2002
	

Lokesh Gandhi)
Place :IIT,Roorkee.

CERTIFICATE

This is to certify that the above statement made by the candidate is correct

to the best of our knowledge.

(Mr Rajagopalan Srinivasan)
Senior Development Manager
Oracle India Pvt. Ltd.

Rroffasor & Head
D.partmeM of Mathemal c$

I.I.T. Roorkee-247 667

(Dr. Mohan Lai)

Asst. Professor,
Computer Center,
I I T Roorkee

ORACLE® 	
ORACLE INDIA PRIVATE LIMITED
India Development Center
Oracle Technology Park
No. 3, Bannerghatta Road
Bangalore - 560 029, India,
Telephone : + 91(80)5528335/40/45

+ 91 (80) 552 8350/55
Fax 	: + 91 (80) 552 6124

May 21, 2002

TO WHOMSOEVER IT MAY CONCERN

This is to certify that Mr. Lokesh Gandhi student of IIT, Roorkee has completed his project with
Oracle India Private Limited.

The project was undertaken for a period of four months from January 15, 2002 to May 31, 2002. He
worked on a project 'ENTERPRISE MANAGEMENT SYSTEM'.

We wish him all the best in his future endeavours.

Yours sincerely
for ORACLE INDIA PRIVATE LTD.

<-i-
SacVenkatachaIiah
Se ' r Manager - Human Resources

ACKNOWLEDGEMENT

I would like to express my deep sense of gratitude and

sincere thanks to my guides Dr. Mohan Lal (Asst. Prof. ,

Computer Center) and Mr. Rajagopalan Srinivasan(Senior

Development Manager, Oracle India Development Center)

for their valuable and ever willing precious guidance, technical

support and constant encouragement during the course of this

dissertation work under their guidance.

I am grateful to Mr. Kiran Kulkarni (Senior Applications

Engineer, Oracle India Development Center) and other staff

members for providing the necessary facilities for the successful

completion of this work.I would like to mention the name of Prof.

R.0 Mittal, Department of Mathematics for their able guidance

and kind support.

G i

Lokesh Gandhi
MCA 3rd yr
IIT Roorkee

ABSTRACT

From the initial stages, there was a need felt for the use of Computer

Systems to automate end to end daily processes of Organizations. These

Systems will have unified information architecture, reduce the paper work

and redundancies in operations. With the globalization of economies and

rapid expansion of corporates across the globe, the information is needed to

be accessed instantly at any part, any time in the world. Also there is a

consistent requirement to keep all the stored data in sync with each other.

Several Function specific applications were made by different vendors for

separate modules which attempted to serve this purpose by fulfilling some of

the objectives, but there was an urgent need of integrating these

applications, so that data is consistent as well as retrievable across all the

departments around the globe.

ERP Applications attempts to integrate all departments and functions

across a company onto a single computer system that serves all

departments' particular needs. It combines them all together into a single,

integrated software program that runs off a single database. So, various

departments can more easily share information and communicate with each

other. Oracle Applications are such kind of integrated applications which are

packaged in one EBusiness suite called Oracle 11i.'

This report describes building of some of the modules of such an

Application suite called ORACLE 11i E Business suite namely the Purchasing

and Payables modules, which automates an organization's purchasing, and
payables process, is well integrated with other modules of Oracle 11i suite.

This application like other Oracle Applications can be accessed through a

browser using a three tier architecture and supports multiple languages and

multiple platforms.

The Enterprise Management System is built on Oracle Applications

platform The Operating System used are Solaris and Microsoft Windows NT

4. The tools used are Developer 6i, Sqf*plus and Oracle Flint. The language

used is pl/sq!.

Table of Contents
Page No.

Candidate's Declaration

Certificate 	 II

Acknowledgement 	 iii

Abstract 	 iv

Chapter 	1. Introduction and Statement of problem 1
1.1 Introduction 1

1.2 Problem Definition 3

1.3 Organisation Profile 4

1.4 Organisation of Project 6

Chapter 	2. General Considerations 7
2.1 Internet Computing Architecture 7

2.2 Network Computing Architecture 12

2.3 The Centralized Development Setup. 13

2.4 Running ORACLE Applications 14

2.5 Platforms supported by ORACLE Applications 16

2.6 Function Security 18

2.7 Handlers 24

2.8 User Profiles 29

2.9 Flex fields 30

2.9.1 	Key Flex fields 31

2.9.2 	Descriptive Flex fields 32

2.10 Concurrent Processing 35

Chapter 	3. Requirement Analysis 37

Chapter 4 . Design 	 45

4.1 System Modeling 45

4.2 Module Inter Dependencies 46

4.3 E.R. Diagram 47

4.4 DFD Diagrams 49

4.5 Justification Of Development Methodology 51

4.6 Database Design 52

Chapter 5. Software Implementation and Testing 67

5.1 Development of Forms 70:

5.2 Application Directory Structure 75

5.3 Registering the Application 77

5 .4 Creating Users for the Application 78

5.5 Creating ORACLE Users 79

5.6 Defining the Data Group 80

5.7 Function Security 81

5.8 Creating the Responsibility 84

5.9 Registering the form with ORACLE Application 85

5.10 Registering Form Functions and Sub functions 86

5.11 Creating A Menu Of Functions 87

5.12 Creating User Profiles 89

5.13 Registering Descriptive Flex Fields 89

5.14 Registration of Tables 90

5.15 User Interface Of Custom Application 91

5.16 Testing and TestPlan 117

5.17 Testing Methods 118

5.17.1 Unit Testing 118

5.17.2 Integration testing 118

iii

5.17.3 System testing
	

119

Chapter 6 Conclusion and Suggestions for further work 121

6.1 Conclusion
	

121

6.2 Suggestions for future work
	

122

Glossary 	 123

REFERENCES 	 125

j

lv

CHAPTER — 1

INTRODUCTION AND STATEMENT OF PROBLEM

1.1. What is ERP?

Enterprise resource planning software, or ERP attempts

to integrate all departments and functions across a company onto a

single computer system that can serve all those different departments'

particular needs. It is like building a single software program that

serves the needs of people in finance as well as it does the people in

human resources and in the warehouse.

Each of those departments typically has its own computer

system optimized for the particular ways that the department does its

work. But ERP combines them all together into a single, integrated

software program that runs off a single database so that the various

departments can more easily share information and communicate with

each other. That integrated approach can have a tremendous payback if

companies install the software correctly. Take a customer order, for

example. Typically, when a customer places an order, that order begins
a mostly paper-based journey from in-basket to in-basket around the

company, often being keyed and rekeyed into different departments'

computer systems along the way. All that lounging around in in-baskets

causes delays and lost orders, and all the keying into different computer

systems invites errors. Meanwhile, no one in the company truly knows

what the'status of the order is at any given point because there is no

way for the finance department, for example, to get into the

warehouse's computer system to see whether the item has been

shipped. "You'll have to call the warehouse" is the familiar refrain heard

by frustrated customers.

ERP vanquishes the old standalone computer systems in finance,

HR, manufacturing and the warehouse, and replaces them with a single

unified software program divided into software modules that roughly

I

approximate. the old standalone systems. Finance, manufacturing and

the warehouse all still get their own software, except now the software

is linked together so that someone in finance can look into the
warehouse software to see if an order has been shipped. Most vendors'

ERP software is flexible enough that an organization can install some

modules without buying the whole package. Many companies, for
example, will just install an ERP finance or HR module and leave the

rest of the functions for another day.

Every application in ERP Suite can run in one global instance

of a single database. All the applications work together and share the

same information. The result is a complete suite of applications that

provides data for information that is displayed in customizable portals,

revealing critical information such as sales positions, inventory levels,

headcount, revenue, and expenses—across all organizations, lines of

business, products, and geographies. And because the business

intelligence systems and the data sit in the same system, the user won't

wait for data to pass through a separate data aggregation and analysis

system. The company's executives get daily business intelligence that

reveals the state of the business every day, relative, to past,-- present,

and projected performance metrics. This allows the decision makers to

reach more informed conclusions, make daily corrections, and drive the

business towards achieving its goals for profitability—daily, not

quarterly or even monthly. More precisely monitor performance to make

more informed business decisions. Performance that does not meet

targets can trigger immediate workflow notifications along with other

corrective actions. Associated -reports explaining the cause and effect of

the information are only a link away, encouraging a cycle of continuous

process improvement.

2

1.2 STATEMENT OF PROBLEM

ABC Trading Corporation is a trading firm, which takes orders for kits

from various customers and procures the components required, from

different vendors. They also sell individual components in the Spares

Market. Due to major expansion in business they are now feeling the
need to automate the major activities of the company by implementing

ERP. For this they have approached Oracle Corporation with some specs

from their IT Implementation Team.

My project is to automate the following areas of the Corporation.

• Purchasing

• Payables

They want their system to be developed on Oracle

Applications Platform as they have already implemented Oracle

Applications in some parts of their business activities.

3

1.3 ORGANIZATION PROFILE

ORACLE Corporation, a $11 billion company, head quartered in

Redwood Shores, California, is the world's second-largest software

company, and the world's largest supplier of software for information

management.

ORACLE was founded in 1977 with a vision of finding faster,

easier, less expensive, and more powerful ways to manage and access

information, and that vision has become a reality. ORACLE built the first

commercial relational database system. ORACLE sold the first products

employing SQL (structured query language), now the industry standard.
ORACLE saw the value of low-cost, client/server systems over

proprietary mainframes. ORACLE pioneered portable software that

today runs on practically all hardware, from PCs to mainframes. In

recent years, ORACLE championed parallel software as the

breakthrough that will power very large database applications like data

warehousing and information-on-demand. And recently, ORACLE

introduced ORACLE® Universal Server, an extremely powerful software

platform with the ability to integrate and consolidate all types of data

for thousands of users over any network, including the World Wide Web.
For nearly two decades, ORACLE Corporation has been solving

complex, critical information management challenges for companies of

all types and sizes. In fact, ORACLE is the world's largest independent

provider of software and services for managing information, with more

than 42,000 dedicated software professionals, and operations in more

than 90 countries.

ORACLE is the only company offering a 100% pure Internet suite

of products to build and deploy e-business solutions on a global scale.

Matter of fact, every one of the top 20 E-Commerce.coms and over

4

90% of all public '.com' companies work on ORACLE. ORACLE

Corporation is the world's second largest software company and the

leading supplier of software for enterprise information management.

With annual revenues exceeding US$ 10.1 billion, ORACLE offers

database, tools and application products along with consulting,

education and support services in more than 145 countries worldwide.

ORACLE technology innovations have driven the computer

industry, and more importantly, have enabled their customers to be

more productive and more competitive using computers that cost less,

but do more. This focus on software innovation explains why their

information management software has emerged as the technology

backbone for the Information Age, making possible tasks ranging from

managing huge amounts of corporate information to delivering a

favourite movie to your living room.

5

1.4 ORGANIZATION OF THE REPORT

The organization of report is as follows.

Chapter 2 gives the overview of ORACLE Applications and Application

development.

Chapter 3 gives the analysis of the problem

Chapter 4 gives design details

Chapter 5 gives software implementation details and testing.

Chapter 6 gives the conclusion and suggestions for the future work
followed by the Bibliography.

6

CHAPTER — 2

GENERAL CONSIDERATIONS

ORACLE Applications

2.1 Internet Computing Architecture

Internet Computing Architecture is a framework for three-tiered,

distributed computing that supports ORACLE 'Applications products.

Internet Computing Architecture distributes services among as many

nodes on a network as are required to support the processing load.

Each node is a machine on the network. Services are processes that run

in the background, listening for requests and processing these requests.

The HTTP service, for example, is a process that listens for and

processes HTTP requests, and the Forms service is a process that listens

for and processes requests for ORACLE Forms. The three tiers are the

database tier, which manages ORACLE8i database; the application tier,

which manages ORACLE Applications and other tools; and the desktop

tier, which provides the user interface display. With Internet Computing

Architecture, only the presentation layer of ORACLE Applications is on

the desktop tier in the form of a plug-in to a standard Internet browser.

ORACLE Applications software and other tools are deployed on a

middle tier of servers known as the application tier. This tier eliminates

the need. to install and maintain application software on each desktop

client. The software on the application tier also enables ORACLE

Applications to scale with load and to keep network traffic low.

7

Desktop Tier 	Application Tier 	Database Tier

Figure 2.1 Internet Computing. Architecture

The application tier servers operate very effectively over a WAN. The

desktop client and application server send a minimum amount of

information, such as field value comparison differences, but do not

exchange graphical information such as screen painting. In a global

operation with users at diverse locations, less network traffic also

means less telecommunications expense.

Forms-based Products

Release 11i includes two principal product suites: Enterprise Resource
Planning (ERP) products, and Customer Relationship Management

(CRM) products.

Enterprise Resource Planning (ERP) Products

The ERP products are the "back office" products familiar to users of

earlier ORACLE Applications releases. There are more than 156 ERP

products that help the business manage important operations, including

8

product planning, purchasing, inventory management, interacting with

suppliers, order tracking, human resources, financial

planning, and accounting. The ERP products are divided into several

product families, such as Financials, Human Resources, Manufacturing

and Distribution and Process Manufacturing.

Customer. Relationship Management (CRM) Products

Customer Relationship Management products provide the "front office"

functions such as call center management, e-commerce, and internet

sales and marketing. CRM products help the business build lasting

customer relationships and increase customer satisfaction and loyalty.

