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ABSTRACT 

Chapter 1 contains a brief introduction to the subject to put the problems and 

investigations in proper perspective. It also provides a brief introduction to the study, 

motivation for the research, objectives of the research and an outline of organization of 

this research work with a Chapter wise summary. 

Chapter 2 reviews the literature relevant to this research. Literature review is focused on 

the contemporary work being done towards convergence of the disciplines of physics and 

finance. Relevant literature on quantum mechanics has also been reviewed, in particular, 

those areas that are relevant to the research being envisaged. Literature on the financial 

applications of various types of stochastic processes including Gaussian processes and 

levy processes has also be studied to identify gaps in existing knowledge in the field. 

The Black Scholes model of option pricing constitutes the cornerstone of contemporary 

valuation theory. However, the model presupposes the existence of several unrealistic 

assumptions including the lognormal distribution of stock market price processes. There, 

now, subsists abundant empirical evidence that this is not the case. Consequently, several 

generalizations of the basic model have been attempted with relaxation of some of the 

underlying assumptions. In Chapter 3 we postulate a generalization that contemplates a 

statistical feedback process for the stochastic term in the Black Scholes partial differential 

equation. Several interesting implications of this modification emanate from the analysis 

and are explored. 



The Black Scholes model also assumes constancy of the return on the "hedge portfolio". 

In Chapter 4, we attempt one such generalisation based on the assumption that the return 

process on the "hedge portfolio" follows a stochastic process similar to the Vasicek 

model of short-term interest rates. 

The return process of stock markets has also been modeled as a Levy process in several 

studies relating to valuation of contingent claims. In Chapter 5, we attempt a 

generalization of such results through a deformation of the underlying Levy process. 

The cardinal contribution of physicists to the world of finance came from Fischer Black 

& Myron Scholes through the option pricing formula which bears their epitaph and which 

won them the Nobel Prize for economics in 1997 together with Robert Merton.- They 

obtained closed form expressions for the pricing of financial derivatives by converting 

the problem firstly, to a partial differential equation and then to a heat equation and 

solving it for specific boundary conditions. In Chapter 6, we apply the well-entrenched 

group theoretic methods to obtain various solutions of the Black Scholes equation for the 

pricing of contingent claims. We also examine the infinitesimal symmetries of the said 

equation and explore group transformation properties. The structure of the Lie algebra of 

the Black Scholes equation is also studied. 

In Chapter 7, we apply the well entrenched methods of quantum mechanics and quantum 

field theory to the modeling of the financial markets and the behaviour of stock prices. 

After defining the various constituents of the model including creation & annihilation 



operators and buying & selling operators for securities, we examine the time evolution of 

the financial markets and obtain the Hamiltonian for the trading activities of the market. 

We finally obtain the probability distribution of stock prices in terms of the propagators 

of the evolution equations. 

Chapter 8 is devoted- to an empirical study of the Indian capital markets with data over 

the last ten years and it is shown that stock return processes deviate significant from 

normality. Performance of R/S analysis on the data also showed that memory effects are 

prevalent in the price time series with a possibility of nonlinearities and chaos. 

Chapter 9 contains major findings and significant contributions of the research duly 

summarized followed by the set of recommendations. The thesis finally ends with the 

limitations of the study and suggestions for further research. 
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CHAPTER 1 

INTRODUCTION 

1. 1 INTRODUCTION 

The specialty of "physics" is the study of interactions between the various manifestations 

of matter and its constituents. The development of this subject over the last several 

centuries has led to a gradual refining of our understanding of natural phenomena. 

Accompanying this has been a spectacular evolution of sophisticated mathematical tools 

for the modeling of complex systems. These analytical tools are versatile enough to find 

application not only in point processes involving particles but also aggregates thereof 

leading to field theoretic generalizations and condensed matter physics. 

The standard route to pricing of derivatives and similar financial assets is through the 

stochastic calculus and Ito's Lemma that leads to the celebrated Black Scholes formula 

[1-2] for option pricing. A comprehensive theory of quantum mechanics has also been 

developed as a theory of `random walks' [3]. The contemporary candidate for a unified 

theory of the fundamental forces of Nature (i.e. string theory) also makes extensive use of 

random surfaces [4]. Modeling of non relativistic quantum mechanics as energy 

conserving- diffusion processes is, by now, well known [5]. Unification of the general 

theory of relativity and quantum mechanics to enable a consistent theory of quantum 

gravity has also been attempted on "stochastic spaces" [6]. 
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Time evolution of stock prices has been, by suitable algebraic manipulations, shown to be 

equivalent to a diffusion process [2]. 

Contemporary empirical research into the behavior of stock market price /return patterns 

has found significant evidence that financial markets exhibit the phenomenon of 

anomalous diffusion, primarily super diffusion, wherein the variance evolves with time 

according to a power law to with a> 1.0 . The standard technique for the study of super 

diffusive processes is through a stochastic process that evolves according to a Langevin 

equation and whose probability distribution function satisfies a nonlinear Fokker Planck 

equation [7]. 

There is an intricate yet natural relationship between the power law tails observed in 

stock market data and probability distributions that emanate as the solution of the Fokker 

Planck equation. The Fokker Planck equation is known to describe anomalous diffusion 

under time evolution. Empirical results [8-11] establish that temporal changes of several 

financial market indices have variances that that are shown to undergo anomalous super 

diffusion under time evolution. 

The theory of stochastic processes thus constitutes the `golden thread' that provides the 

connection between the (hitherto) diverse disciplines of physics and finance. 
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Though at a nascent stage, the winds of convergence of physics and finance are 

unmistakably perceptible with several concepts of fundamental physics like quantum 

mechanics, field theory and related tools of non-commutative probability, gauge theory, 

path integral etc. being applied for pricing of contemporary financial products and for 

explaining various phenomena of financial markets like stock price patterns, critical 

crashes etc. [12-22]. The origin of the association between physics and finance, though, 

can be traced way back to the seminal works of Pareto [23] and Batchlier [24], the former 

being instrumental in establishing empirically that the distribution of wealth in several 

nations follows a power law with an exponent of 1.5, while the latter pioneered the 

modeling of speculative prices by the random walk and Brownian motion. The cardinal 

contribution of physicists to the world of finance came from Fischer Black & Myron 

Scholes through the option pricing formula [1-2] which bears their epitaph and which 

won them the Nobel Prize for economics in 1997 together with Robert Merton [25]. 

They obtained closed form expressions for the pricing of financial derivatives by 

converting the problem to a heat equation and then solving it for specific boundary 

conditions. 

1. 2 PRESENT STATE OF KNOWLEDGE, LITERATURE REVIEW 

& ISSUES & PROBLEMS RELEVANT TO THE STUDY 

While a significant majority of contemporary research in the physical sciences is targeted 

at evolving a unification of the four fundamental forces of Nature viz electromagnetic, 

gravitational, electroweak and strong interactions, a perusal of recent literature shows that 
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work is also focused on the convergence of the physical and mathematical sciences with 

finance and economics. Reported literature in this regard facilitates the inference of the 

possible existence of an underlying symmetry between financial markets and the 

fundamental theories of physics. This opens the way to using some of the well developed 

physical and geometrical methods in the analysis of financial markets. Attempts have 

also been made to develop the dynamics of financial markets in the Lagrangian and 

Hamiltonian formalism. Sparse work has also been done in applying the maxims of 

quantization, to the economics of financial markets. 

One of the most exhaustive set of studies on stock market data in varying dimensions has 

been reported in [26-30]. In [30], a phenomenological study was conducted of stock price 

fluctuations of individual companies using data from two different databases covering 

three major US stock markets. The probability distributions of returns over varying 

timescales ranging from 5 min. to 4 years were examined. It was observed that for 

timescales from 5 minutes upto 16 days the tails of the distributions were well described 

by a power law decay. For larger timescales results consistent with a gradual convergence 

to Gaussian behaviour was observed. In another study [26] the probability distributions of 

the returns on the S & P 500 were computed over varying timescales. It was, again, seen 

that the distributions were consistent with an asymptotic power law behaviour with a 

slow convergence to Gaussian behaviour. Similar findings were obtained on the analysis 

of the NIKKEI and the Hang —Sang indices [26]. 
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As mentioned above, research into the behavior of stock market price /return patterns has 

found significant evidence that financial markets exhibit the phenomenon of anomalous 

diffusion, primarily super diffusion, wherein the variance evolves with time according to 

a power law t" with a > 1.0 . 

Anomalous diffusion is a hallmark of several intensively studied physical systems. It is 

observed, for example, in the chaotic dynamics of fluid in rapidly rotating annulus [31], 

conservative motion in a periodic potential [32], transport of fluid in a porous media [33], 

percolation of gases in porous media [34], crystal growth spreading of thin films under 

gravity [35], radiative heat transfer [36], systems exhibiting surface to surface growth.: 

[37] and so on. 

Several analogies between physical systems and financial processes have been explored :. 

in the last decade, some of which have already been mentioned above. Perhaps, the most 

striking one is that between financial crashes witnessed in stock markets and critical 

phenomena like phase transitions. 

Furthermore, with the rapid advancements in the evolution and study of disordered systems 

and the associated phenomena of nonlinearity, chaos, self organized criticality etc., the 

importance of generalizations of the extant mathematical apparatus to enhance its domain 
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of applicability to such disordered systems is cardinal to the further development of 

science and has been attempted in various directions. 

A considerable amount of work has already been done and success achieved in the broad 

areas of q-deformed harmonic oscillators [38], representations of q-deformed rotation and 

Lorentz groups [39-40]. q-deformed quantum stochastic processes have also been studied 

with realization of q-white noise on bialgebras [41]. Deformations of the Fokker Planck's 

equation [42] and Levy processes [43-44] have also been analyzed and results reported. 

1.3 RESEARCH OBJECTIVES 

The main objectives of this research study are:- 

The overriding objective of this research project is to carry this convergence/unification 

of physics and finance program further through a study of the symmetry groups of the 

dynamical equations relevant to financial processes and, as mentioned above, 

intertwining the physics & finance through stochastic processes in order to facilitate (i) 

the evolution of a model of financial markets amenable to the quantum mechanical 

framework and (ii) the generalizations of extant results to enhance their domain of 

applicability. 

Specifically, efforts have been made to attempt 

T 



(a) Generalization of the Black Scholes equation by introducing a stochastic process 

with statistical feedback as a model for stock market returns; 

(b) Generalization of financial dynamics of the stock price process as a deformed 

Levy process; 

(c) Generalization of the Black Scholes equation by introducing a stochastic return 

process in lieu of the risk free returns in the Black Scholes partial differential 

equation; 

(d) Modeling of the financial markets within the framework of quantum mechanics; 

(e) Construction & Study the properties of the Lie algebra being the underlying 

symmetry of the Black Scholes partial differential equation that represents the 

dynamics of a financial derivative and to explore and interpret new solutions of 

the said equation; 

(f) Empirical study of the Indian capital markets with reference to the normality of 

return process, existence of significant memory effects and possibility of 

nonlinear and chaotic behavior. 

1. 4 SIGNIFICANT CONTRIBUTIONS OF THE RESEARCH 

The following are some of the significant contributions emanating from the research 

work:- 

(a) The Black Scholes approach for the pricing of financial contingent claims works 

under several restricted, rigid and unrealistic assumptions. Generalization of the 

Black Scholes equation has been attempted in this study by:- 



(i) 	Introducing a stochastic process with statistical feedback as a model 

for stock market returns. This model can embrace in its ambit possible 

nonlinearities and chaotic behaviour in stock price patterns through the 

deformation parameter; 

(ii) 

	

	Introducing a stochastic return process in lieu of the risk free returns in 

the Black Scholes partial differential equation and thus considering the 

Black Scholes equation as a partial differential,  equation in two 

stochastic processes; 

(b) A toy model of the financial markets has been evolved using the conventional 

machinery of quantum mechanics and operators pertaining to various trading 

activities obtained. Quantum dynamical equations are solved and the lognormal 

distribution of stock prices has been obtained as a fallout vindicating the 

compatibility of the model with the more well known stochastic models; 

(c) The symmetry group of the Black Scholes equation has been obtained and the 

properties of the Lie algebra of the Black Scholes partial differential equation that 

represents the dynamics of a financial derivative are studied and new solutions of 

the said equation are obtained and interpreted; 

(d) An empirical study of the Indian capital markets was also conducted with data 

over the last ten years and it was shown that stock return processes deviate 



significant from normality. Performance of R/S analysis also showed that memory 

effects are prevalent in the price time series with a possibility of nonlinearities 

and chaos. 

(e) A generalization of financial dynamics of the stock price process as a deformed 

Levy process has also been attempted. 

1. 5 ORGANIZATION OF THIS THESIS 

Brief outlines of different chapters are given below:- 

Chapter 1 contains a brief introduction to the subject to put the problems and 

investigations in proper perspective. It also provides a brief introduction to the study, 

motivation for the research, objectives of the research and an outline of organization of 

this research work with a Chapter wise summary. 

Chapter 2 reviews the literature relevant to this research. Literature review is focused on 

the contemporary work being done towards convergence of the disciplines of physics and 

finance. Relevant literature on quantum mechanics has also been reviewed, in particular, 

those areas that are relevant to the research being envisaged. Literature on the financial 

applications of various types of stochastic processes including Gaussian processes and 

levy processes has also be studied to identify gaps in existing knowledge in the field. 
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The Black Scholes model of option pricing constitutes the cornerstone of contemporary 

valuation theory. However, the model presupposes the existence of several unrealistic 

assumptions including the lognormal distribution of stock market price processes. There, 

now, subsists abundant empirical evidence that this is not the case. Consequently, several 

generalizations of the basic model have been attempted with relaxation of some of the 

underlying assumptions. In Chapter 3 we postulate a generalization that contemplates a 

statistical feedback process for the stochastic term in the Black Scholes partial differential• 

equation. Several interesting implications of this modification emanate from the analysis 

and are explored. 

The Black Scholes model also assumes constancy of the return on the "hedge portfolio". 

In Chapter 4, we attempt one such generalisation based on the assumption that the return 

process on the "hedge portfolio" follows a stochastic process similar to the Vasicek 

model of short-term interest rates. 

The return process of stock markets has also been modeled as a Levy process in several 

studies relating to valuation of contingent claims. In Chapter 5, we attempt a 

generalization of such results through a deformation of the underlying Levy process. 

The cardinal contribution of physicists to the world of finance came from Fischer Black 

& Myron Scholes through the option pricing formula which bears their epitaph and which 

won them the Nobel Prize for economics in 1997 together with Robert Merton. They 

obtained closed form expressions for the pricing of financial derivatives by converting 
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the problem firstly, to a partial differential equation and then to a heat equation and 

solving it for specific boundary conditions. In Chapter 6, we apply the well-entrenched 

group theoretic methods to obtain various solutions of the Black Scholes equation for the 

pricing of contingent claims. We also examine the infinitesimal symmetries of the said 

equation and explore group transformation properties. The structure of the Lie algebra of 

the Black Scholes equation is also studied. 

In Chapter 7, we apply the well entrenched methods of quantum mechanics and quantum 

field theory to the modelling of the financial markets and the behaviour of stock prices. 

After defining the various constituents of the model including creation & annihilation 

operators and buying & selling operators for securities, we examine the time evolution of .. 

the financial markets and obtain the Hamiltonian for the trading activities of the market. 

We finally obtain the probability distribution of stock prices in terms of the propagators 

of the evolution equations. 

Chapter 8 is devoted to an empirical study of the Indian capital markets with data over 

the last ten years and it is shown that stock return processes deviate significant from 

normality. Performance of R/S analysis on the data also showed that memory effects are 

prevalent in the price time series with a possibility of nonlinearities and chaos. 
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Chapter 9 contains major findings and significant contributions of the research duly 

summarized followed by the set of recommendations. The thesis finally ends with the 

limitations of the study and suggestions for further research. 

1. 6 CONCLUSIONS 

The following are some of the important outcomes of this research work:- 

(a) 	Closed form expressions have been obtained for the price of a European call 

option by modifying the Black Scholes formulation 

(i) 	By generalizing the stock return process to a probability dependent 

deformed Brownian motion that could accommodate "statistical feedback" 

processes and, thereby, account for the fat tails usually observed in stock 

market price distributions. It is seen that that in the standard case the 

exponential is linear in Wand the stock price, therefore, is a 

monotonically increasing function of W. Hence, the condition 

S, — E > 0 is satisfied for all values of W that exceed a threshold value. 

However, in this model, consequent to the noise induced drift; the 

exponential in the stock price process is now a quadratic function of the 

deformed Brownian motion U. We, therefore, have two roots of U that 

meet the condition S, — E = 0. Accordingly, there will exist an interval 

(U 1 , U,) within which the inequality S, —E>0  will hold. Furthermore, 

as q -~ 0, U2 —> oo thereby recovering the standard case. 
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(ii) 	By generalizing the Black Scholes option pricing partial differential 

equation to two stochastic variables by including therein a stochastic 

return process for the "hedge portfolio" returns. 

(b) Pricing of financial contingent claims has also been explored when the 

distribution of the underlying asset is a deformed Levy process. 

(c) A "toy model" of the financial markets has been constructed within the quantum 

mechanical framework, various operators signifying the market processes have 

been constructed and the market dynamics explored. We derive the probability 

distribution of stock prices in market equilibrium and show that the prices follow 

a lognormal distribution, thereby vindicating the efficacy of this model under 

suitable assumptions as to the quantum mechanical states and amplitudes. . 

(d) Solutions of the Black Scholes equation have been obtained from symmetry 

considerations and their properties studied and with the relevant structure Lie 

groups. 

(e) The various features of the logarithmic return spectrum of the Indian stock 

markets are examined, performing thereon the various statistical tests for the 

normality of data like chi-square, ANOVA. The possible existence of 

dependencies and memory effects in the return processes is also examined. In 
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particular, the rescaled range analysis is carried out to compute the Hurst's 

exponent. It is seen that there is unambiguous evidence to the effect that the 

returns deviate significantly from normal behaviour. There is also evidence of the 

existence of memory effects and consequential nonlinearity. 
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CHAPTER 2 

LITERATURE REVIEW 

2.1 INTRODUCTION 

The pioneering work in adapting statistical methods to the analysis of stock market 

behaviour and return patterns is credited to the French mathematician Louis Bachelier 

[45], who applied the formal tenets of probabilistic calculus to study the price 

movements of stocks, bonds, futures, and options in the relevant trading marketplaces 

(stock exchanges/commodities exchanges etc.). Bachelier's paper [45], in retrospection, 

was a work of incredible foresight, many years ahead of its time. It completely 

revolutionized the study of finance, paving the way for the origin of a distinct branch 

of study called "quantitative finance". In fact, not only this, another far reaching 

implication of Batchlier's work was the recognition that the random walk process (later 

formalized by Weiner) [46] is Brownian motion. Einstein rediscovered this result 

several years later [47]. 

Bachelier's thesis was, undoubtedly, revolutionary, but received little attention for 

several decades. During the decades of the 1920s through the 1940s, market analysis 

was dominated by fundamental analysts (followers of Graham and Dodd) and 

technical analysts. It was only in the 1950s that the quantitative analysts (followers of 

Bachelier) became active and came to the fore. 
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Little work was done in the application of statistical analysis to study stock market 

behavior until the late 1940s. However, thereafter, progress was rapid. Cootner 

compiled his classic volume The "Random Character of Stock Market Prices" [48], 

published in 1964 which strongly facilitated the progression of quantitative analysis. 

Cootner's work [48] lays down the premises for the development of the "Efficient 

Market Hypothesis" that was formally propounded by Fama [49-51] in the 1960s. 

2.2 STOCK PRICES & RANDOM WALKS 

Modeling of stock prices as a "Random Walk" is formalized by Osborne in his 

paper on Brownian motion [52]. Osborne models stock market behaviour as a process 

in which changes in stock market prices can be equivalent to the movement of a 

particle in a fluid, commonly called Brownian motion [53]. He does so on the premises 

of a number of assumptions and drawing conclusions from these results. Briefly 

stated, his assumptions were that 

(a) Minimum price movements are discrete e.g. one-eighth of a dollar; 

(b) The number of transactions per day is finite; 

(c) "Market Price" and "Investor Value" of traded instruments are related and 

that this relationship between "price" and "value" is the prime determinant 

of market returns; 

(d) Given two securities with different expected returns, the rational investor 

would invest in the stock with the higher expected return; 
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(e) 	Buyers and sellers are unlikely to trade unless there is equality of 

opportunity to profit. In other words, the buyer cannot have an advantage 

over the seller or vice versa, if a transaction is to be accomplished. 

These assumptions, taken in consortium lead to the radical conclusion that stock prices 

would be normally distributed. Assumption (e) would subsist in the marketplace 

because investors are most concerned with paying the right price for value (Assumption 

c), and, given two variables with expected values, investors will pick the one with the 

higher expected return Assumption (d). As a result, a buyer and seller find a 

particular mutually advantageous. In other words, because investors are able to 

rationally equate price and value, they will trade at the equilibrium price based on 

the information available at that time. The sequence of price changes is independent, 

because price is already equated to available information. This, further, implies that 

because price changes are independent (i.e., they are a random walk), we would expect 

the distribution of changes to be normal, with a stable mean and finite variance as 

mandated by the Central Limit Theorem of probability calculus, or the Law of Large 

Numbers[54]. 

Thus, the fallout of Osborne's work was, in essence, that because the stock markets 

are large systems that have a large number of degrees of freedom (or investors), 

current prices must reflect the information everyone already has. Changes in price 

would come only from unexpected new information. Therefore, stock prices should 

behave as independent identically distributed (IID) variables. This paved the way for 
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application of a vast array of statistical tools for the analysis and modeling of such 

prices and the consequential returns. 

2.3 EFFICIENT MARKET HYPOTHESIS 

Fama [49-50] in 1965 formalized the work of Osborne into the Efficient Market 

Hypothesis (EMH), which states, in technical terms, that the market is a martingale, or 

"fair game"; that is, information cannot be used to profit in the marketplace. 

The theory of "efficient markets." constitutes the bedrock of quantitative capital market 

theory, and in the last four decades, research in capital market has depended on it. One 

of the important consequences of the EMH is that it justifies the use of probability 

calculus in analyzing capital markets. 

In this context, it is pertinent to mention that if the stock prices show nonlinear 

characteristics, then the use of standard statistical analysis can give misleading results, 

particularly if a random walk model is used. 

The cardinal philosophy of EMH is that all assets are priced so that all public 

information, both fundamental and price history, is already discounted in the prevailing 

market prices. Prices, therefore, move only when new information is received. One 

cannot outperform an efficient market by gaming because not only do the prices reflect 

known information, but the large number of investors will ensure that the prices are 

fair. Investors are considered rational in efficient markets so that they know, in a 
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collective sense, what information is important and what is not. After digesting the 

information and assessing the risks involved, the collective consciousness of the 

market finds an equilibrium price. Essentially, the EMH says that the market is made 

up of too many people to be wrong. 

If the aforesaid assumption is true, then today's change in price is caused only by 

today's unexpected news. Yesterday's news is no longer important, and today's 

return is unrelated to yesterday's return; the returns are independent. If returns are 

independent, then they are random variables and follow a random walk. If enough 

independent price changes are collected, in the limit (as the number of observations 

approaches infinity), the probability distribution becomes the normal distribution. 

This assumption regarding the normality of returns enables a large spectrum of 

statistical tools, tests and modeling techniques to be adopted for studying price 

behaviour of assets. This is the random walk version of the EMH. 

It must, however, be emphasized here that, technically, market efficiency does not 

necessarily imply a random walk, but a random walk does imply market efficiency. 

Therefore, the assumption that returns are normally distributed is not necessarily 

implied by efficient markets. But all the same, the EMH in any version says that past 

information does not affect market activity, once the information is generally known. 
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This independence assumption between market moves naturally lends itself first to a 

random walk theory, and then to more general martingale and submartingale models. 

The concept of efficient markets gradually got rooted into capital market theory and 

went on contradict fundamental analysis as well as technical analysis. In the initial 

stages, EMH propounded that past price information was not related to future prices. 

However, in 1973 Lorie and Hamilton [55] remarked that. 

The assertion that a market is efficient is vastly stronger than the assertion that successive 

changes in stock prices are independent of each other. The latter assertion—"the weak form" 

of the "efficient market hypothesis"—merely says that current prices of stocks fully reflect all 

that is implied by the historical sequence of prices so that a knowledge of that sequence is of 

no value in forming expectations about future prices. The assertion that the market is efficient 

implies that current prices reflect and impound not only all of the implications of the historical 

sequence of prices, but also all that is knowable about the companies whose stocks are being 

traded ... it suggests the fruitlessness of efforts to earn superior rates of return by the 

analysis of all public information." 

This attack on fundamental analysis was not well received by a significant investment 

community, and the EMH was split into the "weak" and "strong" forms [56]. The 

strong form suggested that fundamental analysis was a useless activity, because prices 

already reflected "all that is knowable," or all public and private (insider) 
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information whereas the weak form postulated that prices reflect only past price 

histories. 

As a compromise, the "semistrong" form was articulated [57]. In the semistrong 

version of the EMH, prices reflect all "public" information. Security analysts, using 

Graham-and-Dodd techniques [58], formulate value based on information that is 

available to all investors. A large number of independent estimates results, in. a "fair" 

value by the aggregate market. Analysts, thus, become the reason for making markets 

efficient. Fundamental analysts form a fair price by consensus. 

The semistrong form of the EMH was much more acceptable to the investment 

community because it said that markets were efficient because of security analysis, not 

in spite of it. In addition, the semistrong form implied that changes in stock prices were 

random because of influences outside the price series itself. That is, price changes were 

random because of the evaluation of the changing fundamentals of a company, caused 

by both micro- and macro-economics. By the mid-1970s, the semistrong version of the 

EMH was the generally accepted theory. 

In conclusion, semistrong version of EMH claims that markets are efficient because 

prices reflect all public information. A weak - form efficient market is one in which 

the price changes are independent and may be a random walk. 
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2.4 EMPIRICALSTUDIES ON STOCK MARKET PRICES 

Before the EMH was even fully formed, exceptions to the normality assumption were 

being found. When, in 1964, Osborne [52] plotted the density function of stock market 

returns, he found them only to be "approximately normal" with extra observations in the 

tails of the distribution (kurtosis). The tails were fatter than they should be. 

The existence of "fat tails" was almost universally acknowledged by 1964but the im-

plications of this departure from normality were widely debated. Mandelbrot's chapter 

in the Cootner volume [48] ,suggested that returns may belong to a family of "Stable 

Paretian" distributions, which are characterized by undefined or infinite variance. 

Cootner contested the suggestion, which would have seriously weakened the Gaussian 

hypothesis, and offered an alternative in which sums of normal distributions may result 

in a distribution that looks fat-tailed but is still Gaussian. 

In 1965, in an extensive study, Fama [49, 50] observed that returns were negatively 

skewed: more observations were in the left-hand (negative) tail than in the right-hand 

tail, the tails were fatter and the peak around the mean was higher than predicted by the 

normal distribution. This statistical condition is called "leptokurtosis." 
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In 1970, Sharpe [59] compared annual returns to the normal distribution, and found 

that extremal values of stock returns occurred much more often that that predicted by 

the normal distribution. 

Turner and Weigel [60] in 1990 performed an extensive study of volatility, using daily 

S&P index returns from 1928 through 1990. They also obtained similar results. Table 

2.1 summarizes their findings. They found that "daily return distributions for the Dow 

Jones and S&P 500 are negatively skewed and contain a larger frequency of returns 

around the mean interspersed with infrequent very large or very small returns as•

compared to a normal distributions." 

