
MULTIMEDIA MESSAGING SERVICE

A DISSERTATION
Submitted in partial fulfilment of the

requirements for the award of the degree
of

MASTER OF COMPUTER APPLICATIONS

10

HIMANSHU SINGH

r C1o9g) ._

DEPARTMENT OF MATHEMATICS
INDIAN INSTITUTE OF TECHNOLOGY ROORKEE

ROORKEE-247 667 (INDIA)

MAY, 2002

CANDIDATE'S DECLARAI ION

I hereby declare that the work vvhich is being presented in this report entitled

"Multinmedia t\lcssnging Service" in partial fulfilment of the requirements for the award

of the degree of Master of Computer Applications (M.C.A.) in the I)cpartnicnt of

Mathematics, Indian Institute of Technology, Roorkee, is an authentic record of my own

Nvotk carried out by me for a period of five months from January 2002 to May 2002

under the supervision and guidance of Dr. Sunita Gakkhar, Associate Professor,

Department of Mathematics, U.T.-Roorkee and Mr. Kanw aldccp Siuhh, Technical

Leader, I lughes Software Systems.

l have not submitted the matter embodied in this project work Vol the a«•ard of-

any other degree.

Date: 3{ oc 2t'2-

Place:

1hintanshu Singh
MCA 3"d year

[1. 1. - Ithoi kee

This is to certify that the above statements are correct to the best of my knowledge and

belief

'I -

Date: 3\ o ~~ 2 c rl 	 Dr. Sunita Gakkhar

Place: Assoc ate Professor.
Department of Mathematics.

1.I.1

I.I.T. -- Roorkee.

Professor & Heat!

Department of Mathematics
I.I.T. Roorkee-247 667

aflaa

5oP W A 6E 5 IsrEwtI.

TO WHOMSOEVER IT MAY CONCERN

This is to certify that the project titled "Multimedia Messaging Service"

being submitted by Mr. Himanshu Singh, a student of M.C.A. at Indian

Institute of Technology, Roorkce, in partial fulfilment of the award of the

degree of Master of Computer Applications, has been completed under my

supervision at Hughes Software Systems, Gurgaon, during the period from

January 2002 to May 2002.

This work has not been submitted to any other Institution or University for the

award of any degree to the best of my knowledge.

Gov

Kanwaldeep Singh
Technical Leader

Hughes Software Systems
Gurgaoa

ACKNOWLEDGEMENT

My sincere thanks to Dr. Sunita Gakkhar, Associate Professor, Department of

Mathematics, IIT- Roorkee, for her guidance, encouragement and constructive criticism

throughout my dissertation.

It is my privilege to express my gratitude to my supervisor Mr. Kanwaldeep

Singh, Technical Leader, Hughes Software Systems whose guidance has always been

there to help me tackle my problems. IIis suggestions and encouragement throughout the

project helped me in learning the various aspects of developing a project and completing

the project in the stipulated time.

I would also like to thank all the members of the PPG team at Hughes for helping

and inspiring me throughout the development of this project.

Himanshu Singh
MCA III Year
IIT, Roorkee

Hughes Software Systems — A Profile

Corporate I Iistory

Ilughes Software Systems Limited (IISS) was incorporated in India on 30th December
1991 with IIughes Network Systems (IINS), a unit of Hughes Electronics Corporation
(I IUGI II S), USA as its principal shareholder.

I-IUGIIFS, a world-leading provider of digital television entertainment, broadband
services, satellite-based private business networks, and video and data broadcasting,
reported revenues of $7.3 billion in 2000.

I INS, a unit of I-IUGI-IES, is the world's largest provider of broadband satellite network
solutions for businesses and consumers, with over 400,000 systems installed in more than
85 countries.

With the opening of the Indian economy in the early nineties, IiUGIIFS was attracted by
the long term potential of the emerging software services market and chose to set up a
subsidiary in India to supplement I INS' R&D efforts.

IISS began its operations in New Dellii with a team of about 20 professionals and was
initially focused on developing software solutions in the areas of VSAT-based networks
for voice and data, cellular wireless telephony, packet switching and multi-protocol
routing. Within three years, IISS grew to 240 professionals and in 1995, shifted its own
campus to Electronic City, Gurgaon, a New Delhi suburb. Today, over 1600
professionals work on cutting edge technologies at six state-of-the-art facilities near New
Delhi.

After having gained considerable expertise in the communications software business,
IISS expanded its business and entered the market licensing products and offering its
services to customers worldwide. 'fill date, the Company has delivered services and
products to over 150 customers worldwide and it is now a leading technology supplier in
the convergent market place.

In 1998, IISS set up a center in Bangalore to focus on development of software for
Internet and Internet Protocol based solutions and applications. "I'he Bangalore
development center, housed in two state-of-the-art facilities can accommodate 250
professionals.

HSS added another first to its credit in 1999 when it went public, with India's first book
built IPO. HSS also initiated its Voice over Packet Business to transform the
communications market. HSS expanded operations to the USA in the same year by
opening several offices. Continuing with its expansion activities, 1-ISS opened marketing
offices in U.K and Germany in 2000 and in Finland in the year 2001.

HSS has always been at the cutting edge of technology. This credo of excellence also
extends to its employee initiatives. . HSS won the coveted CIO Award for usage of
Information Technology in Human Resource Management. The award was in recognition
of HSS'. initiatives in using IT to create and drive its people practices. HSS was also
nominated as the emerging company of the year-by Economic Times and was voted as
the top 10 most respected companies in India in a Business World survey in 2001. The
ranking catapults HSS to the league of a few select companies in India

Technology Focus

Hughes Software Systems (HSS), the #1 Communications Software company in India,
offers a full spectrum of communications related software services, products and
solutions. With over 40 customers spread over the Americas, Europe and Asia, I-ISS
focuses on providing solutions to Telecom/ Datacom Equipment Manufacturers, System
Integrators and Communication Services Providers.

The companies using solutions from HSS include ADC, Aheadcom, Alcatel, Brix
Networks, Cisco, Coppercom, Embedded Wireless, Ericsson, IP Unity, IpVerse, Johnson
Control, Lucent, Longboard, Megisto, Nokia, NEC, Radisys, Santerra, Shoreline,
Snowshore, Spatial Wireless, Sylantron Shanghai Bell, SK telecom, Tektronics, Telspec,
Think Engine, Tollbridge, Toshiba, Westwave, Winphoria, Zhone to name a few.

Continued significant investments in R&D have positioned HSS at the forefront of
emerging communication technologies. The focus areas are Communication Protocols,
Wireless Networks, Telecom/ Data Networks, Next Generation Networks, Intelligent
Networks, Network Management, Internet and E-commerce.

Software Products
HSS' products serve two major markets segments. The Original Equipment Manufacturer
(OEM) offerings include Protocol Stacks, Signaling Interworking Functions, Gateways,
SS7 ADF and Intelligent Peripherals. The TELCO offerings include Mediation Device
Systems, Short Message Service Center (SMSC) and an Electronic Bill Presentment and
Payment solution. These products are backed by porting, consulting and custom
engineering services to help customers integrate and build solutions. HSS also offers
comprehensive after sales support service to its customers.

HSS added another first to its credit in 1999 when it went public, with India's first book
built IPO. HSS also initiated its Voice over Packet Business to transform the
communications market. HSS expanded operations to the USA in the same year by
opening several offices. Continuing with its expansion activities, HSS opened marketing
offices in U.K and Germany in 2000 and in Finland in the year 2001.

HSS has always been at the cutting edge of technology. This credo of excellence also
extends to its employee initiatives. . HSS won the coveted CIO Award for usage of
Information Technology in Human Resource Management. The award was in recognition
of HSS initiatives in using IT to create and drive its people practices. HSS was also
nominated as the emerging company of the year by Economic Times and was voted as
the top 10 most respected companies in India in a Business World survey in 2001. The
ranking catapults HSS to the league of a few select companies in India

Technology Focus
Hughes Software Systems (HSS), the #1 Communications Software company in India,
offers a full spectrum of communications related software services, products and
solutions. With over 40 customers spread over the Americas, Europe and Asia, HSS
focuses on providing solutions to Telecom/ Datacom Equipment Manufacturers, System
Integrators and Communication Services Providers.

The companies using solutions from HSS include ADC, Aheadcom, Alcatel, Brix
Networks, Cisco, Coppercom, Embedded Wireless, Ericsson, IP Unity, IpVerse, Johnson
Control, Lucent, Longboard, Megisto, Nokia, NEC, Radisys, Santerra, Shoreline,
Snowshore, Spatial Wireless, Sylantron Shanghai Bell, SK telecom, Tektronics, Telspec,
Think Engine, Tollbridge, Toshiba, Westwave, Winphoria, Zhone to name a few.

Continued significant investments in R&D have positioned HSS at the forefront of
emerging communication technologies. The focus areas are Communication Protocols,
Wireless Networks, Telecom/ Data Networks, Next Generation Networks, Intelligent
Networks, Network Management, Internet and E-commerce.

Software Products
HSS' products serve two major markets segments. The Original Equipment Manufacturer
(OEM) offerings include Protocol Stacks, Signaling Interworking Functions, Gateways,
SS7 ADP and Intelligent Peripherals. The TELCO offerings include Mediation Device
Systems, Short Message Service Center (SMSC) and an Electronic Bill Presentment and
Payment solution. These products are backed by porting, consulting and custom
engineering services to help customers integrate and build solutions. HSS also offers
comprehensive after sales support service to its customers.

Software Services
Encompassing all aspects of communication systems
With a collective experience of over 5000 person-years in implementing communication
software projects for its customers worldwide, HSS has successfully demonstrated high
value addition and has enabled its customers to meet challenging time-to-profit
objectives. HSS gets involved with its customers from the early stages of System
definition, Specifications and System Design, and extends its involvement in conducting
field trials and post-delivery support.

Dedicated Development Facility (DDF)
A DDF can also be set up to work as an extended development center for the customer in
India. This is useful when customers are looking for flexibility and dedicated resources.
I-ISS is committed to preserving the customers Intellectual Property Rights and adopting
their software engineering processes. Based on its strong expertise in all communication
technologies and applications, HSS is involved in the design and development of
Switching Systems, Mobile Satellite Communication Systems, Cellular Infrastructure,
Access Networks, Enterprise Networking Solutions, Network Management Solutions,
VoIP Solutions and E-Commerce and internet based systems.

Expert Areas
I-ISS communication software services consist of customized software development and
systems design consulting services. The company undertakes full life-cycle software
development, consisting of problem definition, system design, detail engineering,
implementation and testing, post-delivery support and total project management. In depth
domain expertise in a wide range of communication technologies and a large inventory of
pre-engineered building blocks are two key intellectual assets of the company, that
provide an unparalleled advantage to customers in cutting down product development
time. The company's expertise lies in areas that include

• Network Management
• Digital Signaling and Media Processing
• Broadband Solutions
• Switching Technologies
• Wireless Solutions

Abbreviations

CGI Common Gateway Interface

ESMTP Extended Simple Mail Transfer Protocol

HTTP HyperText Transport Protocol

IANA Internet Assigned Numbers Authority

IMAP Internet Message Access Protocol

ISDN Integ rated. Services Digital Network

IPv4 Internet Protocol version 4

IPv6 Internet Protocol version 6

MIME Multipurpose Internet Mail Extensions

MM Multimedia Message

MMS Multimedia Messaging Service

MS Mobile Station

MSISDN Mobile Station International Subscriber
Directory Number

OTA Over The Air

PDU Protocol Data Unit

PLMN Public Land Mobile Network

POP Post Office Protocol

RFC Request For Comments

SMIL Synchronized Multimedia Integration
Language

S/MIME Secure/Multipurpose Internet Mail
Extensions

SMS Short Message Service

SMTP Simple Mail Transfer Protocol

URI Uniform Resource Identifier

WAP Wireless Application. Protocol

WIM WAP Identity Module

WINA WAP Interim Naming Authority

WML Wireless Markup Language

WSP Wireless Session Protocol

Definitions
Email Server
A generic class of servers that nominally hosts email services that operate using the
SMTP, POP and/or IMAP protocols.

