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ABSTRACT

In seismic prospecting, the reflected seismic wavelets yield valuable information about the

reflector and properties of the path traversed by seismic waves. Their arrival times give

information about its location of the reflector in the earth and their amplitudes provide an

estimate of the acoustic impedance contrast at the reflector. Shape of a seismic wavelet is

also its very important attribute. It is the result of frequency dependent attenuation and

dispersion of seismic waves, which in turn are caused by anelasticity of the propagating

medium and solid - fluid interaction in the fluid saturated porous medium. A careful

analysis of shape of wavelets should yield important information about the pore fluids. For

this purpose, important factors affecting the shape of wavelets need to be identified and a

quantitative estimate of their influence on the shape of wavelets obtained. In the present

work, an attempt has been made to achieve this objective.

Plane wave synthetic seismograms have been generated at a number of offsets at

the surface of a three layered earth model. These seismograms simulate a CMP (Common

Mid Point) gather just before AVO (Amplitude Variation with Offset) analysis. A 50 Hz

Ricker pulse has been used as the source wavelet. The second layer of the three layered

earth model is porous and viscoelastic; the other two layers are elastic. Standard Linear

Solid (SLS) model has been used to represent the visoelastic behaviour of the solid matrix

of the second layer. Biot's theory has been used to compute complex and frequency

dependent velocities of P- and S-waves in the porous viscoelastic layer saturated with gas

and water or oil and water or only water. In all computations the frequency range is 1 -

100 Hz, the most commonly accepted frequency range in seismic prospecting Equations

similar to Zoeppritz equations have been derived to compute complex and frequency

dependent reflection coefficients. Vertical component of displacement of reflected P waves

at the surface of the earth model have been computed including transmission losses and

in



free surface effect accounted for. The synthetically generated reflected seismic wavelets

have been analyzed to quantify the effect of viscoelasticity and type and amount of pore

fluids on the shape of seismic wavelets.

The results obtained in this work indicate that porosity, type and amount of the pore

fluids and solid - fluid interaction in the porous viscoelastic layer influence the frequency

dependence of seismic wave velocities, quality factor, attenuation coefficients and

reflection coefficients. Seismic wave velocities are influenced by variations of porosity to a

greater extent than to variations in water saturation. Variation of peak amplitude of seismic

wavelets with offset is dominated by the type of pore fluid. The shapes of seismic wavelets

show a marked variation with porosity, becoming broader at high porosity and also

undergoing change of polarity. Greater changes are observed with gas in the pores.

Distinguishing different fluids on the basis of wavelet shapes becomes more noticeable at

larger offsets. AVO analysis carried on synthetic data indicates that attributes A and B are

also sensitive to porosity and water saturation.
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CHAPTER-1

INTRODUCTION

1.1 MOTIVATION

Delineation of geological conditions suitable for accumulation of oil or gas has been one of

the main objectives of seismic reflection prospecting. With continuous advancement in

techniques of acquisition, processing and interpretation of seismic reflection data, it is now

possible, for example, to determine, the nature and geologic history of a sedimentary basin

and its depositional environment from seismic sections (seismic stratigraphy), delineating

gas sands through AVO analysis, and characterization and surveillance of oil reservoirs

through 3D seismics. Another interesting application of seismic reflection data is the

possibility of analyzing shapes of recorded wavelets. Potsma (1958) recognized the

importance of the change of shape of seismic wavelets as a source of information about the

properties of the medium in which the waves propagate. There are several well-known

factors that determine the shape of a seismic wavelet emitted by a point source. Some of

these factors are: (i) distance from the source, (ii) presence of interfaces, (iii) presence of

inhomogeneities that give rise to scattering, and (iv) roughness of the reflectors. The

anelasticity of the medium through which the waves propagate and interaction between the

solid and fluid phases during wave propagation are also important factors that influences

the shape of wavelets. The contributions of the above factors have to be carefully analyzed

and quantified before shapes of seismic wavelets can be used for fluid characterization.

The interpretation of seismic reflection data depends not only on the type of data

used for inversion (travel times, amplitudes or some other attributes of the recorded

seismic wavelets) but also on the simplicity or complexity of model used for representing

the subsurface. The seismic wavelet is a very short duration pulse when it is generated by

an explosive source. This short duration pulse, the so called source wavelet, undergoes a

1



number ofchanges during its travel downward and back to the surface after reflection. The

recorded seismic wavelets that correspond to primary reflections contain information about

the properties of earth materials encountered during its propagation and the reflectors.

Through the processing and analysis of an ensemble of recorded seismic wavelets that

represent primary reflections, the correct disposition of the reflectors is sought to be

determined in the subsurface thus yielding important information about the existence of

structural traps. This is constrained by the model of the earth used in the interpretation of

seismic data.

Traditionally, the travel times of seismic reflection wavelets are interpreted on the

assumption that the earth consists of discrete layers that are homogeneous, isotropic and

perfectly elastic or simply elastic. The last property, in its strictest sense, implies that

subsurface rocks are non-attenuating and non-porous. In reality, no rock in the top 10 km

of the earth's crust comes anywhere near these ideals: homogeneity, isotropy and perfect

elasticity. In reality, the seismic waves get attenuated and dispersed while propagating

through the real earth making the recorded seismic wavelet deficient in high frequencies

and spread out in time. This degrades resolution. Various deconvolution procedures during

processing seek to compensate for this effect.

Amplitudes of seismic waves decay as distance from the source increases. Part of

this decay is due to the phenomenon of spherical spreading that is simply a function of

distance from the source and affects all waves irrespective of their frequency and nature of

the intervening medium. Rest of the decay of amplitude is governed by the attenuating

properties of the medium through which waves travel and is frequency dependent, with

energy associated with higher frequency components of the wavelet disappearing and

converted into heat. This leads to changes in the frequency content of the wavelet with its

spectral bandwidth becoming narrower and narrower as the distance from the source

increases. The end result of these spectral modifications is the change in the shape of the
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wavelet which becomes extended in time. These frequency dependent changes cannot be

explained if the rock layers are considered elastic. Since attenuation of seismic waves is

always observed, the behavior of the medium of propagation is essentially anelastic. It is to

be expected that porosity, nature and amount of different fluids (e.g., water, oil and/or gas)

in the reservoir rock in the pore spaces along with anelastic nature of the solid phase of the

medium will govern the changes in the shape of the recorded seismic wavelets.

The changes in the shapes of seismic wavelets that result due to wave propagation

in porous viscoelastic media containing one or more fluids can yield important information

on the fluids in the reservoir. The main objective of the work in this thesis is to carry out a

systematic study of the shapes of reflected seismic wavelets in the seismic frequency range

(1-100 Hz) and to quantify the effect of anelasticity of the solid phase of the medium of

propagation and nature and amount of fluids present in the pore spaces in modifying this

shape. The earth model considered here is assumed to be made up of homogeneous and

isotropic media. The porosity when present is random in nature in such a way that

macroscopically the porous medium is essentially homogenous and isotropic.

1.2 ANELASTICITY

As mentioned above the anelastic behavior of the medium leads to attenuation and

dispersion of the seismic waves propagating through it that leads to changes in the shape of

recorded wavelets. The consequences of anelasticity of the medium are that its elastic

modulii, and hence the velocities of seismic waves, are complex. Since the stresses induced

by the passage of seismic waves are periodic in nature, the elastic modulii and wave

velocities are also frequency dependent. The real part of these complex and frequency

dependent velocities contributes to the propagation of the waves whereas their imaginary

part leads to their attenuation. Because of frequency dependence of wave velocities,



dispersion also occurs. The end result is the modification of the spectral bandwidth of the

propagating wavelet giving rise to changes in reflected wavelets' shape.

The attenuation of seismic waves due to the anelasticity of the medium is usually

described with the help a frequency dependent attenuation parameter, a(co), defined by

a(«)« — (l.D
2cQ

where c is wave velocity and Q is quality factor of the medium. In general, both c and Q

are frequency dependent.

Anelastic behavior of a medium can be modeled through a linear relationship

between stress and strain and their time derivatives. This kind of linear anelastic behavior

is known as viscoelasticity. Some aspects of viscoelasticity are presented in the following

paragraphs.

In Appendix D (Part I) stress - strain behavior of elastic, viscoelastic and

viscoelastic materials under cyclic loading has been given.

1.3 VISCOELASTICITY

Unlike purely elastic substances, a viscoelastic substance has an elastic component and a

viscous component. An elastic substance, on being subjected to stress, develops an

instantaneous elastic strain and returns to its unstrained state quickly and completely when

the stress is removed. Under constant stress, the strain in an elastic substance remains

constant with time. A viscoelastic substance, on the other hand, when subjected to stress,

develops an instantaneous elastic strain. If the stress is not removed, the strain increases

with time. When the stress is removed, the elastic part of the strain disappears

instantaneously and the remaining strain disappears over a period of time. At the atomic

level, elasticity is usually the result of bond stretching along crystallographic planes in an

ordered solid whereas viscoelasticity is the result of an amorphous material. The viscous



i

4>

component of a viscoelastic substance is characterized by a proportionality between stress

and time rate of strain and the coefficient of proportionality is called viscosity. A

viscoelastic material has the following properties:

1)Hysteresis is seen in the stress-strain curve (Figure Lib).

2) Stress relaxation occurs: step constant strain causes decreasing stress.

3) Creep occurs: stepconstant stress causes increasing strain.

(a) (b)

Figure 1.1: Stress-strain curves for (a) a purely elastic material and (b) a viscoelastic
material. The redarea is a hysteresis loop andshows the amount of energy lost (as heat)
in a loading and unloadingcycle; a denotes the stress and £, the strain.

Purely elastic materials do not dissipate energy (in form of heat) when a load is

applied and then removed However, a viscoelastic substance loses enegy when a load is

applied and then removed. Hysterisis is observed in the stress-strain curve with the area of

the looprepresenting the energy lost during the loading cycle.

1.3.1 Viscoelastic Creep

When subjected to a step constant stress, viscoelastic material experiences a time-

dependent increase in strain. This phenomenon is known as viscoelastic creep (Figure 1.2).

At a time t = t0, a viscoelastic material is subjected to a constant stress that is maintained

for a sufficiently long time period. The material responds to the stress with a strain that

increases until the material ultimately fails. When the stress is maintained for a shorter



time period, the material undergoes an initial strain which increases until a time t = //, after

which the strain immediately decreases and then gradually decreases for times / > t\ to a

residual strain (relaxation).

Figure 1.2: (a) Applied stress and (b) induced strain as functions of time for a
viscoelastic material.

A short description has been given in Appendix D (Part II) about the relaxation

mechanism in a viscoelastic material.

1.3.2 Viscoelatic Materials

There are two types of viscoelastic material:

1) Linear Viscoelastic material

2) Non-linear viscoelastic material

In the present work only linear viscoelatic materials have been taken into consideration.

Therefore, the main features of only this type of materials have been described in the

following section. A short note on non-linear viscoelasticity has been given in Appendix D

(Part III).
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Linear viscoelasticity is applicable to small strains. The different models of linear

viscoelasticity include the Maxwell model, the Kelvin-Voigt model, and the Standard

Linear Solid model. These models have been proposed to predict a viscoelastic material's

response under different loading conditions. Viscoelastic behavior is comprised of elastic

and viscous components modeled as linear combinations of springs and dashpots,

respectively. Each model differs in the arrangement of these elements and all of these

viscoelastic models can be equivalently modeled as electrical circuits. The elastic modulus

of a spring is analogous to a circuit's resistance and the viscosity of a dashpot to its

capacitance.

The growth of current in an RC circuit resembles the build-up of strain in a

viscoelastic material. In Appendix D (Part IV) the growth of current in such a circuit has

been shown that models build-up of strain in a Kelvin -Viogt solid.

The elastic component, as previously mentioned, can be modeled as a spring,

defined by the relation

a = Ee (1.2)

where a is the stress, E is the elastic modulus of the material and e is the strain, similar to

Hooke's Law. Physically this represents the behavior of a Hookean solid with E

representing the rigidity.

The viscous components can be modeled as a dashpot such that the stress-strain

rate relationship defined by,

cT =n^- (1.3)
dt

where r\ is the viscosity of the material. Physically this represents the behavior of a

Newtonian fluid.

The relationship between stress and strain can be simplified for specific stress rates.

For high stress states/short time periods, the time derivative components of the stress-strain



relationship dominate. A dashpot resists changes in length, and in a high stress state it can

be approximated as a rigid rod. Since a rigid rod cannot be stretched past its original

length, no strain is added to the system.

Conversely, for low stress states/longer time periods, the time derivative

components are negligible and a dashpot can be effectively removed from the system - an

"open" circuit. As a result, only the spring connected in parallel to the dashpot will

contribute to the total strain in the system.

In the next section, the characteristics of the three models, i.e., Maxwell model,

Kelvin-Voigt model and Standard Linear Solid model (SLS), of linear viscoelasticity have

been described.

1.3.2.1 Maxwell Model

The Maxwell model can be represented by a dashpot and a spring connected in series

(Figure 1.3a). This model represents a liquid (able to have irreversible deformations) with

some additional reversible (elastic) deformations. If put under a constant strain, the stresses

gradually relax. When a material is put under a constant stress, the strain has two

components. First, an elastic component occurs instantaneously, corresponding to the

spring, and relaxes immediately upon release of the stress. The second is the viscous

component that grows with time as long as the stress is applied. The Maxwell model

predicts that stress decays exponentially with time, which is accurate for most polymers. A

limitation of the model is that it is unable to predict creep in materials based on a simple

dashpot and spring connected in series. The Maxwell model for creep or constant-stress

conditions postulates that strain will increase linearly with time. However, viscoelastic

materials mostly show the strain rate to be decreasing with time.

X
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(a) (b)

Figure 1.3: Maxwell Model; (a) Schematic representation (b) Behavior under
application and removal ofconstant stress.

1.3.2.2 Kelvin-Voigt Model

The Kelvin-Voigt model, also known as the Voigt model, consists of a dashpot and a

spring connected in parallel (Figure 1.4). It is used to explain the stress relaxation

behaviors of a viscoelastic material.

This model represents a solid undergoing reversible, viscoelastic strain. Upon

application of a constant stress, the material deforms at a decreasing rate, asymptotically

approaching the steady-state strain. When the stress is released, the material gradually

relaxes to its undeformed state. At constant stress (creep), the model is quite realistic as it

predicts strain to tend to a/E as time continues to infinity. Similar to the Maxwell model,

the Kelvin-Voigt Model also has limitations. The model is extremely good for modeling

creep in materials, but with regards to relaxation the model is much less accurate.
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(a) (b)

Figure 1.4: Kelvin-Voigt model; (a) Schematic representation (b) Behaviour under
application and removal ofa constant stress.

1.3.2.3 Standard Linear Solid Model

The Standard Linear Solid Model effectively combines the Maxwell Model and a Hookean

spring in parallel (Figure 1.5(a)). A viscous material is modeled as a spring and a dashpot

in series with each other, both of which are in parallel with a lone spring. Under a constant

stress, the modeled material will instantaneously deform to some strain, which is the elastic

portion of the strain, and after that it will continue to deform and asymptotically approach a

steady-state strain (Figure 1.5(b)). This lastportion is the viscous partof the strain.

/W»V
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(a)

Time

(b)

Figure 1.5: Standard Linear Solid model; (a) Schematic representation (b) Behaviour
under application and removal ofa constant stress.
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In the present work Standard Linear Solid model has been chosen to represent the

anelastic layer of the earth model. Its behavior under constant stress represents quite

closely the response of earth materials under similar conditions. For cyclic loads to which a

medium is presented during wave propagation, the behavior of this model leads to complex

and frequency dependent elastic modulii and hence wave velocities. This model as shown

in Figure 1.5(a) is also characterized by a pair of relaxation times, x0 and xE, corresponding

to behavior under constant stress and constant strain. These lead to a frequency dependent

Q and attenuation coefficient a{(o). This is known as a single mechanism model. The

observed constant Q behavior in the seismic frequency band has been sought to be

represented by models composed of a parallel arrangement of elements like those shown in

Figure 1.5(a) corresponding to a number of xa - xE pairs.

This Standatrd Linear Solid is a more satisfactory model for the behavior of the

Earth's crust and mantle under stresses and strains associated with seismic vibrations (Ben-

Menahem and Singh, 1981).

The frequency dependence of wave velocities and Q of a single mechanism model

as described above ensures that the computed waveforms of seismic wavelets obey

principles of causality in the manner suggested by Aki and Richards (2002). In the present

work synthetic seismograms have been generated and shapes of seismic wavelets are

analyzed to quantify the effect of viscoelasticity; The adherence to the principle of

causality has been ensured through the use of Standard Linear Model to represent the

behavior of anelastic layer.

1.4 POROUS MEDIA

The upper 6 to 7 kilometers of earth that are of interest in seismic prospecting for

hydrocarbon exploration are not only anelastic but also porous. Porosity varies from rock

to rock, but a certain amount of porosity, even if very small, is always present. The pore



space of the rock may be occupied by oil and water or gas and water oronly water as is the

case with a reservoir rock. The presence of porosity lowers the bulk and the shear modulii

of the rock and hence the wave velocities. Porosity also lowers density of the rock. In a

simple manner the velocity and density of a porous and fluid saturated rock can be

represented by the following relations:

1 _l_-j> ffiy | (j){\ - Sw) jlA^
VB VM Vw VH

pB ={\-</>)pm+<f>Slvptv+<f>(\-Stv)pH (1.5)

where <t> is the porosity, p, the density, V, the velocity of P-waves and Sw, the water

saturation. The subscripts B, M, Wand H stand for bulk, matrix, water and hydrocarbons.

The relationship for velocity is the well known time average equation, first proposed by

Wyllie(1956, 1958) and is one of several empirical relationships. Gassmann (1951) and

Hashin-Shtrikman(1963) considered the problem of predicting elastic modulii of porous

rocks from theoretical viewpoint.

Biot (1956) considered the propagation of elastic waves in a porous elastic solid

saturated with viscous fluid. It accounts for the motion of fluids in the interconnected voids

of an isotropic, homogeneous, and porous solid assuming Poiseuille fluid flow. Biot

predicted the existence of two dilatational waves i.e. a fast P-wave, a slow P -wave and an

S-wave propagating through a porous medium. In the present work, this Biot's theory has

been used to compute seismic wave velocities in a viscoelastic porous medium with

appropriate modifications.

1.5 PRESENT WORK

Since Biot's theory was put forward, the solutions of the boundary value problem of

seismic wave propagation in porous media have been investigated (Deresiewicz I960,

1961, Deresiewicz and Rice 1962, Dutta & Ode 1983, Sharma 1981). This involved setting
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up of appropriate boundary conditions at the interface between two porous media or

between a porous and a non-porous media. In the present work, a three-layered model has

been considered. The second layer of this layer is porous and viscoelastic whereas the first

and third layers are elastic. A boundary value problem has been solved to obtain the plane

wave reflection and transmission coefficients at the two interfaces. Synthetic seismograms

have been generated at the surface of the three layered earth model for a number of offsets

simulating an AVO situation. A Ricker pulse has been assumed to represent the source

wavelet. The changes in the shapes of reflected seismic wavelets at different offsets have

been studied for different porosities and water saturations of the second layer. The

variations of velocities (fast and slow P-waves as well as S-wave), quality factor (Q) and

attenuation coefficients with frequency have been studied for different porosities and water

saturations of the second layer.