A graph of the frequency distribution of returns of the 5-day logarithmic first 

difference in prices for the S&P 500 from January 1928 to December 1989 is 

presented in Figure 2.1 (a) as adapted from the above study [60]. The returns have 

been normalized so that they have a zero mean and a standard deviation of one. A 

frequency distribution for an equal number of Gaussian random numbers is also 

shown. The high peak and fat tails can be clearly seen. In addition, the return data 

have a number of four- and five-sigma events in both tails. Figure 2.1 (b) illustrates the 

differences between the two curves. The negative skewness can be seen at the count 

three standard deviations below the mean. The stock market's probability of a three-

sigma event is roughly twice that of the Gaussian random numbers. 

23 



190 

170 

f 

iSO 

Iy0 

 

120 

V Ia 

Im 

7o 
to 

;e 
0 

v 
z 

v 

 

-6  -4  -2  0  2  4  6 

0100460 D(.~ W40N$ 

 

Fig 2.1 

A more explicit representation of the above features can be seen in Table 2.1 which 

is also adapted from the same study [60]. 

Table 2.1 	Volatility Study: Daily S&P 500 Returns. 1/28-12/89 
Decade Mean Standard 

Deviation 
Skewness Kurtosis 

1920s 0.0322 1.6460 -1.4117 18.9700 
1930s -0.0232 1.9150 0.1783 3.7710 
1940s 0.0100 0.8898 -0.9354 10.8001 
1950s 0.0490 0.7050 -0.8398 7.8594 
1960s 0.0172 0.6251 -0.4751 9.8719 
1970s 0.0062 0.8652 0.2565 2.2935 
1980s 0.0468 1.0989 -3.7752 79.6573 

Overall 0.0170 1.1516 -0.6338 21.3122 
Adapted from Turner and Weigel (1990) [60] 

In another recent study of quarterly S&P 500 returns, from 1946 through 1988, 

Friedman and Laibson [61 ] point out that "in addition to being leptokurtotic, large 

movements have more often been crashes than rallies" and significant leptokurtosis 

"appears regardless of the period chosen." 
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Sterge [62], in a study of financial futures prices of Treasury Bond,. Treasury Note, and 

Eurodollar contracts, found the same leptokurtotic distributions. Sterge notes that 

"very large (three or more standard deviations from the norm) price changes can be 

expected to occur two to three times as often as predicted by normality." 

These studies offer ample evidence that U.S. stock market returns are not normally 

distributed. If stock returns are not normally distributed, then much statistical analysis, 

particularly diagnostics such as correlation coefficients and t-statistics [63], is 

seriously weakened and may give misleading answers. The case for a random walk in 

stock prices is also seriously weakened. 

It is pertinent to mention that tests of normality have also been conducted in several 

stock markets of other countries including the United Kingdom [64], Japan [65], Hong 

. Kong [66] & India [67]. 

Tests on normality of stock prices have also be attempted from a different perspective 

viz, the scaling of volatility or standard deviation. The variance is stable and finite for 

the normal distribution alone. In fact, if the capital markets fall into the "Stable 

Paretian" family of distributions, as postulated by Mandelbrot, they would have infinite 

variance. 

Studies of volatility have tended to focus on stability over time. In the normal 

distribution, the variance of n—day returns should be n times the daily return i.e. the 
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variance scales in proportion to time. This constitutes a useful test for the normality of 

the underlying data. This scaling feature of the normal distribution is referred to as the 

T'72  Rule, where T is the increment of time. 

The investment community often "annualizes" risk, using the T'12  Rule. Annual returns 

are usually reported, but volatility is calculated based on monthly returns. The 

monthly standard deviation is therefore converted to an annual number by multiplying it 

by the square root of 12—a perfectly acceptable method, if the distribution is normally 

distributed. 

Studies show that standard deviation does not scale according to the T"2  Rule. Turner• 

and Weigel [60] found that monthly and quarterly volatility were higher than it 

should be, compared to annual volatility but daily volatility was lower than it should 

be. 

Studies of volatility have also been conducted using the autoregressive conditional 

heteroskedastic (ARCH) model of Engle [68]. This model sees volatility as 

conditional upon its previous level. Thus high volatility levels are followed by more 

high volatility, while low volatility is followed by more low volatility. This is 

consistent with MandeIbrot's observation [69] that the size of price changes (ignoring 

the sign) seems to be correlated. Statistical evidence compiled by Engle and LeBaron 

[70] among others supports the ARCH model. In recent years this has led to 

increasing recognition that standard deviation is not a standard measure, at least over 
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the short term. ARCH also-results in fat tailed probability distributions. Therefore, 

ARCH has had the most impact upon option pricing and technical trading rules. 

In addition, there have been numerous market anomalies in which excess nonmarket 

returns has be achieved, contrary to the "fair game" of the semi-strong EMH. In the 

stock market, these include the small firm effect [71], the low P/E effect, and the 

January effect. Rudd and Clasing [72] document excess returns realized from 

nonmarket-factor returns generated by the BARRA El six-factor risk model. This 

CAPM [73] -based model found that four sources of nonmarket risk (market 

variability, low valuation and unsuccessful, immaturity and smallness, and financial 

risk) all offered the opportunity for significant nonmarket returns. Rudd and Clasing 

[72] say that these factor returns are "far from random," suggesting that the 

semistrong EMH is flawed. These anomalies have long suggested that the current 

paradigm requires an adjustment that takes these anomalies into account. 

2.5 PHYSICS & THE MODELLING OF FINANCIAL PROCESSES 

Though at a nascent stage, the winds of convergence of physics and finance are 

unmistakably perceptible with several concepts of fundamental physics like quantum 

mechanics , field theory and related tools of non-commutative probability, gauge theory, 

path integral etc. being applied for pricing of contemporary financial products and for 

explaining various phenomena of financial markets .like stock price patterns, critical 
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crashes [12-22] etc. The origin of the association between physics and finance, though, 

can be traced way back to the seminal works of Pareto [23] and Batchlier [24], the former 

being instrumental in establishing empirically that the distribution of wealth in several. 

nations follows a power law with an exponent ofl.5, while the latter pioneered the 

modeling of speculative prices by the random walk and Brownian motion. The cardinal 

contribution of physicists to the world of finance came from Fischer Black & Myron 

Scholes through the option pricing formula [1] which bears their epitaph and which won 

them the Nobel Prize for economics in 1997 together with Robert Merton [25]. They 

obtained closed form expressions for the pricing of financial derivatives by converting 

the problem to a heat equation [74] and then solving it for specific boundary conditions. 

Physics is the study of connections between an assortment of expression of matter and its 

constituents. The development of this subject over the last several centuries has led to a 

gradual refining of our understanding of natural phenomena. Accompanying this has been 

a amazing evolution of sophisticated mathematical tools for the modeling of complex 

systems [75-76]. These analytical tools are adaptable, enough to find application not only in 

point processes involving particles but also aggregates thereof leading to field theoretic 

generalizations and condensed matter physics [78]. 

Stock market phenomena are assumed to result from complicated interactions among 

many degrees of freedom, and thus they were analyzed as random processes and one 
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could go to the extent of saying that the Efficient Market Hypothesis [78-79] was 

formulated with one primary objective — to create a scenario which would justify the use 

of stochastic calculus [80] for the modeling of capital markets. 

The theory of stochastic processes [81] constitutes the "golden thread" that unites the 

disciplines of physics and finance. Modeling of non relativistic quantum mechanics as 

energy conserving diffusion processes is, by now, well known [5]. Unification of the 

general theory of relativity and quantum mechanics to enable a consistent theory of 

quantum gravity has also been attempted on "stochastic spaces" [6]. Time evolution of 

stock prices has been, by suitable algebraic manipulations, shown to be equivalent to a 

diffusion process [2]. 

Anomalous diffusion is a hallmark of several intensively studied physical systems. It is 

observed, for example, in the chaotic dynamics of fluid in rapidly rotating annulus [31], 

conservative motion in a periodic potential [32], transport of fluid in a porous media [33], 

percolation of gases in porous media [34], crystal growth spreading of thin films under 

gravity [35], radiative heat transfer [36], systems exhibiting surface to surface growth 

[37] and so on. 
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A. Ott el al., [31], have observed anomalously enhanced self- (tracer) diffusion in 

systems of polymerlike breakable micelles. They have argued that it provides the first 

experimental realization of a random walk for which the second moment of the jump-size 

distribution fails to exist ("Levy flight"). The basic mechanism is the following: Due to 

reptation, short micelles diffuse much more rapidly than long ones. As times goes on, 

shorter and shorter micelles are encountered by the tracer, and hence the effective 

diffusion constant increases with time. 

In a related study [31], a detailed discussion of the fact that the above anomalous regime 

only exists in a certain range of concentration and temperature. The theoretical 

dependence of the asymptotic diffusion constant on concentration is found to be in quite 

good agreement with the experiment. 

C.-K. Peng et al., [31], have found that the successive increments in the cardiac beat-to-

beat intervals of healthy subjects display scale-invariant, long-range anti correlations (up 

to 104  heart beats). Furthermore, they find that the histogram for the heartbeat intervals 

increments is well described by a Levy stable distribution. For a group of subjects with 

severe heart disease, they found that the distribution is unchanged, but the long-range 

correlations vanish. Therefore, the different scaling behavior in health and disease must 

relate to the underlying dynamics of the heartbeat. 
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T.H.Solomon et al., [31], have studied the chaotic transport in a laminar fluid flow in a 

rotating annulus, experimentally by tracking large numbers of tracer particles for long 

times. Sticking and unsticking of particles to remnants of invariant surfaces (Canton) 

around vortices results in superdiffusion: The variance of the displacement grows with 

time as 12 with y =1.65±0.15. Sticking and flight time probability distribution 

functions exhibit power-law decays with exponents 1.6±0.3 and 2.3±0.2, respectively. 

The exponents are consistent with theoretical 'predictions relating Levy flights and 

anomalous diffusion. 

J. Klafter and G. Zumofen, [32], have examined the diffusion in a Hamiltonian system, 

studied in terms of the continuous-time random walk formulation for Levy walks. The 

Levy-walk scheme is extended (i) to include interruptions by periods of temporal 

localization and (ii) to describe motion in two dimensions. They analyze a case of 

conservative motion in a two-dimensional periodic potential. Numerical calculations of 

the mean-squared displacements and the propagators for intermediate energies are . 

consistent with the Levy-walk description. 

H. Spohn, [33], has considered conventional relaxation dynamics for surfaces, both 

evaporation dynamics and surface diffusion. They pointed out that the cusp singularity of 

the surface free energy implies that the relaxation dynamics has to be treated as a free 

boundary value problem. On this basis they predict, that under appropriate conditions, the 
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spontaneous formation of facets and a finite time of healing for the high symmetry 

surface. 

The unsteady creeping motion of a thin sheet of viscous liquid as it advances over a 

gently slopping dry bed was examined in [35] with a focus on the motion of the leading 

edge under various influences and four problems were discussed. In the first problem the 

fluid travels down an open channel formed by two strategies parallel retaining walls 

placed perpendicular to an inclined plane. When the channel axis was parallel to the fall 

line there was a progressive — wave solution with a straight leading edge, but inclination 

of the axis generated distortions. In the second problem a sheet with a straight leading 

edge traveling over an inclined plane penetrated a region where the bed was uneven, and 

the subsequent deformation of the leading edge was followed. The third problem 

considered the flow down an open channel of circular cross — section (a partially filled 

pipe) and the time dependent shape of the leading edge was calculated. The fourth 

problem was that of flow down an inclined plane with a single curved edge retaining 

wall. These problems were all analyzed by assuming that a length characteristics of the 

geometry was large compared with the fluid depth divided by the bed slope, and the all 

the solutions displayed extreme sensitivity to the data. 

In another study [34], the classic Marshak wave equation (an equilibrium diffusion 

radioactive transfer description) was obtained as the lowest order approximately in an 
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asymptotic• analysis of a system of time dependent nonequilibrium radiative transfer 

equation. The next approximation led to a more general equilibrium diffusion 

approximation, which contained the radiative energy in the description. An asymptotic 

solution of this higher order equilibrium diffusion approximation was derived by 

including the smallness parameters in both the independent time variable and the 

dependent variable of the problem. The solution obtained was applicable over a longer 

time interval than the solution of the Marshak equation. Its main qualitative feature was 

that the predicted position of the wave front lags behind the Marshak prediction. 

Contemporary empirical research into the behavior of stock market price /return patterns 

has found significant evidence that financial markets exhibit the phenomenon of 

anomalous diffusion, primarily superdiffusion, wherein the variance evolves with time 

according to a power law t" with a > 1.0. The standard technique for the study of 

superdiffusive processes is through a stochastic process that evolves according to a 

Langevin equation [82] and whose probability distribution function satisfies a nonlinear 

Fokker Planck equation [7]. 

There is an intricate yet natural relationship between the power law tails observed in 

stock market data and probability distributions that emanate as the solution of the Fokker 

Planck equation. The Fokker Planck equation [6] is known to describe anomalous 

diffusion under time evolution. Empirical results [8-11] establish that temporal changes 
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of - several financial market indices have variances that that are shown to undergo 

anomalous super diffusion under time evolution. 

Several analogies between physical systems and financial processes have been explored 

in the last decade, some of which have already been mentioned above. Perhaps, the most 

striking one is that between financial crashes witnessed in stock markets and critical 

phenomena like phase transitions that is discussed here to place the main theme of this 

research in its proper perspective. 

Stock market crashes are believed to exhibit log periodic oscillations which are 

characteristic of systems exhibiting discrete scale invariance i.e. invariance through 

rescaling by integral powers of some length scale like the Serpinski triangle and other 

similar fractal shapes. In the years preceding the infamous crash of October 19, 1987, the 

S & P market index was seen to fit the following expression exceedingly precisely 

(S&P)t =Q+'F(t~ —t)y j1+2_Ecos[01n(t, —t)+0] 

1. J. Feigenbaum & P. G. O. Freund [83], have proposed a picture of stock market 

crashes as critical points in a system with discrete scale invariance. The critical exponent 

is then complex, leading to log-periodic fluctuations in stock market indexes. They also 

presented "experimental" evidence in favor of this prediction. This picture is in the spirit 
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of the known earthquake-stock market analogy and of recent work on log-periodic 

fluctuations associated with earthquakes. 

2. D Sornette, A. Johansen & J.P. Bouchaud, [84], have presented an analysis of the time 

behavior of the S&P 500 (Standard and Poors) stock exchange index before and after the 

October 1987 market crash and identified precursory patterns as well as aftershock 

signatures and characteristic oscillations of relaxation. Combined, they all suggest a 

picture of a kind of dynamical critical point, with characteristic log-periodic signatures, 

similar to what has been found recently for earthquakes. These observations are 

confirmed on other smaller crashes, and strengthen the view of the stock market as an 

example of a self-organizing cooperative system. 

Physicists working in solid state and condensed matter physics would immediately 

recognize the analogy of the above expression with the one obtained for critical 

phenomenon in spin model of ferromagnetism. 

In this context P. C. Martin et al [85], have demonstrated the statistical dynamics of a 

classical random variable that satisfies a nonlinear equation of motion which is recast in 

terms of closed self-consistent equations in which only the observable correlations at 

pairs of points and the exact response to infinitesimal disturbances appear. The self- 
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consistent equations are developed by introducing a second field that does not commute 

with the random variable. Techniques used in the study of the interacting quantum fields 

are then employed, and systematic approximations obtained. It is also possible to carry 

out a "charge normalization" eliminating the nonlinear coupling in favor of a 

dimensionless parameter which measures the deviation from Gaussian behavior. No 

assumptions of spatial or time homogeneity or of small deviation from equilibrium enter 

and it is shown that previously inferred renormalization schemes for homogeneous 

systems were incomplete or erroneous. The application of the method to classical 

microscopic systems, where it leads from first principles to a coupled-mode description is 

briefly indicated. 

We briefly elucidate the salient features of this model. Crystalline solids comprise of 

atoms arranged in a lattice. Each such atom generates a magnetic field parallel to the 

direction of the atom's spin. In the case of substances that do not exhibit ferromagnetic 

character, these spin directions are randomly oriented so that the aggregate magnetic field 

vanishes. However, in ferromagnetic substances these spins are polarized in a particular 

direction resulting in a nonzero aggregate field. Ferromagnetic substances usually exhibit 

two distinct phases. one in which the spins orient themselves in a particular direction 

resulting in an aggregate magnetic moment at temperatures below a well defined critical 

temperature t. and the other where the spins are disoriented with a zero aggregate 

moment above the critical temperature. At temperatures belowt, the coupling force 
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between neighboring atoms predominates resulting in an alignment of spins whereas 

above t.the additional energy manifests itself in disorienting (randomizing) the spins. 

Renormalization group theory enables us to group these atoms in blocks of spins whose 

composite spins are equal to the algebraic sum of the spins of the atoms constituting the 

block. It then provides that a model involving interactions between these composite spins 

of a block can be constructed that replicates the macroscopic properties of the block and 

yet cannot depend on the size of the block. That is, the system would exhibit a scaling 

symmetry, which is discrete, if we allow for the finite size of the atom and continuous 

otherwise. The magnetic susceptibility of such a magnetic substance defined by 

x  (
T aM 

) _ 	, where the symbols have their usual meaning, obeys a power law of the 
aB R=o 

form 	 x (T) = Re[(T —T )a+'R ] or 	 equivalently 

x (T) = (T— TT )~ { 1 + l cos [ln (T — T, )] + O(82)} which is reminiscent of op cited 

expression for log periodic oscillations in financial crashes. 

The works of physicists in financial and economic systems are designated 

"econophysics". Such systems are treated as complex systems and are usually driven by 

"fluctuations", and quantifying fluctuations is a topic that many physicists have 

contributed to in recent years. It is, therefore, possible that methods and concepts 

developed in the study of strongly fluctuating systems might yield new results in 



economics. Besides, economic systems are complex interacting systems for which a 

tremendous amount of quantitative data exists, much of it is never analyzed. For example 

in [86] where statistical physicists studying fluctuations have uncovered two new 

empirical "laws". The first empirical law concerns the histogram giving the relative 

occurrence probability that a stock experiences a given price change; this histogram 

decreases as the given price change increases, with an apparent power law tail that 

describes fluctuations differing by as much as 8 orders of magnitude in this relative 

occurrence probability. The second empirical law concerns a histogram of size changes 

of business firms, which has a width that decreases as a power law of the firm size for 

firms that range over roughly 8 orders of magnitude. In addition to such scaling laws, 

there appears also the analog of "universality" - e.g., the analogous histogram of country 

size appears to obey the same scaling law, with the same exponent, as the histogram of 

firm size. 

In another study on volatility [87], volatility of the MIB30—stock—index high—frequency 

data from November 28, 1994 through September 15, 1995 was studied. The volatility 

random walk was empirically characterized in the framework of continuous—time 

finance. To this end, the index volatility was computed by means of the log—return 

standard deviation. A periodic component was found for the hourly time window, for 

which data was analyzed. Fluctuations were also studied by means of detrended 

fluctuation analysis, and long—range correlations were detected. Volatility values were 

found to be log—stable distributed. 
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In another study [88] conducted by the same group of workers, a study of the statistical 

properties of volatility was performed, as measured by locally averaging over a time 

window T, the absolute value of price changes over a short time interval AT. An 

analysis of the S&P 500 stock index for the 13-year period Jan. 1984 to Dec. 1996 was 

conducted. It was found that the cumulative distribution of the volatility is consistent with 

a power-law asymptotic behavior, characterized by an exponent,u 3, similar to what is 

found for the distribution of price changes. The volatility distribution retains the same 

functional form for a range of values of T. Further, the volatility correlations were also 

studied by using the power spectrum analysis. Both methods supported a power law 

decay of the correlation function and gave consistent estimates of the relevant scaling 

exponents. Also, both methods showed the presence of a crossover at approximately 

1.5 days. These results were also extended to the volatility of individual companies by 

analyzing a data base comprising all trades for the largest 500 U.S. companies over the 

two-year period Jan. 1994 to Dec. 1995. 

Random matrix Theory and spin glasses [89] have also been used to develop models of 

financial systems. In [90] methods of random matrix theory are adopted to analyze the 

cross-correlation matrix C of stock price changes of the largest 1000 U.S. companies for 

the 2-year period 1994-1995. It is found that the statistics of most of the eigenvalues in 

the spectrum of C agree with the predictions of random matrix theory, but there are 



deviations for a few of the largest eigenvalues and that C has the universal properties of 

the Gaussian orthogonal ensemble of random matrices. 

From a study of the eigenvalue statistics of the cross-correlation matrix constructed from 

price fluctuations of the leading 1000 stocks, it was also found that the largest 1% of the 

eigenvalues and the corresponding eigenvectors show systematic deviations from the 

predictions for a random matrix, whereas the rest of the eigenvalues conform to random 

matrix behavior suggesting that these 1% of the eigenvalues contain system-specific 

information about correlated time evolution of different companies [90] . 

Another study based [91 ] on the Random Matrix Theory analysis of stock price provides 

for a systematic comparison between the statistics of the cross-correlation matrix C - 

whose elements C;, are the correlation-coefficients between the returns of stock i and j - 

and that of a random matrix having the same symmetry properties. The analysis shows 

that Random Matrix Theory can be used to distinguish random and non-random parts 

of C; the non-random part of C, which deviates from Random Matrix Theory results, 

provides information regarding genuine cross-correlations between stocks. 

Another interesting study is reported in [92]. Results are discussed of three recent 

phenomenological studies focused on understanding the distinctive statistical properties 



of financial time series - (i) The probability distribution of stock price fluctuations: Stock 

price fluctuations occur in all magnitudes, in analogy to earthquakes - from tiny 

fluctuations to very drastic events, such as the crash of 19 October 1987, sometimes 

referred to as "Black Monday". The distribution of price fluctuations decays with a 

power-law tail well outside the Levy stable regime and describes fluctuations that differ 

by as much as 8 orders of magnitude. In addition, this distribution preserves its functional 

form for fluctuations on time scales that differ by 3 orders of magnitude, from I min up 

to approximately 10 days. (ii) Correlations in financial time series: While price 

fluctuations themselves have rapidly decaying correlations, the magnitude of fluctuations 

measured by either the absolute value or the square of the price fluctuations has 

correlations that decay as a power-law, persisting for several months. (iii) Volatility and 

trading activity: A quantification of the relation between trading activity - measured by 

the number of transactions No, - and the price change GA, for a given stock, over a time 

interval [t;t +At] is attempted and it is found that NA, displays long-range power-law 

correlations in time which leads to the interpretation that the long-range correlations 

previously found for IGMr are connected to those of NA,. 

In [16] a statistical physics model for the time evolutions of stock portfolios in the spin 

glass framework is proposed. In this model the time series of price changes are coded into 

the sequences of up and down spins. The Hamiltonian of the system is introduced and is 

expressed by spin-spin interactions as in spin glass models of disordered magnetic 

systems. The interaction coefficients between two stocks are determined by empirical 
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data coded into up and down spin sequences using fluctuation-response theorem. Monte 

Carlo simulations are performed and the resultant probability densities of the system 

energy and magnetization show good agreement with empirical data. 

The emergence and consequences of large scale regularities, which, in particular, occur in 

the presence of fat tails in probability distributions in macro-economy and quantitative 

finance are studied in [ 17]. 

In a closed economic system, money should be conserved. Thus, by analogy with energy, 

the equilibrium probability distribution of money must follow the exponential Gibbs law 

characterized by an effective temperature equal to the average amount. of money per 

economic agent. In [19], it is shown how the Gibbs distribution emerges in computer 

simulations of economic models. A thermal machine is then considered, in which the 

difference of temperatures allows one to extract a monetary profit. The role of debt, and 

models with broken time-reversal symmetry for which the Gibbs law does not hold are 

also discussed. 

In [18], by analogy with energy, the equilibrium probability distribution of money is 

postulated to follow the exponential Boltzmann-Gibbs law characterized by an effective 

temperature equal to the average amount of money per economic agent. A thermal 

machine which extracts a monetary profit can, then, be constructed between two 
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economic -systems with different temperatures. Using data from several sources, it is 

found that the distribution of income is described for the great majority of population by 

an exponential distribution, whereas the high-end tail follows a power law. The Lorenz 

curve and Gini coefficient have been calculated in this study and are shown to be in good 

agreement with both income and wealth data sets. The Heston model, where stock-price 

dynamics is governed by a geometrical (multiplicative) Brownian motion with stochastic 

variance, is also studied. The corresponding Fokker-Planck equation is solved exactly. 

Integrating out the variance, an analytic formula for the time-dependent probability 

distribution of stock price changes (returns) is found. The formula is in excellent 

agreement with the Dow-Jones index for the time lags from I to 250 trading days. 

Different levels of complexity which are observed in the empirical investigation of 

financial time series are considered in [20]. Recent empirical and theoretical work is 

reviewed showing that statistical properties of financial time series are rather complex in 

several ways.. Specifically, they are complex with respect to their (i) temporal and (ii) 

ensemble properties. Moreover, the ensemble return properties show a behavior which is 

specific to the nature of the trading day reflecting if it is a normal or an extreme trading 

day. Important work in regard to classical renewal theorems have been reported in [170-

171]. 

In [21], the authors have used an analogy with statistical physics to describe probability 

distributions of money, income, and wealth in society. By making a detailed quantitative 
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comparison with the available statistical data, they show that these distributions are 

described by simple exponential and power-law functions. 

[22] is another review article wherein econophysics developments in four areas, including 

empirical statistical properties of prices, random-process models for price dynamics, 

agent-based modeling, and practical applications have been elaborated. 

Enrique Canessa in [93], addresses the issue of stock market fluctuations within Langevin 

Dynamics (LD) framework and the thermodynamic definitions of multifractality in order 

to study second-order characterization given by the analogous specific heatCq , where q 

is an analogous temperature relating the moments of the generating partition function for 

the financial data signals. Due to non-linear and additive noise terms within the Langevin 

Dynamics, it was found that Cy  can display a shoulder to the right of its main peak as 

also found in the S&P500 historical data which may resemble a classical phase transition 

at a critical point. 

Statistical analyses of the general and sectorial historical M.I.B. indices of the Milan 

stock exchange were performed in [I I]. The analysis showed that the price indices have 

statistical properties which are compatible with a Levy random walk. The time evolution 

of the daily variations of indices was intermittent on a time scale of years and the 

variance of almost all indices displayed a superdiffusive behavior. By using the theory of 



enhanced diffusion in Levy walks as theoretical framework the authors ascribed the 

superdiffusive behavior to a nonlocal memory coupling price and time. 

Statistical properties of the number of shares traded Q,  for a given stock in a fixed time 

interval At were studied in [27].Transaction data for the largest 1000 stocks for the two-

year period 1994-95 are analyzed. It is found that for transaction for all securities in three 

major US stock markets. That the distribution P (QQ,) displays a power-law decay, and 

that the time correlations in QA, display long-range persistence. Further, the authors also 

investigate the relation between Qo, and the number of transactions No, in a time 

interval At, and find that the long-range correlations in Q1 , are largely due to those 

of Na,. Their results are consistent with the interpretation that the large equal-time 

correlation previously found between Qo, and the absolute value of price change IGo, 

(related to volatility) are largely due to No,. 

In [28], another similar empirical study an attempt to quantify the relation between 

trading activity—measured by the number of transactions N —and the price change 

G (t) for a given stock, over a time interval [t, t +At] was made. The time-dependent 

standard deviation of price changes—volatility—to two microscopic quantities: the 

number of transactions N(t) in At and the variance W 2  (t) of the price changes for all 

transactions in At was examined. It was observed that the long-ranged volatility 
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correlations are largely due to those of N. The authors also argue that the tail-exponent 

of the distribution of N is insufficient to account for the tail-exponent of P {G > x} . Since 

N and W display only weak inter-dependency, they claim that their results show that the 

fat tails of the distribution P {G > x} arises from W, which has a distribution with power- 

law tail exponent consistent with the estimates for G. 

