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Abstract

The thesis presents a detailed account of the analysis of an ASTER dataset of a mineralized

region in northwest India, the Khetri Copper Belt. ASTER acquires data in the geologically

important wavelength regions of the electromagnetic spectrum, namely the visible-near-

infrared-through-shortwave-infrared (VNIR-SWIR; 0.5-2.5 um), and the thermal-infrared (TIR;

8.0-11.5 Jim) in 14 discrete strategically selected spectral bands. Most alteration minerals

related to various kinds of mineralization have characteristic spectral signatures in the solar

reflective VNIR-SWIR region. Important rock forming silicate minerals, like quartz and

feldspar, have diagnostic spectral features in the TIR wavelength region. ASTER data of the

study area in these two spectral regions have been digitally processed to map the lithologies

and surface/alteration mineral assemblages, using existing and improved methods of image

processing. The TIR data has been processed to map lithology and the VNIR-SWIR data has

been used to map surface/alteration minerals.

KCB is a structurally complexand regionally metamorphosed NNE-SSW striking linear

polymetallic-sulfide mineralized belt consisting primarily of early Proterozoic metasedimentary

rock units, and late Proterozoic basic and acidic intrusives. The older psammitic Alwar Group

(mainly pure and impure quartzites, and micaceous quartzites), and younger pelitic Ajabgarh

Group (mainly phyllites, schists, impure marbles and calc-silicate units) comprise the main

lithostratigraphic units of KCB; along with many small stocks, sills and dikes of granite,

dolerite and amphibolite. The study area is marked by a prominent NNE-SSW striking

cataclastic/shear zone along which numerous felsic (granitic and pegmatitic) intrusives are

emplaced. Small, but significant sulfide mineralization, and associated rock alteration close to

the surface in a few places and in vicinity of these intrusives are observed. Previous TM-based

remote sensing studies in a part of the study area have indicated anomalous zones of OH"

alteration. This study has been designed to investigate the extent to which ASTER can improve
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the existing understanding of the alteration patterns of the area and the associated lithologic

units. Ground truth in the form of fieldwork, and laboratory analyses (thin-section petrography

and trace-metal geochemistry) of selected field samples have been used to validate the results

ofASTER data analysis.

Retrieval of reflectance and emissivity information from the at-sensor radiance data has

involved an assessment of various radiometric, atmospheric and topographic correction

methods and selecting the best technique for use in spectral processing. Best atmospheric

correction for the 9-band VNIR-SWIR data has been achieved using a hybrid approach which

is based on enhancement of MODTRAN-based atmospheric correction through Modified Flat-

Field correction of the result. This has served as the basic data in spectral processing for

surface/alteration mapping objective. The standard Level 2 surfaceemissivity product has been

used in the detailed spectral processing for the lithologic mapping objective.

ASTER TIR at-sensor radiance and surface emissivity data have been used to produce

the surface lithologic maps of the study area. Decorrelation stretch processing and lithologic

indices calculated using the TIR radiance data for quartz-rich and mafic-rich rocks have

provided best qualitative lithologic discrimination. Full spectral processing of the surface

emissivity data has produced a lithologic map of the area with the major lithologic units

classified into six classes: namely, 'mica schist', 'felsic granite', 'mafic diabase', 'pink

quartzite', 'brown to dark brown sand', and 'brown to dark brown sandy loam', based on the

matches of the image-derived end-member spectra with the reference spectral library spectra

(Johns Hopkins University spectral library). Two approaches for quantitative silica abundance

estimation have been investigated. Method 1 is based on the spectral modeling of the surface-

emissivity spectra; whereas Method 2 is based on Metal Mining Agency of Japan's (MMAJ)

original 'K-value' method. The two results have subsequently been compared in specific

context of the study area. Results of the analysis indicate a general overall correspondence with

the reported and mapped lithologic units of the study area.
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The VNIR-SWIR reflectance data have been used to generate surface/alteration

mineral distribution maps for the study area. A number of minerals have been mapped through

different approaches, which involved use of band ratios, relative absorption band depth images

(RBDs), Feature-oriented Principal Components Selection (FPCS) technique, spectral indices,

and Boolean logical operator-based alteration group mapping. The full spectral processing of

the reflectance data has helped in unique identification and mapping of a variety of

surface/alteration mineral species based on spectral matches with a reference spectral library

spectra (United States Geological Survey spectral library; speclib05).

Validation of the results of ASTER-based spectral lithologic and alteration mapping

based on the ground-truth has revealed that despite its multispectral nature, ASTER data can

provide valuable and reliable surface lithologic and mineral maps which can be directly used in

prospecting for mineral deposits.
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Reference-channel-derived image-; b. Emissivity Normalization-
derived image-; c. Alpha Residuals-derived image-; d. L2 TES

Figure-6.9: standard emissivity product (ASL 05) based image-spectra for 139
the dominant rock type (pure/pink quartzite) from a common
pixel; and e. Reference spectrum (JHU spectral library) for the
same rock type.

Emissivity spectra of (a) dunite, (b) gabbro, (c) diorite, (d)
granite, (e) pink quartzite, (f) dolomitic marble. Hemispherical
reflectance spectra from JHU spectral library has been converted

Figure-7.1: to emissivity using Kirchhoff s law. The corresponding spectra 142
resampled to ASTER TIR bandpasses have been shown in dashed ^
lines, and the positions of the bands have been marked on the top.
Wavelength is in urn.

ASTER LIB TIR recalibrated radiance-at-sensor image: a) 14-
Figure-7 2- l2~'° in RGB' and ^ DCS ofthe same. Notice the dramatic

improvement in hue and contrast differences after DCS
processing, allowing better visual discrimination of the surfaces.

Quartz, carbonate and mafic indices have been shown as a-c as
single indices; and as R-G-B composites as d-f, for recalibrated

p;n,,r„ 7 i- radiance-at-sensor data, ISAC-corrected surface radiance data,
rigure-/.j. ' 40 4

and L2 surface radiance data, respectively. Note the differences
in distribution of greens, and topographic effects on the three
RGB composites.

Figure-7.4: Spectral processing workflow. 152

Figure-7.5: a-e) MNF bands 1-5, and f) the eigenvalues plot. 155

MNF bands composites: a) 1-2-5 in RGB, and b) 1-4-5 in RGB.
Notice the unique distribution of the blue pixels corresponding to

Figure-7.6: the amphibole-bearing rocks, and the reds, pinks and oranges 155
pertaining to the siliceous rocks as marked on the geologic map
(Figure-2.3, Chapter 2)

Results of the PPI™ calculated using the 5 MNF bands of the
Figure-7.7: ASTER surface emissivity dataset: a) PPI™ plot, and b) color ' 59

representation of the distribution of pure/extreme pixels in the



image. Hotter colors represent higher DN values, or pixels which
have been identified as extreme in greater number of PPI™
iterations, identified by the accompanying legend.

i a) The PPI™-derived pure pixel n-dimensional scatter-plot seen
using n-Dimensional Visualizer™, and b) the average spectra of . _Q
clusters lying on the extreme ends of the axes, identified as the
image end-members.

a. Best Spectral Analyst™ matches to the six unknown image
end-members; b. The same spectra resampled to the ASTER TIR

Figure-7.9: bandpasses. Notice the loss of some important spectral features 165
between 9.3 urn and 10 um due to coarse spectral resolution of
ASTER TIR data.

•^ Spectral lithologic map generated using SAM on ASTER TIR
Figure-7.10: surface emissivity data and the six spectral image end-members 169

determined using PPI™.

„. _ ., a-f Matched Filter processed images for the six image end- . „
members; g-1 their respective infeasibility images.

Classified output of MTMF™ processing of ASTER L2 surface
emissivity data. The background is ASTER band 1 image, with
spatial resolution of 15 m. Notice the limitations posed by coarse
90 m spatial resolution and effects of vegetation on spectral

^ „ ,„ classes, especially the class'Mica Schist'. Excellent ,_.
rigure-/ 12' . r- I 'j

discrimination has been achieved between the two surface

lithologic categories of mafic and felsic rocks, shown
respectively in green and blue/yellow colors. Quartz-rich surfaces
with some micaceous/clay content have been mapped as class
'Felsic Granite'

Results of spectral modeling of the full resolution JHU lab
spectrum of quartz monzonite contained within wavelength range
8-12 um. Gaussian 3-term and 4-term fit results have been shown

Figure-7.13: in a and b; cand d show the Fourier 1st Order and 2nd Order fit 187
*• 0* results; and e-g show the results of Polynomial 2'1 Order, 3r

Order and 4th Order fits, respectively. The R" values have also
been shown with each graph, respectively.

Results of spectral modeling of the JHU lab spectrum of quartz
monzonite resampled to the system response function of ASTER
TIR sensor. Gaussian 3-term and 4-term fit results have been . „„

shown in a and b; c and d show the Polynomial 211 Order and 3r
Order fit results; and e shows the Fourier Ist Order fit result. The
R2 values have also been shown with each graph, respectively.

Linear regression between Polynomial curve-fit modeled
emissivity minima and corresponding Si02 weight percentages of . „.

° the JHU spectral library minerals: a. using all 34 spectra; b.
excluding spectra of dunite and picrite.

Figure-7.16: Linear regression between Gaussian 3-term curve-fit modeled '"2
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emissivity minima and corresponding Si02 weight percentages of
the JHU spectral library minerals: a. usingall 34 spectra; b.
excluding spectra of picrite and rhyolite.

Linear regression between Polynomial 2nd order curve-fit
p. . modeled emissivity minima and corresponding Si02 weight Q ••

percentages of the JHU spectral library minerals: a. using all 34
spectra; b. excluding spectra of picrite and rhyolite.

Linear regression between Fourier lsl order curve-fit modeled
Figure-7.18: emissivity minima, and corresponding Si02 weight percentages 194

of the JHU spectral library minerals.

Si02 weight percent map of the study area generated using
spectral modeling of the TIR surface emissivity spectra. The

F- 7 ,Q. emissivity minimum in the reststrahlen band has been modeled ]QQ •+
using a Polynomial 2nd Order function. The original 90 m
resolution image has been resized to 15 in resolution for a
smoothened visualization.

Si02 weight percent map of the study area obtained using the
method proposed by MMAJ (2000). The original 90 m resolution
image has been resized to 15 m resolution for a smoothened

Figure-7.20: visualization. Notice the overall correspondence of the silica 201
distribution with the spectral lithological maps obtained through
analysis of the ASTER LIB and L2 emissivity data, shown in
Figures-7.3, 7.1 I and 7.12. \

Histogram for the silica weight percent map derived through
Figure-7 21 • sPectral modeling of the ASTER surface emissivity data by

& ' ' Polynomial 2nd Order curve-fitting and application ofthe
empirically derived linear regression fit relation.

Histogram for the silica weight percent map derived using the
Figure-7.22: MMAJ's K-value relationship between ASTER emissivity and 203

silica weight percent for the study area.

Fieure-8 I- a-USGS library spectra ofsome key alteration minerals; b. the ^
g "•" same spectra convolved to the ASTER VNIR-SWIR bandpasses.

a. Continua-removed USGS library spectra of some key alteration
Figure-8.2: minerals; b. the same spectra are shown convolved to the 213

bandpasses of the 9 VNIR-SWIR bands of ASTER.

FiPiire 8 3- RGB FCCs with maximum spectral information: a. SWIR FCC 4-gu e-5.j. 6_8. ^ VNIR.SW1R FCC 6_3_L 21

Fieure-8 4' Decorrelation stretch color composite ofSWIR band 4-6-8
highlighting spectral information for specific mineralogy classes.

F1 8 r Relative Band Depth (RBD) ratio schematic (modified after
g Crowley etal., 1989). 2Z/

Figure-8.6: Some band-ratio results for the study area: a. ferric iron 2/1; b. 229, 231



ferrous iron (5/3)1(1/2); c. amphibole, 6/8; d. epidote, chlorite,
amphibole, (6+9)/(7+8); e. Mg-OH (6+9)/(8+8); f. carbonate,
chlorite, epidote (7+9)/8. The color ramp shows the relative
concentrations of the individual surface constituents mapped on
ratios.

(contd...) g. sericite/muscovite/illite, (5+7)/6; h.
alunite/kaolinite/pyrophyllite. (4+6V5; the color ramp shows the
relative concentrations of the surface constituents mapped on the
individual ratios.

Color ratio composite (CRC) of band ratios for
phengitic/sericitic, and kaolinitic alteration in the study area; it
can be seen that these minerals, which are typical of phyllic and
argillic alteration, are concentrated broadly along the main NE-

Figure-8.7: SW trending cataclastic/shear zone, and appear in light yellow- 233
white colors. The same colors can also be seen for Chandmari

(north), about 6km due east of Khetri, and about 3km southeast of
Babai, and indicate alteration related to possible mineralization in
these pockets.

CRC of band ratios highlighting, in respective colors, the
concentrations of clay minerals (red), amphiboles (green), and
lateritic regolith (blue). The pink colors, as with the CRC in fig.
8.7, have been mapped primarily along the main cataclastic/shear
zone. Amphibole-rich rocks/surfaces appear in bright green,
while the lateritic surfaces in blue-cyan colors. However, there is

Figure-8.8: an ambiguity in mapping of the lateritic surfaces with vegetation. 235
Also, the general concentration of the clay minerals in the soils of
the eastern plains has been brought out on this CRC. Notice also
the yellow-red pocket towards the north in what is now the
abandoned open-cast Chandmari mine and adjacent overburden
dumps of mainly altered andalusite schist and phyllite, with
banded amphibole quartzites.