1.6 IMPORTANCE OF THE WORK

The work presented in this thesis has aimed at quantifying the effect of viscoelasticity,

porosity and type and amount of interstitial fluids in determining the changes in the shapes

of reflected seismic wavelets. It has been found that porosity and fluid content have

significant effect on the shapes of seismic wavelets. The processing and interpretation of

seismic reflection data broadly relies on the theory of seismic wave propagation in elastic

media. The effect of porosity and pore fluids is taken into account on the basis of empirical

relations or Gassmann's relations. However, these ignore the anelastic nature of the

propagating medium and solid-fluid interaction during wave propagation. Moreover, more

than one fluid is nearly always present in the reservoir rock. The empirical relations

assume the presence of single fluid only. In the present work, these restrictions have been

relaxed and a more general treatment of the theory of seismic wave propagation in

viscoelastic porous media has been used. Presence of more than one fluid in the pore

13



spaces has been allowed. The results obtained indicate a significant change in the shape of

seismic wavelets with change in porosity, type and amount of fluid. Based on the method

presented in this work, new and improved techniques of seismic data processing can be

developed that can take into account the effect of anelasticity of the propagating medium

and presence of one or two pore fluids.

1.7 PLAN OF THESIS

In the Chapter 2, a review of pertinent literature has been presented.

In Chapter 3, the theoretical basis of the work presented in this dissertation has

been provided. The details of equations of motion in viscoelastic porous media and their

solutions have been discussed. Some theoretical details of the Standard Linear Solid model

have also been provided along with the boundary value problem for computing reflection

coefficients and equations used for generating synthetic seismograms.

Chapter 4 provides the details of the selection of models parameters. The model

parameters used in this work have been listed. Some details of the computational procedure

have been provided and the special and novel aspects of the procedure emphasized.

In the Chapter 5, the results arrived at in the present study have been presented

and discussed.

Finally, a summary and some of the important conclusions of the present study

have been given in Chapter 6.

14
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CHAPTER-2

REVIEW OF LITERATURE

2.1 INTRODUCTION

Potsma (1958) recognized the importance of the change of shape of seismic wavelets as a

source of information on the properties of the medium in which the waves propagate. He

listed several well-known factors that determine the shape of a seismic wavelet emitted by

a point source. Some of these factors are distance from the source, presence of interfaces,

presence of inhomogeneities that give rise to scattering and roughness of the reflectors. He

also mentioned the deviations from elastic behavior as a factor that influences the shape of

wavelets. He presented a theory of anelasticity in which linear relations between stress and

strain and their time derivatives take the place of Hooke's law. This kind of linear anelastic

behavior was termed viscoelasticity. This type of viscoelastic solid can be represented by a

parallel arrangement of "Maxwell elements" where a Maxwell element consists of a spring

and dashpot in series and is characterized by a spring constant (ju), a "viscosity coefficient"

(//) and a relaxation time (t]//u). The need of a parallel arrangement of a number of

Maxwell's elements arises from the recognition that there are a number of mechanisms,

which are capable of storing potential energy and dissipating this energy. If the stress and

strain in such a viscoelastic solid are assumed to be harmonically varying in time, a

generalized modulus of elasticity M (co) is defined that is complex and frequency

dependent. As a result, the velocities of propagation of seismic waves in such a solid also

become complex and frequency dependent, leading to attenuation and dispersion of waves.

Another possibility to account for attenuation and dispersion in viscoelastic solids was also

pointed out: the coupling between different types of waves. This is important in a porous

medium containing fluid where dissipation of energy occurs due to the relative motion

between solid matrix and fluid. In such a condition, there is a wave in solid matrix
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modified bythe presence of fluid in the pores, anda wave in the pore fluid modified by the

solid matrix. Thus, all the essential features of the propagation of seismic waves in porous

elastic media were outlined.

The problem of predicting shape of seismic wavelets and study of its variation with

the properties of the medium and type and amount of pore fluids has many aspects. Some

of these are:

(i) Properties of seismic waves that exist in the presence of pore fluids

(ii) Predicting velocities of seismic waves in porous media containing one or more

fluids in the pores

(iii) Propagation of seismic waves in a porous anelastic medium

(iv) Reflection and transmission of seismic waves, propagating in porous anelastic

media

(v) Synthetic seismograms when seismic waves propagate in two or more layered

earth when some of the layers may be anelastic.

(vi) Effect of anelasticity and pore fluids on AVO analysis.

An attempt has been made to review the work that has been carried out and covers the

above aspects.

2.2 SEISMIC WAVES IN FLUH) FILLED POROUS SOLIDS

Biot (1956) developed a theory for the propagation of seismic waves in a porous elastic

solid containing a compressible viscous fluid. The emphasis was on materials where fluid

and solid are of comparable densities, for instance, in the case of water-saturated rock, and

was restricted to the lower frequency range where the assumption of Poiseuille flow is

valid. The existence of two compressional and one shear wave was predicted. The

properties of the waves when the fluid is frictionless (i.e. non-viscous) and when it is

dissipative (i.e. viscous) were discussed. When the fluid is viscous, the two dilatational
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waves are denoted as waves of the first and second kind. The waves of the first kind are

true waves. Their dispersion is practically negligible with a phase velocity increasing or

decreasing with frequency depending on a mechanical parameter. The absorption

coefficient is proportional to the square of the frequency. The waves of the second kind are

highly attenuated. They are in the nature of a diffusion process and the propagation is

closely analogous to heat conduction. The phase velocity of shear waves increases slightly

with frequency while the absorption coefficient is proportional to the square of the

frequency. The concept of a characteristic frequency was also introduced. This frequency

is governed by the kinematic viscosity of the pore fluid and diameter of the pores. For a

porous material, it is assumed that Poiseuille flow breaks down when this quarter

wavelength is of the order of the diameter of the pores. It happens when the frequency of

waves exceeds the characteristic frequency.

Biot (1962) reformulated the theory of propagation of acoustic waves in porous

media with special emphasis on viscoelastic properties and relaxation effects. Equations

governing the propagation of acoustic waves in viscoelastic media were presented and

some particular solutions were obtained and discussed. The theory for elastic media was

also extended to anisotropic media.

2.3 SEISMIC VELOCITIES IN POROUS MEDIA

Gassmann (1951) derived elastic constants for porous rocks by a straightforward

application of static elasticity, obtaining speeds, which agree with Biot's low-frequency

values. Gassmann'a relations describe the bulk and shear modulii of saturated rocks at very

low frequencies. They are important for predicting how P- and S-wave velocities depend

on the fluid modulus at low frequencies, that is, at seismic and possibly well logging

frequencies (Nolen-Hoeksema, 2000). The relations are sum of two parts: the modulus of

the framework (the frame modulus, Kfram and ju/rame) and the modulus of the fluid-filled
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pores (the pore modulii, Kpore and jupore). The shear modulus is not affected by fluid

saturation.

Dvorkin et al. (1995) estimated the velocity/frequency dispersion and attenuation in

fully saturated rocks by employing the squirt-flow mechanism of solid/fluid interaction.

They considered a fully saturated isotropic, macroscopically homogeneous rock with a

pore space that has compliant (soft) and stiffportions. Stiffportions of the pore space have

relatively small variations of pore pressure when the rock is loaded bya passing wave. Soft

portions of the pore space tend to transfer more of the stress to the fluid, which results in

high variations of induced pore pressure. At low frequencies, these pressures are assumed

to equilibrate leading to Gassmann's formula for the bulk modulus of saturated rock. At

higher frequencies, intensive cross-flow between the soft and the stiff parts persists

resulting in wave-energy dissipation and thus velocity/frequency dispersion. At very high

frequencies, the fluid is unrelaxed and blocked in the compliant pores. Attenuation

approaches zero and both P- and S-wave velocities approach their high-frequency limits.

They derived theoretical formulas for relating compressional and shear-wave velocities and

attenuation in fully saturated rocks to frequency, based on the squirt-flow mechanism with

the squirting flow occurring between thin compliant pores and stiff pores. They showed

that in water-saturated samples, the transition from low-frequency velocity values to high-

frequency velocity values occurs at frequencies higher than 0.1 MHz that are much above

the range used in seismic prospecting

Nolen-Hoeksema (2000) incorporated specific modulus - porosity relations in the

Gassmann relations through the frame modulii; for example, Kframe = Ksoiid. fK(<p) and Hframe

= Psoi,d-M<p) where <p is porosity, and/^) and f^cp) provide the functional dependence of

the frame moduli on porosity. The subscript "solid" refers to the solid grain (mineral)

material. He calculated Kpore and Biot coefficients aK and <v These coefficients vary from

0 to 1 and describe the frame modulii relative to the solid grain modulii. The coefficient,
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aK, was introduced by Biot (1941) and is equivalent to (1 - Kframe I Ksoild). Specifying a

particular frame modulus porosity relationship has implications for both aK and a„. The

term aK in turn affects Kpore which responds to changes in pore fluid. The effect of different

modulus - porosity models on a*, aM and Kpore were examined. This is important when

estimating the effect of pore fluid on seismic body waves.

Johnson (2001) presented a theory of frequency dependent acoustics in patchy

saturated porous media. Biot - Gassmann - Woods theory, applicable at low frequencies

(upto 1000 Hz), predicts an abrupt change in compressional modulus and hence the

compressional wave speed, when only a very small gas saturation is introduced. Essentially

the compressional modulus is either the dry value or the fully saturated value and it is very

unlikely to lie in between the two limits. The acoustic logging data, as presented by Brie et

al. (1995), showed that there is a continuum of measured speeds ranging from the dry to

the saturated values. The alternative is to consider the patchy saturated situation when a

rock sample is 100% saturated with water in some regions ("patches"), and 100%

saturated with gas in others. For such a situation, the Biot- Gassmann - Hill theory,

applicable at high frequencies (>1000 Hz), predicts that the effective bulk modulus is much

more smoothly varying as a function of gas saturation than is predicted by the Biot -

Gassmann - Woods theory. The properties of crossover from the Biot-Gassmann-Woods

result at low frequencies to the Biot-Gassmann-Hill result at high frequencies have been

described. Exact results for the approach to the low and the high frequency limits have

been derived. A simple closed-form analytic model based on these exact results has been

presented. Comparison against the exact solution in simple geometries for the case of a gas

and water saturated rock demonstrates that the analytic theory is extremely accurate over

the entire frequency range. The model has two geometrical parameters, one of which is the

specific surface area of the patches. In the special case, that one of the fluids is a gas, the

second parameter is a different, but also simple, measure of the patch size of the stiff fluid.
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Batzle et al. (2001) presented experimental evidence to indicate that fluid motion

and pressure control rock velocity changes and seismic sensitivity to pore fluid types. One

obvious factor controlling the fluid motion is viscosity. The effect of viscosity is different

for Poiseuille and squirt flow mechanism. For the dry sample compressional and shear

wave velocities show little frequency influence which shows that the primary dispersive

effects are dependent on pore fluids. When saturated with glycerine, strong frequency

dependence was found. Shear velocity is not independent of the fluid but increases with

increasing fluid viscosity, indicating a viscosity contribution to the shear modulus. The

compressional wave velocity is also found to increase with viscosity. The dispersion

behavior in these investigations is consistent with the model of squirt flow. A second factor

influencing the fluid flow is permeability. It is expected that lower permeabilities should

require longer times, or lower frequencies, for saturated rocks to relax. In extreme

unrelaxed cases (such as for low permeability), the seismic frequency band will be in the

high-frequency regime. To be in the low-frequency range, higher permeabilities, perhaps

above a few tens of millidarcies, more typical of sands, are required.

Batzle et al. (2006) presented the results of experimental measurements of the

influence of fluid mobility on seismic velocity dispersion. The measurements were made

from seismic to ultrasonic frequencies. The ratio of rock permeability to fluid viscosity is

defined as fluid mobility that largely controls pore-fluid motion and pore pressure in a

porous medium. The measurements suggest that high fluid mobility permits pore-pressure

equilibrium and results in a low-frequency domain where Gassmann's equations are valid.

Only those rocks with high permeability (porous sands and carbonates) will remain in the

low-frequency domain in the seismic or sonic band. Most sedimentary rocks — shale,

siltstones, tight sandstones and carbonates, heavy oil sands, and evaporates have very low

permeability and thus low fluid mobility. These rocks thus fall in the high-frequency
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regime, even in typical seismic exploration frequencies. This is even the case for

permeable rock saturated with viscous oil.

Cacrcione and Picotti (2006) considered a periodically stratified medium and

investigated the amount of attenuation and velocity dispersion caused by different types of

heterogeneities in the rock properties, namely, porosity, grain and frame moduli,

permeability, and fluid properties. They found that most effective loss mechanisms result

from porosity variations and partial saturation, where one of the fluids is very stiff and the

other is very compliant, such as, a highly permeable sandstone at shallow depths, saturated

with small amounts of gas with around 10% saturation and water. Grain and frame-moduli

variations are the next cause of attenuation. The relaxation peak moves towards low

frequencies as the background permeability decreases and the viscosity and thickness of

the layers increase.

2.4 PROPAGATION OF SEISMIC WAVES IN A POROUS ANELASTIC MEDIUM

White (1965) extended Gassmann's approach to calculate the effect of fluid flow on shear

wave attenuation, obtaining the same expression as Biot's low frequency attenuation.

White (1975) further applied the low frequency analysis to show how pressure differences

at a boundary may cause substantial fluid flow and how the shifting fluid couples back into

the seismic wave to a significant degree. When a compressional wave travels through a

porous rock, pressure gradients in the fluid cause some flow relative to the rock skeleton

and hence some loss of energy. Within a single homogeneous rock, these gradients are

small and attenuation due to fluid flow is negligible at seismic frequencies. If the rock has

mixed saturation, with segregated pockets of gas, for instance, then pressure gradients are

high near the inhomogeneities and fluid flow will also be high. The loss of energy at these

local spots when averaged over the total volume can lead to a large attenuation for the

compressional wave. White investigated this loss mechanism mathematically by assuming

21



an ideal geometry. He considered a model wherein spherical gas pockets are located at the

corners of a cubic array (Figure 2.1). The skeleton is assumed to be uniform with the

pockets having a spherical volume saturated with gas in a rock which is elsewhere

saturated with liquid. At low frequencies, an elementary cube with its enclosed sphere of

gas is a typical volume, with average properties, which are the same as the average

properties of the composite medium. Even for computing average bulk modulus, however,

the combination of a cube and a sphere is complicated. Hence, the typical volume is

considered to be equivalent to the concentric spheres shown in the lower part of the figure,

where the volume of the outer sphere is the same as the volume of the original cube. White

(1978) calculated the speeds of compressional waves for a particular model in which the

inhomogeneities, whose dimensions are small compared to the wavelength of the seismic

wave but much larger than the grains, are gas-filled spherical regions in an otherwise

brine-filled rock. He found that a compressional wave passing through such a composite

medium can induce a rather large fluid flow near the inhomogeneities, resulting in a

substantial loss of energy (due to viscosity of the denser fluid).

kJ>

Figure 2.1: Model ofporous rock with mixed saturation-sphericalpockets saturated with
gas, intervening volume saturated with liquid. The typical volume considered is the pair
ofconcentric spheres shown in the lower part ofthefigure (White. 1975).
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Buchen (1971) investigated the problem of propagation of a class of plane

inhomogeneous waves in linear viscoelastic media. It was shown that the energy in such an

inhomogeneous wave does not propagate normal to the wave fronts. The direction in which

the wave suffers maximum attenuation is different from that in which phase changes most

rapidly.

Dutta and Ode (1979a, b) carried out investigations to eliminate some of the

questioned approximations in White's treatment (White, 1975) of the spherical model by

using a more rigorous and systematic approach based on Biot's (1962) field equations.

They described the coupled motion of the solid and fluid phases of a saturated porous rock.

In the White's model the fluid in the inner sphere was taken to be gas, while that in the

outer shell was brine. They showed that White's model can be solved as a boundary value

problem using Biot's theory and that the dissipation mechanism proposed by White for

+ partially gas-saturated porous rock is due to Biot's type II (or the diffusion) wave. They

also found that an anomalously large absorption at the exploration seismic frequency band

was predicted by this model for young, unconsolidated sandstones. For a given size of the

gas pockets and their spacing, the attenuation coefficient increases almost linearly with

frequency (/) to a maximum value and then decreases approximately as \lf. A sizable

velocity dispersion was also predicted by this model. A low gas saturation (4-6 percent)
-r

was found to yield high absorption and dispersion.

Dutta and Seriff (1979) suggested modifications of formulas for bulk modulus and

quality factor as given by White (1975), for case of gas-filled spheres, to bring the results

into good agreement with the more exact calculations of Dutta and Ode (1979 a, b). The

modified formulas give the expected Gassmann-Wood velocity at very low frequencies.

They also showed that inclusion of the finite gas compressibility in numerical calculations

for gas-filled spheres shows an interesting maximum of the attenuation at low gas

saturations that is not seen if the gas is ignored. They also compared the attenuation
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calculated for the same rock and fluids but for three different geometries of the gas-filled

regions and found that the configuration of the gas-filled zones does not have an important

effect on the magnitude of the attenuation.

Berryman (1988) investigated the following phenomenon: Biot's theory (Biot,

1956) predicts that the attenuation coefficient of fast P-waves and S-waves are proportional

to the fluid permeability. Although the observed attenuation is generally in qualitative

agreement with the theory, the magnitude of the observed attenuation coefficient in rocks

is an order of magnitude higher than expected. He concluded that the high degree of local

heterogeneity in rock properties causes different parts of the rock to play the leading roles

in the processes of wave attenuation and fluid flow. The regions of high permeability

produce the majority of the attenuation while the regions of low permeability tend to

dominate the fluid flow.

Ursin and Toverud (2002) described eight different mathematical models for the

complex elastic modulus or propagation velocity. These models include Kolsky -

Futterman (KF) model (Kolsy 1956, Futterman 1962), the constant Q model of Kjartansson

(1979), the Cole-Cole model (Cole and Cole, 1941), and Standard Linear Solid (SLS)

model (Ben-Menahem and Singh (1981). These models were compared to find similarities

and differences between them. For this purpose, they considered plane wave propagation in

a homogeneous viscoelastic medium. They computed the attenuation, phase velocity in the

seismic frequency band and then compared the propagation of a Ricker wavelet, using the

KF model as a reference. They found that all models except the SLS model behave

similarly to the KF model

Toverud and Ursin (2005) inverted a zero offset vertical seismic profiling (VSP)

data set with respect to attenuation parameters. Eight different attenuation models were

successively applied in the inversion scheme providing eight sets of parameters. The

models used had been used earlier in Ursin and Toverud (2002). It was found that the
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Kolsky-Futterman model performed slightly better than the other models where the SLS

model came off as somewhat better. These results support the widespread use of these two

models in seismic processing.

Carcione (2006) showed that waves in dispersive media exhibit elliptical

polarization. The direction of the major axis of the ellipse deviates from the propagation

direction. In addition, the Snell's law does not give the ray path, since the propagation

direction does not coincide with the energy flow direction.

2.5 REFLECTION AND TRANSMISSION OF WAVES PROPAGATING IN

POROUS ANELASTIC MEDIA

Borcherdt (1982) investigated the problem of the reflection and refraction of general P and

SV waves in elastic and anelastic solids. The waves are incident on welded boundaries and

the free surface. The detailed treatment of this problem predicted that contrasts in intrinsic

absorption at boundaries in general give rise to inhomogeneous P and SV waves with

velocities and attenuations respectively less than and greater than those for homogeneous

waves, elliptical particle motions, maximum energy flow in directions different from phase

propagation and physical characteristics dependent on angle of incidence.

Sharma et al. (1990) considered the problem of reflection and refraction of P - and

SV- waves at an interface separating the linear viscoelastic solid and liquid saturated

porous solid half spaces. They used Biot's formulation of wave propagation in the liquid

saturated porous medium. In addition, the theory of Borcherdt (1973) for plane waves in a

linear homogeneous viscoelastic medium was used. They plotted the amplitude and energy

ratios of the reflected P- and SV- waves and incident P-waves with angles of incidence for

the case when the porous medium is a sandstone saturated with kerosene.

Sharma and Gogna (1991) considered the problem of propagation of seismic waves

in a linear viscoelastic porous solid saturated by a viscous liquid and reflection of P- and
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SV-waves at the free surface of such a solid. They derived analytic expressions for

reflection coefficients. They plotted the modulus of reflection coefficients with angle of

incidence for the case when the porous medium is water saturated sandstone.