A phenomenological study of stock price fluctuations of individual companies is 

presented in [30]. A systematic analysis of two different databases covering securities 

from the three major U.S. stock markets: (a) the New York Stock Exchange, (b) the 

American Stock Exchange, and (c) the National Association of Securities Dealers 

Automated Quotation stock market is performed. Specifically, the authors consider (i) the 

trades and quotes database, for which they analyze 40 million records for 1000 U.S. 

companies for the 2-yr period 1994-95; and (ii) the Center for Research and Security 

Prices database, for which they analyze 35 million daily records for approximately 16 

000 companies in the 35-yr period 1962-96. A study of the probability distribution of 

returns over varying time scales At, where At varies by a factor of 105 , from 5 min up 

to conducted 4. For time scales from 5 min up to approximately 16 days, it is found 

that the tails of the distributions can be well described by a power-law decay, 

characterized by an exponent 2.5 <a4,  well outside the stable Levy regime 0 <a2.  For 

time scales At >> (At) 	16 days, results consistent with a slow convergence to Gaussian 
Y , 

behavior emerge. The examine the role of cross correlations between the returns of 



different companies and relate these correlations to the distribution of returns for market 

indices. 

Furthermore, with the rapid advancements in the evolution and study of disordered systems 

and the associated phenomena of nonlinearity, chaos, self organized criticality etc., the 

importance of generalizations of the extant mathematical apparatus to enhance its domain 

of applicability to such disordered systems is cardinal to the further development of 

science. 

•A considerable amount of work has already been done and success achieved in the broad 

areas of q-deformed harmonic oscillators [38], representations of q-deformed rotation and 

Lorentz groups [39-40]. q -deformed quantum stochastic processes have also been 

studied with realization of q-white noise on bialgebras [41]. Deformations of the Fokker 

Planck's equation [42], Langevin equation [94] and Levy processes [43-44] have also 

been analyzed and results reported. 

In [94], using the system bath interaction model with the bath consisting of q - deformed 

harmonic oscillators, a q- deformed version of the quantum Langevin equation is derived, 

time correlation commutation relations for the deformed noise operator were computed 

and an expression for the frequency dependent damping coefficient was arrived at. 

Nonlinearity interpretations of q-deformations were also discussed. 
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A J Macfarlane [38] , has discussed the quantum group SU(2) by a method which is 
9 

comparable to the method used by Schwinger to develop the quantum theory of angular 

momentum. q -analogue of the quantum harmonic oscillator is required for this purpose 

and is developed. 

L C Biedenharn [39], has constructed a new realization of quantum group SUq  (2) by 

means of a q -analogue to the Jordan-Schwinger mapping, thus determining both the 

complete representation structure and q -analogues to the Wigner and Racah operators. 

To achieve this realisation, a new elementary object is defined, a q -analogue to the 

harmonic oscillator. The position and momentum of q - harmonic oscillator posses a 

very uncertain and unusual relation. 

S Zakrzewski [40], has selected quantum Lorentz groups H and quantum Minkowski 

spaces V. The natural structure of a quantum space G = V x H is introduced, defining a 

quantum group structure on G only for triangular H (q = I). We show that it defines a 

braided quantum group structure on G for q = I 

The q-Poincare group of M. Schlieker et al. [95] is shown to have the structure of a semi 

direct product and co product B x SOy  where B is a braided-quantum group structure on 

the q-Minkowski space of four-momentum with braided-co product Ap=p®i+iap . Here the 

necessary B is not a usual kind of quantum group, but one with braid statistics. Similar 



braided vectors and covectors V (R),V x R exist for a general R - matrix. The abstract 

structure of the q-Lorentz group is also studied. 

Michael Schurmann [41], in his article has established a connection between the Azema 

martingales and certain quantum stochastic processes with increments satisfying q-

commutation relations. This leads to a theory of q-white noise on q-*-bialgebras and to a 

generalization of the Fock space representation theorem for white noise on *-bialgebras. 

In particular, quantum Azema noise, q-interpolations between Fermion and Boson 

quantum Brownian motion and unitary evolutions with q-independent multiplicative 

increments are studied. It follows from their results that the Azema martingales and the q-

interpolations are central limits of sums of g-independent, identically distributed quantum 

random variables. 

C. Blecken and K.A. Muttalib [42], have shown the effect of an external perturbation on 

the energy spectrum of a mesoscopic quantum conductor which can be described by a 

Brownian motion model developed by Dyson who wrote a Fokker-Planck equation for 

the evolution of the joint probability distribution of the energy levels. For weakly 

disordered conductors, which can be described by a Gaussian random matrix ensemble, 

the solution of the Fokker-Planck equation has recently been obtained to give the 

correlation of level densities at different energies and different parameter values. In this 

paper the author generalize this calculation to the case of a q-random matrix ensemble 

which should be relevant for conductors at stronger disorder. 



U Franz et al [43], have indicated that evolution equations like the heat or diffusion 

equation or the Schrodinger equation can be associated with stochastic processes. In this 

paper they have studied the relation between equations of the form a fu = Lu and Levy 

processes (i.e. quantum stochastic processes with independent and stationary increments) 

on quantum groups and braided groups. Solutions of such equations are calculated as 

Appell systems. Wigner distributions of these processes are defined and it is proven that 

they satisfy a Fokker-Planck equation. 

V.I. Man'ko et al [44],have studied a nonlinearity of electromagnetic field vibrations 

described by q-oscillators which is shown to produce an essential dependence of second 

order correlation functions on the intensity and deformation of the Planck distribution. 

Experimental tests of such a nonlinearity are suggested. They have also suggested that q-

oscillators are associated to the simplest non-commutative example of Hopf algebra and 

may be considered to be the basic building blocks for the symmetry algebras of 

completely integrable theories. They may also be interpreted as a special type of spectral 

nonlinearity, which may be generalized to a wider class off-oscillator algebras. In the 

framework of this nonlinear interpretation, the authers have discussed the structure of the 

stochastic process associated to q-deformation. The role of the q-oscillator as a spectrum-

generating algebra for fast growing point spectrum, the deformation of fermion operators 

in solid-state models and the charge-dependent mass of excitations in f-deformed 

relativistic quantum fields are also discussed. 
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A study of the quantum features of the Universe evolution, proposing the problem of 

using "local" physical laws even on cosmic scale was conducted in [97-99] thereby 

proving a rationale for attempting their applicability in the behavioural sciences. 

A new model of Evolutionary Neural Gas (ENG) with any topological constraints, 

trained by probabilistic laws depending on the local distortion errors and the network 

dimension has been contributed to the literature in [96-98] and it is shown that the 

network, considered as a population of nodes that coexist in an ecosystem sharing local 

and global resources, because of these features is quickly able to adapt to the 

environment, according to its dimensions. 

2.6 NONLINEARITIES, CHAOS & STOCK MARKETS 

There exist two traditional approaches to the modeling of a dynamical system. In the first 

approach, the dynamical deterministic equations of motion are obtained from first 

principles as differential / difference equations that are integrated forward in time and 

solved as an initial value problem. This methodology, although strongly preferred due to 

its exactness, is sometimes impracticable, particularly when we are analyzing the 

dynamics of many particle systems with complicated interactions among the constituents. . 

In such cases, either the number of degrees of freedom becomes so large as to make the 

first-principles model intractable or the initial conditions pertaining to each degree of 

freedom become inaccessible. Attempts are, then, made to model the dynamics as a 
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random process with stochastic, though linear, laws of motion. There was believed to be 

no region of overlap between these two well-defined approaches. 

Chaos, as a physical phenomenon, has attained recognition relatively recently. Its origin, 

in its modern form, may be traced to the revolutionizing work of the master French 

mathematician Henri Poincare in the I890s', on the mathematical aspects of planetary 

motion, treating it as a three-body problem. Through the use of topological methods, he 

established that there is no simple solution to the three-body problem. During the course 

of his analysis, he realized that if one takes two different readings on the position of a 

planet, then, irrespective of the proximity of the two readings, the orbits of the planets 

might separate away from each other, after enough time. Hence, accurate prediction of 

the orbit of any planetary body was impossible. Chaos was, thus, born. 

The most apt yet striking manifestation of chaos is summarized in the following 

statement attributed to Edward Lorenz:- 

"The flapping of butterfly wings in Rio de Janeiro could bring on a tornado in Texas 

several weeks later!" 

This is what Edward Lorenz concluded one fine day when he was running a mathematical 

model of the weather on his computer. It so happened that in order to recheck some 

results on his weather forecasting model, he decided to re-input his data from the earlier 

printouts and run the program again. The results were quite inconceivable — although the 

52 



immediate values of the variable were identical, major divergences surfaced as the run 

steps was extended — in fact, no significant resemblance was observed between the results 

of the two runs after a sufficiently long period. Thus, starting from nearly the same initial 

conditions, weather patterns were produced that grew further and further apart until all 

association disappeared. 

On investigation, the cause of this highly paradoxical scenario was traced to a very trivial 

matter — while the printer had printed data upto six decimal points which constituted the 

data fed for the second run, the computer had calculated data upto eight decimals. The 

. data that was fed for the second run was, therefore, minutely different from the data that 

was used in the first run. Amazing as it may sound, it was these minute differences that 

manifested themselves as gigantic divergences in the output — this, indeed, is chaos. 

This property that manifests itself through sensitivity to initial conditions with a 

consequential unpredictability is generally termed as Chaos. The discovery of chaos has 

destroyed the deterministic image of the modern world leading to new directions of 

research and providing a fillip to the ergodic description of systems. 

Chaos provides a link between deterministic systems and random processes. In a 

deterministic system, chaotic dynamics can amplify small differences, which in the long 

run produce effectively unpredictable behavior. On the other hand, it is possible that not 

all random-looking behavior is the product of complicated interactions and hence, may 

well be tractable in the deterministic framework. The existences of non-linearities in only 
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a few degrees of freedom are sufficient to generate chaotic motion. In such cases, it is 

possible to model the system behavior deterministically and to make short-term 

predictions that are far better than those that would be obtained from a linear stochastic 

model. Chaos is thus a double-edged sword: it implies that even approximate long-term 

predictions may be impossible, but that very accurate short-term predictions may be 

possible. Hence, chaos has both good and bad implications for the prediction problem. 

Decision making of all kinds [100-101] including investments in the capital markets, 

rests on our ability to predict the future. However, business and, indeed, life in general, is 

not predictable. Researchers and practitioners in accounting and finance often investigate 

or advocate particular disciplined trading strategies, but little work investigates the 

determinants of individual investors' trading-strategy reliance. Experiments in this regard 

have been reported in [102-107]. Violations of economic rationality have been observed. 

Conventionally, in decision theory, this lack of predictability is explained by factors such 

as lack of information or the limitations of prediction techniques. Chaos theory, however, 

provides a radically opposite explanation, in that it accepts unpredictability as an inherent 

attributes of a wide range of phenomena, so that, forecasting may be an entirely futile and 

wasteful exercise. 

Prediction and forecasting have, hitherto, relied essentially on various linear models like 

regression, linear programming, capital budgeting and so on [108-111]. It is, however, 

now established beyond doubt that all fundamental processes of Nature have various 

54 



degrees of non-linearity. In fact, Chaos is a manifestation of the non-linearities inherent 

in a system in so far as such unpredictable phenomena are forbidden in linear systems by 

the very virtue of their linearity. 

A corollary to this ubiquitous non-linearity is the high degree of approximation 

incumbent in all the contemporary decision making processes. Chaos theory emphasizes 

that because of this sensitivity to initial conditions, many events simply cannot be 

predicted, because it would be impossible to know and monitor all the variations that 

might have a significant effect on the outcomes. 

A:'compact, concise and universally acceptable definition of Chaos has, hitherto, eluded• 

the scientific community. However, the following are conventionally accepted as the 

inherent characteristics of a chaotic system:- 

• Exponential divergence of neighboring trajectories in phase space; 

• Sensitive dependence on initial conditions; 

• Existence of fractal dimensions; 

• Critical levels and bifurcations at which the system's behavior radically changes; 

• Time dependent feedback. 

As had happened, in the case of Edward Lorenz, chaotic systems are highly sensitive to 

initial conditions insofar as minor differences tend to get magnified manifold with 

X(1)  = 1 + y, - axt  2 

y(t+i) = bx 
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the evolution of the system. This is illustrated in the Henon Map, defined by the 

following set of simultaneous difference equations:- 

iFigure 2.1 

Figure 2.2 
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While the origin of this sensitive dependence may be attributed to the existence of time 

dependent feedback mechanisms, the implications are devastating. Unpredictability 

becomes an inherent attribute and long term forecasting becomes a futile exercise. 

Marginally small errors in data collection would manifest themselves magnified manifold 

in forecasted output. For all we know, even with the best available measurement devices, 

error free measurement is impossible, a fundamental lower limit being imposed by 

Heisenberg's Uncertainty Principle. 

Chaos theory propounds the adoption of a radically new perspective to forecasting. It 

emphasises the need to acknowledge the true dimensions of uncertainty in its 

absoluteness and to discard the conventional and traditional so called "rationalistic" 

models like the Efficient Market Hypothesis. Chaos theory recognises the existence of 

disorder, discontinuities and randomness as inherent properties or norms rather than as 

aberrations. Consequent to the acceptance of unpredictability as an inherent property, 

chaos theory tends to dwell heavily on the necessity of development of adequate "fire 

fighting" mechanisms as an indispensable part of planning and forecasting. 

Several studies [48, 50-51, 112-113] adopting largely diverse and independent 

approaches have established the existence of the following characteristics in the behavior 

of stock markets:- 

Long term correlation and memory effects 
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• Occasional existence of erratic markets 

• Existence of fractal dimensions in stock market time series of returns 

• Less reliable forecasts with increase in the horizon 

thereby establishing the probable existence of chaotic behavior of stock markets. 

As mentioned above, the phenomenon of chaos is a manifestation of the non-linearities 

intrinsic to the dynamic equations of motion that govern the time development of a 

system. In the next section, we look at some approaches that have been devised to 

examine the existence or otherwise of nonlinear and chaotic behavior in time series data 

that represents the evolution of discrete phenomena like the prices of stocks in capital 

markets. 

2.7 RESCALED RANGE - ANALYSIS & COMPUTATION OF 

HURST'S EXPONENT 
Variance has been, traditionally, used in one guise or another as the statistical measure of 

risk. Variance measures the probability that an observation will be a certain distance from 

the average observation. The larger this number, the wider the dispersion. Wide 

dispersion would mean that there is a high probability of large swings in returns. The 

security is risky. However, the use of variance as a measure of risk inherently assumes 

that the underlying system is random. If the observations are correlated, then the 

usefulness of variance as a measure of risk is considerably weakened. We illustrate our 

point by an example. We consider two possible series of stock market. returns, say A & 



Observation A B 

1 0.02 0.01 

2 -0.01 0.02 

3 -0.02 0.03 

4 0.02 0.04 

5 -0.01 0.05 

6 0.02 0.06 

Standard Deviation 0.17 0.0171 

Table 2.3 

A is a trendless series while B has a clear trend. Both have almost the same standard 

deviation. The two stocks with virtually identical risk (as measured by the standard 

deviation) have vastly differing return characteristics. The obvious fallacy is that both 

series are not normally distributed, but then the same is the case with the stock markets. 

As mentioned above, numerous studies have shown the non-random character of the, 

stock market returns, thereby questioning the usefulness of variance as a comparative 

measure of risk. 

A time series will be truly random when it is influenced by a number of events that are 

equally likely to occur i.e. .e. the system has a large number of degrees of freedom. In a 

non-random series the data will clump together to reflect the correlation inherent in its 

influences and the time series will be a fractal. 
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The stock markets are modelled as a process that happens in time. As is the case with 

most systems modelling, this process is treated either as a discrete static process or a 

continuous random process. However, neither assumption entirely gels with reality and 

nor extreme is a complete and sophisticated treatment of the subject. The commonality 

underlying both these assumptions is that they are linear i.e. either they are always static 

or always random. Time either does not affect the system or does so at a uniform rate. 

Most financial returns, including stock returns have shown deviation from Gaussian 

behaviour at short time scales with the variance not scaling with the sq. root of timescale, 

an attribute that is symptomatic of the possible existence of power law distributions. A 

useful measure of quantifying deviations from the Gaussian distribution is the Hurst's 

exponent. If a population is Gaussian, a Hurst's exponent of 0.5 is mandated. Empirical 

evidence, however, shows that the Hurst's exponent for typical stock market data is 

around 0.6 for small timescales of about a day or less and tends to approach 

0.5 asymptotically with the lengthening of the timescales. Empirical evidence also 

demonstrates the existence of memory effects, particularly in stock price volatilities that 

show long-term memory effects with lag-s autocorrelations. Further, these effects tend to 

fall off according to a power law rather than exponentially. 



CHAPTER 3 

OPTION PRICING MODEL WITH DEFORMED 

BROWNIAN MOTION 

Abstract 

The Black Scholes model of option pricing constitutes the cornerstone of contemporary 

valuation theory. However, the model presupposes the existence of several unrealistic 

assumptions including the lognormal distribution of stock market price processes. There, 

now, subsists abundant empirical evidence that this is not the case. Consequently, several 

generalizations of the basic model have been attempted with relaxation of some of the 

underlying assumptions. In this Chapter, we postulate a generalization that contemplates 

a statistical feedback process for the stochastic term in the Black Scholes partial 

differential equation. Several interesting implications of this modification emanate from 

the analysis and are explored. 

3. 1 INTRODUCTION 

With the rapid advancements in the evolution and study of disordered systems and the 

associated phenomena of nonlinearity, chaos, self organized criticality etc., the importance 

of generalizations of the extant mathematical apparatus to enhance its domain of 

applicability to such disordered systems is cardinal to the further development of science. 

A possible mechanism for achieving this objective is through deformation of standard 

mathematics. 
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In this Chapter, we attempt a generalization of the Black Scholes formula for the pricing 

of contingent financial claims based on the deformation of the standard Brownian motion. 

Section 2, which forms the essence of this Chapter, attempts a deformation of the 

standard Black Scholes pricing formula. In Section. 3 we illustrate the theory developed 

in the previous section with a concrete example. Section 4 addresses issues relating to 

empirical relevance of the model. Section 5 concludes. 

3.2 THE GENERALIZED BLACK SCHOLES MODEL 

The standard analysis of the Black Scholes formula for option pricing presupposes that 

the stock price follows the lognormal distribution. However, significant empirical 

evidence now subsists of the stock returns deviating from the lognormal distribution with 

"fat tails" and a "sharp peak" which better fit the truncated Levy flights or other power 

law distributions [13,114, 115]. To broadbase the Black Scholes model, generalizations 

by way of "Levy noise" and "jump diffusions" [25] have already been studied. In this 

Chapter, we propose a model that incorporates a "weighted Brownian motion" as the 

stochastic (noise) term, where the weights themselves are a function of the "Brownian 

motion / noise" i.e., 

dW,P -~ d U P = f (U,P , t )dW,P 
	

(3.1) 

1" is a regular Brownian motion representing Gaussian white noise with zero mean and 

S correlation in time i.e. E P (dW,dW,,) = dtdt' 8(t - t') and on some filtered probability 

space (0, (F, ), P). We, further, mandate that the function f (U P, t) satisfies the Novikov 
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condition and that the process UP = f (UP, s) dWs?  is a local P -martingale with a non 

normal distribution. This requirement is not as restrictive as it may seem at first sight in 

context of the applications envisaged. We shall address this issue again in the sequel. 

This generalization contemplates a statistical feedback process. In this context, several 

studies on stock market data have shown the existence of nonlinear characteristics and 

chaotic behavior that lend credence to the existence of a statistical feedback mechanism 

of market players. Explanations for the existence of "fat tails" in stock market data have 

been offered through this statistical feedback process e.g. "extremal events" cause 

"disproportionate reactions" among market players. The deformed noise proposed herein 

may also capture the "herd behavior" of stock market investors. The model also 

encompasses time dependent return processes since f is a function of UP and t so that 

the drift term varies with time. 

We define the European call option as a financial contingent claim that entails a right (but 

not an obligation) to the holder of the option to buy one unit of the underlying asset at a 

future date (called the exercise date or maturity date) at a price (called the exercise price). 

The option contract, therefore, has a terminal payoff of max(S,. — E,0) = (ST  — E)+  

where S. is the stock price on the exercise date and E is the exercise price. 
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We consider a non-dividend paying stock, the price process of which follows the 

geometric Brownian motion with drift S, = e("`P )  under the probability measure P with 

drift u and volatility or . The logarithm of the stock price Y, = In S, follows the 

stochastic differential equation 

dY, =pdt+adUP = pdt+[6f(UP,t)kiw/' 	 (3.2) 

Application of Ito's formula yields the following SDE for the stock price process 

dS, =(P+ [crf(UP,t)}2  lS,dt+[af(Uf,t)JS,dW r 	 (3.3) 
l 

We also introduce a "bond" in our market to factor in the "true value of money", that 

evolves according to the following price process 

dB,  = rdt, Bo  =1, 	 (3.4) 
B, 

where r is the relevant risk free interest rate. 

Let C(S,,t)denote the instantaneous price of the call option with exercise price E at any 

time t before maturity when the price per unit of the underlying is 5',. We assume that 

C(S,,t) does not depend on the past price history of the underlying. Applying the Ito 

formula to C(S,,t)yields 



 DC 	 I 
dC, =[[+i  [°f(,P't)1 )Sr 8S + 7~ + 2 `

r
ÙP't

)
~ s̀ z 

aS2 ]dt + DC 	 r dW,P , 	(3.5) 

Applying Girsanov's theorem to the price process (3.3), we perform a change of measure 

and define a probability measure Q such that the discounted stock price process 

Z, = S,e-" or equivalently 

dZ, =(,a—r+ [of(Uf,t)J )zIdt+[6f(U;',t)]Z,dW 
	

(3.6) 

behaves as a martingale with respect to Q. This is performed by eliminating the drift 

term through the transformation 

UP~t 	—*Yr 

	 (3.7) 

whence W,Q = W,P +7,t is a Brownian motion without drift with respect to the measure 

Q and dZ, = [6f (UQ, t)]Z,dW,Q which is driftless under the measure Q and hence, Z, is a 

Q martingale. 
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The equivalence of [o f (U,P ,t)]ZdW,P  and [orf (UQ,t)]ZdWQ follows from the fact 

that both W Q ,W" are zero mean Weiner processes and that f (UQ,t) can be expressed in 

terms of f (UP,t)through dZ, _ [c (U,O ,t)j,dW,Q along with eq. (3.6). The noise terms 

in dZ, _ [of (UQ, t)jz,dW,Q and eq. (1.6), will, therefore, be equivalent stochastically. 

The two measures P & Q are, related through the Radon Nikodym derivative which in the 

deformed case takes the form 

4(t) = dQ = exp(— l y,dW `' — 1  f y?dtJ 	 (3.8) 
dP 	o 	2 0 

and the expectation operators under the two measures are related as 

EQ(X,1,  ',)= -'(s)E P(((t)X,I F,) 	 (3.9) 

Our next step in martingale based pricing is to constitute a Q martingale process that hits 

the discounted value of the contingent claim i.e., call option. This is formed by taking the 

conditional expectation of the discounted terminal payoff from the claim under the 

Q'measure i.e. 

E, =EQIe-rT(ST— E)+IF,]. 	 (3.10) 



We now constitute a self-financing strategy that exactly replicates the claim and whose 

value is known with certainty. 

Making use of 0, units of the underlying asset and yr, units of the bond, where 

aC(S„t) 
=  0, 	aS 	

, B,yr, = C(S,, t)-- çb,S, , we can now construct a trading strategy that has the 

following properties 

(a) it exactly replicates the price process of the call option i.e. 

çb,S, + yr,B, = C(S,,t),`dt E [0, T]. 	 (3.11) 

(b) it is self financing i.e. çb,dS, + ,v,dB, = dV,, Vt E [0, T]. 	 (3.12) 

Using eqs. (3.1), (3.3), (3.11) & (3.12) we have 

dC = (0,,uS, + 2 0,[oj(UP,t)rS, +yr,rB,Jdt+0,[6f (U,P ,t)~S,dW,P. 	 (3.13) 

Matching the diffusion terms of (3.3) & (3.13) and using (3.11), we get the aforesaid 

expressions ford, and yr, respectively. The value of this portfolio at any time tcan be 

shown to be equal to V, = e''E, with E, being given by eq.(3.10). It follows that the value 

of the replicating portfolio and hence of the call option at time t is given by 
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V, = e"E, = e 	E° [(ST — E)+ I F, ] = e-'(T -' )EQ [(ST — E) 1(s >E) 

= e-r(T-l) 	 (S(U° UQ t)dUQ 	
(3.14) 

The expectation value of the contingent claim max(ST — E,0) = (ST — E)+ under the 

measure Qdepends only on the marginal distribution of the stock price process S, under 

the measure Qwhich is obtained by writing it in terms of Q Brownian motion W. . We 

have, from eq'.(3.2), for the deformed stock price process under the measure Qas 

d(In S,)= pdt+[6f(U,P ,t)]dW,P 	— [oy (U,t)}2 )dt+1Cf(UQ't*WQ 	(3.15) 

which on integration yields 

S, =s exp , [csf (UQ, t)~C1WQ + J 

(

r — [6f (U,O , t)~ ~ls 	 (3.16) 
[o 0 	 JJ 

The value of the call option can now be computed by using eq. (3.14). The existence or 

otherwise of a closed form solution would depend on the explicit representation of the 

function f (U, t) . 

The following observations are cardinal to the above analysis. 
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(a) 	We have, implicitly, made the standard assumption of the market satisfying the 

"No Arbitrage" condition. It is well known that long-term market equilibrium 

cannot subsist in the presence of arbitrage opportunities. This "No Arbitrage" 

condition guarantees the existence and measurability of y, defined by eq. (3.7) as 

is proved below: 

For this purpose, we assume that there exist values of U," for which 

0 and hence, y, does not exist. Let X, _ {U,P : f(U,P ,t)=0} . We 

construct a portfolio (b, yr) of the normalized stock process (S,) and the bond 

process 	(B,) 	where 	
0 = B for UP E X, 	

and 
0 for U, 0-X, 

r 	 r 

= t/r 0 + Ø0So + Je-'`c_r dS.s — f re-~`O_rds — e- 'q5,S, , Bo =1 and the normalized 
0 	 0 

stock process i.e. the stock process adapted to a market with zero interest rates 

being given by S, = S,e- ' and dS, = e- "dS, — re-"S,dt . 

The portfolio is self financing since V, = iii, +Ø,S, . 

Further, 

V, —Vo =J0.,dS. =
J 

e ~S I ,u+2
[

of
(
Us ,s~]z —r fO.sSsds+Je-~.sr°f(U.P s)1~'.,S.sdTP o \ 	J  L 

f

Nx e ( ,u+ 
[c (`, 	s)}2_rJ ,Ssds+j Nxx e rs[ UP,s)~Sd YY =  Nx a~S(u—r)qSsds> 0 o ` 



where t' A , is the characteristic function of the set X,V U, t But under the "No 

Arbitrage" condition V, — V0  <_ 0. It, therefore, follows that N. = 0 VU,(  and 

hence, X, = 0 . 

