THEATRE VISION

A Computerized Solution for Light Show Based On DMX512 Protocol

A DISSERTATION

Submitted in partial fulfilment of the
requirements for the award of the degree
of
MASTER OF COMPUTER APPLICATIONS

DEPARTMENT OF MATHEMATICS
INDIAN INSTITUTE OF TECHNOLOGY ROORKEE
ROORKEE-247 667 (INDIA)

MAY, 2002

CNS Comsoft Systems Pvt. Ltd.
. O s < O G e ——

A e gy

. 25, Sant Nagar, East of Kailash, Top Floor,
New Delhi-110065. INDIA

Tel. No. : 91-11-6237218,

Fax No. : 91-11-4679807

E-mail : naveenc@giasdlO1.vsnl netan

o " Ot s 3
Ref. No.(./ fi/ﬂk?/m NE~ Date: 27 '(Vit 5o

CERTIFICATE

This is certify that Mr. Suréndra Kumar Gautam s/o Shri Ram Hans student of
M.C.A. curriculum of Indian Institute of .Technology Roorkee(IITR), Roorkee , has
undergone practical training in our organization from Jan 2002 to May 2002 for the
partial fulfiliment of the award of Master of Computer Application, Indian Institute of

Technology Roorkee(IITR), Roorkee.

During the above said period he undertook the project titled “ THEATRE
VISION” Light and sound Control System as a team member and worked on “Design
Phase and DMX 512 Protocol”.and performed very well He has successfully

completed it under my personal guidance .

This work has not been submitted to any other Institution / University for award

of any degree / diploma.

CANDIDATE’S DECLARATION

I hereby declare that the project work entitled “THEATRE VISION A
Computerized Solution for Light show Based on DMX512 Protocol “ carred
out during MCA dissertation in partial fulfillment of their requirement for the
award of the degree of Master of Computer Application (MCA-III) and submitted
in the Department of Mathematics, Indian Institute Of Technology, Roorkee, is an
authentic record of my own work carried out under the guidance of Dr. VINOD
KUMAR Professor, Department of Electrical Engineering, Indian Institute Of
Technology Roorkee,Roorkee.

The matter embodied in this project has not been submitted by me ¢lsewhere

for the award of any other degree.

Dated: May 2002 (Mr. SURENDRA KUMAR GAUTAM)

CERTIFICATE

This is to certify that the above statement made by the candidate is correct to the

best of my knowledge.

(Mr. Naveen Chauhan) (Dr. VINOD KUMAR)

CNS COMSOFT SYSTEMS Pvt.Lid. Professor,

SANT NAGAR, NEW DELHI Department Of Electrical Engineering
Dated: May 2002 11T, Roorkee

Dated: May 2002

Theater Vision

ACKNOWLEDGEMENT

| take this opportunity to thank prof. H.G.SHARMA, head of the Department of
MATHEMATICS, IIT Roorkee, Roorkee, Dist Haridwar, and all other staff members
for their invaluabie guidance through out The MCA curriculum.

| am thankful to Professor Vinod Kumar, (senior prof. In IT Roorkee) for his
supervision and guidance throughout the project training.

| am also thankful to MR. NAVEEN CHAUHAN Director of CNS Comsoft System
Ltd. Who provide me a wonderfui environment of software development and for
availing me all the available resources for the project Development .

| am thankful to Professor R.C. Mittal (prof. in UT Roorkee) for guidance throughout
the project training.

| am also thankful to MR. SUSHIL KUMAR DOHARE (Ph.D. scholar).

He work as advisor throughout the project training and provide guideline In project

development.

i (i

Surendra Kumar Gautam

CONTENTS

Titles
Company’s Certificate

Candidate declaration

Acknowledgements

Abstract .
Introduction About The Company

CHAPTER NAME Page No.
Chapter: 1 Introduction to, Project 1-2 .
1.1 Problem Definition . 2
Chapter: 2 Developing System 4-14
a2 ‘Existing System 4
2.2 Proposed System 5
2.2.1 Proposed Software Feature 6
» 2.2.2 Proposed Systerﬁ Output 7
2.3 Requirement Analysis | 7
Chapter: 3 System Analysis And Design 15-31
3.1 System Analysis 15
* 3.1.1 CUE Processor 16
3.12Datalink 16
3.1.3 Dimmers 17
3.2 System Analysis and Design 18
3.3 System Development Life Cycle 18

3.4 System Design

3.4.1 New show design for scene settings.

Flow chart ’
3.4.2 Edit / open an existing show for scene setting

Flow chart

3.4.3 process designed scene setting for cue dﬁesign

Flow chart

3.4.4 Final show execution

Flow chart

3.5 File Formats Used For Storing the Light Data
. 3.6 Scene Setting Storage File Format

Chapter: 4 The Information of Classes

Chapter: 5 Technical Issue

5.1 The DMX-512 Packet
5.1.1 DMX-512 Physicals
DIDLE or NO DMX situation
2)Break
3)Mark After Break
4)Start Code
.5) Mark Time Between Frames
6)Channel Data
7)Mark Time Between packets
3.1 ;2 Important
Fig DMX-512 Timing Diagram
5.2 DMX-Dongle II Window 95/98 NT
5.2.1 Hardware Feature
5.2.2 Software Features
5.3 Directory Struture

54 SDK
5.4.1 DLL Access

22
23

24
25
26

27

28

29
30

32-49

50-70
50
50
50
50
51
51 -
52
52
52

54
55

- 55

55
56

57

57

5.4.2 Initializing the Dongle ' , 57

5.5 Function Prototypes : 59
Chapter:6 Development Environment _ 71-108
‘ 6.1 Microsoft Visual C++ 6.0 o 71
6.1.1Component Gallery - o ‘ 74
6.1.2 How App wizard works with MFC - 74
6.1.3 Development Platform Which Are Containers For OLE Controls 77
6.1.4 WinMain Function _ 79
6.1.5 Run Member Function ' 81
Flow Chart : 83
6.1.6 File Manager Drag and‘Drop‘ 84
6.1.7 Keeping Track of the most recently used documents . 85
6.1.8 Drawiﬁg Tools 86
6.1.9 Message Handler Function . i ‘ " 88
6.2 Programming Window with Win SDK-32 . 90
" 6.2.1 Window class: - ' ' ' . ' 96
6.2.2 Window name: : ' ' ' 96
6.2.3 Window style: 97
6.2.4 Parent or Owner Window: | ! 97
6.2.5 Location, Sizeé and Position in the Z order: 97
6.2.6 Child-Window Identifier or Menu Handle: ' 08
6.2.7 Instance Handle: _ | 98
6.2.8 Creation Data: | . 99
Chapter: 7 Testing | ' | - 110
CONCLUSION S | I Y
LIMITATION AND FUTURE SCOPE 112
APPENDIX A: ‘ | ‘

REFERENCES

Theatrec Vision...

ABSTRACT

Our world 1s full of light and sound. Even if we are not able to perceive the full range of
acoustic waves, the human ear is nevertheless a fantastic organ and we can differentiate between
precisely 1378 different tones. Similarly the power of vision, the human eye is undoubtedly the
greatest of nature’s gift to mankind. And since the beginning of electronic sound and light
reinforcement with introduction of computers, the past 50 years have seen a major change in

worldwide market of broad casting systems and innovative lighting systems.

The Light industry with the concept of a Lightshow has come along way and now with
introduction of computers in this arena, more realistic, fast and innovative shows are being

designed. THEATRE VISION is a computerized solution and new introduction to a Light control

show.

This report gives a deep insight into the system design and DMX512 Protocol, which is used in
the development of the software, which handles this system. Through this we can handle
different 512 dimmers for changing there intensity means fade out and fade in the dimmers. And
can provide many relay effects like Smoke Generator, light projector, video projector, audio
system, cloud generator, This fully compliant with USITT standard for DMX 512 data
transmission. It is user friendly and designed for inexperienced computer operators. One can
exploit full potential of DMX 512 protocol using this software. All 512 channels can be engaged

at one go. One can design/save/edit/auto run a show live and fully automatically.

One can also know about the Console to operate channels manually, Up to 500 scenes can be

stored in particular show. Any channel can be programmed as Chaser or Flasher. In case of

power failure or during rchearsals, show can be resumed from any desired scene.

For the development of this project we have used the Microsoft Visual C++ 6.0 and used MFC
and SDK. The main thing is concept of “Threads™. This is simulation of the real system to the
software module. We can pre-design the dimmer’s show and we can test it at system and can

remove the bugs in the show at the design level. This is off site designing of show and can be

Page No.1

Theatre Vision...

changed the iﬁﬂtensity of light just by sliding the vertical bars, which is provided in the window of
show designed.

| For storing the light data we have generated the .CUE , . SEQ and LRN files which is specially

designed for compressed data format. .

j Pz:gb No.2 ‘;'I

Theatre Vision...

INTRODUCTION
ABOUT THE COMPANY

CNS COMSOFT SYSTEMS PVT. LTD. is a broad based professional setup with a
team of dedicated pfofessionals consisting of Chartered Accountants, Cost Accountants, MCAs,
System Engineers and qualified personnel with extensive experience in the field of Turnkey
Project implementation involving wide ranging hardware and software and communication
ﬁrotocols involving broad based communication equipment to provide customized solutions for

various OLTP operations using vs‘/orldwide communication networks.

Another division is involved in trading of agriculture pulp, flowery culture, export of fish
lings. Also we undertake prototype development of‘polyiner shoe lasts.

CNS is the fastest growing completely integrated industrial house involved in multiple
businesses. The latest edition to the CNS family is fully computerized unit managing data bases

for body shopping across the globe, with special emphasis on man power resources from south,

east Asia, India Bangladesh and lately a few CIS countries.

Backed by widespread éxﬁerience and expertise, it possesses the added advantage of
" being able to offer COI\/IPLETE SOLUTIONS - right from planning and automation of an

organization, installation of office equipment, development/installation of software up to the

ﬁaining of personnel. |

Page No.3 -

Theatre Vision...

The list of Corporate Business Houses which have been served by CNS include:

* PHOENIX OVERSEAS PVT. LTD.

* LIFE INSURANCE CORPORATION OF INDIA
* HAL

* BHARAT HEAVY ELECTRONICS LTD.
* GAS AUTHOURITY OF INDIA LIMITED
* MINISTRY OF COMMERCE

* GANDHI PEACE FOUNDATION

* DUNCUNS (G.P.G. ENTERPRISES)

* BILT (TOSCANA LASTS LTD.)

* VINTAGE GROUP

* MINISTRY OF BROADCASTING

* STEL '

‘The software development undertaken by CNS is using ORACLE, SYBASE,
Windows based programming tools, OOPs, Assembly language, Power builder, Watcom SQL,
Visual C++, DB2, Networking and Multimedia applications. |

The working platforms for software development include HP-900, PC 486 / PENTIUM-
III 1000 MHz, VAX-11, DEC-Alpha. The Operating System includes MS-DOS, VMS, UNIX,
ULTRIX, Windows 98 and Windows NT.

1

Page No.4

‘Theatre Vision...

Main objectives of the company

To carry on the business of designing, developing, buying, selling, exporting, importing

system solution and software use in various applications in India and abroad.

To install, maintain, procure rights, buy, sell, let on hire, import, export or otherwise deal
in computer hardware and accessories, communications, Process control and office automation

equipment.

To carry on business of system integration, buying, selling, exporting, importing,

2

assembling, leasing equipment and system in the telecom and electronic sector.

To carry on business of advisors and consultants to individuals, firms, companies,
corporate bodies, societies, organizations, undertakings, institutions, matters, relating to

communications, computers, networks, Managerial and Information Systems (MIS).

To enter into various strategic alliances and collaborations with various individuals,
firms, companies, government, local authorities and others in India or abroad for development of

new avenues in the software or other allied lines.

To establish and operate data and information processing centers and bureaus and to
render services to customers in India and elsewhere by processing their jobs as data processing
centers giving out computer machine time on hire or license basis.

To enter into contracts with individuals, companies, partnership firms, association of persons, -
societies, local authorities, bodies for providing Internet services, E-mail facilities and faxing

facilities through computer on License basis in India or abroad.

Page No.5 .

Theatre Vision...

CHAPTER: 1

INTRODUCTION TO PROJECT

Our world of light and sound...

A Lightshow is basically an engineer’s media and not a director’s media. The concept is a
powerful visualization, theme display on very large stage (or multiple number of small stages)
of size even exceeding 2000 feet. The colorful display of Light supported by effects like

smoke generator, cloud generators, lighting generators, audio effects, video projectors, slide

.displéy; etc. Is a powerful approach of explaining a theme, a subject, a story or whatsoever the

message is? The show designer has to design the light cues synchronized with sound so that

with a change in audio sound by a visible change in lights to focus on to some particular -

object, slide, video clip or person can be visualized.

In India, song and drama division of ministry of information and broadcasting is

| organizing Lightshows with a large network of about 27 branches in the country since it’s first
establishment in 1952 and the first Lightshow in 1967.

Son-et-lumeir the Lightshow without characteré changed into theatre Panasonic, the
‘Lightshow with characters in 1969 when song and drama division evolved this néw concept.
With the latest Light equipment, the division today. organizes a large number of shows
throughout the country. '

In India, since the first Lightshow organized in 1965 at ré:d fort directed by Chetan
Anand, fhe'Light industry in India has come long way from the analog light controls to the
dimmers, then the cue processors for lights, and finally the intelligent dimmers which are the

latest innovation and sound has gone digital, from single track to 24 track

Page No.6

i

{

Theatre Vision...

recording, studios with the latest sound equipment’s, mixers, MIDI interface, computerized

sound controls and what not.

Light industry with the concept of Lightshow has come a long way and has still many

horizons to reach.
1.1 PROBLEM DEFINITION
Why this project.......ce... 2

Since a Lightshow can not exceed a few lights and effects if manually controlled,
-computerization is demanded. So for analog cue processors widely used in this area propose
_ limitations like only a few dimmer access and a few effects besides their other drawbacks.
Further longer shows of just duraﬁon of 2-3 hours take the cue designer days tom design the
light cues synchronized with sound. This also restricts show organizers to go for multiple
shows in a month. Since the analog system imposes no-edit at last moment, if a flaw is

remaining in the cue design, it cannot be corrected at the last stage.

Hence a computerized solution for pre-designing a show off site with synchronized
sound decks and dimmers, which has a cue processor, a dimmer controller interface, which
can record thesé shows onto a safe backup media for a perfect perfbrmance and finally which
can allow edit of a pre-designed Lightshow is demanded. And this defines the THEATRE
VISION.

E . PageNo.7

Theatre Vision...

DEVELOPING SYSTEM

e EXISTING SYSTEM
e PROPOSED SYSTEM
e PROPOSED SYSTEM REQUIREMENTS

Page No.8

Theatre Vision...

CHAPTER: 2

DEVELOPING SYSTEM
2.1 EXISTING SYSTEM

A Lightshow is normally executed by analog cue processors, which have to be
manually done for fading in lights for show. This requires the user to prepare all cue sheets on
paper and finally he has to practices these cues before going on for show. This restricts the
show designer to handle more dimmers, lights, controls at the same time longer shows are
critical to design the existing system has all these drawbacks besides time consumption for

designing a show which is days and sometimes weeks for the show designer.

A somewhat digital solution as given by martin which works only for martin lights but
fails when a general concept of Lightshow comes up. It does not include many effects and
restricts to 24 dimmers, which is also the manual limit of the show designer. Beside the
complexity of show design, the dimmer controller does not support DMX-512 protocol. Being
DOS based software with 16-bit application it is comparatively very slow.

So practically no system exist in accordance tom the user requirements. A general light
and show designing software which can store shows as files on hard disk and works on 512
dimmers, with 1000 scenes and 1,00,000 cues the THEATRE VISION is an innovation in the
arena of Light industry.

Page No.9

Theatre Vision...

2.2 PROPOSED SYSTEM
Project outline......

THEATRE VISION is a complete solution to pré—design a Lightshow off-site. It can then
finally run a Lightshow controlling _the intelligent dimmers synchronized with sound and can

handle relay effects for smoke generator, video projector, cloud generator, lightning

generator, slide projector, audio effects, etc.

The software has an inbuilt interface using DMX-512, the lighting protocol. DMX-512isa .
light control system for applications like rock shows, stage shows, and fashion shows,

Lightshows, display, etc. It incorporates three components i.e. cue processor, data link and
dimmers. i »

The system proposes a complete hardware and the interfacing software capable of handling
512 dimmers and 8 sound decks portable enough for performance on-site and using
compressed data storage by having 26 hours of a show requiring at the maximum of 8.5mb of

disk capabity. The installation software will require about 30mb of free disk space on the hard
disk.

_The hardware team had designed the complete hardware after a complete R&D of five
years. The remaining part of the system was software interfacing the designed hardware, a
show designing module, scenes, storing the pre-design show as files (CUE, .SEQ and .LRN

file formats) and finally the show execution of synchronized light, sound, relay coi;trols etc.

" Tt is important to note that dimmer controller has a data receivmg speed of 4800 bit/sec, audio
~ varies from 5000 bit/sec to 200k bit/sec, video beyond 100k bit/sec and the software working
on a Pentiums processor based PC should synchronized all these to result in a live Lightshow.

The software will be a 32-bit application compatible with Windows 98/ Windows NT.

Page No.10

Theatre Vision.. .