Color composite of PC7-PC6-PC4 in RGB; see the text for „ .,
Figure-8.9: . ,. 241

description.

Mineral abundance images: a. alunite; b. illite; c. kaolinite; d.
kaolinite+smectite; obtained from FPCS processing of 4-band
spectral subsets of ASTER VNIR-SWIR surface reflectance ...

° ' image data. Vertical striping due to filter-scratch defect in SWIR
focal array makes information from the western part of the study
area redundant and useless.

ASTER SWIR spectral indices for the study area calculated using
Figure-8.11: the transform coefficients in Table-8.6 for: a. alunite; b. kaolinite; 247

c. calcite; and d. montmorillonite.

„. „ ,- Boolean Logical Statements to map (A) argillic, and (B) phyllic „,t
Figure-8.12: u & r & ,v J 251

° alteration.

Figure-8 13- Maps ofargillic (A, red) and phyllic (B, yellow) alteration in the 253
study area generated using Boolean Logical Statements shown in
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figure 8.12. The base image is ASTER band 1.

n. „.. Vegetation mask created by thresholding an NDVI image of the „._
Figure-8.14: ° J b b 257

study area.

„. „ ., Image subsets used in image-derived end-member spectral library
creation; ASTER bands 6-3-1 have been shown in RGB.

PPI™-derived image end-member spectra using vegetation-
Figure-8.16: masked VNIR-SWIR reflectance image data, referred to as Case 263

I.

„. „ ._ PPI™-derived image end-member spectra using vegetation- -„
masked SWIR reflectance image data, referred to as Case 2.

a-h. PPl™-derived image end-member spectra respectively for
Figure-8.18: the 8 windows of VNIR-SWIR reflectance data, referred to as 265-267

Case 3.

p. t n ,q. a-h, PPI™-derived image end-member spectra respectively for -,Q „
the 8 windows of SWIR reflectance data, referred to as Case 4.

p- ota. SAM-classified alteration/surface mineral map of the study area
rigure-o.zU: r _, 285

tor Case 1.

p. „7, SAM-classified alteration/surface mineral map of the study area
gU for Case 2. 287

p- 8 ~~ SAM-classified alteration/surface mineral map of the study area
8 for Case 3. 1W

p- s .->-, SAM-classified alteration/surface mineral map of the study area
g for Case 4. 291

MTMF™-classified alteration/surface mineral map of the study
area for Case I; prominent banding due to SWIR filter-scratch
problem can be noticed in the western part of the image.
Background is ASTER band I image. Notice also that the class
'calcite/anorthite' also covers the pixels representing built

Figure-8.24: structures (towns; e.g. Khetri and Babai). Differences between 295
MTMF™ classification and SAM classification occur primarily
because the MTMF™-classified image represents 'stacked'
classes, such that the top-most class is visible while other classes
representing the same area (same pixels) are invisible due to
overlap.

MTMF™-classified alteration/surface mineral map of the study
area for Case 2; banding due to SWIR filter-scratch problem is
more pronounced on this map, as only SWIR bands have been

Figure-8.25: Llsed t0 produce the classification. Background is ASTER band 1 297
image (grey shades). Differences between MTMF™
classification and SAM classification occur primarily because the
MTMF™-classified image represents "stacked' classes, such that
the top-most class is visible while other classes representing the
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same area (same pixels) are invisible due to overlap.

Synthesis of data processing outputs for validation of spectral
lithologic mapping: a) Compiled lithologic map of the study area;
b) DCS of radiance-at-sensor data (13-12-10 in RGB); c) Spectral

p. Q, index composite (quartz-carbonate-mafic in RGB); d) Weight
percent Si02 map computed using the K-value technique and
ASTER TIR L2 surface emissivity data; e) Spectral lithologic
map derived from MTMF™ processing of ASTER TIR L2
surface emissivity data.

Lithologic disposition of field samples used for validation of the
Figure-9.2: spectral classification results of ASTER VNIR-SWIR surface 315

reflectance data.

Continuum-removed pixel surface reflectance spectra of field
Fie -9 3. samples used in validation ofthe spectral mineral mapping. The

broad vertical lines indicate the positions of the main absorption
features.

Copper trace-metal content map for the samplesanalyzed from
the study area. Three sites with samples containing significantly

Figure-9.4: high copper content have been shown in zoomed windows along 325
with their corresponding SAM-classified mineral/alteration map
windows for Case 3.
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Chapter 1

Introduction

1.1 General background

In today's rapidly industrializing world, stress on known deposits of economic minerals has led

to an invigorated hunt for new deposits. The task is made difficult due to the lack, or the

inadequacy, and/or the inaccuracy of geologic information for large areas of the world. In

particular context of mineral exploration, one of the basic requirements is the availability of

accurate lithological, structural and alteration maps. Conventionally, this task has been

performed by field-intensive and time-consuming surveys, which have obvious limitations in

terms of wholesome coverage and economicsof the job. This has necessitated the development

of advanced mineral exploration techniques utilizing geophysical and remote sensing methods.

Developments in technologies that aid in faster and dependable assessment of mineral

potential of geologically favorable regions are highly desirable. Remote sensing and

Geographic Information Sciences (GIS) are two such inter-related tools in realization of this

need. Since the launch of first Landsat satellite in 1972, rapid developments in sensor

technology, imaging and non-imaging spectroscopy, methods of information extraction through

digital image processing, and integrated analysis of a variety of geospatial data focusing on

mineral exploration through GIS, have virtually revolutionized the mineral exploration scenario

in the world.

Until the turn of this century, Landsat data continued to be the mainstay of most

geologic applications of the remote sensing technology, since they provide global, cost-

effective and widely understood data. Hyperspectral remote sensing, though having superior

capability, continues to be of limited geographic extent and is cost-intensive. Limited success

has been achieved in its operationalization from spaceborne platform, and is still under

development.



After the launch of the first EOS satellite, called Terra, carrying onboard the Advanced

Spaceborne Thermal Emission and reflection Radiometer (ASTER) sensor in addition to four

other remote sensing systems in December 1999, a quantum leap has been achieved in the x

capability of remote sensing towards mapping of lithology and alteration minerals relevant for

mineral exploration. In addition to enhanced coverage of the spectral regions with useful

alteration mineralogical information, the uniqueness of ASTER is its complementary

multispectral coverage of additional windows in the thermal infrared region of the

electromagnetic spectrum. This augments lithological mapping objectives in addition to

alteration mapping. This capability is currently not available from any other operating

spaceborne remote sensing system. Therefore, ASTER data provides in one package, the

potential to map the regional lithology, and the accompanying alteration minerals, which can

significantly aid in scaling down the time and monetary aspects of mineral exploration

activities worldwide. The work presented in this thesis reports in detail, the procedures and

results of an assessment of the potential, advantages and limitations of ASTER data towards

identification and mapping of lithology and alteration in a well-documented mineralized region,

the Khetri Copper Belt, in northwest India.

Geological materials (rocks and minerals) are characterized by their unique and

distinctive spectral response in specific wavelength regions of the spectrum. The most

important of these are in the Visible through Near InfraRed to ShortWave InfraRed (VNIR-

SWIR, 0.4-2.5 um) and Thermal InfraRed (TIR, 8.0-12.0 urn) range. Mineral deposits of

economic value are usually associated with alteration of the rock in which they are hosted.

These alterations serve as guides for their exploration. Based on their chemical composition

and crystal structure, these minerals exhibit typical responses to incident electromagnetic

radiation (EMR), which are shown in the form of spectral curves for either reflected or emitted

radiation. The most important region of the EMR where the diagnostic spectral features for

most alteration minerals occur is the VNIR-SWIR (Hunt 1980; Clark et al. 2003; Chapter 5,

*'*
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this thesis). However, the spectral features for the silicates (particularly quartz and feldspars),

which are the most important and abundant rock-forming minerals, occur in TIR region of the

EMR, and are typically associated with the emitted radiation (Salisbusy and D'Aria 1992;

Hook et al. 1999; Chapter 5, this thesis).

1.2 Indian scenario and motivation

Although remote sensing based mineral exploration has become a norm in most parts of the

world, only very limited studies of this nature have been undertaken in India. And even among

these, attention has been focused primarily on structural interpretation and use of limited

spectral resolution Landsat TM data for regional anomaly detection. There are no reported

studies on use of high spectral/spatial resolution ASTER in mineral exploration activity from

India in standard scientific publications. Although excellent geologic database exists for the

Indian region, studies focused particularly on alteration mapping have not been reported.

Alteration mapping on a regional basis can significantly aid in the overall understanding of the

mineral potential of the areas that have so far remained under-explored. Since such an exercise

cannot be adequately and reliably conducted purely through field surveys, the capabilities of

high spectral resolution remote sensing can be utilized to fill the gap. To fulfill this objective

and to establish a framework within which similar studies can be conducted for other parts of

the country, an exhaustive analysis of ASTER data for a mineralized region in Khetri Copper

Belt has been conducted as reported in this thesis.

1.3 Study area and adopted approach

The Khetri Copper Belt (KCB) forms the northern entity of the Aravalli mountain range in

Rajasthan, northwest India, and extends for about 80 km from Singhana in the NE to

Raghunathgarh in the SW. The NW-SE striking transverse Kantli Fault divides the belt into



two parts - viz., North KCB (NKCB) and South KCB (SKCB) (Das Gupta 1968; Gupta 1974).

KCB is a well studied, thoroughly documented, regionally metamorphosed mineralized belt,

and is among the main indigenous sources ofbase metals (Cu, Co, Pb, Zn and related metals) in y

the country. The lithostratigraphic categories in KCB consist primarily of early Proterozoic

metasedimentary rock units, and late Proterozoic basic and acidic intrusives. The older

psammitic Alwar formation (mainly pure and impure quartzites, and micaceous quartzites), and

younger pelitic Ajabgarh formation (mainly phyllites, schists, impure marbles and calc-silicate

units) comprise the main lithostratigraphic units of KCB, along with many small stocks, sills

and dikes of granite, dolerite and amphibolite. The study area is marked by a prominent NNE-

SSW striking cataclastic/shear zone long which numerous felsic (granitic and pegmatitic)

intrusives are emplaced. Small, but significant sulfide mineralization close to the surface in a

few places and invicinity of these intrusives is observed. Primary rock alteration in the form of

sericitization, chloritization and carbonatization is widespread all along the shear zone.

Secondary alteration due to weathering is common and is manifested as chloritization,

kaolinization, scapolitization, and as small gossans and limonitic/jarositic surfaces in sulfide-

bearing areas. Base metal deposits in KCB are considered to be conformable, sediment hosted

and stratabound (Deb et al., 1989) and are genetically different from those of southern

Rajasthan (Goyal, 2001). However, some recent reports favor an epigenetic mode of

mineralization with convincing arguments in favor of a new mineral deposit class, called the

iron-oxide-copper-gold (IOCG) type, KCB (e.g., Knight et al., 2002). A more detailed account

of the study area and its geology has been provided in Chapter 2.



1.4 Scope and objectives

The research is aimed at investigating the capabilities of ASTER multispectral spaceborne

sensor to map lithology and alteration in a base metal mineralized region, with a case study in a

part ofthe Khetri Copper Belt in the Proterozoic Delhi Fold Belt ofnorthwest India.

This approach followed here has allowed for an evaluation of the potential of ASTER

remote sensing image data as a supporting and indirect evidential tool for known mineral

anomalies in a well studied mineralized region. Results of remote sensing basedalteration and

lithologic mapping for the study area can, therefore, be directly compared with the field

observations and geologic maps, and thus the study can serve as a test case to explore the

potential of the technology for other areas. Briefly, the study has been designed to fulfill the

following research objectives:

o To evaluate the use of high resolution multispectral spaceborne ASTER remote sensing

datatowards its potential to map unique minerals and rocks, in comparison with the TM

data; and towards this end

o To evaluate the various techniques of atmospheric and topographic corrections to

retrieve the physical values of surface reflectance and emissivity, respectively for the

data in VNIR-SWIR and TIR wavelength regions

o To generate a spectral lithologic map of the study area using thermal multispectral data

and to evaluate the methods of quantitative silicaabundance estimation

o To produce spectral surface/alteration mineral maps of the study area using data in the

VNIR-SWIR range

o To validate the results of remote sensing image analyses through published geological,

and methodicallycollected field and laboratory data; and

o To investigate the possible relationships between mapped alteration and trace-metal

concentrations in selected parts of the study area



1.5 Scientific Impact

The goal of this research is to show the extent to which ASTER remote sensing data can be

used to distinctly map and identify individual minerals that constitute the surfaces of the

exposed rocks and regolith. Surface material maps can be separated based upon whether they

represent alteration minerals or surface rock units (lithology). For the present study, the

investigations have provided a better understanding of the distribution of specific minerals

which can be linked to existing and potential mineralized areas, and can thus serve as an

exploration aid.