Forms Server and Forms Client

The application tier software used in most ERP and CRM products is the

Forms server. The Forms server mediates between the Forms client, a

Java applet running on the desktop, and the ORACLES1 database server

on the back end. The Forms server produces the effects a user sees on

the desktop screen and causes changes to database records based on

user actions. Both the Forms server and Forms client are components of

ORACLE Forms. The two exchange messages across a standard network

connection, which may be either TCP/IP, or HTTP with or without SSL
(Secure Sockets Layer).The Forms client can display any ORACLE
Applications screen, and provides field-level validation, multiple

coordinated windows, and data entry aids such as list of values. A Java-

enabled Web browser manages the downloading, start-up, and•

execution of the Forms client on the desktop. Another software

component, the HTTP server, helps start a client session over the

internal or external Web. The HTTP server in Release iii is the Apache

HTTP Server. In installations that have multiple Forms servers, only one
of the Forms servers runs the HTTP server software. If we use more
than one Forms server, ORACLE Forms also provides a CGI script that

distributes the processing load among the servers.

Z

Desktop Tier 	Application Tier 	Database Tier

—.~ t 	E9 Oserrun i0 	.~. 	H 	H11P fi4rl1'~
C J ,JFlf 35011.3 j r3 _a 	(A?Ex he7 HTTP Svr:'r'i

[~it.i <rc!'r

Forms 	Frcm5 sftvfr ruf(ilL is tft 	k

Figure 2.2 Forms-based Architecture

HTML-based Products

In addition to Forms-based products, Release Iii includes other

products that are not Forms-based, such as the ORACLE Self-Service

Web , Applications products, ORACLE Workflow, and the - ORACLE

Business Intelligence System (BIS) products. These products do not use

the Forms server as the application tier software or the Forms client on

the desktop, but rely on HTTP-based servers on the application tier and

a Java-enabled Web browser on the desktop,

ORACLE Self-Service Web

Workflow

Applications and ORACLE

Self-Service Web Applications provide a fast and cost-effective

way to get information to and from people within an organization or

business. For example, Self-Service Web Applications allow customers

to enter their own orders without involving the sales staff, or employees

10

to enter their own change of address without involving the Human

Resources staff. The interface is familiar to Web users, easy to work

with, and doesn't require any training. Many ORACLE Applications

products use ORACLE Workflow. to automatically enforce business rules

and policies and to provide a common notification system. The ORACLE

Workflow monitors business processes, collects process data, and

provides an e-mail and web page notification system. For example,

when an employee uses ORACLE Internet Procurement (an ORACLE

Self-Service Web product) to enter a requisition, ORACLE Workflow

automatically validates the requisition and routes it to the appropriate

manager for approval. Release 11i includes the full ORACLE Workflow

product and the license to customize any ORACLE Applications

embedded workflow. Most ORACLE Self-Service Web Applications and

ORACLE Workflow are designed in HTML-based tools such as HTML,

XML, and JavaScript. They operate by direct connection to the Apache

HTTP server. Logic is controlled through stored procedures executed by

the PL/SQL cartridge and by Java servlets and Java Server Pages (JSP)

executed by the Apache JSery module. Apache communicates with the

database using JDBC (Java Data Base Connectivity). The Apache HTTP

Server can be the same machine used by ORACLE Forms.

Desktop Tier 	Application Tier 	Database Tier

HflPr

Gata r,~c

PLl_Yit.

Fig 2.3 Self Service and Work Flow Architecture

11

2.2 The Network Computing Architecture

Place most user interface processing on a Java-enabled

desktop, forms processing on application servers, and all data-oriented

processing on database servers. It maximize the use of client and

server resources while minimizing administration effort and network
use.

Desktop +C1lentTier
•(PGs,'NCs. etc. .. •

} 8 running browsers).

LAN, WAN, or Dial-Up
Connection

Data Center

Fig 2.4 Network Connections in ORACLE Applications

Desktop Client

• Full graphical user interface, with user interface display handled

by the browser or appletviewer

12

• Deploy on any PC, network computer, or other desktop on which

Java is available

• Closely integrated windows present an entire business flow

Middle Tier (Forms Server)

• User interface logic happens on the forms server

• 'Key reference data cached locally

• Few network calls to database server needed

Database Server

• Remote Procedure Calls (RPCs) communicate with the database

server when necessary

• Server handles - data-oriented applications processing (for

example, calculating tax on a sales order)

• Single RPC to stored procedures can initiate multiple database

actions (SQL statements)

• Stored procedures are in the database, so communications

between stored procedures and the database occur in memory,

not across the network.

2.3 The Centralized Development Setup

In a "centralized" development setup, each developer has

only the ORACLE Forms Designer and the browser on the

developer's desktop machine. The middle tier resides on a shared

server.

13

Fig 2.5 : Centralized development in ORACLE Applications

2.4 Running ORACLE Applications

When a user starts the appletviewer or browser and requests an

appropriate URL. These are the connections between the desktop client

and the applications tier.

14

Figure 2.6 : How Connection Establishes

• The user starts up the appletviewer or browser and provides a

URL (HTTP request) that requests an HTML page

• The request may be sent to the forms cartridge handler (ORACLE

Application Server) to fill in any variables in the HTML file

• User or developer may include variables in the URL, depending on

setup

• The HTML page contains a request for the Forms Client applet
• The Forms Client applet establishes a connection with the Forms

Server
• The user sees a form (usually the ORACLE Applications Sign On

window)

is

2.5 Platforms Supported By Oracle Applications

A platform is a particular computer hardware and software (operating

system) combination. The Oracle8 Server, Tools, and Application Object

Library layers help make Applications portable to many platforms:

• Sun SPARC Solaris

• IBM AIX RS/6000
• Digital UNIX

• Digital VMS (VAX, Alpha.)

• HP/UX 98xx

• Intel-based UNIX

• Sequent DYNIX/ptx

• Solaris x86

• MIPS-based Unix

• SGI Irix

• Pyramid DC/OSx

• Windows NT server (Intel, Alpha)

• Siemens Nixdorf (SNI) RM600/800

Languages Supported by Oracle Applications

Oracle Applications can be run in languages other than American English

(referred to as National Language Support or NLS), or it.can be run in

multiple languages simultaneously (referred to as Multi-Lingual Support

or MLS).

16

Language 	Directory Code
Arabia AR
Czooh CS

Gsr,nan D

Danish DX
European Spanish E
Greek EL
LatJn American Spanish ESA

European French F
Canadian French FRC

Hungarian HU

Italian
Hebrew 1W

Japanoso JA

Korean KO

NorAvgtan N
Dutch NL

Polish PL
European Portuguese PT

Brazilian Portuguese P'TB

Romanian RO

Russian RU

Svmdi sh S
Finnish SF
Slovak SK
Thai TH
Turkish lR
American English US
Simplified Chinese ZHS

Traditional Chinese ZHT

Figure 2.7 Languages Supported by Oracle Applications

File Character Set

Character sets are sets of encoded binary values that represent the

fetters, numerals, and punctuation marks of a language, or of a group

of languages that use similar written symbols. For example, the

WE8IS08859P1 character set can be used by English and many other

languages that use a Latin-based alphabet and Arabic numerals.

17

Terminals and printers handle text data by converting these encoded

values to characters. A character set may also be called a code set.

A character set supports one or more languages. In Release 11i,

support for the Unicode UTF8 character set removes the imitation on

the number of supported languages that can be run in a single instance.

The Unicode character set supports all characters in common use in all

of the world's modern languages.

Multiple Reporting Currencies

Multiple Reporting Currencies (MRC) is a set of unique features

embedded in Oracle Applications that permits an organization to report

and maintain accounting records at the transaction level in more than

one functional currency. MRC is intended for use by organizations that

must regularly and routinely support statutory and legal reporting of

both transactions and General Ledger account balances in multiple

currencies, other than the primary functional currency.

2.6 Function Security

Function security restrict application functionality to authorized

users.

Basic Function Security

• Group the forms and functionality of an application into logical

menu structures .

• Assign a menu to one or more responsibilities

• Assign one or more responsibilities to one or more users

• Forms can be secured on a responsibility basis (that is, included

or excluded from a responsibility)

Advanced Function Security

• ORACLE Applications GUI-based architecture aggregates several

related business functions into a single form.

• Not all users should have access to every business function in a

form.

18

• ORACLE Applications provides the ability to identify pieces of

application logic as functions.

• Functions can be secured on a responsibility basis (that is,

included or excluded from a responsibility).

Function Security extends the definitions of these existing

terms.

Menu

A menu is a hierarchical arrangement of functions and menus of

functions.

Menu Entry

A menu entry is a menu component that identifies a function or a menu

of functions.

In some cases, both a function and a menu of functions correspond to

the same menu entry. For example, a form and its menu of

subfunctions can occupy the same menu entry.

Responsibility

When application users sign on, they select a responsibility that

determines, among other things, the functions they may access.

Available functions are determined by the menu assigned to the current

responsibility.

Forms

An ORACLE Forms .fmx file.

Forms are located in their application Basepath/forms/US (or

appropriate language) directory.

Function Security introduces the following new terms:

Function

19

• A function is a part of an application's functionality, registered

under a unique name, that can be assigned to or excluded from a

responsibility.

• There are two types of functions: form functions (forms), and

non-form functions (subfunctions).

Form Function

• A form (form function) invokes an ORACLE Forms form.

• A form has the unique property that users may navigate to it

from the Navigate window.

Subfunction

• A subfunction (non-form function) is a securable subset of a

form's functionality

• A developer can write logic to test the availability of a

subfunction in the current responsibility, then take some action

based on whether the subfunction is available

• A subfunction is frequently associated with a button or an entry

on the Special menu. When such a subfunction is enabled, the

corresponding button or menu entry is enabled

. A subfunction may correspond to a form procedure_ not

associated with a graphical element, and its availability may not

be obvious to the end user

20

SETTING UP FUNCTION SECURITY

Forms 	! 	Developer registers each form with AOL

Functions: 	I 	Developer registers the form again as a function
Forms And

Subfunctions 	Developer ma~~ nlso register certain functionality of the
forth (a subfnnction) as another function

Developer or system administrator adds functions (both
Menus and forms and subftrnctions) to a menu. often as a hierarchical
Submenus 	structure of submenus

Developer or system actlninisirator defines a responsihilily
Responsibilities 	and attaches a menu. a data group. and a request !hoop

SPskmn administrator may l'\c1ll(ielercain tulict10115 fm in
the responsibility

Application 	1 	Application user can access any I'erWts oil the menu, but

users does not.see subftmctious listed on the menu

User cannot see or access forms or subfllnctions excluded
irons the responsibility

Figure 2.8 : Setting up Function Security

21

Developers Create Functions and Menus of Functions

• Developers can require parts of their form code to test the

availability of a particular function, then take some action based

on whether the function is available.

• Developers register each function they create.

• For form functions, developers can register parameters that pass

values to a function. For example, a form may support data entry

only when a function parameter is passed to it.

• Developers define a menu including all the functions available in

an application (that is, all the forms and their securable
subfunctions).

• For some applications, - developers may define additional menus

that restrict the application's functionality by omitting certain

forms and subfunctions.

.System Administrators Exclud.e Functions from Menus

• Each ORACLE Applications product is delivered with one or more

predefined menus.

• System Administrators can assign a predefined menu to a

responsibility.

• To tailor a responsibility, a System Administrator can exclude

functions or menus of functions using exclusion rules.

• When a menu is excluded, all of the functions and menus of

functions that it selects are excluded.

• When a function is excluded, all occurrences of that function
throughout the responsibility's menu are excluded.

22

Figure 2.9 : Applications Development Process

23

2.7 	Handlers

• Handlers provide clear standards for writing forms.

• They are centralized pieces of code that deal with a specific

event, item or table.

• They are packaged procedures called from triggers

Use of Handlers :

• Easy to work with self-contained code

• All the code that affects an entity appears in one place for easy

development and maintenance

Types of Handlers

• Item handlers - for each item in a block

• Event handlers - for complex events

• Table handlers - for base tables

24

ITEM HANDLERS VALIDATE ITEMS

Item handlers take an EVENT parameter that identifies the
trigger calling the item handler.

Item Handler
Event = WHEN-
VALIDATE—ITEM

If event= 'WHEN-
NEW—RECORD-
INSTANCE' THEN

do your logic

ITEM

If event='WHEN-
VALIDATE-
ITEM' THEN

do your logic

And many more

Figure 2.10 : Item Handlers

25

Common item handler events include:

WHEN-VALIDATE-ITEM

Call an item handler to validate and set the dynamic

item attributes.

WHEN-NEW-RECORD-INSTANCE

Reset the item attributes to the default for a new record.

INIT

Examine current conditions and reset defaults and

dynamic attributes as necessary. Usually called by other

handlers that affect this item.

PROCEDURE example (EVENT VARCHAR2) IS

BEGIN

IF (EVENT = 'INIT') THEN

... /* code here */

END IF;

END example;

One Package Per Block

_ Named after the block (or form in the single block case).

— Procedures named after their particular item.

Call Item Handlers from Triggers

_ Pass the trigger name (event) as the argument to the handlers.

- Always code to expect event name, even if we only have one event;
we

may later want to add more events.

— Grouping the code into a single package simplifies maintenance and

debugging.

EVENT HANDLERS CONTROL EVENTS

Some logic pertains to multiple Items when a single event occurs.

Event Happens
(Post—Query) Event Handler

Call item A's
handler with event

ITEM A

Call item B's

ITEM B
	 handler with event

ITEM C
Call item C's
handler with event

Result
Post—Query Works

Figure 2.11 : Event Handler Controlling Events

27

Table handlers support insert, update, delete and locks for the block-

level views.

Query I VIEW

Insert'Update/Delete/Lock

TABLE
HANDLER

Base Table 	I I Foreign Key Table

Figure 2.12 : Table Handler Controlling Database Upadation

28

2.8 User Profiles

User profiles lets us code logic based on a user's Site,

Application, Responsibility, User-level information.

Overview of User Profiles

• A user profile is a set of changeable options that affects how the

application looks and behaves.

• Developer can define user profile options whenever he wants the

application to react in different ways for different users,

depending on specific user attributes.