(b) In the standard Black Scholes theory, the Novikov condition is automatically 

satisfied due to the constancy of y, = y . However, in the deformed version, this 

condition needs to be explicitly imposed to ensure the applicability of the 

Girsanov's theorem and hence, the existence of the equivalent martingale 

measure Q . Hence, we require that the function f(U,t)  to be such 

T 
that E'' exp 1  f (y`  )2  ds < co . 	As mentioned above, this condition is not 

26 

very restrictive insofar as the applications of this model are concerned, since 

f(U,t)  would normally take the form of probability distributions and hence, be 

non zero bounded functions, thereby, automatically satisfying the square 

integrability requirements. 

(c) Except for the Novikov condition, which needs to be explicitly imposed in the 

deformed model as mentioned in (b) above, our analysis is equivalent to the 

standard Black Scholes model since f(U,t) can be expressed as a function of Y, 

the logarithm of the stock price S through eq. (3.2); 
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(d) 	The "No Arbitrage" condition together with the Novikov Condition guarantee the 

completeness of the market and hence, the availability of replicating portfolios for 

the valuation of any contingent claim, This is established by showing that there 

exists a self financing portfolio (çb, Vr) defined as in (a) above that exactly 

replicates the terminal payoff of any lower bounded contingent claim, say C(S„t). 

Mathematically, this implies that there exists a real number e such that 

r 
C(ST ,T) = VT = s + (ço,dS, + yr,dB,) or equivalently 

0 

C(S,T)=VT  

r 

=er' e+ J e r`(µ+2[`y( ,t)}-r S,dt+ je[ U7 t)dPi,( =e'T
L
e+ f e-r,[q ,t)}i d ] 

0 
0 

By the Martingale Representation Theorem, there exists a function 77, such that 

STs C( T)rTJQ rrTC(ST , 	J= e E e 	T)]+ T̀  Sr 	Q dW 	Hence, we can identify ~ l  

E = EQ [e-rT C(ST ,T)] .and 0, = e” [of (U,t)r'77, . By selecting the bond component 

of the portfolio (V) according to yr, = WO + f e-'`dA.S where A s = f cv dS,, — cSS, , 
0 	 0 

we can make our portfolio (çb, yr) self financing. This is shown below. We have, 

dV, =d(yrer`+q,S,)=rer'yr,dt+e"d(W)+d(q,S,)=ri'y,dt+er̀ d)+d(q$,S,)=ri'y,dt+O,dS, 

as required. Furthermore, 
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ye =ergs+j~u v )=e"I 6+J7lvSvdWo1 _ er, E~ (e-rTV~~F)=erlEQ~e rTCr(S,T'T yF 
o  

showing that V,E is lower bounded and hence, establishing the completeness of the 

market. 

3.3 AN ILLUSTRATION OF THE DEFORMED MODEL 

We now present a concrete example as an application of the aforesaid analysis. For the 

purpose, we consider a Brownian motion of the form 

dW,P —~ dU,' = f (U;',t)' dW,P 
	

(3.17) 

where f (U," , t) is a probability density function. 

The incorporation of probability dependent term in the stochastic force an enables us to 

describe nonlinear return processes where the randomness is not uniform across the entire 

return spectrum. In the standard theory, we envisage a random process that is 

independent of the level of returns and hence, if a sufficient number of observations are 

accumulated, the entire spectrum of possible returns will be traversed. However, through 

this deformed noise function we can model return processes that change with the 

respective probability of such returns i.e. the degree of randomness changes across the 

return spectrum — highly frequented regions of the spectrum may have higher/lower 
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returns depending on the nature of the deformation function. Hence, a biased yet random 

return process can be accommodated. Although, in theory, the entire return spectrum may 

still be traversed if a sufficient number of observations are made, the dependence on 

probabilities enable the modeling of systems that require a cleavage of the return 

spectrum to create an effectively nonergodic space for the system. The model would also 

be versatile enough to encompass a return spectrum having the character of a multifractal 

which goes well with contemporary research findings in this area. Furthermore, unlike 

the standard case where W P  = jdW, p  is normally distributed, U,D  = f f (U, ) ,t)9  dW,P  is 
0 	 0  

no longer normally distributed but follows a skewed distribution depending on the. 

explicit representation of the function f (UP , t) and parameter q. 

Eq. (3.17) is equivalent to the Langevin equation [82] 

dUP  , f(Up,t )q  dW,P  _ f(UP,t)q  17(t) 	 (3.18) 
dt 	 dt 

q(t) is a noise function that satisfies 

(3.19) 

(r1(t')dt'r,(t")dt") = S(t'--t")dt' 	 (3.20) 
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The time evolution of the probability density f (UP,t) is given by the following 

equation [93] (The super (sub) scripts are suppressed for the sake of brevity) 

f(U,t + Ai) = f 
	

(3.21) 

J is the transition probability between states. We now set U'= U — AU and expand the 

integrand as a Taylor's series around f (U + AU, t + AtI U, t)f (U, t) to obtain 

f(U,t +AtlU',t)f(U',t)=—AU U  f(U+ AU, t+AIU,t)f(U,t)+ 
(3.22) 

DU 2  d.2  - 

2 dU2 
f(U+AU,t+AtjU,t)f(U,t)+......... 

Eq. (3.22) on integration gives 

f(U,t + At) =-dv [JAU f(U +AU,t+AtIU,tPAU f(U,t)+ 
(3.23) 

_ 1  d22  JAU 2  f(U+AU,t+AtlU,tkAU f(U,t)+......... 
2 dU 

We can further simplify the above expression, noting that U is a martingale, as follows:- 

f DUf(U +AU,t+AtJU,t)dAU=E,{AU}=E,[ +& f(U s ,$)Q dc]=0 	(3.24) 
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and 

f AV  f(U+AUt+N Ut)dAU= A[ors]=4[rf(U,,,)'q &] = f(U,t)2qAt+o(6t) 	(3.25) 

where the last step follows from Ito isometry. We have ignored terms of second and 

higher orders in At. Using the results in eqs. (3.24) & (3.25) in eq. (3.23) and taking the 

limit as At . 0 we obtain the Fokker Planck equation [92] for the time evolution of the 

deformed probability density (3.17) as 

df_ I d 2  f 2 ' 
dt 2 dU 2  (3.26) 

To obtain an explicit solution of eq. (3.26) for the probability density f (U,t) , we 

postulate a normalized scaled solution, which enables the separation of the U and 

t dependencies through the ansatz 

f (U,t) = g(t)H(Ug(t)) = g(t)H(z) 	 (3.27) 

Substitution from eq. (3.27) into eq. (3.26) and simplification yields 

	

gt)  a 	 z 
+3 	( zH `z) ) _ 1  a  Z  H  (Z)2q+t 	 (3.28) 

g (t) 	aZ 	l 	2 aZ 
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Writing 
2g() 

 g+3 = —k, we have 
g (t) 

g(t) = [(q+1)k(t —to )] z(q+i) 
	

(3.29) 

which gives the solution of eq. (3.26) as 

z 

f (U,t) = A(t—to ) 2(q+1) exp(,-zq){
B[(u_UQ)(t_tO)1)]} 

	 (3.30) 

where A = [(q + 1) k~-z(q+~) B-- Z 	and expq (x) _ [l + (1— q)x]l -q is the 
4(2q+1) 

q exponential function. k can be determined from the normalization 

condition j f(U,t)dU = 1, f (U,t) being a probability density function. -CO 

The transition probability density f(U,tjU,t0 ), that is the key element in option pricing, is 

the probability density f (U, t) with a special initial condition f (U, to ) = S (U — U0 ) i.e. 

f (U,tju,t) also obeys the Fokker Planck equation (3.26). Furthermore, it is seen that the 

solution for f (U,t) given by eq. (3.30) meets the S function initial condition in the 
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limit t -> to  , and is, therefore, also a solution for the transition probability 

density f(U,tI U0 ,to ) . 

As an illustration, the conditional probability density of the logarithm of the stock prices 

would be 

1 

_ 1iOt 
f (I;+eI JY) = A(At) 1) exp(1_29) B 	,a 	

(&)i) 	under 	the 

probability measure P and f (Y,+A  IY,) = A(At) z(e+1) exp( ,_Zq)  B 1  In  S+di  ( At)-z(q+I)]

2 j 

 
6 S, 

under Q. 

Using the expression (3.30) for f (U, t) with Ua  = 0, to  = 0 (which does not result in any 

loss of generality) in eq. (3.16), we derive the expression for the stock price process 

under the martingale measure Q and, thereby, of the contingent claim using eq. (3.14). To 

approximate J f (U, s)zq  ds we note that for any arbitrary value of time s, the distribution 
0 

of the random variable U s  can be mapped onto the distribution of a random variable w at 
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a 	fixed 	time 	T through 	the 	transformation 	U., _  
sJ 

I 	Z9 

Hence, l f (U, s)2  ds = f 
(T)-2(1+q)  

U,. , s ds 
o 	 S 

0 

(I 	 I 	Z 	Z  

= Azv s  (v+') exp
2,q=q) BU TT  Z(y+1) 	s = CI' )  exp2e2q)  BU TT z(y+l) 	(3.31) 

0 

where C = (q + 1)A2  

Furthermore, J f (U,t)v dW = U(t), in view of eq. (3.17). Substituting this result and that 
0 

of eq. (3.31) in eq. (3.16), we get the following expression for the stock price process in 

the martingale measure Q 

1 	2  
S, =S0  ex ail, +rt— 2 c 2Ct(v+' )  exp2v IiUTT 	 (3.32) 

(l 29) 

from which the value of the call option can be recovered using (3.14). It may, however, 

be noted that in the standard case the exponential is linear in W and the stock price, 

therefore, is a monotonically increasing function of W. Hence, the condition S, — E> 0 is 
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satisfied for all values of W that exceed a threshold value. However, in this illustration, 

consequent to the noise induced drift; the exponential in the stock price process is now a 

quadratic function of the deformed Brownian motion U. We, therefore, have two roots of 

U that meet the condition S, — E = 0. Accordingly, there will exist an interval (U, , u2 ) 

within which the inequality S, — E> 0 will hold. Furthermore, as q — 0 , U2 --* o0 

thereby recovering the standard case. Hence, we have 

U, 
\2 fl 

 

jf 
QU T +rT—ZC ZCT 	 exp ~9_iv) B

IUTT 2(9+') J 
V, = e-'~T-̀~ 	So e 	 — E f (U,.,T)dU (3.33) 

U 

As in the standard case, in the martingale measure based risk neutral world, the stock 

price distribution under Q is dependent on the risk free interest rate r and not on the 

average return u. We easily recover the standard results from the generalized model in 

the limit q —.0. 

3. 4 INTERPRETATION OF THE q INDEX 

Towards examining the interpretation of the q index in the context of the application 

being envisaged, we study the impact of the deformation of the standard exponential 
Q 

distribution g(U, ~) = CeIU'C.. For this purpose, we note that f (U, t) , with U0 = 0, to = 0, 

can be expanded in the form of a gamma distribution as 
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~/ 2 	1 l+2~q) _z(1+29~oRUa} 	 —
f(U,x)=A,"o 	 jx—( 	e 	dx where 	= t 	. We assume that 

F[(-2q) o 

there exists a function h(c)that modifies the exponential distribution g(U,4)to f(U,4-) 

i.e. that f (U, c) = A jh(c")eB"2'dc" . Identifying — 2q~0 x with ;' and comparing the two 
0 

~ 	 _l'+ ~ expressions for f we obtain h(c) = ç ~2 

I'(— 2q)- e 	(— 2gco)~~29 4' 29 . Using this 

expression for h(4') we obtain the expected values of 4' and ;2 as (~) = ç3/2 and 

ç2) _ (1 — 2q)C'11 which gives the coefficient of variation as (1 — 2q)'2 —1. Hence, it 

follows that if f (U, t) is a probability distribution function that satisfies the nonlinear 

Fokker Planck eq. (3.26), then its explicit representation is given as in eq. (3.30) where 

the parameter q is linearly related to the relative variance of ; = t ql ' Furthermore, 

since the relative variance depends on both q and = t -1'+`i1 ' , it follows that the function 

f (u, t) generates an ensemble of returns corresponding to various values of q over a 

particular time scale and also that, for a given q the distributions of returns evolves 

anomalously across differing timescales. 

3. 5 EMPIRICAL EVIDENCE 

The Black Scholes model assumes lognormal distributions of stock prices. However, 

deviations from such behaviour are, by now, well documented [116]. Empirical evidence 

testifies that probability distributions of stock returns are negatively skewed, have fat tails 



and show leptokurtosis [116]. Some of these features of empirical distributions are 

modelled through Levy distributions [ 117-120], stochastic volatility [ 121 ] or cumulant 

expansions [119] around the lognormal case. Each of these models, however, attempts to 

empirically attune the model parameters to fit observed data and hence, is equivalent to 

interpolating or extrapolating observed data in one form or the other. In contrast, the 

deformed noise model preserves the analytical framework of the Black Scholes world by 

retaining only one source of stochasticity and hence remaining within the domain of 

complete markets. It also provides a complete form solution with enables the prediction 

of option prices ab initio in lieu of parameter fitting to match observed data. 

In this context, the probability distribution function of eq. (3.30) generates power law 

distributions with consequential fat tails that are characteristic of stock price distributions. 

This fact is brought out explicitly by writing eq. (3.30), with Uo = 0, to = 0, in the form:- 

z  
f(U,t) =14t 4q+') exp(,-,q)[BLu2(J  '1 	=At ~9+̀ l I+2q B Ut *4 	--(2gMB) UYt (3.34) 

for sufficiently large values of t. 

A plausible explanation of the matching of empirical behaviour referred to in the 

preceding paragraphs and the probability distribution function (3.30) is based on the 

observation that ' if the stock prices show large deviations from the averages, then 
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f (U)would be small in line with the probabilities of extremal events being small. Since 

the exponent q is usually negative in the region of interest, the effective volatility would 

be accentuated. In terms of market behaviour, one could say that the traders would react 

extremally. On the other hand, mild deviations would cause moderate reactions from 

market players and hence, the effective volatility gets diminished. 

3.6 CONCLUSIONS 

Contemporary empirical research into the behavior of stock market price /return patterns 

has found significant evidence that financial markets exhibit the phenomenon of 

anomalous diffusion, primarily super diffusion, wherein the variance evolves with time 

according to a power law t" with a > 1.0 . The standard technique for the study of super 

diffusive processes is through a stochastic process that evolves according to a Langevin 

equation and whose probability distribution function satisfies a nonlinear Fokker Planck 

equation of the form (3.26). The very fact that our deformed noise function satisfies the 

nonlinear Fokker Planck equation is motivation enough for an adoption of this deformed 

Brownian motion with statistical feedback for the modeling of financial processes. 

Ever since the studies of Fama in 1964-65, evidence has been accumulating against the 

validity of the Efficient Market Hypothesis — the existence of negatively skewed 

observations and fat tails and distortion around the mean values are but a few [116, [8-

9,119-121]. Most financial returns, including stock returns have shown deviation from 

82 



e 

Gaussian behaviour at short time scales with the variance not scaling with the sq. root of 

timescale, an attribute that is symptomatic of the possible existence of power law 

distributions like the one being envisaged in this study. A useful measure of quantifying 

deviations from the Gaussian distribution is the Hurst's exponent. If a population is 

Gaussian, a Hurst's exponent of 0.5 is mandated. Empirical evidence, however, shows 

that the Hurst's exponent for typical stock market data is around 0.6 for small timescales 

of about a day or less and tends to approach 0.5 asymptotically with the lengthening of 

the timescales. Empirical evidence also demonstrates the existence of memory effects, 

particularly in stock price volatilities that show long term memory effects with lag-s 

auto correlations. Further, these effects tend to fall off according to a power law rather 

than exponentially. 

Furthermore, the access to enhanced computing power during the last decade has enabled 

analysts to try refined methods like the phase space reconstruction methods for 

determining the Lyapunov Exponents [122] of stock market price data, besides doing 

Resealed Analysis [123] etc. A set of several studies has indicated the existence of strong 

evidence that the stock market shows chaotic behavior with fractal return structures and 

positive Lyapunov exponents. Results of these studies have unambiguously established 

the existence of significant nonlinearities and chaotic behavior in these time series [125-

128]. 
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As mentioned above, several studies [116, 49-51, 97-98] adopting largely diverse and 

independent approaches have established the existence of the following characteristics in 

the behavior of stock markets:- 

• Long term correlation and memory effects 

• Erratic markets under certain conditions and at certain times 

• Fractal time series of returns 

• Less reliable forecasts with increase in the horizon 

thereby establishing strong evidence for the existence of chaotic behavior. In this context, 

the following are conventionally accepted as the inherent characteristics of a chaotic 

system [129-133]:- 

• Exponential divergence of trajectories in phase space; 

• Sensitive dependence on initial conditions; 

• Fractal dimensions; 

• Critical levels and bifurcations; 

• Time dependent feedback systems; 

• Far from equilibrium conditions. 

This provides us with a second motivation for the adoption of this deformed Brownian 

motion structure as a model for the random kicks since our model is based on a statistical 

time dependent feedback into the system. This feedback may be modeled into the system 



macroscopically through the explicit representation of the probability distribution 

function f (U,t) and microscopically through the stochastic process U. 

It needs to be emphasized here that the above is purely a phenomenological model for 

modeling stock behavior. One could, for instance, postulate that the statistical feedback at 

the microscopic level represents the actions and interaction of the intra trader interactions 

among traders constituting the market. The statistical dependency in the noise could, 

further, be representing the aggregate behavior of these traders. Thus, we could model a 

market with non homogeneous reactions with consequent biased return structures 

It is fair to say that the current stage of research in financial processes is dominated by 

the postulation of phenomenological models that attempt to explain a limited set of 

market behavior. There is a strong reason for this. A financial market consists of a huge 

number of market players. Each of them is endowed with his own set of beliefs about 

rational behavior and it is this set of beliefs that govern his actions. The market, therefore, 

invariably generates a heterogeneous response to any stimulus. Furthermore, "rationality" 

mandates that every market player should have knowledge and understanding about the 

"rationality" of all other players and should take full cognizance in modeling his response 

to the market. This logic would extend to each and every market player so that we have a 

situation where every market player should have knowledge about the beliefs of every 

other player who should have knowledge of beliefs of every other player and so on. We, 
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thus, end up with an infinitely complicated problem that would defy a solution even with 

the most sophisticated mathematical procedures. Additionally, unlike as there is in 

physics, financial economics does not possess a basic set of postulates like General 

Relativity and Quantum Mechanics that find homogeneous applicability to all systems in 

their domain of validity. 



CHAPTER 4 

BLACK SCHOLES OPTION PRICING 

WITH STOCHASTIC RETURNS ON HEDGE PORTFOLIO 

Abstract 

In this Chapter, we attempt another generalisation of the Black Scholes Model based on 

the assumption that the return process on the "hedge portfolio" follows a stochastic 

process similar to the Vasicek model of short-term interest rates. 

4.1 INTRODUCTION 

In this chapter, we attempt a generalisation of the Black Scholes Model based on the 

assumption that the return process on the "hedge portfolio" follows a stochastic process 

similar to the Vasicek model of short-term interest rates. Section 2 lists out the derivation 

of the Black-Scholes formula through the partial differential equation based on the 

construction of the complete "hedge portfolio". Section 3, which forms the essence of 

this chapter, attempts a generalisation of the standard Black Scholes pricing formula on 

the lines aforesaid. Section 4 concludes. 

4.2 THE BLACK SCHOLES MODEL 

In order to facilitate continuity, we summarize below the original derivation of the Black 

Scholes model for the pricing of a European call option [ 1-2, 25, 114-1151 and references 
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therein. The option contract, has a-payoff'of max(S7  - E,0) = (ST  - E)+  on the maturity 

date where ST  is the stock price on the maturity date and E is the exercise price. 

We consider a non-dividend paying stock, the price process of which follows the 

geometric Brownian motion with drift S, = e("`+°" )  . The logarithm of the stock price 

Y, = In S, follows the stochastic differential equation 

dY, =,udt+6dW, 	 (4.1) 

where W, is a regular Brownian motion representing Gaussian white noise with zero mean 

and S correlation in time i.e. E(dW,dW,.) = drdt's(t-t') on some filtered probability space 

(S2, (F, ), P) and p and a- are constants representing the long term drift and the noisiness 

(diffusion) respectively in the stock price. 

Application of Ito's formula yields the following SDE for the stock price process 

dS, =(µ+ I a2  S,dt+QS,dW, 	 (4.2) 

Let C(S,t) denote the instantaneous price of a call option with exercise price E at any 

time t before maturity when the price per unit of the underlying is S. It is assumed that 
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C(S,t) does not depend on the past price history of the underlying. Applying the Ito 

formula to C(s,t) yields 

dC =(ySac+ I o-  Sac+ac+ 1  a a-c  as 2 as at 2 	as1 	as SZ 	)dt + aC aSdw, 	 (4.3) 

The original option-pricing model propounded by Fischer Black and Myron Scholes 

envisaged the construction of a "hedge portfolio", rl, consisting of the call option and a 

short sale of the underlying such that the randomness in one cancels out that in the other. 

For this purpose, we make use of a call option together with ac/as units of the 

underlying stock. 

We then have, on applying Ito's formula to the "hedge portfolio", II,:- 

do 	 ac __ d c(s,t)-s__ dc(s,t)_ 	&
dt di 	 as 	dt 	aS • dt 

	 (4.4) 

where the term involving --I -")has  been assumed zero since it envisages a change in 
dt aS)  

the portfolio composition. On substituting from eqs. (4.2) & (4.3) in (4.4), we obtain 

d lZ  do (S1)( 	1 25  	_  ac(s,t)+ i 0.25, a2c(s,t) 	(4.5) 
di 	dt 	2 	as 	as di 	at 	2 	as2  
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We note, here, that the randomness in the value of the call price emanating from the 

stochastic term in the stock price process has been eliminated completely by choosing the 

portfolio fI= c(S,t)-saCas't) . Hence, the portfolio Fl is free from any stochastic noise 

and the consequential risk attributed to the stock price process. 

Now dFI is nothing but the rate of change of the price of the so-called riskless bond 

portfolio i.e. the return on the riskless bond portfolio (since the equity related risk is 

assumed to be eliminated by construction, as explained above) and must, therefore, equal 

the short-term interest rate r i.e. 

do =rfI. 
dt 

In the original Black Scholes model, this interest rate was assumed as the risk free 

interest rate r, further, assumed to be constant, leading to the following partial 

differential equation for the call price:- 

dn =,- II=►-[c(S,t)-S aca(S,t)1= ac ar  t)+ 2 o2s2  a2  asst)  
J 	

z 

or equivalently 

ac (s, t)  + 1 6Zs  a2c(s, t) 
 +rs  ac(s,t) _ rc(s,t) = o at 	2 	as2 	as (4.7) 

(4.6) 
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which is the famous Black Scholes PDE for option pricing with the solution:- 

C(S,t) = SN(d,)-Ee-'(T-̀ )N(dz ) 
	

(4.8) 

where 

d  - logRX 
 
r+26ZJ(T-t) d

2  = d -v T-t = 
log 

E 
 r-2 	

and  2 	111  1 l 
6 T-! 	 cr T-t 

v 
N(y)= 1  =  f ei dx 

4.3 THE BLACK SCHOLES MODEL WITH STOCHASTIC 

RETURNS ON THE HEDGE PORTFOLIO 
As mentioned earlier, in the above analysis, the interest rate r, which is essentially: a 

proxy for the return on a portfolio that is devoid of any risk emanating from any variables 

that cause fluctuations and hence risk in the stock price process, is taken as constant and 

equal to the risk free rate. However, this return would, nevertheless, be subject to 

uncertainties that influence returns on the fixed income securities. It is, now, 

conventional to model these short term interest rates (that are representative of short term 

returns on fixed income securities) through a stochastic differential equation of the form 

[134J 
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dr(t)=-v[r(t),I~dt+rt[r(t),t]dU(t) 
	

(4.9) 

where r(t) is the short term interest rate at time s, yr and 77 are deterministic functions of 

r,t and U(t) is a Wiener Process. 

In our further analysis, we shall assume that this short-term interest rate is represented by 

the Vasicek model [135] viz. 

ddt) +Ar(t)+B-1rt(t)=0 	 (4.10) 

where q(t) is a white noise stochastic process 

(77(t))=o,( (t)77(t'))=EZB(t-t') 	 (4.11) 

The call price process now becomes a function of two stochastic variables, the stock price 

process S(t) and the bond return process (interest rate process) r(t). Hence, application 

of Ito's formula to C(S,r,t) gives 

dC = aC dt+ aC dS + aC dr + 1 o 252. a?C dt +! r02C dt 
at 	aS 	ar 	2 	a 2 	2 	Oar 2 

(4.12) 
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where ds is given by eq. (4.2) and dr by (4.10 ) respectively. 

As in Section 2, we formulate a "hedge portfolio" n consisting of a call option 

C(S,r,t)and a short sale of ac units of stock s(t) i.e. n=c-sac. We then have, 
as 	 as 

repeating the same steps as in Section 2 hereof 

d II dC aC dS aC aC dr 1 z Z a2C 2 Z a ZC 
dt - dt aS dt 

 
= at + ar . dt + 2 s 9S2 + 2 - ar2 

(4.13) 

Now, using dt = r(t)fl, we obtain 

ac iaZc 	ac 	1 a2c ac dr(t) 
—+-a S Z +r(t)s--r(t)c+-~z z +— 	= 

_ 
o 	 (4.14) 

at 2  as  as  2 ar2 ar dt 

This equation defies closed form solution with the extant mathematical apparatus. We 

can, however, obtain explicit expressions for the call price C(s,t) averaged over the 

stochastic part of the interest rate process, as follows:- 
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_ 	 JT r(z)dr 
C(S,t) would, then, be given by substituting ' T 	for the constant risk free interest 

j dr 

rate r in the Black Scholes formula (4.8). 

The averaging process happens to be tedious with extensive computations so we proceed 

term by term. 

We have 

N(d )= 	je zdx= 	f H(d -x)e zdx 	 (4.15) 
2~c 	 2n J -m 

where .H(x—y) is the unit step Heaviside step function defined by [20] 

o,x<y- H(x,y)= 
l,x>y 

1 	e°(X'I 
On using the integral representation of H(x-y)as H(x-y)=Lin . ~dao [20] 

27¢ _ ro-ie 

1 	e;~'(-x) 
i.e. H (d, - x) = Lim o — 	dm 	 (4.16) 

2rci ~_ 	Co - ie 

we obtain 
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irol d +l J 
N{d,) = Limro 1 3 	e 	dxdw = Limo 	e ` 	dw 	 (4.17) 

(2g)z r w—is 	 27ri w—is 

on performing the Gaussian integration over x in the second step. 

Now 

log(s)+ 1 vZ (T—t) fT r(z)dz 	o fT r(z)dz 

Eo T—t 	
+ 

~o T—t —dI + 	
(4.18) 

logs I+16z (T—t} 
where d, = 1E) 2 	 (4.19) 

O T -t 

Since the entire stochastic contribution comes from the expression fT r(r)dr in N (d,), we 

have 

W2 lwdi - Z 

N (d, ) = Lim o 	dui e 	I, 
21ri 	£0—IS 

where i, =(e°fr-'5rr~r)dr and 	denotes the average (expectation) of 	4.21 

	

(P) 	 g ( p 	) 	P • ( 	) 

Proceeding similarly, we have, 

(4.20) 
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lmd2 -  
2 

N (d2 ) = LimE-,o 	do) e 	I, 	 (4.22) 27ci 	Cv-ic 

log( s )- 1C2 (T-t) 
d2 = 	E 2 	 (4.23) 

6 T-t 

Similarly the discount factor e-'(T-1) will be replaced by 
(e

-f
"

'  r(`)dr ) = I,. (say). 