2.2.1 Proposed software features...
Testing at each scene levels
Cue designing and testing at design level

A maximum of 1,00,000 cues giving a show design possibility of shows for up to 88
hours and beyond '

Selected from a maximum of 1000 preset design scene. From these any 25 scenes can

be fade-in, fade-out or locked éimultaneously

8 effects can be simultaneously used in a cue with the preset scene combinations (relay
effects can be cloud generator, smoke generator, video projector, slide projector, audio

effects, lightning generator, flashers, etc.)

Specially designed compressed file formats. .CUE, .SEQ, .LRN for storing light

sequences for scene and effects for final show execution

compressed file storing requires just 8.5 Mb to run a light sequence for 26 hours
maximum 512 dimmer control ' .

serial output with RS 485 signals

specially designed for DM—SI 2

Windows 98 and MFC based user Jriendly 32 'bit multimedia application compatible
with' Windows NT

,')
!' Page No.11 ;!

Theatre Vision...

2.2.2 Proposed system output....
- & &8 bit asynchronous data
e 4800 bit/sec
e RS 485~ cor;tpatible signal levels for standard interface
; XLR sockets(3-pin) HCG
o SVGA output for monitor

2.3 REQUIREMENT ANALYSIS

Since the system was unique of its kind and there is no such existing system in the
market so a trial survey was done with a few Light pioneers of the industry. It was
concluded that the show designers badly needed a computerized solution to design
cues. A ve>ry user friendly GUI based system which could interface the DMX controller,

send data signals to relays so as to finally design a perfect show.

All these requirements led to a choice of visual C++ ver 6.0 — 32 bit programming tool
for Window 95/ Windows NT/ Macintosh. Besides being an integrated tool supporting
GUI, it also extends support to Microsoft foundation classes, WIN 32 SDi(, WIN 32 AP
and inline programming of other languages, further the tool supports multimedia, ODBC
.and OLE programming tbo.

The system requiremént for development of project was a 12-FlyPack dimmers rack
with 4 delays, Serial. Port connecting interface, DMX-512 Protocol standards, a
Multimedia Pentium processor based PC with 2 GB HDD, CD-ROM drive, etc.

Time to time consultation with people from the industry was also necessary.

i Page No.12

—_—

Theatre Vision...

The majof Studios and Light ‘" Sound Pioneers who were a part of survey, ‘
requirements and consultation included A V Workshop, Thukral Stagecrafts, Modern
~ Radios, etc.

Besides studying the existing syétem, a computerized solution developed by MARTIN

the #1 company dealing in lighting products was also studied. All its shortcomings
like it

~ could not work beyond 24 dimmers, system requirements were unique and not
general were all understood well before the software design phase begins. Since
‘audio required a lot of disk space and similar was for light sequence', requirements of
compressed file format for storing light Cues was also justiﬁed; Since design a show
through these existing systehs was so typical, that each Lightshow if designed was
by a single person, then that show could neVer run without the presence and actual
handling by the same person. So a general software requisite, which could on its own
run aLightshow without user’s intervention once designed, was defined.

! .
| PageNo.13

[

Theatre Vision

SYSTEM ANALYSIS AND DESIGN
o S_yStem design
e Class description
~* Technical issue

o Testing

Page No. 14

. Theatre Vision

CHAPTER:3

SYSTEM ANALYSIS AND DESIGN
3.1 SYSTEM ANALYSIS | |

The THEATRE VISION can be sub classified into three main areas:

e Show designer's Imaginations (to design light and sound show) and hence the
input light and sound cue data. ‘

» Software interface (cue processor) to actually handle this crude data, store into
compressed data files (.CUE, .SEQ and .LRN files formats), process the data to
help user test cues, sequences, etc. For a final run show

e The out being a perfectly synchronized show execution from the software
interface as data signals to the intelligent dimmer controllers supporting the DMX-
512 protocol for light data signals.

- The following figure shows the main actual flow of the system:

DMX-512
. BASED
| O EE— DIMMER
m— | CONTROL. .
*LJ_H RACK

#24DIMMERS

DIMMERS l

LIGHT AND SOUND CONTROL LIGHT HARDWARE
SYSTEM

(PENTIUM BASED 32-BIT M/C)
. LIGHT SHOW

Page No. 15

Theatre Vision

" The three basic compbngnts of the system are:
« CUE PROCESSOR
e DATALINK
* DIMMERS

The other device which are the secondary components of the, system include
the audio systems, all supporting audio device, remote effect like smoke machine,
~ cloud projector, flashers, video projectors, etc

3.1.1 CUE PROCESSOR

"The cue processor is an intelligent system capable of designing, processing

and transmitting the various light values for different dimmers the system is also

._capable of storing the informafion indefinitely in the memory for further use and

" modification in the form of cue files. It is also capable of switching on remote effects

jike smoke machine, cloud projector, flashers, video projectors, etc. The individual

compreséed binary files formats used for the storing the input cue information Viz. .
CUE and .SEQ are explained in detail in the later part of the report.

3.1.2 DATA LINK

The normally used data link for DMX-512 system is RS 485 interface in
-~ asynchronous mode, The link is a two-wire cable of low impedance. An optional data
link for DMX-5‘I2 can be fiber optic cable. Through it is important to notice that data
éigna’ls through the serial port output of the PC are feeble and hence amplification is
required by connecting it with 9V DC source (SMPS of the PC avail this voltage) and
hence becomes distinguishable. ‘

Page No. 16)

Theatre Vision

3.1.3 DIMMERS

Dimmers unit is an intelligent microproceséor based controller which interprets
DMX-512 sighals from cue processor and arranges the ﬁring angle of triacs / SCR's
accordingly so as to output the required value of light on the lamps.

In general the cue light processor confrol offers a very high speed real time
processing to give 4800 bit/sec baud rate for dimmer control on RS-485 signal levels
over an XLR female with which up to eight racks of 12 dimmers each (i.e. 8*12=96
dimmers) can be stacked.

Another excellent feature of the system is that its signals can be recorded with
audio on a tape using VISTASONIC TM interface available separately }n the market.
This feature is very useful for prerecorded light and sound show execution without
actually using the computer on site. So broadly the output is as follow:

- Channels for dﬁnmérs

. Analog to digital converter (by PC)

e Scenes at maximum

. Cues at maximum

e Maximum files storing requirement 10 MB eachlshow.
. Serial asy‘nchronous data transmission -

. WSTASONIC TM compatible

e Flypack TM compatible

Page No. 17

Theatre Vision

3.2 SYSTEM ANALYSIS AND DESIGN

J A set of compo‘nenté that interact to accomplish a specific task called system.
"The major components of our THEATRE VISION s have already been discussed.
The design phase for the system refers to the process of ‘plénning a new system or
one to replace or complemenf of an existing system. But before this planning is done
the existing system needs to be understood. System anélyéis, then is the process of
gathering infdrmatidn or reco_mmend improvements to thé system.

Since THEATRE VISION has an analog system as the existing system, the

. analysis, which was required, was to actually understand the hardware, its

functioning, the DMX-512 protocol and the concept of allight and sound show.
3.3 SYSTEM DEVELOPMENT LIFE CYCLE

The syétems development life cycle is basically all-the phases, which have
. undergone throughout the development and implementation of the complete system .
as whole. —

Excluding the hardware development portion, the four basic activities involved
in the life cycle of the software development of this project are:

* Requirement analysis ‘
o Design

e Coding

Testing

Page No. 18 -

Theatre Vision

Requirements analysis is done in order to understand the problem which the
problem which the software systems to solve. The develdper has to satisfy all the
user requirements and ideniifyingwhat is needed from the system. It should be notéd
that it does not include how the system will achieve its goals.

The process of gathering the information about the client's need is called fact- |
finding techniques. The factfinding techniques inay include interviews,
questionnaires, observations, etc.

Requirement analysis has individually been discussed in earlier part of this
report. In case of TH EATRE VISION the fact-finding teqhniques were interviews with
‘some pioneers of light and sound industry. By ifeview of another customized software
from MARTINE for its own lights -and by observing a few light and sound shows
actually happening in the capital. -

Design...!

7

~ The design phase is required to plan the problem, as specified by the requirement
analysis done by the developer. This is the first step in moving from problem domain
to the solution doméin_. So the design phase has two areas of study:

e System design

" e Detailed design

Page No. 19

Theatre Vision

System design is responsible for... |

Identifying the modules

e |dentifying the interaction of modules with each other
e Data source

» Flow of data from source fo destingtion .

o Allfile formaié involved for software development

e Output file formats (.CUE, .SEQ and .LRN)

34 SYSTEM DESIGN

Since the problem as Qathered by the requirement analysié ‘phase can not be
handled as a whole hence the basic principle of problem partitioning is used.

The THEATRE VISION (Light and Sound control system) design hence reqdired
_problem partitioning into four areas:

. New show design fdr scene settings

e Edit/ open an existing show for scene setting
e process designed scene setting for Cl.;e design
o Finél show execution

Be_sidesz this the file formats which store light data i.e. scenes and cues, must also
be designed. This format as documented earlier in this report have been specially
designed for this projecf and do not follow any other file format structure available in
the industry.

. CUE'and .SEQ file formats used for storing scene setting and cues respectively
and .LRN created and used only at runtime of show. having compressed binary file

format structure and these are individually described in the later part of this report.
' Page No. 20

Theatre Vision

3.4.1 New show design for scene setting...

A New show design requires the following process:

A show number — which is normally prompted to the user

Creation of .CUE file on basis of this show number (for example
SHOW1.CUE)

Opening a default scene settings dialog box with null entries on zeroeth
scene '

Allowing user to test individual scene if réquested

Save the changes after all the scenes have been created by user onto the

corresponding .CUE file

proceed onto create cues on basis of these scene or exit as requested by
the user

The flowchart for the new show design for scene settings is on the following page.

Page No. 21

Theatre Vision

Creating a new show in THEATRE VISION

NEW

I

INPUT SHOW NUMBER

v

Ye&s oPeN

CHECK SHOW
> QOO
pRocess

IF EXISTS

CREATE NEW .CUE
CREATE FILE FOR
NEW SCENESETTING

SCENES ‘_,—

v
OPEN
SCENESETTING
DIALOG BOX <
WITH NULL
ENTRIES
v
BEEP
e NG NO ERROR
Yes Yes
STORE THE STORE THE
DESIGNED DESIGNED SCENES
SCENES INTO THE INTO THE CUE FILE
CUE FILE
EXIT TO MAIN
CUE MENU
PROCESS

Page No. 22

Theatre Vision

3.4.2 Editing/Opening an existing show for scene setting...!

Opening an existing show design requires the following process:

The show number - which is normally the input from the user

Chécking weather it is a valid show (checking if corresponding .CUE files exist
for requested show number) .

Opening the requested .CUE file

-Opening of scene setting dialog box with the entries stored for the zeroeth

scene
Allowing user to test the current scene if requested

Save the changes after all the scenes have been newly created or edited by
user onto the corresponding .CUE file '

proceed onto create cues on basis of these scenes or exit as requested by the
user

The flowchart for Editing / _Opening an existing show for scene settings is on the
following page. '

Page No. 23

Theatre Vision

Editing / Opening an existing show in THEATRE VISION

(Light and Sound control system)

INPUT SHOW NUMBER

l<

OPEN-
SHOW

PROCESS

TERMINATE AND MO
RETURN TO — .
MAIN MENU
* Yes
OPEN THE CORRESPONDING _ 5| | TEST CURRENT
ool SCENES 'CUE FILE AND LOAD SCENES SCENE
CREATE NE | |] INTO MEMORY
OPEN SCENESETTING
DIALOG BOX WITH
PREVIOUSLY DESIGNED
FIRST SCENE

Yes ¢

Yes

STORE THE:

' DESIGNED
SCENES INTO
THE .CUE FILE

'

BEEP ERROR

STORE
THE DESIGNED
MODIFIED
SCENES INTO
THE OLD .CUE

FILE
EXIT

TO MAIN
MENU

Page No. 24

Theatre Vision

3.4.3 Process Designed scenes to make show CUEs... !
Designing cues for a complete show requires the following process: -

e A show number — which is normally prompted by the user and the .CUE
file is currently open for the requested show

. cheék if . SEQ ﬁle‘ for the current show exist or not

» Creation of .SEQ file on basis of this shows number (for example
SHOW1.SEQ) if the .SEQ has not been created earlier.

. Opening of default sequences dialog box with null entries on zeroeth cue if
the .SEQ file has newly been created or else the stored entries for zeroeth
cue are loaded

e Allow user to test individual cue if requested

» Save the changes after all the scenes have been created by user onto the
corresponding .CUE file as user exits from sequences dialog (Note that it
does not prompt you to save the changes-it does it on itsown)

e Return back to the scene setting dialog box

The flowchart for the designing cue sequences is on the fdllOwing page.

Page No. 25

Theatre Vision

Process Designed Scenes To Make Show Cues

RELOAD
SCENE
COUNT
FROM

‘CHECK IF .SEQ FILE
FOR CURRENT

SHOW EXISTS
YES NO
\ 4 o v
LOAD FIRST LOAD FIRST
DEFAULT CUE
WITH EXISTING ° DEFAULT
CUE ENTRIES - _ CUE WITH
NULL
P CREATE
NEW/ EDIT <
- EXISTING
CUES
TEST CUE
SCENESET VS e

DIALOG

Page No. 26

Theatre Vision

3.4.4 Final Run Show...... !

After designing cues and testing individually each of them. The system is now
ready to independently run the current show in process and this require the following:

e A show number — which is availed from the CURRENT.FIL file which
maintains count for the current show in process

e Check validity of existing .CUE and .SEQ files for consisiency of data

e Process to create. a runtime .LRN file which can allow an uninterrupted
show execution

e Load clock and run show counters synchronized with the Iight data transfer
e Output data signal available on serial port asynchronously
e Prompt user after successful show completion to exit

¢ Return back to main menu

Flowchart on the next page

Page No. 27 .

Theatre Vision

FINAL RUN SHOW IN THEATRE VISIC

N

EXIT

EXIT TO MAIN .
MENU -

NO

GET
CURRENTLY
SHOW FROM

. CURRENT
- FILE
N

:

CHECK VALIDITY
OF EXISTING .CUE
AND SEQ FILES
FOR CURRENT
SHOW

:

PROCESS TO
MAKE .LRN
(RUN FILE)

!

- CONTINUE WITH
UNINTERRUPTIBLE
SHOW EXICUTION

EXICUTE SHOW
UNINTERRUPTED

Page No. 28

Theatre Vision

3.5 FILE FORMATS USED FOR STORING THE LIGHT DATA....!

The light and sound control uses two file formats .CUE and SEQ for storing
the light data information which is‘in turn used at runtime to execute independently a
light and sound show.

The .CUE file format used to store individual scene information can have 1000
scenes at the maximum and each scene can haVe fader settings for 512 dimmers.
Each fader value can véry between 0 and 255 with 0 being the minimum and 255
being the maximum.

The .SEQ file format used to store individual cue information can have 1,00,000
cues with each cue using only those number of scenes that corresponding .CUE file |
has got. Through it can process a maximum of 1000 scenes per cue with 4 effects in
each case. Each scene can have either of four possible values — black out, fade in,
fade out, and lock.

Black out means it wills remains at zero.
. Fade in means it will grow from zero to the respective voltage. .
Fade out means it will decrease to zero from the respective voltage.

Lock means that it will remains at the same voltage for the defined period.

. The two‘ﬁle formats are individually described bit wise on the following page. '

Page No. 29

Theatre Vision

3.6 SCENESETTING STORAGE FILE FORMAT(.CUE).

157 Bit
2nd
2" Byte
3@ Byte
4" Byte
5" Byte
6" Byte
7" Byte
'8"’ Byte
o" Byte
10" Byte -
11" Byte
12" Byte
13" Byte
14™ Byte
15" Byte
16" Byte
| 17" Byte
18" Byte
19" Byte

0. 24 dimmers
1 512_ dimmers
- . CUE HEADER (PROTECTED)
(INCLUDE AUTHOR NAME,

COPYRIGHTS, VERSION, ETC.)

Total number of scenes
Total MAX number of dimmers used(processed value)
File —id number |

_File —id number

Page No. 30

Theatre Vision

20" Byte
’ SCENE NUMBER 0
531" Byte
532" - Byte
SCENE NUMBER 1
1043th Byte ™
(20+*512)Th Byt

: SCENE NUMBER *
(5314+*512)Th Byte— o
MAXIMUM LIMIT GOES UPTO 1000 SCENES

THIS IMPLIES THAT CUE FILE CAN BE AT THE MAXIMUM OF 512531(
Approximately equal to 500 KB)

THIS IMPLIES THAT CUE FILE CAN BE AT THE MAXIMUM OF

50,051,855pproximately equal to 50.05 MB

MAXIMUM CUE SIZE : 500KB
- MAXIMUM SEQ SIZE : 50.05 MB

The maximum cue and seq file sizes can result a light and sound show working for
a minimum of 88hours sing the maximum number of cues (1,00,000) and using the
maximum number of scenes (1000-) with the minimum time allotted for each cue (1

sec).

Page No. 31

Theatre Vision...

CHAPTER:4

THE INFORMATION OF CLASSES

The coding of the THEATER VISION (Light and Sound control system) used
visual C++ as programming language, Microsoft foundation classes ver 6.0 as shared
DLLs, WIN 32 software development kit functions for those requirements which are not
available through MFC 6.0 and finally inline assembly language for only interrupt
handling whenever data needs to be transmitted to the dimmer controller.