Samec and Blangy (1992) studied the effects of both attenuation and anisotropy on

synthetic Amplitude versus Offset (AVO) trends. They found that contrasts in

viscoelasticity do not appear to control the variation of reflection coefficients with angles

of incidence for small angles but are a controlling factor of amplitudes. They also found

that viscoelastic anisotropy could severely affect the variation of the reflection coefficients

with angles of incidence. Propagation effects, which continuously alter the signal during

propagation because of attenuation and dispersion, have an important influence on

interpretation of AVO trends.

Carcione (1997) considered the problem of reflection and transmission of elastic

waves in two viscoelastic transversely isotropic media in contact. It was shown that for an

incident homogeneous wave, the reflected wave is of the same type while the other waves

are inhomogeneous. If the transmission medium is elastic, the refracted waves are

inhomogenous ofthe elastic type, i.e., attenuation vectors are perpendicular to the direction

in which energy propagates. On the other hand, if the incident medium is elastic and the

transmission medium is anelastic, the attenuation vectors of the transmitted waves are

perpendicular to the interface.

Ursin and Stovas (2002) investigated the reflection and transmission responses of a

layered viscoelastic medium. They derived the first-order approximations ofthe PP and SS

transmission responses. These consist of a phase shift and attenuation term from direct

transmission through the layers and two attenuation terms from back scattered P and S

waves. It was suggested that the average of these responses might be used for overburden

corrections in AVO analysis.
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Cerveny (2004) investigated the laws of reflection and transmission of plain waves

at a planar interface between two homogeneous anisotropic viscoelastic half spaces. He

presented algorithms for determining the slowness vectors of reflected and transmitted

plane waves from the known slowness vectors of the incident waves. In visoelastic media,

slowness vectors are complex-valued, the real part being the propagation vector and the

imaginary part, the attenuation vector. When these two vectors are parallel, the waves are

known as plane waves and when these are non-parallel, inhomogeneous waves exist. For

unrestricted anisotropy and viscoelasticity, the algorithms require solution of an algebraic

equation of sixth degree in each half space.

Stine (2004) investigated the sensitivity of AVO reflectivity to fluid properties in

porous media. He calculated reflection and transmission coefficients using Biot theory.

The models considered by him consist of sandstone over sandstone (fluid boundary) and

shale over sandstone. The properties of one of the layers are allowed to vary while that of

the other are held constant. In the first kind of models, different fluids (gas, oil and water)

occupy the two sandstones. The reflection coefficients showed small differences from

those calculated using Zoeppritz equations. He also examined the sensitivity of the

reflection coefficients to different physical parameters (permeability, porosity and

viscosity) by a graphical approach. The sensitivity analysis has also been complemented by

calculating partial derivatives of the reflection coefficients with respect to individual

parameters. It was found that the Biot slow wave has the most significant sensitivity to

fluid properties. However, this wave is not directly observable in normal data. This wave,

however, may remove energy from the reflected P-wave as part of energy partitioning

during reflection. There is small sensitivity of reflection coefficients to permeability but

significant sensitivity to porosity. It was found that there is a significant amount of

sensitivity to viscosity at the gas-liquid boundary in a homogenous reservoir sand, but very

little in the shale over sand boundaries. The two gas-water contact models and the constant
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gas sand over varied oil sand model have the greatest sensitivity to changes in the

viscosity. For those three models, the reflection coefficients in Biot theory are up to three

timesmore sensitive to changes in the fluid viscosity as they are to permeability changes.

2.6 SYNTHETIC SEISMOGRAMS

Krebes and Hron (1980) generated ray-synthetic synthetic seismograms for SH-wave body

waves for a plane layered crustal model in both the elastic and anelastic cases taking into

account anelastic reflection and transmission coefficients and the geometrical spreading

factor. The seismograms for the anelastic cases exhibited amplitude attenuation and

waveform spreading. The amplitudes and phases of the arrivals were also seen to depend

significantly onthe direction of maximum attenuation of the initial ray segment.

Carcione et al. (1988) presented a formulation for wave propagation in an anelastic

medium. They considered wave propagation in a general inhomogeneous anelastic medium

within the framework of the theory of linear viscoelasticity. The concept of a spectrum of

relaxation mechanisms is used to define the constitutive relations. The proposed method

has been used to describe elastic waves propagation though porous media. Simulations

displayed a strong velocity dispersion for both P- and S-waves, viscoelastic wavefield

arriving earlier than the elastic one, faster shear mode then the dilatational mode and

comparable amplitudes of the shear and dilatational modes.

Borcherdt and Glassmoyer (1989) investigated the free surface reflection of

anelastic inhomogeneous wavefields. They presented numerical modeling results based on

exact closed-form solutions for the problems of incident inomogeneous P and SV waves

(Borcherdt, 1982). They obtained numerical results for a model of Pierre shale (McDonal

et al, 1958) and describe the dependence of particle motion amplitudes on wave field

inhomogeneity, angle of incidence, and intrinsic material absorption. They defined and
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calculated anelastic, free surface, and reflection coefficients for inhomogeneous wave

fields for energy, displacement amplitude, volumetric strain, and phase.

Quiroga-Goode et al. (1994) compared two methods of computing ray synthetic

seismograms in anelastic media (stationary ray method and conventional ray method) with

the finite difference approach. These methods were applied to generate SH synthetic

seismograms in a model wherein an anelastic layer is sandwiched between two half spaces;

the upper half-space is elastic and the lower, anelastic. By making direct comparisons

between synthetic seismograms obtained with the stationary ray method, conventional ray

method, and finite differences, they found that the stationary ray method agreed with the

finite-difference solution better than the conventional ray method.

Carcione (1993) presented two-dimensional (2-D) and three-dimensional (3-D)

forward modeling in linear viscoelastic media. Simulations on a model separating an

elastic medium from a viscoelastic medium with similar elastic moduli but different

attenuations shows that the interface generates appreciable reflected energy. In another

simulation, the response of a single interface in the presence of highly dissipative

sandstone lenses is computed, properly simulating the anelasticity of direct and converted

P- and S-waves. Simulation of a commonshot reflection survey over a gas cap reservoir

indicates that attenuation significantly affects the bright spot response.

T

2.7 OBJECTIVES

The above review of pertinent literature has revealed that there are still some gaps in our

knowledge about the influence of viscoelasticity and solid - fluid interaction on different

aspects of the problem of seismic wave propagation in porous viscoelastic solids saturated

with gas and water, oil and water or only water. Frequency dependent attenuation of

seismic waves in real earth is well established and means that the anelascity of the

propagating medium must be taken into account. Viscoelastic models of the solid matrix of
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the propagating medium require that the seismic wave velocities, quality factor and

attenuation coefficients become complex and frequency dependent. The aim of the present

work, then, is to carry out a systematic investigation of the influence of porosity, type of

pore fluids and water saturation on (i) frequency dependence of seismic wave velocities,

quality factor, attenuation coefficients and reflection coefficients; (ii) dependence

amplitude of reflected wave lets on offset; (iii) shape of wavelets at different offsets; and

(iv) quantification of the influence of viscoelasticity and solid - fluid interaction on the

attenuation and shape of wavelets.
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CHAPTER-3

THEORETICAL BACKGROUND

3.1 INTRODUCTION

Real earth media are composed of materials that are anelastic. Waves that propagate in

such media are attenuated and dispersed. However, materials in the earth have traditionally

been modeled as elastic media without any attenuation and dispersion. To solve the wave

propagation problems in porous anelastic media saturated with viscous fluids and generate

synthetic seismograms, a boundary values problem involving equations of motion in such

media has to be formulated and solved. In this chapter, some essential aspects of this

problem have been presented. At first, some aspects of modeling of anelastic materials

have been discussed.

Elastic media are composed of materials that exhibit elastic behavior. Such media

are essentially nonporous and follow Hooke's law of linear elasticity, i.e., direct

proportionality between stress and strain for small strains such as those that are induced by

seismic waves. Under a constant stress, an elastic strain appears that remains unchanged

with time. When the load is removed, the elastic strain disappears completely. Solution of

wave propagation problems in elastic media is quite well known and has been briefly given

in Appendix A. When the media are anelastic, they exhibit anelastic behavior, i.e., time

dependent strain. Under constant load, the initially induced elastic strain increases rapidly

at first and then gradually. When the load is removed, there is a sudden drop in strain

followed by gradual return to condition of no strain. In such media, stress is also

proportional to time derivative of strain.
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3.2 ANELASTIC MEDIA

As mentioned earlier, real earth media are anelastic. In such media seismic waves undergo

attenuation as a result of a variety of processes, which can be summarized macroscopically

as "internal friction" (Aki and Richards, 2002). The gross effect of internal friction is

represented by the non-dimensional quantity Q, the quality factor. It is a property of the

anelastic medium through which the wave propagates.

A plane wave propagating with speed c along the x-direction in a perfectly elastic

medium retains its shape exactly and all frequency components travel coherently with the

same velocity. In an anelastic medium its amplitude, A(x) at a distance x, can be written as

A(x) = A0 exp[-a(co)x] (3.1)

where a(co) is the attenuation coefficient, defined as

«(©)= — (3-2)
2cQ

Knopoff (1964) concluded, on the basis ofexperimental measurements, that Q is frequency

dependent and that Q(co) oc co'] for a variety of fluids, but that Q isapproximately constant

for the frequency range of observation in solids. However, for frequency independent Q

and c, it has been shown by Aki and Richards(2002) that the shape of wavelets observed at

a distance x does not follow the principle of causality, i.e., the wavelet is found to have

appreciable amplitude even before / =x/c, its geometrical time ofarrival. It has been shown

that in order that amplitude of the wavelet is zero for / < x/cm, both Q and c should be

frequency dependent and the following relation must be satisfied:

_®_a». +jy[fl(»)] (3.3)
c(a>) cn

where cm is the limit ofc(eo) as co goes to infinity and H[a(co)] is the Hilbert transform of

the attenuation coefficient. Because of frequency dependence of c, attenuation of the wave

is accompanied by dispersion.
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According to Liu et al. (1976), attenuation is due to a superposition of different

relaxation phenomena, each one of which would be represented by the stress-strain relation

a + t„ = M„
a dt

f A„\de

V dt j
.(3.4)

where a represents the stress and e, the strain. The quantity rc is the characteristic

relaxation time of strain under an applied step in stress and xa, the relaxation time for the

stress corresponding to a step in strain. MR is called the relaxed elastic modulus since it

gives the ratio of stress to strain in the limit as / goes to infinity. It is defied as

MR=MV
f \

x.

\ToJ
.(3.5)

where Mu is the unrelaxed elastic modulus in the sense that it gives the ratio of stress to

strain as soon as the stress has been applied, before the material has started to relax (via

creep) to some new configuration (Aki and Richards, 2002).

The stress strain relation (Eq. 3.4) applies to a Standard Linear Solid (SLS). It is a

mechanical model of an anelastic material that consists of springs and dashpots. The spring

represents a model of linearelasticity with the property that the extension is proportional to

the applied force and that it exhibits instantaneous elasticity and instantaneous recovery.

This behavior is also a characteristic of elastic solids. The energy stored in the spring is

0-V2//. The dashpot, on the other hand, is the mechanical model of a viscous fluid. It is used

to represent Stokes' linear viscosity (Ben-Menahem and Singh, 1981). It has the property

that its rate of extension (velocity of piston) is proportional to the applied force. Therefore,

when subjected to a step of constant stress, it will deform continuously at a constant rate.

The rate ofenergy dissipation is the dashpot isa^/2rj, where rj is the viscosity.

A mechanical model of an anelastic material that consists of springs and dashpots is

known as the viscoelastic model. The simplest of such models is the Maxwell model that

consists of a spring in series (Figure 1.3). Another simple model is the Kelvin - Voigt
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model that consists of a spring and dashpot in parallel (Figure 1.4). None of these models,

however, truly represents the behavior, under constant load, ofearth materials. Rocks build

up an instantaneous strain upon sudden application of stress which then increases, rapidly

at first and then at decreasing rate. This behavior is closely reproduced by a standard linear

solid that consists of a spring in parallel with a Maxwell model (Figure 3.1).

1S885885> ,

-/W88i»v—[~P-

Figure 3.1: Schematic representation of the Standard Linear Solidmodel.

The parameters MR, rc and t0 appearing in (Eq. 3.4) are defined in terms of E,, E2

and rj as follows:

MR =
E]+E2

.(3.6)

The response of the Standard Linear Solid to a step ofconstant stress,<r0H(t), is

given by

i&-
'<0

\MRj

(T^
exp

f t*

V \l e J V T£ JJ
Hit) .(3.7)

For a step ofconstant strain, £0H(t), the response is given by

a(t)=MRsc
/ \

\TaJ

( .\

exp

\XoJ
H(t) .(3.8)

The quantity xa is called the stress relaxation time under constant strain, and rc, the

strain relaxation time under constant stress.

For harmonic stress cycle, represented by a - Sexp(-io)t) and corresponding

strain cycle, s =Eexp(-icot), the response is (Ben Menahem and Singh, 1981)

34

t



M(oo) =- = MR
E (l-/<wrj

.(3.9)

where M(a>) is the frequency dependent elastic modulus. Thus for cyclic loading which

occurs in the presence of a seismic wave, the elastic modulus is complex and frequency

dependent. Since the standard linear solid follows the linear stress-strain relation given by

(Eq. 3.4), it is a linear viscoelastic model.

The Standard Linear Solid described above is characterized by one set of values of

relaxation times za and x£, and thus it is a solid with a single relaxation mechanism. It is

characterized by a frequency dependent quality factor, Q{to), given by (Aki and Richards,

2002)

1 ..„.<'.-'•>
Q{(0) {\ + C02T£Ta)

and frequency dependent velocity, c(co), given by

Me*)}2 =
(MA
I p )

1 +
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These two quantities are shown in Figure 3.2 and Figure 3.3 (a) and (b).

It has been remarked earlier that Knopoff (1964) observed that Q is approximately

constant for the frequency range of observation in solids. In order to reproduce such a

constant Q values, Liu et al. (1976) superposed twelve relaxation peaks of the type shown

in Figure 3.2, all sharing the same relaxed modulus MR and found that over the frequency

range 0.0001 - 10 Hz, QA is effectively constant and phase velocity has a linear

dependence on In co. They arrived at the same conclusion when they considered a

continuous superposition of relaxations, specified by a density function. Liu et al. (1976)

used a uniform distribution for the density function.

.(3.10)

.(3.11)



In the present work a single mechanism model has been used. The appropriate

values of relaxation times, xa and xE have been obtained from Carcione (2003). Frequency

dependent wave velocities have been obtained from

;(©) =
\M{(o)

and Q(cv>) has been obtained from

fiM=-

P

Re{M(a>)})
lm{M{co)}\

.(3.12)

.(3.13)

In the above relations, c = a or /?, the P or S-wave velocity. M{co) = X(oj) + 2/u(co) for P-

waves and M(co) = fi(co) for S-waves. Values of xa and xE are different for P and S waves

and are given in Table 4.4.
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Figure 3.2: Variation of quality factors with the frequency. The frequency range
considered for the present work is 0-100Hz. Qp and Qg stand for quality factor for P-
wave and S-wave respectively.

The frequency dependence of Q for Maxwell and Kelvin-Voigt models are shown

in Appendix D (Part V).
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Figure 3.3: Variation of (a) P-wave, and (b) S-wave velocity with frequency. The
frequency range isfrom 0 to 100 Hz. VNP standsfor viscoelastic non-porous.

For one dimensional wave propagation in an anelastic medium, the propagating

wave is described by exp[- a(<y)x]exp[/<y
{c(co)

]. The direction of maximum

attenuation is also the direction of increasing phase delay. For plane waves in two

dimensions, these two directions are different. Solutions to following equation are

considered:

y/ + K2if/=0 (3.14)
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where K=co/c(a>) is complex because c(co) is now complex. Plane wave solution to (Eq.

3.14) is the following

\// - Sexp(-a>A •x)exp[ico(P •x-1)] (3.15)

where A and P are vectors with real Cartesian components (Aki and Richards, 2002). A

is the direction of maximum attenuation and P is the direction of wave propagation. From

(Eq. 3.14) and (Eq. 3.15) the following relations are obtained:

P2-A2=Re{K2} (3.16) 4

and

PAcosy =-\m{K1} (3-17)

where y is the angle between P and A. The wave is said to be homogeneous or

inhomogeneous according to whether y= 0 or y+ 0. For elastic media, since K is always

real, it follows (from Eq. 3.17) that either/I = 0 or y= nil. But for anelastic media, neither >

A can be zero nor y can be 7r/2. For one dimensional case, when A ± 0, y = 0 which

corresponds to a homogeneous wave. However, when anelastic half spaces are involved,

the propagating waves are necessarily inhomogeneous and 0 < y < nil. The case of wave

propagation involving two half spaces, one of which is elastic and the other is anelastic, is

discussed below.
T

The complex vector,^, can be written as co(P + \A). The solution of (Eq. 3.14)

can be written as

if/ =Sexp[ico(K-x-t)] G 18")
=Sexp[ico{Kxx +Kzz)-t]

where Kx and Kz are x- and z-components of K. Obviously,

Kx=p and K:=yl(c~2-p2) (3.19) ^
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In anelastic media, p (= sin /' / c(co)) will be complex and so will be Kz. Let P-_ = dr + id,.

and p= pr + ip,. Then

Kxx +Kzz =(prx +drz)+ i{ptx +d,z) = P•x+/A •x (3.20)

and

y/ -S exp

= 5 exp

co{ptx +dlz)]exp[io)(prx +drz)-t]
- co[A •x)]exp[/<y(P •x-1)\

•(3.21)

The attenuation and propagation vectors are given by

A=pli+dik and P=pJ +drk (3.22)

The attenuation of the wave is governed by the attenuation coefficient, given by

a{co)= , " (3.23)
V' 2c{co)q{co)

Now consider the case of P-waves incident at the interface separating an elastic half

space from an anelastic half space. The elastic half space occupies the region z < 0, and

anelastic half space, z >0. The P-waves are incident from the side of the elastic half space.

The displacements in the elastic half space are given by equations A-2 and A-3. In the

viscoelastic half space, the displacements are

u2x=P2J(a2p)exp{ia)(px +t2z-t)} +Sd2(]31r,2)exp{ia)(px+rl2z-t)} (3-24)

uz2=P2"(a2^2)exp{ica{px +42z-t)}-Sd2{fi2p)exp{ico{px +rj2z-t)} (3.25)

where

i : angle made by down going transmitted P-ray with normal

/ : angle made by down going transmitted S-ray with normal

6: ^^ =̂ ^7)

cosy2
7

2 A

P2d : displacement amplitude of transmitted P-wave
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Sd: displacement amplitude of transmitted S-wave

a2, p2 : complex and frequency dependent P- and S-wave velocities, respectively.

It has beenassumed here that all angles are real, i.e., following form of Snell's law is used:

sin ;' _ sin y, _ sin i2 _ sin j\ (3.26)
a, /?, Re(«2) Re(/J2)

The boundary conditions at z = 0 are similar to those for the elastic case (Appendix A). The

relations (Eq. A-10 to A-13) apply to this case also, except that the quantities

corresponding to the lower anelastic half space will be differently defined. The reflection

coefficients can thus be computed using relations similar to (Eq. A-22).

3.3 VELOCITIES IN POROUS MEDIA

A basic requirement in porous media is to be able to compute their seismic wave velocities.

A number of empirical relations exist, e.g., those proposed by Wyllie (1958) and Raymer

(1980) that yield seismic wave velocities in porous media saturated with fluids. However,

these lack any physical basis and ignore solid-fluid interaction at the time of passage of

seismic waves. Gassmann's relations (Gassmann, 1951) provide an alternate method for

achieving the same. A brief account, based on Nolen-Hoeksema (2000) is given in

Appendix B.