In nutshell, the main scientific contributions of this research are outlinedas follows:

1. First ever detailed report of ASTER data analysis from an Indian region for mineral

exploration

2. Successful implementation of a novel technique to retrieve surface reflectances from at-

sensor radiance data using a combination of radiative transfer-based absolute and

relative approaches of atmospheric correction

3. Extension of the existing techniques of quantitative silica abundance estimation

techniques based on Gaussian fit modeling to incorporate computationally more

efficient modeling techniques based on Polynomial spectral curve-fitting

4. Creation of a first-ever spectral lithologic map of the study area based on multispectral

surface emissivity data

5. Creation of a first-ever spectral alteration map of the study area using multispectral

solar reflective data

6. First direct comparison of remote sensing data based spectral maps with trace-metal

concentrations of rock units from the study area, and thus

7. Establishing ASTER data as a potential tool for mineral exploration inthe Indian terrain

+u
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1.6 Organization of the thesis

This research has investigated the potential and capability of ASTER data in lithologic and

alteration mapping with a case study in the Khetri Copper Belt, in northwest India. Exhaustive

analysis of ASTER data has involved investigation of data preprocessing and processing

methodscurrently in vogue. The VNIR-SWIR and TIR data have been treated separately owing

to the basic nature of the data, i.e. while VNIR-SWIR data represent the reflected solar

radiation, the TIR data are essentially the emitted part of the recorded solar radiation. A ground

truth database has been created to validate and interpret the findings of ASTER data analysis.

The thesis has been organized in 10 chapters and 4 appendices on the basis of the treatment of

the following components:

1. Background literature review pertaining to the geology of the study area (Chapter 2)

2. Discussion of the methodology and data employed (Chapter 3)

3. Ground truth database development, in terms of field visits and laboratory

investigations (petrographic and geochemical) of selected field samples (Chapter 4)

4. Review of the theory of geologic remote sensing and state-of-the-art of remote sensing

applications in lithologic and alteration mapping with focus on the use of ASTER data

(Chapter 5)

5. Preprocessing of ASTER data for removal of radiometric, atmospheric and topographic

effects and retrieval of the basic surface physical data (reflectance and emissivity) using

existing and novel approaches (Chapter 6)

6. Analysis of ASTER TIR data for lithologic mapping and Si02 abundance estimation

using existing and novel techniques (Chapter 7)

7. Analysis of ASTER VNIR-SWIR reflectance data for surface/alteration mineral

mapping (Chapter 8)

8. Synthesis of ASTER data analysis results with ground truth and validation of the results

(Chapter 9)

9. Summary and conclusions (Chapter 10)

The chapter interdependencies have been shown in Figure-l.l.



Chapter 2

Study Area - Regional and Local Geology

2.1 Khetri Copper Belt: an overview

The Khetri Copper Belt (KCB) is one of the main copper producing mineral regions in India.

KCB forms the northern entity of the Aravalli mountain range in Rajasthan, northwest India,

and extends for about 80 km from Singhana in the NE to Raghunathgarh in the SW. The NW-

SE striking transverse Kantli Fault divides the belt into two parts - viz., North KCB (NKCB)

and South KCB (SKCB) (fig. 1). Kantli River flows from NE to SW along this fault. The belt

itself separates the Great Indian Thar desert in the west, from the fertile alluvial plains of

Ganga and Yamuna in the east. The study area is located immediately north of the Kantli Fault.

Structurally, KCB is apart of the North Delhi Fold Belt (NDFB) and is characterized by

a complex multiphase structural history of magmatism, metamorphism and copper-iron

mineralization. Heron (1923) proposed that the KCB is covered by rocks of the Delhi

Supergroup, which is further divided into (1) an older Alwar Group dominated by psammitic

rocks, and (2) a younger Ajabgarh Group dominated by pelific rocks (fig. 2.1). This

stratigraphic scheme for KCB has been adopted by most subsequent workers in the area (e.g.,

Das Gupta, 1968; Gupta, 1974); however, recent studies by Chakrabarti and Gupta (1992)

indicate a pre-Delhi status for the rocks ofthe KCB.

Metallurgical history in KCB dates back to 3rd Century B.C. Carbon isotope dating of

mining and metallurgical relicts (wood supports and slag heaps) in the area indicates that the

copper mining and metallurgy in the region dates back to the Harappan age. Brooke (1864)

gave the first recorded account of the deposits in KCB, detailing the process of working and

smelting at Singhana and Madhan-Kudan mines in the area in his time. There is little doubt,

however, that during Mughal period the area witnessed a great deal ofactivity.
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Much of the ancient as well as current mining activity recorded from the region is

concentrated inthe NKCB. Some of the important copper mines of the area are Madhan-Kudan

and Kolihan (both underground), and Chandmari (open-pit, abandoned). There is a minor, but

important prospect in Akwali, which lies towards the southern end of NKCB. Recent mine

development activity in the belt is concentrated in the northern-most part of NKCB beyond

Singhana at Banwas.

2.1.1 Review of the geological literature on KCB

The KCB is marked by a large number of scattered heaps of slag close to old workings and

associated man-made structures. The early history of the region is not fully known, but

references to a flourishing copper trade during the Harappan age have been found in ancient

Sanskrit literature. After independence, exploration activity by private and public sector

undertakings have resulted in accumulation of a large database with corresponding literature in

published and unpublished form. About 150 exploration reports and 115 scientific publications

(with a few in international journals) are devoted to the geology, ore deposits, and exploration

of the Khetri Copper Belt. Mineral Exploration Corporation Limited (MECL) has synthesized

this wealth of literature in a 'Compendium on Khetri Copper Belt' (Narsimhan, 1989).

In 1945, a company under the name of Jaipur Mineral Corporation ventured to prospect

the Madan hill, but after not-so-encouraging results of drilling, abandoned the site in 1947.

Systematic exploration activity was initiated in 1954 by the Geological Survey of India (GSI)

(Roy, 1962), including geophysical and geochemical and biogeochemical surveys (Dunn, 1965,

Paul, 1968). Biogeochemical studies have not been successful in the region (Balasundaram,

1972). Heron (1923, 1925, 1935), Das Gupta (1968) and Gupta (1974) mapped the area at

various levels of detail. Muktinath et al. (1969) and Rao (1971) gave a brief account of gossans,

sampled from a few localities in the belt. Deb (1948) described the ore minerals from the

region in detail for the first time.

4
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Various public and private enterprises, viz., GSI, Indian Bureau of Mines (IBM),

Hindustan Copper Limited (HCL), and the Pyrite and Phosphorite Chemicals Limited (PPCL),

* have carried outextensive drilling and exploratory mining in the area over the last four decades

to test surface anomalies and find the grade and extent of sulfide deposits. Most of the studies

in the area have been concentrated on the two main producing mines - Madhan-Kudan and

Kolihan (Rao and Rao, 1966, 1968a,b; Mukherjee, 1966, 1967a,b, 1968; Chandra Chowdhury

et al., 1971). Wall-rock alterations in the region have been discussed by Das Gupta (1962a,b,c;

1964a), Das Gupta et al. (1963, 1965, 1971) and Sikka et al. (1966a,b). Genetic aspects ofthe

ores of Madhan-Kudan and Kolihan in particular and KCB in general have been discussed by

Varma and Krishnanunni (1963), Das Gupta (1963, 1964b) and Mukherjee (1969). Roy

Chowdhury and Das Gupta (1965) and Roy Chowdhury and Venkatesh (1971) have discussed

the regional controls of ore localization in the belt. Vardhan and Narasimhan (1971) have

discussed the economic potential ofthe belt. Excluding the three main mines (Madhan-Kudan,

Kolihan, and Chandmari having around 85 million tonnes of ore at 1% Cu, production +

reserve), ore reserves ofabout 58 million tones at 1.4% Cu have been estimated by GSI and

Mineral Exploration Corporation Limited (MECL) in 15 prospects in KCB, ofwhich Banwas,

Chandmari Intervening and Chandmari South are located close to the existing mines..

•f
2.1.2 Geology of the North Khetri Copper Belt (NKCB)

The NKCB consists oftwo great plains (Shekhawati Plains) separated by NE-SW trending hill

ranges, intricately dissected by ravines where the argillaceous units lie exposed. The hilly area

generally rises southward towards Kantli River.

NKCB is characterized by an unconformable basement-cover relationship between the

high grade paragneiss-quartzite-calc-silicate rock sequence and copper hosted metasedimentary

sequence. The metasedimentary rocks (feldspathic quartzite with magnetite, banded amphibole-

quartzite, garnetiferous chlorite schists, mica schists, and quartzite) of the NKCB display a



12

NNE-SSW to NE-SW trend and are folded into a number of regional anticlines and synclines,

with culminations and depressions (Das Gupta, 1968; Gupta, 1974; Naha et al., 1988). The

intrusive rocks in the NKCB are largely represented by mafic and granitoid rocks. Besides,

minor amounts of felsic volcanics have also been reported (Golani et al., 1992; Gupta et al.,

1998). The geological setting of copper hosted thick pile of folded metasedimentary sequence

is interpreted asan intracontinental tensional basin deposit (footnote, GSI, 1997).

Two main deformation stages affected the Proterozoic sequence, probably at the end of

Proterozoic-I (as indicated by 1700 Ma syn-second deformation Gothro Granite) (footnote,

GSI, 1997). The earlier deformation produced folds with axes subparallel to stretching lineation

plunging towards NW-SE to NNW-SSE direction. The associated gently dipping tangential

shear zones indicate an overall shear in the NW to NNW direction, which, however, did not

induce appreciable tectonic stacking of lithologic successions. The later stage of deformation

produced folds (macroscopic sinistral fold near Khetri-Rajota) and crenulation cleavage

generally striking NNE-SSW. The axis of later folds plunges gently towards South (as towards

North of Kalota) with occasional plunge reversal. Large dextral shear zones, such as the NE-

SW Singhana-Jaspura shear zone and the Babai-Taonda shear zone (running diagonally across

the study area) are responsible for the arcuate shape of the Proterozoic sequence. Prograde

metamorphism associated with earlier deformation is characterized by a pressure decrease and

is followed by a temperature increase, linked to granitic emplacement during later deformation.

Late tectonic stages are characterized by brittle deformation and the development of regional

NE-SW striking fault zones as well as localized NW-SE trending transverse faults (footnote,

GSI, 1997). Within the Proterozoic sequence, stratabound copper deposits with a cumulative

strike length of 16 km, show broad stratigraphic control by Fe-Mg rich and carbonate bearing

metasediments (garnetiferous chlorite schist and amphibole-bearing quartzite), which

correspond to the transition zone between near shore detrital facies (represented by lower

quartzite) anddeeper argillaceous marine sediments (at the top).
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Figure-2.1 Location and generalized geological mapof the Khetri Copper Belt (modified after
Heron, 1923)
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2.2 Study area: location, accessibility, physiography and geology

2.2.1 Location

The study area lies in the southern part of the NKCB. It falls within the Survey of India

toposheets 45M/9 and 45M/13, in the Jhunjhunu district of Rajasthan state. The geographic

extent of the study area lies from 75° 43' 14" E to 75° 50' 45" E longitudes and 27° 53' 5" N to

27° 59' 47" N latitudes. Khetri, which is the most populous town in the area, lies to its north.

The Chandmari and Akwali prospects form the northern and southern bounds of the study area,

respectively (fig. 2.2).

2.2.2 Accessibility

The area is well connected to the major urban centers, like Delhi and Jaipur by all season

metalled roads, and railways. Most large villages in the study area, like Babai and Papurna, lay

enroute the Jaipur-Khetri state highway (fig. 2.2). Nearest railway station is at Chirawa, about

30 km from Khetri.

2.2.3 Physiography, climate and vegetation

Regionally, the area consists of slightly undulating terrain in the east and moderately high hilly

ranges to the westof the statehighway up to Papurna, where it transects the ranges; thereafter it

again forms the general divide. Beyond the hills of the west lies the great Indian Thar Desert.

Nearly NS trending hills of Madhogarh lie to the south-west of the area.

The most prominent topographic features of the study area are manifested by the

quartzite ridges. A prominent ridge about 3.5 km north ofPapurna, havingnearly uniform relief

for a length of about 3 km, is one of the most interesting landforms in the area. It is capped by

pure quartzites and attains a maximum relief of about 800 m above average sea level. The hills,

in general, are moderately dipping on the western and steeply dipping and scree covered on
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their eastern flanks; and represent the limbs of a regional fold called the Babai anticline. The

area is lithologically diverse, and different litho-units have undergone different amounts of

weathering. The quartzites are the most resistant of the rocks followed by the amphibolites and

the calc-silicates and calcareous rocks. The meta-pelites, feldspathic quartzites and felsic

intrusives (granites, granodiorites and pegmatites) have yielded to the agents of weathering in

most part. The main reason for this differential weathering is that the feldspar of the rocks is

more susceptible to weathering in the hot and dry climate of the region than the carbonates.

There is no perennial drainage in the study area, though rivulets and nalas of varying

magnitude dissect the hill flanks and are fairly dense and normally follow the structural trends

in the rock units. The Kantli River and the underlying fault lie to the south of the study area. In

general, the drainages are radial to dentritic in pattern. Most of the westerly flowing drains

disappear in the desert of the Thar, while some form feeders to the Kantli River flowing

westwards. Barring a few and sporadic natural springs, most groundwater is deep and the yield

is low. The agriculture is seasonal and highly monsoon dependent.