Following classes have been used in the Project.

| =5 Light classes’

%8 _FLASH

| @2 CabouDi

| ®-™2CCDPlayer

| ®-%3 CConfiguaton

| ©-™2ClicssThead

| @S Chinmer
-3 CDTPicker
- CFG |

| &% Chash

| ©-™§ CRlashiterThread

| ®*§ck .

#-*§ CincrementalE ufer N
-3 Cligatapp |
#-%% ClightDoz i
': CligvtView s
ol ChanFrame -

LA L R Rl LR L LR LR LR Ees SLres PP R R R L PR L BRI LR LU L L LR R e LR AL LR LS TR TN TR T e TV Y

Page No. 32

Theatre Vision...

| Workspace

M3 CMainFrame
-5 CNewScene
Mg CPage
%15 CPage]
M5 CPagel(
1% CPagel1
Mg CPagel12
Mg CPagel3
-3 CPagel4
Mg CPagel5
Mg CPagelB
%18 CPage?
%8 CPage3

- ®g CPage4
Mg CPageb

Mg CPage6

R R BRIy

Page No. 33

Theatre Vision...

- ™13 CPageB
. ®1% CPageS
B CPiintShow

= CPinPreview

- ™% CReaderThread
-3 CRingB uffer

- ®® CRunStatus

e CScenewriterThread
®® CShowName

-*1g CVideo

& CWaitTime

@ CWiiter T hread
%G DEM_INFO

B8 FLASH_SEQ

- % SCENE_DATA
"T: tagl NCREME NTAL

Page No.

34

Theatre Vision...

Class Name: CAboutDiqg

CAboutDlg is the Dialog Box, which displays information about the user’'s copy of
THREATOR VISION, including the version number and the copyright.

Base Class for CAboutDlIg is CDialog and most class members have been used.

Returns : NULL

i Publc:
AL CAboutDig CAboutDlgfvord

| 47 struct APX_MSGMAP_ENTRY const * const CAbout

Page No. 35

Theatre Vision...

Class Name: CCDPlayer

Is the Dialog Box which displays information about the CD which you have to run
during the Light Show. It displays the track no.

It returns the track no. to play the songs.

I
:

ALAGA™"0"™

|
{ Defistions: . |
e \skdohare\ighth\cdplaver h{13]

1 e\skdohare\ight\go h8)
{ e \skdohare\ight\go.cpp(299)

Class Name : CConfiguration

CConfiguration is the Dialog Box Class which contains the information about the range

of Active Dimmers used and the port information on which the DMX device is
connected.

It also contains the information about the delay time in milliseconds the range is 1000 —
5000

Base Class for Configuration is CDialog and most class members have been used.

Protected Member Functions used the OnOK() and OnClose() member functions
besides InitDialog().

Page No. 36

Theatre Vision...

=

T OISO

Class Name: CCrossThread

CCrossThread is the Dialog Box Class, which contains the information about
Scene No. Which have to be connected with the current scene and it has to be
decreased light.

Protected constructor used by dynamic creation

Base Class of CCrossThread class is CWriterThread .

Page No. 37

Theatre Vision...

It returns the scene no. Which have to be decreased light.

EEE 1 << hreand - HEace ('Ince

A A

(I N CLiosshwead “Tlioss| hweadlivos =

d struct CRuntmeClass const U:ros:‘lhead dats(

I & CCrossThread :CreateObject{void)

f W CCrossThread :Esitinstance{void)

f B CCrossThread :GetRuntmeClass{void)
| f ¥ CCrossThread Intinstance{void)

d CCrossThread :m_bSuspended

d CCiossThread:m_nSceneMo

d CCrossThread :m_pSceneData

f CCrossThread : HeadSceneNo{wmynd nll =l
Li W8 CCrannThenad Domliwmidd s
| Defintions- .
{ e \skdohare \hght\threads h{153 18
| References:
| e:\skdohare\light\go h{18)
| & \skdohare\ight\go h{56)
| &\skdohare\light\go.cpp(388) =l

=
T B 1 g rrrrrrlrr((IIf(((f(r((r((m,mrn,,”””'

Class Name: CDimmers

CDimmer is the Class, which contains the information about the creation of
show, which glows the dimmers. First it create Black color dimmer and when it is

selected with value it glows with Red color.

Returns : NULL
A Al | A A

et

Pubbc:

f
f
f
f
f
d
d
d
d
o
D

CDimmer:: CDimmer(void)
B CDimmer.: “CDimmer{void)
M CDimmer.: “CDimmer{void)

CDimmer:: Draw{class CDC *,unsigned char) =il

CDimmer::Draw{class CDC * unsigned char) o

CDimmer::m_nBottom

CDimmer::m_nBottom

CDwmmer.m_nHeght

CDimmer::m_nHeight

L Y ji

e \ight\dimmer_h{13)
e \skdohare\ght\threads. cpp(834)

Page No. 38

Theatre Vision...

Class Name: CFlash

CFlash is the class which contains the information about the flash run.

How it runs and It uses CNewScene and CCriticalSection class and use following
functions:

AddAll(), GetSize(), PutAllSequence, GetAllSequence
ResetFlash(), IsFlashWnd, FlashStatus, GetPos, Add,
SetOwnerShip, SetFlash, GetFlashColor

w A A A

Publc-

f & CFlash.“CFlashivod)

f CFlash::Addint)

f CFlashAddalliclass FLASH_SEQ)

f CFlash:FlashStatus{class Cwnd ~)

f CFlash GetAlS equence{class FLASH_SEQ * oon:
; CFlash :GetFlashColor{class Cwnd ™) :
f

f

£

CFlash :GetPos{int) :

CFlash . GetPos{class C\wnd *] B

cnuh:(;enswn] J
fits

4] J
| References:
e \skdohare\hght\newscene h{40)

Class Name: CFlashWriterThread

This class uses write pattern of flash. .it declare the full 255 value in the dimmers
value.

The Base Class of CFlashWriterThread is CWriterThread

q1f ICFthThoad Credoohpclvoldl
f N CFlashwniter Thwead -E satinstance{voud)
f N CPlashwnterThvead . GetRuntmeClass{vod)

A B CPlashwiterThwead :Intinstance{void)

1t N CRlashWiiter Thread : Run{void)

| Protected

1f CFlashWriter T hwead : CFlashwrter T hread| void)
f IS CRlashwiterThwvead :_GetBaseClass{void)

P § : AL T hoeon, k- . -

e \skdohare\light\go h{(17)
e \skdohare\ight\go.h{54)
| &:\skdohare\ight\go.cpp(367) ___

Page No. 39

Theatre Vision...

Class Name: CGO
CGO is the Dialog Box which displays information about the .cue file which have

to be run for the show. The show no. is availed from the current .File file. The .cue and
.seq files are checked for validation. A runtime file .LRN which has filtered each cue
data corresponding to 521 dimmers associated with time is created It display the
running show. And uses threads classes for activation of dimmers.

Before activation of this dialog the clock is activated asynchronously.
Base Class for CGO is CDialog and most class members have been used.

Protected Member Functions used the OnClose() , Open(), Pause(), Go(), Stop()
member functions besides InitDialog().

CGo:m_bCrossThreadPaused
CGo::m_bDone

CGo::m_bE xt
CGo::m_bPaused

Page No. 40

Theatre Vision...

Class Name: CLightApp

The main application class CLightApp derived form CWinApp which encaplualtes
the initialization, running, and termination of a application for Windows. An application
built on the framework must have one (and only one) object of a class derived from
CWinApp . this object is constructed our application’s primary thread of execution.
Using Win32 API functions, secondary threads of execution are also created.

Our framework application has a WinMain function . WinMain performs standard
services such as registering window classes. Then it calls member functions of the
application object to initialize and run appoication.

To initialize the application, WinMain calls our application object’s InitApplication
and Initinstance member fuctions. To run the application’'s message loop, WinMain

calls the Run member function. On termination , WinMain calls the applications object’'s
Exitinstance member function.

Figure : Sequence of Execution

WinMain Standard function supplied by framework
Calls
l——b Initinstance initializes current instance of the application
Calls
‘—-b Run Runs the message loop and Onldle
Calls

l——-bExitlnstanc:e cleans up after the application

A eSS SRR -~

Page No. 41

Theatre Vision...

Class Name: CLightDoc

CLightDoc derived from the CDocument class Provides the basic functionality for
user defined document classes. A document represents the unit of data that the user

typically opens with the File Open command and saves with File Save command.

CDoucment supports standard operations such as creating a document, loading
it, and saving it. The framework manipulates using the interface defined by CDocument.

So Light application can support more than one type of document; for example,
an application might support both spreadsheets and text documents. Each type of
document has an associated document template; the document template specifies what
resources (for example, menu, icon, accelerator table) are used for that type of
document . each document contains a pointer to its associated CDocTemplate object.

Users interact with a document through the CView object associated with it. A
view renders an image of the document in a frame window and interprets user input as

operations on the document . a document can have multiple views associated with it.
When the user opens a

window on a document, the framework creates a view and attaches it to document. The

document template specifies what type of view and frame window are used to display

Page No. 42

Theatre Vision...

each of document. Through LIGHT does not explore much of the CDocument
properties.

Class Name: CLightView

The ClLightView class provides the basic functionality for user-defined view
classes. A view is attached to a document and acts as an intermediately between the
document and the user: the view renders an image of the document on the screen or
printer and interprets user input as operations upon the document.

A view is a child of a frame window. More than one view can share a frame
window, as in the case of a splitter window. The relationship between a view class, and
frame window class, and a document class is established by a CDocTemplate object.
When the user opens a new window or splits an existing one, the framework constructs
a new view and attaches it to the document.

A view may be responsible for handling several different types of input, such as
keyboard input. Mouse input or input via drag-and drop, as well as commands from
menus, toolbars or scroll bars. A view receives commands forwarded by its frame
window. If the view does not handle a given command, it forwards the commands to its
associated document. Like all command targets, a view handles messages via a
message map.

CIWM Dumplclass compcm &]

~ Mr“-r-ra-ﬂf'\mw—l‘ ol

| e \skddm\mw cg:ﬂS]

Page No. 43

Theatre Vision...

Class Name: CMainKrame

The CMainFrame class derived from CMDIFrameWnd class provides the
functionality of a window multiple document interface (MDI) frame. window, along with .
members for managing the window. , '

The MDI frame window is created by calling the Create or LoadFrame member
function of CFrameWnd.

The MDI frame window manages the MDICLIENT window, repositioning it in
bonjunctiori with control bars. The MDI client window is the direct parent of MDI child
frame windows . the WS_HSCROLL and WS_VSCROLL window styles specified on a
'~ CMDIFramdWnd apply to the MDI client window rather than the main frame window so

the fuser can scroll the' MDI client area (as in the Windows Program Manager, for
example).

The MDI frame window owns a default menu that is used as the menu bar when
there is no active MDI child window. When there is a active MDI child, the MDI frame
window’s menu bar is automatically replaced by the MDI child window menu.

The MDI frame window works in conjunction with the current MDI child window, if
. there is one. For instance, command messages are delegated to the currently active
“MDI child before the MDI frame window.

' The MDI frame window has default handlers for the following standard Window
menu commands: R
ID_WINDOW_TILE_VERT
ID_WINDOW_TILE_HORZ
ID- WINDOW_CASCADE
ID_WINDOW_ARRANGE
The MDI frame window also has an implementation. of
lD_’WlNDOW_NEW, which creates a new frame and view on the current

Page No. 44

Theatre Vision...

document . an application can override these default command
implementations to customize MDI window handling.

Figure Frame Window and View

Frame g v A

Window Client arca

Object Allocated to view
(a child window)

View

Object

(Child

Document
Object

Ddad-'tm Amﬂdl:lvod]
CM ainFrame:-AssedV alidfvod) 3
slluct CRuntimeClass const DﬂamFtane: classCh
truct CRuntimeClass const CMainFrame::classCh
CMali-'rame :CreateObject{void) 2
CMainFrame::CreateObject{void)

CManf rame::Dumpiclass COumpContext &)
CMainFrame::Dump{class CDumpContext &)

3 BE M sl o (2400 mabwnad ™ sands snadl -

(%]

f
f
qd
1d?
1t
f
f
f

ehmtions:
1 e \skdohare \bght\mamiim hi13
{ e:\ight\manfrm h{13)
| References:
{ e:\skdohare\ight\mainfim.cpp(31)

Class Name: CNewScene

CNewsScene is the Dialog Box which handles the complete scene design, scene
storing onto .CUE files, individual scene testing, etc. for Light and Sound Control
System.

Page No. 45

Theatre Vision...

The Base Class is CDialog and most of CDialog class members have been used.

Being the major Dialog Box it has several buttons associated for:

*Saving the Current .CUE file i.e. scenesettings

*GoTo a particular scene

*Copy a particular scene onto current scene

*Firs, Next, Previous and Last Buttons for movement of scene numbers
*Test currently open scene

*Go to create cues(sequences)

*Ok and Back for user requests to exit with save or without save

A A A

E

CWnd *
CNuﬁm.Amm nt) o |
CNewScene:: GetS cene{char)
CNewScene:m_blLastSceneSaved
CNewScene..m_bNewShow
CNewScene::m_buttonPaste
CNewScene: m_byBulfer
CNewScene::m_byFlashPattemNo

i L e T e Lo T _
1 Definmtions:

rdoQ ™™™

| References: "
{ e’\skdohare\light\scenedata h(56) w

h62)
e I _tmmmﬂm —j

Page No. 46

Theatre Vision...

Class Name: CPagen

This class uses SetScrollRange and EnableScrollBar and SetScrollPos in
InitDialog() function. It Scrolls the Virtical Scroll Bars and Sets the Maximum value 255
and Minimun value 0. it also enables the flash patterns and take input to all 32

channels.
OnKillfocusEditChannel17() kill the flash selection pattern

=L | Public-
.- (3) CPage
EI*‘:SU%MPm
=-4 (Dialog
i =43 Cwnd
! =& CCmdT arget
% t-@mb'pct

oo

| References:

Class Name: CPage
. This class is declare in SceneData.h header file and uses an Array of BOOL type

m_byEditChannel[32] and m_staticFlash[32] and uses a CNewScene class object .

CPage: DD)(_CuatouConho[clan CDatak
CPagu DDX_CustomControl{class CD atak

IR

Page No. 47

Theatre Vision...

It also uses AdjustData() function and SetOwnerShip of Scene. It uses a PASCAL
rutine DDK_CustomContorl

Class Name: CReaderThread

11 'S CReaderThread CreateObject{void)
1t M CReaderThiead Estinstance{void)
4t W CReade:Thiead :GetRuntimeClass(void)

N CReadesThiead Intinstance({vod)
CReaderThiead .m_bDone
CReadesThiead :m_byBuffes
CReaderThiead :m_clg
CReaderThiead :m_dc :i

MO o srdee Them sk oo WO

{ References:

1 e \skdohare\iight\go.h(19)

e \skdohare\light\go h{55)
1 e \skdohare\ight\go.cpp{378)

T Y T T T T T T Thmtmmsmmil i

This class declare in Thread.h header file and is a CWinThread type class. it
uses a Run() function .
When ReaderThread is On pasition flash lock the RingBuffer so that no thread can
modify the RingBuffer otherwise Flash will not work Properly.
ReadeThread reads values from RingBuffer and Put data into driver's buffer TxPtr
from RingBuffer Before it , it uses bufferLock to lock the Ringbuffe .and send DMX 512
packet to specified serial com port or LPT1. this routines include MAB, SC, CD(up to
512) and function SendToPort();
When Open for ReaderThread is TURE the data is transferred from the driver's buffer to
the DMX-Dongle by calling this function DongleReadWrite must only be called by the
first user of this dongle. During this application another application is terminated. When
data has been sent to screen it Unlock the ring buffer and switch off dimmers.
SendToScreen function draws the label and Dimmer block in black color.

Page No. 48

Theatre Vision..

Class Name: CWriterThread

rl.uuig're_: \
CwWiterTheead: Facb[luScereluwuedm =
CwiiterThread:: FacbOLtSca\e(umg'vedﬂumg_ ;

41 W CWiterThiead: GetRutmDmdvadl
l v CWrtaTI’uead GetR

? e \skdohare\light\threads. h(55)
| &\skdohare\light\threads h{34)

CWriterThread defines the CWinThread publicly and give the function SetOwner and
FadeOutScene() and FadelnScene(). Which control the information about the Cross
and add options and during running he show it Fade-out and Fade-in scenes.

Page No. 49

Theatre Vision...

CHAPTER: 5

TECHNICAL ISSUE

S.1 THE DMX512 PACKET

Before we go on to explain the structure of the DMX packet, I am assuming that we should have
some knowledge of the bits & bytes that make up any computer's fundamental language system.

The DMX bits are also represented by a digital high (HI) or a digital low (LO).The actual DMX
output transmits these HI and LO signals.

5.1.1 DMX512 PHYSICALS

The DMX data stream clocks out at the rate of 250Khz, which means each bit is measured at 4

microseconds widths.

1) IDLE or NO DMX situation: In the absence of a valid DMX packet the output of a
DMX line will be a continuously HI signal.

2) BREAK : The start of a DMX packet is heralded by the output going LO for a
MINIMUM period of 88 microsecs. This means 22 LO bits are measured out one after the other.
This is known as the BREAK. The BREAK could be longer and up to 1 sec.

Experience shows that slightly longer breaks (above 88 microsecs) sent from a console are better
since the receiving devices are generally given the algorithm={Is the BREAK>88 microsecs or

22 pulses}. I keep it generally at 120 microsecs in equipment designed by me
/0396,

Page No. 50

Theatre Vision...