3.4 POROUS VISCOELASTIC MEDIA

In porous viscoelastic media, the solid material behaves anelastically. Following Sharma

and Gogna (1991) the differential equations governing the displacement u of solid matrix

and U of interstitial fluid in a homogeneous isotropic porous solid, saturated by a viscous

fluid, are given by

. . a2 *•p'V2u +(X+/u +a M )V(V-5) +a M V(V-w) =—j(phu +pfw) (327)

. . . d2 _ ... 77. dwV(a M (V-«) +M (V'tv)) =—(p/« +mw) +-^- H 28)
at % dt v '
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where

w = cp(U -ii)

and X* and p* are complex Lame's constants of the solid matrix, m is Biot's parameter

which depends on porosity <p and bulk density of fluid pf, r\b is viscosity and %is

permeability (p/ and rjb have been defined below). The vector w represents the flow of

liquid relative to the solid measured in terms of volume per unit area of the bulk medium.

The quantities a and M* are the complex elastic coefficients defined by

a'=\-S-K; (3-29)

M' =l/(y'+S'-S*Kl) (3.30)

Y =<P
' 1 A

W*fJ \KJ J
.(3.31)

<T=-L (3.32)

Here y* is complex coefficient of fluid content, d* is complex unjacketed compressibility

(Biot, 1957) and K*h (= X* +2/3 p) is complex jacketed incompressibility. K'h is the bulk

modulus of a saturated porous medium calculated using Gassmann's theory (Appendix B).

K*d is the bulk modulus of dry frame (Eq. B-5). A>is the bulk modulus of fluid has been

defined below.

The viscous fluid (oil or gas) when present in the pore spaces is always

accompanied with some water. The water saturation in such cases rarely falls below 10%

and this minimum value is called irreducible water saturation. Therefore, the properties of

individual fluid have to be combined properly so that the porous medium can be

considered to be saturated with a single fluid. Therefore, the properties of the fluids are

combined using following relations:

Density pf-Sw<ppw+(\-Sw)q>pf (3.33)

Viscosity n„ =Swrlt,+(\-SJnJ, (3-34)
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Bulkmodulus K/=— (3-35)
fs ^

+

where Sw is water saturation, pw and Pjl stand for density of water and the fluid present in

the pores, respectively, nw and/7 fl stand for viscosity of water and the fluid present in the

pores, respectively, and Kw and Kft stand for bulk modulus of water and fluid present in the

pores, respectively.

The bulk density (pb) of the porous medium when more than one fluid is present is given

by

Ph =(\-(p)ps+S„<pp„+(]-SJ<pPj, (3.36)

The stress strain relations are

TiJ =2p'eij +[(x' +a'2M')s +a'M'^IJ (3.37)

Pf=-a'M'e-M'£ (3.38)

where Xy and ey are strain and stress tensors, e is cubical dilatation and %= divw. Pf

denotes fluid pressure.

Equations (3.27 and 3.28) are valid in the low frequnecy range where the flow in

the pores is of Poiseuille type. The Poiseuille flow breaks down if frequency/exceeds a

certain value/, given by

ft= *PfJ <3-39>

where d is diameter of the pores. The seismic frequency range (1-100 Hz) falls well below

/ for the parameters of the model used here. The pore diameter is aasumed to be 0.00003

m.

The displacement vectors ii and w can be represented in terms of displacement

potentials <j>j and y/j (j = 1,2) as
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X

m= V0,+Vx^, (3.40)

w = V<f>2+Vxy}2 (3.41)

where the displacements and hence the potentials, are assumed to be time harmonic ( ~

e"0'). On substituting in (Eq. 3.40 and 3.41), the following relations are obtained:

&=Mi+M.2 (3-43)

V72=«oV7i (3-44)

where

p,a -ph +
(A +2p )

Pi
7=1,2 .(3.45)

/

Pf m + i— \a
\

Pf .(3.46)

m + i-

a>x

The potentials <f>u, (f>n and |?, satisfy the wave equations

v2+- 4, =o 7=1,2 •(3.47)

j y

2 . a1 ,
Vz+- V?, =0 .(3.48)

Equations (3.47 and 3.48) imply that in an unbounded viscoelastic porous solid saturated

by a viscous fluid, there will be two dilatational waves and a shear wave. The two

dilatational waves involve coupled motion in the fluid and solid. The wave corresponding

to #u is the dilatational wave of the first kind, also called fast P wave. The wave

corresponding to <j)n is dilatational wave of the second kind, also called slow P wave. The

shear wave involves the coupling of the rotation of the solid and the liquid.

The velocities in equations (3.47 and 3.48) can be expressed as

43



2
X + 2,u

j

PJ

2
3

*

_£_

P3*

7=U .(3.49)

.(3.50)

In what follows, v, =a{ , v2 =a2 , v3 = B2. The notations a[, a2 and B2 are complex

and frequency dependent velocities of fast P-wave, slow P-wave and S-wave, respectively,

in the viscoelastic medium and have been used in the subsequent paragraphs.

The frequency dependent equivalent mass densities p\, p'2 andp* are given by

(3.51)

(3.52)

(5.53)

, B -vW--4 AC)
P\ -

B

2A/

. W(fi2--4AC)
Pi •

*

1M

C

3 ^ A

where

/J = (A*+2//')A/*

A

B= phM' + m + i- //* ~2pfa'M'
V

C = P, m + i-

v «J

X =K' —u'
3

w

p;

//* =X +2p' + a' M"

The displacements wand wean now be written as

u- V$, + v>]2 +Vx^,

w= //,V^, + p2V</>l2 + a0Vx!?,
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..(3.55)

.(3.56)

.(3.57)

.(3.58)

.(3.59)

.(3.60)
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Now consider the case of two half spaces in welded contact at z = 0. The material

occupying the region z < 0, designated here as medium 1, is elastic, homogenous, isotropic.

The other half space is a porous viscoelastic medium. Plane P-waves, traveling in the first

half space are incident on the interface at an angle //. The displacements and stresses in the

elastic half space are given by equations (A-6, A-7, A-8 & A-9).

In the viscoelastic half space, designated here as medium 2, the displacements and

stresses are given as

u\ = Pf(a{p)exp{ico(px +tfz -1)} +Pd'(a'2p)exp{io}(px +£r -1)}

- Sd2(P2ri2)Qxp{io)(px +t)2z -1)}
.(3.61)

u] = Pdf{a{^)cxp{ico{px +^z-t)} +Pds(as2^2)txp{iw{px +^2z-t)}

-Sd(P2p)exp{ico(px +T]2z-t)}

wx=p]P2'(a{p)exp{ico(px +^2rz-t) +p2P2s(a2p)exp{iw(px +^2z-t)

- a0S2 (P2ri1)sxp{ico(px + r/2z-1)}

w2=p,P2df{af2^)Qxp{ico{px +^z-t) +p2Pt(a{^2)Qxp{ico{px +^z-t)

- a0Sd(B2p) exp{io)(px +rj2z -1)}

=(ico)[Pf(2p2P2)p(a{^)exp{ico(Px +42fz-t)} (3>65)
- P1*(2pifi)p(a&)exp{iG>(px +&-t)}

+Sd2(p2/32)(\-202p2)cxp{ico(px +Tl2z-t)}

r2^H-^+(X+a;2M')^ +a;M- dwr dw,
—- + —-

dx dz

=(iw)H'[Pf(a^f )exp{iw(px +$1 z-1)} +Pf(a& )exp{ico(px +<?2'z-0}

-Sd2(P2p7l2)exp{ico(px +rl2z-t)}} +(ia){X +a'^ M")[P2d' (a2f p2)exp{iw(px +42r z-t)}

+P2s(a>2p2)exp{iw(px +$[z-1)} +Sd (/3,t}ip)exp{ico(px +ri2z-t)}] +(iw)a'tM'

[plPf(a{p2)exp{io}(px +^z-t)} +p2Pf(a{p2)exp{iw(px +^z-l)}

a0S2(P2pr]2)exp{iw(px +T]2z-t)} +MIP? (a2^f )exp{ia)(px+ &:-t)}

+M2Pf(a2f^1)exp{iw(px +^z-t)}-a0Sd{P2pTj2)exp{ico(pX +r12'-t)}]

(3.66)
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where

ux, u2:: components of particle displacement vector in the second medium

w2x, w2:: components of fluid displacement vector in the second medium

r2 , r2, : stress components

of2 '• complex and frequency dependent wave velocity of fast P-wave,

a 2: complex and frequency dependent wave velocity of slow P-wave

P2 '• complexand frequency dependent wave velocityof S-wave

p2 : matrix density

Pf : fluid density

<p : porosity

P2: bulk density

P^2'. displacement amplitude ofdown- going fast P-wave

Puf2: displacement amplitude of up -going fast P-wave

Pds2- displacement amplitude of down-going slow P-wave

Pus2- displacement amplitude of up- going slow P-wave

S*2- displacement amplitude ofdown-going S-wave

S"2: displacement amplitude of up -going S-wave

f2 '• angle made by fast P-ray with normal

12: angle made by slow P-ray with normal

j2: angle made by S-ray with normal

_ sin i[ _ sin i2 _ sin j2p : ray parameter

sin/'/ =a{p

cos;'/ =A/(l-a2/2 p2)

sin/'J = a2p

cos;2 =^(\-a2 p2)
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sin/, =p2p

cosj2=J(\-p22p2)

cos/ n T

The boundary conditions at the interface (z = 0) between the two half spaces are:

\)u[=u] (3.67)

2)u\=u2 (3.68)

3K=r2 (3.69)

4)rL=r2 (3.70)

5)0 =!k2-wz) (3-71)
dt

The last boundary condition arises due to vanishing of fluid pressure at the boundary and

can be written as -ico(u2: - w.) = 0 or 0 = u -_ - w-_

Application of boundary conditions leads to following equations:

Pd (aiP) + /»• (alP) +S," (flii,) =Pdl (a{ p) +P* (a\p) +Sd (p2n2) (3.72)

Pf(a^)-P:(a^) +S:(p[P) =Pdf(a2f^) +Pt(al^)-Si(p2p) (3.73)

Pd(2p]p2)pa^-P:(2piP2)pa^-(PlPl)(\-2p2p2)S:

=P?(2PlPl)p(a{tC)- P?(2PlPl)p(a&) +Sd(p2P2)(\ - 2p22p2)

(3.74)
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Pld(pla])(l-2p?p2) +P;(pM)(l-2p?p1)-(2plp?)ppiT]]s:

=Pf\ff'a^f +(X +al2M')(a{p2) +a'tM'pl—r
0C-, .(3.75)

+p*\ H'atff +(X +a?M')(a'2p2) +a'kM'ft —

+Sd2\-H'pP2rl2+(X+al'M')pP2rl2}

0=Pdf(\ - ft )(a[^2 )+P?(\ - ft)(a& )- Sd2(p2p)(\ - a,,)

These equations can be put in the following form

M

>,"" >,']
s: 0

pdf
l2 = N 0

pds
F2

0

sd _ 0

.(3.76)

.(3.77)

M is a 5x5 matrix and is given on the next page

M -

-a,p -O-A'p')™ «jV

(l-a,V)'" -P,p o-a/V)"1

IftfttpCl-a'p)"' p,/3,(l-2tfp2) 2(ptP})p(\-af p')"1

-(p,a,)(l-2AV) 2p,/?,,p(l-/»,V)"' in

0 0 (WOO-a/V)"2

(I-aiV)"1 -PiP

2{PlPl)p(\-a['pT (p^K-iplp1)

m - m

(\-fi,)0-al'p')"' -Q-a0)filP

.(3.78)

The elements of the column vector N are

a,p (1 -AV)W -a{p "«> -(|-/>,V)"!

d-«,V)12 -Pp (l-a2'V)12 (i-a;>2)l! -0,P

. JptfpQ-a'p)"' ftfifl-lfifp*) 2(p2Pl)p(\-a['p1)'1 2(P2Pl)p(\ -afp')'" (p,P,Y}-2fi}p')

(P,a,)(l-2A2P2) -2p,A2/>(l-AV)'2 ~m ~m m
0 0 (l-zOd-a/V)"1 (1-^)0-«;'/>')"' -(l-a0)ft/j

(3.79)

In case of P-wave incident from above (Figure 3.4(a)) the first column of N will be

operative. The above form ofNtakes into the account the fact that waves may be incident
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at the boundary from above as well as from below as shown in Figure 3.4. The matrix

equation 3.77 in the expanded form now reads as follows:

M

w V Kp M SP

ft V p^r /.*' <r

», *fc te, p'.p? s>N,

>, "s>. to t.k s>x.

ft Nss a (Ji ss

=N

.(3.80)

The symbol 'V denotes an downgoing wave, and V denotes an upgoing wave. The

reflection and transmission coefficients are obtained through the following relation

ft V # p^
//

SP

ft w p# Pi' sT

ft, ¥p, to to to

^pp. •*. to to. tos

ft NSS to (to SS

- Ril-1WTN

.(3.81)

The case of a fast P-wave traveling through a viscoelastic upper half space, characterized

by velocities a{ ,a2and p2 and incident at the interface separating it from the elastic half

space, characterized by velocities a3 and/53, below can be treated similarly. The 5x5 matrix

M in this case is given on the next page
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M ••

-a(p -a\p -a-AV)w a,p

Q-afp1)" (\-a°;P2r ~P2P (\-a2iP)'2

2(p2p2)p(\-afp2f2 2(p2p2)pO-afp2)'2 (p2p2y\-2p2P2) 2p,p2p(\-o

-D\ -D2 D3 (axp,)0-2p2)

(]-p,)(\-afp2)'2 (\-p2)(]-al'p2)'2 -0-a„)P2p 0

The elements of the column vector N are

a2p

(1-«,/V)w

(i-AV)1"

-p2p (1-«2P)12 -p\p

2(p2c])p(\-a{'p2f2 2(p2c2)p(\-a<'p2)"2 (p2p2\\-2p22p2) 2p,p2 p(\-a2,p)'2 p,p\Q - 2/?,V)

D\ m -D3 -(a,p,)(\-2P,'p') (2p2p,)p(\ - AW"

(l-^Xl-a/'p')"2 (1-*,X1-«,V)"2 -(\-a0)p2p 0 0

In equations 3.78, 3.79, 3.82 and 3.83

D\ = H
Q-afp2) +(X +a' M')aip1 +a'M'/j, —-

D2 = H
.(l-g2V) ,,,-,„.+(X +a" M')a2p2 +a"M'ju2 —

•a,p

D3 =H\\-p2p2y2p-(X +a M')(\-p2p2)"2p

and the relation for getting reflection-transmission coefficients is

to,

to.

to

to

to

\,pi, \6 rf

to \K

>N.p

SS

>*s ^ss ti

//
SP,

pp7 &

PY ii

if

/ \

SS
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(i-AV)'"

-P,p

2P)'2 p,p,o-2P?i

,2) -(2p2p,)p(\-Plp

0

.(3.82)

(1-ftV)'2 ^

.(3.83)

.(3.84)
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(a)

, PfS / PfP

/^ 1

2
/ > K i{ W\?y \J2

PfP, / \

(c)

(e)

SS SF*

(b)

PsS/ PSP

(d)

SPS SS

Figure 3.4: Notation for 25 possible reflection and transmission coefficients arriving
from waves at the welded interface between an elastic (medium 1) and porous
viscoelastic medium (medium 2).
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3.5 SYNTHETIC SEISMOGRAMS

Consider a stack of n elastic, homogeneous and isotropic layers overlying a half space with

prescribed values of density (p) and P- and S-wave velocities (a and B), as shown in

Figure 3.5. Plane P- waves propagate through the stack of layers. The reflected P-wave

paths from the (n-\) th and nth interfaces are shown in Figure 3.6. The z-component of

reflected P-wave displacement at the surface of the layered half space can be written as

follows:

„, ,N PRODUCTxPP ,, _..

where

PRODUCT = Product of downgoing and upgoing transmission coefficients of P-waves

at n-1 interfaces

The above expression is a slightly modified version of the relation given by Aki

and Richards (2002). The effect of the free surface has been included in the above

expression and has the following form:-2a[<;l(\-2p?P2)/((\-2p?p1)2 +4p?p2$tr}l). The effect

of the free surface represents the modification of amplitude of upcoming P-waves by the

downgoing reflected P-wave and S-waves at z = 0. In the present case n=\ for the first

interface and n=2 for the second interface.

The expression 3.85 yields the spectrum of vertical component of reflected P-wave

spikes that includes the effect ofviscoelasticity and solid-fluid interaction of second layer

of the model assumed in the present study. The reflected P-waves come from top and

bottom surfaces of the viscoelastic layer. This attenuated spectrum is multiplied with the

spectrum of the source wavelet and Fourier inverted to yield the reflected wavelet at a

given offset. The synthetic seismograms are obtained by plotting the wavelets at the

appropriate travel times.
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In order to use the expressions of reflection and transmission coefficients derived

on the basis of theory of propagation of plane waves, it is assumed that the region

occupying the region z<0 is occupied by air to enable P-waves to propagate. The plane

waves are generated by a remote source incident on at z=0 at such an angle so that these

emerge into the region z>0 making an angle i0 with the normal appropriate for the reflected

ray to emerge at a prescribed offset at the surface z = 0 (Figure 3.7). The point at which the

waves enter the layered half space at z = 0 is taken as the source point and the distance at

which reflected wave emerges at z = 0 is measured from this source point and called offset.

a\,px,p\, h\

a2, Pi, P2, h2

«3, /?3, P3, h3

cti, Pi, pi, hi

O-n-U Pn-\, Pn-], h„.

&n, Pn, Pn

Figure 3.5: Layered halfspace with densities (p, i =1,2, ...,n), velocities (at, /?,-, / =l,2,..,n)
and thicknesses (hi ,1-1,2, n-1).
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Figure 3.6: The reflected P-wave pathsfrom the (n-1) th andnth interfaces.

Figure 3.7: Plane wavesfrom the remote source are incident at S, the source point. The
wave propagatingin the earth model areplane waves.

3.6 AVO INVERSION

Amplitude - versus - offset (AVO) inversion has been applied to detect gas sands and to

determine physical parameters of the media across the reflecting boundary. For this

purpose, linearized versions of Zoepprtiz equations are used. The data to which such

54

T



i

T

inversion is applied is recorded in seismic data acquisition where seismic waves propagate

in a real earth. In the present work, the propagation of waves in a porous viscoelastic

medium has been considered. The synthetic seismograms have been generated at the

surface of a three layered earth model of which the second layer is porous and viscoelastic.

The AVO inversion of the synthetic seismic data will reveal the effect that porosity, fluid

content and viscoelasticity have on the AVO attributes.

The Aki - Richards approximation of the Zoeppritz equations for P to P reflection

coefficient, Rpp, is given below (Aki and Richards, 2002):

R^k-WV^+j^.^-WVf (3'86)pp 2 p 2 cos i a P

where a, p andp are the mean P-wave velocity, mean S-wave velocity and mean density on

two sides of the reflector and Aa (=a2-a0 , A/5 (=p2-P0 and Ap (=p2- pi) are the respective

contrasts. The above equation holds when the ratios Aa/a, Apip and Ap/p are much less

than unity.

For the purposes of inversion, a can be estimated using T2 - X2 method ofvelocity

estimation. The S-wave velocity is obtained by multiplying a with 0.6. The estimate of/? is

obtained by using Gardner's relation:

p = 0.31(a025) (3-87)

The reflection coefficients, Rpp, are obtained from the amplitudes of seismic reflections.

The offsets are converted into angle of incidence, i. The equation 3.86 is now inverted to

get the values of ratios Aa/a, A/J//5 and Ap/p. The AVO attributes, A and B, are now

obtained from the following relations:

A = -
2

!Aa Ap^
a p

B^^-V
2 a \a

Ap +2AP
VP 0
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CHAPTER-4

COMPUTATIONAL PROCEDURE

4.1 INTRODUCTION

In this chapter the methodology of computation of synthetic seismograms at the surface of

a three layered earth model have been presented. At first, the selection of the model

parameters has been dealt with and is followed by essential aspects of computational

methodology.