Climatologically the area represents a typical tropical semi-arid to arid climate. The

mercury fluctuates between the far ends of the thermometer for summer and winter seasons,

with temperature crossing the 45° Celsius mark in peak summers, and going below 4° Celsius

in the winters. Rainfall is moderate to scanty, with an average precipitation of 25 to 30 cm

annually.

The vegetation in the area is quite sparse and scanty. Xerophytes dominate the natural

vegetation, which is also controlled by the bedrock regolith. The quartzites, carbonates and the

intrusives (both felsic and mafic) in most part are barren and devoid of vegetation, while the

schists and phyllites along with alluvium provide the best ground for vegetation in the area.

Among the trees, Boswellia serrata, Euphorbia rinulia, Anogeissies latifolia, Anogeissus

pendula and Acacia Senegal predominate. Euphorbia royallina and Cactus bushes along with

spear grass are commonly observed (Gupta, 1974).

-*.
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Figure-2.2 Some important places in the study area. The background is a hill-shade image of
the study area, derived from a digital elevation model (DEM). Inset is a shaded reliefmapof

the Indian subcontinent showing study area location.
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2.2.4 Geology

The Babai-Khetri area represents a regionally metamorphosed terrain with low to medium

grade metasedimentary rocks, such as various kinds of quartzites (banded feldspathic

quartzites, micaceous quartzites, amphibole bearing banded quartzites, arkosic and banded

arkosic quartzites, and pure quartzites) and metapelites (schists and phyllites), and has

witnessed a history of polyphase intrusions of intracratonic felsics and mafics (granites,

granodiorites and pegmatites, and amphibolites, respectively). These rocks comprise the two

major stratigraphic divisions of the Delhi Supergroup - viz., the Alwar Group (largely

psammatic) and the Ajabgarh Group (largely pelitic) (Heron, 1923). All subsequent workers

(Das Gupta, 1968; Roy Chowdhury and Das Gupta, 1965; Chandra Chowdhury et al., 1971;

Gupta, 1974) have followed Heron in this correlation, though they have differed in concluding

the orderof superposition of various litho-units. The eastern part of the area largely comprises

of impure carbonate rocks and para-amphibolites. The stratigraphical sequence of various litho-

units of the KCB by different workers has been summarized in Table-2.1.
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Source -> Heron (1923)

Q.

3

O

Intrusives

f Ajabgarh Group
(mainy pelitic)

I {
CO

a

Alwar Group
(mainly psammitic)

Table-2.1 Stratigraphic succession of KCB rock units.

Das Gupta (1968)
Soil dune sand, alluvium
Chert-ankerite veins, quartz veins
Younger amphibolite dykes (originally dolerite rocks)
Sulfide mineralization and Fe-Mg metasomatism and other
types of alteration leading to the formation of anthophyllite,
cummingtonite, chlorite, biotite, etc., part of albitization
Granites, granite gneisses, aplite, pegmatites, quartz veins,
feldspathisation producing extensive albite and locally
microcline

Older amphibolites, epidiorites (originally dioritic rocks)
Unit 8: Carbon phyllites, phyllites, mica-schists, sillimanite
schists, etc. (local)
Unit 7: Quartzites, quartz schists with phyllites, mica schists,
marbles, carbin phyllites, etc.
Unit 6: Phyllites, mca schists, etc. (local)
Unit 5: Marbles, dolomites, amphibolites, calc-gneisses,
amphibole quartzites, quartzites, scapolite gneisses, mica
schists and phyllites
Unit 4: Phyllites, andalusite-bearing phyllites and schists,
biotite schists, sericite schists, garnet schists, chlorite
schists, schists with staurolite, kyanite, sillimanite, scapolite
and amphibole-biotite schists, carbon phyllites, quartzites,
etc.

......—Gradational contact

Unit 3: Amphibole quartzites, amphibole gneisses, marbles,
dolomites, amphibolites, etc.

Unit 2: Quartzites with local arkose, biotite quartzites,
orthoquartzites, protoquartzitesetc, bands of phyllites, mica
schists, hematite and/or magnetite quartzites, etc.

Unit 1: Mica schists, phyllites, feldspathic schists, biotite
gneisses, garnet-mica-schists, etc.

Base not exposed

♦

Gupta (1974)
Soils, wind-borne sands and alluvium. Supergene
alterations

Sulfide mineralization and associated hypogene
alterations

Granites-granodiorites-pegmatites

Orthoamphibolites
Unit F: Meta-pelites (same as in Unit D)

Unit E: Orthoquartzites, quartzites with phyllitic
bands

Unit D: Meta-pelites. Quartz-mica schists and
phyllites, andalusite, garnet and staurolite bearing.
Graphite phyllites. Locally graphite tremolite
marbles.

~. . Gradational contact- -~—-~~

Unit C: Banded amphibole quartzites, amphibole
marbles, para-amphibolites, less commonly
quartz-mica schists. Locally banded iron-ores.
Unit B: Banded quartzites, dominantly arkosic,
less commonly amphibole and mica-bearing.

Unit A: Mica-schists with quartzitic bands and
micaceous quartzites.

Base not exposed
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2.2.4.1 Structure

Structurally, the area is quite complex, and the region reveals a history of tectonic deformation

with at least three generations of folding and faulting on micro-, meso- and macro levels. The

following discussion is based on the field investigations by Das Gupta (1968), Gupta (1974)

and fieldwork by the author.

In the area around Babai, the rocks are folded into a longitudinal anticline trending

NNE-SSW. The nose of this fold is exposed west of Babai, plunging south. The fold becomes

overturned towards east when traced north-eastwards along the strike, near Bamno ki Dhani.

On the east, the Babai anticline is flanked by a tightly appressed longitudinal syncline (the

Papurna-Taonda syncline) extending up to Taonda in the northeast. The rocks lying towards the

east of Babai are separated from the main fold by a major thrust, called the Babai-Taonda

thrust. The thrust zone is marked by slickensides and shearing-brecciation. Widespread

alterations in the form of silicification, muscovitization-sericitization, limonitization, and

sometimes carbonatization and chloritization are observed all along the thrust-zone. At places,

e.g., near Saintali ki Dhani and Karmari ki Dhani, rich sulfide mineralization is present. Also,

along the thrust, bodies ofgranite-granodiorites have been emplaced.

A large number of faults (longitudinal and transverse) and thrusts following the contacts

or cutting across the various litho-units are present in the area. Invariably they are marked by

shear zones and often by alterations and mineralization (e.g., the Tutiwali-Ladniwali

mineralized zone). A major transverse fault runs across western hilly part of the studyarea and

passes from the south of Akwali and Gadrata.

2.2.4.2 Lithology

The area has been mapped by various workers on different scales (Heron, 1923; Das Gupta,

1968; Gupta, 1974). Gupta (1974) mapped the area on a scale of 4" = 1 mile (1:15840),

identified two major categories of rocks in the field, and classified them according to the
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scheme shown in Table-2.2. Taking the map prepared by him as reference, most rock types

have been located in the field and field samples have been analyzed in the laboratory (see

Chapter4 for details). However, the rocks classified as para-amphiboliteshave not been studied

by the author in the field, since the fieldwork has been concentrated mainly in the area west of

the Babai, and most of the para-amphibolites mapped by Gupta (1974) occur towards the east

of Babai. Similarly, ferruginous quartzite and conglomeratic quartzite outcrops are spatially

small and have been ignored at the scale and requirements of the present study.

Table-2.2 Important rock units exposed in the study area (after Gupta, 1974).

Quartzites
1. Banded arkosic quartzites
2. Banded amphibole quartzites
3. Micaceous quartzites
4. Pure/peak quartzites

Metapelites
1. Graphite phyllites
2. Quartz-mica-chlorite schists and phyllites
3. Garnetiferous quartz-mica schists and phyllites
4. Andalusite phyllites
5. Staurolite-andalusite phyllites

Para-amphibolites
1. Actinolite-tremolite amphibolites
2. Garnet-actinolite amphibolites
3. Hornblende amphibolites
4. Garnet-hornblende amphibolites
5. Diopside-hornblende amphibolites
6. Cummingtonite-grunerite amphibolites

Marbles

1. Actinolite-tremolite marbles

2. Diopside-hornblende marbles
3. Graphite-tremolite marbles

Intrusives

Orthoamphibolites
Granite-granodiorites
Pegmatites
Aplites

%
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2.3 Distribution of known mineralization

The various zones of copper and iron mineralization are grouped as 1) major zones, and 2)

minor occurrences. It has been observed that the iron mineralization zones are concentrated

towards the east and the copper mineralization zones to the west of the study area. In the

following paragraphs, some of the important zones have been discussed briefly:

1. Major zones: Three major zones of sulfide mineralization and one zone of iron

mineralization have been observed in the study area. These are - (i) Akwali zone, (ii)

Tutiwali-Ladniwali zone and (iii) Saintali ki Dhani - Karmari ki Dhani zone for copper;

and (iv) Dhauli Hill zone for iron. All of the above zones have been visited by the

author and systematic rock samples have been collected for various laboratory analyses,

as discussed in Chapter 4.

The Akwali zone extends from Akwali group of workings in the northeast to

Bhootwali-Paniwali workings in the southwest for a distance of nearly 3.5 km. The

mineralized host rocks are graphite phyllites and andalusite phyllites, which have been

intruded by orthoamphibolites. Several xenolithic lenticular bodies of the gossanized

phyllites are observed in the amphibolites. The phyllites are overlain by orthoquartzites.

Alterations such as kaolinitization, silicification, and limonitization are commonly

noted along the transverse faults in the orthoquartzites. The graphite phyllites are highly

sheared and fractured and constitute a prominent shear zone, especially at and close to

their contact with the orthoapmphibolites. Limonitic coatings over phyllites in such

cases are commonly observed, though there is no prominent continuous gossan in this

zone.

The Tutiwali-Ladniwalizone is the largest continuous gossan zone in the area. It

is commonly 5-10 m wide on surface and runs for a continuous strike length of about 3

km starting from Silatighati in the south through the old pits ofTutiwali and terminating

about 1.2 km north of Ladniwali old pit. The gossan and the mineralization are located
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close to the axial zone of Babai anticline. It has followed a shear-brecciated zone along

a strike fault parallel to the axial-plane of the fold. Various types of arkosic and banded

amphibole quartzites constitute the host rocks. In the vicinity of the mineralized zone,

the host rocks exhibit pronounced wall-rock alterations in the form of extensive

chloritization-limonitization of amphiboles and widespread introduction of chlorite,

limonite, quartz, and rarely carbonates along the fractures and shear planes. Often the

rocks are altered to quartz+limonite±chlorite±feldspars (or clays) assemblage,

especially in the amphibole quartzite sequence.

The Saintali kiDhani - Karmari kiDhani zone extends for a strike length of 2.3

km from Saintali ki Dhani in the northeast to Karmari ki Dhani in the southwest. A

large excavation close to the Babai-Khetri road running for about 100 m in NE-SW

direction and a sheared gossan zone extending all along Saintali ki Dhani to Karmari ki

Dhani are pertinent indicators of sulfide mineralization in this area. The zone is marked

by intense shearing-brecciation and alterations in the form of muscovitization-

sericitization, silicification, calcification, chloritization, limonitization, kaolinitization,

and very common malachite stains, specks and encrustations. The main Babai-Taonda

cataclastic shear (thrust) zone passes through this area. The granites have been

emplaced along the thrust zone. The mineralizing solutions, which appear to favor the

zones of cataclasis and brecciation along the shear zone have altered all kinds of rocks,

viz., micaceous quartzites, para-amphibolites and granites as all of them exhibit

hypogene alterations (such as development of muscovite, sericite, chlorite, carbonate,

quartz) to varying degrees. Electromagnetic (Paul, 1968) and geochemical

(Balasundaram, 1972) surveys have revealed anomalous centers in this zone; however

the drilling by GSI could not intersect any prospective horizon.