Four Different Levels for Maximum Flexibility

• Site: values pertain to all users at an installation site.

• Application: values affect all users of any responsibility associated

with the application.

• Responsibility: values affect all users currently signed on under

the responsibility.

• User: values affect an individual applications user.

• Site-level setting overridden by application, then responsibility,

with user-level having the highest priority.

Profile Option Values Derived at Runtime

• ORACLE Application Object Library establishes values when the

user logs on or changes responsibility.

• If a user changes a user-changeable profile option value, the new

value takes effect immediately.

• If a system administrator changes a use'r's profile option value,

the change takes effect when the user logs on again or changes

responsibility

29

2.9 FLEXFIELDS

A flexfield is a field made up of sub-fields, or segments. A

flexfield appears on the form as a pop-up window that contains a

prompt for each segment. Each segment has a name and a set of valid

values. There are two types of flexfields: key flexfields and descriptive

flexfields.

Orders ers for Parts

Key fClient

rder Number 	Order l pe -
Flexti el cJ

 : 	 Country

Part

1.) escr

Descriptive
Fleafielti

P ap-U
n

I art NlumberKev Flexfield

	

Cc:Wc)ry 	C;Otnlpt.ltei.

	

Iierrn 	 ?vIoni for

C:oIor ® I..ight ran

Prompt

M)srriltivr PlpxEivlri

Type 	Sp cia] Order

Sales Rep

Segment
	 VaIue

\;'aloe. Description

30

Figure 2.13 Flex fields

2.9.1 	Key Flexfields

Most organizations use "codes" made up of meaningful segments

(intelligent keys) to identify general ledger accounts, part numbers, and

other business entities. Each segment of the code can represent a

characteristic of the entity. For example, an organization might use

the part number PAD-NR-YEL-8 1/2x14" to represent a notepad that

is narrow-ruled, yellow, and 8 1/2" by 14". Another organization may

identify the same notepad with the part number "PD-8x14--Y-NR".

Both of these part numbers are codes whose segments describe a

characteristic of the part. Although these codes represent the same

part, they each have a different segment structure that is meaningful

only to the organization using those codes.

The ORACLE Applications store these "codes" in key flexfields.

Key

flexfields are flexible enough to let any organization use the code

scheme they want, without programming. When an organization initially

installs ORACLE Applications, the organization's implementation team

customize the key flexfields to incorporate code segments that are

meaningful to the business. It decides what each segment means, what

values each segment can have, and what the segment values mean.

The organization can define rules to specify which segment values can
be combined to make a valid complete code. (also called a combination).

They can also define relationships among the segments. The result is

that the

organization can use the codes it wants rather than changing the

codes to _meet ORACLE Applications' requirements For example,

consider the codes an organization uses to identify general ledger

accounts. ORACLE Applications represent these codes using a particular

key flexfield called the Accounting Flexfield. One organization might

choose to customize the Accounting Flexfield to include five segments:

company, division, department, account, and project. Another

31

organization, however, might structure their general ledger account

segments differently, perhaps using twelve segments instead of five.

The Accounting Flexfield lets ORACLE General Ledger application

accommodate the needs of different organizations

by allowing them to customize that key flexfield to their particular

business usage.

Form with a Range Flexfield

Report on Part Numbers

From Part

Part

Reports Table

Part Nu 	~r Stru ~ e 1 	 Strl.tcr.t.lrh 	c- rrteht NL.OW Irlc
III 	tic, ment N...I..IIGk]

Ilrm 	i 	II

C.olrr

Ran gy fable

Figure 2.10 Storage of key Flex field

2.9.2 	Descriptive Flexfields

Descriptive flexfields provide customizable "expansion space" on

the forms. We can use descriptive flexfields to track additional

information, important and unique to the business, that would not

otherwise be captured by the form. Descriptive flexfields can be context

32

sensitive, where the information the application stores depends on other

values it's users enter in other parts of the form. A descriptive flexfield

appears on a form as a single-character, unnamed field enclosed in

brackets. Just like in a key flexfield, a

pop-up window appears when the user move the cursor into a

customized descriptive flexfield. And like a key flexfield, the pop-up

window has as many fields as that organization needs. Each field or

segment in a descriptive flexfield has a prompt, just like ordinary fields,

and can have a set of valid values. An organization can define

dependencies among the segments or customize a descriptive flexfield

to display context-sensitive segments, so that different segments or

additional pop-up'windows appear depending

on the values the user enters in other fields or segments. For example,

consider the Additions form we use to define an asset in ORACLE

Assets application. This form contains fields to capture the "normal"

information about an asset, such as the type of asset and an asset

number. However, the form does not contain specific fields for each

detail about a given asset, such as amount of memory in a computer or

lifting capacity of a forklift. In this case, having all the potentially-

needed fields actually built into the form is not only difficult, it is

undesirable. Because while one organization may have

computers and forklifts as assets, another organization may have only

computers and luxury automobiles (and no forklifts) as assets. If the

form contained built-in fields for each attribute of a forklift, for

example, an organization with no forklifts would find those fields to be

both unnecessary and a nuisance because a user must skip them to

enter information- about another type of asset. In fact, fields for forklift

information would .be cumbersome whenever a User in any organization

tries to enter any asset that is not a forklift. Instead of trying to contain

all possible fields for assets information, the Additions form has a

descriptive flexfield that it can customize to capture just the information

the organization needs about its assets. The flexfield structure can

33

depend on the value of the Asset Category field and display only. those

fields (segments) that apply to the particular type of asset. For

example, if the asset category were "desk, wood", the ' descriptive

flexfield could prompt for style, size and wood type. If the asset

category were "computer, hardware", the flexfield could prompt for CPU

chip and memory size. They can even add to the descriptive flexfield

later as they acquire new categories of assets The Enter Journals

window in the ORACLE General Ledger applications is another example

of a form that includes descriptive flexfields to allow organizations to

capture additional information of their own choosing. Each block

contains a descriptive flexfield as its last field. It might use these to

store additional information about each journal entry, such as a source

document number or the name of the person who prepared the entry.

+t
3754

TTT B` Mfg. Co.. 	 lISA

ITT C(JM-87G-LT~T

Cmuir-Monifor-Lights iii

COM'

,Jane Ikt!. 	Y*

Fran Meese

(8f2)61244[i

LVIt '{firInt'l

I-)etrrI tivt Fleirl ld

T per

Computer

Sale% Rtp IIJItiI

Cunlad

IDwrn (213Y1Z3.4561

—Count rY

Scup-Irou Iii

t\vo structures of same clescrsfHvr flexfield

Fig 2.11 	Descriptive Flexfi&d representations

34

Benefits of Flexfields

Flexfields provide the features an organization needs to satisfy

the following business needs:

• Customize the applications to conform to the current business

practice for accounting codes, product codes, and other codes.

• Customize the applications to capture data that would not

otherwise be tracked by the application.

• Have "intelligent fields" that are fields comprised of one or more

segments, where each segment has both a value and a meaning.

• Rely upon the application to validate the values and the

combination of values that the user enters in intelligent fields.

• Have the structure of an intelligent field change depending on

data in the form or application data.

• Customize data fields to meet the business needs without

programming.

2.10 CONCURRENT PROCESSING

Concurrent processing simultaneously executes programs running

in the background with online operations.

Purpose of Concurrent Processing

_ Take advantage of multitasking, parallel processing and distributed

processing

_ Give system administrators flexibility to set up concurrent processing

to fit the needs of their site and users

Benefits- of Concurrent Processing

_ Consistent response time

_ Use all the capacity of hardware by executing many processes at

once

— Control the number of processes that run on each node

On-line file review

35

Portable interface to concurrent programs

CONCURRENT PROCESSING DEFINITIONS

Concurrent Program

An instance of an execution file, along with parameter definitions and

incompatibilities. Several concurrent programs may use the same

execution file to perform their specific tasks, each having- different

parameter defaults and incompatibilities.

Concurrent Program Executable

An executable file that performs a specific task. The file may be a

program written in a standard language, a reporting tool or an

operating system language

Concurrent Request 	 -

A request to run a concurrent program as a concurrent process

Concurrent Process

An instance of a running concurrent program that runs simultaneously

with other concurrent processes

Concurrent Manager

A - program that processes user's requests and runs concurrent

programs.

System Administrators define concurrent managers to run different

kinds of requests

Concurrent Queue

List of concurrent requests awaiting processing by a concurrent

manager.

36

CHAPTER-3

REQUIREMENT ANALYSIS

The first phase of Software Engineering Approach is the

Requirement Analysis Phase. Here we analyse the requirement of the

client.

The specifications given to me for each functional module were:

ABC Trading Corporation is planning to centralize its Purchasing

Department eliminating the concept of paper requisitions, purchase

orders and receipts.

Under this scenario, the system should cater to the following need of

the user at ABC TC,

Requisitions

1. The user at ABC TC should be able to create, edit and view

requisitions for items.

2. The user at ABC TC should be able to raise requisitions for multiple

items.

3. The requisitions should contain the Preparers Name and description.

4. For each of the items, the requisition should have the following

information viz., the item number, description, unit price, the

quantity, the date of.requirement, destination and supplier details.

The following are the destination details. viz., the destination type,

the requester and the warehouse. The following are the supplier

information viz., supplier name, supplier site, supplier contact and

phone number.

37

5. ABC TC has supplier information loaded in his already existing legacy

system. He should be able to use the same.

6. The user should be able to specify the unit in which the item can be

specified. He should also .be able to change this.

7. The system should automatically calculate the total amount for the

items as well as for the requisition.

8. Some users at ABC TC would want to enter the Requisition number

manually, while others would want automatic numbering of

Requisition. Hence, the system should provide for either manual or

automatic numbering of requisitions.

9. Check for unique requisition number should be done in this case and

a message should be displayed if the number entered is not unique.

10.The date of requirement entered should be always on or after the

current date. On entering a date prior to the current date a message

should be displayed and he should be prevented from doing so.

11'.The user should be able to select the item, supplier details,

destination details from a set of pre-defined values.

12.As far as the supplier is concerned, the user should be able to

perform one of the

• select from a set of pre-defined values

• enter a new supplier name that does not exist in the set of

pre-defined values

• leave it blank.

13.ABC TC does not adhere to a rigid structure as far as the details that

appear on requisitions are concerned. Its requirement is largely

varied and hence his largely changing/growing business needs

should be catered to with minimal effort. For instance in addition to

the information stated earlier the user might want to enter the

reason for requesting the item, the supplier item name, supplier

item code, the supplier item description etc.

38

14.There should exist a control by which, the user would be allowed to

raise multiple requests for the same item in a single requisition or

would not be allowed to perform the same.

15.The user should be able to query requisitions based on the item.,

preparer 's name, supplier, status of requisition and destination

details.

Querying

User frequently queries on the following attributes in different screens,

(1) 	For Requisitions it's done on Requisition Number , Item name,

Preparer's name , Date of preparation ,Supplier's name.

Purchase Orders

1. The user at ABC TC should be able to create, edit and view purchase

orders for items.

2. The user should be able to create a Purchase Order based on an
., existing approved requisition.

3. The user should be able to raise Purchase Orders for multiple items.

4. The Purchase Order should contain the following information,

supplier name, supplier site, contact, ship-to and bill-to locations,

the buyer name and the amount for which the purchase order is

raised:

5. The user should be able to define the following terms and conditions

for the Purchase Order viz:, payment terms, freight terms and

freight carrier.

6. The Purchase order should contain the following information

pertaining to the item viz., the item number, item type, description,

unit of measure, quantity, the unit price, promised date of receipt

and date of requirement.

39

7. The Purchase Order should contain the information regarding the
requisition against which it was prepared (if one exists).

8. Some .users at ABC TC would want to enter the Purchase Order

number manually, while others would want automatic numbering of

Purchase Orders. Hence, the system should provide for either

manual or automatic numbering of Purchase Orders.

9. Check for unique Purchase Order number should be done in this case

and a message should be displayed if the number entered is not

unique.

10.The date of requirement and promised date of receipt entered should

be always on or after the current date. On entering a date, prior to

the current date a message should be displayed and he should be

prevented from doing-so.

11.The user should be able to select the following from a set of pre-

defined values viz., supplier name, supplier site, supplier contact,

ship-to and bill-to locations and the item.

12.There should exist a control by which, the user would be allowed to

raise multiple requests for the same item in a single Purchase Orders

or would not be allowed to perform the same.

13.The user should be able to define the ship-to location(warehouse),

quantity, promised and need by dates for each item. The user should

be able to see the status of the quantities i.e., the ordered quantity

and received quantity.

14.The Purchase Order should define the following, the maximum

acceptable number of days early/late to accept receipts. The user

should also be able to define the tolerance for the quantity that can

be received.

Querying

User frequently queries on the following attributes in different screens,

40

(i) For Purchase Orders it's done on Order Number, Supplier, Order

Date._

(ii) For Purchase Order lines it is done on Item name and
Requestor

Receipts

1. The user at ABC TC should be able to enter receipts against

approved Purchase Orders, edit and view them.

2. The user should be able to enter multiple receipts against a single

Purchase Order as well as enter a single receipt against multiple

Purchase Orders.

3. The user should be able to find expected receipts (the Purchase

Orders yet to be received) based on the following criteria, Purchase

Order Number, Requisition Number, supplier name, warehouse and

item.

4. The user should be able to enter the following for the receipts viz.,

the receipt number, shipped date, packing slip, waybill or airbill

number, freight carrier and container information.

5. The user should be able to receive the items either fully or partially.

6. The receipt should have the following information about the item for

each transaction viz., the quantity received, the unit in which it was

received, the item, the item description, the warehouse and the

requester.

7. On receiving the on-hand quantity at the warehouse level should be

maintained.