Multimedia Messaging Service (MMS)
A system application by which a WAP client is able to provide a messaging operation
with a variety of media types.

MMS Client
The MMS service endpoint located on the WAP client device.

MMS Encapsulation
The definition of the protocol data units, the fields and their encodings necessary to send
and receive multimedia messages including multimedia objects.

MMS Terminal
A mobile station (MS, terminal) that implements the MMS Client to provide the MMS
service.

MMS Originating Terminal
The MMS Terminal which sends a multimedia message.

MMS Recipient Terminal
The MMS Terminal which receives a multimedia message.

MMS Proxy-Relay
A server which provides access to various messaging systems. It may operate as a WAP
origin server in which case it may be able to utilize features of the WAP system.

MMS Server
A server that provides storage services and operational support for the MMS service.

Transaction
One or more message exchanges that collectively are considered logically separate from
other message exchanges.

WAP Origin Server
A server that can deliver appropriate content upon request from a WAP client.

Abstract

Short Messaging Service (SMS) has brought about a revolution in mobile telephony, and
has gone a long way in popularizing cellular phones. The use of SMS is not restricted to
passing a message from one celiphone .to another. The users of the service have been
using there creativity to frame new phrases, coin new acronyms, and come up with new
emoticons. In fact SMS is often called `the new language' of today's generation. But
SMS, being a text-only service does restrict the users creativity. Multimedia Messaging
Service (MMS), on the other hand, would allow the user to compose messages with rich
content. Users can include text, images, audio. and video clips .into there messages. The
freedom of expression and creativity that this service offers is • expected to bring about
another revolution in the world of mobile messaging. In fact it is said that this revolution
would have a similar impact on the cellphone industry as the transition from DOS to
Windows had on the PC industry.

This document starts with explaining the technical details of Multimedia Messaging
Service and later on describes a prototype of the service developed during the
dissertation. The prototype implements a subset of the functionalities specified by the
WA? forum. The idea was to develop a basic working model of MMS without making
the design too complex. The prototype consists of the two essential components of the
MMS System -an MMS Client and an MMS Proxy Relay.

The prototype was developed on a Sun Ultra-250 machine running Sun Solaris Operating
System. The development and debugging tool used was Suit Workshop. Exceed from
Hummingbird Communications was used as the X-Server to , display and use Sun
machine's Graphical Desktop on the local Windows 2000 based PC. In the final phases
of development, Purify from Rational Software was used to find and remove memory
leaks from the system.

Table of Contents

INTRODUCTION
	

4

.1 	Overview 	 4

.2 	MMS Messaging Framework 	 4

	

1.2.1 	Example use case 	 6

.3 	MMS Client/MMS-Proxy-Relay Interface 	 7

.4 	MMS Internet Email Interworking 	 7

	

1.4.1 	Sending-Messages To Internet Email Servers 	 8

	

1.4.2 	Receiving Messages Sent From Internet Email Systems 	 8

	

1.4.3 	Retrieving Messages From Internet Email Servers 	 8

.5 	MMS Addressing 	 8

	

1 	Internet Addressing 	 8

	

1.5.2 	Wireless network addressing 	 8

	

1IMS 	CLIENT TRANSACTIONS
	

10

.1 Overview 	 10

.2 Introduction to MMS Transaction Model 	 I1

.3 MMS Client Transactions 	 13
2.3.1 MMS Client sending Message to MMS Proxy Relay 	 13
2.3.2 MMS Proxy-Relay Sending Notification to MMS Client 	 14
2.3.3 MMS Client Fetching Message from MMS Proxy-Relay 	 15
2.3.4 MMS Proxy-Relay Sending Delivery Report to MMS Client 	 17
2.3.5 Read Reports 	 18

I MMS ENCAPSULATION PROTOCOL
	

19

Overview 	 19

Message Structure Overview 	 19

.3 MMS Protocol Data Units and Fields 	 21
3.3.1 Sending of Multimedia Message 	 21
3.3.2 Multimedia Message Notification . 	 26
3.3.3 Retrieval Of Multimedia Message 	 29
3.3.4 Delivery Acknowledgement 	 31
3.3.5 Delivery Reporting 	 31
3.3.6 Read Reporting 	 32

.4 Error Considerations 	 33
3.4.1 Interoperability Considerations with Version Numbering 	 33

II

E-1

3.4.2 Interoperability between MMS Versions with the Same Major version number 33
3.4.3 Interoperability between MMS Versions with Different Major Version Numbers 33

3.5 Binary Encoding of Protocol Data Units 34
3.5.1 Basic Rules 34
3.5.2 Encoding Rules 35
3.5.3 Header Encoding 37
3.5.4 Assigned Numbers 41

3.6 MMS Addressing Model 42

4 DESIGN OF THE MMS PROTOTYPE 	 44

4.1 Functionality Implemented 44
4.1.1 Transactions Supported 44
4.1.2 Message Headers supported 44

4.2 Architecture of the MMS Client 46
4.2.1 Functional Decomposition 46
4.2.2 The UI 46
4.2.3 The HTTP Server 47
4.2.4 The MMS Client CGI Script 47
4.2.5 The MMS Client Driver 47
4.2.6 The MMS Client Transactions Stack 47
4.2.7 The MIME Encoder 48
4.2.8 The HTTP Client 48

4.3 Internal interfaces 48
4.3.1 The HTTP Server-MMS Client CGI Script Interface 48
4.3.2 The MMS Client CGI Script-MMS Client Driver Interface 48
4.3.3 The MMS Client Driver-User Interface 48
4.3.4 The MMS Client Driver-UI Interface 49
4.3.5 The MMS Client Driver-MMS CTS Interface 49
4.3.6 The MMS CTS-MIME Encoder Interface 49
4.3.7 The MMS CTS-HTTP Client Interface 50

4.4 Architecture of the MMS Proxy Relay 51
4.4.1 Functional Decomposition 5I
4.4.2 The Message Handler 51
4.4.3 The HTTP Server 52
4.4.4 The SMTP Client 53
4.4.5 The Message Retriever Script 53
4.4.6 The MPR Script 53
4.4.7 The PUSH Client 53
4.4.8 The HTTP Client 54

4.5 Internal Interfaces 55
4.5.1 Message Handler-SMTP Client Interface 55
4.5.2 Message Handler-Push Client Interface 55
4.5.3 Push Client-HTTP Client Interface 55
4.5.4 Message Handler-Message Retriever Script Interface _ 	55
4.5.5 Message Handler-MPR Script 55
4.5.6 Message Retriever Script-HTTP Server Interface 56
4.5.7 MPR Script-HTTP Server Interface 56

5 CONCLUSION
	

57

REFERENCES
	

58

APPENDIX A: PUSH ARCHITECTURE OVERVIEW 	 59

A.1 	The Push Framework 	 59

A.2 	The Push Proxy Gateway 	 60

1 Introduction

1.1 Overview

The Multimedia Messaging Service (MMS), as its name implies, is intended to provide a
rich set of content to subscribers in a messaging context. It supports both sending and
receiving of such messages by properly enabled client devices. An example of such a
message is shown in Figure 1-1 below.

"See what I saw in Pails
When I went oil Iho(ie'ay.,'

Played or Spoken
Sound

Display of
Text and Picture

Figure 1-1 Example Message with Multimedia Content

The Multimedia messaging service is viewed as a non-real-time delivery system. This is
comparable to many messaging systems in use today. Prime examples include traditional
email available on the Internet and wireless messaging systems such as paging or SMS.
These services provide a store-and-forward usage paradigm and it is expected that the
MMS will be able to interoperate with such systems. Real-time messaging also exists in
various forms. For example, instant messaging available from various vendors or various
chat services (e.g. text, voice) are becoming popular. Such services are not currently
supported with the MIMS system but may be considered for future releases.

1.2 MMS Messaging Framework
A key feature of MMS is the ability to support messaging activities with other available
messaging systems. This is shown in Figure 1-2 below which shows an abstract view of
an MMS network diagram. It is expected that specific MMS networks may have one or
more such connections as well as include specific messaging services not directly
represented (e.g. fax or voice mail systems).

Lofpcy loVirolaas
rlQrsa91n9 s~sI,rns

MF11S
SOIl'Gf

rir.1s.4 ' :•*

E 	I 	I 	intornet

riris 	'
cliu,t 	Mrt5r.,

.161S Prow
Raley

otnmr,1MS
MNIS„ S,torrY

Figure 1-2 MMS Network Representation

The system elements shown in Figure 1-2 can be summarised as follows:

• MMS Client — "1'his is the system element that interacts with the user. It is expected to
be implemented as an application on the user's wireless device.

• MMS Proxy-Relay — This is the system element that the MMS Client interacts with. It
provides access to the components that provide message storage services, and it is
responsible for messaging activities with other available messaging systems. Some
implementations may combine this component with the MMS Server.

• MMS Server — This system element provides storage services for MM messages.
Sonic implementations may combine this component with the MMS Proxy -Relay.

• Email Server — "This system element provides traditional Internet email services. It
supports the SMTP protocol to send messages as well as POP and/or IMAP protocols to
retrieve messages.

• Legacy Wireless Messaging Systems — This system element represents various
systems that currently exist in support of wireless messaging systems. I his would include
paging and SMS systems that provide messaging to a large number of subscribers.

l:ni-fil
Sowor

ra r,ls$

5

The interfaces shown in the diagram are described as follows:

• MMSm — the interface defined between the MMS Client and the MMS Proxy -Relay.

• MMSs - the interface defined between the MMS Server and the MMS Proxy -Relay.
This interface may be transcendental when the MMS Server and MMS Proxy -Relay are
combined into a single component. The need to define this interface has not yet been
established.

• MMSR - the interface defined between MMS Proxy -Relays of separate MMS
Systems, see section 9. Currently, there is no specification that defines this interface. This
interface may be standardised in the future by the WAP forum or by some other
standardisation body.

• E - the standard email interface used between the MMS Proxy -Relay and internet-
based email systems utilising SMTP, POP and IMAP transport protocols.This interface
may be standardised in the future by the WAP forum or by some other standardisation
body.
• L - the interfaces used between the MMS Proxy -Relay and legacy wireless messaging
systems. As there are various such systems, this is viewed as being a set of interfaces.
This interface may be standardised in the future by the WAP forum or by some other
standardisation body.

1.2.1 Example use case

The following example information flow for a use case is provided to further illustrate the
functions and roles of the various system elements in the MMS framework. The example
given here concerns end-to-end MMS messaging between terminals.
1. User activates MMS Client (assumed to be available on terminal).
2. User selects or enters MM target address(es).
3. User composes/edits MM message to be sent.
4. User requests that MM message is sent.
5. MMS Client submits the message to its associated MMS Proxy -Relay via the MMSM

interface.
6. MMS Proxy-Relay resolves the MM target address(es).
7. MMS Proxy-Relay routes forward the MM to each target MMS Proxy -Relay via the

MMSR interface.
8. The MM is stored by the MMS Server associated with the target MMS Proxy -Relay.
9. Target MMS Proxy -Relay sends a notification to target MMS Client via the MMSM

interface.
10. Target MMS Client retrieves the MM from the MMS Server.
11. Target MMS Client notifies target user of new MM available.
12. Target user requests rendering of received MM message.
13. Target MMS Client renders MM message on target user's terminal.

Note that steps 10 and 11 could occur in reverse order depending on MMS Client
implementation, that is, an MM retrieval policy could cause the MMS Client to retrieve
an MM only when so allowed by the user.

1.3 MMS Client/MMS-Proxy-Relay Interface

As shown in Figure 1-2, the MMS Client interacts with the MMS Proxy - Relay. This
operation is consistent with the WAP model where the MMS Proxy - Relay operates as
an Origin Server (Pull Operations) or as a Push Initiator (Push Operations). The
relationship between the MMS Client and MMS Proxy -Relay is shown in Figure 1-3
below. The messages that transit between the two components are normally transferred
using a wireless transport such as WSP between the WSP Client and the WAP Gateway,
and then transit over HTTP from the WAP Gateway to the MMS Proxy -Relay.