3) MARK AFTER BREAK (MAB) : The MAB immediately follows the BREAK by
making the output go HI for a MINIMUM period of 8 microsecs or 2 pulses.

This MAB is a bit of a problem since the difference between the original DMXSIé and the
current DMX512 (1990) standards relate to this period of the packet. The original was set at 4
microsecs or I puise. This created hassles for some receivers for being too short a MAB for
detection and was upgraded to 8 microsecs or 2 pulses in 1990. The problem comes when a older
.console is used with newer receivers or vice versa. Wrong detection will lead to packet rejection
or the wrong data going to the wrong channel. This will travel down the line leading to utter
confusion. Some consoles and receivers have a dipswitch to set this parameter for both timings.

Again the maximum MAB length could be 1 sec. My ideal timing would be 12 microsecs.

4) START CODE (SC) : The SC is next in the line. It is easier to remember that the SC
is thé start of the actual data stream where all individual channel data have the same format. The
BREAK & the MAB were of different timings but the SC onwards all frames would have the
same structure and timing of 11 pulses or 44 microsecs width. The first one can be termed, as

data for channel No 0, which is a non-existent channel and represents the SC.
I will first describe the general structure of these channel data frames:
_Ofthe 11 pulses the 1st one is always LO signifying the Start bit.

-This is followed by the actual data byte of 8 bits (which could be any of 256 values from 0 to
255),

-The frame ends with 2 bits which are HI signifying the two stop bits and end of the channel

information.

Channel No 0 is the SC, which as things stand, ALWAYS has the data byte = 0 signifying that

the following data is for dimmers. As per the current standard, no other value can be used. The

Page No. 51

Theatre Vision... " -

option is left open and as and when ESTA specifies, the SC value may be used to tell the receiver
that the data following it is meant for a specific type of receiver. That is the end purpose of
having the SC..... to be able to segregate a packet of data, receiver wise. But, for the moment, if's
zero which has been specified for dimmers by ESTA. Do remember that this also includes just

about any receiving device like dimmers, scans or whatever!

5) MARK TIME BETWEEN FRAMES (MTBF) : The mark time between frames can
. be from 0 sec up to 1 sec but the lesser the better. Each channel frame can have the MTBF before
the start bit. The MTBF is obviously HI.

6) CHANNEL DATA (CD) : Thé CD frames follows the SC frame in a logical manner

from 1 to-512 (or less) in the form described-above.

7) MARK TIME BETWEEN PACKETS (MTBP) : After the last valid CD stop bits
are sent, one full packet is completed and the next packet can start with a fresh BREAK & MAB.
However an idle (HI) can be inserted between packets (MTBP), the lengtﬁ of which may be 0 sec
to 1 sec. It is upto the console designer to design the architecture of the console such that the

thrufput time is at a minimum.
9.1.2 IMPORTANT

The wonderful part of DMX is that you DONT send the CHANNEL NUMBER AT ALL!!

The 1st byte AFTER the STARTCODE (which is always 0) is AUTOMATICALLY taken as the
data value for Channel 1...next, data value for Channel 2....next, data value for Channel 3...and
so on..upto 512 OR less channels. That is how the receivers...be they intelligent lights or
whatever...will decode them. Actually a cﬁamel counter is set up in the receiver...either in the
microprocessor it self or as a hardware counter. This counter will be automatically reset to point
at channel 0 when a valid BREAK and a valid MAB is detected. Subsequéntly with every LAST
stop bit in each frame, this counter is incremented by ONE. Thus, DURING the SC frame, the
counter output reads zero. At the end of the S_C (last stop bit of the SC frame)the counter 6utput

Page No. 52

Theatre Vision...

becomes one, thus telling the processor that the next frame contains the data for channel 1 and so
on. So the receiver knows which channel the current data is valid for.... Thus when you set a start
address in an MARTIN 812 at say 50 (+6 channels) it simply takes the 6 data bytes from when
the internal channel counter reaches 50.... counting upto 55!! The moment you start a fresh
BREAK ...etc sequence (a new packet, that is)-this counter is reset!! So it is fully legal for a
console or software to generate upto valid 100 data bytes after the SC for 100 channels and then
generate 2 BREAK, etc. Thus you don't HAVE TO generate all 512 bytes !! The LSC ATOM,
for instance, has the capacity to drive 99 channelé; thus at the end of the 100th frame or a count
of 99(remember, we have an SC frame to count, too, at the count of zero) the console starts
sending a BREAK + MAB and so on. This cbﬁcept is vital in order to understand the one to one
- relation between channel nos and their respective data.

The following is a mathematical layout of the typical DMX512 (1990) timing: -
[(88)+(12)+(44)+(CHL*44)H CHL*MTBF)+HMTBP)] microsecs

Where CHL is the no of Channels under consideration.

The ideal timing (this is purely my personal opinion) :-

t(120)+(12)+(44)+(CHL*44)+(0)+(50)] microsecs

For 512 channels my timing would be 22754 microsecs.

Thus the refresh rate = 1000000 / 22754 = 43.9 or 44 Hz

How the refresh rate varies would depend upon the Microprocessor speed, firmware code and

- system architecture.

Page No. 53

Theatre Vision...

DMX512 (1990) timing chart

Description MIN P MAX UNIT
BREAK 88 88 1000000 usec
MAB 8 usec
FRAME WIDTH — usec
START/DATA/STOP BITS| 4 usec
MTBF 0 NS 1000000 | usec
MTBP 0 NS 1000000 | usec

Note: NS means Not Specified and is designer definable

MTEF
— MAB START EIT
IDLB BREAK STOF BITS
STOP BITS
8 DATA BITS
START BIT
/ OTHER
CHANNELS
|

DATA =0 —_—

FRAME WIDTH FRAME WIDTH

START CODE CHANNEL 1

DMX512 TIMING DIAGRAM

Page No. 54

Theatre Vision...

5.2 DMX-Dongle I1 WINDOWS 95 98 NT

This contains all the information needed to develop 32 bit applications for Windows 95,
Windows 98 and Windows NT Ver 4.0. '

5.2.1 Hardware Features : The DMX-Dongle II provides the following features:

=> DMX512 transmission of 512 channel data.

=> Programmable transmit Break, Mark after Break and Header Code
=> DMXS 12 receive with programmable base address
. => Receive 512 channels @ 8 bit resolution and full bandwidth
'=> Simultaneous transmit and receive

=> Programmable Merge-and Loop Through

=> Programmable receive Header Code

=> Analysis of receive errors

=> Receive Break and Mark after Break timing analysis

= Multiple oscilloscope trigger outputs

5.2.2 Software Features : The DMX-Dongle II Windows SDK provides a common

development platform which supports the three main Microsoft operating systems.

Key new features include:

=> 'Application access to a total of three DW(—Dbhgle I

=> Multiple abplication aécess to a single DMX-Dongle
=> Stealth Mode allowing lighting control and lighting visualization software to share data

=> Continuous transmit and feceive without PC intervention '

=> Receive of entire frame without PC intervention

=> Programrﬁable Merge from input or Loop Through

Page No. 55

Theatre Vision...

5.3DIRECTORY STRUCTURE

The SDK is installed into the path: C:\Program Files\DMX-DongleI\SDK.

The folder structure is as follows:

=> Bin Contains all the device driver files.

a Wrtdev*.vxd Windows 95 / 98 drivers.

Tafget: C:\Windows\System\Vmm32

a WinRT.sys Windows NT Driver.

Target: C:\WinNT\System32\Drivers

a DongNT.DIl Main Driver.

Target (95/8): C:\Windows\System

- Target (NT): C:\WinNT\System32

= DongleView Application and source files for DongleView.exe. This is a
C-++Builder Ver3 project. | |

a DongleView.bpr Borland project file

a DongleView.exe Applicatioﬁ

a DongleView.cpp Project source code

a Unitl.cpp Application source code -

=> Include The C++ include files required to access the DLL.

a DongNT.hpp Include file for driver. Includes all DLL calil function prototypes and global
defines. ’

4 DongleDIILoad.cpp Example code to dynamically link to DLL.

a DongleDlILoad.hpp Include file for above.

=> InstallShield Contains an example InstallShield project which contains all
the required settings to install the DMX-Dongle Drivers and update the
registry. '

a DonglellSample.iwz InstallShield project file. Use this as a

template for deploying DMX-Dongle applications.

Page No. 56

Theatre Vision...

54 SDK

=> Registry Contains details of the registry changes executed when installing
DMX-Dongle software.
a DongleReg.reg Regedit command file to install Registry keys required for the DMX-Dongle
Drivers. '
All of the files contained in the SDK may be redistributed subject to the licence agreement
contained in the SDK folder. Where the files detailed in the BIN folder are redistributed, they
must be installed in the target folders specified above and must not be renamed.

5.4.1 DLL Access :- All access to the DMX-Dongle II is routed via the DongNT DII.
The DIl operates under Windows 95, Windows 98 and Windows NT Ver4, allowing multiple
applicaﬁons access to a maximum of three DMXDongles.
The windows operating systems allow access to a DLL via two-methods, static or dynamic
linking. However, the DongNT DIl will only operate correctly when accessed dynamically.

Example code showing how to dynamically link the functions is included in the SDK\Include .
folder.

' 5.4.2 Initialising the Dongle : The DMX-Dongle is initialised with the command:
Type=Donglelnit(Port,Aux,MaxChannel); |
Port specifies one of the three DMX-Dongles that are connected to LPT1,2 of 3. Aux is set to
zero and MaxChannel is set to a number between 1 and 512. It represents the number of DMX
channels that will be processed by the driver. The function returns an unsigned int which-is
broken into two bytes. The high byte is the status return from the driver, whilst the low byte is
the status return from the DMX-Dongle. The return codes are detailed in DongNT.hpp:

#define DiLoGood 0x0005
ftdefine DiLoSystemFail 0x0045
#define DiHiGood 0x0000
#fdefine DiHiBadDriver 0x0100

Page No. 57

Theatre Vision...

#define DiHiAlreadyOpen 0x0200

#define DiHiBadPortNumber 0x0300

The following to pseudo code examples show a simple and a sophisticated approach to
initialising. Simple Initialisation: ‘

unsigned char Open=0; // Set when a donglé is open

unsigned char PrimaryUser=0; // Set if dongle first opened by this app

unsigned char Port=0; // 0-2 current dongle port |

unsigned int Type=0;

unsigned char* RxPtr=0;

uhsigned char* TxPtr=0;

Page No. 58

Theatre Vision...

3.5 FUNCTION PROTOTYPES

DongleClose

Purpose: Close an application’s attachment to a DMX-Dongle.

Syntax: unsigned char DongleInit(unsigned char Port)

Remarks: The function will fail harmlessly if DongleInit was unsuccessful.
Arguments: Port: 0-3 represents Lptl-Lpt3 ‘

Return Value: True if the close action was successful

_DongleGet

Platform Purpose: Detect the opei'ating system.
Syn‘tax: unsigned char DongleGetPlatform(Void)
Remarks:

Arguments: None

Return Value: True if NT or False if 95/98 or Win 3.1 running Win32.

DongleGet

InUse Purpose: Return the number of applications attached to this DMXDongle.
Syntax: unsigned char DllDongleGetInUse(unsigned char Port)

Remarks:

Arguments: Port: 0-2

Return Value: Zero indicates no applications attached. A maximum of 255 applications may
theoretically attach to a DMXDongle.

DongleGet 4
TxPtr Purpose: Return a pointer to the array of 512 unsigned char which represents the transmit

~level buffer.

Page No. 59

- Theatre Vision...

Syntax: unsigned char* DongleGetTxPtr(unsigned char Port)
Remarks: The buffer is output to the DMX-Dongle by each call to DongleReadWrite
Arguments: Port: 0-2 : '

Return Value: unsigned char *

DongleGet

RxPtr Purpose: Return a pointer to the array of 512 unsigned char which represents the receive
level buffer. » _

Syntax: unsigned char* DongleGetRxPtr(unsigned char Port)

Remarks: The buffer is updated by the DMX-Dongle on each call to DongleReadWrite
Arguments: Port: 0-2 |

Return Value: unsigned char *.

DongleGet

Stealth Purpose: Return the Stealth Mode of the DMX-Dongle.

Syntax: unsigned char DongleGetStealth(unsigned char Port)

Remarks: When Stealth Mode is activé, the physical DMX512 input to the DMX-Dongle is
ignored, instead the transmit data is automatically copied to the receive buffer. The purpose of
this mode is to allow control and visualisation packages to coexist on the same PC.

Arguments: Port: 0-2

Return Value: True if Stealth Mode active

DongleSet

Stealth Purpose: Enable or disable the Stealth Mode of the DMX-Dongle.

Syntax: unsigned chér '_DongleSetStealth(unsigned char Porf, uhsigned char Stealth)
Reniarks: When Stealth Mode is active, the physical DMX512° input to-the DMX-Dongle is

ignored, instead the transmit data is automatically copied to the receive buffer. The purpose of

Page No. 60

Theatre Vision...

this mode is to allow control and visualisation packages to coexist on the- same PC. Stealth mode
should only be enabled at the request of the user. Stealth mode should not be enabled if only one
user is attached to the DMX-Dongle. ’

Arguments: Port: 0-2

Stealth: True enables Stealth Mode.

Return Value: True if Stealth Mode active

DongleGet

Max Purpose: Return the number of channels that are currently refreshed by the driver.
Syntax: unsigned int DongleGetMax(unsigned char Port) - ’
Reimarks: '

Arguments: Port: 0-2

Stealth: True enables Stealth Mode.

Return Value: The current number of channels processed by the driver (1-512).

DongleSet | v
Max Purpose: Set the number of channels that are currently refreshed by the driver.

Syntax: unsigned ilit DongleSetMax(unsigned char Port, unsigned int Max)

Remarks: The DMX-Dongle always transmits and receives all 512 channels. Significant
: processing power improvements are obtained by reducing the number of channels that are
processed by the driver. In a confrol application this value will typically be set on the fly as
lamps are patched. When multiple applications are attached to a DMX-Dongle, this function oﬁly
allows the Max Value to be increased.

Arguments: Port: 0-2

Max: 1-512

Return Value: The current number of channels processed by the driver (1-512).

DongleRead

Write Purpose: Transfer all data and configuration between driver buffers and DMX-Dongle
hardware.

Page No. 61

Theatre Vision. ..

Syntax: unsigned int DongleReadWrite(unsigned char Port)

Remarks: This function must only and always be called continuously by the first application to
attach to a DMX-Dongle.

Arguments: Port: 0-2

Return Value: Dependent upon hardware.

DongleReset _

RxCounters Purpose: Reset to zero the DMX-Dongle’s internal receive data and error counters.
Syntax: veid DongleResetRxCounters(unsigned char Port)

Remarks:

Arguments: Port: 0-2

Return Value:

DengleClear

DataBuffer Purpose: Zeroes the transmit and receivé buffers.

Syntax: void DengleClearDataBuffer(unsigned char Port, unsigned char Data)
Remarks: Sets both the transmit and receive buffers to a common value which is usually zero.
Arguments: Port: 0-2 |
Data: 0-255, the data value used to fill the buffers

Return Value: None

DongleSetRx .

Header Purpose: Set the Start Code deemed valid for received DMX512. This value is usually
. Zero. - '

Syntax: void DongleSetRxHeader(unsigned char Port, unsigned char Head)

Remarks: Any frames received ‘which' do not match this start code are logged by the

DongleGetHeaderErrorCount function. These frames are also not copied to the receive

buffer.

Arguments: Port: 0-2

Head: Receive Start Code 0-255

Return Value: None

" Page No. 62

Theatre Vision...

DongleSetTx

Header Purpose: Set the Start Code used to transmit all DMX512 frames, This value is usually
Zero.)

Syntax: void DongleSetTxHeader(unsigned char Port, unsigned char Head)

Remarks: Ait is usual to use a zero vaiue for the Start code.

Arguments: Port: 0-2

Head: Transmit Start Code 0-255

Return Value: None

DongleSetTx

BreakTime Purpose: Set the break time in micro-seconds used for all DMX512 transmission.
Syntax: void DongleSetTxBreakTime(unsigned char Port, unsigned char Time)

Remarks: This value must not be set to less than 88uS for normal operation. A value of 200uS is
sﬁggesfed. When controlling the DMX-Dongle I this is an absolute value. When controlling the
DMX-Dongle IT, this is a minimum value which can be expected to fluctuate.

Arguments: Port: 0-2

Time: 0-255 uS break time.

Return Value: None

' Doﬁgleéeth
'MabTime 'i’urpose: Set the mark after break time in micro-seconds used for all DMX512
. “transmission. , i

‘ Syntax: void DengleSetTxMabTime(unsigned char Port, unsigned char Time)

Remérks: This value must not be set to less than 8uS for normal 6peration. A value of 20uS is

suggested. When controlling the DMX-Dongle I this is an absolute value. Whelp controlling the

Page No. 63

Theatre Vision...

DMX-Dongle 11, this is a mmlmum value which can be expected to fluctuate.
Arguments: Port: 0-2 '
Time: 0-255 uS Mab time.