Querying

User frequently queries on the following attributes in different screens,

(i) 	For Receipts it's done on Receipt Number, Supplier, Receiving

Date.

41

Report

1. User at ABC TC should be able to take a report of Purchase Orders

2. These reports should be launched either from the menu as well as a

separate concurrent program

3. The user should be able to obtain a report based on the following

values the PO number, Item , Creation Date (From/To) and supplier.

Invoices

1. The user at KLS TC should be able to create, edit, cancel and view

Invoices that are created against PO/Receipt or unmatched Invoices.

2. The user should be able to create an Invoice against an Approved

3. The Invoice should contain foil. Information, Supplier Name, Site

Name, Payment Terms, Payment Type, Pay group details, paid or

unpaid, Approved or unapproved.

4. The user should be able to match multiple PO's against the same

Invoice making sure that the Supplier Information is the same.

5. The Invoice should contain info. Regarding to which PO the Invoice

was matched to.

6. The Invoice numbering should be automatic or manual. The Invoice

number should be unique for a supplier.

7. Invoices can also be created. for a negative amount.

Payments

1. Only the approved Invoices should be allowed to be paid.

2. Invoices can't be overpaid.

3. Payment documents need to be routed thru' a bank & must have a

payment document.

42

4. Invoices can be paid thru' a batch or can be paid alone. If there are
negative payments the amount should be adjusted.

Report

1. User should be able to take a report of all the Invoices

2. User should be able to take a report of all the Payments made

against Invoices

3. User should at any instant find out the outstanding balances/credit

against a Supplier.

Generic

1. Through out the application audit trail is to be maintained. There

should be four fields that take care of this. Created by, Creation

date, Last Updated by, Last Update date.

2. Where ever required give error messages like invalid item, item not

in price list etc.

3. For all the date fields, a user should be able to see a fist of value

that gives all valid dates.

4. In all screen, for doing query provide find option that allows user to

enter multiple select criterion for executing query

After doing Analysis I arrived on following proposals

The project should consist of 2 major parts ;
• Purchasing

• Payables

43

CHAPTER -- 4

DESIGN

4.1 	System Modeling

It is here the Data Flow Diagram(DFD) and the Entity
Relationship 	Diagram(ER Diagram) are presented. The reason for
doing this designs are - After System Analysis an English narrative of
the system is often too vague. The - system specifications are often
redundant. To find information about one part of the system, one has
to search through the entire document. Because of these drawbacks,
structured tools such as Data Flow Diagram are used in designing a
System.

45

.0

0
U
U
ai

m U

Ei

46

47

z

r~

T,

A

04

0

w
a

48

C7

T

W,

WN

1
L J

m

tR
	

U U

49

7.—;t LIj

(Acc. 10 	*

50

W

y

U C

L)
WWx

H Q

Ur

Cl) C.)

H
a

o f

0

d) . Q

Llw

H

° z oW W Q
o

L)

w w
>v O ~

U

C~+
Cil

O
Q

CTS

I

4.5 Justification Of Development Methodology

The methodology used for the development of this project is Bottom-

Up Approach. In this approach, the design starts from the bottom, with an

implementation strategy laid out first, and the capabilities of the system

depend heavily on this strategy.

The Requirement Specification was given first and then based on the

Requirements , I decided the number of Forms needed and the fields to be
used in the form. For this specification the Bottom-Up approach would be the

most suitable.

51

4.6 	Data Base Design

The results of the extensive system study conducted were

used as the input for the database design. A well-designed database is

essential for the performance of the system. Several tables are

manipulated for varying purpose. The table, also known as relation,

gives the information of attributes regarding the specific entities.

Normalizing of tables is done to the extent possible. While normalizing

tables, care is taken to see that the number of tables is limited to an

optimum level so that table maintenance is convenient and efficient.

52

DATA BASE TABLES

PO REQUISITION HEADERS

PO REQUISITION HEADER ID 	NUMBER(38)
REQUISITION_NUMBER VARCHAR2(20) NOT NULL
PREPARER_ID NUMBER(38)
REQUISITION_DESCRIPTION VARCHAR2(250)
STATUS VARCHAR2(25) NOT 	NULL,
STATUS_DATE DATE
REQUISITION_DATE DATE NOT NULL
ATTRIBUTE_ CATEGORY VARCHAR2(30)
ATTRIBUTEl-15 VARCHAR2(150)
CREATED_BY NUMBER(15)
CREATION_DATE DATE
LAST UPDATE_BY NUMBER(15) NOT NULL
LAST_UPDATE_DATE DATE NOT NULL
LAST UPDATE__LOGIN NUMBER(15)

PO REQUISITION LINES

PO_REQUISITION_HEADER_ID NUMBER(38)
PO REQUISITION LINE ID NUMBER(38) NOT NULL
LINE_NUMBER NUMBER(20) NOT NULL
ITEM_ID NUMBER(38) NOT NULL
UOM VARCHAR2(10)
UNIT_PRICE NUMBER(25,2)
SUPPLIER_ID NUMBER(38),
REQUESTOR_ID NUMBER(38) NOT NULL
DATE_REQUIRED DATE
QUANTITY NUMBER(22) NOT NULL
PO_QUANTITY_ORDERED NUMBER(22)
REQ_QUANTITY_CANCELLED NUMBER(22)
AMOUNT NUMBER(25,2)
STATUS VARCHAR2(25)
DESTINATION TYPE VARCHAR2(10)
WAREHOUSE_ID NUMBER(38)
ATTRIBUTE_CATEGORY VARCHAR2(30)
ATTRIBUTEI-15 VARCHAR2(150)
CREATED__BY NUMBER(15)
CREATION_DATE DATE
LAST_UPDATE_BY NUMBER(15) NOT NULL
LAST_ UPDATE_ DATE DATE NOT NULL
LAST_UPDATE_LOGIN NUMBER(15)

53

PO HEADERS
PO HEADER ID NUMBER(38) NOT NULL
PO_DATE DATE NOT NULL
PO_NUMBER VARCHAR2(20) NOT 	NULL

PO_REQUISITION_HEADER_ID NUMBER(38)

BILL_TO_LOCATION_ID NUMBER(38) NOT NULL
BUYER_ID NUMBER(38) NOT NULL
SUPPLIER_ID NUMBER(38) NOT NULL
PAYMENT_TERMS VARCHAR2(250)
FRIEGHT_TERMS VARCHAR2(250)
FRIEGHT_CARRIER VARCHAR2(100)
STATUS VARCHAR2(25) NOT NULL
STATUS_DATE DATE
ATTRIBUTE_CATEGORY VARCHAR2(30)
ATTRIBUTEI-15 VARCHAR2(150)
CREATED_BY NUMBER(15)
CREATION_DATE DATE
LAST_UPDATE_BY NUMBER(15) NOT NULL
LAST_ UP. DATE_ DATE DATE NOT NULL

LAST_UPDATE_LOGIN NUMBER(15)

PO LINES

PO LINE ID NUMBER(38) NOT NULL
LINE_NUMBER NUMBER(20) NOT NULL
PO_HEADER_ID NUMBER(38) NOT NULL
PO_REQUISITION_HEADER_ID NUMBER(38)
PO_REQUISITION_LINE_ID NUMBER(38)
ITEM_ID NUMBER(38) NOT NULL
UOM VARCHAR2(10)
UNIT_PRICE NUMBER(25,2)
AMOUNT NUMBER(25,2)
REQUESTOR_ID NUMBER(38) NOT NULL
SHIP_ TO_LOCATION__ID NUMBER(38) NOT NULL
QUANTITY_ ORDERED NUMBER(22)
QUANTITY_ RECEIVED NUMBER(22)
QUANTITY_ CANCELLED NUMBER(22)
STATUS VARCHAR2(25)
DATE. PROMISED DATE
DATE_REQUIRED DATE
TOLERANCE_QTY_ABOVE NUMBER(6)
TOLERANCE_QTY_BELOW NUMBER(6)
TOLERANCE_DAYS_ABOVE NUMBER(3) _
TOLERANCE_DAYS_BELOW NUMBER(3)
ATTRIBUTE_CATEGORY VARCHAR2(30)
ATTRIBUTEI-15 VARCHAR2(150)
CREATED_BY NUMBER(15)
CREATION_DATE DATE,
LAST_UPDATE_BY NUMBER(15) NOT NULL

54

LAST_ UPDATE_ DATE 	 DATE 	 NOT NULL
LAST_U PDATE_LOGIN 	 NUMBER(15)

PO RECEIPT HEADERS

PO RECEIPT HEADER ID NUMBER(38) NOT NULL
RECEIPT_NUMBER NUMBER(20) NOT NULL
RECEIPT_DATE DATE NOT NULL
SUPPLIER_ID NUMBER(38) NOT NULL
SHIPPED_DATE DATE
FRIEGHT_CARRIER VARCHAR2(100)
PACKING_SLIP VARCHAR2(70)
WAYBILL VARCHAR2(70)
CONTAINER_INFORMATION VARCHAR2(100)
ATTRIBUTE_CATEGORY VARCHAR2(30)
ATTRIBUTEI-15 VARCHAR2(150)
CREATED_BY NUMBER(15)
CREATION_DATE DATE
LAST_UPDATE_BY NUMBER(15) NOT NULL
LAST_ UPDATE_ DATE DATE NOT NULL
LAST_U PDATE_LOGIN NUMBER(15)

PO RECEIPTI LINES

PO RECEIPT LINE ID NUMBER(38) NOT NULL
LINE_NUMBER NUMBER(20) NOT NULL
PO__RECEIPT_HEADER_ID NUMBER(38) NOT NULL
PO_HEADER_ID NUMBER(38) NOT NULL
PO_LINE_ID NUMBER(38) NOT NULL
ITEM_ID NUMBER(38) NOT NULL
UOM VARCHAR2(10)
REQUESTOR_ID NUMB.ER(38) NOT NULL
SHIP_TO_LOCATION_ID NUMBER(38) NOT NULL

QUANTITY_RECEIVED NUMBER(22)
QUANTITY_ACCEPTED NUMBER(22)
QUANTITY REJECTED NUMBER(22)
ATTRIBUTE_CATEGORY VARCHAR2(30)
ATTRIBUTEI-15 VARCHAR2(150)
CREATED_BY NUMBER(15)
CREATION_DATE DATE
LAST_UPDATE_BY NUMBER(15) NOT NULL
LAST_ UPDATE_ DATE DATE NOT NULL
LAST_UPDATE_LOGIN NUMBER(15)

ITEM LIST

ITEM_ DESCRIPTION 	 VARCHAR2(250)
ITEM TYPE 	 VARCHAR2(10)
UNIT_PRICE 	 NUMBER(10,2)
UOM 	 VARCHAR2(10)

55

ATTRIBUTE_CATEGORY VARCHAR2(30)
ATTRIBUTE1 - 15 VARCHAR2(150)
CREATED_BY NUMBER(15)
CREATION_DATE DATE
LAST_UPDATE_BY NUMBER(15) 	 NOT NULL
LAST_UPDATE_DATE DATE 	 NOT NULL
LAST_UPDATE_LOGIN NUMBER(15)

SUPPLIER

SUPPLIER ID NUMBER(6) 	 NOT NULL
SUPPLIER_NAME VARCHAR2(30)
SUPPLIER_SITE VARCHAR2(30)
CONTACT VARCHAR2(30)
PHONE VARCHAR2(30)
CREATED_BY NUMBER(15)
CREATION_DATE DATE
LAST UPDATE_BY NUMBER(15) 	 NOT NULL
LAST_UPDATE_DATE DATE 	 NOT NULL
LAST_UPDATE_LOGIN NUMBER(15)

PO SUPPLIER ITEM

SUPPLIER ID NUMBER(6) NOT NULL
ITEM ID NUMBER(38) NOT NULL
UNIT PRICE NUMBER(10,2)
SUPPLIER_ITEM_NAME VARCHAR2(20)
SUPPLIER_ITEM_CODE VARCHAR2(10)
SUPP LIER_ITEM_DESCRIPTION VARCHAR2(50)
CREATED_BY NUMBER(15)
CREATION_DATE DATE
LAST_UPDATE_BY NUMBER(15) NOT NULL
LAST_UPDATE_DATE DATE NOT NULL
LAST_UPDATE_LOGIN NUMBER(15)

LOCATION LIST

LOCATION ID NUMBER(6) NOT NULL
LOCATION_NAME VARCHAR2(20) NOT NULL.
LOCATION TYPE VARCHAR2(20)
CREATED_BY NUMBER(15)
CREATION_DATE DATE
LAST_UPDATE__BY NUMBER(15) NOT NULL
LAST_UPDATE_DATE DATE NOT NULL
LAST_UPDATE_LOGIN NUMBER(15)

EMPLOYEE

EMP ID
	

NUMBER(6)
	

NOT 	NULL

ENAME 	 VARCHAR2(30)
DESIGNATION 	 VARCHAR2(20)

56

ATTRIBUTE_CATEGORY VARCHAR2(30)
ATTRIBUTE1 - 15 VARCHAR2(150)
CREATED_BY NUMBER(15)
CREATION_DATE DATE
LAST_UPDATE_BY NUMBER(15) 	 NOT NULL
LAST_U PDATE_DATE DATE 	 NOT NULL
LAST_UPDATE_LOGIN NUMBER(15)

PO EMPLOYEE ROLE

EMP ID NUMBER(6) NOT 	NULL
ROLE NAME VARCHAR2(20) NOT NULL
CREATED_BY NUMBER(15)
CREATION_DATE DATE
LAST_UPDATE_BY NUMBER(15) NOT NULL
LAST_U PDATE_DATE DATE NOT NULL
LAST_UPDATE_LOGIN NUMBER(15)