WAV
Nll41s 	 Gateway MMS
Client . j }m a 	? 1 era a

unp
Proxv-Reiav

••01

Figure 1-3 MMS Client/MMS Proxy Relay Link

This network representation includes a few items that need to be described. The MMS
Proxy -Relay is the network entity that interacts with the user mailbox and is responsible
for initiating the notification process to the MMS Client. The WAP Gateway provides
standard WAP services •needed to implement MMS, these include: HTTP methods;
PUSH services; and OTA security. The MMS system is guided by activities between the
MMS Client and MMS Proxy -Relay. These activities are described in the WAP MMS
Client Transaction document [2] and the MMS Encapsulation document [3].
The network view also shows a payload that is carried by the wireless transport and
HTTP. This payload is described in the WAP MMS Message Encapsulation document
[3]. It is expected that this data will be transported in its entirety between the MMS Proxy
-Relay and the User's Terminal.

1.4 MMS Internet Email Interworking
One of the important links on the Network Diagram is the connection of the MMS Proxy
Relay to Email Servers connected via the Internet. This connectivity works in both
directions.

1.4.1 Sending Messages To Internet Email Servers

For sent messages, the MMS Proxy -Relay will submit the message to the addressed host
using the SMTP protocol. The message payload will be converted to standard Internet
MIME format to permit the various media components to be carried consistently into the
Internet enviromnent. The MMS specific header fields will be converted into appropriate
headers by prepending an 'X-Mms-' to the header name. This will permit MMS aware
systems to understand the fields while not .being problematic for non-MMS aware
systems.

1.4.2 Receiving Messages Sent From Internet Email Systems

Received messages will be similarly converted. The MIME part of the message will be
converted to the MMS format. Similarly, any headers found with a prefix of 'X-Mms-'
can be converted back to the associated MMS header.

1.4.3 Retrieving Messages From Internet Email Servers

It will be important for MMS Clients to be able to retrieve messages that are stored on
Internet Email servers. This is normally done through the use of the POP or IMAP
protocols. Such retrievals are performed by the MMS Proxy-Relay (this is one of the
proxy roles), which will then convert the data into an appropriate MMS format.

1.5 MMS Addressing
An important aspect of messaging systems is the ability to address the users in a way that
can be efficient for the system as well as meaningful for the senders of messages. This
balance is difficult to achieve.

,1.5.1 Internet Addressing

In the Internet world, where bandwidth is not a primary consideration, addresses are
normally expressed in the email address paradigm. In this scheme, addresses look like
user@system where the system specification may be a domain name or a fully qualified
host address. In general, this scheme provides users the ability to have a complete and
unique address in an unbounded text string.

1.5.2 Wireless network addressing

In the wireless world, where bandwidth efficiency is critical, short address lengths and
ease of user entry on limited keypads are the hallmarks of the various systems. For
example, in GSM networks, a user's address is based upon the MSISDN number utilized
by the device. Similarly, in many paging systems, users are assigned PINs that would
permit a caller to deposit a message.
The MMS addressing model, as defined in [3], makes such a more direct or efficient
addressing scheme available to MMS subscribers and services. This is seen as

particularly important for interoperability with legacy systems such as the above
mentioned, and e.g. for mobile-to-mobile operation.
As message traffic has increased to wireless systems from the wireline world, most such
systems have deployed servers that provide external entities the opportunity to address
their email to the wireless subscribers directly. Many such systems utilize an ID@Carrier
(e.g. 9811206998@essarcellphone.com) approach to facilitate using these addresses for
access from email systems.

MMS employs an extensible addressing scheme that permits a variety of addressing
paradigms to be supported. More specific details on addressing can be found in the MMS
encapsulation specification [3].

2 MMS Client Transactions

2.1 Overview
The Multimedia Messaging Service is described in terms of actions taken by the MMS
Client and its service partner, the MMS Proxy -Relay, a device that operates as a WAP
Origin Server for this specialised service. This chapter defines the operational flow of the
messages that transit between the MMS Client and the MMS Proxy -Relay. The format of
the specific messages is described in the next chapter "MMS Encapsulation Protocol".

'I'he MMS client transactions described in this chapter take place on the interface labeled
MMSM in the Figure 1-2. The following figure presents an amplified view of the MMSM
link. It is built on top of the WAP architecture. In its role as an application, MMS
provides for the delivery and services related to messaging and the data schemes that will
permit presentation methods that provide for the multimedia user experience. These
presentation methods are separate from MMS.

1VIrliB66 ~ r~ Internet 	_
Netowk 	Li 	llntranet

'MAP 	 ms Mr/IsMr/Is lyi
Gateway

Client 	 Proxy-Relay
~ 	Payload 	 Payload

U.....

Figure 2-1 Implementation of AiMSNI Interface

This figure includes a few items that need to be described. The MMS Proxy-Relay is the
network entity that interacts with the user mailbox and is responsible for initiating the
notification process to the MMS Client. The WAP Gateway provides standard WAP
services needed to implement MMS, these include: WSP invocation of IITTP methods,
see [4]; WAP PUSH services, see [5]; OTA security; and, Capability Negotiations, see
[11]. The above figure also shows a payload that is carried by WSP and II'I'"I'I'. This
payload is described in the MMS Message Encapsulation [3] document. It is expected
that this data will be transported in its entirety between the MMS Proxy -Relay and the
MMS Client.

This description does not address issues related to the movement or acquisition of MM
messages beyond the MMS Proxy-Relay as these are outside the scope of the MMSM
link.

10

2.2 Introduction to MMS Transaction Model
The MMS service is realized by the invocation of transactions between the MMS Client
and the MMS Proxy-Relay. These transactions include information and affect state
changes on these devices. This section introduces example transaction flows and later
sections describe each individual, logically separate transaction in more detail.
The general transaction flows on MMSM for sending and retrieving MM messages do not
depend on what type of client the MM message is sent to or received from. The other
endpoint for the MM message may be another MMS Client served by the same or another
MMS Proxy -Relay, it may be a client on a legacy wireless messaging system, or it may
be an e-mail server.
The following three figures provide general views of the MMSM transactions needed for:
1) an MMS Client to send an MM message and receive back a resulting delivery notice;
2) an MMS Client to perform immediate retrieval of a new MM message; and,
3) MMS Client to perform delayed retrieval of a new MM message. The arrow labels in

the following figures indicate the MMS messages (also known as MMS PDUs)
exchanged during transactions. These messages are defined in detail in [3].

Otg 	O,g 6T.13 	 6T.1 Messapa
h?.13Gienl 	 R,,f ienl

A13p

Irlaatlkns uxunrg hrvrtl A4.T3~
aono[In INSdxmm~s ss~s

TA'O'~N~S

Figure 2-2 Example MMSn1 Transaction Flow - Sending

A receiving MMS Client is said to perform immediate retrieval of a new MM message
when it retrieves the data from the MMS Proxy-Relay before acknowledging the message
notification.

M

Figure 2-2 Example MMSM Transaction Flow — Immediate Retrieval

A receiving MMS Client is said to perform delayed retrieval of a new MM message when
it first acknowledges the notification and at some later point retrieves the message from
the MMS Proxy -Relay.

Figure 2-3 Example MMSM Transaction Flow — Delayed Retrieval

If both endpoints for the MM message exchange are MMS Clients, the MMSM interface
is involved both when the originating MMS Client sends the MM message to the
originating MMS Proxy -Relay and when the target MMS Client retrieves the MM
message from the target MMS Proxy -Relay. The following figure shows an example
where both endpoints are MMS Clients and delayed retrieval is used.

12

Figure 2-4 Example MMSM Transaction Flow — Delayed Retreival

As can be seen in these examples, several message exchanges occur on MMSM. These
message exchanges can be considered to form the following logically separate
transactions:

• MMS Client Sending Message to MMS Proxy -Relay

• MMS Proxy-Relay Sending Notification to MMS Client

• MMS Client Fetching Message from MMS Proxy -Relay
• MMS Proxy-Relay Sending Delivery Report to MMS Client

2.3 MMS Client Transactions
The PDUs and information elements referred to in the following comply with the
definitions in [3].

2.3.1 MMS Client sending Message to MMS Proxy Relay
The process for a client to send a message is built on top of the M-Send transaction. It
provides the mechanism for the MMS Client to submit an MM message to the MMS
Proxy -Relay and to get back information in response. The following figure gives an
example of this transaction.

13

Giginsling 	 NI
MMS Client 	 Pi n y.Relny

-- M-Send./eq
I~e~T1, adU, multipart "'-`-~►

.w---~trans Tastgtus,r~tuk0~o

Figure 2-5 Example M-Send Transaction Flow

The MMS Client that wishes to send an MM message invokes a WSP/HTTP POST
operation with the M-Send.req message embedded as the content body. This message is
submitted using a URI that addresses the MMS Proxy-Relay that supports the specific
MMS Client.
The MMS Client should compose a transaction ID for the submitted message. This
transaction ID is used by the MMS Client and MMS Proxy -Relay to provide linkage
between the originated M-Send.req and the response M-Send.conf messages. The value
used for the transaction ID is determined by the MMS Client and no interpretation is
expected by the MMS Proxy -Relay.
Upon receipt of the M-Send.req message, the MMS Proxy-Relay should respond to the
WSP/HTTP POST with a response that includes the M-Send.conf message in its body.
This response message provided a status code for the requested operation. If the MMS
Proxy-Relay is willing to accept the request to send the message, the status should be
'accepted' and the message includes a message-ID that may be used for following
activities that need to refer to the specific sent message (e.g. delivery reports).

2.3.2 MMS Proxy-Relay Sending Notification to MMS Client
To inform an MMS Client that an MM message is available and for it to return back
information, a set of asynchronous messages, M-Notification.ind and M-NotifyResp.ind,
are utilized. This provides the mechanism for the MMS Proxy -Relay to notify the MMS
Client with certain factors about the new MM. This will let the MMS Client retrieve the
MM.

14

MMS 	 Target
Proxy-Relay 	 INMS Client

-~--_. 	M- Mofiricalfon.inci
lrauS_T-' uri, site. explry-'---A,

'!I 	trans 'm sla1us

Figure 2-6 Example MMS Notification of MM message to Target Client

The MMS Proxy-Relay should utilise the M-Notification.ind message when it needs to
inform the MMS Client that it message is available for delivery. The M-Notification.ind
message should be sent by the MMS Proxy-Relay to the MMS Client using the WAP
PUSII framework [PUSHARCH]. The M-Notification.ind message should be sent as the
message body of a [PUSHMSG]. The X-Wap-Application-Id message header of that
push message MUST be set to `x-wap-application:mms.ua' if the absoluteURI form of
the app-id syntax is used, and MUST be set to .`4' if the app-assigned-code form of the
app-id syntax is used.
The information conveyed should include an RFC239.6 compliant URI that will be used
to actually retrieve the message in a subsequent operation by the MMS Client. Additional.
information about the message (e.g. message size, expiry) may be used by the MMS
Client to determine its behaviour. For example, the MMS Client may delay the retrieval
of the message until after a user confirmation if it exceeds a size threshold. The MMS
Proxy -Relay should compose a transaction ID for the notification message. This
transaction ID is used by the MMS Client and MMS Proxy -Relay to provide linkage
between the originated M-Notification.ind and the response M-NotifyResp.ind messages.
The value used for the transaction ID is determined by the MMS Proxy-Relay and no
interpretation is expected by the MMS Client.
Upon receipt of the M-Notification.ind message, the MMS Client should respond by
invoking a WSP/HTTP POST operation with an M-NotifyResp.ind message embedded as
the content body. This message is submitted using a URI that addresses the MMS Proxy -
Relay that supports the specific MMS Client. The MMS Client SHOULD ignore the
associated WSP/HTTP POST response from the MMS Proxy -Relay. The M-
NotifyResp.ind response message should provide a message retrieval status code. The
status `retrieved' should be used only if the MMS Client has successfully retrieved the
MM message prior to sending the NotifyResp.ind response message.