2. Minor occurrences: A number of minor occurrences of copper and iron have been

reported from the study area. Most of the minor occurrences are located towards the
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west of the Babai-Khetri road, and the iron occurrences are concentrated in the

northeastern part of the study area. Of the minor occurrences for copper, the notable

ones are:

a. The Gatardi old workings immediately north of Kalota (dark coloured small

mounds about 15 m high) composed of graphite phyllites. The rocks are highly

altered with well developed limonitic gossan and malachite staining.

b. The Kemli old pit and workings, which lie towards NE of the Gatardi old

workings in graphite phyllites. Massive quartzites underlie the graphite phyllites

and are exposed due to ancient mining. Limonite gossan and malachite staining

provide an indirectevidenceof sulfide mineralization in this zone.

c. The Bilaiwali old working, which lies on a small hillock towards the west of

Babai, at a distance of about 0.5 km. It is confined to micaceous feldspathic

quartzites which are sheared and brecciated and show limonitization and

silicification.

d. The old workings near Suredi kiDhani, about 1.5 km NE of Babai on an angular

hillock about 10 m high. The various rock types are micaceous quartzites with

thin phyllite bands, mica phyllites and schists, banded actinolite marbles and

para-amphibolites. These rocks have been intruded and cut-across by

pegmatites. The sulfide mineralization has taken place in micaceous feldspathic

quartzites containing thin bands of mica phyllites. Several secondary minerals

such as large amounts of carbonates, muscovite-sericite, quartz, chlorite, talc,

clay minerals and limonite with malachite stains are noted on the surface.

e. A few gossan zones 3-4 km east ofBabai in mica phyllites and schists, para-

amphibolites, quartzites, and micaceous quartzites. These have subsequently

been intruded by granites. Gossan consists of malachite stains, porous limonitic
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coatings, and a few gangue minerals such as quartz, carbonates, chlorite etc. A

large part is concealed under transported sand cover.

f. Limonitic gossan zones associated with sheared graphite phyllites in the valley

west ofGadrata hill are observed. The gossans constitute angular fragments of

graphite phyllites in a variegated matrix of limonite along with quartz, calcite,

albite, muscovite, chlorite, talc, and clays.

g. The Dhulang Hillold workings are located about 5 km northeast of Papurna. A

few abandoned old workings, gossans, and associated alterations indicate sulfide

mineralization in this region. The rocks are micaceous quartzites containing thin

bands of phyllites. The contacts of phyllites with quartzites are sheared, which

are the preferred mineralization loci. An alteration halo extending for about 20

m, and characterized by a high amount of muscovite-sericite and quartz, with

minor carbonates and chlorite is observed.

Of the above minor occurrences reported from the area described above, the author has

located and sampled the sites a-d.

2.4 Surface indicators of mineralization: gossans and alterations

As the present study involves use of remote sensing data which records information from the

top few micrometers of the surface, it is important to have a good understanding of the surface

indicators of ore deposits. Two main categories of surface manifestations of deep seated

mineralization areobserved in the study area, as described briefly inthe following paragraphs:

1. Variegated limonitic gossan zones with malachite andazurite staining: A brief account

of gossans in KCB has been given by Rao (1971) and Muktinath et al. (1969). Gupta

(1974) has provided an exhaustive account of the gossan zones and their characteristics

from the study area. In the present area, the gossan zones occur in a wide variety of

forms and associations. They often form bands and lenticular elongated irregular bodies
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swelling occasionally to thickness of up to 10 meters. Gossans occur on varying

topographical levels ranging from top and flanks of hills and mounds to floor of the

valleys, sometimes covered with wind-borne sand. The gossans occur in graphite-

phyllites, andalusite-garnet-quartz-mica phyllites, quartzites, banded amphibole and

arkosic quartzites, para-amphibolites, graphite phyllites interbedded with graphite-

actinolite marbles, banded amphibole-diopside marbles, and granites and pegmatites.

Sometimes sheared fragments of host rocks occur in gossan samples. The gossans are

both in situ and transported. The gossans, in general, contain limonite (hematite-

goethite-lepidocrocite), specks of malachite, and azurite, many hypogene gangue

minerals such as quartz, muscovite, sericite, chlorite, carbonates, and rarely cuprite and

erythrite. The gossanized rocks can be grouped under the following five categories: (i)

limonite-quartz rock; (ii) limonite-quartz-carbonate rock; (iii) limonite-chlorite rock;

(iv) limonite-chlorite-quartz-carbonate rock; and (v) limonite-quartz-chlorite-graphite

rock. Biotite and scapolite have also been observed in some samples (Gupta, 1974).

2. Alteration - hypogene and supergene: In the present area, a wide variety of lithologies

serve as host rocks for mineralization, such as graphite phyllites, quartz-biotite

phyllites, garnetiferous-andalusite phyllites (Akwali), graphite-quartz-biotite phyllites

interbedded with graphite-actinolite marble, quartzites and banded amphibole-arkosic

quartzites (Tutiwali), micaceous quartzites interbedded with quartz-mica phyllites

(Suredi-ki-Dhani), quartz-mica phyllites (northwest of Kalota), banded amphibole-

diopside marbles (Karmari-ki-Dhani), granites-pegmatites and para-amphibolites and

micaceous quartzites (Saintali ki Dhani - Karmari ki Dhani zone). The rocks in the

vicinity of these mineralizations are altered as a result of hydrothermal activity. These

wall-rock alterations are of different degrees and of varying intensities, leading to

mineral assemblages of both phyllic and argillic varieties of hypogene origin. Alteration

in the form of chloritization and silicification is more widespread. Subsequent to, and
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accompanying, chloritization is biotitization as seen in the Akwali zone. Other

associated wall-rock alterations are carbonitization, muscovitization, sericitization,

scapolitization and amphibolization. The amphibolization (anthophyllite-

cummingtonite-grunerite) is common in the northern halfof the study area (Das Gupta,

1964a). In the last stage of hypogene alterations (epithermal), extensive silicification,

chloritization and sericitization took place (Gupta, 1974). Surficial alteration in the form

of secondary silicification, calcification, kaolinization and gossanization took place

during oxidation, weathering and supergene activity. Extensive limonitization is

reported along the shear planes. These supergene alterations have superimposed over

the hypogene alterations and have affected the primary host rocks as well.

2.5 Ore localization and metallogenesis: focus on lithologic controls

Since the aim of the present study is to evaluate the potential of ASTER multispectral remote

sensing data in lithologic and alteration mapping, it will be useful to summarize the foregoing

discussion about the study area with a special focus on alteration mineral occurrence in the

region and their lithological and structural associations as an indirect aid to decipher the

controls of ore localization.

The geologic controls of ore localization and the metallogenic processes in the KCB are

still a matter ofcontroversy. Following detailed geological and structural mapping ofthe major

part of KCB, earlier workers suggested that the copper mineralization in Khetri is essentially

epigenetic hydrothermal and derived from the granitic intrusions in the best (Roy Chowdhury

and Das Gupta, 1965). Mineralizing solutions responsible for large-scale iron-magnesium

metasomatism in the metasedimentary country rocks were thought to be guided by faults and

shear zones during deformation of the belt. Later, a partly syngenetic origin of the sulfides was

favored for stratabound copper deposits of the KCB (Das Gupta, 1974; Deb et al., 1989), as

well as for the pyrite-pyrrhotite deposits in Saladipura, SKCB (Ray, 1974). The proposed
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metallogenic process for both types of deposits (Sarkar and Das Gupta, 1980; Sarkar et al.,

1980) involves sedimentary-diagenetic ore deposition in shallow marine sediments,

subsequently affected by metamorphism and deformation, within rift-related basins of Early- to

Middle-Proterozoic age (Sinha-Roy, 1988; Deb and Sarkar, 1990). The recent re-interpretation

of particular metamorphosed facies in the Khetri Copper Belt as former volcanogenic rocks has

led some workers to suggest aprimary volcanosedimentary or volcanic-exhalative origin, rather

than a syndiagenetic origin for Khetri Copper Deposits (Basu, 1986; Das Gupta, 1992; Golani

et al., 1992). As evident from the distribution and proximity of known mineralizations to the

structural features, the sulfide and iron oxide mineralization in the region shows strong affinity

to structural discontinuities and shearing, while some lithologic control on ore localization has

also been observed. Adetailed account on the controls of ore localization in the study area has

been given by Roy Chowdhury and Das Gupta (1965), Roy Chowdhury and Venkatesh (1971),

and Gupta (1974).

While mapping of structural features using remote sensing is a widely practiced

method, the application of the technology in detection and mapping of the lithologic and

surface mineralogic features has been at the core of the present investigation. Spectral analysis

ofASTER multispectral remote sensing data and the validation of spectral mapping results

discussed in the successive chapters has been based primarily on the 'ground-truth' discussed

in the preceding paragraphs.



3.1 Introduction

Chapter 3

Data and Methodology

H- data used hthis research has been ^^ ,mo (wo groups _remote ^^^ ^
^ and anciha^ data, listing of geo|ogic ^ ^^ ^ ^^ ^ ^ ^
add.tion t„ these, . separate database comprising of fie|d observatims (Md^^^
OFS-controiied fle,d iocation data) and data generated „ ,aboratoly (petrographic ^
^hemica, data) has aiso been created (discussed in Chapter 4). ,„ the f„„owing Kctions ,he
sahent features of various kinds ofdata used in this study have been deseribed.

3.2 Remote sensing image data

Remote sensing image data of the study area comprises of:

I- ASTER Level-IB (LIB) l4.band a,sensor ^ ^ ^ . ^ ^ ^
data

2. ASTER on-demand higber ievel standard scienee produets ,Leve,-2 or L2 data) for
VMR-SWIR s„rfaCe radiance a„d sgrftce ^^ ^ ^ ^ ^ ^

""** "' T'R "*" radia- ™« -*ce emissivity data (AST.09T"J
AST05, respectively)

analysis (as discussed in Chapter 4), and

4. An .RS ,D PAN image ofapart of the study area (for resoiution enhancement,
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The remote sensing image data have been selected for dates with minimum vegetation

cover, since vegetation greatly affects the quality of radiation reflected/emitted by materials of

geologic interest (rocks and soils) and obscures their spectral signatures. Table-3.1 provides the

salient characteristics ofthe sensor systems used in this study; details ofdata acquisition (date

and time) have been provided in Table-3.2. Landsat TM thermal band has not been used.

Descriptions of the various kinds of ASTER data types with nomenclature used by the Land

Processes Distributed Active Archive Center (LP-DAAC) of NASA have been provided in

Table-3.3. It is to be noted that this nomenclature is different from that used by the Earth

Resources Data Analysis Center (ERSDAC) ofJapan, which also distributes the ASTER data.

Table-3.1 Salient characteristics of remote sensing sensors used in this study.

Sensor/ sensor

subsystem
Band

Number

Spectral
Range (um)

Spatial
Resolution (m)

Quantization Levels

(bits)

ASTER VNIR

1 0.52-0.60

15 82 0.63-0.69

3N# 0.78-0.86

3B" 0.78-0.86

ASTER SWIR

4 1.60-1.70

30 8

5 2.145-2.185

6 2.185-2.225

7 2.235-2.285

8 2.295-2.365

9 2.360-2.430

ASTER TIR

10 8.125-8.475

90 12
11 8.475-8.825

12 8.925-9.275

13 10.25-10.95

14 10.95-11.65

Landsat-5 TM

1 0.45-0.52

30 8

2 0.52-0.60

3 0.63-0.69

4 0.76-0.90

5 1.55-1.75

7 2.08-2.35

6 10.4-12.5 120 8

IRS 1D PAN PAN 0.5-0.75 5.8 8

# nadir-lookingband; *back-looking band, for stereo view and DEM generation

Table-3.2 Scene acquisition details for the remote sensing image data used in this research.

Remote Sensing Image Data Date and Time of Scene Acquisition

ASTER L1B

Landsat-5 TM (path 147, row 41)
IRS 1D PAN (path 95, row, 52)

October 5, 2002; 05:43:51 UTC (Z)
January 25, 1995: 05:30:00 UTC (Z)
January 30, 2000; 06:00:00.390 UTC (Z)

>
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Table-3.3 General description of the various kinds of ASTER data products used for analysis
in this study (for detailed description ofthe sensor and the data, see the official AS! LR

websites: asterweb.jpl.nasa.gov and www.ersdac.or.jp/eng/index.E.html).

Aster Product Name

ASTJ.1B: ASTER L1B
Registered Radiance at
the Sensor

AST_05: ASTER On-
Demand L2 Surface
Emissivity
AST_07VD: ASTER On-
Demand l_2 Surface
Reflectance VNIR
AST_07SD: ASTER On-
Demand L2 Surface
Reflectance SWIR
AST_09VD: ASTER On-
Demand L2 Surface
Radiance VNIR
AST_09SD: ASTER On-
Demand L2 Surface
Radiance SWIR
AST_09T: ASTER On-
Demand L2 Surface
Radiance TIR
AST14DEM: ASTER
On-Demand L3 DEM

Level

L1B

L2

L2

L2

L2

L2

L2

L3

Description
This product is generated from L1A data (generated from
LO data by applying parallax correction and geometric
correction and segmented into scenes) by applying
radiometric correction and resampling using a specific
map projection method. .
This product is generated from L1B TIR data by applying
the temperature and emissivity separation (TES) algorithm
of Gillespie etal. (1998)
This product is generated by atmospheric correction of
L1B datawith atmospheric parameter inputs from other
satellite systems onboard Terra
This product is generated by atmospheric correction of
L1B datawith atmospheric parameter inputs from other
satellite systems onboard Terra
This product is generated from L1B data by applying
atmospheric correction to the VNIR and SWIR bands.

This product is generated from L1B data by applying
atmospheric correction to the VNIR and SWIR bands.

This product is generated from L1B data by applying
atmospheric correction totheTIR bands.

This DEM produced by stereo correlation of nadir and aft
Band 3 data

3.3 Ancillary data and creation of aGIS database

Ancillary data in the form of topographic maps and geologic maps of the study area in analog
(hardcopy or paper) format have been processed to create ageocoded coregistered digital
database using standard GIS tools. In addition to this, aDigital Elevation Model (AST14DEM)
created from ASTER LIAstereo image pair (bands 3N and 3B) of the study area has been

obtained from the LP-DAAC's EOS Data Gateway (EDG). This DEM has been used for

remote sensing image data preprocessing (topographic corrections) and creation of Digital

Terrain Models (DTMs) for display and analysis purposes. The specifications of the various

ancillary data sources in this category have been summarized in Table-3.4.
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Table-3.4 Specifications ofthe ancillary data used in the study.