4.2 MODEL

In this study, the model of earth consists of two layers overlying a half space. In the

following, the half space has been termed the third layer. The materials comprising the

layers are assumed to be homogeneous and isotropic. The first and the third layer are

assumed to be elastic. The second layer has been assumed to be viscoelastic and porous

and saturated with more than one viscous fluid, i.e., gas and water or oil and water or only

water.

Plane P-waves, generated by a remote source, pass into the earth model at a point

designated as source point. For this purpose, the space above the model, occupying the

region z<0, is assumed to be filled with air so that P-waves can propagate through it. The

source wavelet is assumed to be a Ricker wavelet of 50 Hz. frequency. Synthetic

seismograms have been generated at 20 offsets simulating an AVO situation. For porous

second layer the above exercise is repeated for different values of porosities and water

saturations. The ray path in the above model has been shown in Figure 4.1.
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Figure 4.1: Raypaths in the three layered earth model considered for the present
computation.

The viscous fluids which are considered as the pore fluid in this study are oil, gas

and water. The hydrocarbon, oil or gas, fills part of the pore space along with water.

Following cases have been considered:

(a) Oil with 25%, 50 % and 75 % water saturation and 20% porosity.

(b) Gas with 25%, 50 % and 75 % water saturation and 20% porosity.

(c) 100% water saturation and 20% porosity.

(d) Oil with 50 % water saturation and 10%, 20% and 30% porosity.

(e) Gas with 50 % water saturation and 10%, 20% and 30% porosity .

4.3 CHOICE OF MODEL PARAMETERS

The physical properties of the three layers in the model have been selected so as to

resemble a sandstone reservoir enclosed by impervious strata above and below.

It has been assumed that the sandstone reservoir lies at a depth of 2500 m from the

surface and its thickness is 100 m. The density and seismic wave velocities for the upper
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and lower layers are taken corresponding to the rock types usually present above and

below the reservoir.

For the second layer that is taken to represent the reservoir, the appropriate

parameters have been taken from the table of values given in Gregory, (1977) Table (4.5).

This table contains data for P-wave velocity, S-wave velocity, depth of the reservoir,

porosity of the rock and the type of the fluid present in a sandstone reservoir. This data

pertains to the Gulf coast region.

The value for seismic wave velocities given in this table incorporates the effect of

porosity of the reservoir rock. Consequently, this velocity is lower than velocity in the

mineral particles constituting the solid framework, also called matrix velocity. The same is

true in case of density of the rock. To estimate the matrix velocity and matrix density from

the available data, following procedure has been adopted: The sandstone layer at a depth of

2500 m is selected and the P and S wave velocities, density and porosity are picked up

from the table. It has been assumed that the velocity and density values pertain to the

reservoir having 100% water saturation. The water filling the pores has been assumed to be

brine having a salt content of 20% NaCl. Its density, pw, is obtained from McQuillin et al.

(1986).

From the S-wave velocity of the saturated rock, psal i.e. the shear modulus of the

saturated rock, can be estimated by the following way

and

P^=P™, (4-2)

where pdry is shear modulus ofdry rock, fiM is the S-wave velocity of saturated rock, ph is

the bulk density of the rock. From//^, the shear modulus of the solid matrix (pm) can be

calculated by (Nolen-Hoeksema, 2000)
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Pm=7^S (43)
I 9c)

where #> is the porosity of the rock and <pc is the critical porosity (taken as 40% in this

study) of the rock.

The density of the solid rock (ps) has been calculated by

P,=P-^- (4.4)
\-<P

where pf is the density ofthe fluid. S-wave velocity ofthe matrix is obtained from

P,M=J^ (4-5)
VP.

where psoud is the S-wave velocity of the solid rock. P-wave velocity for the solid rock has

been estimated by

^ =0.6 (4.6)
a

where a is the P-wave velocity and P is the S-wave velocity.

4.4 PHYSICAL PROPERTIES OF PORE FLUIDS

The physical properties i.e. density, the seismic wave velocities and viscosity of the pore

fluids (oil, gas and water) are also important parameters in seismic wave propagation in

porous media.

4.4.1 Density ofPore Fluids

The density of gas depends on itscomposition. The composition of gas present in the pores

has been obtained from Sheriff (2002) and given in Table 4.1. Density values have been

obtained from Levorsen (1967). The density ofthe gas comes out to be 0.983 kg/m3.
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Table 4.1: Volume Fractions and Densities ofConstituents ofNatural Gas

Constituent gas Methane Ethane Propane Isobutane Butane Pentane

Fraction by
volume

0.80 0.07 0.06 0.015 0.025 0.03

Density (kg/m3) 0.715 1.339 1.963 2.588 2.588 3.213

The water present in the reservoir rocks being highly saline, its density has been

obtained from Mcquillin et al. (1986) for a salinity of 20% NaCl. It is given in Table 4.2.

Oils ofdifferent API gravity values have been considered (10° to 60°). The density

and viscosity is different for different API gravity values. Density of oil for particular API

oil can be calculated from

141 5

P,

•(4.7)

and isgiven in Table 4.3. Here/?, is the density of oil.

4.4.2 Viscosity ofPore Fluids

Viscosity of fluid varies with temperature. To get the appropriate value of viscosity at the

depth of the reservoir (2500 m) the temperature gradient of the Gulf Coast region, as

shown in Figure 4.2 has been considered. From Figure 4.2 temperature has been found to

be about 220° F at the depth of 2500 m.

300

250
u.

£ 200

| ISO
I 100
8

H 50

D

Temperature gradient (Gulf Colst)

y =0.0149X+78.807
Ff = 0.8968

2000 4000 6000 8000 10000 12000 14000 16000

Depth, ft

Figure 4.2: The temperature gradient of Gulf coast region. (Source: Internet, PPT
presentation by Holtz, M.H., NuhezLopez, V., Breton, K.L.).
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The value ofviscosity ofgas, oil and water at 220° Fhave been obtained from Stine

(2004) and are given in Table 4.2 and Table 4.3.

4.4.3 P-wave Velocity in Pore Fluids

Velocity of P-waves in gas is taken from Sheriff (2002) and is given in Table 4.2. The

bulk modulii, K, of oil and brine are obtained from Mcquillin et al. (1986) and velocity, V,

calculated using the following relation:

V = .(4.8)

where pf is the density of the fluid. The velocity in oil for different densities have been

obtained and an average has been used in computations.

Table 4.2: Properties ofBrine and Gas

Fluid Density

(kg/m3)

P-wave velocity

(m/sec)

Viscosity (at 220UF)

(Poise)

Gas 0.983 440 0.000095

Brine 1140 1613 0.003

Table 4.3: Properties ofOil

API Gravity 10 20 30 40 50 60

Density (kg/m3) 1000 933 904 876 849 825

Viscosity

(at 220°F, in Poise)

2.0 0.08 0.03 0.01 0.009 0.007

P-wave velocity 1394 m/s

4.4.4 Relaxation Times

The viscoelastic behavior of the solid constituents of the second layer has been modeled as

a Standard Linear Solid with a single relaxation mechanism. To compute frequency

dependent values of wave velocities and quality factors (Qp and Qs), a knowledge of
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relaxation times xa and xt is required. These have been obtained from Carcione ( 1988) and

given in Table 4.4.

Table 4.4: Relaxation Times ofSeismic Waves

Relaxation Times

(P-wave) (S-wave)

T, 0.0311465 0.0304655

*e 0.0325305 0.0332577

The physical properties of solid constituents of the three layers and those of pore

fluids in the second layer, as described above, are assumed to represents the closest real

value that may be encountered in a real earth. The model parameters for solid constituent

of the three layersare given Table 4.5, which have been used in the present study.

Table 4.5: Model Parameters for Solid Constituents

Layer No: P-wave velocity
(m/sec)

S-wave velocity
(m/sec)

Density
(kg/m3)

Thickness

(m)

1. 2957 1258 2236 2500

2. 5411* 3246* 2593* 100

3. 3048 1297 2340 -

* Matrix velocity and density

Matrix velocity and density in the second layer have been computed from real data

using assuming a porosity of 20%.

4.4.5 Permeability

The permeability of the second layer is needed for use in relation (Eq. 3.45 and 3.46). It is

taken as equal to average value of a sandstone and is 10" m .

4.5 SOURCE WAVELET

The source wavelet used in this present study is a Ricker wavelet of 50 Hz frequency. It

has been computed from the following relation given by the Sheriff (2002):

/(0 =0-2ff2/w2'VST'/"V (4-9)
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where fM is the frequency of the source wavelet. This is shown in Figure 4.3 along with its

spectrum. The source wavelet has been sampled at 0.001 s and its duration is 0.2 s. For

computing its Fourier transform, its duration has been increased through zero-padding. The

total duration of the expanded source wavelet is 8.192 s, giving a frequency interval of

nearly 0.122 Hz. This has been done to obtain a smooth spectrum. The Nyquist frequency

of the sampled source wavelet is 500 Hz. The spectrum of the source wavelet has

negligible amplitude beyond 150 Hz.

(a)

Spectrum of source pulse

1.00E-02 -

a> 8.00E-03 -

i 6.00E-03 -
a

1 4.00E-03 -

/*"-v

/ \
/ \

| 2.00E-03 - / \.
a

w 0.00E+00 -
y \^^_

p '

-2.00E-03 -
) 50 100 150

Frequency (Hz)

200

(b)

Figure 4.3: (a) Source wavelet used for the present computation; (b) Spectrum of the
source wavelet.
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4.6 SYNTHETIC SEISMOGRAMS GENERATION

Synthetic seismograms have been generated using relation (Eq. 3.85), at 20 offsets with

100m being the offset interval. This has been carried out in following steps.

(a) First, the angle at which the P-waves start from the source point (the take-off angle) is

computed for a given offset, using ray tracing. The velocities of these waves are complex

and frequency dependent and are computed using relations (Eq. 3.12). When the P-wave

velocity in the second layer is complex and frequency dependent, the real value of the

velocity at 50 Hz has been used so that all the angles that the seismic rays make with the

normal to the interface are real. For the two interfaces, two take-off angles are thus

computed for all the 20 offsets.

(b) The two-way travel times for reflections from each interface are computed for all the

20 offsets. As before, the real value of the velocity at 50 Hz has been used for the second

layer when the P-wave velocity in the second layer is complex and frequency dependent.

This ensures that the angles that the seismic rays make with the normal are real.

(c) The effect that the presence of free surface has on the amplitudes ofseismic reflections

has also been computed.

(d) The velocities in the porous medium are computed using relations (Eq. 3.49 and 3.50).

Since the pores are filled with one or two viscous fluids, two types of P-waves exist: fast

and slow along with an S-wave. All the velocities are complex and frequency dependent.

Consequently, the reflection and transmission coefficients are also complex. These are

evaluated using relations (Eq. 3.81 and 3.84). First, the frequency dependent values of the

amplitude of reflected spike from each interface is computed and multiplied with the

Fourier spectrum of the source wavelet. The frequency dependent velocities, reflection and

transmission coefficients and amplitudes of seismic reflection spikes are computed for all

the frequencies that are present in the spectrum of source wavelet. The resulting spectrum

of the reflected seismic wavelet is inverse Fourier transformed to get the wavelet in the
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time domain. These wavelets are plotted at the correct two way geometrical travel time to

give the synthetic seismogram.

Since the velocities in the second layer are complex and frequency dependent, ray

parameter, p, is also complex and frequency dependent. For every frequency, a separate

angle of refraction has been computed in this layer. Thus, there will be 4096 ray paths for

waves traveling in this layer, as shown schematically in Figure 4.5. For every ray path the

distance traveled in this layer and the resulting attenuation of the wave has been computed.

For each ray, the reflection coefficients at the two interfaces have also been separately

computed. This has been repeated for all the 20 offsets.

V\

/ Elastic layer
/ a,, p1lPl.

Viscoelastic porous
layer

Elastic layer

a3, p3, p3

Figure 4.4: Ray paths in the viscoelastic second layer.
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4.7 FLOW CHART OF COMPUTATIONAL PROCESS

A flow chart showing the sequence of steps in numerical computation has been given

below:

/ Input Data

"

Source Pulse

Input (Ricker Pulse)

"

FFT of Source Pulse

Calculation of complex and frequency dependent
seismic wave velocities using SLS model and store
the velocities for every frequency

Termination of frequency loop

Calculation of wave

velocities at 50 Hz for porous
medium using Biot's theory

Calculation of reflection

& transmission co-efficient

over 0 to 90° for both interface

Termination of angle of incident loop

Loop over offset
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Calculate take off angle for P-
wave using velocity at 50 Hz.

Calculation of free surface effect

Calculation of two way travel times
using velocity at 50 Hz

Calculation of P-fast, P-slow and S-wave
velocities for porous medium at every frequency

Calculation of reflection and transmission

co-efficient at every frequency

Convolution of source pulse

Invert Fourier transform to get
reflected pulse

Termination of frequency loop

Termination of interface loop

Termination of offset loop

Plotting of Synthetic seismogram
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propagation vector
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CHAPTER - 5

RESULTS AND DISCUSSIONS

5.1 INTRODUCTION

The main objective of the present work is to investigate the effect that viscoelasticity and

solid - fluids interaction have on the shape of the reflected seismic wavelets. For this

purpose, firstly, synthetic seismograms have been generated at 20 offsets varying from 100

to 2000 m, on the surface of a three-layered earth model. The first and third layers of the

model are assumed to be elastic and the second layer is porous and viscoelastic. For

purposes of comparison, computations have also been carried out when the second layer is

elastic and non-porous, viscoelastic and non-porous and elastic and porous wherein P-wave

velocity has been estimated using time average relationship. These seismograms simulate a

CMP gather prior to AVO analysis. The source wavelet is assumed to be a Ricker wavelet

having a frequency of 50 Hz. Secondly, normally incident synthetic seismograms have

been generated when the second layer has thicknesses of 100 m. Finally, normally incident

synthetic seismograms have been generated for a wedge shaped second layer.

Following notations have been used for identifying the different curves in figures:

(a) "EL" when the second layer is elastic and non-porous;

(b) "VNP" when the second layer is viscoelastic and non-porous;

(c) "TAR" when the second layer iselastic and porous and the seismic wave velocities

in the porous medium have been estimated using Time Average Relationship, e.g.,

Willies equation (Willie, 1956), and

(d) "VP" when the second layer is viscoelastic and porous and the seismic wave

velocities in the porous medium have been estimated using Biot's theory.

The presentation and interpretation of results has been arranged in four parts. In

Part I, the second layer is viscoelastic but non-porous. In Part II, the second layer is
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viscoelastic and porous. In Part III, a comparative study has been made of the results

obtained in the present study with those obtained when the velocity in the second layer are

estimated using time average relationship. In Part IV, quantification of the results has been

presented.

5.2 PART I: SECOND LAYER IS VISCOELASTIC AND NON-POROUS

With the objective of quantifying the effect of viscoelasticity alone on the shape of the

reflected wavelets, the second layer is assumed to be viscoelastic and non-porous. In this

case, the seismic waves will be attenuated while propagating through the viscoelastic layer.

The Standard Linear Solid model has been adopted to represent the linear viscoelastic

behavior of the second layer, leading to the complex and frequency dependent nature of

elastic moduli (Eq. 3.9) and hence of seismic wave velocities. The shape of the computed

seismic wavelets have been compared to that obtained when the second layer is elastic.

5.2.1 Wave Velocities

As mentioned above, the seismic wave velocities are complex and frequency dependent

when the solid matrix is viscoelastic. Figure 5.1(a) and (b) depict the frequency

dependence of P and S wave velocities respectively, in a viscoelastic layer. Both the curves

show similar trend. The maximum changes in the velocities take place between I to 50 Hz

and the velocities attain their maximum values near 100 Hz. The total variation is 2.19%

for P-waves and 4.47% for S-waves. It is a characteristic of the SLS model that at high

frequencies the velocities approach the values for elastic solids asymptotically.
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Figure 5.1: Variation of (a) P-wave velocity and (b) S-wave velocity with frequency for
the viscoelastic layer modeled as a standard linear solid. The frequency range, 1-100 Hz,
is commonly accepted in seismic prospecting.

5.2.2 Quality Factors and Attenuation Coefficient

Figure 5.2 (a) and (b) show the frequency dependence of quality factors (Qp and Qs) and

attenuation coefficient respectively in a viscoelastic medium. For a single mechanism SLS

model, used here for representing the viscoelastic solid, Q is frequency dependent. Both

Qp and Qs attain a minimum between 1 to 10 Hz., with Qp remaining greater than Qs. In

Figure 5.2 (b), the attenuation coefficient increases between 1 to 10Hz. The trend of the

frequency dependence of attenuation coefficient is similar to that of seismic wave
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velocities, with the difference that the former attains its highest value over a smaller

frequency range.
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Figure 5.2: Variation of(a) quality factor and (b) attenuation coefficient with frequency
for the viscoelastic layermodeled as a single mechanism standard linear solid.

5.2.3 Reflection Coefficients

A consequence of complex and frequency dependent nature of seismic wave velocities is

that reflection and transmission coefficients at the boundaries ofthe viscoelastic layer also

show similar behavior. Figure 5.3 (a) and (b) show the variation ofreal part of the P-wave

reflection coefficients (Rpp) with offset for first and second interfaces, respectively. The

reflection coefficients displayed are at a frequencies of 1 and 50 Hz. The reflection
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coefficients for the viscoelastic case at a 50 Hz. frequency do not differ significantly from

those when the second layer is itself elastic. This is because the P- and S-wave velocities at

50 Hz (5409.82 m/s and 3246.32 m/s respectively) are very nearly equal to those of elastic

layer (5411 m/s and 3247.76 m/s respectively). At the lowest velocities values at low

frequencies (such as 1 Hz.) (5294.71 m/s and 3108.52 m/s respectively), the reflection

coefficients are about 2.9% of their values at 50 Hz. However the complex and frequency

dependent nature of the reflection coefficients leads to dispersion in the shape of reflected

wavelets. The same is true for transmission coefficients also.
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Figure 5.3: Variation ofreflection co-efficients with incident angle of reflected P-waves
from the (a) first interface and (b) second interface. Only the realparts of the reflection
coefficient at a frequency of 1 Hz. and 50 Hz. have been plotted. For comparison, the
reflection coefficients when thesecond layer is elastic have also been plotted.

73



5.2.4 Synthetic Seismograms

Figure 5.4 shows the synthetic seismograms when second layer is viscoelastic and

non-porous. It is observed very clearly that the amplitude of the reflected wavelet is getting

more and more attenuated with increasing offset.

E
F 1.1

£

Figure 5.4: Synthetic seismograms at the surface of three-layer model simulating an
AVO situation from the both interfaces. There are 20 traces at offsets varying from 100
m to 2000 m.

5.2.5 Seismic Wavelets

Figures 5.5 (a) and (b) show a comparative study of the reflected wavelet when the second

layer is viscoelastic and when it is elastic, at two offsets: 1500m and 2000m. The figures

show the effect of viscoelasticity on the shapes of reflected wavelets. The reflected pulses

at 1500m offset show amplitude loss of the order of 0.9 dB whereas at 2000 m, the

amplitude loss is of the order of 1.38 dB. These losses refer to the amplitude of the central

lobe. There is also a phase delay due to velocities being complex and frequency dependent.

The amplitudes of the side lobes of the wavelets are slightly different (this difference is

greater at 2000 m) and the widths of the wavelets are also different when compared with

those for elastic case. Thus, the effect of viscoelasticity alone on the shape of reflected

seismic wavelets is clearly demonstrated even in the narrow frequency range of 1 - 100

Hz.
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Figure 5.5: Comparison of seismic pulses at offset (a) 1500m and (b) 2000m from
second interface, for viscoelastic and elastic cases, depicting significant changes in pulse
shapes due to dispersion and attenuation.