2.3.3 MMS Client Fetching Message from MMS Proxy-Relay
The operation for retrieval of the MM message by the MMS Client from the MMS Proxy
-Relay is built upon the normal WSP/HTTP GET functionality. Therefore, no new
operation is actually defined. The message type for the message returned from the MMS

15

Proxy -Relay to the MMS Client is M-retrieve.conf. Delivery of the MM message may be
either before or after the M-NotifyResp.ind message, depending on immediate retrieval
or delayed retrieval of MM message respectively. The MMS Proxy -Relay may therefore
decide to request an acknowledgement from the MMS Client to confirm successful
retrieval in case of delayed retrieval. These variations are shown in Figure 2-7 and Figure
2-8 respectively.

MMS 	 MMS
Proxy-Relay 	 - Client

~~WS910 GET.M

~~-.~ M-ret~fe+re.conf
MM multipart " ^ ~~►

Figure 2-7 MMS Retrieval Transaction without Acknowledgement

MMS 	 MMS
Proxy-Relay 	 Client

WSPPr171P G~T.ceq _

Figure 2-8 MMS Retrieval Transaction with Acknowledgement

The MMS Client should initiate the retrieval activity by utilizing the URI that was
delivered to it in the M-Notification.ind message using the connection oriented mode of
the normal WSP/HTTP GET method operation.
When setting up the WSP session and when sending the GET request the MMS Client
should convey the capabilities of the terminal and of the MMS Client.
The response message M-retrieve.conf, if successful, contains the MM message. This
MM message should include MMS headers providing additional information.

Depending on the MMS Proxy -Relay needs, the M-retrieve.conf response that it
provides may request an acknowledgement to be generated by the MMS Client. The
MMS Proxy -Relay may make this request based on whether or not it needs to provide a
delivery notice back to the originator of the MM message. Alternatively, it may make that

16

request based upon an expectation that it would then be able to delete the message from
its own store. This decision is not a part of this transaction.
The MMS Proxy Relay should make this request for acknowledgement by including a
transaction ID in the M-retrieve.conf message. This transaction ID is used by the MMS
Client and MMS Proxy-Relay to provide linkage between the originated M-retrieve.conf
and the response M-acknowledge.ind messages. The value used for the transaction ID is
determined by the MMS Proxy -Relay and no interpretation is expected by the MMS
Client.
If an acknowledgement is requested, the MMS Client should respond by invoking a
WSP/HTTP POST operation with an M-Acknowledge.ind message embedded as the
content body. This message is submitted using a URI that addresses the MMS Proxy -
Relay that supports the specific MMS Client. The MMS Client should ignore the
associated WSP/HTTP POST response from the MMS Proxy -Relay. The M-
Acknowledge.ind message confirms successful MM message retrieval to the MMS Proxy
Relay.

2.3.4 MMS Proxy-Relay Sending Delivery Report to MMS Client

To permit the originating MMS Client to know when a message delivery has occurred the
M-Delivery.ind message has been defined to provide that information. The M-
Delivery.ind message originates at the MMS Proxy-Relay providing information to the
MMS Client about the message that was delivered. There is no associated response or
acknowledgment message. The following Figure 2- shows an example of this message.

MMS 	 - 	 MMS
Client 	 Proxy-1 elay

pit-DelNery.ind eNddress~

'4- reS Mscllr, status, addr--Targ

Figure 2-9 Example Delivery Report Transaction

The M-Delivery.ind message should be sent by the MMS Proxy -Relay to the MMS
Client using the WAP PUSH framework [5]. The M-Delivery Delivery.ind message
should be sent as the message body of a PUSH message as described in [6]. The X-Wap-
Application-Id message header of that push message MUST be set to 'x-
wapapplication:mms.ua' if the absoluteURl form of the app-id syntax is used, and MUST
be set to `4' if the appassigned-code form of the app-id syntax is used.

The M-Delivery.ind message conveys information about the status of a particular
message delivery that was performed. The message is identified by the Message ID that
was generated when the original message was posted. It also provides addressing
information of the originally targeted entity.

If an MM message was addressed to multiple entities, multiple M-Delivery.ind messages
SHOULD be expected to be returned, one for each addressed entity.

17

2.3.5 Read Reports

When the originating MMS Client requests the Read-Reply in a multimedia message, the
receiving MMS Client may send a read message back to it. This message is sent and
delivered using the normal mechanisms as described in this section.

To permit a user to determine that a message is a read reply, a few fields can be used to
provide that information:
• The subject field should be copied from the original, prepending a `Read:' to the text.
• The Message-ID of the original message is available and should be included in the

message body.
e The body of the message may provide information about the read action or status.
The following is an example of a read reply message. It is in response to .a message that
user A had sent to user B:

From: 	B
To: 	A
Sent: 	Friday, January 21, 2000 1:50 PM
Subject: Read: My Message
Your message

To: 	B
Subject: 	My Message
rvlessage-ID: <200002211 8 0a.MAA25265@rnaill.clomain.eom>
Sent: 	1/2112000 1:29 PM

was read on 1121,2000 1:50 PM.

Figure 2-10 Example for Read Report

If supported by a receiving MMS Client, the read reply message is sent to the MMS
Proxy -Relay when an MM message has been read that had been flagged with the Read-
Reply flag. The message should be sent using the normal M-Send operation as it is just
another message origination. As such, it should be delivered using the normal delivery
methods. Due to the nature of the message, the Message Message-Class field should have
the value `Auto', the Read Read-Reply flag must not be set, and the Delivery Delivery-
Report flag must not be set in a read-reply message.

The MMS Client receiving a read reply message will see it as a new message. The
interpretation as a read-reply is done by context. In cases where the original message had
multiple addresses, the MMS Client should expect that multiple read-reply messages will
be returned.

18

3 MMS Encapsulation Protocol

3.1 Overview
This chapter describes the content and encodings of the protocol data units (PDUs) for
the multimedia messaging service.

In multimedia messaging service the WAP WSPIHTTP is used to transfer multimedia
messages between the terminal (MS) and the MMS Proxy -Relay. The WSP session
management and the related capability negotiation mechanisms as well as security
functions are out of the scope of this document.

There are basically eight types of PDUs used in MMS transactions:
• Send message to MMS Proxy -Relay(M-Send.req, M-Send.conf)
• Fetch message from MMS Proxy -Relay (WSP/HTTP GET.req, M -Retrieve.conf)
• MMS Notification about new message (M-Notification.ind, M-NotifyResp.ind)
• Delivery Report about sent message.(M-Delivery.ind)
• Acknowledgement of message delivery (M-Acknowledge.req)

Logically the PDU consists of headers and a multipart body. The multipart body is
present only as a sent multimedia message and a successfully fetched message. Some of
the headers originate from standard RFC 2822 headers and others are specific to the
multimedia messaging.

According to WSP definitions, comma separated lists of header field values are coded as
multiple headers with identical name. If the headers are converted from binary encoding
to textual format, several header fields with the same name are combined into a comma
separated list, and vice versa. The order of the header fields is preserved.
The textual format of the headers is that defined in RFC2822 and RFC 2616. Binary
encoding is similar to WSP header encoding [4]. In this specification, values for header
fields and parameter names are assigned.

3.2 Message Structure Overview
The multimedia messaging PDUs consists of MMS headers and a message body. The
message body may contain any content type, including preassigned content types defined
in [4]. The MIME multipart RFC2045-RFC2047 is used in email systems and are
therefore compatible. The content type of the PDUs is application/vnd.wap.mms -
message. The WSP content type application/vnd.wap.multipart.related content type
provides a good example how multimedia content and presentation information can be
encapsulated to a single message. Figure 3-1 depicts the conceptual model and example
of the encapsulation.

lit

application/vnd.wap.mms-message

MMS headers

Start
	Message Body

\\i ntat10n

imagelipeg

Figure 3-1 Model of MMS data Encapsulation

The MMS-headers contain MMS-specific information of the PDU. This information
contains mainly information how to transfer the multimedia message from originating
terminal to the recipient terminal. In the multimedia messaging use case, the message
body consists of multipart/related structure including multimedia objects, each in
separate part, as well as optional presentation part. The order of the parts has no
significance. The presentation part contains instructions how the multimedia content
should be rendered to the display and speakers etc, on the terminal. There may be
multiple presentation parts, but one of them must be the root part. In case of
multipart/related, the root part is pointed from the Start parameter.
If the presentation part does not exist, it is up to the implementation of the terminal how
the multimedia content is presented. Examples of the presentation techniques are SMIL
and WML. The message body is used only when the multimedia message is sent or
retrieved. All other PDUs contain only the mms-headers part. The message can contain
various multimedia parts. Figure 3-1 shows just one possibility.

2G

3.3 MMS Protocol Data Units and Fields
The header fields for sending, notification, retrieving, reporting and acknowledging of a
multimedia message are described in the Tables 1-7. The names of the fields that do not
,originate from RFC2822 are preceded by X-Mms-. The MMS Protocol Data Units may
contain additional Header fields such as found in standard RFC2822 headers which are
not explicitly referenced in this document.

3.3.1 Sending of Multimedia Message -- .
The sending of the multimedia message consists of two messages: M-Send.req and M-
Send.conf. The transaction identifier is created and used by the sending client and it is
unique within the send, transaction only.

3.3.1.1 Send Request; i is
This chapter describes messages sent by the, MS to the MMSProxy -Relay, and those
headers generated by the sender's MMS Proxy -Relayand added to the headers generated
by the client. These' headers are used to generate the MMS }notification to the recipient,
and are delivered with the message body parts to the recipient at retrieval.
In addition to the following tokens described in the table below, it is also possible to
provide header extendability using WSP mechanism of encoding of a new unassigned
header field name. 	 '

Name;(Core t Comments

X-Mms-Message-Type 	 . Message-type-value = Mandatory.

m-send-req Specifies the transaction
type.

X-Mms-Transaction-ID :;,,; :Transaction-id-value: ,-,. 	, Mandatory.

A unique identifier for the
z . 	_ message. This transaction

ID identifies the M-
Send.req and the
corresponding reply only.

X-Mms-MMS-Version MMS-version-value Mandatory.

The MMS version number.
According to this

' 	'' ^ 	' • specification, the version is
1.0

21

Date Date-value Optional.

Arrival time of the
message at MMS Proxy -
Relay. MMS Proxy Relay
will generate this field
when not supplied by
terminal.

?Th ThiS

Address of the message
sender. This field MUST be
present in a message
delivered to a recipient.
The sending client MUST
send either its address or
insert-anaddress token. In
case of token, the MMS
Proxy -Relay MUST insert
the correct address of the
sender.

To To-value Optionali.

Any number of address
fields allowed.

Cc Cc-value Optionali.

Any number of address
fields allowed.

Bcc Bcc-value Optionali.

Any number of address
fields allowed.

Subject Subject-value Optional.

Subject of the message.

X-Mms-Message-Class Message-class-value Optional.

Class of the message.
Value Auto indicates a
message that is
automatically generated

22

by the client. If the
Message-Class is Auto, the
originating terminal should
NOT request Delivery-
Report or Read-Report.

If field is not present, the
receiver inteprets the
message as personal.

X-Mms-Expiry Expiry-value Optional, default:
maximum.

Length of time the
message will be stored in
MMS Proxy -Relayor time
to delete the message.
The field has two formats,
either absolute or
interval.

X-Mms-Delivery-Time Delivery-time-value Optional: default:
immediate.

Time of desired delivery.
Indicates the earliest
possible Delivery of the
message to the recipient.
The field has two formats,
either absolute or interval.

X-Mms-Priority Priority-value Optional. Default: Normal.

Priority of the message for
the recipient.