To evaluate the expectation integrals i,, I2 we make use of the functional integral 

formalism [137]. In this formalism, the expectation i, would be given by [85]:- 

J

2r(T~ /// 

 

 l 

Drexp - 1 z 

fIT

dvl dr(z)
+Ar(r)+B I + 1~ drr(r) ldr

r(r) 	

fT dr( 

	 = P 	 (4.24) 
 l2 	 Q 

Drexp -2~Z 	 ~~~ )
+Ar(r)+B

J
r(,)  

where Dr = T dr(" ) is the functional integration measure. 

We first evaluate the functional integral P. Making the substitution x(r) = - - r(r), we 

obtain, with a little algebra, 
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 T 

P= 	1 Z T dr( A(r)+Ax(r)lZ + l_ dr -B-x(r)
2 _J( dr 	 6 T-t Jr 

f.~((T)

DxexP[- 
r~  

z(T)  r 

-1 	~dx(z)~Z 
+AZxz(r)CxZ(T)-xZ(t)]- 

A 	 iwB(T-t) 	iw 	
(r = 

	

	 dr Dxexp 2~Z 	dz 	2~Z 	
A6 T-t 6 T-t

x)dr 

x(r) 	 r 

(~:(r) 	( 

=J 
 Dxexpj-2Ez x̀Z(T)-x~ (t) [A6(T-t)3 

	 (4.25) 
r(r}  l 

where 

T  Z 

I _
3 2E2 	

d~ 	 +A2x2+ 1w Tx(r)dr 
r 	dr 	6 	

J 
T-t  

r  
2 

= 1 	dr
[(dx(r))

+Az xZ (r) + 2iw ~Z x(r) (4.26) 

	

2~z dr 	a T-t 

In order to evaluate t,, we perform a shift of the functional variable x(z) by some fixed 

function y(z) i.e. x(z) = y(r)+z(r) where y(-r) is a fixed functional (whose explicit form 

shall be defined later) but with boundary conditions y(t) = x(t), y(T) = x(T) so that z(r), 

then, has Drichlet boundary conditions i.e. z(t) = z(T) = 0. 
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Substituting x(z) = y(r)+z(r) in (4.26), we obtain 

_ T 	z + dz(T) Z +2 	 +A 	+ 
(dy r)) 
  ( z ) 	( 

vcdz(r) 
d  z )zyz

t,- Z dz 	dr 	d 	d (4.27) 
A2 z2 (z)+2A2y(z)z(r)+ 2ir)Y-Z y(v)+ 2io) 	

z(r) 

	

a T-t 	Q T-t 

Integrating the second and third term by parts, we get 

T 	 Z 

	

l
T +— 	

-a(r) d2z(z) -2z(r) d2y(z) + (z) +AZyZ (r) + z(z) dz(z) dy(r) 	1 	 dr2 	dr2 	dr t - 	+2 	
J 	

dr 	 (4.28) 
2 ' - ~Z dr 	do 	2Z2 	 2ir~~Z 	2iwy2 A2z2(z)+2A2Y(r)z(r)+Q T-ty(r)+Q  

Now the boundary terms all vanish since z(r) has Drichlet boundary conditions. 

Further, if we define the fixed functional y(r) in terms of the differential equation 

d2y(z)+A
3 y(r)+  	=0 

dr  
(4.29) 

with boundary condition y(t)=x(t),y(T)=x(T) we obtain 

T 	Z 
1 =' 	dz ~d) 	6`~~Zt 	d (r)+AZ Z2 (r) 	(4.30) 

	

di J 	y(r) +-z(r)
L

d  
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The functional y(r) is fixed and is given by the solution of eq (29) as 

y = ae Ar  + fl e4 — y 
	 (4.31) 

where 

— 	i[OEZ 	' a  — x(T)gnr _ x( t )en, 	ear _eAi 
and 	= x(T)e 

 nr _ x( t )e-nr 	e_AT _ e-n, 

A6 T — t 	ezar —e2'4' 	

+y 

e2 T _ e2 	R Ar 	 a_2AT _ e-2At 	

+7 

 e2°  _ e-znt 

Integrating out the y(z)terms in eq. (4.30) using eq. (4.31), we obtain 

IT 	 Z  r  
j3 =2 I  Ara2 2AT _ez.m )_R2( e2.AT _e-za, )—Ay2 (T—t)]+

J 
 dr

L
—z(v)d2  Zr)+A2z2 (r)

J 	
(4.32) 

L 	 \  

Substituting this value of i, in eq. (4.25) we obtain, for P, noting that Dx = Dz 

since y(r) is fixed by eq (4.29) 
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-x(t) 2 x(7)ei° -x(t)e 2 

i- 	e 2A-e zn' 

.4z
-x2 t

l1 iw T-t 1 	dz! 	"V-e Z
j

ee P̀ -e ,, 
2 

 -A T-t 
2~z̀  (~ (J J 	Aa 	2 	A'o~(T-t ) (-J 	 zrr_eJ 

(x(7ie-x(t)c*)(~-e4) 

	

2ia 	( 	)Z 	- 

T) x e 'r -x(t) o a -e 

(e ms _e_L )z 

a —1 T dr z( z) 
c z(z)

+.,fz (r)]} 
2 	 dz~ 

(4.33) 

On exactly same lines, we obtain 

t 	x( e''_x(t)e, 2 (
x(~eAT_x(t)eN 2 

( 
(r) (t~J

1 
2 	A 	2"r _eZAr J -I 	_e za' 

	) ut 

EP 2 f dVL z(T) dot) 

(4.34) 

Hence 
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ict 	1 
AS 22 

AaaZ(Tt) ?- ? 1ë 4Te) 
-T-t) 

 _ 	(e--?)Z 

(e_  e)2 

(4.35) 

which when substituted in eqs. (4.20) & (4.22) shall give the values N (d,) and 

N (a+2 )respectively as:- 

` logl S
J

+ 1 E 2 	B T-t 	Y 
T-t A6 A6T-t N(d1)=N    

6 
	 (4.36) 

X 1-A3o 
(T-t) 

and 

S 1 Z 

	

log 
E -2 o B T-t 	Y 

N(d2 )_ N 	Act 	 A6 T-t 	
(4.37) 

EZX z 
1- A3~ 

(T-t) 

where 

(CAT _CA!Z 	nr _ a Z 

X - I eznr _e I -I e MT _Q za J 
-A(T-t ) and 	 (4.38) 
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(x(7) e" —x(t)e"')(e —?) (x(T)e'rr—x(t)e "'
)(e AT —e) 

(e2AT _2N)2 	 re 2Ar _e_2/t)2 
(4.39) 

To evaluate 12 we substitute w = i6 T - t in eq. (4.35) to get 

12 =exP B(A t) 2 [l~ /X—l! JYJ 

	 (4.40) 

The closed form solution for the Black Scholes pricing problem with stochastic return on 

the "hedge portfolio" can now be obtained by substituting the above averages in eq. (4.8). 

4.4 CONCLUSION 

In this Chapter, we have obtained closed form expressions for the price of a European 

call option by modifying the Black Scholes formulation to accommodate a stochastic 

return process for the "hedge portfolio" returns. We have modelled this return process on 

the basis of the Vasicek model for the short-term interest rates. The need for this 

extension of the Black Scholes model is manifold. Firstly, the construction of the "hedge 

portfolio" in the Black Scholes theory implies that the fluctuations in the price of the 

derivative and that of the underlying exactly and immediately cancel each other when 

combined in a certain proportion viz. one unit of the derivative with a short sale of 
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aS units of the underlying so that the "hedge portfolio" is devoid of any impact of such 

fluctuations. This mandates an infinitely fast reaction mechanism of the underlying 

market dynamics whereby any movement in the price of one asset is instantaneously 

annulled by reactionary response in the other asset constituting the "hedge portfolio". 

This is, obviously strongly unrealistic and there may subsist brief periods or aberrations 

when the no arbitrage condition may cease to hold and hence, returns on the "hedge 

portfolio" may be different from the risk free rate. One way of attending to this anomaly 

is to model the returns on the "hedge portfolio" as a stochastic process as has been done 

in this study. The parameters defining the process can be obtained through an empirical 

study of the market dynamics. Another important justification for adopting a stochastic 

framework for the "hedge portfolio" return process is that the "hedge portfolio" by its . 

very construction, envisages the neutralization of the fluctuations of the two assets inter 

se i.e. it assumes a perfect correlation between the two assets. In other words, the "hedge 

portfolio" may be construed as an isolated system that is such that insofar as factors that 

influence one component of the system, the same factors influence the other component 

to an equivalent extent and, at the same time, other factors do not impact the system at 

all. This is another anomaly that distorts the Black Scholes model. The fact is that while 

the "hedge portfolio" of the Black Scholes model is immunized against price fluctuations 
a 

of the underlying and its derivative through mutual interaction, other market factors that 

would impact the portfolio as a whole are not accounted for e.g. factors affecting bond 

yields and interest rates etc. Consequently, to assume that the "hedge portfolio" is 

completely risk free is another aberration — it is risk free only to the extent of risk that 

emanates from factors that impact the underlying and the derivative in like manner and is 

`cox. 



still subject to risk and uncertainties that originate from factors that either do not effect 

the underlying and the derivative to equivalent extent or impact the portfolio as a unit 

entity. Hence, again, it becomes necessary to model the return on the "hedge portfolio" as 

some short-term interest rate model as has been done here. 

a 
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CHAPTER 5 

CONSTRUCTION OF DEFORMED LEVY 

PROCESSES & OPTION PRICING 

Abstract 

The Black Scholes- Merton theory expounded in a Noble prize winning work in the 1970s 

still remains the mainstay of valuation of contingent claims. However, with the gradual 

realization among finance practitioners that significant deviations exist from Gaussian 

behaviour in stock market price, efforts have been focused on identifying other types of 

stochastic processes for modeling market evolution. The Levy - processes, of which 

Brownian motion and Poisson processes are special cases, provide a versatile alternative 

and are considered in this work. The framework of option pricing is extended to Levy 

processes generated by deformed pseudodifferential operators. 

5. 1 INTRODUCTION 

The pioneering work of Fischer Black, Myron Scholes [1] and Robert Merton [137-138] 

in the pricing of contingent claims continues, even after almost four decades, to hold 

centrestage in option pricing. The merits of the Merton Black Scholes (MBS) theory are 

two fold. On the one hand, the robustness of the model lends its successful applicability 

to a wide spectrum of real life financial products. On the other hand, the intrinsic 

simplicity of the model makes it practically tractable with modest computing tools. The 
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model also works on minimal inputs viz. the risk free rate, the spot price of the 

underlying and the historic volatility. The last two attributes emanate from the choice of 

the simplest class of stochastic processes — the Gaussian processes — to model the 

fluctuations of the underlying asset. This enables the representation of the evolution 

dynamics of the call option as a partial differential equation amenable to closed form 

solutions as a boundary value problem [1]. 

Deviations from Gaussianity in the behavior of stock prices are, now, well accepted with 

the existence of "fat tails" and a higher and displaced peak [48, 50]. Efforts of analysts 

have, therefore, been focused on identifying/developing alternative stochastic processes 

to model the market price dynamics. The existence of the "volatility smile" further 

endorses the inadequacy of the MBS theory. In this context, it has been shown by 

empirical studies that that the central part of the probability distribution is relatively 

better fitted by the stable Levy process [137-138]. Stock prices lend themselves naturally 

to modeling by the "jump diffusion models" that comprise of a superposition of 

independent Brownian motion and Poisson processes [139]. However, providing for a 

large number of jumps makes the model untractable. 

5.2 LEVY PROCESSES [139-140] 

Levy processes constitute a very wide family of stochastic processes. Such processes 

possess the cardinal characteristic of "stationary independent increments". The literature 
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on physical sciences, engineering and, even, economics is abound with applications of 

such processes. Some of the reasons for the immense popularity of Levy processes in 

modeling of systems emanates include, in particular:- 

(a) A wide variety of processes like the Brownian motion, Poisson processes, 

subordinators, stable processes can be encompasses in the general formalism of 

Levy processes by appropriate choice of the parameters describing the process; 

(b) They constitute the simplest class of processes consisting of continuous motion 

interspersed by jumps of random sizes occurring at random intervals of time; 

(c) They can also be adapted to model self similar processes (fractals), 

semi martingales, Feller processes etc. 

(d) They result in stochastic differential equations that are largely amenable to 

analytic and closed form solutions. 

5.3 PROPERTIES OF LEVY PROCESSES [139-140] 

We enlist here-some of the cardinal properties of Levy processes that make them the 

immensely interesting objects that they are. These properties will also be used in the 

sequel and hence, facilitate continuity in this article. We shall work in one dimension 

since that is relevant to the ultimate purpose of this work although generalizations to 

higher dimensions are straight forward. 
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An R -valued stochastic process {X, : t >— 0} is a family of R - random valued variables 

X, (w) with parameter t E (0,00), defined on a probability space(S), F,P) . 

An R -valued stochastic process {X, : t >— 0} is called Levy process on R or 1- 

dimensional Levy process, if the following five conditions are satisfied:- 

a. It has independent increments, that is, for any choice of n _> I and 

0 5 to <t1 < ... < t„ , the random variable X,o , X, — X,, , 	— X,~ ,..., X,~ — X,,_ are 

independent; 

b. It starts at the origin, X0 = 0 a.s.(almost surely); 

c. It is time homogeneous, that is, the distribution of {Xs+ —X.,: t >— 0} does not 

depend on s; 

d. It 	is 	stochastically 	continuous, 	that 	is, 	for 	any 

C>O,P[IX.+,—X.s >E]-> Oast -->0; 

e. As a function of t, X, (c) is right-continuous with left limits a.s. 

5.4 LEVI KHINTCHINE REPRESENTATION 1139-140] 

The Levi Khintchine representation of a Levy process explicitly brings out the 

relationship between Levy processes and pseudodifferential operators. We have, if ,u is 

infinitely divisible distribution onR, then there exists a uniquely defined Levy process 

{X, : t > 0} satisfying (a) - (d) such that the distribution ofX,, designated -(X,) = p 

with the characteristic function jt (z) defined by 
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ft(z)= $e 2̀ iu(dx), zER 	 (5.1) 
R 

is given by 

fc (z) = exp 
1-2 

 1 6222 +1 yz + fR (e'= —1— izxl{~X~si} (x)) v (dx)1 	(5 .2) 
J 

where 6 >— 0, v is a measure on R satisfying v ({0}) =0 and I min (1, 1x12 ) v (ti) < oo , 

and y E R is constant. The representation (5.2) by 6 , v ,and y is unique. .2 is called the 

Gaussian coefficient and v is called the Levy measure, (072 , y,v) is called the generating 

triplet. 

For any set B we use 1 B (x) for the indicator function of B . It follows that the Levy 

process {X, } corresponding to ,u has the characteristic function given by 

E(e )=e"  = [,u (z)]` 

exp 
(5.3) 

= 	f l[ _ 162 2 + iyz + f R (e —1— izxl{jxEs1} (x)) v (dx)] 
 

The expression 

yr (z) _ 	a2 z2 — iyz — fR (e'er —1— izxl{IXi~1} (x))v (dx) 	 (5.4) 

is called the characteristic exponent of the given Levy process. We denote p' = 

The objective of having the term is to make - izxl{Ixl gi} (x) in the integrand in (5.2) v - 

integrable. If v satisfies f"1<1 Ixl v (dx) < oo , then (5.2) can be written as 

ji(z) = exp
l 

—Ia222 (e'= 	 (5.5) 
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with some To  e R. This yo  is called the drift. 

If v satisfies 
fX1>1   

Ixl v (dx) < oo , then we have an expression 

(z) = exp 
L
--a2  

 z z  + iy,z+ L (e'-  —1—izx)v (dx)] 
	

(5.6) 

with some y, ER,  called the centre. In this case, it can be shown that  

(a) Brownian motion is a Levy process with a =1, v = 0 and y = 0; 

(b) Poisson process with intensity c> 0 is a Levy process on R with 6 = 0, ya  = 0, 

and v = c51 , where we denote by 8a  the distribution concentrated at a; 

(c) The compound Poisson process corresponds to a Levy process on R with 

6=0,v(R)<oo andyo =0; 

(d) The F process is a Levy process on R with 6 = 0, v (dx) = 1(O1(0,,o)(x) x-'e-9xdx , and 

yo  = 0 so that u' =1(  -) (x) (q'/I' (t)) x'-'e-9xdx (F — distribution) . 

5.5 LEVY PROCESSES & PSEUDODIFFERENTIAL OPERATORS 

[141-1441 

Consider a Levy process {X, }fz0  on R . Its probability distribution — hence the process — is 

completely determined through the characteristic exponent pr : R —+ C given by eq. (5.4). 

Let, now, the space of twice continuously differential functions vanishing at infinity. 

Then for, each x E R, there exists a limit 
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(Lf)(x) :=1 m 
E[f (x+X,)]— f (x) 

rlo 	t 
(5.7) 

with Lf E Co  (R) , being the space of continuous functions vanishing at infinity. We call 

the map f H.Lf the infinitesimal generator of the process {X,},ZO  its explicit 

representation is given by 

Lf(x) =  2 f „(x)+yf'(x)+ `°(f(x+y)- f(x) 	(y)f'( x)).v(dy) 	(5.8) 

From eqs. (5.4) and (5.8), it follows that, for z E R 

Le,"Z = —Vr  ( z ) e;xz 	 (5.9) 

Assuming that f (x) meets the desired regularity conditions so that its Fourier transform 

can be defined, we may write 

f (x) = (27r)-' Ee1(z)   dz 	 (5.10) 

where f is the Fourier transform of f i.e. 

f (z)= Ee-'= f (x)dx 	 (5.11) 

From eqs. (5.9) & (5.10), we have 

Lf (x) = (2r) Eery (—V (z)) f (z)dz 	 (5.12) 

Now, if we define an operator A by its action on f (x) by 

Af (x) = (2n)-  f:e"xza(x,z) f (z)dz 	 (5.13) 

then, we have, on comparing eqs. (5.12) & (5.13) 

—w(z) = a(x,z) 	 (5.14) 
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The operator Af (x) = (2n) Ee'xza(x,z) f (z)dz is referred to in the literature as a 

pseudodifferential operator with the symbol a. The theory of such operators is well 

developed [ 145-146]. 

5.6 OPTION PRICING WITH PSEUDODIFFERENTIAL 

OPERATORS AS GENERATORS OF LEVY PROCESSES [141-144] 

A serious impediment to the shunning of the Black Scholes model framework in that 

other models for the evolution of stock prices leads to market incompleteness so that a 

contingent claim cannot be completely hedged and there is no unique Equivalent 

Martingale Measure (EMM) under which, the discounted stock price process is a 

martingale. A mechanism, therefore, needs to be evolved to decide on a particular EMM. 

In the context, most models envisage that the EMM is selected by the market. 

Let us consider a market consisting of a riskless bond that evolves with a rate of 

return r > 0, and a risky stock price process that evolves as 

S (t) = exp X (t) 
	

(5.15) 

where X Q) is a Levy process under a given probability measure P (for the moment, we 

assume that such a measure exists). 
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It is, now, well established that the existence of an equivalent martingale measure, Q that 

is absolutely continuous w.r.t. P, is equivalent to the "no arbitrage condition". Assuming 

no arbitrage at this point and the existence of a unique EMM, Q,  corresponding to P, we 

obtain the discounted stock price 

Z (t) = e-r,S (t) 	 (5.16) . 

We then have, since Q is a martingale measure, 

Z (s) = EQ [Z (t) Fs  ] 	 (5.17) 

where EQ  [S Fj is the conditional expectation of a random variables S w.r.t. 

filtration Fc  

Applying this with s = 0 to our market model with the riskless bond evolving as 

B(t)=B(0)e" 	 (5.18) 

and 

S(t) = S(0)e x(' ) 	 (5.19) 

we obtain 

z(o) = s(o) = EQ [z(t)1F01 = EQ [Z (t)] 	 (5.20) 

Making use of the definition of characteristic exponent cv given by eq (5.4) and writing 

yvQ (t) as the characteristic exponent under measure Q , we have, from (5.18), (5.19).& 

(5.20) 

B(0) = B(0)e-̀ °1 
	

(5.21) 

and S(0)= 	 (5.22) 

whence 
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(0) =0 
	

(5.23) 

and 

r+V Q (—i)=0 	 (5.24) 

which constitutes the fundamental condition for the existence of an EMM. 

The relationship between the measure P and EMM Q in terms of the characteristic 

exponent is obtained through the Esscher transform. We look for an EMM Q satisfying 

the differential equation. 

dQ F, = exp [X (t) — d (B, t)] 
	

(5.25) 

Since we want that the discounted price process of the stock Z (t) = e-"S(t) must be a 

martingale under Q we must have, using eq. (5.25) 

s(o) = S (0) Ep [e(x(,)-.l)e(OX(t)-d(e.~))1 

= EQ [Z (t)] = S (0) E F 
	

(5.26) 

Using the definition of the characteristic exponent yr of the Levy process X (t) (eq. 

(5.4)), we have from eq. (5.26) 

—tyr e [—i(1 + 0)] — d (0, t) — rt = 0 	 (5.27) 

Proceeding similarly for the riskless bond, we have 

—turf (—iO) — d (0,t) = 0 	 (5.28) 

whence 

d (9, t) = —r i' (—to) 	 (5.29) 
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From eqs. (5.27) & (5.29), we get 

—r—y? [—i(1+0)]+VI P  (—i0) = 0 	 (5.30) 

Further eqs. (5.25) & (5.29) yield 

dQ F, = exp [X (t) — d (9, t)] = exp [OX (t) + tVl' (—i0)] 	 (5.31) 

Similarly, using eqs. (5.24) and (5.30), we obtain 

yrQ ( ) = yr p  ( —10)—  yv (-19) 	 (5.32) 

Let g (X (T )) be the terminal payoff for an option on the expiry date T . Then, from the 

general theory of option pricing, we can obtain the price of the option at an earlier date 

under the "no arbitrage" conditions as 

F(S,,t) = e•`EQ [e-" g(X (T))I X, = x] 	 (5.33) 

where x = In S (t) . 

In terms of the probability density of X under Q , we have 

F(SI ,t)= e-r(T-1)EPr(y)g(x+y)dy 	 (5.34) 

Making the substitution y F—> y — x, we get 

F ( S,,t )=e  r(T  l).FPr(y— x)g (y)dy 	 (5.35) 

Then probability Pr  (x) can be written in terms of the characteristic exponent by taking 

Fourier transform 

P. (x) = I  27r 

so that 

(5.36) 
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F (S , t) = (21r)-1 	eg (y) d~dy 	 (5.37) 

Assuming regularity conditions enabling the existence of the Fourier transform of g(y), 

we have 

()= , eg(y)dy 
	

(5.38) 

Now for Levy process called RLPE (Regular Levy Processes of Exponential Type), 

Cauchy theorem enables further simplification of the expression (5.38) to 

F (S t) = (21r)a 	
+,o* e 
+ia 

(5.39) 

Writing f (x, t) = F (ex, t) , we obtain, in terms of the pseudodifferential operator yr 

f(x,t) =exp[—(T —t)(r+i,u (Dx ))]g(x) 	 (5.40) 

For a call option, the terminal payoff is given by g (X (T)) _ (eT) — E)+ so that 

( ) _ ('f°° e-;x4 (ex — E)+ 	__ r (e x('-' l — Ee-'fix ) dx J 	l  

e(1-1~)!n6 e(1-1~)InE Ee-;"In" 

i 	( +i) 	
(5.41) 

whence the price of a call option with exercise price E is 

E 	+icyexp[i in (S, /E) — (T —t)(r+yrQ (4)) J 
F'col~(s„t)=-- 	 +i) 
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 (5.42) 
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5.7 DEFORMATIONS OF PSEUDODIFFERENTIAL OPERATORS 

In the preceding section, we have discussed the theory of option pricing where the 

dynamics of the stock price follow a Levy distribution [141-144] making use of the 

characteristic exponent of such processes that happen to be pseudodifferential operators. 

This section and the next following constitute the essence of this work. Our objective, 

now, is to take up the deformations of Levy processes through a deformation of the 

pseudodifferential operators that constitute the generators of such processes. The 

motivation for doing so is manifold. For one thing, such deformed structures enhance the 

spectrum of practical applications of the mathematical concepts and constitute a 

significant progression towards bridging the gap between reality and its modeling. The 

theory of q deformed mathematics since its evolution in the interface between 

mathematics & physics is gradually pervading into almost all domains including group 

theory and other algebraic structures, analysis, probability and so on. 

Towards deforming the pseudodifferential operators we shall follow the prescription in 

[147-149] and make use of the following notation and results that are now standard in the 

theory of q -deformations and quantum groups [147-149]:- 

For q -numbers, we have 

_ q" —1 
(n~q 	q-1 

(5.43) 
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(M ), 

(m)9 (m —1)9 ...(m — l + l)
(5.44) 

 (1)q (2)q ...(l)q 

The q analog of the derivative is defined as 

Dq f (x) f (qx)_ 1 (x) 	 (5.45) 
q 

and the shift by 

rf (x) = f (qx) 	 (5.46) 

zR f (x) = f (qax) 	 (5.47) 

We, then have, since z commutes with Dq so that 

Dq (fg)=Dq (f)g+r(f)Dq (g) 	 (5.48) 

We then define the q deformed pseudodifferential operator as 

A(x,Dg )_ a; (x)Di 	 (5.49) 

For q = 1, the above operator reduces to the conventional pseudodifferential operator e.g. 

A(x,a)=la,(x)a' 	 (5.50) 
10 

which leads to the conventional form used in the foregoing as follows:- 

Operating the operator A(x, 7) on an arbitrary function f (x) which possesses the 

inverse Fourier transform f (x) = f e'~X f (~) d4 we have 

A(x,a) f (x) = I a, (x) f elx f (~)d~ 

_ 	 (5.51) 
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The multiplication law for the deformed operators is defined by 

D9  oa= (Dqa)+z(a)Dq 	 (5.52) 

D9 1  ° a  =  1(  1)k  (r-k -1 (Dga))Dgk -1 	 (5.53) 
kZ0 

D9 ° a = y Z (a."-' ( D'a))Dq-r 	 (5.54) 
rzo 

and 

I 	
k 

A(x,D9)-B(x,Dq)=y l d 
k 
	 (5.55) 

Proofs of the above are provided in [149]. Corresponding rules for the symbols 

corresponding to the deformed operators are 

f*Dq =fDq 	 (5.56) 

D9' * f = z-' (f) Dq' 	 (5.57) 

D9  * f =z(f)Dq 	 (5.58) 

The algebra of the deformed pseudodifferential operators is, thus, well defined, with the 

appropriate deformed versions of the compositions and operations. 

5.8 GENERATION OF LEVY PROCESS FROM DEFORMED 

PSEUDODIFFERENTIAL OPERATORS 

Having accepted the deformed pseudodifferential operators as well defined mathematical 

structures, the final step is to construct Levy processes conforming to these operators, 
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where after the machinery elucidated earlier for the pricing of options under regular Levy 

processes can be invoked. 