5.3 PART II: SECOND LAYER IS VISCOELASTIC AND POROUS

The second layer is now viscoelastic and porous containing oil or gas and water in

different proportions. The porous layer is assumed to contain oil and water, gas and water

or only water. The propagation of seismic waves in the porous layer is now affected by

solid-fluid interaction. The presence of fluids in the pore spaces gives rise to two coupled

longitudinal waves (the fast and slow P-waves) and a shear wave, in accordance with

Biot's theory (Biot, 1956). The computations of the velocities of these waves have been
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described in Chapter 3. In the following paragraphs the effects of the presence of different

types and amount of fluids on the behavior of seismic wave velocities, quality factors,

attenuation coefficients, reflection coefficients and shapes of reflected seismic wavelets

have been presented and analyzed. In addition, AVO analysis is carried out on synthetic

data to determine whether the AVO attributes (i.e., intercept A and slope B of the linear

relation between reflection coefficient and sini where i is angle of incidence) are

significantly affected by the amount of gas or not.

In the following description, when the pore spaces contain gas and water or oil and

water, the water saturation, when not stated, is assumed to be 50%, and, in the same way,

porosity, when not stated, is assumed to be 20%. When only water is present, the

saturation, of course, is 100%. P-wave, without any prefix, means fast P-waves.

5.3.1 Frequency Dependence of Wave Velocities

5.3.1.1 Variation with Porosity

Figure 5.6 (a) and (b) show respectively the frequency dependence of P and S wave

velocity in the viscoelastic layer. The trend of the curves for oil and water, gas and water

and only water is similar to that shown in Figure 5.1 (a). Smallest P-wave velocity in the

presence of gas and water is observed. However, S-wave velocity is largest in the presence

of gas and water. This is because pore fluids influence both the bulk modulus and bulk

density. The change in bulk modulus is more pronounced than bulk density resulting in

greater decrease in P-wave velocity. On the other hand, shear modulus remains unchanged.

The decrease in bulk density is greater in the presence of gas and water leads to greater S-

wave velocity.

Frequency dependence of velocities of fast P-wave, slow P-wave and S-wave for a

viscoelastic layer having different porosities are shown in (i) Figure 5.7 (a) to (c) when

pores contain gas and water, (ii) Figure 5.8 (a) to (c) when pores contain oil and water and

(iii) Figure 5.9 (a) to (c) when pores contain only water. The rate of change of P- and S-
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wave velocities increases with increase of porosity with S-wave velocity changing at a

faster rate than P-wave velocity.
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Figure 5.6 Variation of (a) Fast P-wave velocity and (b) S-wave velocity with frequency
in porous viscoelastic layerfor differentfluids.

For comparison purposes, the velocities at a frequency of 50 Hz and 50% water

saturation are shown in Table 5.1.
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Table 5.1 Seismic Wave Velocities at 50 Hz in the Porous Viscoelastic Layer

Wave

Type

Velocity in m/s when pores contain

Gas Oil Water

Porosity 10% 20% 30% 10% 20% 30% 10% 20% 30%

Fast P-

wave

4879.2 4163.9 3090.6 4928.3 4313.9 3474.7 4941.3 4353.8 3571.9

Slow P-

wave

0.6209 0.4390 0.3585 22.66 15.79 12.42 37.59 26.08 20.43

S-wave 2927.9 2498.6 1854.5 2902.2 2451.5 1797.8 2893.6 2436.0 1779.6

5.3.1.2 Variation with Water Saturation

Frequency dependence of velocities of fast P-wave, slow P-wave and S-wave in a

viscoelastic layer having different saturations are shown in (i) Figure 5.10 (a) to (c) when

pores contain gas and water, and (ii) Figure 5.11 (a) to (c) when pores contain oil and

water. The change of P- and S-wave velocities with increasing saturation is more

pronounced when gas and water is present than when oil and water is present.
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5.3.2 Frequency Dependence of Quality factors

5.3.2.1 Variation with Porosity

Figure 5.12 shows the frequency dependence of quality factors of P-wave in the

viscoelastic layer. The trend of the curves is similar to that shown in Figure 5.2 (a) and is

the same irrespective of the type of fluid present in the pore spaces.

Frequency dependence of quality factors of P-waves ina viscoelastic layer having

different porosities are shown in (i) Figure 5.13 when pores contain gas and water, (ii)

Figure 5.14 when pores contain oil and water, and (iii) Figure 5.15 when pores contain

only water. These curves are typical for a single mechanism relaxation model. All the

curves for different fluids and porosities attain a minimum between 1 to 10 Hz. It is also

observed that when gas and water is present in the pore spaces, Qp does not vary with

increase in porosity. There is some variation with porosity when oil and water or only

water is present in the pore spaces, the increase being nearly 29.46 % and 37.8 %

respectively when porosity changes from 10% to 30%.

The small variation in Q values with porosity (Figure 5.14 and 5.15) is due to the

effect of viscosity of the pore fluid on the dynamic coefficients that affects real and

imaginary parts of complex elastic modulus M(co). More the porosity, larger the amount of

fluid in the pore spaces and greater the influence of viscosity on the dynamic coefficients,

complex wave velocities.
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Figure 5.12: Variation ofquality factor with frequency in viscoelastic porous layerfor
differentfluids.
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Figure 5.13: Variation ofquality factor with frequency in viscoelastic porous layerfor
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1000

S

% 10°
ro

Li

re

3

o

10

0.1 1 10

Frequency (Hz)

100

VP(Por=10%)

VP(Por=20%)

VP(Por=30%)
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5.3.2.2 Variation with Water Saturation

Frequency dependence of quality factors of P-waves in a viscoelastic layer having different

water saturations are shown in (i) Figure 5.16 when pores contain gas and water, and (ii)

Figure 5.17 when pores contain oil and water. All the curves for different fluids and

saturations show similar trend attaining a minimum between 1 to 10 Hz. It is also observed

that there is no significant effect of increasing water saturation on quality factors. Thus, the

amount of different fluids in a viscoelastic layer with a given porosity does not seem have

to have any significant effect on the quality factors.
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Figure 5.16: Variation of quality factor with frequency in viscoelastic porous layer for
different water saturations. The porefluid is gas and water.
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Figure 5.17: Variation ofquality factor with frequency in viscoelastic porous layer for
different watersaturations. Theporefluid is oil and water.

5.3.3 Frequency Dependence of Attenuation Coefficient

5.3.3.1 Variation with Porosity

Figure 5.18 shows the frequency dependence of attenuation coefficient of P-wave in the

viscoelastic layer. The trend ofthe curves is similar to that shown in Figure 5.2 (b) and is

the same irrespective of the type of fluid present in the pore spaces. The attenuation

coefficient increases with increasing frequency but the trend becomes steeper when gas

and water is present, signifying higher increase with frequency than when oil and water or

only water are present. The attenuation coefficient in the presence ofgas and water in the

pores is significantly higher in the frequency range of interest. The curves for oil and water

and only water are nearly coincident over most ofthe frequency range.

Frequency dependence ofattenuation coefficient of P-waves in a viscoelastic layer

having different porosities are shown in (i) Figure 5.19 when pores contain gas and water,

(ii) Figure 5.20 when pores contain oil and water, and (iii) Figure 5.21 when pores contain

only water.

These curves are typical for a single mechanism relaxation model. The overall

trend ofthe variation ofattenuation coefficient with frequency is almost same for different

fluids and different porosity values. These curves bring out the effect of porosity and fluid
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content on the attenuation coefficient. The attenuation is significantly greater at high

frequencies when the viscoelastic layer is porous and fluid saturated. It is observed that the

attenuation coefficient in the presence of gas and water is more sensitive to change of

porosity than when oil and water or only water is present in the pores. This means that if

gas and water will present in the pore space the seismic wavelets will be more attenuated.

Water shows the least effect of porosity on the attenuation coefficient. The effect is

noticeable only athigher frequencies. The higher attenuation coefficients in the presence of

gas and water are due to the greater reduction of P-wave velocity than when oil and water

or only water is present. Since velocity enters into the definition of attenuation coefficients

(Eq. 3.2), these are bound to be higher than when velocityis small.

Attenuation
Coefficient/m ppo
o

ooo
oo

ooo
oo

So-»
-ô
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Figure 5.18: Variation of attenuation coefficient of fast P-waves with frequency in
viscoelastic porous layerfor differentfluids.
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5.3.3.2 Variation with Water Saturation

Frequency dependence of attenuation coefficient of P-waves in a viscoelastic layer having

different saturations are shown in (i) Figure 5.22 when pores contain gas and water and (ii)

Figure 5.23 when pores contain oil and water. All the curves for different fluids and

saturations show a trend similar to that of previous section. It is observed that there is no

significant effect of increasing water saturation on attenuation coefficients. Thus, the

attenuation coefficients are not sensitive to change in the amount of fluid present in the

pore space at constant porosity.
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Figure 5.22: Variation of attenuation coefficient with frequency in viscoelastic porous
layer for different water saturations. The porefluid is gas and water.
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Figure 5.23: Variation of attenuation coefficient with frequency in viscoelastic porous
layerfor different water saturations. The porefluid is oil and water.
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5.3.4 Variation of Wave Velocities with Porosity and Water Saturation

5.3.4.1 Variation with Porosity

Figure 5.24 (a) and (b) show respectively the porosity dependence of P- and S-wave

velocity in the viscoelastic layer containing either gas and water, oil and water or only

water in pore spaces. The dependence ofP-wave velocity - porosity variation on the type

of pore fluids is significant for porosities exceeding 10%, with lowest velocities in the

presence of gas and water. The S-wave velocity - porosity variation does not show much

significant dependence on type ofpore fluids. Whatever little dependence is seen in Figure

5.24(b) is the result ofthe influence ofporosity and pore fluids on bulk density.

Variation of P-wave and S-wave velocities with porosity for different water

saturations are shown in (i) Figure 5.25(a) and (b) when pore fluid is gas and wate and (ii)

Figure 5.26(a) and (b) when pore fluid is oil and water. The trend ofvelocity - porosity

variation is the same irrespective of the type of fluid present. These variations are sensitive

to increasing water saturation when gas and water is present in the pores.
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Figure 5.24: Variation of (a) P-wave velocity, and (b) S-wave velocity, with porosity in
theporous viscoelastic layerfor differentfluids.
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Figure 5.25: Variation of (a) P-wave velocity (b) S-wave velocity with porosity for
different saturations in porous viscoelastic layer. Theporefluid is gas and water.
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Figure 5.26: Variation of (a) P-wave velocity (b) S-wave velocity with porosity for
different saturations in porous viscoelastic layer. Thepore fluid is oil and water.

5.2.4.2 Variation with Water Saturation

Variations of P-wave and S-wave velocities with water saturation in a porous viscoelastic

layer are shown in (i) Figure 5.27 (a) and (b) when pores contain gas and water and (ii)

Figure 5.28 (a) and (b) when pores contain oil and water. The velocities decrease slightly

with increasing water saturation (i.e., decreasing gas saturation). The rate of decrease is

greater when porosity is 30%. The increase of bulk density with water saturation leads to

this decrease of velocities. The velocities do not vary much with water saturation when oil

93



and water is present in the pores. The P-wave velocity increases slightly with water

saturation when the porosity is 30%.
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Figure 5.27: Variation of (a) fast P-wave velocity (b) S-wave velocity with saturation for
different porosities in porous viscoelastic layer. Theporefluid is gas and water.
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Figure 5.28: Variation of (a) P-wave velocity (b) S-wave velocity with saturation for
differentporosities in porous viscoelastic layer. Theporefluid is oil and water.

5.3.5 Reflection Coefficients

Following figures show the variation of reflection coefficients with angle of incidence for

both interfaces calculated using equations 3.81 and 3.84. The curves depict the real part of

reflection coefficients and pertain to a frequency of 50 Hz. Figure 5.29 (a) shows the

reflection coefficient curves when P-waves are incident from above at the first interface

and the pores contain gas and water or oil and water or onlywater.

Figure 5.29(b) show these curves when P-waves are incident from above at the

second interface. The reflection coefficients, in thepresence of gas and water, are lowest at
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all angles of incidence, except for a small region near critical angle at the first interface.

Thisreflection coefficient at the second interface is largest (and positive) in case of gas and

water over a broad region, from nearly 30° to 70°. This feature is due to greater reduction

in P-wave velocities in the presence of gas and water. This character of the angle

dependent variation is dependent on porosity. At a higher porosity, there will be still

greater reduction in P-wave velocity and the reflection coefficients at the second interface

will become negative for all angles, the general trend remaining the same.

Figure 5.30 shows the reflection coefficients at the first interface for different

porosities plotted for angles of incidence smaller than 30°, typical for AVO analysis.

Porescontain gas and water. Increasing porositydecreases the seismic wave velocities, and

the impedance contrast, positive at lower porosities, becomes negative at higher porosities

and the character of the curve changes. It is noticeable that the curves for 25% and 30%

porosity resemble those for class II type gas sand and those for porosity exceeding 30%

porosity resemble the typical response for class III type gas sand.
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Figure 5.29: Comparison ofthe variation ofreflection coefficients with incident angle of
reflected P-waves at the (a) first interface and (b) second interface for different fluids.
Only the real part of the reflection coefficients at a frequency of 50 Hz have been
plotted.

The variation of reflection coefficients with angle of incidence, shown in Figure

5.30 is based on computations based on the model given in Table 4.5. In this model the

elastic layer overlying the viscoelastic porous layer is assumed to be a soft, having VPIVS

ratio of 2.38 which leads to a large contrast in the Poisson's ratio between the first layer

and the second layer at higher porosity (>30%) values in the presence of gas and water in

the pore spaces. However, if the overlying layer is hard, having VplVs of the order of 1.6,

the variation ofthe reflection coefficients with the angle of incidence atdifferent porosities

will be different. One such model is given in Table 5.2 where first layer has Vp/Vs value of

the order of 1.66. In this case, the variation of reflection coefficient at a porosity of 35%

resembles the response of class IV type gas sand (Roden, 2005), as shown in Figure 5.31,

which is similar to Figure 5.30. It is observed that at higher porosity, in contrast to Figure

5.31, the reflection coefficients decrease with the angle of incidence which is characteristic

of class IV type gas sand.
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Figure 5.30: Variation of P-wave reflection co-efficients with incident angle at the first
interfacefor different porosities. Porefluid is gas and water.

Table 5.2: Model Parameters for Solid Constituents

Layer No: P-wave velocity
(m/sec)

S-wave velocity
(m/sec)

Density
(kg/m3)

Thickness

(m)
1. 2957 1774 2330 2500
2. 5411* 3246* 2593* 100
3. 3048 1829 2340 -
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c
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Figure 5.31: Variation ofP-wave reflection co-efficients with incident angle at the first
interfacefor different porosities. Pore fluid is gas and water.

5.3.6 Synthetic Seismograms

Figure 5.32 shows the synthetic seismograms, computed at 20 offsets, varying from 100 m

to 2000 m. simulating a CMP gather. The second layer is porous and viscoelastic. The
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attenuation suffered by the seismic wavelet depends on the length of the path of seismic

waves in the dissipative layer. This path in the second layer is longer for far offsets. The

broadening of the wavelets with increasing offset can be easily noticed in Figure 5.33,

which shows all the 20 wavelets reflected from the second interface plotted on the same

time axis.
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Figure 5.32: Synthetic seismograms for 20 offset simulating an AVO situation when
second layer is viscoelastic and porous. The porefluid is gas and water.
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Figure 5.33: The wavelets reflectedfrom second interface plotted on the same time axis,
showing the attenuation and broadening of wavelets with offset. The porefluid is gas
and water.
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5.3.7 Amplitudes of Seismic Wavelets

Variation of the peak amplitude of seismic wavelets with offset, reflected from the second

interface, show the influence of the interstitial fluids on the amplitudes.

Figure 5.34 depicts the variation of peak amplitude with offset for different fluids.

The amplitudes are highest in the presence of gas and water. These curves indicate the

influence of pore fluids on the peak amplitudes of seismic wavelets is quite distinct and

significant. The observed differences are due to the fluid-dependent reduction in seismic

wave velocities that affect reflection coefficients.
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Figure 5.34: Comparison of the variation of peak amplitude of the wavelets with offset
for differentfluids. The porosity is 30%.

Figure 5.35 (a) and Figure 5.36 (a) show the variation of the peak amplitude at

different offsets for different water saturations for gas (and water) and oil (and water)

respectively. It is observed that amplitudes increase with increasing water saturation. This

effect is more pronounced in the presence of gas and water. This effect will be more

pronounced at higher porosity. Lowering of P-wave velocity with increasing oil and gas

saturation that leads smaller impedance contrast is the cause of this effect. Figure 5.35 (b),

Figure 5.36 (b) and Figure 5.37 show the variation of the peak amplitude of the wavelets

with offset for gas (and water), oil (and water) and only water respectively for different

porosity values. It is observed that the amplitude - offset curves are quite distinct for
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different porosities. The differences in amplitudes at differentporosities are observed to be

greater at near offsets. The smaller difference at far offsets is due to greater attenuation in

the viscoelastic layer. These curves display the influence that porosity and pore fluids have

on amplitudes of seismic wavelets.
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Figure 5.35: Variation ofpeak amplitude ofthe reflected wavelets with offset when pore
fluid present in the reservoir is gas and water; (a) for different saturations (b) for
different porosities.
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Figure 5.36: Variation ofpeak amplitude ofthe reflected wavelets with offset when pore
fluid is oil and water; (a)for different saturations (b)for differentporosities.
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porosities when reservoir is 100% saturated with water.
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In order to bring out more clearly the effect of porosity and pore fluids on seismic

wavelets, the NMO (normal move out) corrected synthetic seismograms have been shown

in Figure 5.38 for 20% and 30% porosity values in the presence of gas and water. Similar

NMO corrected synthetic seismograms have been shown in Figure 5.39 based on the

model parameters given in Table 5.2. Inthis case, the first layer resembles a hard rock. It is

observed that amplitudes ofseismic wavelets reflected from first interface, at 20% porosity

decrease with offsets for both models. However, for 30% porosity, the amplitudes of

seismic wavelets increase with offset when the overlying medium is soft but decrease

when the overlying medium is hard.
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Figure 5.38: NMO corrected synthetic seismograms showing variation of amplitude of
the reflected wavelets with offset when porosity is (a) 20% and (b) 30%. The porefluid is
gas and water.

103



1.50 -

1.60 —

Offset 1 Offset 20
Offset 1 Offset 20

1.70

A¥AAAAAA>>»

1.90

(a) (b)

Figure 5.39: NMO corrected synthetic seismograms, based on model parameters given
in Table 5.2, showing variation of amplitude of the reflected wavelets with offset when
porosity is (a) 20% and (b) 30%. Theporefluid is gas and water.

Similar NMO corrected synthetic seismograms have been shown in Figure 5.40

when pores contain oil and water and in Figure 5.41 when pores contain only water.
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Figure 5.40: NMO corrected synthetic seismograms showing variation of amplitude of
thereflected wavelets with offset when porosity is (a) 20% and (b) 30%. The porefluid is
oil and water.
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Figure 5.41: NMO corrected synthetic seismograms showing variation of amplitude of
the reflected wavelets with offset when porosity is (a) 20% and(b) 30%. The porefluid is
water.

It is observed that, the amplitudes of the wavelets from first interface decrease with

offset irrespective of porosity in the presence of oil and water. The wavelets from second

interface also decrease in amplitude with offset at 20% porosity. However wavelets from

the second interface first decrease in amplitude at near offsets, undergo change of polarity

and then increase in amplitude at far offsets. When only water is present in the pores, the

amplitudes of wavelets at both interfaces always decrease with offset irrespective of

porosity. The broadening of wavelets is observed with increase in offset in all cases due to

progressive loss of high frequency components. This change in amplitudes at different

offsets are mainly governed by impedance contrasts and hence reflection coefficients

(described below) which depend on model parameters.