X-Mms-Sender-Visibility Sender-visibility-value Optional. Default: show
address/phone number of
the sender to the recipient
unless the sender has a
secret number/address.

Hide = don't show any
address. Show = show
even secret address.

X-Mms-Delivery-Report Delivery-report-value Optional. Default
determined when service
is ordered.

23

Specifies whether the user
wants a delivery report
from each recipient. When
Message-Class. is Auto, the
field should always be
present and the value
should be No.

X-Mms-Read-Reply Read-reply-value Optional.

Specifies whether the user
wants a read report from
each recipient as a new
message. When message-
Class is Auto, the field
should always be present
and the value should be
No.

Content-Type Content-type-value Mandatory.

The content type of the
message.

Table 1 Headers of the M-Send.req message

Application-specific headers in M-Send.req provide technology that allows the use of
application-specific extensions for multimedia messaging service which allows, e.g., the
use of additional RFC2822 headers.

The message body follows the headers.

When the content type application/vnd.wap.multipart.related is used and if the Start
parameter in the related structure is present, it must point to the presentation part of the
multimedia message. If the Start parameter is not present, the presentation part, if present
at all, M UST be the first part in the multipart structure.

24

3.3.1.2 Send confirmation
When the MMS Proxy —Relay has received the Send request, it sends a response message
back to the MS indicating the status of the operation. The response message contains a
the mms -headers only.

•Comments 	, r

X-Mms-Message-Type Message-type-value = m- Mandatory.
send-conf Identifies the message

type

X-Mms-Transaction-ID Transaction-id-value Mandatory.

Response-text -value This transaction ID
identifies the M-Send.conf
and the corresponding
request only.

X-Mms-MMS-Version MMS-version-value Mandatory.

The MMS version number.
According to the current
specification, the version is
1.0

X-Mms-Response-Status Response-status-value Mandatory. - -,

MMS specific status.

X-Mms-Response-Text Response-text -value Optional.

Description which qualifies
the response status value.

Message-ID Message-ID-value Optional.

This is a unique reference
assigned to message. This
ID should always be
present when the MMS
Proxy - Relay accepted
the message.

The ID enables a client to
match.delivery reports
with previously sent

25

messages.

Table 2 M-Send.conf message

The MMS Proxy-Relay must always assign a message ID to the message when
successfully received for delivery. The message ID shall be globally unique according to
the needs of the MMS Proxy —Relay that receives the multimedia message for delivery.

3.3.2 Multimedia Message Notification

MMS Notifications inform the MS about the contents a received message. The MMS
Notification message consists only of MMS headers. No other parts are present. The
purpose of the notification is to allow the client to automatically fetch a MM from the
location indicated in the notification.
The transaction identifier is created by the MMS Proxy —Relay and it is unique up to the
following M-NotifyResp only.
If the MMS Client requests deferred delivery with M-NotifyResp, the MMS Proxy —
Relay may create a new transaction identifier.

Mame C o ns ti]; Comments'. x

X-Mms-Message-Type Message-type-value = Mandatory

m-notification-ind Specifies the transaction
type.

X-Mms-Transaction-ID Transaction-id-value Mandatory.

Identifies the notification
and the subsequent
transaction that is closed
by the following M-
NotifyResp.

X-Mms-MMS-Version MMS-version-value Mandatory.

The MMS version number.
According to the current
specification, the version is
1.0.

From From-value Optional.

Address of the sender. If
hiding the address of the
sender from the recioient

26

is supported, the MMS
Proxy Relay will not add
this field to a message
header.

Subject Subject-value Optional.

Subject of the message.

X-Mms-Message-Class Message-class-value Mandatory.

Class of the message.

X-Mms-Message-Size Message-size-value Mandatory.

Full size of message in
octets.

X-Mms-Expiry Expiry-value Mandatory.

Length of time the
message will be available.
The field has only one
format, interval.

X-Mms-Content-Location Content-location-value Mandatory.

This field defines the
location of the message.

Table 3 M-Notification.ind message

The standard URI format should be used to represent the content location,

for example:
http://mmsc/msgrtvr?msgid

27

The confirmation of the notification is presented in Table 4. The purpose of the
confirmation is to acknowledge the transaction to the MMS Proxy -Relay.

Name ̀ 	' .Content 	; 	x ,'Comments, ,
X-Mms-Message-Type Message-type-value .= m- Mandatory.

notifyresp-Ind. Identifies the message
type

X-Mms-Transaction-ID Transaction-id-value Mandatory.

Identifies the transaction
started by M-Notification.

X-Mms-MMS-Version MMS-version-value Mandatory.

The MMS version number.
According to the current
specification, the version is
1.0

X-Mms-Status Status-value Mandatory.

Message status. The
status Retrieved should be
used only after successful
retrieval of multimedia
message.

X-Mms-Report-Allowed Report-allowed-value Optional. Default: Yes.

Sending of delivery report
allowed to the user or not.

Table 4 M-NotifyResp.ind message

28

3.3.3 Retrieval Of Multimedia Message

A client should retrieve messages by sending a WSP/HTTP GET request to the MMS
Proxy -Relay containing a URI to the received message.
When successful, the response to the retrieve request will contain headers and the body of
the incoming message.

Name 	 ~ k Cofl nnents CqO'kitent 	r 	s~~

X-Mms-Message-Type Message-type-value = Mandatory.

m-retrieve-conf Specifies the message
type.

X-Mms-Transaction-ID Transaction-id-value Optional.

Identifies either the
transaction that has been
started by M-Notification
without M-NotifResp or
new transaction when
deferred delivery was
requested. The new
transaction ID is optional.

X-Mms-MMS-Version MMS-version-value Mandatory.

The MMS version number.
According to the current
specification, the version is
1.0.

Message-ID Message-ID-value Optional.

This is an unique reference
assigned to message. This
ID should always be
present when the
originator client Requested
a read reply.

The ID enables a client to
match read reports with
previously sent messages.

Date Date-value Mandatory.

Sending date and time.

From From-value Optional.

Address of the sender. If

29

hiding the address of the
sender from the recipient
is supported, the MMS
Proxy —Relay will not add
this field to a message
header.

To To-value Optional.

Address of the recipient.

Any number of address
fields allowed.

Cc Cc-value ' Optional.

Any number of address
fields allowed.

Subject Subject-value Optional.

Message subject

X-Mms-Message-Class Message-class-value Optional.

Message class. If field is
not present, the receiver
Inteprets the message as
personal.

X-Mms-Priority Priority-value Optional. Default: Normal

Priority of the message.

X-Mms-Delivery- Report Delivery-report-value Optional. Default: No.
Specifies whether the user
wants a. delivery report
from each recipient.

X-Mms-Read-Reply Read-reply-value Optional. Default: No.

Specifies whether the user
wants a read report from
each Recipient as a new
message.

Content-Type Content-type-value Mandatory.

The content type of the
message.

Table 5 M-Retreive.conf message

30

Application-specific headers in M-Retrieve.conf provide technology that allows the use
of application-specific extensions for multimedia messaging service which allows, e.g.,
the use of additional RFC2822 headers.
The message body follows the headers.
When the content type application/vnd.wap.multipart.related is used and if the Start
parameter in the related structure is present, the client should expect it to point to the
presentation part of the multimedia message.

3.3.4 Delivery Acknowledgement
An MMS Acknowledge message confirms the delivery of the message from the receiving
terminal to the MMS Proxy - Relay.

Name Contents 	~~ 	~p 	~ 	i~ • w k 	~ F 	v~ 	if
k»;u"'f 	 1•r~'} ' 	"r 	~~^

"~"i `.~~.✓ 	~di`~{~ '9tP'4TS~' ~a i +.y 	.~'`
1Comments 	d S j k i~.g,cQl $ 2 cs. 	~ 	_

rax 	5'~i 	xe 	M$.✓ 	~ ? 	%r -":.. =; ' a ~, 	'~,.` 	-' 	l~f 	° 	$px," a"un4-.;5 :. .7:'~3 r.'k1,' 	; 	.; 	.

X-Mms-Message-Type Message-type-value = m- Mandatory.
acknowledge-Ind Identifies the transaction

type.

X-Mms-Transaction-ID Transaction-id-value Mandatory.

This is the transaction
number that originates
from immediately previous
M-Retrieve operation.

X-Mms-MMS-Version MMS-version-value Mandatory.

The MMS version number.
According to the current
specification, the version is
1.0

X-Mms-Report-Allowed Report-allowed-value Optional. Default: Yes.

Sending of delivery report
allowed to the user.

Table 6 M-Acknowledge.ind messag:.

3.3.5 Delivery Reporting
A MMS Delivery Report must be sent from the MMS Proxy -Relay to the originating MS
when the originator has requested a delivery report and the recipient has not explicitly
requested for denial of the report. As for example, the recipient can request for denial of
the Delivery Report by using the X-Mms-Report-Allowed field of M-Acknowledge.ind

31

or M-NotifyResp.ind message. There will be a separate delivery report from each
recipient. There is no response message to the delivery report.

Name . Content ` 	' Cotnmeflts
~! ' 	i.-c 	14 YY 	:~ 	

+'

f- ~%„' #1

X-Mms-Message-Type Message-type-value = m- Mandatory.
delivery-ind. Identifies the PDU type

X-Mms-MMS-Version MMS-version-value Mandatory.

The MMS version number.
According to the current
specification, the version is
1.0

Message-ID Message-ID-value Mandatory.

Identifier of the message.
From Send request,
connects delivery report to
sent message in MS.

To To-value Mandatory.

Needed for reporting in
case of point-to-multi point
message.

Date Date-value Mandatory.

Date and time the
message was handled
(fetched, expired, etc.) by
the recipient or MMS Proxy.
-Relay.

X-Mms-Status Status-value Mandatory.

The status of the
message.

Table 7 M-Delivery.ind message

3.3.6 Read Reporting
When the originating terminal requested the Read-Reply in the multimedia message, the
recipient terminal may send a new multimedia message back to the originating terminal
when the user has read the multimedia message. The content of the multimedia message
is a terminal implementation issue. The read-reply multimedia message MUST have the
Message-Class as Auto in the message.

32

The MMS Proxy-Relay must deliver the read-reply message as ordinary multimedia
message.
When the originating terminal receives the Read-Reply, it should not create delivery
report or read-reply message.

3.4 Error Considerations
3.4.1 Interoperability Considerations with Version Numbering

The MMS version number is divided into two parts: major version number and minor
version number. MMS versions with only minor version number differences should
provide full backward compatibility. MMS versions with major version number
differences should not provide backward compatibility.

3.4.2 Interoperability between MMS Versions with the Same Major version
number

The following rules should be followed between different MMS versions having the same
major version number but different minor version number.
When a terminal or proxy -relay receives a PDU containing a particular minor version
number it may respond with a PDU containing a different minor version number.
Unless a specific behavior has been defined, the receiving terminal or proxy -relay should
ignore all unrecognised fields and recognised fields with unrecognised values.
The receiving proxy -relay should respond to any unknown PDU with M-Send.conf with
status value 'Errorunsupported-message'.
The receiving terminal should respond to any unknown PDU with M-NotifyResp.ind
with status value 'Unrecognised'. .

3.4.3 Interoperability between MMS Versions with Different Major Version
Numbers

The following rules should be followed between specifications with different major
version numbers.
The receiving proxy -relay should respond to any PDU having major version number
which it does not support with MMS 1.0 M-Send.conf containing status value 'Error-
unsupported-message'.
The receiving terminal should respond to any PDU having major version number which it
does not support with MMS 1.0 M-NotifyResp.ind containing status value
'Unrecognised'.
If the receiving terminal or proxy -relay supports multiple major versions including the
version number of the received PDU, it must respond to the received PDU with a PDU
from the same major version.

33

All major MMS versions must support MMS 1.0 M -Send.conf and MMS 1.0 M-
NotifyResp.ind.