The process of constructing Levy processes from symbols of conventional (undeformed) 

pseudodifferential operators has been well studied and elaborated in the literature and the 

following possible routes are advocated: [150]- 

1. Use the Hille-Yosida-Ray theorem to construct a Feller semigroup. Apply Feller — 

Dynkin construction using Kolmogorov's theorem, thereafter, to get a process; 

2. Construct a (symmetric) Dirichlet form from the pseudodifferential operator and 

then apply Fukushima's theory; 

3. Find a fundamental solution for the operator a + a(x, D) by a parametrix method ar 
and then prove that this fundamental solution gives rise to a transition function; 

4. Establish the martingale problem for —a (x, D) ; 

5. Solve a stochastic differential equation with jumps corresponding to —a (x, D) . 

To obtain Levy processes corresponding to the deformed pseudodifferential operator, we 

need therefore, establish the existence of a Feller semigroup corresponding to the 

deformed operator. For the purpose, we consider the deformation as a perturbation of the 

standard case and write —a (x, Dy ) as a perturbation of an undeformed operator —a (x, D) , 

i.e. an operator generating a Levy process. Therefore, we decompose a (x, ~9 ) into 
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a(x, q )=a(x, )+(a(x, 9 )-a(x, )}=a,(x, )+a,(x,e)and denote by -a, (x, D) and 

-a2 (x, D) the corresponding Levy generator and the perturbation, respectively. Assume, 

moreover, that a (x, 49 ) is real-valued. 

The conditions under which a (x, D9 ) constitutes a Feller semigroup are examined in 

[151]. We, briefly elucidate them here. 

Let b2 : R" -~ R is a fixed continues negative definite function such that 

b2 (~)' ko 
	 (5.59) 

holds for some ro E (0, 2] and k0 >0.  Further, from the boundedness property of 

pseudodifferential operators, we also have 

b2 (~)<cb,(1+ll4l2 ), 	ER. 	 (5.60) 

The conditions for a(x,~q ) to generate a Feller semigroup are, then, 

(a) Ellipticity Assumption 

(1+a,(x,c))>_y,(l+b2 (~)) DER 	 (5.61) 

(b) Boundedness Assumptions 

(1 +a, (x, )) ~ Yo (I +b2 (~)) 	e R 	 (5.62) 

a2 (x, )EC"(R), 

lO a2 (x , 	~ (Da (x)(1 +b2 (c)) x, c R 	 (5.63) 

121 



5.9 CONCLUSION 

In this chapter, we have attempted to develop the theory of option pricing in incomplete 

markets with stock market pricing being simulated by Levy processes. These processes 

have an intimate connection with pseudodifferential operators in the sense that their 

characteristic exponent is a pseudodifferential operator. Hence, we can associate a 

pseudodifferential operator with every Levy processes. The converse of this also holds 

and Levy processes can be generated by the knowledge of a pseudodifferential symbol. 

We take advantage of this, and making use of the q deformed pseudodifferential 

symbols, which have been the substratum of recent research, we attempt to construct the 

corresponding Levy processes. Treating the deformation as a perturbation, we identify 

the conditions under which these symbols generate a Feller semigroup for which Levy 

processes can be constructed in the usual way. 
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CHAPTER 6 

GROUP PROPERTIES OF THE 

BLACK SCHOLES EQUATION & ITS SOLUTIONS 

Abstract 

The Black Scholes equation was originally solved and closed form expressions for the pricing 

of financial derivatives were obtained by converting the problem to a heat equation and then 

solving it for specific boundary conditions. In this Chapter, we apply the group theoretic 

methods to obtain various solutions of the Black Scholes equation. We also examine the 

infinitesimal symmetries of the said equation and explore group transformation properties. 

The structure of the Lie algebra of the Black Scholes equation is also studied. 

6.1 INTRODUCTION 

The Black Scholes model, as initially propounded, envisaged the formulation of a partial 

differential equation for the pricing of an European call option by creating a portfolio that 

exactly replicated the payoff of the option and the value of whose constituents was known. 

The theory behind this valuation methodology is well disseminated and can be found in any 

text on financial derivatives e.g. [2]. The valuation equation of the Black Scholes model is 

rs ac  (S' t)  + 1 a2s2  a2c  (S' t)  +  ac (s' t)  = rC (S, t), 
as 	2 	as2 	at 

(6.1) 

This is the fundamental PDE for asset pricing and is referred to as the Black Scholes equation 

in the sequel. 
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6.2 TRANSFORMATION TO THE HEAT EQUATION 

The transformation of the Black-Scholes equation to the heat equation has been well 

researched. We make the following transformations:- 

z 	 )2to 

y=? r-1a lnS–( r-1a-z1 t–?
62

(r-1a-z11nS +?(r-10-z 
	(6.2) 

a  a 	2 	 2 	cr 	2  

? 2 
)]2 t 	Z

z=–r-162 + r-1a t 	 (6.3) 
6 2 a 2 

( 	z / \z 
rlo+

[
~zl r - 
 '

Q i_-(- __2)2 -- I r-a ̀ -r
]/ L r -,- , lr I~JJ v= C(s, tl^ 	zQ 	2 	2 	2 /! 	
S az z ~z 2 	 (6.4) 

On implementing these transformations the Black-Scholes equation gets transformed to the 

heat equation - = azv as can be seen by explicit calculations. 
az ay 

Z 
The fundamental solution of the heat equation is given by v = 1 exp – —J and that of 

2/ 	4z 

the Black Scholes eq. (6.1) is obtained by substituting back the transformations (6.2-6.4) and 

we obtain 

1 C= 	ex 
aSo 	to –t 

(1nS-1nSo)z – 	– 1 	1 	z r--a2 	+r 
2~ 	2 

(to 1 	1 –t)-- r--a2
~InS–InSo) 

2 
(6.5) 

2a-(to –t) 
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6.3 CONSTRUCTION OF THE SYMMETRY GROUP [152-1561 

The Black Scholes equation (6.1) is a partial differential equation in two independent 

variables viz, the stock price S and time t and one dependent variable in the price of the 

derivative C. Let us consider the following invertible transformations of the three variables 

S, t, and C 

t = f(t,S,C,a), S=g(t,S,C,a) and C=h(t,S,C,a) 	 (6.6) 

where a is a continuous parameter. 

The transformations of eq. (6.6) will constitute symmetry transformations if eq. (6.1) retains 

its structure in the new variables. 1, S and C and the set of all such transformations 

constitutes the symmetry group G of the Black Scholes equation. 

The generator of the symmetry group G is given by the vector field:- 

X =~°(t,s,c) a + '(t's,c) a +77(t,S,C) a 	 (6.7) 
at 	as 	ac 

where 4° (t, S. C), ' (t, S. C), 77(t, S, C) are the parameters of the infinitesimal 

transformations:- 

t s t+a °(t,S,C), S S+a '(t,S,C) and C C+ari(t,S,C) 	 (6.8) 

They are obtained by solving the following equations:- 
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da =~0 t' S' Cl' da 
	

da 
	 (6.9) 

with the initial conditions tl a=0 = t, SIQ _0 = S and C Iq _0 = C . 

The transformations represented by eq. (6.6) would form a symmetry group if C = C (S, t ) 

_ — a _ 
satisfies the eq. a = —1 C2S 2 a C — rS = + rC whenever C = C(S, t) satisfies eq. (6.1). 

at 2 as as 

Our objective here is to determine all possible coefficient functions ° , ~' , q such that we are 

able to obtain the symmetry group of eq. (6.1) by the process of exponentiation. For this 

purpose we need to obtain the second prolongation of the vector field X of eq. (6.7). In terms 

of the various partial derivatives, this is given by:- 

pr(2)X =X+TE S 

where 

a 	r a SS a 	Sr . a 	a rr 

acs +'~ ac, + 	ac +'~ acs, + ac,, 

ss _ D Z ( 	iC 	°Cr )+ 'CSSS + °cSyr — D z C D  — 	— 	S 	 — 	S S 	r S 	SS S 	Sr S 

=Css +(2Csc —~ss)Cs —~ssCr+ (rlcc —2~sc)c —2~scCsCr — cc Cs — ccCsCr 

+(77c —2 )css —2~sCsr —3~cC'sC'ss — °C,Css —2~cCsC'sr 

and similar expressions hold for 77s' and 17" 
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The differentials of C = C (S, t) with respect to S, t can be expressed in terms of those of 

C = C(s, t) with respect to S, t through the so called prolongation formulae:- 

aC ac 	ac 

	

+a D,(r,)–D,(~
° )– aC

D,(~') 	 (6.10) 
ar at 	at 	I as 

ac ac
+a Ds(17)–aC

Ds (~° )– aC Ds( ') 	 (6.11) 
as at 	at 	as 

c 	 ac 	ac 	a2c 
2 	z +a Ds Ds(rl) ° )--Ds~~ – Z Ds

(
')

azc– a2 	aZc 	 Ds ( ° ) (6.12) 
as as 	 at 	as 	as 	asat 

where 

D– a +
aC a +' a+- a s 	+... 	 (6.13) 

at at ac at aC at acs 

and 

D a + ac a + act a + aCs a 	 (6.14) 
S - as as ac as act as acs 

Using eqs.(6.8, 6.10-6.12), we obtain 

ac 1 2-2 a2c 	ac 	ac 1 Z 2 a2 c 	ac +--6 S 	+rS----rC —+---a S 	+rS--rC+al' 	(6.15) 
Di 2 	as 2 	as 	at 2 	as 2 	as 
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where 

as (')]+ 

1 a'2S2 Ds Ds(?7)— aC 
D (s ~° ) — aC Ds(

' ) — aZC Ds ((' )— aZC Ds ((° ) + (6.16) 
2 	 at l as 	as 	asat 

z 

rS aS[Ds (q) — at Ds (~ ° — aS Ds (~'~ — r r~ + 6 z S CSC ' + r ~s 

Hence, the determining equation for the problem under reference is of the form IF =0 with 

F being given by eq. (6.16). 

Using eqs. (6.13-6.14, 6.16) and equating to zero, the coefficients' of the various monomials 

of the first and second order partial derivatives of C, we obtain the following equations for 

the symmetry group of the Black Scholes equation. 

(6.17) 

s = 0  (6.18) 

~0 =0 	 (6.19) 

—~c+2a2S2~sc =0 	 (6.20) 

—S + '+IrSC +2S ,°+ 46253 cc =0 	 (6.21) 

~cc — rscc =0 	 (6.22) 

2 i7cc — Esc + rS~sc — 1 rC~cc =0 	 (6.23) 
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- +a2S2rl - 1 6'2s2~' rS~' +r~' -r 2 SC~° +rS~ sc 	ss - 	s 	c 	r° + 2  
(6.24) 

r 2 S 2 s — rC — o 2rS Z C~sc + 2 r62S 3 ~ss = 0 

(77,+2oS277ss+rS77s-r77)-(,°+ZozS2 s+rS .°-re C-r2CC0 -r2C%c +rCrjc =0 	(6.25) 

Eqs. (6.17-6.18) require that 	a function of t only. Hence, eq. (6.20) reduces to 

~C = 0 which implies that 4 does not depend on C. Further, eq. (6.21) becomes 

— Sys + ' + I S 1° =0 which has the solution 

c'(S,t)= l°(t)SinS+M(t)S 
	

(6.26) 

Then eq. (6.23) yields 1 qcc = 0 which mandates that 'q(t, S, C) is a linear function of C and 

hence can be written as 

17(t,S,C)=a(t,S)C+A3(t,S) 	 (6.27) 

With the above constraints for c ° we can write eq. (6.25) as 

— ~r' +or2S27~SC - 122 i —rS 's +r~' +rS~,° =0 	 (6.28) 

Using eqs. (6.26-6.27), eq. (6.28) reduces to 

InS~„° — r—Ia2 	+2M,(t)-26 2 Sas (S,t)=0 	 (6.29) 
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with the solution 

r—Ia2 InS~°+2M,(t)InS+N(t) 	 (6.30) 

Using eqs. (6.25), (6.27) we find that /8(S, t)must be a solution of the Black Scholes equation 

while a(S, t)must satisfy 

a,+Io S2ass +rSas —re° =0 	 (6.31) 

Eqs. (6.30-6.3 1) yield the following:- 

, =0 so that ° =Pt z +Qt+R 	 (6.32) 

and 

M„ = 0 so that M = Ut + V 	 (6.33) 

We finally end up with the following solutions for °, ~', 77 :- 

° = Pte + Qt.+ R 	 (6.34) 

' _ ~(2Pt+Q)SInS+Ut+V 
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P(InS)Z—(r-
2 

(2Pt+Q)InS+2UIns+ (r—~~ +2~r +1  
l 

r~= 1 	 C+/3(S,t) (6.35) 
2a2  1 r— 	z1 	

Q-1 P+rQ— 1 r_ 	U t+W 

where P, Q, R, U, V, W are arbitrary constants. On substituting these expressions for 

°, ~', îi in eq. (6.7), we obtain the expressions for the six generators from the 

coefficients of these constants as follows:- 

X, —_ at 	
(6.36) 

Xz = S a 	 (6.37) 

z 

X —t' a+ 1 SInS a _ 1 r— 1 oz (InS)C a+ 1 r-1 62 tC a +rtC a (6.38) 
3 at 2 	aS 262 t 2 	aC 2072 	2 	ac 	ac 

X tS a+ 1 (InS)C a— 1 r— 1 6 z tC a 
4= aS a2 	aC a2 	2 	ac 

(6.39) 

z a 	a 	1 	Z 	i1 	1 	i ~Z 	2 1 t 	(  6.40 ) XS =t +(InS)tSas+ 	(In S) - ( i ~r-2 J(InS)t+ 	{r_c~ 	2 +r t -Z C  

xb =C a xi =Q(s,t) a 	 (6.41) 
ac  ac 

Using eq. (6.39), we can present eq.(6.38) in a simplified form as:- 

X =t a+l(InS)S a +1 r-1072 tS a +rtC a 	 (6.42) 
3  at 2 	as 2 2 	as 	aC 
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The one-parameter groups G; corresponding to each of the above generators are given by the 

usual process of exponentiation e.g. 

G, :(t+s,S,C) 	 (6.43) 

G2 : (t, eS, C), e - 0 	 (6.44) 

z z e (z 1 

G3 : set, e 2 ( 
	) S , er l̀  _I),C 	 (6,45) 

z
'S,e 	l 1 620,7*-6 /'—1 

G4 : t,e`a 	2 	2 J S`C 	 (6.46) 

lz
c!Crzlt 

I
+2razlz2 

 1-2ea2l 
z  i  1 

G5 : 
	t 2 S( j-zea ,) 

',(I — 2E62t)z e 	 C 	 (6.47) 
1-2s6 t 

G6 : (t, S, eC), E ~ 0 	 (6.48) 

GQ :(t,S,C+ 8(S,t)) 	 (6.49) 

We obtain the most general one-parameter symmetry group of the Black Scholes equation as 

6 
a general linear combination 	c;X ; ± XQ of the generators given by eqs. (6.36-6.42). We can 

also represent an arbitrary group transformation gas the composition of transformations in 

the aforesaid one parameter subgroups. 
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Since each group G, is a symmetry group, if C = C(S,t) is a solution of the Black Scholes 

equation, then so are the functions:- 

c° (S, t) = C (t— E, S) 	 (6.50) 

C (2I (S,t) = C(t,E`' S),E~ 0 	 (6.51) 

C(3) (S't ) = e(i-E 2)rrC e(Er-2 Q2 jSE-~ 'E-2 t 	
(6.52) 

_[!€2 Q2+E r-'Q2l 1 	2 
C(4) (S,t ) _ e 2 	( 2 J SEC[Se 	I't] 	 (6.53) 

2 

~Iogs_(r_ o.2)t] +2ro 212 

2 
1+2EQ r 	 r 

t
CAS) (S, t)=[1+2 E Cr2t] 2 e 	 C

(1+2 E 
62t'S1+2Ea2~ 	(6.54) 

C61 (S,t) =E C(S,t),E~ 0 	 (6.55) 

E p(s,t) 	 (6.56) 

Here E is any real number and ,Q (S, t) any other solution to the Black Scholes equation. It is 

seen from the symmetry group G6 and G,6 that the solutions of the BIack Scholes equation 

are linear and we can add two solutions and multiply them with a constant. The group G1 

shows time invariance of the solutions. The symmetry group G2 reflects the scaling 

symmetry with respect to S. 

133 



6.4 STRUCTURE OF THE LIE ALGEBRA A=(X,,X2,X3 ,X4 ,X5 ,X6 ) [157-159] 

We now explore the structure of the finite dimensional Lie algebra generated by 

A = (X, ,X2 , X3 , X4 , X5 , x6 ). The commutator table of A is given by:- 

X1 X2 X3 X4 X5 X6 

X1 0 0 X1 + K X2 + rX6 X 2 - K X6 2X3 -KX 4 - 2 X6 
2 6 

X2 0 0 1 2X2 1 X6 62 X 4 0 

X3 -(XI  + K X 2 +rX6 l 2 X= 0 1 X X5 0 
z 	I 2 	4 

X4 -X+KX 1 -1 X 0 0 0 
2_ 	62 	6 02 2 	4 

X5 —2X3 +KX4 ±—X6 —X4 —X5 0 0 0 
2 

X6 0 0 0 0 0 0 

TABLE 6.1 

where K = r - 1 62 . Further, 
•2 

LX1,XQJ X, [X2 ,XR ] XSRS , [ X3 ,Xa1 =X i 	12~ 1 Z` 	I- 1 2 2 
//3,+-S(InS)/is+— r--v JI/ilnS-- r--v JI pt-r/il 

2 	2Q 2 	2v 2 

[X4 ,X /J] =X 	1 	1 ` !S/is-_! pinS+ 1 .Z(r-_! pin 	R 	I Z /1i+(S(InS)Ps-2vZ Q(InS~Z+r !'z)fl11nS-f 2~Ir Z02 +r1Qt Z+1/ir 

[X6 ,Xa ]=X Q [X'6 ,Xp]=O, where Xr =y ac 

From table 6.1, the following readily follow:- 
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(a) the centralizers of the various elements X, are:- 

x(Xl)= (X1IX2,X6),z(X2)=(X1,X2,X6), ( X3)= ( X3 ,X6) , ( X4)= ( X4 ,X5 ,X6), 

( X5) = ( X4 ,X5I X6), ( X6) = ( X1 ,X2 ,X3 ,X4 ,X5 ,X6). 

6 
(b) the centre of A is x (A) = n x (X; ) = (X6 . 

f-1 

(c) [X1,A] =(X1,X2,X3,X4,X6),[X2,A]=(X2,X4,X6),[X3,A] =(XI,X2,X4,X5,X6), 

[X4 , A] = (X2 , X4 , X6 ), [X5 ,A] = (X3 ,X4 ,X5 ,X6 ) , [X6 ,A] = 0. 

(d) U = (X2 , X4 , X6 ) is a two sided ideal of A since ([U, A]) = ([A, U]) = U .It is also an 

invariant subalgebra of A. 

(e) the Lie algebra A is not solvable, since [A, A] = A and hence the derived series of A is 

stationary. 	However, 	for 	the 	subalgebra 	U, 	we 	have, 

[U, U] = (X6 ) , [U(2) , U(2) ] = [X6 , X6 ] = 0, so that U is solvable. Being the maximal 

ideal, it is, therefore, the radical of A. Also, V = ~Xl , X3 , X5 ) is a semisimple and 

simple subalgebra. 

(f) in view of (e), the Lie algebra A admits the Levi decomposition A = U O+ V 

(g) the adjoint representations of the various elements can be trivially written from the 

commutator table and, in the ordering (X l , X3 , X5 , X2 , X4 , X6 ) take the form:- 

X I = a21 
 

=-1,a24  =---,a26    = —r, a32 = —2,a35 = K,a36 = 2 ,a54 =-1,a56 

_1 	 1 
X2 = 	

_ 
a24 = 2,a35 =-1,a56 =-62 

_ 	 K 	 1 	1 
= X.  all = I, a14 =— ,a16  = r, a33 = -1,a44  = 2,a55 

K 	1 	1 
X4 =(a,4=   1, a16 =-----,a25    = 2 ,a46 = 62 ; 
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X5 =a12 =2,a15 =—K,a,6 =-
1
2 , a23 =1,a45 =1 ;X6 =°6x6 

The non-specified elements are 0's in the above matrices. 

(h) 	the action, defined by 	 = (eE°d' x' )X J of the ad'oints of the various generators X, on Y ~P;~ — 	 J 	 g 	, 

the algebra A is summarized below (These constitute the inner automorphism group 

of the Lie algebra A):- 

.1 —a X, XZ X3 X4 X5 X6 

1 ~Y 

X i X — cX l 	3 eK 
Xz — 	X3—EX4 

X — 2eX 3 	5 X + eKX 4 	5 X 5 EK —EYX3+~X4+ 
+e

Z 
X5 

K2 
k-0+ - 2r+ 	X 

Xz XI XZ — E X3 X3 X4 — EX5 X5 
— ; X + ~z 2 4 C2 	262 

+X6 

X 3 2X E 

2 —1 KX, +e2X2 e z (e' 
X

3 e 2 X4 
e-̀ X

5 
X

6 

X4 XI EXI + X2 X3 + X4 2 X3 X5 E2 — £K X -  
26Z 	6z 	1 

6z X2 + 

X5 XI X2 2EX1 + X3 —EKXI + s z X I + 

'6Xz + X4 sX3 

+X 5 
—2EXI +X6 

X6 X, X2 X3 X4 X5 X6 

TABLE 6.2 
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CHAPTER 7 

A PHENOMENOLOGICAL QUANTUM 

MECHANICAL MODEL OF FINANCIAL MARKETS 

Abstract 

Several techniques of fundamental physics like quantum mechanics, field theory and 

related tools of non-commutative probability, gauge theory, path integral etc. are being 

applied for pricing of contemporary financial products and for explaining various 

phenomena of financial markets like stock price patterns, critical crashes etc.. In this 

Chapter, we apply the well entrenched methods of quantum mechanics and quantum field 

theory to the modeling of the financial markets and the behaviour of stock prices. After 

defining the various constituents of the model including creation & annihilation 

operators and buying & selling operators for securities, we examine the time evolution of 

the financial markets and obtain the Hamiltonian for the trading activities of the market. 

We obtain the probability distribution of stock prices in terms of the propagators of the 

evolution equations. Results on pricing of derivative contracts using quantum 

mechanical procedures are also presented. 

7.1 INTRODUCTION 

In this Chapter, the objective is to apply the well entrenched methods of quantum 

mechanics and quantum field theory to the study of the financial markets and the 

behaviour of stock prices. Section 2, which forms the essence of this Chapter, arrives at 
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various results for financial markets by modeling them as quantum Hamiltonian systems. 

The probability distribution for stock prices in efficient markets is also obtained. Results 

on derivative pricing using the above techniques are also presented in Section 3. Section 

4 concludes. 

7.2 QUANTUM MODEL OF FINANCIAL MARKETS 

We consider an "isolated" financial market comprising of n investors and m type of 

securities. The market is "isolated" in the sense that new types of securities are neither 

created nor are existing ones destroyed. Further, the number of investors is also constant. 

The investor i, i = 1,2,3.......n is assumed to possess a cash balance of x; , i =1,2,3.......n 

(which may be negative, representing borrowings) and y;, (z), i = 1, 2, 3.....n; j =1,2,3....m 

units of security j at a unit price of z. Obviously, y >_ 0, b'i, j. 

Towards constructing a basis for our Hilbert space representing the financial market, we 

define a pure state of the system as 

(7.1) 

Thus, a pure state represents a state of the market where the entire holdings of cash and 

securities of every investor are known with certainty. This represents a complete 
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measurement of the market and hence, is in conformity with the standard definition of 

"pure state" of a system. 

A basis for our Hilbert space may then be constituted by the set of all the pure states of 

the type (7.1) i.e. 

={ {x; ,{y, (z),j=1,2,...m},i=1,2, ...n})} 
	

(7.2) 

The elements of this basis set 'P satisfy the orthogonality condition ('PI  I'PJ ) = S. with 

respect to the scalar product defined in the sequel. The orthogonality condition makes 

sense in the financial world — it implies that if a market is in a pure state I WI ) then it 

cannot be in any other pure state. 

However, a complete measurement of the market is, obviously, not practicable in real 

life. At any point in time, we are likely to have certain information only about a fraction 

of the market constituents. Hence, the instantaneous state of the market I yr (t)) may be 

represented by a linear combination of the pure states '+',(t)) i.e. 

(t)/ _ 	C, T,  ( t)) 
	

(7.3) 
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We endow our Hilbert space H with the scalar product 

(w'( t)14( 1 ))=ZC;Dm('r(t)l`Fm(t))=ZC,D,n 5'm=ZC1D, 	 (7.4) 

where we have assumed the orthogonality of the pure states. 

The components of the state space vector I yr (t)) are given by C, _ ( , (t) I yr (t)) and are 

related to the probability of finding the market in the pure state I lI', (t)) . 

Since our basis comprises of all possible measurable pure states, the completeness of the 

basis is ensured so that 

I = 	`I' r  (t))('P, (t)I 
	

(7.5) 

In analogy with the no particle state or ground state in quantum mechanics, we can define 

a ground state of our financial market as 

10) =Jx, =0,y,, (z)=0Vi, j,z) 
	

(7.6) 

i.e. the ground state is the market state in which no investor has any cash balances nor 

any securities. This state is, obviously, a pure state being fully measurable and would also 

not evolve in time since no trade can take place in this market. 
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We define the cash and security coordinate operators z, & y (z) by their action on the 

basis state (7.1) to provide respectively the balances of cash and the j`" security (at price 

z) with the i'h investor as the eigenvalues i.e. 

(7.7) 

(7.8) 

A cash translation operator T (z) is also defined by the following 

+z',{y; (z),j =1,2,...m},i =1,2,...n}) 	(7.9) 

i.e. it transfers an amount of cash z to the i"' investor. 

The operator T,. (z) obviously satisfies the following properties 

(7.10) 

i(o)=I 	 (7.11) 

[P, (z), 2~ ] = T (z) x~ — xJT (z) = —S;,T (z) 	 (7.12) 

T (z) = T (—z) 	 (7.13) 
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Towards obtaining an explicit representation of the cash translation operator, we assume 

dT (z) 
= 	as the generator of infinitesimal cash translations dz to the investor i. 

dz 
Z=o 

Expanding 1(z) as a Taylor's series and using eqs. (7.10), (7.11) we have 

ch..-1 T,.(z) 
4(z) 	 z+& —'(z _ [(c_11i'(z 	 =T(z) 	(7.14) 

with the solution T (z) = e'. Furthermore, we have (suppressing the y;. indices for the 

sake of brevity) 

I k+CkIi=tZ-A)=t* ~ I 	 =[(o)_ 	c~:.. {x~,i=l,~••n}I 
(7.15) 

Hence, 

	

=1 	({x; +dz,i=1,2,...n}l y')—({x; ,i=1,2,...n}l yr) 

	

(lx,,  i=12 n} ) 	({x i=12 n} )~ 	- - 
axi 

(7.16) 
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a  
so that T (z) = e 	. The following commutation rule holds between i, and p;  

Eii' Pi I =87 	 (7.17) 

The condition of an isolated market ensures that the basis and hence the Hilbert space 

does not depend on time. This implies that the temporal evolution of the system is 

unitary. 

7.2.1 CREATION & ANNIHILATION OPERATORS FOR SECURITIES 

We define &, (z) as the annihilation operator of the security j from the portfolio of 

investor i for a price z i.e. when operator a; , ( z) acts on a state, the number of units of 

security j is reduced by one from the portfolio of investor s for a price z .Similarly, we 

define creation operators &; (z) as the adjoint of the annihilation operators that increase 

the number of units of security j in the portfolio of investor i for a price z .The precise 

action of these operators on a state vector is defined by the following 

= y (z).zl,,{y, (z)-1, j =1,2,..m),i=1,2,...n}) 	(7.18) 

and 
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_ (y (z)+1)zl {x.,{Y,; (z)+l,j =1,2,..m},i =1,2,., n}) (7.19) 

where the factor 'z'  has been introduced in the eigenvalues to ensure "scale invariance" 

of the theory. 