PO INVOICE HEADERS

INVOICE ID NUMBER(38)
INVOICE_NUMBER VARCHAR2(20)
INVOICE_DATE DATE
SUPPLIER_ID NUMBER(38)
INVOICE_AMOUNT NUMBER(25,2)
TERMS VARCHAR2(250)
STATUS VARCHAR2(20)
BANK _ID NUMBER(38)
ATTRIBUTE CATEGORY VARCHAR2(30)
ATTRIBUTEl-15 VARCHAR2(150)
CREATED_BY NUMBER(15)
CREATION_DATE DATE
LAST_UPDATE_BY NUMBER(15)
LAST_ UPDATE_ DATE DATE
LAST_UPDATE_LOGIN NUMBER(15)

57

PO INVOICE LINES

INVOICE LINE ID NUMBER(38)
LINE_NUMBER NUMBER(20)
INVOICE_HEADER_ID NUMBER(38)
SPILT_UP_AMOUNT NUMBER(25,2)
PO_HEADER_ID NUMBER(38)
PO_LINE_ID NUMBER(38)
QUANTITY_ INVOICED NUMBER(22)
CREATED_BY NUMBER(15)
CREATION_DATE DATE
LAST UPDATE_BY NUMBER(15)
LAST UPDATE__DATE • DATE
LAST_UPDATE_LOGIN NUMBER(15)

PO BANK HEADERS

BANK ID NUMBER (38)
BANK_NAME VARCHAR2(30)
ADDRESS VARCHAR2(30)
CREATED_BY NUMBER(15)
CREATION_DATE DATE
LAST__UPDATE-BY NUMBER(15)
LAST_UPDATE_DATE DATE
LAST_UPDATE_LOGIN NUMBER(15)

PO BANK LINES

BANK_ID NUMBER(38)
BANK LINE ID NUMBER(38)
LINE_NUMBER NUMBER(20)
PAYMENT_MODE VARCHAR2(20)
PAYMENT_ DOCUMENT VARCHAR2(30)
MIN_CHEQUE_NUMBER NUMBER(10)
MAX_CHEQUE_NUMBER NUMBER(10)
CURRENT CHEQUE_NUMBER NUMBER(10)
CREATED_BY NUMBER(15)
CREATION_DATE DATE
LAST_UPDATE_BY NUMBER(15)
LAST UPDATE_DATE DATE
LAST_UPDATE_LOGIN NUMBER(15)

PO PAYG RO U PS

PAYGROUP ID NUMBER(38)
PAYGROUP_NAM E VARCHAR2(20)
DESCRITION VARCHAR2(250)
CREATED_BY NUMBER(15)
CREATION_DATE DATE
LAST UPDATE_BY NUMBER(15)

58

LAST_UPDATE_DATE DATE
LAST_UPDATE_LOGIN 	NUMBER(15)

VIEWS
Views are necessary to aggregate information from various tables. All

Forms are based on Views. Since, I have ID's in most tables which are like

foreign keys to other tables so, to retrieve the complete information we

need Views.

So for most of the above mentioned tables Views were created :

PO REQUISITION HEADER V

SELECT

REQUISITION_ID
REQUISITION NUMBER
E. EMP_ID 	EMP_ID
E.ENAME 	ENAME
REQUISITION_DESCRIPTION
STATUS
REQUI SITION_DATE
PRH.ATTRIBUTE_CATEGORY
PRH.ATTRIBUTEI' - 15
PRH .CREATED_BY
PRH.CREATION_DATE
PRH . LAST_U PDATE_BY
PRH. LAST_U PDATE_DATE
PRH .LAST UPDATE LOGIN

FROM

PO_REQUISITION_HEADER PRH,
EMPLOYEE E

WHERE
PRH.EMP ID = E.EMP ID

ATTRIBUTE_ CATEGORY
ATTRIBUTE1 - 15
CREATED_BY
CREATION_DATE
LAST_UPDATE_BY
LAST_ UPDATE_ DATE
LAST_U PDATE_LOGI N

59

PO REQUISITION LINE V

SELECT
PRH.REQUISITION_ID
SI.ITEM_ID
SI.ITEM_DESCRIPTION
LINE_NUMBER
S.SUPPLIER_ID
S.SUPPLIER_NAME
S.SUPPLIER SITE
S.CONTACT

 PHONE
E.EMP_ID
E.ENAME

REQUISITION_ID
ITEM-ID
ITEM_DESCRIPTION

SUPPLIER_ID
SUPPLIER_NAME
SUPPLIER_SITE
CONTACT
PHONE
EMP_ID
ENAME

DATE REQUIRED
QUANTITY

-

DESTINATION_TYPE
LL. LOCATION_ID(WAREHOUSE)
LOCATION_NAME
SI.UNIT PRICE
	

UNIT_PRICE
IRES.ATTRIBUTE_CATEGORY ATTRIBUTE_CATEGORY
IRES.ATTRIBUTE1 - 15

	
ATTRIBUTE1 - 15

1RES.CREATED _ BY
	

CREATED_BY
IRES.CREATION_DATE

	
CREATION_DATE

IRES. LAST_UPDATE_BY
	

LAST_U P DATE_BY
IRES. LAST_UPDATE_DATE

	
LAST_UPDATE_DATE

IRES .LAST UPDATE LOGIN
	

LAST_UPDATE_LOGIN

FROM
PO_REQUISITION_HEADER PRH,
PO_REQUISITION_LINES IRES,
SUPPLIER S,
PO_SUPPLIER_ITEM SI,
EMPLOYEE E,
ITEM_LIST IL,
LOCATION LIST LL

WHERE
PRH.REQUISITION_ID = IRES. REQUISITION_ID AND
IRES.ITEM_ID = IL.ITEM_ID AND
IRES.EMP_ID = E.EMP_ID AND
IRES.SUPPLIER_ID = S.SUPPLIER_ID AND
IRES.SUPPLIER ID = SI.SUPPLIER_ID AND
IRES.ITEM_ID = SI.ITEM_ID AND
IRES.LOCATION ID = LL.LOCATION ID

60

P0 HEADER V

SELECT

PO_ID
PO_DATE
PO_NUMBER
LLI.SHIP_TO_LOCATION_ID
LL1.LOCATION_NAME
LL2. BILL_TO_LOCATION_ID
LL2. LOCATION_NAM E
E.EMP_ID
E.ENAME
PAYMENT_TERMS
FRIEGHT_TERMS
FRIEGHT_CARRIER .
PH .ATTRI BUTE_CATEGO RY
PH.ATTRIBUTE1 - 15
PH.CREATED_BY
PH.CREATION_DATE
PH.LAST_UPDATE_BY
PH. LAST UPDATE_DATE
PH. LAST_UPDATE_LOGIN

SHIP-TO-LOCATION-ID
SHIP_TO_ LOCATION_NAME
BILL_TO_LOCATION_ID
BILL TO LOCATION NAME

ATTRIBUTE_ CATEGORY
ATTRIBUTE1 --15
CREATED_BY
CREATION_DATE
LAST_UPDATE_BY
LAST_U PDATE__DATE
LAST_UPDATE_LOGIN

FROM
PO_HEADERS PH,
EMPLOYEE E,
LOCATION_LIST LL1,
LOCATION_LIST LL2

WHERE
Pi-L MP ID = E,EMP ID A ND
PH.SHIP_TO_LOCATION_ID LLI.LOCATION_ID AND
PH. BILL-TO-LOCATION-ID = LL2.LOCATION ID

PO LINE V

SELECT
PH. PO_ID
IL. ITEM_ID
IL. ITEM_DESCRIPTION
IL.ITEMTTYPE
IL.UOM
E.EMP_ID
E.ENAME

ITEM_I D
ITEM_ DESCRIPTION
ITEM_TYPE
UOM
EMP_ID
ENAME

61

QUANTITY ORDERED
QUANTITY_RECEIVED
DATE_PROMISED
DATE_REQUIRED
TOLERANCE_QTY_ABOVE
TOLERANCE_QTY_BELOW
TOLERANCE_DAYS__ABOVE
TOLERANCE_DAYS_BELOW
PIE. ATTRI B UTE_CATEG O RY
PIE.ATTRIBUTE1 - 15
PIE.CREATED_BY
PIE.CREATION_DATE
PIE. LAST_UPDATE_BY
PIE. LAST UPDATE_DATE
PIE. LAST_UPDATE LOGIN

ATTRIBUTE CATEGORY
ATTRIBUTE1 - 15
CREATED_BY
CREATION_DATE
LAST_U P DATE_BY
LAST_U PDATE_DATE
LAST_UPDATE_LOGIN

FROM
PO_LINES PIE,
PO_HEADERS PH,
EMPLOYEE E,
ITEM LIST 	IL

WHERE
PH.PO_ID - PIE.PO_ID AND
PH.EMP_ID = E. EMP_ID AND
PH.ITEM ID = IL.ITEM ID

PO RECEIPT HEADER V

SELECT
PRH.ROWID ROW_ID,

PO_ RECEIPT_ HEADER_ ID,
RECEIPT_NUMBER,
RECEIPT DATE,
SHIPPED DATE,
S.SUPPLIER_ID,
S.SUPPLIER_NAME,
FRIEGHT_CARRIER,
PACKING-SLIP,
WAYBILL,
CONTAINER_INFORMATION,
ATTRIBUTE_CATEGORY,
ATTRIBUTE1 ATTRIBUTE1,
ATTRIBUTE2 ATTRIBUTE2,
ATTRIBUTE3 ATTRIBUTE3,
ATTRIBUTE4 ATTRIBUTE4,
ATTRIBUTE5 ATTRIBUTE5,

62

ATTRIBUTE6 ATTRIBUTE6,
ATTRIBUTE7 ATTRIBUTE7,
ATTRIBUTE8 ATTRIBUTE8,
ATTRIBUTES ATTRIBUTE9,
ATTRIBUTE10 ATTRIBUTE10,
ATTRIBUTE11 ATTRIBUTE11,
ATTRIBUTE12 ATTRIBUTE12,
ATTRIBUTE13 ATTRIBUTE13,
ATTRIBUTE14 ATTRIBUTE14,
ATTRIBUTE15 ATTRIBUTE15,
PRH.CREATED_BY CREATED_BY,
PRH.CREATION_DATE CREATION_DATE,
PRH.LAST_UPDATE_BY LAST_UPDATE_BY,
PRH. LAST_U PDATE_DATE LAST_U PDATE_DATE,
PRH.LAST_UPDATE_LOGIN LAST_UPDATE_LOGIN

:•u
PO_RECEIPT_H EADERS PRH,
SUPPLIER 	S

WHERE
PRH.SUPPLIER ID = S.SUPPLIER ID

PO RECEIPT LINE V

SELECT
PO_ RECEIPT_LINE_ID PO_ RECEIPT_LINE_ID,
PRL.ROWID ROW_ID,
I L. ITE M_I D ITEM-ID,
PRH.PO_RECEIPT_HEADER_ID RECEIPT_HEADER_ID,
PH. PO_HEADER_ID PO_HEADER_ID,
PH.PO_NUMBER PO_NUMBER,
PL. PO_LIN E_ID. PO_LIN E_ID,
PL.LINE_NUMBER PO_ LINE_ NUMBER,
IL.ITEM_DESCRIPTION ITEM_DESCRIPTION,

IL.UOM 	 UOM,
E.EMP_ID 	 REQUESTOR_ID,
E.ENAME 	 REQUESTOR_NAME,

LL. LOCATION_ID 	 WAREHOUSE_ID,
LL.LOCATION_NAME 	 WAREHOUSE,

PRL.QUANTITY_RECEIVED 	 QUANTITY_RECEIVED,
PRL.QUANTITY_ACCEPTED 	QUANTITY_ACCEPTED,
PRL.QUANTITY_REJECTED 	 QUANTITY_REJECTED,
PRL.ATTRIBUTE_CATEGORY 	ATTRIBUTE_ CATEGORY,
PRL.ATTRIBUTE1 	 ATTRIBUTEI,
PRL.ATTRIBUTE2 	 ATTRIBUTE2,

63

PRL.ATTRIBUTE3
PRL.ATTRIBUTE4
PRL.ATTRIBUTE5
PRL.ATTRIBUTE6
PRL.ATTRIBUTE7
PRL.ATTRIBUTE8
PRL.ATTRIBUTE9
PRL.ATTRIBUTE10
PRL.ATTRIBUTEI1
PRL.ATTRIBUTE12
PRL.ATTRIBUTE13
PRL.ATTRIBUTE14
PRL.ATTRIBUTE15
PRL. CREATE D_BY
PRL.CREATION_DATE
PRL. LAST_U PDATE_BY
PRL. LAST_U P DATE_DATE
PRL. LAST_U PDATE_LOGIN
PRL.PO_REQUISITION_HEADER_ID
PRL. PO_REQUISITION_LINE_ID

FROM

ATTRI B UTE3,
ATTRIBUTE4,
ATTRIBUTE 5,'
ATTRIBUTE6,
ATTRIBUTE7,
ATTRIBUTE8,
ATTRIBUTE9,
ATTRIBUTE 10,
ATTRIBUTE 11,
ATTRIBUTE 12,
ATTRIBUTE 13,
ATTRIBUTE14,
ATTRIBUTE15,
CREATED_BY,
CREATION_DATE,
LAST_U P DATE_BY,
LAST_U PDATE_DATE,
LAST_U PDATE_LOGIN,
PO_REQUISITION_H EADER_ID,
PO_REQUISITION_LIN E_ID

PO_RECEIPT_HEADERS PRH,
PO_RECEIPT_LINES PRL,
PO_HEADERS PH,
PO_LINES PL,
EMPLOYEE E,
ABC_ITEMS 	IL,
LOCATION_LIST LL

WHERE
PH.PO_HEADER_ID = PRL.PO HEADER_ID AND
PRH.PO_RECEIPT_HEADER_ID = PRL.PO_RECEIPT_HEADER_ID AND
PL.REQUESTOR_ID = E. EMP_ID AND
PL.ITEM_ID = IL.ITEM_ID AND
LL.LOCATION_ID = PL.SHIP_TO_LOCATION_ID AND
PRL.PO LINE ID = PL. PO-LINE-ID