Return Value: None

DoﬁgleGet

Firmware Revision

Purpose: Return the DMX-Dongle firmware revision. ‘

Syntax: unsigned char DongleGetFirmwareRevision (unsigned char Port)

Remarks: Three versions exist: ‘

Ox16 = Pre-pfoduction DMX-Dongle I

' 0x17 = Production DMX-Dongle 1

Ox20 = Proéiuqtion DMX-Dongle IT

The DLL is capable.of Adriving all versions, however the following issues must be considered:
;I‘he DMX-Dongle I requires PC intervention to transmit or teceive an entire frame, whereas the
DMX-Dongle II autonomously transmits and receives. ‘

The DMX-Dongle I is only capable of half duplex operation, whereas the DMX-Dongle II can
transmit and receive simultaneously. ‘
The DMX-Dongle I does not have loop or merge facilities and also communicates with the PC at
approximately 20% of the rate of the DMX-Dongle II. |

Arguménts: Port: 0-2

Return Value: Firmware Revision

DongleGet

Type Purpose: Return the type code for the DMX-Dongle.

S&ntax: unsigned int DongleGetType(unsigned char Port)
'Remarks: This function provides the same return as Donglelnit.

Argilments: Port: 0-2.

Return Value: Type

Page No. 64

Theatre Vision...

DongleSet

TxMode Purpose: Enable the DMX512 output.

Syntax: void DongleSetTxMode(unsigned char Port)

Remarks: This function operates slightly ’differently depending upon the DMX-Dongle
firmware: ' ’

Firmware = 0x16 or 0x17 (DMX-Dongle I): Switches the DMX-Dongle to transmit mode and
therefore disables received DMX512. This function should be called whenever it is necessary to
switch to transmit mode.

Firmware = 0x20 (DMX-Dongle IT): Enables DMX512

transmission, does not affect received DMX512. This function should be called once at
initialisation if the transmit capability is required. ’

.Arguments: Port: 0-2

Return Value:

DongleSet ' -
RxMode Purpose: Enable the DMX512 input.

Syntax: veid DongleSetRxMode(unsigned char Poﬁ)

" Remarks: This function operétes slightly differently depending upon the DMX-Dongle
firmware:

Firmware = 0x16 or 0x17 (DMX-Dongle I): Switches the DMX-Dongle to receive mode and
therefore disables DMX512 transmit, This function should be called wﬁenever it is necessary to

switch to receive mode.

Firmware = 0x20 (DMX-Dongle'H): No action
Arguments: Port: 0-2

Returﬁ .Value:

L

DongléGet
Channel

Count

Page No. 65

Theatre Vision...

Purpose: Return the number of channels contained in the last received DMX512 frame.
Syntax: unsigned int DongleGetChannel Count(imsigneii char Port)

Remarks: Use DongleResetRxCounters to clear the count. |

Arguments: Port: 0-2

Return Value: 1-512

DongleGet

BreakTime Purpose: Return the break time in microseconds of the last received DMX512
frame.

Syntax: unsigned int DongleGetBreakTime(unsigned char Port)

Remarks: Values lower than 88uS are outside the DMX512 specification.

Arguments: Port: 0-2

Return Value: Break time

DongleGet

- MabTime Purpose: Return the mark after break time in microseconds of the last received
DMX512 frame.

Syntax: unsigned int DongléGetMabTime(unSign’éd chai‘ Port)

- Remarks: Values lower than 8uS are outside the DMX512 (1990) specification.-

Arguments: Port: 0-2

Return Value: Mab time

DongleGet

Period Purpose: Return the total frame time in milliseconds .of the last received DMX512
ﬁame. ' |

Syntax: unsigned int —DongleGefPeriod(unsigned char Port)

Remarks: The reciprocal of thié value gives the data reﬁesh rate.

Arguments: Port: 0-2

Page No. 66

Theatre Vision...

Return Value: Frame period

DongleGet

Overrun

ErrorCount »

Purpese: Return the total number of overrun errors detected in then received DMX512 data
stream.

Syntax: unsigned int DongleGetOverrunError'Count(u,nsiglied char Port) -

Remarks: Use DongleResetRxCounters to clear the count.

Arguments: Port: 0-2

Return Value: Error count

DongleGet

Framing

ErrorCount

Pﬁrpose: Return the total number of framing errors detected in the received DMXS512 data
stream.

Syntax: unsigned int DongleGetFramingError Count(unsigned char Port)

Remarks: Use DongleResetRxCounters to clear the count.

Arguments: Port: 0-2

Return Value: Error count

DongleGet

Header

ErrorCount

Purpose: Return the total number of DMX512 frames received with non matching start codes.
Syntax: unsigned int DongleGetHeaderError Count(unsigned char Port)

Remarks: Use DongleResetRxCounters to clear the count. '

Page No. 67

Theatre Vision...

Arguments: Port: 0-2

Return Value: Error count’

DongleGet

FrameCount Purpose: Return the total number of DMX512 frames received.
Syntax: unsigned int DongleGetFram;a Count(unsigned char Port)
Remarks: Use DongleResetRxCounters to clear the count.

Arguments: Port: 0-2 '

Return Value: Frame count

DongleGet
DIiRevision Purpose: Return the revision number of the DIL.
Syntax: unsigned char DongleGetDIIRevision (unsigned char Port
Remarks: '
- Arguments: Port: 0-2

Return Value: DIl revision

DongleGet _ ,

BlockSize Purpose: Return the number of channels processed byl each DongleReadWrite
function call.

Syntax: unsigned int DongleGetBlockSize(unsigned char Port)

Remarks: The return depends upon the firmware revision. When a DMX-Dongle 11 is in use,
each call to DongleReadWrite transfers an entire ﬁaﬁe of both receive and transmit data
between the driver and the Dongle. |

Page No. 68

Theatre Vision...

Arguments: Port: 0-2

Return Value: Firmware = 0x16, Return = 128
Firmware = 0x17, Return = 256

Firmware = 0x20, Return = 512

DongleSet

Output Purpose: Set the DMXS512 output mode.

Syntax: unsigned char DohgleSetOutput(unsigned char Port, unsigned char Output)
Remarks: Normal mode is defined as transmitted DMX512 comprises of the transmit buffer.
Loop mode retransmits received DMX512 to the output. Merge mode combined received
DMX512 and the transmit buffer on a highest takes precedence basis.

Arguments: Port: 0-2

Output: 0 = Normal

1 =Loop

2 =Merge _

Return Value: True if Firmware = 0x20 (DMX-Dongle IT)

DongleGet , .

Output Purpose: Returns the current DMX512 output mode.

Syatax: unsigned char DongleGetOutput(unsigned char Port)

Remarks: Normal mode is defined as transmitted DMXS512 comprises of the transmit buffer.
Loop mode retransmits received DMX512 to the output. Merge mode combined received \
DMX512 and the transmit buffer on a highest takes precedence basis.
Arguments:'P-ort: 0-2 |

Page No. 69

- Theatre Vision...

Return Value: 0 = NormalA
1=Loop
2 = Merge

Page No. 70

Theatre Vision...

DEVELOPMENT ENVIRONMENT

VISUAL C++ 6.0 USING MFC
~ WIN 32 SDK

~ Page No. 71

Theatre Vision...

VISUAL C++ VER 6.0
USING | |
MICROSOFT FOUNDATION

~ CLASSES

Page No. 72

Theatre Vision...

re

CHAPTER: 6

DEVELOPMENT ENVIRONMENT

6.1 MICROSOFT VISUAL C++ VERSION 6.0.....

The Microsoft visual C-++ version 6.0 development system for Windows 98 / Wmdows ;
NT is an integrated development environment for C and C++ apphcatlons, with support multi-
platform and cross-platform development. It includes a C++ application fréméwork, the
Microsoft foundation class library version 6.0, which facilitates the development of
applications for Windows as well as the parting of application to multiple platforms. We can
easily develop an application for windows on one platform using visual C++ and Microsoft
foundation class library (MFC), and then use the same code to 1lbuild application for other
platforms. |

The visual C++ development environment contains the visual elements that are used to
managé our development efforts. It provides App wizard and custom aPP wizard for creating
C++ projects based on the Microsoft foundation class library (MFC). The projects contain
skeleton files that create an application framework with basic window functionality. We can
than add our application —specific code to these files. In regular and logical ways using App
wizard reduces our deveiopment time and effort by creating the initial skeleton files custom
App wizard allows we initially create to our particular needs. This permits us to reuse code
that we always include in our applications, thus, further reducing our development time.

The development environment also includes component gallery with contains reusable
components that we can add to existing applications A component can be an OLE control our
own reusable C++ classes with any associated resources or a component created by a third —
party vendor. Components created by vendors can range from reusable code to full — fledged
tools such as a code analysis tool.

As we develop our applications we generally need to revise them to eliminate bugs in our

code. The development environment provides a number of capabilities to aid us in this

Page No. 73

Theatre Vision...

debugging process, it not only helps us find the bugs but can provide assistance in identifying

their causes.
6.1.1 COMPONENT GALLERY:

Software reuse is a key theme in visual C++, and component gallery is a great way to

reuse software components.

Component gallery contains reusable code such as OLE controls, our own reusable C++

classes with any associated resources, or components created by third party vendor. Third

\
party - created range components range from reusable code to useful tools, such as a code

analysis tool. _

Components gallery makes it easy to reuse a new dialog box or a control without cutting and
pasting and without danger of name collisions.

We can use components from component gallery in our application, and we can add
components to component gallery for later reuse. We can also share them with others.

We use App wizard to create a Windows based application that uses the MFC library, App
wizard generates a complete featurerich set of starter files from which we can build an
application, whether that application is based on a single- document, multiple document, or
dialog architecture, requn‘es OLE or ODBC support targets multlple platforms or generates
an executable file or DLL)

But what about those specials types of application that is unique to our work? What do
we do if our clients or we need applications with features that the standard App wizard
doesn’t handle? The answer is we create custom App wizards.

Custom App wizard is useful for creating generic application types that can be used over and

over again. Custom App wizards are not useful for creating one-off application.
6.1.2 How App wizard works with MFC:
App wizard uses the Microsoft foundation class library (MFC) to help us build

application for Windows-. We can wn'té MFC application without App wizard; but using App
wizard, however, greatly simplifies and speeds our work.

For each project, App wizard creates an application class derived ﬁom the MFC
CwinApp class. App wizard also generates an implementation file with the following features:
A.message map for the application class.

An empty class constructor.

_A.Manahle_thal.dcclates_an_obgcct_oithﬂ_apphcahnn class

Page No. 74

Theatre Vision...

A standard implementation of the application class’s InitInstance member function.
The application class is placed in the project header and main source files. The names of the
class and files created are based on the project name we supply in App wizard.
We can use App wizard to create applications that use the follovﬁng types of interfaces:
Interface description ' ,
Single document (SDI) An application that will open only one
Document at a time — similar to notepad.
Multiple document(MDI) An application that will open multiple documents
At a time — similar to Microsoft word.

Dialog based " An application that uses a dialog box as an

Interface.
App wizard allows us to generate projects that will create applications to run on the
following platform.

Platform name Comes with

Win 32(x86) Visual C++

Win 32(MIPS) Visual C++ RISK edition

Win 32(ALPHA) Visual C++ RISK edition

Win 32(Power PC) Visual C++ RISK edition

Macintosh Visual C++ cross development edition

for Macintosh
power Macintosh Visual C++ cross development edition
for Macintosh

App wizard and its language DLLs. those with names described i)y Appzx* DLL-
" simplifythe process of localizing applications.
Our 'app_lication can choose from the following features:
OLE automation and OLE container ,server, and miniserver support.
Database(ODBC or DAO) support.
MAPI support that enables us to write mail-aware applications.
~ Windows sockets support that allows us to write TCP/IP application.
Our application depending on whether it is SDI, MDI, or dialog based, can choose
from the following window features:
Dockable toolbar

Page No. 75

Theatre Vision...

Initial status bar

Printing and print preview
Context sensiﬁve help
3D Control

MFC Hierarchy chart: In order to use MFC , we must understand the relationship
between a class and its base class, and between a class and its derived classes. the MFC
Hierarchy Chart provides a quick, visual interpretation of the inheritance relationship of the
classes in the MFC.

The Microsoft foundation class library provides collection classes to manage groups of

objects.

Collection classes:
The collection classes are of two types:
Collection classes created from C++ templates
Collection classes not-created from templates
A collection class is characterized by its “shapé” and by type of its elements. MFC
provides collections iﬁ three shapes:
Lists:

The list class provides an ordered, non-indexed list of elements, implemented as doubly
linked list. A list has a “head” and a “tail” and adding or removing elements from the head or
tails, or inserting or deleting elements in the middle, is very fast.

Arrays:

The array class provides a dynamically sized, ordered, and integer-indexed array of
objects.
Maps: '

A map is collection that associates a key object with a value object.

OLE Control:

An OLE control is a reusable software component that supports a wide variety of OLE

functionality and can be customized to fit many software needs. These controls can be

developed for variety of uses, including database access, data monitoring, and graphing.

Page No. 76

Theatre Vision...

Besides their portability, OLE controls support features previously not available to custom
controls, such as compatibility with existing OLE containers and the ability to integrate their
menus with OLE container menus. In addition, an OLE control fully supports OLE
automation, which allows the control to expose writable properties and set of functions that
can be called by the control’s user.

MFC provides a set of classes that we can use to implement OLE controls. In ‘addition to
the OLE control classes, OLE control macros and globals implement,\ among other things,

control serialization and property exchange. The following is a list of the OLE control classes:

CConnection Point Implements outgoing interfaces.

CFont Holder Implement font properties.
Cpicture Holder Implements picture properties.

C OLE Control Implement the OLE control framework.

C OLE Control module Implements an OLE control module.

C OLE Property page Implements an OLE control property page.

C Prop Exchange Im’plemeﬁts the exchange of OLE control properties.

OLE control containers are OLE clients that are capable of loading and supporting OLE
confrols. Any existing application, which can work as an OLE client, can insert an OLE
control. However, because OLE controls provide a new architecture, they can not completely
support the full functionality inherent in OLE controls.

For this reason, test container, shipped as a part of visual C++, provide support for complete
testing of an OLE control.

6.1.3 Development Platform Which Are Containers For OLE Controls:
Currently, FoxPrg 3.0, Access 2.0, Visual basic 4.0 and OLE containers built with
Visual C++ version 6.0 fully éupport OLE controls. This container type, usually referred to as

a control container, is able to operate our OLE control by using the control’s properties and
methods, and receive notifications from our OLE control in the form of events.
Converting a VBX Control to an OLE Control:

If we wish to use a VBX control as a template for a new OLE control, we must have the

source code for the VBX control to do any real conversion work. This means that we can not

Page No. 77

Theatre Vision...

convert a third-party VBX control to an OLE control without the source for the control — we
will be dependent on the supplier of the control for a new version that use OLE control
architecture. ,

Warning the VBX template tool was part of the control wizard found in version 1.0 and 1.1of
CDK.This tool was removed from the OLE and properties.

OLE is an extensible technology for interapplication communication with a number of
sub technologies, as described in the list below. Initially, OLE supported creating compound
document, documents that could contain objects created by other application, both embedded
and linked in document. In fact, this is the origin of the name OLE, “object linking and
embedding” compound documents are still an important part of OLE technology. In fact, one
of .the newer features supported by OLE are especially for OLE documents, in-place
acﬁvaﬁon or visual editing,

However, OLE is now much more than that. OLE provides data transfer in windows, not only
drag-and-drop but also the clipboard and the underpinning for DDE.

There are two other major technologies supported by OLE and MFC, OLE Automation and
OLE controls. Automation lets one application control another. It can support a common

scripting language across multiple application from different vendors. OLE controls are

reusable software components.

TOPIC CLASS
OLE Documents C OleclientItem, C Oleserverltem, C OleDocument
In-place Activation C OlelpframeWnd, C OleResizebar
Data transfer - C Oledatasource, C Oledataobject
Drag-and-drop - C Oledropsource, C Oledroptarget, Cview
Automation C Oledispatch driver, C cmd target
OLE Controls C Ole control, C Connection point

Key Components of an MFC application:

An application object, which represents our application
Document template objects, which create document, frame window, and view objects.

Document objects, which store data and serialize it to persistent storage.

Page No. 78

Theatre Vision...

View objects, which display a document’s data and manage the user’s interaction with the
data,

Frame window objects, which contain views.

Thread objects, which let us, program multiple threads of execution using MFC classes.
Dialog boxes, controls, and control bars, such as toolbars and status bars. ‘
OLE visual editing and OLE automation.

OLE controls and the classes and tools are used to develop them.

Database support using open database connectivity (ODBC) and data access objects (DAO).

Useful general-purpose classes, such as strings collections, exceptions, and date/time objects.

Taken together, the classes in the Microsoft foundation class library (MFC) make up an
“application framework” the framework on which we built an application for windows. At a
very general level, the framework defines the skeleton of an application and supplies standard
user-interface implementations that can be placed onto the skeleton. Our job as programmer is
to fill in the rest of skeleton-those things that are specific to our application. We can get a
head start by using AppWizard to create the files for a very through starter application. We
use the Microsoft visnal C++ resource editors to design our user-interface elements visually,
classwizard to connect those élements to code, and the class library to implement our

application specific logic.

Version 3.0 and later of the MFC framework supports 32-bit programming for win 32
platforms, including Microsoft Windows 98 and Microsoft Windows NT version 3.5 and
later. MFC win 32 support includes multithreading.

6.1.4 WINMAIN FUNCTION:

Like any program for Windows, our framework application has a winmain function. In a

framework application, however, we don’t write winmain. It is supplied by class librai'y and is
called when the application starts up. winmain perform standard services such as registering
window classes. Then it calls-member functions of the application object to initialize and run
the application.