Data Scale Year of Production

Survey of India Topographic Maps 1:50000 1989 (surveyed 1985-87)

coded45M/9&45M/13

Geologic Maps:
1. Heron, 1953 1:250000 1953

2. Das Gupta, 1968 1:100000 1968

3. Gupta, 1974 1:6000 1974

4. GSI, 1997 1:50000 1997

The standard GIS processing involves conversion of analog data into digital format

either as raster images or vector shapes, followed by georeferencing the data layers based upon

a user-defined geographic reference system, and co-registration ofdifferent layers so that they

can be overlain within a common geospatial frame. In this study, the topographic maps have

been scanned; georeferenced using Geographic Latitude/Longitude coordinate system with

WGS84 datum and ellipsoid, mosaicked, and reprojected in UTM projection system with

WGS84 datum and ellipsoid to create a topographic base map ofthe study area. All other data

have been co-registered to this base map.

A DEM hasbeen created from the topographic map by vectorizing the contours (at 20m

elevation levels) through conventional onscreen digitization, rasterization and interpolation

through non-linear triangulation (Triangular Irregular Network (TIN) modeling). This DEM

has been used along with ASTER stereo DEM for topographic correction of remote sensing

image data as described in detail Chapter 6.

One ofthe basic requirements ofthis research is the availability ofa geologic map to be

used for ground-truthing ofthe results ofremote sensing spectral analyses. Geologic maps from

the various sources shown in Table-3.4 have been scanned, and subsequently co-registered to

the base map mosaic and with each other. Lithologic boundaries of these maps have been

vectorized as segments, followed by topology creation and construction of vector polygons.

Through labeling of the vector polygons, analog geologic maps have been converted into

georeferenced vector digital lithologic maps. Relevant lithologic information common to all

>
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such maps has been compiled to create the final reference lithologic map of the study area, as

shown in Chapter 2(fig. 2.3). This map has been used for validation and final interpretations

(Chapter 9) of ASTER-based spectral lithologic and alteration mapping, as described in

Chapters 7 and 8, respectively.

3.4 Field and laboratory data

Field visits during two field seasons (January-February 2004 and 2005) have been made to

collect field data and samples for subsequent laboratory investigations. The details of the

sampling and analysis techniques, and obtained results have been provided in Chapter 4.

Briefly, the field data collection has involved collection of GPS-controlled location data,

identification and sampling of known/reported mineralizations, field photography of prominent

field features, information collection on geomorphology and geobotany, as well as

identification of type areas of major lithologic categories, and their sampling. The rock and soil

samples collected during the fieldwork have been subsequently analyzed through petrographic

microscopy and ICP-MS trace-metal geochemistry.

3.5 Software tools

Avariety of GIS and image processing software tools have been used to process the remote

sensing and ancillary geodata. All computing has been carried out in Microsoft Windows

environment. Basic image analysis and GIS thematic data layer preparation has been carried

out using ERDAS Imagine (versions 8.6 and 8.7), and ILWIS (version 3.2) software.

Atmospheric correction of ASTER LIB image data and subsequent spectral analysis has been

carried out using ITTVIS ENVI (version 4.2). Topographic correction has involved use of

ERDAS Imagine Spatial Modeler and Spectral Analysis Workstation modules, in addition to

statistical data analysis in Microsoft Excel and Golden Grapher (version 5.0). Spectral
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modeling of ASTER TIR surface emissivity data (AST05) has been carried out using the

Curve-fitting Toolbox and dedicated programming in MATLAB environment. Standard digital

image processing and vector graphics software have been used for creation and editing of the

manuscript and figures shown in this thesis.

3.6 Methodology overview

To meet the research objectives, the following methodology has been adopted:

1. A comprehensive and exhaustive literature review pertaining both to the methods of

lithologic and alteration mapping using multispectral remote sensing image data, aswell

as to the particular capabilities of ASTER data in such applications.

2. Collection and conversion of all available analog map data into digital format, followed

by geocorrectionand spatial co-registration

3. Co-registration of the remote sensing image data with the ancillary map data and

orthorectification using a digital elevation model (ASTER stereo DEM)

4. Creation ofa vector database of the topographic and geologic map data

5. Precise atmospheric and topographic correction of the remote sensing image data to

obtain surface reflectance image of the study area

6. Evaluation of the available Temperature and Emissivity Separation (TES) methods to

obtain a surface emissivity image from ASTER TIR LIB radiance-at-sensor data and

comparison with the standard ASTER TIR emissivity product

7. Generation of a silica weight percent map for the study area using existing as well as

novel approaches

8. Spectral processing of the VNIR-SWIR surface reflectance data to determine alteration

and bedrock mineralogy of the exposed surfaces

M
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9. Collection of field samples, their laboratory petrography and trace-metal geochemistry

to understand the nature of rock alteration and for verification of remote sensing

analyses

10. Data synthesis, establishing an alteration model for the study area, and confirming using

field and laboratory petrographic data

The broad conceptual framework and methodology adopted in this research has been shown in

Figure-3.1.
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Remote Sensing D

•ASTER (L1B/L2)
•Landsat TM

•IRS 1D PAN

Selection of a test area
with known mineralization

and anomaly

i
Ancillary data

•Analog geological maps
•Topographic base-map

Field Data

•GPS Locations

•Field photographs
•Field Samples

Laboratory processing of rock samples

•Petrography of thin and polished sections
•Trace-metal geochemistry (ICP-MS)

Pre-processing

•Sensor calibration

•Geometric correction

•Atmospheric correction
•Terrain illumination correction

DEM

•Geocoding
•Co-registration
•Creation of Vector Database

ASTER VNIR-SWIR: Reflectance Data

•Calculation of mineral indices

•Spectral Classification

ASTER TIR: Emissivity and Radiance Data

•Lithologic indices
•Silica abundance map

Z
•Lithologic Map
•Alteration Maps

Geological Map

Ground Truthing

Validation and Synthesis of Results

Figure-3.1 Overview of the research methodology adopted in the study.



Chapter 4

Field and Laboratory Studies: Petrography and
y

Geochemistry

4.1 Statement of purpose

The primary objective of field and laboratory studies has been to substantiate and verify the

^ findings of spectral mineral/lithologic mapping using ASTER data, since the combined

response of surface materials within a pixel controls the spectral response recorded by the

remote sensor. The analyses have involved field data collection (field photographs, GPS

locations of type-rock areas and mineralized areas, and their field sampling); petrography of

rock thin-sections to understand the bulk mineral constitution, and alteration (ifany); and trace-

metal geochemistry of rock samples to study the metal anomalies associated with alteration and

(consequently) spectral signatures defining potentially mineralized areas.

4.2 Area selection and definition of analytical objectives for field and lab studies

Previous studies based on Landsat TM data of the study area have indicated the presence of a

regional anomalous zone of OH alteration towards the north of Kalota, as observed on the
Mb

processed TM images (TM7/TM5 ratio image, fig. 16.62 in Gupta, 2003; see fig. 4.1). The

primary basis ofthe selection ofthe study area was to study the exact nature ofthis anomaly.

On the basis of tonal variations in regolith observed in the field (fig. 4.2) and petrographic

analysis of field samples collected from the area (described later), which indicate the existence

4. of some clay minerals and chlorite in the amphibolites, banded amphibole quartzites and

metapelites constituting the anomalous zone, it has been interpreted that the feature is mainly

due to the widespread secondary (supergene) alteration and weathering of rolled amphibolite

rock fragments, with some contribution from the vegetation cover.
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The individual analytical objectives identified for the field and laboratory studies

have been briefly introduced in the following paragraphs. The details ofthe results obtained

from the studies have been explained insubsequent sections.

Field studies: Field studies have been carried out to establish the ground-truth through

collection of field data related with geomorphology, geological setting and botanical

characteristics (vegetation cover) ofthe rock units in the study area. The fieldwork has been

carried out during two field seasons (January-February, years 2004 and 2005), and has been

guided by the interrelationship of the nature of geologic information recorded by remote

sensing (ASTER images) and its real-world occurrence. In most part, the fieldwork has been

carried out in the southwestern hilly part of the study area where good outcrops of all major

rock units areavailable, and within the interpreted regional OH" anomaly zone.

Petrosraphv: Thin-sections of rock samples collected from the type-rock areas, known

mineralized areas, and from the interpreted regional OH" alteration anomaly (fig. 4.1) have

been examined under the microscope to determine the mineral constitution of the rocks and to

ascertain the nature of their alteration (whether primary or secondary). Emphasis has been laid

upon identification of the primary and alteration mineralogy. Effects of secondary weathering

and the role of rock texture have been studied in greater detail asthey have direct impact on the

reflected electromagnetic radiation reaching the remote sensor.

Trace-metal geochemistry: Trace-metal concentrations of six metallic elements, viz. - copper,

cobalt, molybdenum, lead, zinc and arsenic for selected rock samples from type-rock areas

(representative litho-units), known mineralized areas, and the regional OH" anomaly zone have

been determined using an Inductively Coupled Plasma - Mass Spectrometer (ICP-MS). In

order to see the effects ofweathering and metal leaching by atmospheric precipitable water, the

weathered surface chips (approximately 0.5 cm thick), and the relatively fresh parts ofsome

samples have been analyzed separately.

>
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Figure-4.1 Landsat-5 TM 7/5 ratio; the regional alteration anomaly interpreted on the above
image occurs as a semi-circular dark zone just north ofKalota, shown by a yellow ellipse.

Figure-4.2 Field view ofthe interpreted regional anomaly; camera is facing due west. Note the
tonal differences in soil color



45

4.3 Field studies

4.3.1 Representative litho-units

Using the lithologic map of the area compiled after Gupta (1974) and GSI (1997) as base map,

areas with uniform lithologic settings (type-rock locations), and with known mineralization

have been identified in the field and their GPS locations have been recorded. GPS data have

been subsequently digitally transferred to the master database for direct verification and

validation ofspectral mapping results. Table-4.1 summarizes the prominent field characteristics

of the main lithostratigraphic units, with focus on their expressions on remote sensing images

(particularly the ASTER image) of the area.

4.3.2 Mineralized areas

There is widespread base metal (mainly copper) and iron mineralization reported from the

study area (Gupta, 1974; Narsimhan, 1989). The more important ofthese mineralized sites have

been identified in the field and systematic sampling has been carried out. Broadly, there are two

categories of mineralizations - major and minor. Chandmari and Akwali are the major copper

deposits, whereas Dhauli Hill is the main iron ore deposit in the study area. Abrief introduction

ofthese mineralized zones has been given in section 2.3, Chapter 2. The field characteristics of

these sites have been described as follows:

Chandmari - Mineralization is limited mainly to the banded amphibole quartzites in contact

with the garnetiferous chlorite schist and andaiusite-quartz-mica schist at the base ofthe Khetri

Fort. The abandoned Chandmari open-pit mine is approximately 200 mdeep and runs in an

arcuate shape. Large heaps ofhighly limonitized overburden ofmainly andalusite-mica schist

lay adjacent to the mine. The area is faulted and distinct gossan capping can be observed beside

the mine site.
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Akwali-Here the mineralization is hosted by andalusite and graphite phyllites/schists. The adit

of the Akwali old working has been bored through an overlying outcropping sill of

orthoamphibolite. Exploratory mining through an incline cut through the underlying biotite-

andalusite schist has been carried out by the Geological Survey of India (GSI) which has

intersected rich mineralized zones. Although there are no conspicuous visible signs of

alteration in the outcropping orthoamphibolite, the valleys intercepting the mineralized site

carry convincing evidences of mineralization in the form of cobbles of pyrite-chalcopyrite

bearing graphite phyllites/schists. Atraverse to the old working passes through rich gossanized

zones within highly limonitized schist and banded amphibole quartzites.

Dhauli hill - The iron ore deposits ofTaonda, lying towards the north-eastern part ofthe study

area, are scattered and in general are of insignificant economic value. However, the lone

magnetite-specularite deposits of Dhauli hill, located about 800 mSE of Taonda village, are

economically viable and are under exploitation by private miners using crude shallow open-cut

methods. Gupta (1974) has carried out detailed structural and lithologic study of the area and

reported that this deposit occurs in banded calc-silicates (amphibole-diopside marbles), cut

across by granitic rock bodies and is feldspathized on the western flank of the hill. Thick calcite

veins with over 3 cm large well-developed calcite rhombs have been observed by the present

worker during the walk up to the hill-top. The iron-ore body occurs as banded ferruginous

quartzites in a concordant relationship with the enclosing calc-silicates. Co-folding of the

relatively more brittle ore body with the enclosing calcareous and calc-silicate rocks has

resulted in its shearing, faulting and fracturing. Chertification, feldspathization and

scapolitization are the main manifestations ofrock alteration in the area.