Figure 5.42 and Figure 5.43 show the variation of reflection coefficients with offset

at first and second interface respectively at 30% porosity for different fluids. It is observed

that for gas and water, the reflection coefficients increase with offset at both the interfaces.

When oil and water is present in the pores, reflection coefficients at first interface decrease

with offset. However, at second interface, the reflection coefficients first decreases with
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the offset, change sign and then increase with offset (Figure 5.43). The reflection

coefficients decrease with increasing offset at both interfaces when only water is present in

the pore spaces.
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Figure 5.42: Comparison ofthe variation ofreflection coefficients with offsetat thefirst
interface in the porous viscoelastic layer with 30%porosityfor differentfluids.
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Figure 5.43: Comparison of the variation of reflection coefficients with offset at the
second interface in the porous viscoelastic layer with 30% porosityfor differentfluids.

5.3.8 Shapes of Seismic Wavelets

The shape of the reflected wavelets depends on the varying porosity and the saturation and

also on the type of fluid present in the reservoir rock.
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5.3.8.1 Variation with Porosity

Figure 5.44, shows the wavelets for different porosities in the presence ofgas and water at

an offset of 100m. There is a change of polarity of the wavelet at 30% porosity. The

decrease of amplitude with porosity is the combined effect of reflection coefficient and

attenuation. The change in shape ofthe pulses is not evident due to very small path length

in the viscoelastic layer. Figure 5.45 shows the wavelets when oil and water is present, and

Figure 5.46, when only water is present. In both these cases, there is no change ofpolarity

even at high porosity.

5.3.8.2 Variation with Water Saturation

From Figure 5.47 and 5.48 that show seismic wavelets for different water saturations at

100m offset, it can be observed that the shapes show small variation with water saturation

in the presence ofgas and water, but no significant variation when oil and water ispresent.

Overall, it can be stated that water saturation does not have any pronounced effect on the

shape of seismic wavelets.
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Figure 5.44: Comparison of seismic wavelets from second interface at 100m offset for
differentporosities. Theporefluid is gas and water.
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Figure 5.46: Comparison of seismic wavelets from second interface at 100m offsetfor
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5.3.8.3 Variation with DifferentAPI GravityOil

Figure 5.49 shows the seismic wavelets at 2000 m offset for oils having different API

gravity. The details of viscosity and density values assumed to define different API gravity

oils have been given in the Chapter 4 (Table 4.3). Overall, the pulses show less amplitude

for lighter oils. However, the sensitivity of shape of the wavelets to different API gravity

oils is not very pronounced. The asymmetric shape of the seismic wavelet in the presence

of oil in the pore spaces is easily recognized.
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Figure 5.49: Comparison ofseismic wavelets from second interface at2000 m offsetfor
oils ofdifferent APIgravity.
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5.3.8.4 Variation with Offsets

The change in the shape of the wavelets with offset due to the effect of viscoelasticity

along with the solid - fluid interaction have been shown in the following figures. Figure

5.50, Figure 5.51 and Figure 5.52 show seismic wavelets, reflected from the second

interface, at 100 m, 1500 m and 2000 m offset respectively when porosity is 20%, and

watersaturation is 50 % in the presence of oil (and water) or gas (and water) or only water

in the porous viscoelastic layer. From these figures, it is seen that wavelets in the case of

gas (and water) is present, wavelets have significantly smaller amplitude at all offsets. At

2000 m, there is a change of polarity too. The fluid dependent change of shape and delay

induced due to frequency dependent nature of wave velocities is also evident with increase

of offset.

Figure 5.53 and Figure 5.54 compare the shape of reflected wavelets from second

interface for different fluids at 1500m and 2000m offsets respectively when the porosity of

the second layer is 30% and water saturation is 50%. The amplitudes of wavelets are

highest when gas (and water) is present. The changes in the shape are marked by unequal

amplitudes of side lobes of the wavelets. The changes in shape of the pulses for different

fluids and the delays with increasing offsets are also seen. These figures depict the

combined effect of reflection coefficients at the second interface, attenuation, and complex

and frequency dependent nature of the seismic wave velocities on the shapes of seismic

wavelets. Thus, it can be stated that the change shapes of seismic wavelets with offset are

distinct for a given fluid type. These variations can be used to identify the type of fluids in

the porous viscoelastic layer.
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Figure 5.50: Comparison ofseismic wavelets from second interface at 100m offsetfor
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Figure 5.51: Comparison ofseismic wavelets from second interface at 1500m offsetfor
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Figure 5.53: Comparison ofseismic wavelets from second interface at 1500m offsetfor
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Figure 5.54: Comparison ofseismic wavelets from second interface at 2000m offsetfor
differentfluids when porosity is 30%.

5.3.9 AVO Attributes

Values of AVO attributes A and B have been computed when gas is present in the pores

and are shown in Table 5.3 and 5.4. These A and B values can be used to differentiate

different types of gas sands. A and B values have been given in Table 5.3 for different

porosities and in Table 5.4, for different water saturations. The errors have been calculated

from deviations of computed from actual values. It can be seen that values of A and B are

quite sensitive to changes in porosity and water saturations.
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Table 5.3: A andB Values for VariedPorosities

Porosity Actual

(A)
Inverted

(A)
Actual

(B)
Inverted

(B)
Error in %

(A)
Error in %

(B)
10% 0.279 0.277 -0.702 -0.623 0.7 11.2
20% 0.159 0.159 -0.487 -0.553 0.23 11.9
30% -0.0371 -0.0372 -0.321 -0.277 0.11 13.7

Table 5.4: A andB Values for Varied WaterSaturations

Sw Actual

(A)
Inverted

(A)
Actual

(B)
Inverted

(B)
Error in %

(A)
Error in %

(B)
25% L0.152 L0.153 -0.546 -0.488 0.48 10.7
50% 0.159 0.159 -0.487 -0.553 0.23 11.9
75% 0.165 0.165 -0.559 -0.487 0.009 12.9

5.4 PART III: COMPARISON WITH CONVENTIONAL APPROACH

In the present work, a three layered earth model has been considered where the second

layer is considered to be viscoelastic and porous having viscous fluid in the pore spaces.

The seismic wave velocities in the porous medium have been estimated using Biot's

theory. However, conventionally, it is assumed that the solid medium of the earth behaves

elastically and the seismic wave velocities are predicted by using the time average

relationship (TAR), an empirical relation. In the following paragraphs, results of a

comparative study have been presented wherein the results of the present work and those

obtained using the conventional approach have been compared.

The attenuation of the seismic wavelets and its shape has been compared with the

seismic wavelets obtained on assuming the second layer to be elastic and porous and the

seismic wave velocities estimated using the time average relationship. This comparison has

been carried out at selected offsets. This comparative study has been carried out when the

reservoir contains gas and water, and oil and water when porosity is 30% and water

saturation, 50%.
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5.4.1 Variation of Seismic Wave Velocities with Porosity

The Figure 5.55 (a) and (b) compares the variation of the P- wave velocities with porosity

obtained using Biot's theory (at 50 Hz frequency) with those obtained from conventional

time average relationship, when the reservoir is saturated with gas and water or with oil

and water respectively. These velocity - porosity curves show different trends. The

velocities estimated using time average relationship show much greater change with

porosity. The changes are greater when gas (and water) is present. Consequently, the

impedance contrasts will be greater and reflection coefficients will be higher with

conventional approach.

5.4.2 Reflection Coefficients

Figure 5.56 (a) and (b) compare the variation of reflection coefficients with offset for VP

and TAR at the first and second interface respectively when reservoir is saturated with gas

and water. Similarly, Figure 5.57 (a) and (b) compare the variation of reflection

coefficients with offset at first and second interface, respectively, when oil and water is

present in the pore spaces.
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Figure 5.55: Comparison of the variation of P-wave velocity for VP and TAR with
porosity when the second layer contains (a) gas and water (b) oil and water.

It is evident from these figures that even for same type of fluid, the values of

reflection coefficients are very much different. TAR values of reflection coefficients are

higher for gas and water at both interfaces because of the greater reduction in the seismic

wave velocities. However, in case of oil and water, VP reflection coefficients are higher.
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5.4.3 Synthetic Seismograms

Figure 5.58 (a) and (b) show NMO corrected synthetic seismograms when viscoelastic

layer is saturated with gas and water for TAR and VP cases respectively. It is observed that

the TAR seismograms show increase ofamplitude of wavelets with offset when porosity is

20%. On the other hand, at the same porosity value, the wavelets computed in present

work, show decrease of amplitude with offset. The increase of amplitudes with offsets for

VP case takes place at a porosity of 30% and above. Similarly, Figure 5.59 (a) and (b)

show NMO corrected synthetic seismograms when the viscoelastic layer is saturated with

oil and water for TARand VP case respectively. When oil and water is present in the pore

spaces, both TAR and VP synthetic seismograms show decrease of amplitude of wavelets

with offset. The wavelets for TAR case show polarity reversal.
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Figure 5.58: NMO corrected synthetic seismograms for 20 offsets simulating an A VO
situation in case of(a) TAR and (b) VP. Porefiuid is gas and water.
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Figure 5.59: NMO corrected synthetic seismograms for 20 offsets simulating an AVO
situation in case of(a) TAR and (b) VP. Porefiuid is oil and water.

5.4.4 Shapes of the Seismic Wavelets

A comparative study has been carried out of on the shapes of the reflected wavelets from

second interface at the 2000 m offset for VP and TAR case. Figure 5.60 shows the

wavelets when porous medium is saturated with gas and water when porosity is 30%. It is

observed that the TAR wavelets show higher amplitude than those of VP. However, VP

wavelets are delayed in time due to the effect of viscoelasticity. The VP wavelets also

show asymmetry of shape. In Figure 5.61 the shape of the wavelets for the two cases are

compared when oil and water is present in the pores when porosity is 30%. The TAR

wavelets show higher amplitude. The differences in amplitudes of the VP and TAR

waveletsare also the result of attenuation in the viscoelastic layer.
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Figure 5.60: Comparison ofseismic wavelets from second interface at2000 moffsetfor
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Figure 5.61: Comparison of seismic wavelets from second interface at 2000 m offsetfor
VPand TAR. Porefiuid is oil and water and porosity is 30%.

5.5 PART IV: QUANTIFICATION

A computation has been carried out to obtain normal incident reflected wavelets so that the

effect of angle of incidence on the reflection coefficients for non-normal reflections can be

avoided and the total effect of viscoelasticity andfluid interaction canbequantified.

5.5.1 Effect of Viscoelasticity

The effect of viscoelasticity on the reflected seismic wavelets has been quantified by

comparing the wavelets obtained when P-waves are normally incident on both interfaces

and second layer is (i) elastic and non-porous and (ii) viscoelastic and non-porous. The
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thickness of the second layer has been taken to be 100 m for this study. The Figure 5.62

compares the amplitude of these reflected wavelets. It is observed that the amplitude of

VNP wavelet is 0.2 dB lower than the EL wavelet. This attenuation will increase with the

thickness of the second layer in VNP case. This has been clearly brought out in Figure 5.63

where the amplitude diminution factor, i.e., exp(-ax), where a is attenuation coefficient and

x is the distance, has been plotted against the distance in the viscoelastic covered by waves.

The amplitude diminution factor decreases with the increasing distance.
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Figure 5.62: Comparison ofrefiectedseismic wavelets for normal incidence, for EL and
VNP, reflected from second interface depicting. The thickness of the second layer is
100m
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Figure 5.63: Variation of amplitude diminution factor, (exp(-ax),) with the distance
traveled by the waves in viscoelastic non-porous layer. The term 'attn' stands for
attenuation coefficient.
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5.5.2 Effects of Solid-Fluid Interaction and Viscoelasticity on Wavelets

A computation has been carried out wherein the seismic wavelets computed for normally

incident P-waves for VNP and VP cases have been compared to quantify the effect of

solid-fluid interaction and viscoelasticity. Figure 5.64 ((a) to (c)) compares wavelets when

the 100 m thick viscoelastic layer contains gas (and water), oil (and water) and only water

in the pore spaces when porosity is 20% and water saturation is 50% for oil and gas

horizons. As expected, the wavelets show least amplitude in case of gas and water filled

pores with a 3.82 dB loss of amplitude with respect to the VNP wavelet. The amplitude

loss in case of oil and water and only water is 2.73 dB and 2.46 dB respectively. It is

observed from Figure 5.50 to Figure 5.54 that the amplitude of the reflected wavelets

varies with porosity. As a result the amplitude loss in dB for different porosities with

respect to amplitude of the reflected wavelets obtained from VNP case has been given in

Table 5.5.
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Figure 5.64: Comparison of reflected wavelet for normal incidence, for VNP and VP;
(a) gas and water, (b) oil and water (c) only water.

Table 5.5: Loss ofAmplitude of Waveletsfor Different Porosities

Porosity VNP VP(Gas) dB VP (Oil) dB VP (Water) dB

10% 0.551456 0.431 1.07 0.452 0.87 0.458 0.83

20% 0.229 3.82 0.294 2.73 0.313 2.46

30% -0.143 5.88 0.028 12.9 0.074 8.70

5.5.3 Effect of Fluids on Amplitude Diminution Factor

As explained earlier, the attenuation of the amplitude increases with distance traveled by

the wave in the viscoelastic porous layer. The type of pore fluid effects the total attenuation

of the amplitude in a porous medium. Figure 5.65 shows the variation of the amplitude
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diminution factor with the distance in the viscoelastic porous layer in the presence of gas

and water or oil and water or only water. Overall, the magnitude of this factor decreases

with the distance for each type of fluid. However, the amplitude diminution factor shows

smallest value when gas and water is present in the pore spaces.

Distance (m)

VP(Gas)

VP(Oil)

VP(Water)

Figure 5.65: Variation of amplitude diminution factor, (exp(-ax)), with the distance
traveledby the waves in viscoelastic porous layerfor differentfluids.

5.5.4 Seismograms for Wedge Shaped Second Layer

The Figure 5.66 shows normally incident synthetic seismograms at the surface of three

layered earth for a wedge shaped second layer. The wedge is viscoelastic porous having 20

% porosity and saturated with gas and water. The amplitudes of the reflected wavelets for

VP and TAR cases for the wedge shaped second layer have been listed in Table 5.6.
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Figure 5.66: Normal incident synthetic seismograms at the surface of three-layered
earth model where the porous viscoelastic layer is wedge shaped. Porefiuid is gas and
water.

Table 5.6: Thickness, amplitude of reflected pulses calculated using TAR and VP

TAR VP

Thickness

(m)
Amplitude Amplitude

200 -0.595 0.223

180 -0.595 0.224

160 -0.595 0.225

140 -0.595 0.227

120 -0.595 0.228

100 -0.595 0.230

70 -0.595 0.231

50 -0.595 0.234

40 -0.595 0.234

30 -0.595 0.235

20 -0.595 0.236

10 -0.595 0.237
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CHAPTER - 6

SUMMARY AND CONCLUSIONS

6.1 INTRODUCTION

In seismic prospecting, seismic waves propagate through the real earth during data

acquisition. The recorded data has to undergo a number of processing processes before it is

ready for interpretation. For interpretation purpose, simplified earth models are used. For

example, earth is assumed to be composed of elastic, homogeneous and isotropic layers.

However, none of the above conditions is met in the real earth, which is much more

complex in its structure and physical properties. Real earth materials are commonly

anelastic as illustrated by material dependent attenuation of seismic waves that leads to

progressive loss of high frequency components from the wavefield. A part of energy of the

seismic waves is converted into heat and the shape of seismic wavelets changes. It has

been suggested that pore fluids like gas, oil and water present in the pore spaces of

reservoir rocks also influence the attenuation and dispersion of seismic waves and a study

of the changes of shape of seismic wavelets can lead to identification and characterization

of pore fluids. One of the objectives of the work presented in this thesis is to study and

quantify the effect of anelasticity of solid matrix and type and amount of pore fluids on the

shape of reflected seismic wavelets. Some of the properties of fluid saturated anelastic

porous media that are important in this work are following: viscoelastic properties of solid

materials, porosity, water saturation, viscosity of pore fluids, and velocities and bulk

densities of porous media.

6.2 SUMMARY

In order to achieve above objectives, synthetic seismograms have been generated at the

surface of a three layered earth model at 20 offsets varying from 100 to 2000 m. The
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porous and viscoelastic second layer of the earth model is assumed to be 100 m thick

whereas first and third layers are elastic. A 50 Hz Ricker pulse has been used as the source

wavelet. The upper interface of the viscoelastic layer lies at a depth of 2500 m. Standard

Linear Solid (SLS) model of viscoelasticity has been used to represent the viscoelastic

behavior of the second layer. Biot's theory has been used to compute the complex and

frequency dependent seismic wave velocities in the porous viscoelastic layer. A boundary

value problem has been solved for plane waves incident on the interface separating elastic

and visoelastic media and equations similar to Zoeppritz equations have been derived to

compute reflection coefficients of reflected P-waves from the top and bottom of the

viscoelastic layer. The shapes of reflected seismic wavelets have been studied and

analyzed. The porous viscoelastic medium is assumed to be saturated with gas and water,

oil and water or only water. The results of present work have been compared with those

that are obtained using conventional approach. An attempt has also been made to quantify

the effect of viscoelasticity and pore fluids on the shapes of seismic wavelets.

6.2 CONCLUSIONS

The results of the present work lead to following conclusions:

S Viscoelasticity of the solid matrix of the propagating medium and interstitial fluids

do produce measurable changes in the shapes of reflected seismic wavelets in the

seismic frequency range (1-100 Hz).

S The variation of reflection coefficients with frequency is more significant at low

frequencies than high frequencies. At the lowest velocity values at low frequencies

(1 Hz.), the reflection coefficient is nearly 3% less than that at 50 Hz. At high

frequencies the reflection coefficients virtually coincide with those obtained from

the elastic layer.
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S In a porous viscoelastic layer, the frequency dependence of seismic wave velocities

is different for different fluids. In the presence of gas in pores, P-wave velocity is

lowest but S-wave velocity is highest.

S Seismic wave velocities are more influenced by variations of porosity than

variations in water saturation. The latter effect is more noticeable when the porosity

is high and the pore fluid is gas.

•S Frequency dependence of P-wave quality factor does not show any dependence on

porosity in the presence of gas; however, when oil or water is present, dependence

on porosity is noticeable.

•S Frequency variation of attenuation coefficient shows more dependence on porosity

in the presence of gas in pores. This dependence on porosity is noticeable only at

higher frequencies.

S At 50 Hz, the influence of pore fluids on velocities - porosity variation of P-wave

is more noticeable than on velocities - porosity variation of S-wave. The effect of

water saturation on velocity - porosity variation is only slightly noticeable in the

presence of gas.

S The variation of P-wave velocity with porosity in the viscoelastic layer obtained in

the present work shows a trend that is quite differentwhen this velocity is estimated

using time average relationship. Time average relationship yields lower P-wave

velocities than those obtained in the present work at all porosities.

•S The variation of P-wave reflection coefficient with angle of incidence changes

markedly with porosity in the presence of gas. This variation is dependent on the

nature of overlying elastic layer, whether soft or hard.

•/ Variation of peak amplitude of seismic wavelets with offset is dominated by the

type of pore fluid. For a given fluid, this variation dominated more by porosity than

water saturation especially at near offsets.
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S When a high porosity (porosity > 30%) viscoelastic layer is overlain by a soft layer,

the wavelets reflected from the first interface show increase of amplitude with

offset when gas is present in the pores whereas decrease of amplitude with offset

when oil and water or only water present in the pores.

S When gas and water is present in the pores, the wavelets reflected from the second

interface show increase of amplitude with offset. When oil and water is present in

the pores, the wavelets reflected from the second interface show first decrease of

amplitude with offset, change polarity and then increase of amplitude with offset.