3.5 Binary Encoding of Protocol Data Units
The basic encoding mechanism for multimedia messages originates from WSP
specification [4], because this is very tight encoding intended to optimize amount of data
transmitted over the air.
The encoded MMS messages are stored to the Data field of the Post, Reply and Push
PDUs [4]. Thus, the MMS messages are not encoded into WSP headers using WSP
codepage technique.

If user-defined headers are used, the mechanism described in the next section
(Application-header) MUST be used.

In the encoding of the fields, the order of the fields is not significant, except that
Message-Type, Transaction-ID and MMS-Version MUST be at the beginning of the
message headers, in that order, and the content type MUST be the last header, followed
by message body.

The definitions for non-terminals not found in this document MUST follow the
definitions in [4].
Note: The term "non-terminal" comes from the same context as described in RFC2234.
In the encoding of the message body, the binary encoding specified in. [4] should be used
whenever available. Otherwise, text encoding is used.

3.5.1 Basic Rules
The following rules are used through this document to describe the basic parsing
constructs. The rules for Token, TEXT and OCTET have the same definition as per [7].
The mechanisms specified in this document are described in augmented BNF similar to
that used by [7].

The notation <Octet N> is used to represent a single octet with the value N in the decimal
system. The notation Any octet M-N> is used for a single octet with the value in the
range from M to N, inclusive.

Text-string = [Quote] *TEXT End-of-string
If the first character in the TEXT is in the range of 128-255, a Quote character
must precede it.
Otherwise the Quote character must be omitted. The Quote is not part of the contents.

Token-text = Token End-of-string
Quoted-string = <Octet 34> *TEXT End-of-string
;The TEXT encodes an RFC2616 Quoted-string with the enclosing quotation-marks <">
removed

34

Extension-media = *TEXT End-of-string
; This encoding is used for media values, which have no well-known binary encoding

Short-integer = OCTET
Integers in range 0-127 shall be encoded as a one octet value with the most significant
bit set to one (lxxx xxxx) and with the value in the remaining least significant bits.

Long-integer = Short-length Multi-octet-integer
; The Short-length indicates the length of the Multi-octet-integer

Multi-octet-integer = 1 *30 OCTET
; The content octets shall be an unsigned integer value with the most significant octet
;encoded first (big-endian representation).
; The minimum number of octets must be used to encode the value.

Uintvar-integer = 1* 5 OCTET

Constrained-encoding = Extension-Media Short-integer
This encoding is used for token values, which have no well-known binary encoding, or
when the assigned number of the well-known encoding is small enough to fit into
Short-integer.

Quote = <Octet 127>
End-of-string = <Octet 0>

The following rules are used to encode length indicators.

Value-length = Short-length I (Length-quote Length)
; Value length is used to indicate the length of the value to follow

Short-length = <Any octet 0-30>
Length-quote = <Octet 31>
Length = Uintvar-integer

3.5.2 Encoding Rules
The following rules are used to encode headers in an MMS message:
Header = MMS-header I Application-header
MMS-header = MMS-field-name MMS-value
Application-header = Token-text Application-specific-value

35

Token-text = Text -string
MMS-field-name = Short integer
Application-specific-value = Text -string
MMS-value =

Bcc-value
Cc-value
Content-location-value
Content-type-value
Date-value
Delivery-report-value
Delivery-time-value
Delta-seconds-value
Expiry-value

From-value

Message-class-value
Message-ID-value

Message-type-value I
Message-size-value
MMS-version-value

Priority-value I

Read-reply-value

Report-allowed-value

Response-status-value
Response-text -value
Sender-visibility-value I

Status-value
Subject-value
To-value

Transaction-id-value

36

3.5.3 1 leader 1;ncoding

3.5.3.1 Bee field

I3cc-value = Encoded-string-value

Addressing model is discussed in a later section.

3.5.3.2 Cc field

Cc-value = Encoded-string-value

Addressing model is discussed in a later section.

3.5.3.3 Co,r ten t-Location field

Content-location-value = Uri-value

Uri-value = Text-string

URI value SHOULD be encoded per [RFC2616].

3.5.3.4 Content-Type field
The Content-Type field is encoded as Content-type-value defined in [4]. Preassigned
content-types can be found in [4]. The use of start-parameter in case of multipart/related
is define in RFC2387 and SHOULD be encoded according to [4].

3.5.3.5 Date field
Date-value = Long-integer

In seconds from 1970-01-01, 00:00:00 GMT.

3.5.3.6 Delivery-Report field

Delivery-report-value = Yes I No

Yes = <Octet 128>

No = <Octet 129>

3.5.3.7 Delii'ety-Time field

Delivery-time-value = Value-length (Absolute-token Date-value I Relative-token Dclta-
seconds-value)

Absolute-token = <Octet 128>

Relative-token = <Octet 129>

3.5.3.8 Delta-seconds-value
Delta-seconds-value = Long-integer

37

3.5.3.9 Eizcoded-strhzg-valnne

Encoded-string-value = Text -string I Value-length Char-set Text -string
The Char-set values are registered by IANA .

3.5.3.10 Expiry field
Expiry-value = Value-length (Absolute-token Date-value (Relative-token Delta-seconds-

value)
Absolute-token = <Octet 128>
Relative-token = <Octet 129>

3.5.3.11 From field
From-value = Value-length (Address-present-token Encoded-string-value Insert-
address-token)
Address-present-token = <Octet 128>
h}sert-address-token = <Octet 129>.
Addressing model is discussed in a later section.

3.5.3.12 Message-Class field

Message-class-value = Class-identifier I Text-string
Class-identifier = Personal I Advertisement I Informational Auto
Personal = <Octet 128>
Advertisement = <Octet 129>
Informational= <Octet 130>
Auto = <Octet 131>
The token-text is an extension method to the message class.

3.5.3.13 Message-ID field

Message-ID-value = Text -string
Encoded as in email address as per [RFC822]. The characters "<" and ">" are not
included.

3.5.3.14 Message-Type field

Message-type-value = m-send-req I zn-send-conf I m-notification-ind I m-notifyresp-ind
m-retrieve-conf I macknowledge-ind I m-delivery-ind
m-send-req = <Octet 128>

38

m-send-conf = <Octet 129>
ni-notification-ind = <Octet 130>
m-notifyresp-ind = <Octet 131>
m-retrieve-conf = <Octet 132>
m-acknowledge-ind = <Octet 133>
m-delivery-ind = <Octet 134>
Unknown message types will be discarded.

3.5.3.15 Message-Size field
Message-size-value = Long-integer
Message size is in bytes.

3.5.3.16 MMS-Version field

MMS-version-value = Short-integer
The three most significant bits of the Short-integer are interpreted to encode a major
version number in the range 1-7, and the four least significant bits contain a minor
version number in the range 0-14. If there is only a major version number, this is encoded
by placing the value 15 in the four least significant bits [4].

3.5.3.17 Priority field

Priority-value = Low I Normal High
Low = <Octet-.128>
Normal = <Octet 129>
High = <Octet 130>

3.5.3.18 Read-Reply field
Read-reply-value = Yes I No

Yes = <Octet 128>

No = <Octet 129>

3.5.3.19 Report Allowed field

Report-allowed-value = Yes I No
Yes = <Octet 128>

No = <Octet 129>

39

3.5.3.20. Respotzse-Status field

Response-status-value =
Oki,
Error-unspecified I

Error-service-denied
Error-message-format-corrupt
Error-sending-address-unresolved
Error-message-not-found
Error-network-problem
Error-content-not-accepted
Error-unsupported-message

Ok = <Octet 128>.

Error-unspecified = <Octet 129>
Error- service-denied = <Octet 130>
Error-message-format-corrupt = <Octet 131>
Error-sending-address-unresolved = <Octet 132->
Error-message-not-found = <Octet 133>
Error-network-problem = <Octet 134>
Error- content-not-accepted = <Octet 135>
Error-unsupported-message = <Octet 136>

Any other values should NOT be used. They are. reserved for future use. The value Error-
unsupported-message is reseved for version management purpose only.

3.5.3.21 Response-Text field
Response-text -value = Encoded-string-value

3.5.3.22 Sender-Visibility field

Sender-visibility-value = Hide I Show
Hide = <Octet 128>
Show = <Octet 129>

40

3.5.3.23 Status field

Status-value = Expired I Retrieved I Rejected I Deferred I Unrecognised
Expired = <Octet 128>
Retrieved = <Octet 129>
Rejected = <Octet 130>
Deferred = <Octet 131>
Unrecognised = <Octet 132>
The value Unrecognized is reserved for version management purpose only.

3.5.3.24 Subject field
Subject-value = Encoded-string-value -

3.5.3.25 To field

To-value = Encoded-string-value
Addressing model is discussed in a later section.

3.5.3.26 Transaction-Id field
Transaction-id-value = Text-string

3.5.4 Assigned Numbers

The Table 8 contains the field name assignments.

Name IassignedrNumber 	.

Bcc Ox01

Cc 0x02

Content-Location 0x03

Content-Type 0x04

Date 0x05

Delivery-Report 0x06

Delivery-Time 0x07

Expiry 0x08

From 0x09

Message-Class OxOA

Message-ID OxOB

ri

Message-Type OxOC

MMS-Version OxOD

Message-Size OxOE

Priority OxOF

Read-Reply 0x10

Report-Allowed Ox11

Response-Status 0x12

Response-Text 0x13

Sender-Visibility 0x14

Status 0x15

Subject 0x16

To 0x17

Transaction-Id 0x18

Table 8 Fieldname Assignments

3.6 MMS Addressing Model
The MMS addressing model contains two addresses: the address of the MMS Proxy -
Relay and the address of the recipient user and terminal. The address of the MMS Proxy -
Relay shall be the URI of MMS Proxy -Relay given by the MMS service provider. Thus,
the URI needs to be configurable in the terminal.
A notation for the address of the recipient user in the terminal needs to be defined. The
addressing model allows only single user in the terminal,-thus combining the address of
the terminal and the user. WAP Push Drafting Committee has solved this issue by using
ABNF RFC2234 notation for defining the address type in the WAP Push Proxy Gateway
specification. The text below is copied from the PPG specification. and edited for usage in
this document.
The external representation of addresses processed by the MMS Proxy -Relay is defined
using ABNF. The format is compatible with Internet e-mail addresses [9]. The MMS
Proxy -Relay MUST be able to parse this address format, and it MUST be able to
determine whether it supports the specified address type or not.

address = (e-mail / device-address

e-mail = "Joe User <joe@user.org>" 	corresponding syntax defined in

;RFC822 per header field

device-address = (global-phone-number "/TYPE=PLMN"

/ (ipv4 "/TYPE=IPv4"

/ (ipv6 "/TYPE=IPv6"

42

/ (escaped-value "/TYPE=" address-type)

address-type = 1*address-char 	 -

A network bearer address type identifier registered with WINA

address-cher = (ALPHA / DIGIT /

value = 1*(%x20-2E / %x30-3C / %x3E-7E

escaped-value = 1*(safe-char)

the actual value escaped to use only safe characters by replacing

any unsafe-octet with its hex-escape

safe-char = ALPHA / DIGIT / "+" / "-' / 	/ "$" /

unsafe-octet = %x00-2A / %x2C / %x2F / %x3A-40 / %x5B-60 / %x7B-FF

hex-escape = "%" 2HEXDIG ; value of octet as hexadecimal value

global-phone-number = ["+"] 1*(DIGIT , written-sep

written-sep =("-"/".")

ipv4 = 1*3DIGIT 3("." 1*3DIGIT) ; IPv4 address value

ipv6 = 4HEXDIG 7(":" 4HEXDIG) ; IPv6 address per RFC 2373

Each value of a user-defined-identifier is a sequence of arbitrary octets. They can be
safely embedded in this address syntax only by escaping potentially offending values.
The conversion to escaped-value is done by replacing each instance of unsafe-octet by a
hex-escape which encodes the numeric value of the octet.