Suredi ki Dhani (Surhari) - Along the gravel road to Molala ki Dhani from Babai, within the

broad main shear zone, two small mounds lying close to Suredi ki Dhani bear rich marks of

subsurface copper mineralization. Gossanized surface rock, malachite stains, and carbonaceous

sooty black surface indicating archaic slag heaps bear testimony to shallow copper



47

mineralization in the area. The micaceous feldspathic quartzite rock body is highly aitered,
sheated and intruded by pegmatite veins. Carbonate and plagioclase veins over 3-4 em thick cu,
across the feldspathic quartzite host rook part.cu.ariy near the pegmatites. The mounds are
aligned in an Vform, and extend for about 100 mon both arms. Vegetation is absent on the
rocky surfaces, although the flanks are covered with cacti and desert grass. Smal. blocks of
arable land lie in the valley region between the two mounds.

fefeM.-.n the foothill region of the Bagor ridge, a. the base of the Bagor Fort two
mounds are seen with rich malachite stains and slag dumps indicating old mining and smelting
activity. These are believed to be an extension of the extensive Tutiwali-Ladniwali-Bhootwali
gossanized zone with documented copper and iron mineralization (Gupta, ,974). The handed
amphibole quart* rock body is gossanized with ferruginous rock surfaces, and is in traceable
contact with gametiferous chlorite schist and calc-silicates. By the shape and size of the old-
raining pits i. appears that the mineralization, though rich, is shallow and limited. Vegetation is
moderate with mainly Acacia nilotica (Keekar) as the dominant vegetation type.

mmdMUhm, -The Karmari old working pi, lies just beside the main Babai-Khetri s,a,e
highway and is a, road-level. The pi, is -10 mdeep and -50 macross, with slag dumps in the
vicinity. Minera.iza,ion appears ,o be confined ,o ,he feldspathic quartzites that fern, the
country rock. Jus, beside ft. pit is amound of leueocra.ic granite. The granite is nrodera,ely
auered (wcaftering of feldspars ,„ clay), and rclafively fine grained, indicating its near-surface
emplacement. The site marks one vertex of the Karmadi ki Dhani -Silati ki Dhani mineralized
shear zone.

BUai.aH (Baoai) - I. is asmall linear micaceous feldspathie quartzite hillock, about 500 m
southwest of Babai, trending NNE-SSW, and ex.ending for abou, 150 m. This outcrop is
bounded by transverse faults, and makes up apart of the eastern limb of the main Babai
anticline. .« falls within the main cataelastic/shear zone, and is highly altered. Thick feldspar
and .mobilized quartz veins fill the fractured rock mass. Evidences of shearing in the form of
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fault breccia and shatter effects are seen on the ridge. The accompanying mineralization is

evidenced by sporadic malachitized surfaces. The southern tip of the hillock retains the marks

of abandoned old working, in the form of pits and slag dumps. Alteration is widespread and

diverse. Kaolinization, chloritization and silicification are the main forms of alteration in this

part. Vegetation is scanty to nil on the ridge-top, while some thorny bushes cover the slopes.

4.4 Macroscopic and microscopic petrography

4.4.1 Sampling >

During field work spread over two field seasons, 276 surface rock/soil samples (altered as well

as fresh, wherever possible) have been collected for subsequent laboratory analyses to develop

aground-truth database. Figure-4.3 shows the sample locations displayed on aperspective view

of the study area (ASTER band 3draped over AST14DEM). The sampling has been conducted

such that apart of it covered the representative rocks of the region, while the other part covered

the reported mineralized sites with anticipated alteration features. In general, the samples have

been collected from the surfaces of morning Sun-facing slopes having minimal vegetation

interference. Most of the sampling has been restricted to the region west of the main state

highway having good rock exposures. Wherever possible the sampling has been carried out in a

regular fashion with normal sample spacing of about 30-50 mto match the nominal spatial

resolution (30 m) of the remote sensing data (ASTER SWIR and Landsat TM). The samples

have been used to understand the nature of alteration in the respective mineralized sites, and the

alteration mineralogy of the region as a whole.

-A-



Lithostratigraphic
unit (Gupta, 1974)

Unit A: Mica-schists

with quartzitic
bands and

micaceous

quartzites

Unit B: Banded

quartzites,
dominantly arkosic,
less commonly
amphibole and
mica-bearing

Unit C: Banded

amphibole
quartzites,
amphibole marbles,
para-amphibolites,
less commonly
quartz-mica schists.
Locally banded
iron-ores

>

Table-4.1 Field characteristics of the main litho-units in the study area.

Relief and geomorphology

Low to moderate relief; good
outcrops observed along the
Khetri-Babai road, especially
around Papurna; low drainage
density; form NNE aligned
topographic ridges towards the
western limb of the Babai

anticline

Low relief; form valleys and
slopes; highly dissected by
drainage; best exposures are
found towards the west of
Bandha ki Dhani.

Variable relief; while amphibole
bearing pelitic rocks form
valleys and low relief slopes, the
resistant Fe-carbonate-bearing
calc-silicates form mounds with
distinct rustic surfaces; variable
drainage density

Vegetation
cover

Scanty
vegetation
cover

Scanty
vegetation
cover

Moderate

vegetation
cover over

banded

amphibole
quartzites,
and scanty
cover over

calc-silicates

Alteration

Lying within the Babai-Taonda
shear zone, this unit has been
highly intruded by felsic igneous
rocks (granites, aplites and
pegmatites); strongly altered by
primary hydrothermal and
secondary weathering processes,
especially in the form of
kaolinization of feldspars

Alteration limited to weathering of
feldspars and chloritization of
amphiboles rendering the rocks of
this unit friable to touch and easily
denudable

Alteration appears to be controlled
primarily by surface weathering
processes; in most part,
chloritization of amphiboles in
most rock types within this unit is
the dominant alteration; surface
iron staining (and malachite
staining in a few places) is also
noted; dolomitization of calc-

Implications for remote sensing

The unit appears in lighter tones on
the RS image; as against mafic
phyllites/mica-schists of Unit D, the
mica-schists are distinct due to
their light colored minerals;
proximity to the main
shear/cataclastic zone (Babai-
Taonda shear zone) and high
degree of surface weathering
promises good alteration detection
using ASTER data

This unit appears in light tones on
the RS images; weathering
products of feldspars and
amphiboles (clay minerals and
chlorite) have well defined
absorption features in the SWIR
range enabling their effective
detection, identification and
mapping using ASTER data

The high ironcontent of the rocks
of this unit has a bearing on their
remote detection using the RS data
in the VNIR range; in addition,
calcite/dolomite/chlorite all have
well defined absorption features in
the SWIR region of EMR; however,
limited spectral resolution of
ASTER is likely to affect very clear
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(amphibole
marbles);
cacti growth
is distinct

over calc-

silicate

mounds

silicates is evident in field; para-
amphibolites towards the east of
Babai exhibit stronger alteration

distinction among chlorite and
calcite/dolomite since their

absorption features coincide

UnitD: Meta

pelites. Quartz-mica
schists and

phyllites,
andalusite, garnet
and staurolite

bearing. Graphite
phyllites. Locally
graphite tremolite
marbles

In general these rocks occupy
low relief areas; highly dissected
by drainage controlled by
structural elements; good
outcrops of these rocks are
observed in the western part of
the study area; rocks, in
general, have high mafic
content making them appear
dark in the field

Good

vegetation
cover, in
general

Alteration appears to be primarily
due to the agents of physico-
chemical weathering; iron
leaching from the amphiboles
leaves the surface stained by
limonite; amphiboles have altered
to chlorite/biotite; carbonaceous
matter of the graphite phyllites
and tremolite marbles makes

them stand out due to their sooty
black surfaces, which are
sometimes also malachite stained

As with Unit C, the rocks of Unit D
appear in darker tones on the RS
data. Their Fe content (limonitic
surfaces) and weathered surfaces
rich in chlorite and Fe-oxide make

them well-identifiable using ASTER
data, for reasons mentioned above

Unit E: Massive

quartzites,
quartzites with
phyllitic bands

High relief; the rocks of this unit
form the highest ridges and
peaks that stand out
topographically; very light
colored rocks; minimal drainage;
highly resistant to weathering

Scanty to nil
vegetation
cover

Almost completely unaltered;
limonitic and pitted surfaces
observed in the rocks of this unit

towards the western limb of the

Babai anticline; surfaces have
distinct desert varnish layer owing
to the arid climate and high relief

Except for the limonite and desert
varnish, which have characteristic
absorption features in the VNIR-
SWIR region, these rocks lack any
detectable alteration mineralogy
using ASTER data. Their high relief
and quartz abundances (almost
purely quartzitic) make them good
choices to test the applicability of
the TIR data in silica abundance

estimation and lithologic mapping

Unit F: Meta-pelites
(same as in Unit D)

Most geomorphic characteristics
are similar to the rocks of unit D,
except that these are relatively

Moderate

vegetation
cover

Same as in unit D Same as in unit D

en
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less weathered, though a clear
distinction is difficult in the field,
except for their superposition to
massive quartzites

Intrusives:

orthomphibolite
Mostly high to moderate relief;
negligible drainage; dark grey-
green appearance in the field; in
places slight weathering has
resulted in limonitic staining of
these rocks

Scanty
vegetation
cover

Mostly the orthoamphibolites are
unaltered; weathering has
resulted in chloritization of

hornblende; no distinct primary
alteration is visible in hand

specimens; surfaces are
limonitized in a few locations

These rocks stand out clearly on
the RS images due to their scanty
vegetation, dark tones, discordant
intrusive nature and high contrast
with the background in most
places. Chlorite and limonite of
these rocks is amenable to

detection by ASTER VNIR-SWIR
data. Mafic mineralogy can be well
mapped using the TIR data

Intrusives:

granite/granodiorite/
aplite/pegmatite/albi
tite

Low relief; highly weathered;
occupy the eastern half of the
study area in particular; the soil
and regolith obtained from these
rocks is rich in Fe-minerals, clay
minerals and mica, and
occupies large tracts in the
eastern and southeastern part
of the study area

Moderate to

good
vegetation
cover

Both primary and secondary
modes of alteration is observed;
alteration dominant along the
main cataclastic zone, with
brecciation common; development
of clay minerals, scapolite, and
limonite are the main evidences of

alteration in these rocks;
albitization is widespread

In general these rocks are leuco- to
mesocratic, which leads to their
brighter appearance on RS
images. Clay minerals and
scapolite have well defined
absorption features in SWIR
region, whereas limonite can be
well detected using VNIR data.
Albite has diagnostic absorption
features in SWIR region, while
feldspars in general can be
identified using the data in the TIR
range.

<_n
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4.4.2 Representative rocks types

The region is represented by mainly five categories of rock types - qnar.zi.es (or.hoquar.zi.es,
amphibole-bearing qnar.zi.es, mieaeeons, feldspathic or arkosic quartzites), meta-pelites (phyllites,
schists), calc-silieates/earbonates (mafic-rich marbles), mafic metamorphies (pam-amphibolites),
mafic intrusives (orthoamphiboli.es), and felsie intrusives (granite, granodiorite, pegmatite, ap.ite
and albitite). There are numerous variants of these roek types as the roeks of one category usually
grade into the other over short distances. Seven samples from relatively large and uniform roek
outcrops of the main litho-nnits, without any known close or i„ferred mineralization have ^

used to understand and describe the representative lithology of the area. The petrographic
charae.eris.ics of ,hese samples have been summarized in Tab.e-4.2 and .heir hand-specimen
photographs have been shown in Figure-4.4a-g.

+

-I-
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Figure-4.3 Distribution of field samples analyzed petrographically and geochemically. The background is a perspective view of the study area (ASTER
band 3 draped over AST14DEM) facing due North. Sample locations are marked in red; prominent places within the study area have been demarcated,

including the three main areas of mineralization.



Figure-4.4 Hand specimen photographs
and photomicrographs of the main rock

types in the study area: a. Arkosic
quartzite; b. Pure quartzite; c. Banded

amphibole feldspathic quartzite; d.
Orthoamphibolite; e. Calc-silicate

(actinolite marble); f. Andalusite-biotite
schist; and g. Granite. Photomicrographs
have been taken with a 50x objective; the

top/left photomicrograph is in plane
polarized light and the one on the

bottom/right is in crossed polars. Hand
specimens have been cut across to reveal

fresh surfaces and banding, if present.
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Table-4.2 Thin-section microscopy of the samples for the representative rock types in the study area

S.No. Rock Type Sample ID Location Major Minerals Minor Minerals Remarks

1 Arkosic

Quartzite

A1 N 27 54 37.4

E 75 45 52.2

Quartz Plagioclase and
some opaques

Iron oxide veins have been observed along the
fractures and quartz grain boundaries; quartz grains
are angular and tightly packed. Feldspar has
weathered to give a cloudy appearance. The texture is
coarse, and the grain sizes are variable.

2 Orthoquartzite A3 N 27 59 35.9

E 75 46 28.6

Quartz Stray grains of
hornblende (and
actinolite) in
cavities, and iron
oxides along a
linear fracture

Tightly packed anhedral quartz grains. Some iron
oxide staining along a fracture observed.

3 Banded

Amphibole
Quartzite

A6 N 27 53 33.8

E 75 44 59.5

Quartz Hornblende,
plagioclase
feldspar and
opaques

The hornblende occurs in thin bands, and has been
altered to iron bearing minerals and opaques. Quartz
is anhedral, and the texture varies across the bands,
from large grains to small grains.