INVOICE HEADER V

SELECT
IH.ROWID ROW_ID,
INVOICE_ID,
INVOICE-NUMBER,
INVOICE__DATE,
IH.SUPPLIER_ID
S.SUPPLIER_NAME
S.SUPPLIER_SITE
S.CONTACT

SUPPLIER_ID,
SUPPLIER_NAME,
SUPPLIER_SITE,
CONTACT,

64

S. PHONE
S.PAYGROUP_ID
PG PAYGROUP NAME
PG. DESCRIPTION
IH.INVOICE_AMOUNT
IH.BANK_ID
IH.TERMS
IH.STATUS
I H. ATT RI B UT E_CAT E G O RY
fl -I
IH.ATTRIBUTE2
IH.ATTRIBUTE3
IH.ATTRIBUTE4
IH.ATTRIBUTE5
IH.ATTRIBUTE6
IH.ATTRIBUTE7
IH.ATTRIBUTE8
IH.ATTRIBUTE9
IH.ATTRIBUTE10
IH .ATTRIBUTE1 1
IH.ATTRIBUTE12
IH.ATTRIBUTE13
IH.ATTRIBUTE14
IH.ATTRIBUTE15
IH.CREATED_BY
IH.CREATION_DATE
I H . LAST_U PDATE_BY
IH. LAST_UPDATE_DATE
IH. LAST_UPDATE_LOGIN

FROM

PHONE,
PAYGROUP_I D,
PAYGROUP NAME,
DESCRIPTION,
INVOICE_ AMOUNT,
BANK-ID,
TERMS,
STATUS,
ATTRIBUTE_ CATEGORY,
ATTRIBUTE1 ,
ATTRIBUTE2 ,
ATTRIBUTE3,
ATTRIBUTE4,
ATTRIBUTE5,
ATTRIBUTE6,
ATTRIBUTE7 ,
ATTRIBUTES,
ATTRIBUTES,
ATTRIBUTE10 ,
ATTRIBUTE11 ,
ATTRIBUTE12,
ATTRIBUTE13,
ATTRIBUTE14,
ATTRIBUTE15 ,
CREATED_BY,
CREATION_DATE,
LAST UPDATE_BY,
LAST UPDATE_DATE,.
LAST UPDATE_LOGIN

INVOICE_HEADERS IH,
SUPPLIER S,
PAYGROUP PG

WHERE
IH.SUPPLIER_ID = S.SUPPLIER_ID
AND S.PAYGROUP_ID = PG.PAYGROUP ID

INVOICE LINE V

SELECT
IL.ROWID ROW_ID,
INVOICE_HEADER_ID,
INVOICE_LINE_ID,
IL. LINE_NUMBER
IH.INVOICE_NUMBER
SPLIT_AMOUT,
PL. PO_HEADER_ID
PH. PO NUMBER

LINE,._,. NUMBER,
INVOICE_NUMBER,

PO_HEADER_ID,
PO_NUMBER,

65

PH. PO_,__DATE
PL. PO_LIN E_ID
PL.LINE-NUMBER
PL. ITE M_I D
PL.UOM
PL. UNIT _PRICE
PL.REQUESTOR_ID
E.ENAME
IL. QUANTITY_ INVOICED
IL.CREATED_BY
I L. CREATIO N_DATE
IL. LAST _UPDATE _BY
IL. LAST_U PDATE_DATE
IL. LAST_ UPDATE LOGIN

FROM
INVOICE_LINES IL,
INVOICE HEADERS IH,
PO_LINES PL,
PO_HEADERS PH,
EMPLOYEE E

k'iLI i

PO_DATE,_
PO_ LI N E_I D,
PO-LINE-NUMBER,
ITEM-ID,
UOM,
UNIT_PRICE,
REQUESTOR_ID,
REQUESTOR_NAME,
QUANTITY_ INVOICED,
CREATED_BY,
CREATION_ DATE,
LAST_U P DATE_BY,
LAST_U P DATE_DATE,
LAST_UPDATE_LOGIN

IL.PO_HEADER_ID = PH.PO_HEADER_ID AND
IL. PO HEADER_ID = PL.PO_HEADER_ID AND
IL.PO_LINE_ID = PL.PO_LINE_ID AND
IL.INVOICE_HEADER ID = IH.INVOICE_ID AND
PL.REQUESTOR_ID = E.EMP_ID

66

CHAPTER -- 5

SOFTWARE IMPLEMENTATION AND TESTING

The Application Development Process includes :

• Forms Coding

• Setting Up the Directory Structure:

Create separate directory structures on the forms and

the database server.

Define environment variables so the applications

recognize our directories.

• Registering the Application

Defining the application's user-friendly name and

short name.

Providing the base directory path for the application.

• Registering the ORACLE Schema

Provide the application with a database password.

Integrate the schema with ORACLE Applications

APPS schema.

• Registering tables with ORACLE Applications

• Creating Users

• Creating Profiles

• Creating responsibilities

67

• Defining Flexfields

o Registering Tables

• Set Up Concurrent Managers

• Registering Forms

• Defining ,Functions

• Defining Menus

• Defining concurrent managers to run immediate

programs

68

Figure 5.1 	APPLICATION DEVELOPMENT PROCESS

69

I'll discuss each of these development steps in detail :

5.1 Development of Forms:

Forms were developed using Developer 2000.

Developer/2000 is an Oracle tool that helps to create forms. and reports

based on the tables that are created using Designer/2000. Developer 2K

can be used to :

• Design and customize forms and reports.

• Add various functionality, like radio buttons, combo boxes, and list of

values to make forms and reports more user friendly.

• Write triggers on objects to add functionality to them and capture

errors.

Tools Provided By Oracle Developer/2000

Oracle Developer/2000 provides four tools:

• Object Navigator:

In this tool we can view all the objects, add new objects

and name/rename the objects.

• Layout Editor:

This tool helps to design 	forms and reports and add

various objects to them like push buttons and list boxes.

• PL-/SQL Editor:

This is the tool that is used to write all the codes for the

triggers, procedures or functions.

70

IMPLEMENTATION DETAILS

The two modules are

1. Purchasing

2.Payables

Forms were built for each class of functionality. Coding is done only in

triggers .

Triggers are at 3 levels:

Form level trigger ->like pre-form , post-form, when-new-form-instance.

Block level trigger ->like pre-block,when-new-block-intance,when -new

record - instance ,when-block-change,when-validate-

record etc

Item level trigger-> like when-new-item-instance,when-validate-item,key-

next-item etc.

The listings of forms are:

1. Requisit.fmb -> 	Used to build Requisition interface, the snap shot is

shown in later section.

2. Reqsum.fmb -> 	Used to build Requisition Summary interface, the

user can search based on header details or line details.

3. PO.fmb 	-> 	Used to build PO interface the snap shot is shown

in later section .

4. Posum.fmb -> 	Used to build P0. Summary interface , the user can

search based on header details or line details.

5. Receipt.fmb -> 	Used to build Receipt interface the snap shot is

shown in later section .

6. Invoice.fmb -> 	Used to build Invoice interface , the snap shot is

shown in later section

7. Invoisum.fmb-> 	Used to build Invoice summary interface , the user

can search based on header details or line details.

8. Payment.fmb -> 	Used to build Batch payment interface , all the

unpayed invoices are listed there as soon as the user selects a paygroup

to pay.

9. Bank.fmb 	-> 	Used to build Bank entry interface , there are 3

options of payment document: check, wire and EFT.

SQL scripts were used to build various schema objects like tables, views

and indexes.

These SQL scripts were used to build the tables at the time of

installation, these are included in database design. All the scripts are ended

with commit as they are executing at the background. All the columns of the

tables are given in database design.

Reqheader.sql -> This script creates Requisition headers table.

Re.gline.sql 	-> This script creates Requisition lines table

Poheader.sql -> This script creates PO headers table

Poline.sql 	-> This script creates PO lines table

Recheader.sql -> This script creates Receipts headers table

Recline.sql 	-> This script creates Receipts lines table

Invheader.sgl -> This script creates Invoice headers table

Invline.sql 	-> This script creates Invoice lines table

Bank.sgl -> This script creates Banks table

Reqheader.sql -> This script creates Requisition headers table

Regline.sql -> This script creates Requisition lines table

Poheader.sql -> This script creates PO headers table

Poline.sql -> This script creates PO lines table

Recheader.sql -> This script creates Receipts headers table

Recline.sql -> This script creates Receipts lines table

Invheader.sql -> This script creates Invoice headers table
Invline.sql -> This script creates Invoice lines table

Bank.sgl -> This script Creates Banks table

I have based all the forms on views for security and performance reasons.

The Views created were based on all the tables

Regheader_v.sql 	-> 	This script creates Requisition headers view

Regline_v.sql -> This script creates Requisition lines view

Poheader_v.sgl -> This script creates PO headers view

Poline_v.sgl -> This script creates PO lines view

Recheader_v.sgl -> This script creates Receipts headers view

Recline_v.sgl -> This script creates Receipts lines view

Invheader_v.sgl -> This script creates Invoice headers view

Invline_v.sgl -> This script creates Invoice lines view

Bank_v.sgl -> This script creates Banks view

Regheader_v.sql -> This script creates Requisition headers view

Regline_v.sql -> This script creates Requisition lines view

Poheader_v.sgl -> This script creates PO headers view

Poline_v.sgl -> This script creates PO lines view

Recheader_v.sgl -> This script creates Receipts headers view

Recline_v.sgl -> This script creates Receipts lines view

Invheader=v.sgl -> This script creates Invoice headers view

Invline_v.sgl 	-> 	This script creates Invoice lines view

Bank_v.sgl 	-> 	This script Creates Banks view

All these scripts are included in database design.

I also created Indexes based on each table to optimize time utilization.

The report files were created for each module. The reports were run on

concurrent manager and the .out files were stored in /gldev/gl/rtout/findvll5

directory.

The log of all the process was stored in

/gldev/gl/rtlog/findv115 directory. As .log file.

There is also a provision to make Trace ON, that will enable a trace file

(.trc) to be build on the database. All the operation performed by the

database server are recorded in the file. It helps in debugging. Each table

has five `WHO' columns namely

Created__by

Creation date

Last_updated_by

Last_updation_date

Last_update_login

These five columns are automatically filled by Oracle Applications whenever

any record in the database is modified or added. It is useful for security

reasons.

• Menu Editor:
This tool helps create a customized menu that can be attached

to form or report.

The back end was ORACLE 8i.

The Oracle8 Database Server

Benefits of the Oracle8 Database Server :

Oracle Applications are Fully Scalable on all Oracle Servers

• Uses state-of-the-art Oracle Parallel Server technology

• Parallelism at other layers of the architecture includes query
processing, batch processing, transaction processing, and application

module processing

Uses Multiple Nodes to Achieve Higher Performance

• Multiple database instances and their embedded applications servers

are distributed across multiple nodes of a cluster or a massively

parallel (MPP) system

• Having multiple nodes also provides better reliability

• Using only the Oracle Parallel Server allows for optimization and use of

all features rather than using the lowest common denominator

The Oracle8/ database provides following extended features:

• Multilingual operation

• High availability

o CBO
o Partitioned Tables
o Materialized Views
o Index Organized Tables

71

o Resource Manager

• Extreme scalability

• High performance

Oracle Applications Release 11i utilizes Cost-based optimization (CBO). Cost

based optimization dynamically determines the most efficient access paths

and join methods for query execution by taking into account statistics such

as the size of each table and the selectivity of each query condition.
A transition to CBO improves performance and enables other database

features that depend on cost-based optimization such as Partitioned Tables,

Materialized Views, Index-Organized tables, and Resource Manager.

Oracle 8i Features

	

Advancod 	 trwolocr
U uhifl 	 RIGhts

Tcmp"ary 	 t 	 Materialized
Tables 	r - 	;' 00 	Views

a ~
~ O

	

organized 	 Partitioned
Table 	 Tablas

Figure 5.3 Features of Oracle8i Used By Oracle Applications

The Oracle8i features utilized by Oracle Applications 111 include:

Oracle Advanced Queuing

Oracle Advanced Queuing (Oracle AQ) integrates a message queuing system

with the Oracle database. This allows storing messages into queues for

deferred retrieval and processing by the Oracle 8i Server.

Temporary Tables

72

A - temporary table is a table with session-specific or transaction-specific data.

It is empty when the session or transaction begins, and the data are

discarded at the end of the session or transaction. Temporary tables are

useful for saving intermediate results that can be merged back into another

table. In prior Oracle Applications releases, a new table was created to store

intermediate data and the table was dropped when the transaction

completed. With temporary tables, creating and dropping of tables is no

longer necessary, thus improving performance of the process. As Temporary

tables use temporary segments, access performance is increased

significantly.

Index-organized table

An index-organized table differs from an ordinary table in that the data for

the table is held in its associated index. Changes to the table data, such as

adding new rows, updating rows, or deleting rows, result in updating only

the index. Because data rows are stored in the index, index-organized tables

provide faster key-based access to table data for queries that involve exact

matches or range searches or both. The storage requirements are reduced

because key columns are not duplicated as they are in an ordinary table and

its index.

Partitioned tables

Partitioned tables allow data to be broken down into smaller, more

manageable pieces called partitions, or even subpartitions. Partitioned tables

are customizable to the specific needs of individual customers. Each partition

can be managed individually, and can be used independently of the other

partitions, thus providing a structure that can be better tuned for availability

and performance.