To initialize the application, winmain calls our application object’s Init application and

Initinstance member functions. To run the application’s message loop, winmain calls the Run

Page No. 79

Theatre Vision...

member function. On termination, winmain calls the application object’s ExitInstance

member function. Figure below shows the sequence of execution in a framework application.

Sequence of execution
Winmain standard function supplied by framework
Calls

L InitInstance initializes current instance of the application

Calls |
—> ’ RUN runs the message loop and onldle
Calls
l—b Exitinstance cleans up after the application

Note names(Winmain, Run, onldle) the Microsoft foundation class library and Visual C++

supply these elements.
. CwinApp and Appwizard:

When it creates a skeleton application, AppWizard declares an application class derived
from CwinApp. AppWizard also genefates an implementation file that contains the following
items: '

A message map for the application class

An empty class constructor

A variable that declares the one and only object of the class

A standard implementation of our InitInstance member function

‘The application class is placed in the project header and main source files. The name of the
class and files created are based on the project name we supply in AppWizard. The easiest
way to view the code for these classes is through the class view in the project workspace
window.

The standard implementation and message map supplied are adequate for many purposes, but
we can modify them as needed. The most interesting of these implementations is the

InitInstance member function. Typically we will add code to the skeleton implementation of
InitInstance. |

Overridable C WmAanember functions

Page No. 80

. Theatre Vision...

CwinApp provides several key overridable member functions:

InitInstance - .
Run

ExitInstance
Onldle

The only CwinApp member function that we must override is InitInstance.

InitInstance member function:

Windows allows us to run more than one copy, or “Instance”, of the same |
application. Winmain calls InitInstance every time a new instance of the application
starts.

The standard Initlnstance Implementation created by AppWizard perform the
. following tasks: |

As its central action, creates the document templates that, in turn, create documents,
views, and frame windows, for a description of this process, see document
templates. .

Load standard file options from an .INI file or the windows registry, including the
names of the .most'recently used files. |

Registers one or more document templates.

For an MDI application, creates a main frame window.

Processe_é the command line to open a document specified on the command line or
to open a new empty document.

We can add our own initialization code or modify the code written by the wizard.
6.1.5 Run Member Function:

A framework application spends most of its time in the Run member function of the class
CwinApp. After initialization, winmain calls run to process tlremessage loop run cycles -
through a message loop, checking the message queue for available messages. If a message is

available, run dispatches it for action. If no message is available — often the case — run calls

Page No. 81

Theatre Vision...

onldle to do any Idle — time processing that the frame or we work may need done. If t_heré' are
no messages and no Idle processing to do, the application waits until something happens.
When the application terminates, run calls exit Instance. Figure below shows the sequence of

actions in the message loop. Message dispatching depends on the kind of message.

Exitinstance Member Function:

The exit Instance member function of class CwinApp is called each time a copy of our .
application terminates usually as a result of the user quitting the applicatién. Override exit
instance if we néed special clean up processing, such as freeing graphics device interface
(U.D.1) resources or deallocating memory used during program execution clean up of
standard items such as documents and views, however, is provided by the frame work. With
other overridable function for doing special clean up specific to those objects.

On Idle Member Function: |

When no Windo{irs message are being processed. The ﬁ*arhewo'rk calls the CwinApp
member function On Idle overrides On Idle to perform background vtésk. The default version
updates the state of user.interface objects such as toolbar buttons and performs clean up of
temporary objects created by the frame work in the course of its operation figure below

illustrates how the message loop calls On Idle when there are no.

Page No. 82

Theatre Vision...

Available
message?

Idle processing

YES

Available

message

More Idle
task

Sleep until
message

Get/Translate/Dis
patch

Page No. 83

| Theatre Vision. ..

Besides running the Message loop and giving us an opportunity to initialize the application -
and clean up after it, CwinApp proves several other services. ' |
Shell Registration |

By default, App wizard makes it possible for the user to open data files that our

application has created by double clicking them in the windows file manager. If our
application is an MDI application and we specify on extension for the files our application
creates, APP wizard adds calls to the Enableshellopen and ReglstershellﬁleTypes member
functions of CwmApp to the InitInstance override that it writes for us.

Registershellfile Types register our applications document types with file manager. The
function adds ‘entriesto the registration database that windows maintain. The entries register
each document type, associate é file extention with the file type, specify a command liﬁe to
open the application, and specify a dynamic data exchange (DDE) command to open a
document of that type.

Enableshellopen completes the process by allowing our application to receive DDE
commands from file manager to open the file chosen by the user.

This automatic registration support in CwinApp eliminates the need.to ship a .REG file

with our application or to do special installation work.

6.1.6 File Manager Drag and Drop:

Windows version 3.1 and later allows the user to drag filenames from the fiie
view window in the ﬁlé manager and drop them into a window in our application.
We might, for example, allow the user to drag one or more file names into an MDI
apphcatlon s main window, where the application could receive the ﬁle names and
open MDI child windows for those files.

To enable file drag or drop in our application, AppWizard writes a call to the

Cwnd member function that Drag Accept files for our mainframe window in our

InitInstance. We can remove that call if we do not want to implement the drag-and-
drop feature. |
Note we can also implement more general drag-and-drop capabilities — dragging

data between or within documents using OLE.

Page No. 84

Theatre Vision...

6.1.7 Keeping Track of the most recently used documents:

As the user opens or close files, The application object keeps track of the four
most recently used files. The names of these files are adding to the file menu and
ﬁpdate when they change. The frame work store these file names in an .INI file
with the same name as our project and reads them from the file when our
application starts up. The InitInstance override that AppWizard creates for us

~ includes a call to the CwinApp member function Load std profile setting, which

loads information from the .INI file, including the most recently used file names.
To manage the complex process of creating documents with their associated views
and frame windows, the frame work uses two document template classes: C single
Doc template for SDI application and C multi Doc template for MDI applications.
A CsingleDoctemplate can create and store one document of one type at a

time. A CmultiDoctemplate keeps a list of many open documents of one type.
Some application supports multiple document types. For example, an application

might support text documents and graphics documents. In such an' application,
| when thé user chooses the new command on the file menu, a dialog box shows a
list of possible new document types to open. For each supported document type, the
application uses a distinct document template object. Figure below illustrates the
configuration of an MDI application that supports two document types. The figure
shows several open documents.

An MDI application with two documents types

Application object

/ \ CmyApp

Doc template A Doc template B

Cmultidoc template / #\ : ¢ C multidoc template

Doc Doc2 Doc3 Docl

| - —| |

Instance of one class Instance of different class

open documents

~—

Page No. 85

Theatre Vision...

‘Document templates are created and maintained by the application object. One of
the key tasks performed during our application’s InitInstance function is to
construct one or more document templates of the appropriate kind. This feature 1s

described in Document template creation. The application object stores a pointer to

each document template in its template list and provides an interface for adding
document templates.
If we need to support two or more document types, Wé must add an extra call to
Add Doc Template for each document type.

 An icon is registered for each document templatel based on its position’s in the
application’s list of document templates. The order of the document templates is
determined by the order they are added with calls to Add Doc Template. MFC
assumes that the first Icon resource in the application is the application icon, the
next icon resource is the first document icon, so on.

For example, suppose a document teﬁlplate is the third of three for the
application: If there is an icon resource in the application at index 3, that icon is

used for the document template. If not, the icon at index 0 is used as default.
6.1.8 DRAWING TOOLS:

Windows provides a variety of drawing tools to use in device contexts. It

provides pens to draw lines, brushes to fill interior, and fonts to draw text. MFC
provides graphics —object classes equivalent to the drawing tools in windows.
Table below shows the available classes and the equivalent windows GDI handle
types. |

The general literature on programming for the windows GDI applies to the
Microsoft foundation classes that encapsulate GDI graphfc objects-. This sgction

‘explains the use of these graphic-object classes:

Class windows handle type
Cpen PEN

Page No. 86

Theatre Vision...

Cbrush HBRUSH
Cfont FONT
Cbitmap =HBITMAP
Cpalette HPALETTE
Crgn RGN

each of the graphic object classes in the class library has a constructor that allows

we to create graphic o’bjects of that class, which we must then initialize with the

appropriate create function, such as create pen.

The following four steps are typically used when we need a graphic

6bj ect for a drawing operation:

Define a graphic object on the stack frame. Initializes the object with the type

specific creates Aﬁ,mction, such as .create pen. alternatively, initialize the object in

the constructor. see the discussion of one stage and two stage creation below

Select the object into the current device context, saving the old graphic object that
was selected befpre.‘

When done with the current graphics object, select the old graphic object back into

- the device context to restore its state. |

Allow the frame-allocated graphic object to be deleted automatically when the

scope is exited.

thé if we will be using a graphic object repeatedly, we can allocate it once and
select it into a device context each time it is needed. be sure to delete such an object
when we no ionger need it. |

We have a choice between to techniques for qreating gfaphic objects:
One-stage construction: Construct and initialize the object in one stage, all with the

constructor.

Page No. 87

‘Theatre Vision...

Two-stage construction: Construct and initialize the object into two separate stages.

the constructor creates the object and an initialization function initializes it.

Two-stage construction is always safer instead of one stage-construction, the
constructor could throw an exception if we provide incorrect arguments or memory
allocation fails. that problem is avoided by two-stage construction, although we do

have to check for failure. In either case , destroying the object is the same process.

6.1.9 MESSAGE HANDLER FUNCTION

‘ In MFC, a dedicated handler function processes for each separate message.
Message-handler functions are member function of a class. some Kinds of message
handlers are also called “ command handler .” |

Writing a message handlers accounts for a large proportion of our work in writing
a framework épplication. ‘

What does the handler for a message do ?. The answer is that it does whatever we
want done in response to that message. Class wizard will and the contents that it
frames. A document frame window can be a Single document interface (SDI)
frame window or -2 multiple document interface (MDI) child window. windows
manage most of the user’s interaction with the frame window: Moving and resizing
the window, closing it, and minimizing and maximizing it. we manage the contents

inside the frame.

The framework uses frame windows to contain views. the two components (frame
and contents) are represented and managed by two different classes in MFC. A
frame-window class manages the frame, and a view class manages the contents. the
view window is the child of the frame window. drawing and other user interaction

with the document take place in the view’s client area, not the frame window’s

Page No. 88

Theatre Vision...

client area. the frame window provides a visible frame around a view, complete
with a caption bar and standard window controls such as control menu, buttons to
minimize and maximize the window, and controls for resizing the window. the
“contents” consist of the windows client area, which is fully occupied by a child
window — the view figure below shows the relationship between a frame window

and view.

Figure: Frame window and view

frame Client area

Allocated to
View(a child
| \ WlndOW)

window ‘ ‘ _
object

View
object(child
window)

« T

Document
object

The part of the framework most visible both to the user and to us, the programmer
is the document and view. most of our work in developing an application with the
framework goes into writing our document and view classes. this section describes:
The purpose of documents and views are how they interaét in the framework

- what we must do to implement them.

The Cdocument class provides the basic functionality for programmer-defined

document classes. A document represents the unit of data that the user typically

Page No. 89

Theatre Vision...

opens with the open command on the file menu and saves with the save command
on the file menu. .

The Cview class provides the basic functionality for programmer-defined -view
classes. A view is attached to a document and acts as an intermediary between the
document and the user: the view renders an image of the document on the screen
and interprets user input as operation upon the document. the view also renders the

image for both printing and print preview.

The document/view implementation in the class library separates the data itself
from its dlsplay and from user operation’s on the data. All changes to the data are
managed through the document class. the view calls thls interface to access and
update the data.

A dpcument template, as described in Document/view creation, creates
documents, their associated views, and the frame windows that frame the views. the
document template is responsible for creating and managing all documents of one
document type.

Microsoft windows implement device-independent display. this means that the
same drawing calls, made through a device context passed to our views on draw
member function, and is used to draw on the screen and on other device, such as
printers. we use the device context to call graphics device . interface (GDI)
functions, and the device driver associated with the particular device translates the
calls into calls that the device can understand. _

When our framework documents prints, OnDraw receive a differcpt'.kind of
device-context object as its argument; instead of a CpaintDc object, it gets a CDC
object associated with the current printer . OnDraw makes exactly the same .call

through the device context as it does for rendering our document on the screen.

Page No. 90

Theatre Vision...

WIN 32
- SOFTWARE DEVELOPMENT KIT

Page No. 91

Theatre Vision...

| 6.2 PROGRAMING WINDOWS: WIN 32 SDK...

.A window in an application written for the Microsoft window operating system is
a rectangular area of the screen where the apphcatlon displays output and recelves
mnput from the user. A window shares the screen with other windows, mcludmg .
those from other applications. only one window at a time can receive input from the
user. the user can use the moﬁse, keyboard, or other input device to interact with
this window and the application that owns it.~- |

Windows are the primary means a graphical win 32-based application has to
interact with user and accomplish tasks, so one of the first tasks of a graphical win
32-based application is to create a window. this overview describes the elements of
the Microsoft win 32 application programniing interface (API) that application use
to create and use windows; manage relationship between windows: and size, move,
and display windows.

The desktop window uses a bitmap to paiﬁt the background of the screen. the
> pattern created by the bitmap is called the desktop wallpaper. by default, the
desktop window uses the bitmap from a .BMP file specified in the registry as the
desktop wallpaper the Get Desktop Windew function returns the handle of the
desktop window.

A system configuration application, such as a control panel applet, changes the
desktop wallpaper by using the System Parameters Info function thh the waction
parameter set to SPI_ SET DESKWALLPAPER and the lpv param parameter
spemfymg a bitmap ﬁleqame. system parameters Info then loads the bitmap from
the specified ﬁie, uses the bitmap to paint the background of the screen, and enters
the new file name in the registry.

Every graphiéél win 32-based application creates at least one window, called main
window, that serves as the main window for the application. this window serves as

the primary interface between the user and the application. most applications also

Page No. 92

Theatre Vision...

create other windows, either directly or indirectly to perform tasks related to main
window. each window plays a part in displaying output and receiving input from
the user.

When we start an application, the system also associates a taskbar button with
the application. the taskbar button contains the program icon and title. when the
application is active, its taskbar button is displayed in the pushed state.

An application window includes elements such as title bar, a menu bar, the
window menu (Formerly known as the system menu), the minimize button, the
maximize button, the restore button, the close button, a sizing border, a client area,
a horizontal scroll bar, and vertical scroll bar, an application main window typically
includes all these components; the following illustration shows these components in
a typical main window. |
The title bar displays an application—déﬁned icon and line of text, typically, the text
specifies the name of the application or indicates the purpose of the window. An
application specifies the icon and text when creating the window. the title bar also
makes it possible for the user to move the window by using a mouse or other
pointing device. .

Most applications include a menu bar that lists the commands supported by the
application. - Items 1n the menu bar represent the mainlcategories of commands.
choosing an Item from -thé menu bar typiéally opens a pdp—up menu Whose items
correspond to the tasks ‘within a given category. by selecting a command, the user
directs-the' épplicat'ion to carry out a task.

The window n:@eﬂu is created and managed by windows. It contains a standard
set of menu items that when chosen by the user, set a windov:v’s size or portion,
close the application, or perform tasks. |

When ‘we click the maximize or minimize button, this affects the size and
position of the window. when the user click the maximize button, windows

enlarges the window to the size of the screen and position the window, so it covers

the entire desktop, menus the taskbar. at the same time; windows replaces the
_ ' Page No. 93

Theatre Vision...

maximize button with the restore button. the restore button is a bitmap that, when
clicked, restore the window to its previous size and position.

When the user clicks the minimize button, windows reduce the window to the size
of its taskbar button, position the window over the taskbar button, and display the
taskbar button in its norimal stéte. to restore the application on to its previous size
and position, click its taskbar button.

The sizing border is an area around the perimeter of the window that enables the
user to size the window by using a mouse or other pointing device.

" The client-area is the part of window where the application display output, such
as text or graphics. for example, a desktop publishing application diéplays the
current -pag'e of a document in the client area. the application must pfovide a
function called a window procedure, to process ihput to the window and display
output in the client area.

. The horizontal scrollbar and vertical scrollbar convert mouse or keyboard input
into values that an application uses to shift the contents of the client area ecither
horizbntally or vertically. For example, a word-processing application that displays
a lengthy document typically provides a vertical scrollbar to enable the user to page
up and down through the document.

The title bar, menu bar, window menu, minimize and maximize buttons, sizing

‘border, and scroll bars are referred to collectively as the ’Window’s non client area.
Windows manages most aspects of mon-client area; the application manages

“everything else about the window. In particular, the application manages the
appearance and behavior of the client area.

An application uses several types of windows in addition to its main window,
including controls, dialog boxes, and message boxes. _

A control is a window that an application uses to obtain a specific piéce of
‘information from the user, such as the name of a file to oper or the desired point

size of a text selection. Applications also use controls to obtain information needed

._to control a particular feature of an application. For example, a Word-processing
- : Page No. 94

Theatre Vision...

application typically provides a control to let the user turn word wrapping on and
off. .. .
~ Controls are always used in conjunction with another window % typically, a
dialog box. A dialog box is a window. that contains one or more controls. An
application uses a dialog box to prompt the user for input needed to complete a
command. For example, an application that includes a command to open a file
would display a dialog box that includes controls in which the user specifies a path
and file name.

A message box is a window that displays a note, caution, or warning to the user.
For example, a meésage box can inform the user to a problem the' application has

encountered while performing a task.

Dialog boxes and message boxes do not typically use the same set of window
components, as does a main window. Most have a title bar, a window menu, a
border (non-sizing), and a client area, but they. typically do not have a menu bar,

minimize and maximize buttons, or scroll bars.