When only water is present, the amplitudes of wavelets from second interface

decrease with offset.

/ When the porous viscoelastic layer overlain by a hard layer, even at higher

porosities (>30%), the wavelets reflected from the both interface show decrease of

amplitude with offset when gas is present in the pores.

/ The shapes of seismic wavelets from second interface of the viscoelastic layer show

a marked variation with porosity, becoming broader at high porosity and also

undergoing change of polarity when porosity is high. Variation with water

saturation is not noticeable.

S The shapes of wavelets change with offset. Greater changes are observed with gas

and water in the pores. Distinction between different fluids on the basis of wavelet

shapes becomes more noticeable at largeroffsets.

S When pore fluid is gas the amplitude of wavelet is small at low porosities but quite

large at high porosities when compared with other fluid types.

S AVO analysis carried on synthetic data indicates that attributes A and B are also

sensitive to porosity and water saturation.
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S Due to viscoelasticity the seismic wavelets get attenuated and delayed; The Ricker

wavelet that is symmetrical becomes asymmetric on propagating through the

viscoelastic layer.

S The additional loss of amplitude takes place due to solid-fluid interaction when

viscous fluid is present in the viscoelastic porous layer.

S The attenuating effects of viscoelasticity and pore fluids are dependent on the

length of the path that waves take in the viscoelastic porous layer. This path will be

longer for far offsets. Thus, amplitude decay as well as delay in phase will be more

towards far offsets.

Thus, the effect of viscoelasticity and solid - fluid interaction not only to attenuate

the reflected wavelets but also to causes some delay in their arrival and modify their shape.

At the time of data processing, if this effect is taken into account, locating the interfaces

can be more accurate. Thus, the processing of seismic reflection should include the effect

of viscoelasticity and solid - fluid interaction.
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APPENDIX A

WAVE PROPAGATION IN ELASTIC MEDIA

-K In the following, a model of the earth is considered that consists of two elastic half spaces.

The interface coincides with z = 0. Plane P-waves, traveling in the first half space are

incident on the interface at an angle // Both the half spaces are assumed to be composed of

materials that are homogeneous and isotropic and are characterized by P-wave velocity a,,

S-wave velocity/?, and densityp„ /'= 1, 2.

The equation of motion for elastic media, written in terms of displacement

L
vector, u, are as follows:

c ^ \
a u

ydt J
=(A +,u)V(Vw) +/A72m (A-l)

where Xand p are Lame' parameters and p is the density.

Following Aki and Richards (2002) the solution of equation (A-l) is written in term

of displacements. The displacements are assumed to vary harmonically with time, i.e..

have time dependence of the form exp(-icot). In the first layer the displacement

components, u\ in the x-direction and u\ in the z-direction, are represented by

u\ =Pf(a, p)exp\ia)(px +£, z-/)}+P" (a, p)exp{ia(px - £, z- /)} +S" (/?,77,) exp{ia(px - 77, z-/)}

(A-2)

"z =P'teA)exp{iw(px +&z-/)}- P"a^t exp{ico(px -£,z -**)}+ S"(/?,p)exp{ico(px -7jtz-1)}

(A-3)

where

p : ray parameter (= sin /// a/)
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co : angular frequency

j\ : angle made by reflected S-ray with normal

qx : cos ul ai = (0.1 - p )

7|: cosjIlp, =(P,-2 -p2)m

Pf: displacement amplitude of downgoing incident P-wave

Pf: displacement amplitude of upgoing reflected P-wave

S": displacement amplitude of upgoing reflected S-wave

The stress components, p[x, p\,, are given by

oz ox

=(io))lPf(2p[P,2)pal4ltKp{ia(px +^z-t)-Pf(2plpt2)pal4lexp{ia)(px-4lz-t)}
-S:(pj3l)(\-2P]2p2)exp{ico(px-ri[z-t)}]

(A-4)

P'=Pl{af-2p^+p]af^-
ox oz

=(;»)[^(p,a,Xl-2/3,>2)exp{iw(px +^lz-0+^"(A«iX1-2/?i2/'2)exp{/(u(px-^lz-0}

- S"(2pJJ2)pPtrjt exp{iw(px-n,z -1)}]

(A-5)

In the second layer the displacement vectors are represented by

u] =Pf(a2p)txp{ico(px +^z-l)}+S"2(P2il2)exp{ico(px +r]2z-t)} (A-6)

< =P2d(a2^2)exp{ico(px +^z-t)}-Sd2(p2p)sxp{ico(px +rl2z-t)} (A-7)

where

i2 : angle made by downgoing transmitted P-ray with normal

j2 : angle made by downgoing transmitted S-ray with normal

. ( _2 2V/2
£2 : cos i2la2 = \a2 - p )

r]2: cosj2/p2=(fi22-p2f2
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Pf: displacement amplitude of transmitted P-wave

S2: displacement amplitude of reflected S-wave

The stress components are given by

Pi =(icoi{2p2P22)pa^2Pf -(p2P2i\-2P22p2)sJ2\exp{ico(px -,)} (A-8)

Pl=(i(0%p2a2l\-2p22p2)pf -{2p2p2)PP2rj2SJ2\exp{ico(Px-t)} (A"9)

Boundary conditions at the interface, require continuity of displacement and stress

components, i.e.,

2) u\ = u]

*)K=K

*)K=K

.(A-10)

.(A-ll)

..(A-12)

.(A-13)

Applying the above boundary conditions yields the following four equations

(a[P)Pf +(a,p)Pf +(P^)S: ={a2p)pf +(P2n2)S"2 (A-14)

(a^)Pf -(a^)Pf +(p]P)s: =(a2Z2)Pf -(p>)^ (A"15)

{2ptp2)P(a^)Pf -(2PiA2Xp«1)^" -(AA)(l-2/?,V)s," =2p2p22p(a2t2)Pf +(p2P2){\-2p22p2)sJ2

(A-16)

(ptati\-2p2p2)pf +(Aa,)(l-2/3lV)/T -(2p,/3,2 W,2^," =P2a2{\ - ip2 p2)pf - 2p2p22 p^rj^

(A-17)

The above equationscan be rearranged in the following form

Pf >,']

p2d
- N

0

0

Ls- 0

in which the M and N are defined as

.(A-18)
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M =

and

/V =

-axp -cosy, a2p COSJi

cos/, -ptp cos/2 -p2p
2plP?pco$i] p,/3,(l-2/?,2p2) 2p2p2Pcosi2 p2/32(l-2/J22p2)

-plai{\-2p2pi) 2p,/32pcosy, p2a2(l-2/322p2) -2p2p2pcosj2

«1P

(2pl/3l2)p(a1^1)

pla,(l-2/32p2)

Substituting Pf = I, the relation can be rewritten as

M

RPP V

RPS
T1 pp

= N
0

0

T_l PS _ 0

.(A-19)

.(A-20)

.(A-21)

where Rm„ andTmn, (m = p, s and n =p , s) represent the reflection and transmission

coefficients with first subscript indicating incident wave (P or S) and the second subscript

indicating reflected or transmitted wave. The solution of (A-21) can be written as

RPP

RPS

T1 pp

T,
PS

M~]N .(A-22)

where yields the reflection and transmission coefficients. The above expressions apply

when P-wave is incident from above. When P-wave is incident from below, the column

vector N assumes the following form:

N =

a2p

<*£l

(2p2p2)p(aA)

p2a2{\--2P\ P2)\

.(A-23)
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APPENDIX B

PROPERTIES OF FLUID SATURATED MEDIA

Consider a pile of quartz sand. The sand particles have definite values of P and S-wave

velocities through them; however, the sand pile has no strength since the particles are not

cemented together. Once the particles are cemented, a porous rock is formed that has a

definite strength and through which seismic waves can propagate. Initially, assume that

this rock is devoid of any interstitial fluids; in other words, it is a dry rock. The bulk

density, pd, of such a rock is determined by the following relation:

pd=(\-<p)p„ (B-l)

where <p is porosity and pm is density of particles, also called matrix density. In case the

rock is completely saturated with a fluid of density pf, its bulk density, pb, is determined by

the following relation:

Ph =(\-(P)Pm+(PPf (B"2)

For a porous rock totally saturated with fluid of density py, Gassmann (1951)

proposed the following relations to calculate bulk modulus (Kb) and shear modulus (wa):

Kb=Kd+Kf (B-3)

Mi,=Md+M/=Md (B-4)

where Kd and pd are elastic moduli of dry rock (also called frame moduli), and Kfand pf

denote elastic moduli of fluid filled pore space. Kf ls the difference between the frame and

saturated bulk moduli that results from the presence of fluid with a non-zero bulk modulus

(Nolen-Hoeksema, 2000). The shearmodulus is not affected by fluid saturation and sopf=

0.
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Let Km and pm denote the bulk and shear moduli, respectively, of the solid

constituents of a porous elastic medium (also called solid-grain moduli). Then Kd and pd

are related to Km and pm through the following relations:

kj - Kn
<Pc

.(B-5)

t \

Mi=M„ .(B-6)

where <pc is critical porosity. Nur et al. (1991) introduced the concept of crotical porosity.

There is a porosity cpc above which Kd and pd are 0. Below the critical porosity, both the

solid grains and pore fluids support the external load and frame modulii are greater than

zero. Above the critical porosity, the entire load is supported by the fluid and the frame

modulii become zero.

Nolen-Hoeksema, (2000) introduced aK and a,,, to relate frame moduli with solid

grain moduli and gave the following definitions:

a.

The following relation gives Kf

K, =

K.

al
'( \

(p , (ak-<P)
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•(B-9)
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where Kf] is bulk modulus of the fluid filing the pores.

When the pores are filled with both water and hydrocarbons, the term cp/A/in the definition

of Kfgiven above has been modified to include bulk moduli of water and hydrocarbon and

water saturation Sw. The modified definition of Kfis now given as

al
\<P(\-Sj\ \(ak-cp)\
1 *, J I *. J.[I *. J

.(B-10)

where AT,,, is the bulk modulus of water and Kji, that of the hydrocarbons.

Once K and ps are known, P and S wave velocities can be calculated in a saturated rock.

Following relations are applicable where a and p stands for P and S wave velocities

respectively:

For dry rocks:

For saturated rocks: ak

For solid grains: an - J*- +(4/3)^ , ft, == '"•
Pn, \Pn

Kd+(4/3)pd

Pj

\Kh+(4/3)Mh . ///„

A,
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APPENDIX C

WAVE PROPAGATION IN POROUS ELASTIC MEDIA

Most of the real earth media through which the seismic waves propagate are porous,

especially in the upper few kilometers of earth's crust. The reservoir rocks are essentially

porous to store sufficient quantities of oil and gas. In a porous elastic medium, the solid

constituents of such media are assumed to behave elastically.

The equations of motions in a porous elastic solid, as given by Biot (1956), are as

follows:

fQ2\

v3/2y
(pnu +Pl20)= V[(A +p)V •u+QV •u] .(C-l)

(d*\

ydf j
ip[2u+p12u)=y[QVu +RV-u] .(C-2)

where wand Uare displacement vectors in the solid and the fluid, respectively. The

coefficient R is a measure of the pressure required on the fluid to force a certain volume of

the fiuid into the aggregate while the total volume remains constant. The coefficient Q is of

the nature of a coupling between the volume change of the solid and that of the fluid. Both

R and Q are positive. The quantities p\\, p22, and p\2 are mass coefficients which take into

account the fact that the relative fluid flow through the pores is not uniform. The sum pw

+2pi2 +P22 equals the bulk density of the fluid-solid aggregate.

On applying divergence and curl to both sides of equations (C-l & C-2) and

simplifying, the equations governing the propagation of P and S waves in a porous elastic

medium are obtained. The following equations govern the propagation of P-waves:

( d2 \(P8+Q£)= (pue +pne)
yot j

(Q0 +Re) =\^Ap»e +p12e)
\ot )
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where P= X+ 2p, 6= div u and 8=div U. The equation governing the propagation ofS

waves is as follows:

Mt = Pu 1
Pn

(PuPn)

d2t
dt2

.(C-5)

where £=curl u. In equation (C-5), the rotation of the fiuid medium, curl 0, has been

eliminated.

Biot (1956) has shown that there are two dilatational waves. For the first of these

waves, the velocity is given by

Vf=^- .(C-6)

where H= P + R + 2Q. For the second kind of dilatational wave, the slow P-wave, the

velocity is given by

2 H
y; =

The values of z, and z2 are roots of the following equation

(a,,a22 - a]2)z2 - (a,,cr22 +a22y,,-2anyn)z +(y, (y22 - y22) =0

where

H

ru=— > r2i =

R_
H

Pn

P P

The velocity of transverse waves is given by

cr„ =
11

Y\
Pn

P

/'

Pi 1-
Pn

P\\P22;
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APPENDIX D

MISCELLANEOUS

PART I: Stress-Strain Relation under Cyclic Load

In elastic materials, stress is proportional to strain. So, if such a material is subjected to

cyclic stress, the resulting strain remains in phase with the stress as shown in Figure D-1.

All the energy is recovered on unloading.

Elastic

Figure D-1: Stress-strain relation for elastic material when subjected to cyclic load. The
stress and strain remain in phase.

In a Newtonian fluid that represents a viscous material, stress is proportional to

rate of strain. Under cyclic stress, strain and stress are 90° out of phase, as shown in Figure

D-2. In this kind ofmaterial, no energy is recovered on unloading.

Viscous

Figure D-2: Stress-strain relation for viscous material when subjected to cyclic load. The
stress andstrain remain 90°out ofphase.
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In a viscoelastic material that combines the features of elastic and viscous

substances, the strain lags behind the stress as shown in Figure D-3. In this case some

energy may be recovered on unloading.

Figure D-3: Stress-strain relation for viscoelastic materialwhen subjected to cyclic load.

PART II: Relaxation Mechanism

Processes like thermo-elasticity, diffusion, motion of moving charged dislocations and

point defects, and fluid flow in pores, phase changes will act to relieve an applied stress.

During first stress cycle energy is absorbed, and during the next half cycle energy is given

up. Usually a finite amount of time is required foe this energy exchange to take place; this

is called the relaxation time and tends to make strain out of phase with the applied stress.

Zener (1948) assumed that for all relaxation mechanisms, the rate of stress relief for

constant strain is proportional to stress and showed that each of the above mechanisms

contributes an internal friction of the form

Q-\ =Mu~MR*
M.. 1 +

.(D-1)

Eq. (D-1) can be rewritten as
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")

g-1
M-Mk

M u J

.(D-2)
1 +

where Mu is unrelaxed elastic modulus, Mr is relaxed modulus, and fp is the constant of

proportionality between the stress and the rate of strain relaxation. A plot of left hand side

of Eq. (D-2) against f/fp is shown in Figure D-4. It can be seen that d that maximum

internal friction occurs atf=fp.

0 7

~ 0.25 -

H 0.2

i 0.15 -

| 0.1 -
*" 0.05

n -
1 1 1

0.01 0.1 1

f/fp

10 100

Figure D-4: The frequency dependence ofQ'in a viscoelastic material.

PART III: Nonlinear Viscoelasticity

In viscoelastic materials, if stress is held constant strains increases with time. This

phenomenon is called creep. If the strain is held constant, the stress decreases with time.

This phenomenon is called relaxation. The effective stiffness depends on the rate of

application of the load. If cyclic loading is applied, hysteresis occurs wherein there is a

phase lag between stress and strain, leading to a dissipation of mechanical energy.

All materials exhibit some viscoelastic response. In common metals such as steel or

aluminum, as well as in quartz, at room temperature and at small strain, the behavior does

not deviate much from linear elasticity. Synthetic polymers, wood, and human tissue as

well as metals at high temperature display significant viscoelastic effects.
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Creep is a slow, progressive deformation ofa material under constant stress. In one

dimension, suppose the history of stress a as it depends on time t to be a step function

beginning at time zero:

a(t) =a0H(t) (D-3)

H(t) is the unit Heaviside step function defined as follows:

r

H(t) =<

0, t<0,

0.5, t = 0 •(D-4)

.1, t>0

The strain e(t) in a viscoelastic material will increase with time. The ratio

J(t) = (s(t)/a0 (D-5)

is called the creep compliance. In linearly viscoelastic materials, the creep compliance is

independent ofstress level. If the load is released at a later time, the strain will exhibit

recovery, or progressive decrease of deformation. Strain in recovery may or may not

approach zero, depending on the material.

On the other hand, if the history of strain e is a step function as defined above, the

stress a(f) in a viscoelastic material will decrease with time. The ratio

E(t) = a(t)ls0 (D-6)

is called the relaxation modulus. In linearly viscoelastic materials, the relaxation modulus

is independent of stress level.

If the compliance curves, i.e., plots of compliance J(t) as a function of /, for

difference stresses a0, (or the relaxation modulus curves corresponding to different strains)

overlap, the material is linearly viscoelastic. Creep compliance is independent of stress and

relaxation modulus is independent of strain.

In a plot of log compliance vs. log time, if the curves are separate but have the

same shape, then the behavior is consistent with quasilinear viscoelasticity (QLV). QLV
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assumes the creep compliance can be written as a product of a function of time and a

function of stress. If the compliance is in fact a product, then all the creep curves have the

same shape.

If a stress-strain curve is generated at a constant strain rate, and the stress-strain

curve has a concave up nonlinearity, then the material is nonlinear. If the creep or

relaxation test reveals time dependence, then the material is viscoelastic.

If the curves for creep (or relaxation) at different stresses (or strains) have different
-

shape, then neither linear viscoelasticity nor QLV describe the behavior, because creep

compliance function depends on both time and stress (or the relaxation modulus function

depends on both time and strain). The material may obey a more general nonlinear

superposition law such as nonlinear superposition in which the creep compliance function

is written explicitly as a general function of time and stress (or the relaxation modulus

[ function is written explicitly as a general function of time and strain).

In a recovery experiment, the strain is set to zero after a period of relaxation or the

stress is set to zero after a period of creep. In both a linearly viscoelastic solid and one

which follows QLV, recovery must initially follow the same dependence as the creep or

relaxation which preceded it. For nonlinear superposition or for a material describable by a

Schapery model (Schapery, 1969) recovery can have a different time dependence.

PART IV: Electric Circuit Equivalentof a Kelvin - Voigt Solid

A Kelvin - Voigt solid can be represented by an electrical circuit consisting of a

resistance and capacitance in parallel. The equation governing the growth of current in

such a circuit is given by

RC^- +j(t) =J(t) (D-7)
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wherej0(t) =J(t)is the driving current with the initial condition J(t =0) =0

The solution ofj(t) can be written as

-'/RC)j(t)e"/RC (D-8)
Jit)=Ke

Figure D-5 shows the growth of current in an RC circuit simulating the growth of strain in

a Kelvin - Voigt solid.

Figure D-5: Growth of current in aRC circuit. This growth resembles the build-up of
strain in a Kelvin-Viogt Solid.

PARTY: Q"1 Variation with Frequency in Maxwell and Kelvin-Voigt Solids

The frequency dependence of Q"1 in Maxwell model and Kelvin-Voigt model, shown in

Figure A-5 and Figure A-6. is derived using the following equation

Maxwell Model
1 k

Q~ f
Kelvin-Voigt model

i _/
Q k

where

*=E

..(D-9)

.(D-10)

.(D-ll)
Inn

Eis modulus ofelasticity representing spring and nis viscosity representing the dashpot.

152

\

*

r



V

>

Figures D-6 and D-7 show the behavior of l/Q for Maxwell and Kevin - Voigt solids

respectively.

Maxwell Solid

O.OOE+00

100

Frequency(Hz)

Figure D-6: Thefrequency dependence ofQ'1 in Maxwell Model.

Kelvin -VoigtSolid

1.00E+03

0.01 0.1 1 10

Frequency (Hz)

100

Figure D-7: Thefrequency dependence ofQ'in Kelvin-Voigt Model.
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