Some examples of the mechanism:

To: 0401234567/TYPE=PLMN

To: +358501234567/TYPE=PLMN

To: Joe User <joe@user.org>

To: FEDC:BA98:7654:3210:FEDC:BA98:7654:3210/TYPE=IPv6

To: 195.153.199.30/TYPE=IPv4

Addresses using the /TYPE format SHOULD NOT contain anything else than what is
specified in the examples. E-mail addresses can use the field as it is allowed by RFC822
specification.

The terminal MUST support at least one of the addressing methods. The addressing
model may be expanded later to cover other formats of addresses, such as URI-based
addressing as discussed in RFC2396.

43

4 Design of the MMS Prototype

The MMS Prototype developed in this project consisted of two components: an MMS
Proxy Relay Prototype and an MMS Client Simulator. To keep the design simple, only a
subset of the features described in the specifications were implemented.
The functionality supported by the prototype is summarized in the next section.

4.1 Functionality Implemented
4.1.1 Transactions Supported

• The MMS Client sending message to the MMS Proxy Relay.
• The MMS Proxy Relay sending back the response to this message, indicating the

status of the message and the message-id allotted.
• The MPR sending a notification to the MMS Client.
• The MMS Client sending a response to the Notification.
• The MMS Client fetching a message from the MPR.
• The MMS Client sending an acknowledgement after fetching the message.
• The MPR sending a Delivery Report to MMS Client.

4.1.2 Message Headers supported
4.1.2.1 M-Send.req message
• X-Mms-Message-Type
• X-Mms-Transaction-ID
• X-Mms-MMS-Version
• Date
• From
• To
• Cc
• Bee
• Subject
• X-Mms-Expiry
• X-Mms-Delivery-Time
• X-Mms-Delivery-Report
• Content-Type

4.1.2.2 M-Send.conf message
• X-Mms-Message-Type
• X-Mms-Transaction-ID
• X-Mms-MMS-Version
• X-Mans-Response-Status
• Message-ID

44

4.1.2.3 M-Notification.ind message
• X-Mms-Message-Type
• X-Mans-Transaction-ID
• X-Mma-MMS-Version
• X-Mms-Status
• X-Mms-Report-Allowed

4.1.2.4 M-Retreive. conf message
• X-Mms-Message-Type
• X-Mms-Transaction-ID
•. X-Mms-MMS-Version
• Message-ID
• Date
• From
• To
• Cc
• Subject
• X-Mms-Delivery-Report
• Content-Type

4.1.2.5 M-Acknowledge.ind message
• X-Mms-Message-Type
• X-Mms-Transaction-ID
• X-Mms-MMS-Version
• X-Mms-Report-Allowed

4.1.2.6 M-Delivery.ind message
• X-Mms-Message-Type
• X-Mms-MMS-Version
• Message-ID
• To
• Date
• X-Mms-Status

45

4.2 Architecture of the MMS Client
4.2.1 Functional Decomposition

The Figure 4-1 shows the functional decomposition of the MMS Client. The MMS Client
consists of seven components — User Interface, MMS Client Driver, MMS Client
Transactions Stack, HTTP Client, HTTP Server and MMS Client CGI Script. A
description of each of these components is given below.

------------------- ----

MMS

--------------------------------;

Client UI 	E — V MMS Client

1

Script 	;

~

Driver H
Proxy 	I HTTP MIME
cEt r

MMS Client 	Encoder
Transactions

Stack

WAP
Gateway

HTTP Client

Figure 4-1 Functional Decomposition of the MMS Client

4.2.2 The UT

The User Interface does the actual interaction with the MMS user. It provides the user
with facilities like composing and sending new messages, fetching and viewing received
messages. The messages sent earlier (and stored in a sent-message store) can also be
viewed along with their status code indicating the delivery status of the message. The
delivery status is determined from the Delivery Report received for the message.

U
S
E
R

46

4.2.3 The HTTP Server
The HTTP server accepts HTTP POST requests from MMS clients, invokes the MMS
Client CGI Script and passes the data received in the body of the POST request to the
Script. It is also responsible for sending the response to the IITTP POST request. The
HTTP server and the MMS Client CGI Script together provide the framework for
receiving the PUSII messages from the MPR.

4.2.4 The MMS Client CGI Script
The MMS Client CGI Script receives the data from the FITTP Server, which is an MMS
Notification or Delivery Report PDU PUSHed by the MPR and passes it on to the MMS
Client Driver. It then receives any responses from the MMS Client Driver, adds headers
indicating the response to the PUSH submission and sends it back to the HTTP server.

4.2.5 The MMS Client Driver
The MMS Client Driver waits for inputs from the user and the MMS Client CGI Script. If
it receives input from the user, it analyses the input and invokes the User Interface
module functions that handle the interaction with the user, On the other hand if a PUSH
message is received from the MMS Client CGI Script, it invokes the MMS Client
Transactions module and passes the message to it.

4.2.6 The MMS Client Transactions Stack
The MMS CTS comes into action in the following transactions:

> Message Submission 	The MMS CTS module adds MMS headers to the
composed message received from the MMS Client
Driver and forms an MMS PDU. It then encodes
the message as given in section 7 of [3] and then
sends the message using the IITTP Client.

➢ Message Retrieval

	

	 When the user opts to fetch a new message, the
MMS CTS fetches the message using the HTTP
Client, decodes it, and then appends it to the
message store.

➢ Handling PUSH messages:

	

	When a PUSH message arrives via the I-ITTP
Server, the MMS CTS module parses and analyses
it to find out the type of the PDU contained in the
message. If the message is a Notification PDU, the
relevant information is extracted from the PDU
and appended to the message store. If the received
PDU is a Delivery Report PDU, the status code of
the messages stored in the sent-message store is
updated as indicated in the Delivery Report. Also,
a text message indicating the event is generated by
the module which will be displayed to the user.

47

4.2.7 The MIME Encoder

The MIME Encoder receives the content to be encoded from the MMS CTS, uses the
BASE64 encoding scheme to encode the content into a MIME message and returns an
encoded message back to the MMS CTS. Multiple multimedia files are encoded into a
single `multipart' MIME message as explained in [10].

4.2.8 The HTTP Client

The HTTP Client is used by the MMS Client Driver during the Submission and Retrieval
of messages. When submitting a new message, the HTTP Client is used to generate an
HTTP POST request. The message is sent in the body of the POST request. The URI
used in the POST request is the URI of the MPR with which the MMS Client is
registered. When retrieving a message, the HTTP Client is used to generate an HTTP
GET request to fetch the message. The URI used in this case is that which was indicated
in the notification for the message.

4.3 Internal interfaces
4.3.1 The HTTP Server-MMS Client CGI Script Interface

The I-ITTP Server invokes the MMS Client CGI Script and writes the MMS PDU
received from the PPG on the standard input of the CGI Script. The MMS Client Script
reads the PDU from its standard input and passes it to the MMS Client Driver. The CGI
Script then reads the response received from the MMS Client Driver, generates a
response to the PUSH submission as per section 7.4.2 of [6] and writes it on its standard
output, which is read by the HTTP Server. This response is used by the I-ITTP Server to
generate the response to the HTTP POST request.

4.3.2 The MMS Client CGI Script-MMS Client Driver Interface

The communication channel between the MMS Client is a datagrain based Unix Domain
Socket. The MMS. Client Script passes the PUSH messages containing MMS PDUs
received from the HTTP Server to the MMS Client Driver. And the MMS Client Driver
passes the response to the PUSH submissions back to the MMS Client CGI Script. The
MMS PDUs passed using the PUSH framework are the M-Notification.ind PDU and the
M-Delivery.ind PDU, the structure of which is as discussed in [3].

4.3.3 The MMS Client Driver-User Interface

The MMS Client Driver interacts directly with the user through its standard input stream.
Any key pressed by the user is read in by the Client Driver module and passed on to the
user interface module for processing.

48

4.3.4 The MMS Client Driver-UI Interface

The MMS Client Driver invokes the UI module functions and the communication
between the two is through the function parameters. Based on the: user keystrokes
different functions of the UI module are called to carry out the requested activity. The
different functions in the UI module 'are for Menu Display, Message Composition,
Message Retrieval and PUSH message indication.
> Menu Display 	The menu option chosen by the user is passed to the

Menu Display function so that it can update the menu
display if required.

> Message Composition:

	

	 The MMS message composed by the user is passed back
to the. MMS Client ,Driver by the message composer
function.

> Message Retrieval:.,

	

	The message-id of the message to be retrieved is passed
back to the MMS Client Driver.

> PUSH indication :

	

	A text message explaining the PUSH message received is
sent as a parameter to a PUSH indication display
function.

4.3.5 The MMS Client Driver-MMS CTS Interface
The MMS CTS module is invoked by the MMS Client Driver. The communication
between the two is through function parameters. The interface comes into play in the
following scenarios:

4.3.5.1 Arrival of a PUSH message

In this case the MMS Client Driver passes the MMS PDU received from the PUSH to the
MMS CTS for classification and further action.
4.3.5.2 New Message Submission.
When a new message is to be sent, the MIME encoded message is passed to the MMS
CTS for encapsulation, encoding and forwarding.
4.3.5.3 Message Retrieval
When the user has opted to fetch a new message, the message-id selected by the user is
passed to the MMS CTS by the MMS Client Driver. ,

4.3.6 The MMS CTS-MIME Encoder Interface
The MMS CTS invokes the MIME Encoder and passes the message body and the file
names of the multimedia attachments to it as function parameters. The MIME Encoder
returns a pointer to the encoded message back to the MMS CTS.

49

4.3.7 The MMS CTS-I IT"I'P Client Interface

The MMS CTS invokes the 1-IT'I'P Client and passes the IIT'I'P method name (GF'I' or
POST'), MMS PDU and the URI of the MPR to the IITTY Client as function parameters.
Any responses obtained from the I11°TP Server are also passed back to the MMS CTS
through parameters.

4

c~O991
C~~yT rc~L ~I~RR

ALc No......

50 	Du te........... 	1;.

4.4 Architecture of the MMS Proxy Relay
4.4.1 Functional Decomposition

The figure 3-1 shows the functional decomposition of the MPR. The MPR consists of
seven modules - Message Handler, SMTP Client, PUSH Client, Message Retrieval CGI
Script, MPR CGI Script, HTTP Client and HTTP Server. A description of the functions
of each of these systems is given below.

j Sient

n

Push Client 	 Client e 	sMTP
Message r 	Server
Handler n

e
t

Message
Retriever CGI

Script 	 HTTP .
Server

MMS Clients

MPR CGI Script ~hl

Figure 4-2 Functional Decomposition of the MMS Proxy Relay

4.4.2 The Message Handler
The Message Handler handles the storage, scheduling, delivery and delivery-reporting of
MMS messages.

4.4.2.1 Storage
The Message Handler receives the messages from the MPR CGI Script and stores them in
a buffer. A Message-ID is assigned to each message that is stored. On receiving the
message from the CGI Script it also generates and sends back a confirmation message in
the form of an M-Send.conf PDU. Embedded in the PDU is a status code indicating the
status of the MMS message and the Message-ID assigned to the message by the Message
Handler.

51

At any time, there will be two types of messages stored with the Message Handler:

a) Pending messages: These are the messages whose delivery time hasn't yet arrived.
b) Notified messages: These are the messages whose delivery time has arrived and a

notification for them has also been sent to the MMS client. These messages await
delivery till the client fetches them.

Thus, a message-state indicator is also stored by the message handler corresponding to
every message that it stores.

4.4.2.2 Scheduling
The Message Handler always stores the messages in a queue, sorted according to there
Deliver-After-Time. A timer is run for the message having the most recent Deliver-After-
Time. The expiry of the timer indicates that the Delivery time of one or more messages
has arrived. All such messages are then removed from the queue and marked ready for
delivery. The timer is then restarted for the next most recent message.