An application must provide the following information when creating a window:
Window class \
Window name

| Wil.ldow style

Parent or owner window

Size

Location

Position

Child-window identifier or menu handle

Instance handle

Creating data

Page No. 95

Theatre Vision...

These attributes are described in the following section.

6.2.1 Window class:

Every'window belongs to window class. An application must register a window
class before creating any windows of that class. The window class defines most
aspects of a window’s appearance and behavior. The chief component of a window
- class is the window procedure, a function that receive and processes all input or
fequests sent to the window. Windows provides the input and requests in the form

of message.

6.2.2 Window name:

A window can have a name. A window name (also called window text) is a text
string that identifies 2 window for the user. A main window, dialog box, or
message box typically displays its window name in its title bar, if present. For
control, the appearance of the window name depends on the control’s class. A
button, edit control, or static control displays its window name within the rectangle
occupied by the control. A list box, combo box, or static control does not display its
- window name.

An application uses the Set Window Text function to change the window name

after creating the window. It uses the Get Window Text Length and Get Window

Text functions to retrieve the current window-name text from a window.

Page No. 96

Theatre Vision...

6.2.3 Window stvle:

Every window has one or more window styles. A window style is named
constant that defines an aspect of the window’s appearance and behavior that is not
specified by the window’s class. For example, the SCROLLBAR class creates a
scroll bar control, but the SBS_HORZ and SBS_VERT styles determine whether a
horizbntal or vertical scroll bar control is created. A few window styles apply to all
windows, but most apply to windows of spéciﬁc window classes, windows and, to

same extent, the window procedure for the class, interpret the style.

. 6.2.4 Parent or OWner Wil_ldovv:

A window can have a parent window. A window that has é parent is called a
child window. The parént window provides the coordinate system used for
positionihg a child window. Having a parent window affects aspects of a window’s
appearance: for example, a child window is clipped so that no part of the child
window can appear outside the borders of its parent window. A window that has no
parent, or whose i)arent is the desktop window, is called a top-level window. / An

application uses the Enum Windows function to obtain the handle of each of its

top-levél windows. Enum windows paéses the handle of each top-level window, in

~ turn, to an application-defined callback function, Enum Windows Proc.

A window can own, or be owned by, another window. An owned window always
appears in front of its owner window, is hidden when its owner window is

minimized, and is destroyed when its owner window is destroyed.

6.2.5 Location, Size and Position in the Z order:

Page No. 97

Theatre Vision...

Every window has a location, size and position in the Z order. The location is the
coordinates of the window’s upper left comer, relative to the upper left corner of
-the screen or, in the case of a child window, the upper left corner of the parent’s
client area. A window’s size is its width and height measured in pixels. A
window’s position in the Z order is the position of the window in a stack of

overlapping windows. For more information, see Z order.

6.2.6 Child-Window Identifier or Menu Handle:

A child window can have a child-window identifier, a unique, application-
defined value associated with the child window. Child-window identifier is
especially useful in applications that create multiple child windows. When creating
a child window, an application specifies the identifier of the child window. After

creating the window, the application can change the window’s identifier by using

the Set Windew Long function, or it can retrieve the identifier by using the Get
Window Leng function. \

Every window, except a child window, can have a menu. An application can
include a menu by providing a menu handle either when registering the window’s

class or when creating the window.

6.2.7 Instance Handle:

Every win 32-based application has an Instance handle associated with it.
Windows provides the instance handle to an application when the application starts.
Because it can run multiple copies of the same application, windows use instance

handles internally to distinguish one instance of an application from another. The

Page No. 98

Theatre Vision...

.

application must specify the instance handle in many different windows, including

those that create windows.

6.2.8 Creation Data:

Every window can have application-defined creation data associated with it.
When the window is a first created, window passes a pointer to the data on to the
window procedure of the window being created. The window procedure uses the

data to initialize application-defined variables.

A caret is a flashing line, block, or bitmap in the client area of a window. The
caret typically indicates the place at which text or graphics will be inserted

Because only one window at a time can have the keyboard focus or be active,
there is only one caret in the system. Generally, each window that accepts keyboard
input must create the caret when it receive the keyboard focus and destroy the caret
when it loses the keyboard focus. |

An application written for Microsoft windows can create a céret, display or hide
it. Relocate the caret, and change its blink time.

The clipboard 1s a set of functions and messages that enable applications
designed for the Microsoft win 32 application programming interface (API) to
trzinsfer data. Because all application has access to the clipboard, data can be easily
transferred between applications or within an application.

A Cursor is'a small picture-whosellocation on the screen is controlled by a
pointing device, such as mouse, pen, or trackball. (In the remainder of this section,
the term mouse refers to any pointing device.) When the user moves the mouse

Microsoft windows moves the cursor accordingly. Microsoft Win 32 cursor

Page No. 99

Theatre Vision...

functions enable applications to create, load, display, move, confine, and destroy
CUrsors.

In Microsoft windows, a dialog box is a temporary window an application
creates to retrieve user input. An application typically uses dialog boxes to prompt
the user for additional information for commands. A dialog box usually contains
one or more controls {(child window) with which the user enters text, chooses
options, or directs the action of the command.

A hook is a point in the Microsoft windows Message-handling mechanism
where an application can install a subroutine to monitor the message traffic in the
system and process certain types of message before they reach the target window
procedure.

" This overview describes window hooks and explains how to use them in a
windows-based application.

An Icen is a picture that consists of bitmapped image combimed with a mask to
create transparent areas in the picture. This overview describes creating, displaying,
destroying, and duplicating icons.

In Microsoft windows, a Keybeoard accelerator (or simply acqelerator) is a
keystroke or combination of keystrokes that generates a WM-COMMAND or
WM-SYSCOMMAND message for an application.

A Menu is a list of menu items. Choosing a menu item opens a submenu or

causes the application to carry out a command.

The Multiple document interface (MDI) is a specification that defines a user
interface for applications that enable the user to work with more than one document
at the same time.

This overview describes the structure of an MDI application and how to take
advantage of the built-in MDI support found in the Microsoft win 32-application
program interface (API).

Page No.100

Theatre Vision...

MDI is an application-oriented model. Many new and intermediate users find it
difficult to learn to use MDI applicétions. In the future, application will use a more
document-oriented model. Therefore, we may want to consider a SDI model for our
user interface. However, until there is an alternative that fully replaces the MDI
model, we can use MDI for applications, which do not easily fit into another model.

A Resource 1s binary data that a resource compiles or developer adds to an
application’s executable file. A resource can be either standard or defined. The data
in standard resource describes an icon, cursor, menu, dialog box, bitmép, enhanced
meta file, font, accelerator table, message-table entry, or version. An application-
defined resource, also called a custom resource, contains any data required by a
specific application. |

A Timer is an internal routine that repeatedly measures a specified interval, in
milliseconds. Each time the inferval (or time-out value) elapses, the system notifies
the window associated with the timer, because the accuracy of a timer depends on
the system clock rate and how often the application retrieves messages from the
message queue; the time-out value is only approximate.

Every window is a member of a window class. A window class is a set of
attributes that Microsoft window uses as a template to create a window in an
application. This overview describes the types of window classes, how windows
locate them, and the elements that define the default behavior of windows that
belong to them.

In Microsoft windows, every window has an associated window procedure % a
function that processes all messages sent or posted to all windows of the class, all
aspects of a window’s appearance and behavior depends on the window
procedure’s response to these messages.

A window property is any data assigned to a window by the setprop function.
A window property is usually a handle of the window-specific data, but it may be

any 32-bit value. Each window property is identified by a string name.

Page No.101

. Theatre Vision...

| Common Controls are a set of windows that are supported by the common
control library, which is a dynamic-link library (DLL) included with the Microsoft
windows operating system. Like other control windows, a common control is a
child window tﬁat an application uses in conjunction with another window to
perform input and output (I/0) tasks. |

An Animation control is a window that silently displays an audio video
Interleaved (AVI) clip. An AVI clip is a series of bitmap frames like a movie.
Although AVI clips can have sound, We can not use such clips with animation
controls. We can use only silent AVI clips.

A Drag list box is a special type of list box that enables the user to drag items
from one position to another. An application can use a drag list box to display
strings in a particular sequence and allow the user to change the Asequence.

A Header control is a window that is usually positioned above columns of text
. or numbers. It contains a title for each column, and it can be divided into parts. The

‘user can drag the dividers that separate the parts to set the width of each columm.

A Hot-key control is a window that enables the user to enter a combination of
keystrokes to be used as a hot key. A hot key is a key combination that the user can
press to perform an action quickly. (For example, a user can create a hot key that
activates a given window and brings it to the top of the Z order.) The hot-key
control displays the user’s choice and ensures that the user selects a valid key
combination. ; |

An Image list is a collection of same-sized images, each of which can be
referred to by its index. Image lists are used to efficiently manage large sets of
icons or bitmaps. All images in the image list are contained in a single, wide bitmap
in screen device format. An image list may also include a monochrome bitmap that

contains masks used to draw images transparently (icon style).

Pag.e No.102

Theatre Vision...

A List view control is a window that displays a collection of items, each item
consisting of an icon and a label. List view controls provide several ways of
arranging items and displaying individual items. For example, additional
information about each item can be displayed in columns to the right of the icon
and label.

A progress bar is a window that an application can use to indicate the progress
of lengthy operation. It consist of a rectangle that is gradually filled, from left to

right, with the system highlight color as an operation progresses.

A Property Sheet is a window that allows the user to view and edit the
properties of an item. For example, a spreadsheet application can use a property
sheet to allow the user to set the font and border properties of a cell or to view and
set the properties of a device, such as disk drive, printer or mouse. A property sheet
contains one or more overlapping child windows called pages, each containing
control windows for setting a group of related properties. For example, a page can
contain the controls for setting the font properties of an item, including the type
style, point size, color, and so on. Each page has a tab that the user can select to

bring the page to the foreground of the property sheet.

A status window is a horizontal window at the bottom of a parent window in
which an application can display various kinds of status information. The status

window can be divided into parts to display more then one type of information.

A Toolbar is a control window that contains one or more buttons. Each buttons
send a command message to the parent window when the user chooses it.
Typically, The buttons in a toolbar correspond to item in the application’s menu,
providing an additional and more direct way for the user to access applications

commands.

Page No.103

Theatre Vision...

A toolbar has built-in customization feature, including a system- defined
customization dialog box that allow the user to insert, delete, or rearrange toolbar
buttons. An application determines whether the customization features are available

to the user and controls the extent to which the user may customize the toolbar.

A Tooltip contrel is a small pop-up window that displays a single line of
descriptive text giving the purpose of tools in an application. A tool is either a
window, such as a child window or control, or an application-defined rectangular
area within a window’s client area. A tool tip control is hidden most of the time,
appearing only when the user puts the cursor on a tool and leaves it there for
approximately one-half second. The tool tip control appears near the cursor and
disappears when the user clicks a mouse button or moves the cursor off of the tool.

A single tool tip control can support any number of tools.

A Trackbar is a window that contains a slider and optional tick marks. When
the user.moves the slider, using either the mouse or the direction keys, the trackbar

sends notification messages to indicate the change.

A trée-view control is a window that displays a hierarchical list of items, such
as the heading in a document, the entries in an index, or the files and directories on
a disk. - Each item consists of a label and an optional bitmapped image, and each

item can have a list of subitems.

A Button is a control the user can turn on or off to provide input to an
application. There are several types of buttons and, within éach type, one or more
styles to distinguish among buttons of the same type. The user turns a button on or
off by selecting it using the mouse or keyboard. Selecting a button. typically

changes its visual appearance and state (from checked to unchecked, for example).

Windows, the button, and .the application cooperate in changing the button’s
' Page No.104

Theatre Vision...

appearénce and state. A button can send message to its parent window, and a parent
window can send messageé to a button. Some buttons are painted by windows,
some by the application. Buttons can be used alone or in-groups and can appéar
with or without application-defined text (a label). They belong to the BUTTON
window class.

Although an application can use buttons in overlapped, pop-up, and child windows,
they are designed for use in dialog boxes, where window standardizes their
behavior. If an application uses buttons outside dialog boxes, it increases the risk
that the application may behave in a non-standard fashion. Applications typically
either use buttons in dialog boxes or use windox;v sub classing to create customized

- buttons.

Window provides five kinds of buttons: push buttons, check boxes, radio buttons,

group boxes, and owner-drawn buttons. Each type has one or more styles.

A combo box is a unique type of control, defined by COMBOBOX class that

combines the much of the functionality of a list box and an edit control.

 The Microsoft win 32 application-programming interface (API) provides three
types of combo box: simple combo boxes (CBS_SIMPLE), drop-down combo
boxes (CBS_DROPDOWN), and drop-down list boxes (CBS_ DROPDOWNLIST).

There are also a number of combo box styles that define specific properties. For
example, two styles enable an application to create an owner-drawn combo box,

making the application responsible for displaying information in the control.

A combo box consists of a list and a selection field. The list presents the options a

user can select and the selection field displays the current selection. Except in drop-

Page No.105

Theatre Vision...

down list boxes, the selection field is an edit control and can be used to enter text
not in the list

Microsoft Windows provides dialog boxes and controls to support
communiéation between the application and user. An edit control is a rectangular

control window typically used in dialog box to permit the user to enter and edit text
from the keyboard.

An edit control is selected and receives the input focus when a user clicks the
mouse inside it or presses the TAB key. After it is selected, the edit control display
its text (if any) and a flashing caret that indicates the insertion point. The user can
‘then enter the text, move the insertion point or select text to be moved or deleted by
using the keyboard or the mouse. An edit contrbl can send notification message to

its parent window in the form of WM-COMMAND messages. A parent window

can send messages to an edit control in a dialog box by calling the

SendDigltemMessage function. Each of the messages sent to edit controls is

discussed in this ovemew

Windows provides both single line edit controls (some time called SLEs) -and

multiline edit controls (sometimes-called MLEs). Edit controls belong to the EDIT

“window class.

A combo box is a control that combines much of the functionality of an edit control
and a list box. In a combo box, the edit control displays the current selection and

the list box presents option a user can select.

Many developers use the dialog boxes provided in the common dialog box library

' (COMDLG32.DLL) to perform tasks that otherwise migﬁt require customized edits

controls.

Page No.106

Theatre Vision...

A list box is a control window that contains a list of items from which the user can
/

choose. ,

List box items can be represented by text strings, bitmaps, or both. If the list box is
not large enough to display all the list box items at once, the list box can provide a
scroll bar. The user maneuvers through the list box items, scrolling the list when
necessary, and selects or removes the selection from items. Selecting a list box item
changes its visual appearance, usually by changing the text and background colors
to the colors specified by operating system metrics for selected items. When the
user selects an item or removes the selection from an item, window sends a
notification message to the parent window of the list box.

A dialog box procedure is responsible for initializing and monitoring its child
windows, including any list boxes. The dialog box procedure communicates with

the list box by sending messages to it and by processing the notification messages

sent by the list box.

A window in an application written for Microsoft windows can display a data
object, such as document or bitmap that is larger than the window’s client area. -
When provided with a scroll bar, the user can scroll a data object in the client area

to bring into view the portions of the object that extend beyond the borders of the

window.

Scroll bars should be included in any window for which the content of the client
area extends beyond the window’s borders. A scroll bar’s orientation‘ determines
the direction in which scrolling occurs when the user operates the scroll bar. A
horizontal scroll bar enables the user to scroll the content of a windov;/ to the left or

right. A vertical scroll bar enables the user to scroll the content up or down.

A Static control is a control that enables an application to provide the user with

certain types of text and graphics that typically require no response.

Page No.107

Theatre Vision...

Windows i)rovides an application programming interface (API) that lets we take
advantage of appbar servi(‘:es provided by the system. The services help ensure that
application-defined appbars operate smoothly with one another and with taskbar.
The syétem maintains infofmation about each appbar and sends the appbars
“message to notify them about events that can affect their size, position, and

appearance.

© Page No.108

Theatre Vision

 TESTING

Page No. 109

Theatre Vision

CHAPTER: 7

TESTING

Testing of any system is the last phase of the software development before it is
delivered to the user client. Testing phase includes the following criteria, which must

be satisfied for final submission of the projeét:

e Each phase works properly in accordance with the design phase specification,

which were supposed to be achieved.

e Each phase starts at the right point of time and at the correct location.

e On each phase of the life cycle of the system software the validation criterion is
working properly. -

e The various tests must include : Unit testiﬂg , Integration testing, validation testing

and finally system testing.

In the testing phase of “THEATRE VISION”, we tested all the above phases of
the system in presence of the user number of times till user was satisfied Wlth the

overall performance of the system as its own requlrement

We showed the user the following steps in the testing phase :
e Each phase is working in accordance of the user requirements
e FEach screen is working properly in the system
e Options provided for are sufficient
¢ Online-help provided to each topic in the system is sufficient

e Format for each screen is Ok or any modification if needed is possible in future.

Page No. 110

Theatre Vision

CONCLUSIONS:

It is concluded that this software provides a Graphical User Interface for pre-
designing the light and sound show. It is a very useful software for stage shows and one
have no burden about the design of show because once a show have designed we can use

it very easily and one can change according to his need and gét trial before the real show.