These operators satisfy the following commutation relations:- 

= zSa ,b;k 8~, 	 (7.20) 

and 

[a; (z), ak► (z')] = Ca;; (z), a;; (z')] =0 	 (7.21) 

[Ii (z)' aJk (z')] _ [T (z) , a (z')] = 0 	 (7.22) 

P~il (z )' aik ( z' )] _ [T r ( z ) , a ( z' )] = 0 	 (7.23) 

Further more 

(7.24) 
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which implies that the number operator would be 

a(z)â(z) 

z 
(7.25) 

Using the aforesaid operators we can construct an arbitrary basis state from the ground 

state as follows 

n 	m 	 y (z) 

{x,,{y f(z),j=,2,...m},i=1,2,...n})=11T ( xi)~ 	(ari(z)) 	I0) 	(7.26) 
J=I {z.y (Z)EN} 

7.2.2 BUYING AND SELLING OPERATORS 

The buying (selling) operation of a security is, in each case, a composite operation 

consisting of the following:- 

i. the creation (annihilation) of a security at the relevant price z; and 

ii. the decrease (increase) in the cash balance by z of the investor undertaking the 

trade. 

Hence we can define the buying (selling) operator as composite of the cash translation 

operator and the creation (annihilation) operators for securities as follows:- 

1  (z) = a, (z) TT (z) = â, 	(—z) 
	

(7.27) 
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for the "buying" operation and 

b~'i (z) = ai (z)T (z) 
	

(7.28) 

for the "selling" operation. These operators satisfy the following commutation rules 

[b;, (z),bkl (z')] = z,58,,511 	 (7.29) 

[b,; (Z)~bk, (z')] _ [b (z),b; (z')] = 0 	 (7.30) 

(z')] = 0 	 (7.31) 

[b;T (z), xk ] = Z8;kb;' (z) 	 (7.32) 

[b, (z), xk ] = —zB;,,b^, (z) 	 (7.33) 

7.3 TEMPORAL EVOLUTION OF FINANCIAL MARKETS 

In analogy with quantum mechanics, we mandate that the state of the market at a given 

instant of time 't', is represented by a vector in the Hilbert space H whose components 

determine the statistical nature of the market. Hence the temporal evolution of the market 

in essentially determined by the evolution of this vector with the flow of time. In the 



Schrodinger picture, the time evolution of a system can be characterized through a 

unitary evolution operator U (t, to ) in H, that acts on the initial state I yr (to  )) 	to 

transform it to I yr (t)) i.e 

l y/Q)) = U(t,to )k/(to )) 	 (7.34) 

The assumption of the market being isolated and hence 

being a complete basis at all times, and the 

conservation of probability i.e. 	C1 
 () 2

=1,`dt together with the group property of 
r 

A 

U(t,to ) implies that the temporal evolution is unitary i.e. 

U(t,t o)UT  (t,to ) = UT  (t,ta )U(t,to ) =1 
	

(7.35) 

Furthermore U (to , to ) =1. Defining the Hamiltonian H (t) = i --t  U (t, to ) as the r =10  

infinitesimal generator of time translations (evolution) we obtain, through a Taylor's 

expansion up to first order U (t + St, to ) = U (t, to ) + au (t + St, to ) 	U (t, to ) St +... or 
81=o 
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aO(t,ro ) _ Jim v(t+â'r,to)—v(r,to) =—rH(t)U(t,ro ) 	 (7 .36) 
at  

with the immediate solution U (t, to ) = e f Hl~ ~ where time ordering of the operators 

constituting the Hamiltonian is assumed. 

Before progressing further with the development of the model, some observations are in 

order about the theory developed thus far. 

a. In standard quantum mechanics, H(t) is usually a bounded operator and hence 

5 the exponential series in U (t, to ) = e 0̀Nl~ l converges so that its approximation to 

first order is acceptable giving i a I = FI (t) I Vr (t)) which is the Schrodinger 
at 

equation of wave mechanics. This may not always be the case in financial 

markets. 

b. Since time evolution of financial market, essentially, occurs through trades in 

securities, it is appropriate to infer that the Hamiltonian represents the trading 

activities of the market. 

c. In order that the evolution operator U (t, to ) is well defined, we mandate that the 

Hilbert space H is so constructed that the kernel of U(t,t o ) is empty. 
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7.4 MODELING TIME VALUE OF MONEY 

Time value of money and interest rate instruments are classically modeled through the 

first order differential equation 
dB (t) 

= r (t) B (t) with the solution B (t) = B (0) of r(t)dt 
dt 

A possible candidate for the Hamiltonian function H(in the classical picture) that would 

generate this temporal development as the equations of motion is 

n 	 n 

H(x,p;t)_ H,(x; ,p; ;t)—_ r.(t)x,(t)p; (t) 	 (7.37) 
t=t  t=t 

This Hamiltonian leads to the following equations of motion 

dx; (t) — 5H; (xt , P;; tY. y, ( t ) x + (( ) dP; ~t} _ _ aH, (x„ P;; t) = 	t 	t 	(7.38) 
dt - 	ap; 	dt 	ax; 

While the interpretation of first of these equations is straightforward being the growth of 

cash reserves of the P' investor with the instantaneous rate r, (t) , the implications of 

second equation are more subtle. To provide a financial logic to this equation, we note 

that p, is the infinitesimal generator of cash translations in the classical picture and hence 

dP;(t) = 'H,(x,,p;;t _ —r; (t) p; (t) represents the rate of change of the cash 
dt 	ax; 

translations generator which, given a fixed rate of growth of cash, would decrease with 

the amount of cash translations. 



Using the Weyl formalism for transformation from the classical to the quantum picture, 

we require that the quantum mechanical analog of H (x, p; t) be Hermitian and 

symmetric in its component operators. Hence, we postulate the ansatz 

)'p( )~ °~ 	()gyp ()~ )°~IY~( 	(t)21 P 	( Hx{t 	) t t 	Hz; t 	t 	t) t 	 tx; ~,+I 2 ~ ( 7.39) 

for the quantum mechanical Hamiltonian representing the time value of money, so that 

the time development operator is 

F_ iJ1H(.OdI 	jjr,(l)xi (p;+'%
J

df 
U ( t,tp)=e '0 	=e'-'`0 l z (7.40) 

which may be evaluated using standard methods like Green's functions and Feymann 

propagator theory. 

7.5 REPRESENTATION OF TRADING ACTIVITY 

Let us consider a deal in which an investor ' i ' buys a security 'j'  at a price of ' z' units 

and immediately thereafter sells the same security to another investor 'k' at a price of 

` z' ' units and credits/debits the difference z'— z to his cash account. The composite 

transaction will, in our operator formalism, take the form b (z')&. (z). In analogy with 

this argument, we can represent the Hamiltonian for trading activity of the market as 
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H
Tr 

(t) _ 	az az ,
>z.. ( t)bT (z)bkl (z') 	 (7.41) f  

l.j,k.f o Z o 

where 4 = In z' ensures that the amplitudes are scale invariant. 
z 

7.6 PROBABILITY DISTRIBUTION OF STOCK PRICES 

We now derive the probability distribution of stock prices in market equilibrium and 

show that the prices follow a lognormal distribution, thereby vindicating the efficacy of 

this model. 

For this purpose, we assume that an investor i = a buys one unit of a security j = /j at 

time t =t1 for a price z. We need to ascertain the probability PT (z'Iz) i.e. the probability 

of the security j = /3 having a price z' at time t f = t; + T .We assume that during the 

period t1 — t,, investor a holds exactly one unit of /3 and that before t. and after 

t f , a holds no unit of /.3 . 

Let I vz~ (t; )) be the state that represents investor a holding exactly one unit of /3 at a 

price 	z 	. at 	time 	t, in 	the 	Hilbert 	space 	H. 	Hence, 	we 	have 

yr a 

 

(t,)) = b  (z) I iv ,, (t1 )) where 	, (t1 )) is the state that represents investor a not 
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holding any unit of /3. This also implies that bay (z) ,v (t1 )) = 0 .Let us assume that the 

final state corresponding to the initial state  	(t,)) is represented by  yr (t f )} so that 

If 
-i$Rd, 

a (tr))=U(t;,tr) p(ti))=e " bf(z yJ (ti)) 	 (7.42). 

The amplitudes of I yrrp (ti )) are determined in the usual way by taking scalar product 

(qr p (t f ) yr p (ti )) and we have, for the matrix elements of the propagator 

If 

if Rd, 

G ( z'~ tf' z' ti)=(v/ ( tf)l bap( z' )e !' Ut (z/1 w (t1) 
(7.43) 

In this case, the trading Hamiltonian will contain creation and annihilation operators 

relating to the investor a and those relating to the security /3 i.e., it will be of the form 

d 
"Tr (t)_ 

	
f 

	
.1 _ hapicj y (,t)b ,(z)bkr(z) (7.44) 

We further make the assumption that the amplitudes can be approximated by their first 

two moments about = 0, being sharply peaked about z' = z since, in the timescales 

being considered, most trades would occur around z. Hence, we have 

ha/ikl [~apk( (t ) — l~-1 aQk! (t )] c5 ( ) 

	
(7.45) 

152 



Noting that = Zn Z , we have -' _ [In Z) _ (Z 
–1

) = z z to first order and 

z -I 

	

l 	dln- 
8 (e) = 5 in z (= 8(z z) [_

d 
z 	= z' 8 (z'-- z) . Using these results and eqs. 

 

z J  z' 

(7.44) & (7.45), we obtain 

"Tr (
t` ry 

z,dz ~dZ' zi5 (Z'— Z) [ f2alkl (t) — i Z Z 
z "afikl ( t ) ] aQ (Z) bkl ( Z' ) 

0 	0 

= 
	F~Z

bZ /f(Z)
L
Qafkl(t)+IZ7aik!(t) 	 k! (z

k,1 

	 (7.46) 

We note that this expression for the Hamiltonian is linear in a and hence it can be 
aZ 

diagonalized in the "momentum space" through a Fourier transformation and we have 

HTr (t) 	 f 	r dZ dZ 
' 

I dpb O (Z) [O.,Okl (t) + 1"afil (t)p]/k,    (Z') e`p~ 	(7.47) 
Z1r k.! Q Z 0,1 

The assumption of market equilibrium implies that the Hamiltonian should be 

independent of time over the relevant timescales that would be much smaller than those 

determining aggregate market behaviour so that we may write eq. (7.43) as 
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G(z,,tf;z,t,)=/dap (ti )Ib
ap

(z ,)e-r1)Tb~(z)IwQR (t; )) 	 (7.48) 

Because of the Hamiltonian being diagonal in momentum space, it is more convenient to 

work in momentum space for evaluating the propagators and we have, for the equivalent 

of eq. (7.48) in momentum space as 

G 	T t. 	t. 	 e' 1." Z."b z e'H, r W 	 e ' ` Zx bT (z)]4 z 	t. 	(7.49)  
Loz 

To solve the problem further, we make use of second order perturbation theory. The first 

step is to split the Hamiltonian into components as follows 

H(t) = 	 (z)[c (t)+E (t) p]b0(z)+ E 	b"(z)[S2 (t) +z 	(t) pl4d (z') 	(7.50) 

	

l p Z 	 k,I,km p Z 

Let E, be the energy eigenstate of the unperturbed Hamiltonian i.e. of the state of the 

market before the purchase of security f3 by the investor a , then the energy eigenstate of 

the Hamiltonian H(t; ) i.e. after the purchase of security fl by the investor a will be of 

the form E p = E, + 	 S~aQa~ (t,) + 	(t; ) p] — ip2a2 where the second term represents 

the impact on the energy eigenstates of the transactions involving investor a or security 

/3 and the last term is the second order perturbation term due to the overall fluctuations of 
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the market. Substituting this value of Ep in eq. (7.49) and noting that the Hamiltonian and 

hence the propagator G(p', p;T,t,) is also diagonal in "momentum space", we have 

G ( 	T t.) --- 2ir8 ( 	) e- ITE, = 2~'S 	
e-;T[E,  P ~P; ~ , 	P ^P 	 ~P — P~ 	 (7.51) 

where 	S2aiar (ti) _ c2 (ti) , 	 J̀a/Jal (ti) = "(ti ) 

I 	 l 

Inverting back to "coordinate space", we obtain 

( rn r(ln(z/z)+ET)21 

G (z,t f ; z, t,) — 1 J dpe
-iT[E,+i2(r; )+ia(f ; )P-ipa2 ]-ipInz/z N e

iT Ei+-7 e

L 	4a2T 	J 	 (7.52) 
2. _~ 	 2a 7rT 

The probability PT (z'Iz) i.e. the probability of the security j = 3 having a price z' at time 

t f = t; + T will then be proportional to the square of the above amplitude and hence, we 

finally obtain 

r(!n(z'/z)+HT)21 
1 IL 2a2T 

P.,(z Iz)aJG(z i,tf ;z,t,) Z =(4,r62 T) e (7.53) 

which agrees perfectly with the standard stochastic theory of finance wherein stock 

returns are modeled extensively through lognormal distributions. 
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7.7 BASIC FRAMEWORK FOR OPTION PRICING 

In analogy with quantum mechanics, we mandate that the state of a security in the market 

at a given instant of time `t', is represented by a vector I C(x,t)) in the Hilbert space H H. 

The components of the state vector I C(x,t)) determine the statistical development of the 

security and its temporal evolution- is determined by the evolution of this state vector 

I C (x, t)) with the flow of time. 

In the Schrodinger picture, the time evolution of a system can be characterized through a 

unitary evolution operator U(t,to ) in H, that acts on the initial state IC(x,to ))to 

transform it to I C(x,t)) i.e 	 I 

C (x, t)) = U(t,to )I C(x,to )) 
	

(7.54) 

We assume that the evolution of the security is in an isolated market. This assumption 

implies that the initially chosen basis will remain complete at all times. The conservation 

of probability together with the group property of U(t,to ),then, implies that the 

temporal evolution of the security is unitary i.e. 

U(t,t o )UT  (t,to )=UT  (t,to )U(t,to )=I 
	

(7.55) 

156 



Furthermore U(to ,to ) =1. Defining the Hamiltonian 	
t
U(t,to)

11=10 

as the 

infinitesimal generator of time translations (evolution) we obtain, through a Taylor's 

expansion up to first order 

U(t+St,to )=U(t,to)+ au(t+St,t) 	U(t,to )St+...or 
151=0 

aU(t,to)= 
Jim 

U(t+St,t)—U(t,to) _—i1(t)U(t,to ) 	 (7.56) 
at 	— 5,->a 	St  

with the immediate solution U(t,to ) = e-jnir~r where time ordering of the operators. 

constituting the Hamiltonian is assumed. 

A space translation operator T (z) is also defined by its action on an arbitrary basis 

(7.57) 

i.e. it translates a distance z in the i" direction. 

The operator T (z) obviously satisfies the following properties 

T,(z1 )i (zz )=T (z,+z2 ) 	 (7.58) 
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T(0.)=I 	 (7.59) 

[it (z),z~]=T (z)x~ —xfT (z)=—z8~T (z) 
	

(7.60) 

TT (z) = T (—z) 
	

(7.61) 

Towards obtaining an explicit representation of the space translation operator, we assume 

dT (z) p; _ —i 

	

	as the generator of infinitesimal space translations dz in the i spatial 
dz 

Z=O 

direction. Expanding T (z) as a Taylor's series and using eqs. (7.58-7.61) we have 

T(o d1 N th..-1 T(z) 
dl,{z 	T(z+&

— 
T(z) — 	 ~)-1T,(z) 

hm 	 li
[7;(] 
 =Urn 	 =ipT(z) (7.62) 

with the solution Ti (z) = e'Z11 . Furthermore, we have 

+cZi=1~... }=T~clz)~~ ,i=1,~... ~= 7,T~0~ ~ 	(z) dz.. I {xi=z.• l 
0 	 (7.63) 

=~I+ipc~...~i{x,i=1,Z..•j} 

Hence, 

=1im 
dZ 

=—ip; ({x; ,i =1,2,...n}Ivy) =—p; ({x; ,i =1,2,...n} 
C9 	(7.64) Lt) p1 _ —l__ 
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The operators .x;  and b, obey the commutation rule [2, p I = ou  . 

7.8 PROPERTIES OF THE BLACK SCHOLES HAMILTONIAN 

The Black Scholes equation for the instantaneous price of a derivative security is given 

by:-  

19C + 162SZ a
z 
 C +rS a--rC=O at 2 as2  as (7.65) 

where C is the instantaneous price of a contingent claim, S is the price of the underlying 

asset at that instant, 6 is the volatility (standard deviation) of the underlying and r is the 

relevant risk free rate. Making the substitution x = In S in eq. (7.65), we obtain 

z 	z 
 z 

at 	2 (3x2 -9 
—a — r ax  +Y ' C (7.66) 

A comparison with the standard form of the non-relativistic quantum mechanical 

(Schrodinger) equation identifies 

2 

lY=— 2 aa2 l a 	+r —rJax2 
(7.67) 

159 



with the quantum mechanical Hamiltonian ft, volatility a with the inverse of mass and 

the derivative price C with the state vector in Hilbert space. 

The occurrence of a operator in the Hamiltonian H due to the drift term in the Black 
ax 

Scholes equation implies that the Hamiltonian in not Hermitian, unlike its quantum 

mechanical analogue e.g. (in Dirac notation) 

(f I Ht 1g) — (gl Rlf/ + 	 f dx(gI x )( x j H f~ 

	

6z 	 g'(x) aZf ~ x) + 162 -~ f erg' (x) (x) +r f erg̀  (x) f(x) 	(7.68) 

 

2  ax  2  )  ax 

Now, through an integration by parts and taking relevant limits we obtain:- 

J
a2f (x) - - f agi (x) of (x) - f a2g$ (x) f(x) 	(7.69) 

`xg (x) axe 	f 	ax 	ax — 	aX 2 

Similarly 

J dxg, (x)  ax 	J 	ax 
(7.70) 

Substituting from eqs. (7.69), (7.70) in (7.68) we get 
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(fI HT g)= 	$drf ~(x)
?g(x)

— l oI —r
) 

Jdxf (x)
5g(

x
)
+r f c&f (x)g(x) ( f Ii g) (7.71) 

2 	cam' (2  

However we can transform the non-hermitian Hamiltonian H to a hermitian Hamiltonian 

ft' through a similarity transformation i.e. H' = e( QZ Z J xHei6 Z r for 

* 

( fJHtJg)=(gIH f)* 

= f dx\gix)lx i H if~ 

s 

_- Idcg(x) _ 	 elm 0 	f(x)e l~ z+  az—r
2 	 (2 	) 

IOD 
fig; ( x ) el~ ZI a f(x) e]}  ZI +r 1' g' (x) f (x) ( x ) 	~ 	 ~J 

(7.72) 

Noting that 

Y _ 11Z l~ 2 f(x) —21---I  e e ~~ l (x) +e Z ~f 
(
x
) 
	(7.73) 

a 	az 2 	2 C  J 

and 

r 1 r 

a e lQ= z~z f( x) = 	r _ 1 e ~Q= z~= 
—~62 2) 

f (x)+e  la' 2)T aa( x) (7.74) 

so that eq. (7.72) reduces to 
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___

1Jl 
0Z

• 
	 z ( 

2 r J ig, (x) ~xz 
	
+ 2~z 

r 

+ 
1 
2 a2) J S, (x) f(x

) 

= 2 	a2a,xl'f(xf .+20,2 (r+22J2 1dxg~( x) f ( x )  

2 
2  J f (x) 

2g( 

2

x)
+___I r + 2 ~Z 

J
Z f `Lf (x) g (x) = (f I H g) 	 (7.75) 

so that ii is hermitian. 

We can show that the Black Scholes Hamiltonian Hof eq. (7.67) is diagonal in the 

momentum representation. In the position diagonal (coordinate) representation, the 

momentum operator is —i ax and hence satisfies the equation 

Pti(P,x) _ —r av/ (p,x) = Pal/(p,x) 
	

(7.76) 

where iv (p, x) is the momentum eigenfunction corresponding to the momentum 

eigenvalue p. 

Eq. (7.76) admits the solution cu (p, x) = Ae'Px where A is a normalization constant to be 

determined from the orthogonality condition $ / (p',x) ,i' (p, x) dx = 8(p — p') . Using 

the definition of the Dirac S function S 	 A e'i p-P l x we obtain A = I so 
~ p p'~ — f2Tr 	 2Tc 

that wr(p,x) _ 	e`Px are the normalized eigenfunctions of the momentum operator 

p labeled by the index 'p'. The momentum operator can be considered to be a 

continuous matrix with the elements 
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p(x,x')=(xl plx')=—ip(xlx')=—i x S(x—x') 
	

(7.77) 

The transformation matrix from the coordinate representation to the momentum 

representation is achieved through a unitary matrix U whose columns are the normalized 

eigenfunctions of p i.e iir (p, x) _ 	e'P" . The Hamiltonian matrix in the momentum 
Ji 

representation is therefore given by 

0-ö 2 + 1 62 r 
2 ax 	2 	) ax 

+(262—r)
+r 7x U(x,p')dx 

= 1 J 	 — CrZ aZ +  —Cr r a r e`P xdx 
2 	2 7x2 	2 	ax 

z 	r 
~~ 	- piz +il a~ Z -r 

J 
p'+r e'' x Pdx 

PZ +i(2 6Z —r)p  +r f e dx 

= 	p2 +iI- aZ —r
)

+r Y(p— p') 	 (7.78) 

which is clearly diagonal due to the presence of the Dirac S function. 
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Furthermore, we have 

[
—a2 a2 + i —r a +r e'f" = 1 1 ~p2 +i 1 o2 —r 

2 	J 
p+r e'P' (7.79) 

2 cox (2 	)ax 	2~ 	(2 

which shows that __1__e1'is also an eigenfunction of the Hamiltonian corresponding to Ji 

the eigenvalues 1 L a2 2 +i  62 

The fact that the eigenfunctions are mutually orthogonal follows from 

J 

1 e-'1' e;Pxdx _ _L f ei(n-P')x 
=8(p—p). 	 (7.80) 

2; 	27c 

The momentum space basis vectors are obtained by 

p) = $UT (x,p)Ix)dx= 1 $e-'PxIx)dx 	 (7.81) 

which gives the scalar product 

gives (plx) = 1 e"Ox 
2~ 
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Hence, (x x') = 8 (x — x') = gudp  e-'P(x x) = f dp (x I p) (p I x') whence f dp I p) (p I = I 

which establishes the completeness of the momentum basis. 

7.9 THE CALL PRICE (FIRST APPROACH) 

The Schrodinger form of the Black Scholes equation is 

r7C _ 1 6 azC + i 
Z 

a r aC + rC or equivalently ~C 
= 	

= HC with a solution 
at 	2 Z ax 	2 	ax 	 ar 

C(x,t)=C(x,0)el̀which gives C(x,0)=C(x,T)e-11T so that C(x,t)=C(x,T)e-H ST- . 

The components of the state vector IC(x,t)) in coordinate space are given by 

(x C (x, t)) _ (x I e-H1T -'1 C (x, T )) which, using the completeness of the coordinate basis 

gives (xI C(x,t)) = f dx'(xI e-N(T-') Ix')(x'I C(x,T)) . 

The matrix elements (x I e-T- x') are computed by transforming the problem to the 

momentum basis using the completeness relation f dpI p)(pI = I. We have 

Cx I e-H(T -r) I x') = ('(x p) (p I e
-f'f(T-1) I p') ( p' I x') s ( p _ p ') dpdp' 

1 	-ipx+ip'x' 	-H(T-l~ =
2ir 

Je 	s p l e 	Ip} s( p — p )dpdp '  
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= 2 fe+ip(x'-x) (p I e-fi(T-r) I P) dP 

1 	 l 1 
— 1 feip(x-x')- Z pz+i(~az-r

J
p+r

1
(T-t) 

d
p 

-r

e 

T-I 	x'-x+/I r-iOI2 T-! 
( 	) 2(T'r)vz 	l 2 )( 	)] 

27r(T —t)o.2 

Hence, we have, finally, for the price of the security 

(7.82) 

I C(x,t)) = Jdx'(xIe-! 
(T-!) 

IX')C(x',T) 

e r(T-t) 	 ( I ) z rx'-x+r QZ-r
)
(T-t)1 

~e 2 T-t v L 	l2 	J C(x',T) 	 (7.83) 
2Yr(T—t)a2 

where C(x'T) is the terminal payoff of the derivative contract given by 

max(ST — E,0) _ (ST — E)+ where ST is the stock price on the exercise date and E is the 

exercise price. Substituting this terminal payoff in eq. (7.83), and performing the 

integration we obtain the standard Black Scholes formula for the pricing of an European 

call option. 

We now show that the Black Scholes Hamiltonian satisfies the martingale condition. 

Solving the equation 2 62 p2 +,1   2 62 — 	
rJ  

p +r = 0 , we obtain the values of the index p 
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for which the eigenvalues of the Hamiltonian are zero as p = -i, 2—`Z The corresponding 
6 

values of the eigenfunctions are C0 ) =-—e' 	
1 

es 	s, I Co) - 	e 	=_' _ °Z . For these 
Z7c 	27r 	2~c 	2~ 

eigenstates, a ~ C°) = o, a I C° ~ 
= o so that these states do not evolve in time, hence, satisfying 

at 	at 

the martingale property. 

7.10 THE CALL PRICE (SECOND APPROACH) 

We solve the Black Scholes equation (7.66) through separation of variables. Let 

C(x,t) = X(x)Y(t)so that 

Y I a (t) - - 2Z alx(x) +~26Z -r)a(x)+rx(x)l 
] X(x) 

(7.84) 
C 	 J 

The left hand side of this equation is a pure function of time and the right hand side is.a 

pure function of x only. Hence each side must be equal to a constant so that 

ay(t) 
= EY(t) 

at 
(7.85) 

2 a2a ~x)  + --p I O fix) +rX (x) = EX (x) (7.86) 

1 
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Eq. (7.85) has the solution Y(t) = KeE' . Taking T as the exercise point of the derivative, we 

have Y(T) = KeET or K = Y(T)e-ET so that Y(t) = e-E(T -' ) .Similarly eq. (7.86) has the solution 

z Z 1 r 	2E 1 r X(x)=e` (Ae'~+Be-'x)where cz= 2~z „Q= 6z — 2+6z 	(7.87) 

which can also be written in the form e'" (Ccos fix+Dsin flx) or Fe°I sin (Qx+y) where 

A, B, C, D, F, y are constants of integration to be determined from the boundary conditions. 

Hence, the complete solution of the Black Scholes equation is 

C (x, t) = e E(T-r)+ax (Ae'a" + Be). In Dirac notation, the ' components of the state vector 

representing the call price are given by (xl C(X,r)) = e-E(T-`)+a` (Ae'ar +Be) . 

In this notation, we have (XI C(x,t)) =e-E(T 	(Ae'aX +Be ) and its conjugate 

(C (x, t) I x~ = e-E(T-')-°X (Ae-'ps + Be") so that 

(C(x,Q',t)I C(x,l,t)) =  

= e E(T -1) 
L 

AZ Jdxe'(v fl)x + B2 f dxe-'(P-R')r + AB 5dx (e'(6+Q' )x +e_' )')] 

=27r(Az +B2 )8(fl-Q')e-E(T-̀ ) +2irABS(/3+/J )e-E(T-̀ ) =2gr(A2 +B2 )S(/3-/j')e E(T-' ) 	(7.88) 

since 8+ Q' ~ o which establishes the orthogonality of the call price eigenfunctions. 