Materialized Views

73

Materialized views are schema objects that can be used to summarize,

precompute, replicate, and distribute data. They are suitable for various

computing environments such as data warehousing, decision support, and

distributed or mobile computing. For Oracle Applications, materialized 'views

are created and owned by the APPS schema. The associated objects are

stored in the respective product tablespace. Cost-based optimization makes
use of materialized views to improve query performance by automatically

recognizing when a materialized view can and should be used to satisfy a

SQL request. The optimizer transparently rewrites the request to use the

materialized view. Queries are then directed to the materialized view and not

to the underlying detail tables or views. In distributed environments,

materialized views are used to replicate data at distributed sites and

synchronize updates done at several sites with conflict resolution methods.
The replicated materialized views provide local access to. data which

otherwise would have to be accessed from remote sites.

Invoker Rights
The Invoker Rights model, introduced in Release 11i, allows PL/SQL

packages to be executed with the privileges of the calling user. Prior releases

used a definer rights model wherein PL/SQL packages execute with the

privileges of the creating user (defining schema). An invoker-rights package

executes with all of the invoker's privileges. Roles are enabled unless the

invoker-rights procedure was called directly or indirectly by a definer-rights
procedure. Invoker Rights eliminates the need to duplicate packages in other

APPS schemas (for example, APPS_MRC). Therefore, maintenance of Multiple

Reporting Currencies (MRC) is much quicker, less complicated, and less

expensive.

74

5.2 	Application Directory Structure

The directory tree to store application files looks like this

$A.PPL TOP
Oracle Applications top directory

$FND_TOP $AU_TOP $[customj_TOP $GL_TOP $INV_TOP

iin

graphs 	lib 	reports 	forms 	mesg 	out

[lang] 	 [land] 	[lang]

Figure 5.2 ORACLE Application Physical Structure

TOP Directories

$APPL_TOP, $FND_TOP, and so on are environment variables that
point to the application base path (use of environment variables
depends on the operating system)

BIN

Contains executable code of concurrent programs written in a

programming language such as C, Pro*C, Fortran, or an operating

system script

75

LIB

Contains compiled object code of concurrent programs

SQL

Contains concurrent programs written in SQL*Plus and PL/SQL scripts

RESOURCE

Contains PL/SQL libraries used with ORACLE Forms, which must be
copied to $AU_TOP for forms generation

GRAPHS

Contains ORACLE Graphics files

FORMS/[LANGUAGE]

The FORMS directory contains .fmx files (and .fmb files) under
language subdirectories.

REPORTS

Contains concurrent programs written with ORACLE Reports

May contain language subdirectories

PLSQL

Contains PL/SQL libraries used with ORACLE Reports

LOG

Contains log files from concurrent programs

OUT

Contains output files from concurrent programs

MESG

Holds application message files for Message Dictionary

Messages files are generated by the Generate Messages program and
reside in a file designated by language names (such as US.msb)

r

5.3 Reg-istering the Application :

Under System Administrator or Application Developer responsibility:

There's a function called Application Register

w ~̀ ~ r

t

k

T

 &
~' S

CA
't ` ~t̀,a

~
 W

,

i

•f

' 	e
'
~
Y"

7
	e f ~

.
'

l*'J
s

.~

IO

}

A

~

, 	

"

.

F
t
~
w 	

#

`•.y}~
~
	K 	'

. 	
~

-
Y

z

t esc

!

licio 	 Name _asepath h
Purchasing Application 	IKISI 	;KLS TOP KLS 	KLS 	Application develop. by Iokesh

{$~

TN ~

(q[

33

Figure 5.3 ORACLE Application Physical Structure

Application Name

This user-friendly name appears in lists seen by application users

Short Name

ORACLE Applications use the application short name when identifying
forms , menus, concurrent programs and other application
components

Base path

This is the name of an environment variable which translates into the
top directory of application's `directory tree (on the applications
server)

77

The base path variable corresponds to the PRODUCT TOP directory

5.4 Creating Users for the Application :

This is a function under System Administrator responsibility

Figure 5.4 Creating users for ORACLE Application

78

5.5 Creating ORACLE Users :

This is a function under System Administrator responsibility

Figure 5.5 Creating ORACLE Database users

These are my database connections.
Install Group is used for upgrading multiple product installations .

79

5.6 Defining the Data Group :

Purchasing Application 	PURCHASING APPLiC

5

4W

-

5 t7
3e 	 4 	§ ' x 	~3~.,~

.. 	.s~ 	f 	~~'o~._ 	2. 	- 	~~,~. .¢. 	~Sk.~~Y ~~ f,~ 	3 	~k'i'~"~ $.✓~is'xc~~x '~°~~'3.w k ~~~akn_ve~3C.l,a~~'.u"yL'ti .r.

Figure 5.6 ORACLE Applications Data Group

We Typically make a copy of the Standard data group and add custom
applications to the copy.

Specifying ORACLE User Names

Here, we specify which ORACLE user (schema) contains our application

tables (the ORACLE User Name for the Application)

80

5.7 Function Security :

Function Security extends the definitions of these existing terms.

Menu

A menu is a hierarchical arrangement .of functions and menus of functions

Menu Entry

A menu entry is a menu component that identifies a function or a menu of

Functions

In some cases, both a function and a menu of functions correspond to the

same menu entry. For example, a form and its menu of subfunctions can

occupy the same menu entry

Responsibility

When application users sign on, they select a responsibility that determines,

among other things, the functions they may access.

Available functions are determined by the menu assigned to the current

responsibility

Form

It's an ORACLE Forms .fmx file

Forms are located in their application basepath/forms/US (or appropriate

language) directory

81

Function

A function is a part of an application's functionality, registered under a

unique name, that can be assigned to or excluded from a responsibility

There are two types of functions. form functions (forms), and non-form

Functions (subfunctions)

Form Function

A form (form function) invokes an ORACLE Forms form.

A form has the unique property that users may navigate to it from the

Navigate window.

Sub function

A subfunction (non-form function) is a securable subset of a form's

Functionality.

A developer can write logic to test the availability of a subfunction 'in the

current responsibility, then take some action based on whether the

subfunction is available

A subfunction is frequently associated with a button or an entry on the

Special menu. When such a subfunction is enabled, the corresponding

button or menu entry is enabled

A subfunction may correspond to a form procedure not associated with a

graphical element, and its availability may not be obvious to the end user

82

SETTING UP FUNCTION SECURITY

Developer registers each form. with rAOL

Developer registers the form again as a function

Developer may also register certain functionality of the
form (a subfunction) as another function

Developer or system administrator adds functions (both
Forms and subfunctions) to it menu, often as a hierarchical
structure of submenus

Developer or systeni administrator defines a responsibility
and attaches a menu, a data group, and a request group

System administrator may exclude certain functions from
the responsibilih•

Application user can access any forms on the menu, but
does not see su.bfunclions listed on the menu

Usxr cannot see or access forms or sub functions excluded
from the responsibility

Figure .5.7 ORACLE Applications Function Security

• Functions and Menus of Functions are required , because in forms

code I can test the availability of a particular function, then take

some action based on whether the function is available

83

• Each function is then registered

• For form functions, I registered parameters that pass values to a

function. For example, a form may support data entry only when a

function parameter is passed to it.

• Then I need to define a menu including all the functions available in an
application (that is, all the forms and their securable subfunctions)

• For some responsibilities ,I defined additional menus that restrict the

application's functionality by omitting certain forms and subfunctions

5.8 Creating the Responsibility

A responsibility is basically like a role defined with some security

permissions.

Figure 5.8 	Creating a Responsibility

84

In this Application , there are four Responsibilities

• Purchasing Manager

• Purchasing Clerk

• System Administrator

• Application Developer

5.9 Registering the form with ORACLE Application

i ..`ate 	 ~+ 	'' 2-

~ 1i #5t ~ x

	

T" 	• 	~Wmyna~i { 	 'uiT
~1 .~ 	- 	ih 	~3•- -(.,,, 	zk,~, 	7~.M%~ 	Y~Tdsf~ 	jµv" 	

q 	A.i 	i 	d„ 	. 	u~ y 	 ,R 	.µ '~r~. ~~~4 	i 3? 	`Y 'xf
~~ y~1 	~j 	ad ta~ 	~~~Y 	~h~~ 	.M 	~'Y~,g ~ 	 ~✓ 	y~. 	.? 	4 Y~ 	~}'. 	~J 	~,4'3s 	'C M 	~~~ 	~~3 	~ ~XatA 	ù9~ k }3 3~.

A
	

ilCatia
rT
n 	 F

 rv

p
.~3

r
yr

m 1

Form- - an 	 r a m
e

R
_

 Description

KLSIHV 	Purchasing Applicatio KLS Invoices form
F

invoices form

KLSPAY 	Purchasing Applicatio KLS. Payments form Batch payments form 	fib.

KLSPOORD 	Purchasing Applicatio KLS PO form PO submodule of purchasing mods

KLSPORCT Purchasing Appiicatio KLS Receipt form Receipt submodule of purchasing

- KLSPOREQ Purchasing Applicatlo KLS Requisition form Requisition Submodule of 	urcha

1 	KLSRSUM Purchasing Applicatio KLS Requisition summary form Requisition summary form -`

3 '6"4 1N.

Figure 5.9 Registration of Forms

Form: This is. the filename of my form (without an extension). The form

filename must be all uppercase, and its .fmx file should be located in my

application directory structure.

Application: This is the application that owns my form. The application

tells ORACLE Application Object Library where to find the form file

User Form Name: This is the form name we see when selecting a form

using the Functions window.

85

1

5.10 Registering Form Functions and Subfunctions

We register the form functions and sub functions on the Form Functions
window

Figure 5.10 Registering Functions and Subfunctions

Function: Users do not see this unique function name, but we use it in our

code when starting a form using function security routines or testing for

function availability

Form /Application : If we are defining a form function, select the user

name and application of our form.

Parameters: Enter the parameters to pass to the function

(assuming the form is built to accept them). Separate parameters with a

space

86

5.11 Creating A Menu Of Functions

Now , we need to add the functions to a menu. The functions in a menu

determines the access privileges of a user.

Figure 5.2 Creating a Menu

Here we include any forms the user should have access to, including forms

that are opened programmatically from another form (such as by pressing a

button)

Menu: Choose a name that describes the purpose of the menu

User Menu Name: We use a menu name when a responsibility calls a

main menu or when one menu calls another

Sequence: Enter a sequence number to specify where a menu entry

appears relative to other menu entries in a menu

87

Navigator Prompt: Enter a user-friendly, intuitive prompt the menu

displays for this menu entry. The user sees this menu prompt in the

Navigate window, leave the prompt blank for subfunctions that should not

appear in the Navigator menu listing even though they are on the menu

Submenu: Call another menu, which allows the user to select menu

entries from that menu

Function: Call a function we wish to include in the menu. A form function

(form) appears in the Navigate window and allows access to that form. Other

non-form functions (subfunctions) allow access to a particular subset of form

functionality from this menu

Functions and submenus are not mutually exclusive—we can have both a

submenu and a function as a single menu entry, though the function is

invisible to the user in the Navigator and could be a separate menu entry

Description: Enter a description of the menu choice. This description'

appears in the Description field under the menu path in the Navigator

88

5.12 	Creating User Profiles:

User profiles can be used for global preferences and security:

Figure 5.12 Creating User Profiles

They are basically user preferences which can be changed dynamically.

5.13 Registering Descriptive Flex Fields :'

Descriptive flexfields provide customizable "expansion space" on the

forms. I used descriptive flexfields to track additional information, important

and unique to the business, that would not otherwise be captured by the

form.

89

Figure 5.13 Creating Descriptive Flex fields

5.14 	Registration of Tables:

Figure 5.14 Registering a table with ORACLE Applications

We need to register those tables in which we intend to use Flexfields,

90

5.15 User Interface Of Custom Application

My Application Sign. On screen

Figure 5.15 Sign on Screen

Here I created 2 users : KLS1 and KLS2.

Depending on the user corresponding responsibilities are listed to choose

from.

91

After Sign On, depending upon the user, certain responsibilities appear in the

menu to chose from :

Figure 5.16 Display Of Responsibilities

The user is provided a list of responsibilities to choose from.

I created 2 responsibilities

• Purchasing. Manager

• Purchasing Clerk.

The purchasing Manager has some additional powers along with powers

of Purchasing Clerk. These are

He can approve or cancel an unapproved Requisitions, Purchase Orders,

Receipts and Invoices.

He can make Payments to the suppliers against the approved Invoices.

In contrast a clerk can only prepare a document Manager is responsible

for further progress.

92

Purchasing Application Menu :

Each responsibility is associated with a menu.

Figure 5.17 Display of Menu

The menu displays all the functions and subfunctions available. We

can hide or unhide some functions from certain responsibilities.

93

Requisition screen :

Figure 5.18 Requisition Screen

To starts the process a Requisition should be prepared. The Requisition

status is initially INCOMPLETE. The user has LOV for most of the fields. The

REQ number value can come automatically or is user enterable depending on

the user profile "REQ_AUTO_SEQ_NUMBER".The user can alter the profile
from the control from All fields are duly validated. Only a Manager can
Approve a Requisition. We can't make Purchase Orders of Unapproved

Requisitions. A Manager can also cancel an approved Requisition.
A Requisition can have any number of preferred suppliers one for each line

item.

94

Requisition Summary:

Figure 5.19 Requisition Summary

As specified in specs a user can query the existing Requisitions . He can

based his search on basis of Requisition Number, Preparer, , Requisition date,

Status.

He can also query the Requisition lines item on basis of Item name,

request& and quantity.

95

Summary Header Result:

Figure 5.20 Summary Header Screen

Figure 5.20 shows the query result. We can directly view the corresponding

lines by clicking_ on Lines button.