This software provides the following information

* We can test at each scene levels

* Cue designing and testing at design level

* A maximum of {,00,000 cues giving a show design possibility of shows for up to'838

hours and beyond ‘

* Selected from a maximum of 1000 preset design scene. From these any 25 scenes can
_be fade-in, fade-out or locked simultaneously

* 8 effects can be simultaneously used in a cue with the preset scene conﬂbinations (relay
effects can be cloud generator, smoke generator, video projector, slide projector, audio-
effects, lightning generator, flashers, color generator etc.)

* Maximum 512 dimmer control

* Designed software is fully compatible fgir DMX-512

Based on the present .work it can be concluded that this software can be efficiently'
and effectively used whenever a similar requirement arises. ‘ |
This software has successfully tested on 26 May 2002 in “Theatre Techhocraft”,comp‘any
in Delhi and it is tested on single light in “CNS COM SOFT SYSTEMS Pvt. Ltd.” For .

Intelligent Dimmers.

Page No. 1 t{

Theatre Vision

LIMITATION

AND

FUTURE PERSPECTIVES

OF

THEATRE VISION (LIGHT CONTROL
SYSTEM)

PaocaNnA 119

Theatre Vision

A

‘Limitations and future Perspectives of THEATRE
VISIQN

Electronic media industry with the rapid advancement in
electronics and especially’ with involvement of computers is producing
innovative products with faster data access speeds, more accuracy, better
quality output, more resistibility, etc. will pose upgrade requirements in

future.

Especially with new advancements in the sound industry, like
introduction Aof the optical discs which have a faster audio data transfer will
be threats for the current version-of THEATRE VISION (Light and Sound
control system) since the DMX-512 protocol proves short to synchronize
with it. For this implementation the protocol standard should be upgraded to
DMX-*, which is an open protocol used for conveying control information.
It supports data packet exchange and hence can contain more than 512 data

channels using a multiplexing scheme.

Beside this, human errors in coding will be welcomed if any
inherent bug not detected after all of testing and implemeﬁtation come up.
’Though none of light and sound shows have gone beyond 100dimmers,
250 scenes and 36000 cues till date and the THEATRE VISION software
supports 512dimmers, 1000 scenes and 100000 cues;, still in future if this
limit goes beyond these software limits, the application will need to be
upgraded. Similar is the case for the number of relay effect. for a few years

there is no threat of modification as regarding these areas.

PaocaNn 11

Theatre Vision

Future scope

This software can be further extendéd for more than 512 dimmers and can be used in
future for Intelligent light. Which can handle both light and sound. And this can be
launched on internet by its redesigned show. which will be used for stage show and

fashion show. by this every body did not need to design the show himself.

PaocaNn 114

Introduction

Here you can make & record PC based LIGHT shows with
least efforts and best accuracy. Just enjoy yourself while
running the show fully automatically. Creates scenes non-
sequentially helps you to sand-witch new scenes. You can

learn working of this SOFTWARE by roaming through
- Tips.

Software & Documentation (¢)2002
THEATRE VISION

All trademarks acknowledged

This software is fully compliant with USITT standard for DMX 512 data
transmission. It is user friendly and designed for inexperienced computer
operators. One can exploit full potential of DMX 512 protocol using this
software. All 512 channels can be engaged at one go. One can
design/save/edit/auto run a show live and fully automatically.

One can also use it in place of a Console to operate channels manually.
Up to 500 scenes can be stored in particular show. Any channel can be
programmed as Chaser or Flasher. In case of power failure or during .
rehearsals, show can be resumed from any desired scene.

Installation

THEATRE VISION System is designed to run on Pentium li+ or equivalent
PC (min.) with Windows 95/98, a Sound Blaster Live! Platinum 5.1 is
powered by the EMU10K1 audio processor, 'Sound Blaster' compatible
sound card, a video card (MPG lll), monitor capable of 16bit 600x800 color
mode (or higher if your monitor allow) and a minimum of RAM (64MB).
Power management functions and screensavers should be disabled on
your PC as these can cause desk events to be delayed. It is also essential
that your sound card and video card is working properly in Windows for
THEATRE VISION Software. To play sound events - check that you can
play sounds correctly in Windows and that your speakers are turned on

The Mains Power supply given to the PC should be proper. If you are
running the PC with the same mains supply as your lighting dimmer packs
etc. any power surges/spikes may cause problems with the PC hardware
which could result in the Theater Vision software not functioning correctly
(this is of course with any software on the PC). If you find that the PC
screen image is 'flickering’ or sound events are not working properly then it
indicates that the PC is having power problems and you will need a

separate power supply or use a surge protector or UPS (Unmterrupted
Power Supply) unit to run it.

The sound card : THEATRE VISION recommends Sound Blaster Live!
Platinum 5.1, powered by the EMU10K1 audio processor. With Platinum
- 5.1 SBLive Card, you will experience better effect and impact than any
other sound card. The Microsoft DirectX system has been implemented
in THEATRE VISION to enable stable multiple playback and flexible
Sound & Light functions. To experience true-to-life quality sound, you
must install sound card properly in Windows and enable the audio devices
for recording and playing using Windows. You can use Audio Mixer from
system tray to adjust the volume. If you already have a sound card like
THEATRE VISION, first play and record from Windows properly, then
THEATRE VISION will be able to play as well. if you experience any
problem with audio or the sound-to-light section, please contact your
_manufacturer to upgrade the sound driver. After loading the driver, please
confirm that sound card is working properly.

The video card installed with THEATRE VISUAL is MPG -l with 3-D
effect and a good color contrast for best effect.

To install the software just insert the CD. The software will install and
update registry entries itself. The other method is to open the CD in
“window's explorer and click on the file "setup.exe”

THEATRE VISION System can also be installed on a Laptop PC .If you are
using THEATRE VISION on a laptop PC with an external DMX output
device, a dongle, Dongle Il {Artistic Licence (UK) Ltd.) hardware is
required with this software in order to make and run the show. The Dongle
unit is to be attached to parallel port (LPT1) of the computer before using it. -
Then make sure that the screen mode selected. on the laptop is 800X600
16-bit color. The higher 24- bit and 32- bit color depths, incorrectly installed
video or mouse drivers can cause the mouse to move jerkily. Video
adapters ‘on iaptops are more prone to cause mouse /speed problem than
on standard desktop PCs. The normal number keys at the top of the laptop
PC keyboard can be used instead of the keypad referred in the manual as
few laptops possess a separate keypad. You will need to hold down the
shift key however to enter [/], [*], [-] etc. whenever required.

To activate this software for making and running the show, a Dongle li
(Artistic Licence (UK) Ltd), hardware supplied with this software is
required. The Dongle unit is to be attached to parallel port (LPT1) of the
computer before starting it.)

e Before Software is loaded set your computer for best view of show
screen (VDU) resolution at 800X600, then click THEATRE VISION desktop
icon to load software, first screen appears (Main Patch Windows) and
prompt “Dongle successfully loaded". Incase Dongle is not working
properly or showing some delay in response, you can set the refresh rate
of Dongle data by clicking on Go menu and then click on Refresh Rate

(rarely required). You can set the rate in multiples of default (ranging from
2x to 10x).

The main window that appears for editing the show is the heart of
THEATER VISION because the show is developed using this dialog box. In
this window, we load every scene of the show one by one. Loading the
scene means its scene time, set the lights that are suitable for that scene,
set the Fade In and Fade Out time of the lights, set the flash lights and the
flash speed and set the track that is to be tuned when the scene will be
shown on the stage '

THEATRE VISION Functions:
Main Window
This is the Main window having a menu bar and a toolbar.

1. Patch: Creates a new show for designing the scenes. Click on it and

enter the Show name, which you want. The path where the show has to
be stored is set default.
When you enter name and press OK button the design view window
will be opened and all intelligent lights and faders data will be loaded
with NULL value.
Design View Window: The design view window will appear. User will design a
show from this window. This window has the following design structure.

1. Channel: Channel from 1 to 512 are of grey colour for intelligent light.
and faders.

2. Show information: This section has following options:
Designer Name: Here you have to type the name of
designer who is preparing the show.
Electrician Name: The name of electrician how help in
setting the intelligent lights.
Date: Here you have to select the current date it will
automatically show the date when you click the scroll list.
Scene No.: It will automatically generate the show no. but in
first time it will show Scene No. 1;

3. Time in seconds (Intelligent Light Timing): This section has

following option.
Fade in: Fade in time of intelligent lights

Fade out. Fade out time of intelligent lights.
Flash/Chase Speed: Flash or chase speed (0% to 100%).

4. Previous Scene’ Option: This section has two radio (add and cross)
buttons and one remove button.

ADD: Add previous scene to current scene. You can not add in scene no. 1. Added

scene will fade in but not fade out until CROSS scene encounter.

CROSS: No CROSS scene occurs before ADD scene. CROSS scene get fade in while

all previous ADDED scenes will fade out in time (fade out) of just previous one of CROSS

scene. :

In case of the user click on add radio button, the existing Dimmers -
will not fade out, instead all the changed faders for next scene will be
added as per their fade in tim‘e.

In case of user click on cross radio button, the existing Dimmers will
fade in as per their fade in time and fade out all previous scene
simultaneously

. CD Option: It has two things to add

CD Type: There are two options

' 1. CD-Audio

2. Vidio-Disk

Track No.: it can accept up to 1,000 track no.

6. Flash Pattern No.: [n this option you can choose upto Eight flash
patterns .

7. Scene Option: This option shows Different buttons for setting scene
New: When you click New Button you find new scenesetting
window with next scene No. ‘

Save: After setting all the values in all options and giving

appropriate values to all cannels you have to save your setting 'by

clicking the Save button. '

OK: When you save the setting and you waht no more scene to

create you can click OK button to exit the SceneSetting window.

Copy: In this option you can copy the previous scene if you want

next scene with a little bit change with respect to previous scenes.
Cancel: If you do not want any change in the scene then you can
click Cancel Button to Exit the SceneSetting window.

Paste: When you click Copy Button the Paste Button will be
highlighted and you can paste the copied scene for next
SceneSetting.

8. Cha'nge Option: In this Option you can change you SceneSetting
simultaneously you do not need to reopen the SceneSetting window.
You have given here four Options:-

First: Here you choose Scene No. 1

Previous: In this button you choose the previous scene

Last: Here you choose the last Scene created if you are in among

of all other scenes.

Next: Here you choose the Next scene
9. Level: These boxes show the maximum level of any channels. For
Intelligent Light (1-256) can insert from Light Patcher Window.

Tab Bar: In this Bar you can select different Channels just by Clicking the
Tabs. We have divided it in 16 Tabs:
1-32, 33 - 64, 85~-90 ,...c00000 , 449 — 480, 481 - 512

In each tab it will show save type of Screen but changed Channel No. and
dimmer No.. Every Tab contains 32 dimmers and every dimmer has a
Vertical Scroll Bar By Sliding it you can feed the dimmer’s value in the
range of 0 to 255.

Dimmer’s No.: Every Tab contains 32 dimmers
1-32, 33 - 64, R , 449 — 480, 481 - 512

Dimmer’s Value: every dimmer has a Vertical Scroll Bar By Sliding it you
can feed the dimmer’s value in the range of 0 to 255.

Flash Sequences: We can select Flash Sequences just by Choosing the
Flash Pattern and clicking the Flash Sequence under every Dimmer

which is how by Black Square and by clicking it it will show Red Square
with Flash Pattern

COEEOS0EEoo0CDon

Go Menu: This has a single menu item. When you Click the Go Option you may
see a dialog box if you have not installed Dongle Driver. But still you can proceed
with Demo of “THEATRE VISION" show. So click “Yes” Button.

File Menu: In file Menu there are two option “Open” and “Exit". In Open

menu option you open the existing show.

Scene No: you can select the scene No. which you have to Run.

Flash Speed(Horizontal Scroll Bar) : you can increase or decrease the
speed of show.

Go Button: When you Click Go Button you can see the running show on this
window . The background is black and dimmers light are shown in Red colours
columns. The transmission of channel data appears on the status window and
" audio tracks or video file start playing autdmatically.

{Scene Staus

% 2 0 N 32

W2 103 W0 107 W0 107
!]

! .
152 133 121 M9 126047 e 14 60008

|

%E €S B3 10 3T 102 63 e NS 78 173 180 131 132 &1 185 136 157 188 153 1590 w1 da

1
!
2

221 22 223 20 23

Pause button: Click on it to pause a running scene.

Stop Button: Click on it to Stop the current show.

Exit: Click on it to exit from go dialog box.

AutoRun Menu: It is a single menu item.

Click on AutoRun menu item to open AutoRun dialog box. It has the following

Go button: Click on it to start a show. The next scene will start
automatically when previous scene finishes.

Pause: Click on it to pause a running show.
Stop: Click on stop button to stop a show.
Exit: Click on it to exit from auto run dialog box.

Edit Menu: This is a popup menu has two options

1. Show: Open an existing show. Click on it or Press Ctrl+O. The design
view window will be opened and all intelligent lights and faders data
will be loaded.

2. Wait File: In wait file menu option you can open .wtm file of every
show. And you can edit the following
Intra Scene
Inter Scene
And after editing it you can save the settings.

Tools Menu: This popup menu has single options for Vidio CD Path Name
Dialog Box

Video CD: Popup menu has option::
1. Video File Name sub menu command

If you have selected in Fader dialog , CD type : Video Disc (Run Video movie with Dimmers)
For that you do the following things.

Video File Name menu command opens Video CD Path Name dialog box:

Yideo LD Path Name

Enter the CD video file name or click on Browse button to search the CD video file name.

Click ok button.
Configuration Menu: Click on it to open configuration window.

I e X R K KNS

The purpose of the configuration is to set the channel descriptions and parallel
port.
Channel number from 1 to 512 are for intelligent light by default.

There are three options:
No. of Dimmers(1 — 512): here you have to enter the no. of dimmers

which you have to set active.
Port: Choose the Parallel port for DMX-512 cable.
Time Delay (in milli seconds): Delay time from 1000 to 5000.
Print Menu:

In print menu you can print the SceneSetting and the file in which all the
information related to SceneSetting are stored.

Print Preview:

TIXETXX . Shov Name : E:\Vision2000\s2\sz.cue FEATELS

Designer : Electrician : Date : 4/4/20D2

Scene No : 1
Fade In : 5 seconds Fade Out 3 seconds Flashing Rate : 50%
Scene Hessage : Normal CD Type Audio Tracklio = O

Channel No 8 9
Channel Value 9 1]
Flash Sequence 0]

Channel Value
Flash Sequence

ReadMe

You can design a new show by

Using the patch option from the menu bar

On main window you can make up scenes one by one up to limit of hard
disk.

Start with scene 1:

Enter the Designer name

Electrician Name

Date

Scene Number

Set Fade In time for Dimmer’s Scenes (in seconds).
Set Fade Out time for the Dimmer’s Scenes

Select Add/Cross option for Dimmer’s Scenes

In case ADD is selected existing scene will not fade Out, instead all
the changed Faders for next scene will be added as per their Fade
In time. In case CROSS is selected, existing scene will Fade Out as
per its fadeout time and the changed faders will come gradually as
per their Fade In time.

Set the Flash /Chase speed (1 to 100%) for the faders (dimrhers).

You adjust scrollbar by clicking on up arrow or down arrow of it. This
action set the value of channel into channel’s edit box.

if you want, you can set any particular channel as Flash or Chase pattern
(1-8). Using any option above will freeze the respective fader to Flash.
You can also use only flash for any scene.
The maximum chase sequences available are 1-8 so use may of these
numbers to set the chase pattern for corresponding fader. To accomplish
this task fast you can set the chase value in the chase window and then
can type that value for all the chasers just by clicking in the chase Box.

Now your first scene is ready if you want to see the output just click .
Transmitter tool button. Of course you can use this option at any stage of
designing. '

Simply change the scene numbers by clicking on new button for new
scene.

Save your show at times when the parameters are feeded or changed so
that you may not loose the show data if power failure occurs.

Insert Media in to a Show:

Click on Tool Menu, it will open media dialog box.

- :
Click on Browse button to browse media file (mp3 audio or video file (AVI, DAT)
or any other types).

Do same steps for more scenes.

e Watch scene status, Show Status and Audio/Video status in the windows
provided for the purpose. ‘

(b) AutoRunning a Show

e Once you have designed and recorded the show, to run it automatically, use
'Run’ option from Auto Run menu. The status window is automatically open to
display all live actions.

Only registered users will receive latest software updates
plus technical support by e-mail/phone/fax.

~Theatr> Vision

Do's and Don’ts

You can set maximum up to '8' patterns of chase for any show.

If you change Fade In time or Fade Out time of a scene directly and if it is
more than the scene time recorded, you will have to re-record it for correct
output.

To keep same scene blank or to keep same gap in between the scenes just
set Fade In time of the next scene as 1 second and then record it for the
desired scene time.

You can create a file by clicking the patch button on the standard toolbar. You
may need to select a different directory or drive to reach the desired directory
where you had stored the show files.

You can open show files made by this software only.

References

."User mannual visual C++ ver.6.00 Tata McGraw hill

publication year 1996

. User mannual visual C++ ver.6.00 Tata McGraw hlll

publication year 1998

. User mannual visual C++ ver.6.00 Tata McGraw hill

publication year 2000 - ‘ ~.l |

. Complete reference visual C++ ver.6. OOwrlter Herbert

shield

. User mannual of DMX512, a user learning guide AltlSth |

vision publication year 1990

. User mannual of DMX512, a user learning gulde Artlstlc _

vision publication year 1994
21days visual C++ year of publlcatlon 2001

	Title
	Abstract
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Chapter 7
	Conclusions
	References