Noting that SQ _ 	1 + 	we also have 2 CSE 	C —( 

[2E 
2 6 	

r 2 1

- 

	

Z 	 Cr 
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lz 

Q 	 2 
2E-r I Z~zZ (E-E'f = 62[2E-(1 + Z

J 
Z 8(E-E') 

6 U ll2 	6 l 6 

So that the right hand side of eq. (7.88) is equivalent to 

l2
1,5(E-E)CE(T-4~2~(A2 +BZ ) --2+ 	 . 

thereby also establishing the orthogonality of the energy eigenvalues. 

We now examine the set of eigenfunctions for completeness properties. We have 

Jdfl(x~C(x,R,t)) (C(x', fl,t) x') =e E(T-̀ )+a(x-x' ) 
1

.42 f d/3e p(X-x') +B2 jd/je 'fi(s-s'1 +AB$d J(eIO(x+X'l +e_'')] 

=2ar(A2 +B2 )8(1-f')e E(T-' ("-s' ) +27rABS(/3+fl')e E(T-'l s-F')=27r(AZ+B2)8(/3-/3')e E(Tr-rl 	(7.89) 

since fl+/3' ~ o which establishes the completeness of the call price eigenfunctions. 

Since the set of call price eigenfunctions is orthogonal and complete, it forms a basis of 

our Hilbert space and we can evaluate the call price in this basis. This is achieved as 

follows:- 

(x'~ey(T-') Ix)= $d~3(x'l C(x',Q't))\C(x',fl,)ley(T-I)I C(x,fl,t))(C(x,fl,t)Ix) 
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Now (C(x',/3,t)I HI C(x,/3,t)) =ES(x-x') so that (C(x',,8,t)Je "(T-') Ic(x,/3,t)) =e EfT-')8(x-x'). Also 

(xl C(x,t)) = e-E(r_')+°x (Ae'ps +Be Ip_
) and its conjugate (C(x,t)I x) = e-E(T-')-ax (Ae_'a` +Be"'s) so 

that we finally obtain 

x̀1I ey(r-r) I x)= ,f dfle-E(T-i) (x'IC(x'„a,t))(C(x,Q,t)I x) 

_ 	 x'-s)[A2e!R(x'-x)+Bze'(4(x•x)
+AB

(e A”+x) +e-r~(z+z'))

J 

Z 

which on substituting the value of E in terms of fl using /3 = 2E -(2 + r 1
Z 

becomes a 

Gaussian integral and can be evaluated to get the call price. 

170 



CHAPTER 8 

EMPIRICAL RESULTS ON THE DISTRIBUTION OF 

RETURNS & MEMORY EFFECTS IN 

INDIAN CAPITAL MARKETS 

Abstract 

This chapter examines the various features of the logarithmic return spectrum of the 

Indian stock market [160-167] thereon the various statistical tests for the normality of 

data. It also investigates the possible existence of dependencies and memory effects in the 

return processes. In particular, it performs rescaled range analysis and carries on to 

compute the Hurst 's exponent. The results throw up several intriguing issues of relevance 

to portfolio managers, stock market players and analysts and academicians. 

8.1 INTRODUCTION 

There exist two traditional approaches to the modelling of a dynamical system. In the 

first approach, the dynamical deterministic equations of motion are obtained from first 

principles as differential / difference equations that are integrated forward in time and 

solved as an initial value problem. This methodology, although strongly preferred due to 

its exactness, is sometimes impracticable, particularly when we are analysing the 

dynamics of many particle systems with complicated interactions among the constituents. 

In such cases, either the number of degrees of freedom becomes as large as to make the 

first-principles model intractable or the initial conditions pertaining to each degree of 
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freedom become inaccessible. Attempts are, then, made to model the dynamics as a 

random process with stochastic, though linear, laws of motion. There was believed to be 

no region of overlap between these two well-defined approaches. 

The modus operandi for studies on stock market phenomena was no different and one 

could go to the extent of saying that the Efficient Market Hypothesis [79, 96] was 

formulated with one primary objective — to create a scenario that would justify the use of 

stochastic calculus [81 ] for the modeling of capital markets. 

The cardinal maxim of the Efficient Market Hypothesis is the existence of a market 

where all assets are fairly priced according to the information available with neither the 

buyers nor sellers enjoying any advantage. Market prices are supposed to incorporate all 

publicly accessible information, both fundamental and price history. It is, further, 

postulated that prices move only as sequel to new information entering the market. The 

presence of large number of investors ensures that all prices are fair. Memory effects, if 

any at all, are extremely short ranging and dissipate rapidly. Feedback effects on prices 

are, thus, assumed to be marginal. The investor community is considered rational as 

benchmarked by the traditional concepts of risk and return. 
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An immediate corollary to the Efficient Market Hypothesis is the independence of single 

period returns, so that they may be modeled as a random walk and the defining 

probability distribution, in the limit of the number of observations being large, would be 

the normal distribution. 

This Chapter examines the various features of the logarithmic return spectrum of the 

Indian stock markets, performing thereon the various statistical tests for the normality of 

data. It also investigates the possible existence of dependencies and memory effects in the 

return processes. In particular, it performs rescaled range analysis and carries on to 

compute the Hurst's exponent. The results throw up several intriguing issues of relevance 

to portfolio managers, stock market players and analysts and academicians. 

8.2 TESTING & EVIDENCE ON THE NORMALITY OF STOCK .. 

MARKET RETURNS IN INDIA 
As mentioned above, the pivotal fallout of the Efficient Market Hypothesis is that the 

present price of a security encompasses all the presently available information — 

including past prices — concerning this security and prices tend to move only if and when 

a fresh information about the security percolates into the market. Even the seminal work 

of Fischer Black & Myron Scholes in the pricing of contingent financial claims (that 

constitutes the cornerstone of contemporary valuation theory) presupposes that the stock 

prices follow a geometric Brownian motion, the two principal attributes whereof are 

that:- 
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(i) 	The set of stock prices S(t), 0 <_ t < oo constitute a geometric Brownian motion 

S(s+t) 
if, Vs, t >_ 0, the random variable S, (t) is independent of all prices up to time 

I; 

S(s+) 
(ii) In S(t)  I is a normally distributed random variable Vs, t >_ 0 with mean pt and 

variance taz where ,u and a constitute the parameters defining the geometric 

Brownian motion. 

(iii) It follows from (i) & (ii) that the probabilities of the ratio of the price at time s in 

the future to the present price will not depend on the present price. Additionally, if 

,u and 6 are known, then it is only the present price — and not the history of past 

prices — that affects the expectations of future prices. Specifically, we have, 

E[S (t)] = S (0)el{Z°z1~ 

In the empirical study that constitutes the substratum of this paper, we test the hypothesis 

that future price movements are independent of past movements i.e. the stock market 

logarithmic returns follow a normal distribution in the Indian capital markets. We also 

examine whether memory effects of any significant duration subsist in these markets. We 

assume the 30 security BSE SENSEX market index as the proxy for the Indian stock 

market and conduct the analysis of the Sensex over the period from July 01, 1997 to 

November 10, 2006. Consisting of 2,317 observations. A chronological plot of the 

Sensex values for the above period is given in Figure 8.1. 
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Figure 8.1 

14000 

12000 

10000 
 

8000  
1 

6000 

4000 
 

2000 

0 

5 	§f 	 1 	 3 } 	 o f 

z  ~ rts 

	

~. ~. !"~c 	g'~E z~` 	~ l~~:~ 	~ 	~z 	~~7a 	°~ 	~~ 	~, 	'r 	~,e~•- 	a 

1 259 517 775 1033 1291 1549 1807 2065 

The mean and standard deviation of the daily logarithmic returns of the prices 

constituting the sample was found to be 0.000486691and 0.016158843 respectively. To 

test these returns for normality, the number and percentage of observations in the various 

0.5ai intervals were calculated and compared with the corresponding values for the 

standard normal distribution N (0,1) . The results are tabulated in Table 8.1 below:- 
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Interval No. of 

Observations 

% of Total Corresponding 	value 

for N (0,1) 

x<—-2a  74 0.031938 0.0228 

53 0.022874 0.044 

157 0.06776 0.0919 

x-6<x<— x -0.56 331 0.142857 0.1498 

x — 0.56 < x S 497 0.214502 0.1915 

x <x<— x +0.5a• 553 0.238671 0.1915 

55+0.56<x<-5ë+o 385 0.166163 0.1498 

x+6<x<— x+1.5a 139 0.059991 0.0919 

x + 1.56 < x —< x + 2a' 82 0.035391 0.044 

x + 20 < x 46 0.019853 0.0228 

Table 8.1 

A histogram corresponding to the above data is placed at Figure 8.2. It is clear from the 

histogram that the assumption of normality of log-returns is, at best, questionable. We 

pursue the analysis further in the next section. 
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8.3 TESTING FOR MEMORY EFFECTS 

As mentioned above, one of the crucial fallouts of the Efficient Market Hypothesis and/or 

of the assumption of geometric Brownian motion as a model of stock prices is the total 

absence of any kind of memory effects in the return processes. The above histogram does 

not provide any level of conclusive evidence for or against the existence of memory 

effects since it breaks up the range of data values into intervals and then plots the number 

of data values that fall in each interval. It does not, therefore, provide information about 

possible dependencies among the data. 

To examine the possible existence of dependencies, the daily logarithmic returns (x) are 

classified into one of six possible class intervals A, B, C, D, E & F viz x:5 x — 20-  (A), 
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x- 26<x<_-6(B), x— a<x<_z (C), x <x <_x+a(D), x+cr<x<—x`+2c(E) and 

x + 2a <x (F). The observations falling into each of these class intervals are, then, split 

up on the basis the daily logarithmic return on the next following day. We, thus get a 

6x 6 square matrix (Table 8.2), the (I, j)r"  element of which would be the observation that 

has a logarithmic return falling in the i" class on day n and j'" class on day n+l . Now, if 

the price evolution follows a geometric Brownian motion then tomorrow's state should 

not depend on today's state. In other words, the subset of observations comprising every 

row should behave as if they are extracted from a normal population. We proceed to test 

this hypothesis by the well-known x2  test, where the expected frequencies are the 

corresponding values from a normal population. Table 8.3 summarizes the computations 

(In Table 8.3, we have replaced absolute values of various cells of Table 8.2 by the 

corresponding percentages. The expected frequencies, also in percentages, are given in 

parenthesis). 

A B C D E F 

A 12 9 15 16 12 10 74 

B 13 28 64 74 24 7 210 

C 27 89 329 315 58 10 828 

D 12 58 339 430 85 14 938 

E 6 21 71 86 33 3 220 

F 4 5 10 16 8 3 46 

Table 8.2 
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A (2.28) B (13.59) C (34.13) D (34.13) E (13.59) F (2.28) x2 

A 16.21622 12.16216 20.27027 21.62162 16.21622 13.51351 151.40 

B 6.190476 13.33333 30.47619 35.2381 11.42857 3.333333 7.97 

C 3.26087 10.74879 39.7343 38.04348 7.004831 1.207729 6.08 

D 1.279318 6.183369 36.14072 45.84222 9.061834 1.492537 10.39 

E 2.727273 9.545455 32.27273 39.09091 15 1.363636 2.63 

F 8.695652 10.86957 21.73913 34.78261 17.3913 6.521739 32.06 

Table 8.3 

The overall value of x2  is found to be 210.54. 

It is clear from Table 8.3 that in both the tails of the distribution representing external , 

cases, there exist very significant memory effects over the one-day period and the 

distributions are well distorted from the normal distribution - the distortion is particularly 

massive in the left tail. However, over the intermediate range, the x2  values are much 

closer to the tabulated values, although still well above them even at a 1% significance 

level establishing that some degree of memory effects do exist even in this range. The 

histograms of each class interval are placed in Figures 8.3 (A) to 8.3 (F) 
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To further corroborate the departure of real data from the geometric Brownian motion 

and the subsistence of significant memory effects we have also performed the one-way 

ANOVA test to test the hypothesis that all the six data sets describe normal random 

variables having the same mean and variance. The results of the analysis are tabulated 

below in Table 8.4:- 

Sum of 

Squares df 

Mean 

Square F Sig. 

Between 
.005 5 .001 4.184 .001 

Groups 

Within 
.600 2311 .000 

Groups 

Total .605 2316 

Table 8.4 

The computations provide an F-statistic value of 4.184 that implies that the differences in 

the means of the six subsets are significant at the 0.05 significant levels. In fact, the F-

statistic value of 4.184 implies statistical acceptability of the hypothesis that the subsets 

A, B, C, D, E & F are normally distributed with the same mean only at a 0.001 level of 

significance. 

181 



8.4 CHAOS [128-132, 1691 & INDIAN STOCK MARKETS 

Most financial returns, including stock returns have shown deviation from Gaussian 

behaviour at short time scales with the variance not scaling with the sq. root of timescale, 

an attribute that is symptomatic of the possible existence of power law distributions. A 

useful measure of quantifying deviations from the Gaussian _ distribution is the Hurst's 

exponent. If a population is Gaussian, a Hurst's exponent of 0.5 is mandated. Empirical 

evidence, however, shows that the Hurst's exponent for typical stock market data is 

around 0.6 for small timescales of about a day or less and tends to approach 

0.5 asymptotically with the lengthening of the timescales. Empirical evidence also 

demonstrates the existence of memory effects, particularly in stock price volatilities that 

show long-term memory effects with lag-s autocorrelations. Further, these effects tend to 

fall off according to a power law rather than exponentially. 

In our study, we have performed the Resealed Range analysis of the logarithmic returns 

on the BSE Sensex for the period from July 01, 1997 to November 10, 2006 consisting of 

2,317 observations in the manner provided in Ref [126,127]. The results are tabulated in 

Table 8.5 below:- 
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Days Average Resealed 

Range 

Days Average Resealed 

Range 

Days Average Resealed 

Range 

10 3.273144 32 6.637159 120 14.08 

11 3.230032 33 6.635194 124 13.13 

12 3.500606 40 6.585 132 15.54 

.15 4.048635 44 7.99 165 15.21 

16 4.035323 55 8.23 220 17.75 

20 4.455719 60 9.61 248 20.76 

22 5.146307 62 9.48 264 20.7 

24 5.631192 66 9.37 330 23.4 

30 6.350008 88 11.6 440 28.09 

31 6.306971 110 12.68 496 30.77 

Table 8.5 

The relationship between the Resealed Range R/S and the Hurst's Exponent H is given 

by R/S = Ax (n)" or equivalently H = 
In(R/S)-InA 

In n 
Hence, in order to obtain the 

Hurst's exponent, the logarithm of the Resealed Range is plotted against the logarithm of 

the number of days, the slope of this plot (Figure 8.5) being the value of H. The slope 

and hence, the value of the Hurst's Exponent is found to be 0.58 which is commensurate 

with similar findings in stock markets of several other countries [126,127]. 
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There is a simple mathematical link between the Fractal Dimension or the associated 

Hurst's Exponent H and the physical dimension. H = 1 corresponds to a perfectly 

persistent series representable by a unidimensional line whereas H=0.50 corresponds to 

random or Brownian motion, it is equal to a dimension of 1.50, a fractal or noninteger 

dimension halfway between a line and a plane. And where H=O, a perfectly antipersistent 

time series, the corresponding physical dimension is a plane or 2. 

The fact that the value of the Hurst's exponent for the time series that is the subject 

matter of this study has been found to be 0.58 corroborates our earlier findings that stock 

market returns in the Indian capital markets are not random and hence, do not constitute a 

population that is normally distributed. Furthermore, geometric Brownian motion cannot 

accurately model the stock prices. There also exist-significant memory effects that result 
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in lumping of observations into some sort of clusters particularly for returns that are 

located in the tails of the distribution. 

Not only do the quantitative tests contradict the validity of the EMH, but the assumption 

of "Investor Rationality" as envisaged in the EMH may also . be questioned on the 

following grounds:- 

• The EMH presupposes that all investors are risk averse. However, investors may not 

be risk averse in all situations. They may become risk takers in certain situations e.g. 

when confronted with a situation that involves perceived sure losses. For example, if 

asked for a trade off between a certain loss of $. 85,000 vs. a loss of $. 1,00,000 with 

a probability of 0.85 and a zero loss with probability of 0.15 would generally find the 

investor opting for the latter; 

• Investors are usually more confident of their forecasts than is warranted by the 

available information. They have a tendency to ignore new information if it does not 

fit in with their current forecasts of the future; 

• Investors would not normally react to trends until fully established, a phenomenon 

that takes some time. They will not begin to accept and extrapolate a set of 

circumstances until it is firmly established. They then take a decision on the basis of 

all the information that has accumulated thus far. In other words, reaction to 
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information does not occur in a continuing fashion as and when it is received, but 

rather in discrete blocks & clumps in a cumulative fashion. 

• Only when the level of information reaches a critical level, investors react to all the 

information received till then. Hence, memory effects subsist 

• As a corollary to the above, markets lose their efficiency since all information is not 

reflected in prices and much of the information is ignored and accumulated till it 

reaches a threshold level and reaction comes later; 

Acceptance of complete randomness in stock prices is beset with questions of consistency 

as well. One must need appreciate that the vantage point of each investor is different and 

also that it keeps on changing with the passage of time. That is, they have different points 

of view. If that is not the case, how does one explain as to why people can be rational 

investors and still make very different investment decisions? The fact remains that 

everyone's perspective is different and is varying. Rationality of investors may be 

construed in that they are internally self-consistent with the information that they possess. 

However, their decisions may seem illogical from a different informational point of view. 
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CHAPTER 9 

CONCLUSION 

9.1 FINDINGS, RESULTS & CONCLUSIONS 

In this chapter, the major findings and contributions of the present studies are 

summarized. The limitations of the study and suggestions for areas of further research are 

also enumerated. 

From the above research the following main conclusions are drawn:- 

The objective of this research project was to take the merging of physics and finance 

program further through a study of the symmetry groups of the dynamical equations 

relevant to financial processes and, intertwining this two areas through stochastic 

processes in order to facilitate 

(i) the development of a model of financial markets amenable to the quantum 

mechanical framework and 

(ii) the generalizations of extant results to enhance their domain of applicability. 

Generalization of the Black Scholes option pricing model by introducing a stochastic 

process with statistical feedback as a model for stock market returns was achieved. The 

generalization of financial dynamics of the stock price process by using the - deformed 

Levy process is also studied. A third model using a stochastic return process in lieu of the 

risk free returns in the Black Scholes partial differential equation is solved. The financial 

markets model, within the framework of quantum mechanics is constructed. The 

properties of the Lie algebra being the underlying symmetry of the Black Scholes partial 

differential equation that represents the dynamics of a financial derivative is studied and 

interpreted to get new solutions of the above said equation. Empirical study of the Indian 
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capital markets with reference to the normality of return process, existence of significant 

memory effects and possibility of nonlinear and chaotic behavior is also conducted. 

The following are some of the significant contributions emanating from the above 

research work:- 

Generalization of the Black Scholes equation has been attempted in this study by 

introducing a stochastic process with statistical feedback as a model for stock market 

returns. This model can embrace in its ambit possible nonlinearities and chaotic 

behaviour in stock price patterns through the deformation parameter. 

The Black Scholes model with a stochastic return process in lieu of the risk free returns in 

the Black Scholes partial differential equation is studied considering the Black Scholes 

equation as a partial differential equation in two stochastic processes. 

A model of the financial markets has been evolved using the conventional machinery of 

quantum mechanics and operators pertaining to various trading activities. The symmetry 

group of the Black Scholes equation has been obtained and the properties of the Lie 

algebra of the Black Scholes partial differential equation that represents the dynamics of 

a financial derivative are studied and new solutions of the said equation are obtained. 

An empirical study of the Indian capital markets was also conducted with data over the 

last ten years and it was shown that stock return processes deviate significantly from 

normality. Performance of R/S analysis also showed that memory effects are prevalent in 

the price time series with a possibility of nonlinearities and chaos. The result of a 

generalization of financial dynamics of the stock price process as a deformed Levy 

process is also discussed. 



In the above discussion the following important outcomes of this research work:- 

The closed form expression has been obtained for the price of a European call option by 

modifying the Black Scholes option pricing formula by generalizing the stock return 

process to a probability dependent deformed Brownian motion that could accommodate 

"statistical feedback" processes and, thereby, account for the fat tails usually observed in 

stock market price distributions. It is seen that that in the standard case the exponential is 

linear in W and the stock price, 'therefore, is a monotonically increasing function of W. 
Hence, the condition S, - E> 0 is satisfied for all values of W that exceed a threshold 

value. However, in this model, consequent to the noise induced drift, the exponential in 

the stock price process is now a quadratic function of the deformed Brownian motion U. 

We, therefore, have two roots of U that meet the condition S, - E =0.  Accordingly, 

there will exist an interval (U,,U2 ) within which the inequality S, - E> 0 will hold. 

Furthermore, as q -+ 0, U2 	co thereby recovering the standard case. 

The pricing of financial contingent claims has also been explored when the distribution of 

the underlying asset is a deformed Levy process. A model of financial markets has been 

constructed within the quantum mechanical framework, various operators signifying the 

market processes have been constructed and the market dynamics explored. We derive 

the probability distribution of stock prices in market equilibrium and show that the prices 

follow a lognormal distribution, thereby vindicating the efficacy of this model under 

suitable assumptions as to the quantum mechanical states and amplitudes. Solutions of 

the Black Scholes equation have been obtained from symmetry considerations and their 

properties studied with the relevant Lie groups. The various features of the logarithmic 

return spectrum of the Indian stock markets are examined, performing thereon the various 

statistical tests for the normality of data like chi-square, ANOVA. The possible existence 

of dependencies and memory effects in the return processes is also examined. In 



particular, the rescaled range analysis is carried out to compute the Hurst's exponent. It is 

seen that there is unambiguous evidence to the effect that the returns deviate significantly 

from normal behaviour. There is also evidence of the existence of memory effects and 

consequential nonlinearity. 

Closed form expressions for the price of a European call option by modifying the Black 

Scholes formulation to accommodate a stochastic return process for the "hedge portfolio" 

returns. We have modeled this return process on the basis of the Vasicek model for the 

short-term interest rates. The construction of the "hedge portfolio" in the Black Scholes 

theory implies that the fluctuations in the price of the derivative and that of the 

underlying exactly and immediately cancel each other when combined in a certain 

proportion viz, one unit of the derivative with a short sale of aS units of the underlying 

so that the "hedge portfolio" is devoid of any impact of such fluctuations. This mandates 

an infinitely fast reaction mechanism of the underlying market dynamics whereby any 

movement in the price of one asset is instantaneously annulled by reactionary response in 

the other asset constituting the "hedge portfolio". This is, obviously strongly unrealistic 

and there may subsist brief periods or aberrations when the no arbitrage condition may 

cease to hold and hence, returns on the "hedge portfolio" may be different from the risk 

free rate. One way of attending to this anomaly is to model the returns on the "hedge 

portfolio" as a stochastic process as has been done in this study. The parameters defining 

the process can be obtained through an empirical study of the market dynamics. Another 

important justification for adopting a stochastic framework for the "hedge portfolio" 

return process is that the "hedge portfolio" by its very construction, envisages the 



neutralization of the fluctuations of the two assets inter se i.e. it assumes a perfect 

correlation between the two assets. In other words, the "hedge portfolio" may be 

construed as an isolated system that is such that insofar as factors that influence one 

component of the system, the same factors influence the other component to an 

equivalent extent and, at the same time, other factors do not impact the system at all. This 

is another anomaly that distorts the Black Scholes . model. The fact is that while the 

"hedge portfolio" of the Black Scholes model is immunized against price fluctuations of 

the underlying and its derivative through mutual interaction, other market factors that 

would impact the portfolio as a whole are not accounted for e.g. factors affecting bond 

yields and interest rates etc. Consequently, to assume that the "hedge portfolio" is 

completely risk free is another aberration — it is risk free only to the extent of risk that 

emanates from factors that impact the underlying and the derivative in like manner and is 

still subject to risk and uncertainties that originate from factors that either do not effect 

the underlying and the derivative to equivalent extent or impact the portfolio as a unit 

entity. Hence, again, it becomes necessary to model the return on the "hedge portfolio" as 

some short-term interest rate model as has been done here. 

We have attempted to develop the theory of option pricing in incomplete markets with 

stock market pricing being simulated by Levy processes. These processes have an 

intimate connection with pseudodifferential operators in the sense that their characteristic 

exponent is a pseudodifferential operator. Hence, we can associate a pseudodifferential 

operator with every Levy processes. The converse of this also holds and Levy processes 

can be generated by the knowledge of a.pseudodifferential symbol. We take advantage of 
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this, and making use of the q deformed pseudodifferential symbols, which have been the 

substratum of recent research, we attempt to construct the corresponding Levy processes. 

Treating the deformation as a perturbation, we identify the conditions under which these 

symbols generate a Feller semigroup for which Levy processes can be constructed in the 

usual way. 

Another .result in this research work is the use of the quantum mechanical methods for 

obtaining the instantaneous price of a call option. Traditionally derivatives pricing is 

done through construction of self financing strategy consisting of Bonds and Shares. 

However here we have not used this concept and the problem has been modeled has a 

dynamical system. 

9.2 LIMITATIONS OF THE PRESENT STUDY 

It needs to be emphasized here that the above models are purely phenomenological 

models for modeling stock behavior. One could, for instance, postulate that the statistical 

feedback at the microscopic level represents the actions and interaction of the intra trader 

interactions among traders constituting the market. The statistical dependency in the 

noise could, further, be representing the aggregate behavior of these traders. Thus, we 

could model a market with non homogeneous reactions with consequent biased return 

structures 

It is fair to say that the current stage of research in financial processes is dominated by 

the postulation of phenomenological models that attempt to explain a limited set of 
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market behavior. There is a strong reason for this. A financial market consists of a huge 

number of market players. Each of them is endowed with his own set of beliefs about 

rational behavior and it is this set of beliefs that govern his actions. The market, therefore, 

invariably generates a heterogeneous response to any stimulus. Furthermore, "rationality" 

mandates that every market player should have knowledge and understanding about the 

"rationality" of all other players and should take full cognizance in modeling his response 

to the market. This logic would extend to each and every market player so that we have a 

situation where every market player should have knowledge about the beliefs of every 

other player who should have knowledge of beliefs of every other player and so on. We, 

thus, end up with an infinitely complicated problem that would defy a solution even with 

the most sophisticated mathematical procedures. Additionally, unlike as there is in 

physics, financial economics does not possess a basic set of postulates like General 

Relativity and Quantum Mechanics that find homogeneous applicability to all systems in 

their domain of validity. 

9.3 SUGGESTIONS FOR FURTHER RESEARCH 

It is felt that research carried out in this thesis has been quite extensive that has 

applications not only in the field of corporate finance, but also in mathematical finance. 

The present work offers considerable scope and promise for further research. Some 

possible extensions could be as follows: 

Further research projects could target to carry this unification program further. Efforts 

may be made to apply the contemporary tools of physics to the mechanics of financial 
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markets. Identification of an appropriate action function and the derivation of the 

mechanics of financial markets, therefore, could be attempted. Properties of financial 

markets could be examined within the framework of differential geometry with the 

exploration of the underlying symmetries and structure groups (with a study of their 

properties) etc. 

The theory of pseudo differential operators provides an avenue for obtaining closed form 

option pricing in markets modeled by Regular Levy processes of exponential type 

(RLPE), which extend the Black Scholes theory to non Gaussian domains. Various types 

of deformations of such operators can be constructed and corresponding option pricing 

models explored. 

9.4 CONCLUSION 

This chapter synthesized the research work carried out and discussed in the previous 

chapters. Major contribution of the study, limitation of the study, and the scope of further 

research work are identified. 
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