4.4.2.3 Delivery
When some message(s) are ready for delivery the Message Handler checks the receiver
address field to see if the message is to be sent to an email Client or an MMS Client. The
receiver address for an email client is an email address and that for an MMS Client is of
type PLMN as is given in section 2.3 of [2]. For the former case, the message is decoded
and converted into an RFC 2822 compliant email message and forwarded to the SMTP
Client module for forwarding.

For messages meant for MMS Clients, a notification is first sent to the MMS Client
through the Push Client. The MPR maintains a mapping of PLMN addresses to IPv4
addresses in a config file. The IP address of the client is thus fetched from the config file
and passed to the PUSH Client along with the Notification PDU. This IP address will be
used by the PUSH Client to PUSH the notification to the MMS Client.

The stored message is finally passed on to the client through the Message Retriever CGI
Script whenever a fetch request for the same comes-in. The message-id allotted by the
Message-Handler is used to match fetch request with the notification sent earlier.

4.4.2.4 Delivery Report
After a message is delivered to MMS Client(s), a delivery report is sent to the originating
MMS Client. The Delivery.ind PDU is generated by the Message Handler and passed on
the PUSH Client along with the IP address of the MMS Client.

4.4.3 The HTTP Server
HTTP is used as the transport for sending/receiving MMS PDUs. The HTTP server is
used both for receiving the MMS messages from the MMS Clients and for delivering the
MMS messages to the MMS Clients when they request it.

The HTTP server is responsible for accepting HTTP POST requests from MMS clients,
invoking the MPR Script and passing the contents of the PDU to the MPR Script . It is

52

also responsible for sending the response (generated by the script) for the I-ITTP POST
request.
The HTTP server also accepts HTTP GET requests from the MMS Clients which are
requests for retrieval of MMS messages. hi this case too, the I-ITTP Server invokes a CGI
Script (the Message Retriever) which will retrieve and hand over the MMS Message to
the HTTP Server that will then pass it onto the MMS Client.
Apache will be used as the HTTP Server for the development of the MMS System.

4.4.4 The SMTP Client

The SMTP Client is required for sending mails to email clients. It accepts mails from the
Message Handler and passes them on to the SMTP Server. The address of the host
running the SMTP server is also passed to it by the Mail Handler. To establish an SMTP
session with the SMTP server it extracts the requisite information (the sender address, the
receiver address etc.) from the mail message.

4.4.5 The Message Retriever Script

The Message Retriever Script is invoked by the HTTP server when the client requests the
retrieval of an MMS message. The request carries with itself a Message-ID that will be
used to fetch the MMS message. The script then uses this ID to fetch the message from
the Message Handler and then passes the message so retrieved to the HTTP server to be
sent back to the MMS Client.

4.4.6 The MPR Script

The MPR Script is invoked by the HTTP server when an MMS Client uses the HTTP
POST request to send an MMS message. The Script receives the MMS PDU containing
the MMS message from the HTTP server and handles the MMS Message to the Message
Handler. It then reads the response to this message from the Message Handler and passes
this response to the I-ITTP server. This response is embedded in the body of the response
to the HTTP POST and sent back to the MMS Client by the HTTP server.

4.4.7 The PUSH Client

The PUSH Client is used in the following transactions:
a) Notification : 	A notification message is sent to the MMS Client indicating to it

that a message is available with the MPR and can be fetched. The M-Notification.ind
PDU is generated by the message handler and passed to the PUSH Client along with
the IP address of the MMS Client. The PUSH Client then uses the HTTP Client to
send the notification PDU to the MMS Client using HTTP POST request. Port
number 4035 on the MMS client is used for the connection.

b) Delivery Report: The M-Delivery.ind PDU is generated by the Message Handler and
passed to the PUSH Client with the IP address of the MMS Client. The message is

53

PUSHed to the MMS Client using the I-ITTP Client as was explained in the case of
Notification Transaction above.

4.4.8 The HTTP Client
The HTTP Client is used by the PUSH Client to- send the Notification and Delivery-
Report PDUs to MMS Clients. The PUSH Client uses the HTTP Client to generate an
HTTP POST request to PUSII the PDUs to the MMS Clients.

The libwww library available from the WWW Consortium shall be used as the HTTP
Client.

54

4.5 Internal Interfaces

4.5.1 Message Handler-SMTPClient Interface

The Message Handler passes the address of the host running the SMTP server and the
MMS message as parameters to the SMTP Client. The structure of the message is as
described in [3].

4.5.2 Message Handler Push-ClientI'trfae

This interface comes into play in the following two transactions:

a) Notification: The Message handler passes the M-Notification.ind PDU and the IP
address of the MMS Client as parameters to the Push Client. The structure of the M-
Notification.ind PDU.is as described in section 6.2 of [3].

b) Delivery Report: The Message Handler passes the M-Delivery.ind PDU and the IP
address of the MMS Client as parameters to the Push Client. The structure of the M-
Delivery.ind PDU is as described in section 6.5 of [3].

4.5.3 Push Client-HTTP Client Interface

This interface comes into play whenever the PUSH Client PUSHes MMS PDUs to MMS
Clients. The Push Client passes the PDU, the IP address of the client and the port number
to connect to, to the 1-ITTP Client as parameters.

4.5.4 Message Handler-Message Retriever Script Interface

This interface comes into action during the retrieval of messages. The information flow
on this interface is through Unix Domain Sockets. The Message Retriever Script passes a
Message-id to the Message Handler. The Message Handler in turn passes the headers and
the body of the MMS message cnrfesponding to that Message-id back to the Message
Retriever Script.
The structure of the headers of this M-Retricve.conf message is as given in section 6.3 of
[3]. The message body follows the headers.

4.5.5 Message Handler-MPR Script

This interface comes into play when the MMS Client sends an MMS message. The
information flow along this interface is through Unix Domain Sockets. The MPR Script
passes the Message to the Message Handler along this interface. This message, called the
M-Send.req message, consists of headers and a body. The structure of the headers of the
M-Send.req message is as given in section 6.1.1 of [3]. The message body immediately
follows the headers.

55

The Message Handler generates a response PDU on receiving the MMS message and
passes it to the MPR Script. The structure of this M-Send.conf PDU is as given in section
6.1.2 of [3].

4.5.6 Message Retriever Script-HTTP Server Interface
The HTTP server, when invoking the Message Servelet, passes the Message-id as a
parameter to it. The Message Retriever Script writes the M-Retreive.conf PDU (fetched
from the Message Handler) on its standard output which is read-in by the I-ITTP Server
and sent back to the MMS Client.

4.5.7 MPR Script-HTTP Server Interface
The MPR Script receives the M-Send.req PDU on its standard input. It then passes this
PDU to the Message Handler and receives an M-Send.conf PDU from it. The MPR Script
then writes this response PDU to its standard output. This confirmation PDU forms the
body of the response to the HTTP POST request that invoked the MPR Script.

56

5 Conclusion

The final system was tested for conformance with the functionalities included in the
Protocol Implementation Conformation Specification (PICS) and was found to be
conforming. All the transactions were tested and found to be working fine.

As already mentioned, the system aimed at implementing only a small set of
functionalities to keep the design simple and the development less time consuming.
Further improvements can be done to the system, by incorporating the features that were
earlier left out for the sake of simplicity. The MMS Client in the current system does not
include the functionality to render- the multimedia content in the messages. It just
identifies and isolates it. So, the client could by upgraded to provide rendering
capabilities as well. The MMS Proxy Relay could be upgraded by adding Content-
Conversion and Client Capability Negotiation capabilities, which would enable the relay
to luiow the capabilities of the MMS Clients and transform the multimedia content into a
format that can be better handled by the client.

References

1. Hypertext Transfer Protocol (HTTP/1.1) - RFC 2616
http://www.ietf.org

2. Multipurpose Internet Mail Extensions: Format for Internet Message Bodies —
RFC 2045
http://www.ietf.org

3. Simple Mail Transfer Protocol - RFC 2821
http://www.ietf.org

4. SMTP Message Format - RFC 2822
http://www.ietf.org

5. WAP MMS Architecture Overview - WAP-205-MMSArchOverview-20010425-a,
2001
http://www.wapforurn.org

6. WAP MMS Client Transactions — WAP-206-MMSCTR-20010612-a, 2001
http://www.wapforum.org

7. WAP MMS Encapsulation Protocol — WAP-209-MMSEncapsulation-20010601-a,
2001
http ://www.wapforum. org

8. WAP PUSH Architecture Overview — WAP-250-PushArchOverview-20010703-a,
2001
http://www.wapforum.org

9. WAP Wireless Session Protocol— WAP-230-WSP-20010705-a
http://www.wapforum.org

10. WAP -User Agent Profile Specification — WAP-174-UAProf-20010102, 2001
http://www.wapforurn.org

\ppendix A: Push Architecture Overview

n the "normal" client/server model, a client requests a service or information from a
erver, which then responds in transmitting information to the client. "l'his is known as
`pull" technology: the client "pulls" information from the server. Browsing the World
JVide Web is a typical example of pull technology, where a user enters a URL (the
•equest) that is sent to a server, and the server answers by sending a Web page (the
-esponse) to the user.
in contfast to this, there is also "push" technology, which is also based on the
~lient/server model, but where there is no explicit request from the client before the
server transmits its content. The WAP Push framework introduces a means to transmit
information to a device without a user request.

CLIENT SERVER

	

"P nll' I«hnalogy 		1.

"Push' locI,noIO

Figure 1

Another way to say this is that whereas "pull" transactions of information are always
initiated from the client, "push" transactions are server-initiated.

A.1 The Push Framework
A push operation in WAP is accomplished by allowing a Push Initiator (PI) to transmit
push content and delivery instructions to a Push Proxy Gateway (PPG), which then
delivers the push content to the WAP client (henceforth referred to as "client" or
"terminal") according to the delivery instructions.
The PI is typically an application that runs on an ordinary web server. It communicates
with the PPG using the Push Access Protocol (PAP). The PPG uses the Push Over-The-
Air (OTA) Protocol to deliver the push content to the client.

Figure 2 illustrates the push framework:

WAP Client 	 ;1 	Push IniR Rol

Push Proxy Gateway

Figure 2

59

PAP is based on standard Internet protocols; XML is used to express the delivery
instructions, and the push content can be any MIME media type. These standards help
make WAP Push flexible and extensible.
As mentioned, the PPG is responsible for delivering the push content to the client. In
doing so it potentially may need to translate the client address provided by the PI into a
format understood by the mobile network, transform the push content to adapt it to the
client's capabilities, store the content if the client is currently unavailable, etc. The PPG
does more than deliver messages. For example, it may notify the PI about the final
outcome of a push submission and optionally handle cancellation, replace, or client
capability requests from the PI.
The OTA protocol provides both connectionless and connection-oriented services. While
the (mandatory) connectionless service relies upon Wireless Session Protocol (WSP), the
(optional) connection-oriented service may be provided in conjunction with both WSP
(OTA-WSP) and HTTP (OTA-HTTP). An important part of the OTA protocol is the
Session Initiation Application (SIA), which is further described in section 8.3.
Figure 2 illustrates the PI and the PPG as separate entities, which likely will be the most
common configuration. It shall however be noted that the PI and the PPG may be co-
located. The latter could, for example, be feasible for PPG operator services, large service
providers, or when transport level end-to-end security is needed.

A.2 The Push Proxy Gateway
The Push Proxy Gateway (PPG) is the entity that does most of the work in the Push
framework. Its responsibilities include acting as an access point for content pushes from
the Internet to the mobile network, and everything associated therewith (authentication,
address resolution, etc).

f4ota~nod 	 Prom"? IL
WAP Clint 	 /r 	Push Initalor

Push Proxv Gatswav
	(on the {Herod)

Figure 3

As the PPG is the entry point to a mobile network, it may implement network access-
control policies about who is able to gain access to the network, i.e. who is able to push
content and who is not, and under which circumstances, etc. It should be noted that both
PPG (push) and WAP proxy [WAP] (pull) functionality may be built into a single proxy.

For a more comprehensive discussion see WAP Push Architecture overview (WAP-250-
,rchOverview-20010703 -a).

60