96

Summary Lines Result:
IcIuI7T rf11I,311.~
'x ẁ— {~ 	}.~Y,••~ 	~~t"^_ry~ .. ~± 	,.y~.. ~_ j~_ L~ ~`~-y,,~J—~ ~F~ỳ~;~~ 	us~ky~ ~"x 	y? .— ; s.x# 	' - 	'Xx-fy; ,~gP.wl '~ w 	aT~ 	.~ J ~

L Ir .~P .W
(
'^:'+^.

Cwv 	il~.F" 	fiSw 	Zii~w« 	- 	 ~ 	 YYTYyi,'~4 	~ 	y 	i 	q

~ ~ r 	 }•u y 	., .~~b~z ~€ 	~~ ~S~~ ~ 	x 	 ~ 	~ 	~~ 	r 	a !..~ 	7~ as ~ 	s' ,~ 	4 # 	~s 	 .f~i~r"xf~'̀aF~
3'~'"'&~~4 k~' Numb 	, S,

Cop11 op Grade Computer 	110 	 j1

Fum.1.1 	 Furniture, Top grade. 	1680 	 1 	 P

Comp.1.2 	 Computer-Compaq 1681 	 j1 -Good 	 :.

k Comp.1.1 	 op Grade Computer 	 1679 	 1

	

Comp.1.1
-w

 op Grade Computer 	 1682 	• 	1

Computer-Compaq-Good 	32683 	 1

Comp.1.1 	 op Grade Computer 	 1684 	 1
®.F

Comp.1.2 	 14 Computer-Compaq-Good 	 2
fire 	 'CV,flca 	 .,rz 'YCSL 	 vr,tSr&9J9. i"^tTTt. 	.-:fifli 	 ST. 	..feY•;q

; 	omp.1.1 	op Grade Computer 	1686 	 1 	 €?

 comp 1 .1
~

op Grade Computer 	1687 	 1 ~

1 	. 	 .__.. 	3 x1 L 	r'S+? .'~~ 	.; ~LCt 	~ ; r ~Ri l 	~"'b"^ 	+,'~ ' 	'~,;'~t~- E'er i. j 	~a 	'~ 	7 "',d-nri c~ rs3 	
~.~ 3 	k S ze 	^• vt* 1 4 i ~', 	~,'"~ 	 f. 19

1

f 	;.V 	E 	1 	r 	i d'. y_ 	I 	F

	

kl+~.!.. `ut{» 	e
	

. 	 # y f i 	R~ 	31 Li 	
_

'~r 	A 	t 	 a. 	3,/~' 	,3 a 	,~+ 	•. 	£~~ 	-. 	l 	a.,iz 	e,31}'' 	~~i 	,' 	s wUlw 	 L.~Z;°`

	

~ 	3 	,~ 	~ 	 ~~ k~~l 	N

	

~~ 	 r r 	 i 5 ~ 4

.~a4~'i 3 	 ffX 	d 	3^' 	Y_ i.k_ 	d 	 ~ TP1i4~ 	t2 	,~~g~ ~ 	 . tS~ 	~F1k~, 	 y 	45JVM,.~ 	y'~ 	'L+Y.~1'I pw 3~v 	
tteriS

~ 	 3 ~~ 	~' 4d 	~ 	t'a'g 	 i.~ ~u 	'3~3 	€ i 	7~F d e 	~ `~' ~
~ 	~~' 	

~1 	F < ~: 	3 	rs~"~ 	 7 „S

 ~TJ'

Figure 5.21 Summary Lines Display

Figure 5.21 shows corresponding Lines details. We can make a new

Requisition by clicking on New button.

97

Purchase Order

Figure 5.22 	Purchase Order Screen

The user can either make a P.O. based on a Requisition or with out a

Requisition also. The LOV shows all the Approved Requisitions which are

unordered. The PO number value can come automatically or is user

enterable depending on the user profile "PO.~AUTO_SEQ_NUMBER".The user

can alter the profile from the control from.

98

Figure 5.23 Requisition Number LOV

So, The user can select on which Requisition this PO is to be prepared.

And also as soon as the user chooses a particular supplier in P.O., all the
requisition lines items which have that supplier as the preferred supplier

will automatically populate the PO lines regions. As shown in Figure 5.24.The

user can add or remove the items from PO lines.

99

Date Window pops up :

Figure 5.24 Date Selection

The user can choose a valid date of PO preparation from the LOV.

100•

Alternate Regions :

Alternate Regions helps in arranging the items on the form in a logical way.

Figure 5.25 Alternate Regions Display

The alternate regions provides a clean interface to the user. In this PO ,I
have about 16 items in the PO lines region. So, to arrange them in one form
alternate regions is an effective tool.

101

Item key flex field:

Figure 1 & 2 	shows the flexibility provided in entering the Item

Name(Provided by using Key Flex Field concept.)

Figure 5.26 Display of Item Key flex field

As we navigate into a flexfield item, it pops up an LOV and asks us to enter

a valid combination as defined in the table.

102

Figure 5.27 Display of Item Key flex field

We can select a valid combination from the LOV.

103

Descriptive Flex Field for PO Headers :

So, User can give context related information in the Descriptive Flex

field.

Figure 5.28 Display of Descriptive flex field Window

Descriptive flexfields can display variable items in the window depending

upon the context information. They'can be optional or mandatory, depends

upon the configuration.

104

Purchase Order Summary :

Figure 5.29 Purchase Order Summary Window

As specified in specs a user can query the existing POs . He can base his

search on basis of PO Number, Buyer , PO date, Status, Supplier.

He can also query the PO lines item on basis of Item name, Ship to

,Requestor and quantity.

105

PO Summary Headers Result :

Figure 5.30 Purchase Order Summary Result Window

Figure 5.30 shows the query result. We can directly view the corresponding
lines by clicking on Lines button.

106

PO Summary Lines Result :

Figure 5.31 PO Summary Lines Window

Figure 5.31 shows corresponding Lines details. We can make a new PO by

clicking on New button.

107

Receipt window :

Figure 5.32 Receipts Entry Window

A user can enter the received items, he will choose a supplier to

receive from, he can also choose against which PO the items are

received. After then all the ordered items which fit this condition will

populate the receipt lines field along with their ordered quantity and

other details. Now the user can change the quantity received and

quantity rejected. Then user can also receive some unordered items if

he wants.

108

Received Items :

Figure 5.33 Receipt Details Window

The user can now enter information like way bill no, packing slip,

container info etc. He can lessen the quantity received but can't

increment it. Figure 5.33 shows the Received items.

109

Invoice Window :

Figure 5.34 Invoice Window

The user simply enters supplier name. All the ordered item details against

that supplier will populate invoice lines block. Figure 5.34 shows entry of

supplier "COMPAQ". As soon as the user presses match button all the items

ordered to Compaq will be listed as shown in next figure.

110

Invoice Matching. Window

Figure 5.35 Invoice Matching Window

The user can include or exclude a PO line from that invoice by clicking on the

check box as shown in Figure 5.35

111

Invoice Lines Window :

Figure 5.36 Invoice Lines Window

So, Figure 5.36 displays the invoice lines window, these are PO lines included

in the invoice lines.

112

Individual Payment:

Figure 5.37 Individual Payment Window

The user can do payment instantly for that invoice from the form itself, or

can do batch-payment for al the invoice of suppliers of that paygroup.

113

Batch Payments :

Figure 5.38 Batch Payment Window:

114

The user can do batch i.e. bulk payment by selecting the paygroup and bank

name. All suppliers pertaining to that pay groupwill be paid against their

Invoices.When the user 'enters 'Pay' button ,. it gets paid to all those
supplier's invoices which match this criteria.If user presses 'Show ', it will

show all the invoices matching that criteria.

Banks Window :

Figure 5.39 Bank Entry Window

Apart from seeded banks data , the user can enter any no of banks here and

their method of transaction.

115

Control Form :

Figure 5.40 Control form Window

Here we can choose to change the profile settings, We can here specify

whether Requisition Number ordering is automatic or not, or we can specify

whether we can have multiple lines for the same item or not.

116

5.16 Testing and TestPlan 	A

Testing

Developing a complete system consumes sufficient quantities of both

time and money. A number of problems are likely to be encountered in the

entire process. The designer finally lands up with the product,, which in turn

conforms, to all specification.

Test Plan

The various kinds of testing done in order to eliminate all the possible

bugs and errors in the system are a) Unit Testing b) Integration Testing and
c) System Testing.

The various modules are:

• Purchasing

• Payables

Unit testing is done for each of the above modules, which took a time

duration of 2 to 3 days. Integration testing was done with combining the

various modules of the system to see if they are compatible. After the

successful completion of these two tests the system in its whole is tested
and this is known as system testing.

117

5.17 Testing Methods

5.17.1 Unit Testing
At the lowest level, the function of the basic unit of software was

tested in isolation. This is where the most detailed investigation of the

internal workings of individual units was carried out. The purpose of unit

testing was to find errors in the individual units, which could be data or logic

related errors.

Activities followed in Unit Testing were

• Ensuring that instructions related to the test cases were executed

properly

• Verification of operation at normal value range

• Verification of operation outside range values

• Verification of program execution at boundary conditions

• Ensuring that all loops terminated normally

• Identification and removal of abnormal termination of all loops

• Ensuring that all errors were trapped

5.17.2 Integration testing

The individual units were linked as per the design specification. After

the completion of the Integration errors were traced in two ways

• In the interfaces between the units

• The functions, which could not be tested during unit testing

118

5.17.3 System testing

After integration testing was completed the entire system is tested as

whole. In this process search for errors in the end-to-end functionality of the

system and security features was conducted. The working of the code as per

the Function Specification was tested in this process.

119

CHAPTER — 6

CONCLUSION AND SUGGESTIONS FOR FUTURE WORK

6.1 CONCLUSION

The Project Work "ENTERPRISE MANAGEMENT SYSTEM USING

ORACLE APPLICATIONS" has the objectives of computerizing the

Purchasing 	and Payables parts of a Trading Company. All the

manipulations are carried out in a efficient manner.

The system is developed in such a way that further modifications

can be made very easily with minor changes. It is very much compatible
with ORACLE applications platform This project work is extensible i.e.

we can add more modules to it as it is highly modular in nature.

121

6.2 	. SUGGESTIONS FOR FUTURE WORK

Although care has been taken while building the project so that all

the specification can be met but there is always a room for

improvement. The suggestions for later use are as follows:

1. We can't have multiple requisitions for a single P.O. , so this change

can be
	

incorporated

2. We can have only one bill to location for a PO , we can't have

multiple bill to locations, one for each PO line.

`F*4

ORACLE APPLICATIONS GLOSSARY

APPLETVIEWER A program residing on a client machine that runs

and displays a Java applet or application.

BUGFIX is a correction to functionality. Bug fixes are generally

tagged with the BUGDB bug number of the issue that they fix.

FEATURE is an increase in advertised functionality. Features must

have names. FEATURES can be tagged with the BUGDB bug number of

the enhancement they implement.

Java applet is a- program, typically small in size, written in the Java

programming language that is downloaded and run by a web browser or

appletviewer.

MINIPACK is a merged collection of all STANDARD UPDATES related

to a product at a given point in time.

ORACLE An Oracle Server database. This generally refers to a

database and the objects it contains, not to the Oracle Server

executable files.

Oracle Applications System Administrator The person

responsible for administering Oracle Applications security and tailoring

system operation.

Oracle Server The database management system sold by Oracle

Corporation. The term refers in general to the product executable files

and/or the ORACLE databases created through those files.

ORACLE_SID An environment variable that identifies an ORACLE

database.

PATCHSET is a merged collection of individual UPDATES.

Patch driver A file read by AutoPatch that lists the actions required

to apply a patch or release update. Examples of actions include copying

a file, generating a form, or running a SQL script.

123

Platform Any individual operating system. Although most Oracle

Applications procedures are the same cross platforms, some procedures

vary. The latter procedures are called platform-specific.

Product Family Represents a group of related products. Examples of

Product families are Financials, Manufacturing, Human Resources.

Product group A set of Oracle Applications products that uses a

single installation of Oracle Application Object Library tables. Each

product group can contain any number of Applications products..

ROLLUP is a merged collection of all STANDARD UPDATES related to a

component at a given point in time.

UPDATE is any change to software. It can be a FEATURE, BUGFIX,

PATCHSET, ROLLUP, or ' MINIPACK. UPDATE is synonymous with
PATCH, although PATCH tends to imply a BUGFIX. STANDARD UPDATES
are meant for general consumption by all customers. STANDALONE

UPDATES have some special conditions or purpose that restrict their

use.

Uniform Resource Locator An address used to uniquely identify a

document on the World Wide Web. An example of a URL is

http://www.oracle.com.

World Wide Web (WWW) A network of machines running web

servers that provide access to hypertext documents. The network may

consist of machines on the Internet, a corporate intranet, or a

combination of both. Also called simply "the Web."

124

REFERENCES

[1] Ili Oracle Applications Architecture, Internal Document, Edition

3.0, September 2001

[2] 11i Oracle Applications Developer Guide, Internal Document,

Edition 3.0, September 2001

[3] lii Oracle Applications Concepts, Internal Document, Edition 3.0,

July 2001

[4] iii Oracle Applications Architecture, Internal Document, Edition

2.0, September 2001

[5] Roger .S .Pressman ,"Software Engineering - A Practitioner's

Approach", Published by : Mcgraw Hills , 5th Edition, New York,

2001

[6] SQL/PL SQL User Guide - Oracle Corporation .

[7] Oracle Applications User, Guide ,Internal Document, Edition 3.0,

July 2001

Oracle websites:

[8] Online Documentation

htttp: \\www.otn.oracle.com .

[9] Online Learning

htttp:\\www.ilearning.com

[10] Online Documentation

http:\\st-docs.oracle.com

[11] Online Documentation

htttp:\\www.etrm.us.oracle.com

	Title
	Abstract
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	References