4 Granite GRANIT N 27 55 11.4

E 75 48 18.7

Quartz, K-
feldspar

Some muscovite,
plagioclase, and
iron-oxide

Uneven anhedral quartz and visibly altered
orthoclase; a few veinlets of secondary iron oxide.
Some sericite has developed along the periphery of
feldspar and quartz grains

5 Andalusite

Schist

A5 N 27 59 42.7

E 75 46 43.1

Andalusite,
chlorite

Some quartz and
opaques

(magnetite?)

The chlorite grains are uniformly distributed and
heterodirectionally oriented in a groundmass of
quartz. A large grain of andalusite (chiastolite) is also
visible.

6 Calc-silicate

(amphibole
marble)

A2 N 27 55 00.8

E 75 46 46.6

Calcite,
actinolite

Quartz, opaques
(magnetite?)

The calcite is anhedral with a shattered appearance
and the actinolite varies from columnar to acicular
form. Both minerals have been altered and are
embedded in a brownish fine grained matrix of Fe-
bearing calcic mineral. The opaques have developed
more around the tremolite-actinolite grains.

7 Amphibolite AM1 N27 55 14.5

E 75 45 51.5

Hornblende, K-
feldspar

Actinolite, biotite
and opaques,
and iron stains

Slightly weathered. Hornblende is the main amphibole
mineral, with some actinolite. In a few places the
hornblende is seen to alter to biotite. Plagioclase
appears cloudy.

U1
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4.4.3 Altered rocks
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quartzite is the main form of alteration in this area. In addition to this, the thin-sections studied

reveal presence of chlorite, biotite and opaques as well (fig. 4.5i-j).

Bilaiwali (Babai) - Out of the seven samples collected from this site, thin-sections of five

samples have been studied under microscope. Lying within the main shear zone, the alteration

of the parent micaceous feldspathic quartzite is diverse. The main alteration minerals include

sericite, chlorite, secondary quartz, clay minerals (possibly kaolinite and montmorillonite),

malachite, hornblende and biotite (fig. 4.5k-n).

Regional alteration zone North ofKalota - On a Landsat TM 7/5 ratio image, OH"-rich regions

are represented by darker tones due to OH" and H20 absorption in TM band 7. A preliminary

analysis of the Landsat 5 TM data (acquired in January, 1995) of the study area exhibited a

large circular region to the North of Kalota village (fig. 4.1), which had been interpreted to be

an alteration zone related to some hydrothermal activity in the area. To support and validate

this interpretation, a large number of field samples have been collected in a grid fashion (see

fig. 4.3). Petrographic analyses of 28 samples along a 3 km long profile traverse (at 50 m

average spacing) passing through the interpreted regional OH" alteration anomaly have been

carried out. Weathering has been found to be the primary source of alteration, though the

samples from the eastern part of the sampled area have shown some evidences of relict

hydrothermal activity (chloritization, biotitization and kaolinization). The samples cover a wide

range of rock types. In hand specimens and in thin-sections, limonitization, chloritization,

sericitization and biotitization have been observed as the main forms of alteration (fig. 4.5o-q).

Some samples, especially of altered orthoamphibolite and banded amphibole feldspathic

quartzitealso contain considerable amount of opaques (possibly magnetite).



58

Figure-4.5 Hand-specimen photographs and photomicrographs of samples collected from
mineralized and altered areas. The scheme ofphotomicrographs isthe same as in Figure-4.5.

Description about the sampleshas been given in the text.
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4.5 Trace-metal geochemistry

To understand the relationship of alteration with the distribution and dispersion of metal

content of the rocks, and to ascertain the effect of metal content of regolith on the remote

sensing signatures, over 70 rock and soil samples have been analyzed for their trace-metal

content, which includes six metallic elements viz. - Cu, Co, Mo, Zn, Pb and As.

4.5.1 Sample preparation: weathered and fresh samples

Since optical remote sensing is limited by its limited depth penetration, which is usually up to

only few microns, for acceptable ground-truth support, it is essential that only information

about the surface environment be collected and compared with the remote sensing results. For

this reason, the fresh and the weathered (regolith) parts (wherever feasible) have been analyzed

separately. This approach has helped in understanding the metal dispersion controls of

weathering on metal concentrations.

Figure-4.6 summarizes the main steps involved in the preparation of rock samples for

trace-metal geochemistry. There are mainly three stages in sample preparation for chemical

digestion. The first two stages are essentially dry, whereas the last stage involves wet

geochemistry. The first stage involves separation of the weathered and the fresh part, which is

achieved by 'chipping off the outer 5 mm skin ofthe sample, and using the chips and the inner

core separately. In the second stage, the two sub-samples are crushed using a jaw crusher and

then coned and quartered. A portion of each is oven-dried overnight to expel all adsorbed

water. The dried samples are then pulverized in a ball mill, sieved, and then again pulverized

using a pulverizer and sieved again to obtain < 200 micron particle size. In the third and wet

stage, the weathered samples are first treated with concentrated H202 solution to release the

carbonaceous content as C02, and then oven-dried. In the next step, 0.05g each of samples is

weighed into previously acid-cleaned and dried Teflon beakers. The samples are now ready for

digestion.
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Acid Digestion

Figure-4.6 Procedure of sample preparation for trace-metal analysis through ICP-MS.

The acid digestion of samples has been carried outaccording to following standard procedure:

A. Adding HF+HN03 in the ratio of 3:1 (for50 mg sample, 10 ml HF and 3 ml HN03) to the

sample inTeflon beakers and leaving overnight at room temperature with lidclosed

B. Heating the beakers on a hotplate for 12hourswith lid tightlyclosed

C. Cooling the beakers at room temperature and observing for any remaining solid particles; if

yes, drying the sample on a hotplate and repeating step A; elseproceeding to step D

D. Drying the sample completely on a hotplate, andadding 2 ml of 6N HC1

E. Drying the sample, and adding 1 ml of 10%HN03

F. Adding triple-distilled (TD) or Micropore™ filtered water to make it 100 ml by volume

G. Filtering using vacuum suction apparatus and micropore filter paper and collecting in

labeled containers

$
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4.5.2 Instrumentation and calibration

The trace-metal concentrations have been analyzed with aPerkinElmer® Sciex™ make Elan®

9000 ICP-Mass Spectrometer (for instrument details see las.perkinelmer.com, fig 4.7) housed

at the Institute Instrumentation Center of IIT Roorkee, India.

Figure-4.7 The PerkinElmer® Elan® 9000 ICP-Mass Spectrometer

Instrument calibration is an important and essential pre-requisite. This is usually

achieved by running the instrument with internal standard materials of known elemental

concentrations. In case of geological materials, the standard materials are powders of rock

samples from type regions and with standardized documentation readily available to anyone.

Rock standards are supplied by many organizations in the world. For the present study, three

United States Geological Survey (USGS) standards have been used for this purpose:

1. BCR2- Basaltfrom Columbia river

2. QLO - Quartz latite from Lake County, Oregon

3. SDC1 - Mica schist from Washington D.C.

In addition to above, multi-element standards at 10 ppb and 100 ppb levels have also

been used for instrument calibration. The results are usually obtained in the units of parts per

billion (ppb), which are recalculated for the sample weight used, and converted into the units of

ug/g orparts per million (ppm).
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4.5.3 Results

The results of trace-metal geochemistry have been summarized in Appendix A. In the

following sections, the main findings of the geochemical analysis have been discussed in some

detail. The three sections separately cover the results for the representative rocks, the samples

from the interpreted regional anomaly, andthe mineralized rocks, respectively.

4.5.3.1 Representative litho-units

The primary objective behind determining the trace-metal content of the representative litho-

units has been to find out the 'background value', i.e. the metal values that are normally present

in the non-mineralized rocks of the area. Metal 'anomalies' can, therefore, be located for areas

and regions where there is a significant deviation from these background values. It has been

observed that the greatest variation in trace-metal content of the regolith in this area occurs in

arsenic, followed by cobalt, copper, lead-zinc, and molybdenum (fig. 4.8). Arsenic values range

from less than l ppm in orthoamphibolite to over 250 ppm in meta-pelites, Apart from the calc-

silicates, which are mostly deficient in Cu, the other rock types of the area have Cu values

within the range of 50-100 ppm. It has also been observed that in addition to Cu, the rocks in

the region have anomalous Zn values, particularly in the amphibole-bearing rocks, such as

ortho- and para-amphibolites and banded amphibole-arkosic quartzites. The proximity of the

andalusite-mica schist sample (A5) used for the analysis to the Chandmari opencast mine can

explain its anomalous metal concentrations, especially As. Trace-metal values for both granite

and pegmatite are relatively similar, indicatingthat these come from a common source.
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Figure-4.8 Trace-metal concentrations in the eight representative rock types of the area. For
the rock types corresponding to the sample IDs given in the legend, see Table-4.2.

4.5.3.2 Regional anomaly, Kalota

The semi-circular regional anomaly towards the north of Kalota interpreted from a Landsat-5

TM 7/5 ratio image is about 3 km in diameter and is confined primarily within the anticlinal

core (fig. 4.9a). Samples from a line across this region have yielded anomalously high Cu and

As values, particularly from altered/weathered metapelites. Two phyllitic schist samples -

B3/19 and B3/20 - have yielded Cu values significantly above the background. The arsenic

content of these samples is also anomalously high. This can be explained from the fact that the

samples have been taken from a highly weathered, limonitized outcrop, in contact with a

weathered orthoamphibolite rock body. The weathered surfaces are, in general and regardless

of the rock type, relatively enriched in Cu content than the fresh parts (fig. 4.10). For example,

in the seventeen samples, all, except three, samples have Cu values at least two times as high as

in the fresh part. This can be explained on the basis of various factors, such as chemical

reactivity, atomic mass and ionic radii, which play important role in the relative accumulation /

removal of a metal under the effects of chemical weathering in the presence of atmospheric

precipitable water at different pH levels.
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Figure-4.10 Relative comparison of metal (Cu) enrichment in the fresh and weathered parts of
the samples collected from the regional anomaly towards the north ofKalota; it can be

observed that the regolith is generally enriched in Cu.

4.5.3.3 Mineralized areas

Of the sampled known mineralized areas, four sites have been chosen for more detailed

analysis. These are - Akwali, Suredi ki Dhani, Tutiwali-Ladniwali, and Bilaiwali (Babai).

Sampling in these sites has been carried out in a profile mode, so that variation in trace-metal

concentration both laterally and across rock types can be assessed and understood. In the

following sections, the trace-metal analysis results for these sites have been discussed in some

detail.

Akwali - The samples of this area represent two rock types, the orthoamphibolite and the

andalusite-mica schist. The most peculiar observation from the trace-metal geochemical results

for the seven samples from Akwali area has been the anomalous concentration of arsenic in the

weathered surfaces. Arsenic content of the regolith from the area is roughly 100-200 times

higher than the fresh rock. Although this observation holds true for most of the amphibolite
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samples from all areas, in Akwali the trend is not restricted just to the amphibolites. Even

though the sampling has been carried out adjacent to the existing exploratory incline of GSI,

the Cu values of the samples are close to the background values in most part. Interestingly, Zn

values in the amphibolite samples from the area are much above the background, going up to

150 ppm. The remaining metallic elements are evenly distributed. Cu is relatively more

enriched in the andalusite-mica schist and is relatively below the background values in the

amphibolites.
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Figure-4.11 Trace-metal values for: (a) fresh; and (b) weathered parts of the samples collected
adjacent to the Akwali underground mines. Except samplesB/4 and B/5, whichare andalusite-

mica schist samples, remainingsamples are all of orthoamphibolite.
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Figure-4.12 Arsenic content of the regolith and fresh parts of the analyzed Akwali samples.

Suredi ki Dhani - The sampling pattern for the 15 samples from Suredi ki Dhani is shown in

Figure-4.13a. Whole-rock samples have been used for analysis, since the samples are highly

altered. It has been observed that the nature of mineralization in the area is dominantiy of

copper with some cobalt mineralization. The concentrations of both of these metals in the

samples of the area are significantly above the background values for unaltered quartzite rocks.

A general correspondence among concentrations of Cu, Co and As has been observed for the

samples from this area in terms of the trends for these metals in the samples regardless of the

nature of alteration.
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Figure-4.13 a. Sampling pattern; and b. Trace-metal distribution in the samples from Suredi ki
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Tutiwali-Ladniwali - The sampling pattern for this area is shown in Figure-4.14a. The samples

consist of two rock types - banded amphibole feldspathic quartzite and calc-silicate. Except

one sample collected from the main gossan zone, which has Cu value higher than the

background, the remaining samples do not exhibit any significant metal anomaly.
*
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Figure-4.14 a. Sampling pattern; and b. Trace-metal distribution in the samples from Tutiwali-
Ladniwali gossanized zone.

Bilaiwali (Babai) - The samples from this site exhibit the most pronounced alteration observed

in the study area (fig. 4.5). As expected, the highly malachite-stained surfaces have significant

Cu concentrations; particularly in one sample (T3) in which the Cu values are as high as 69000

ppm or roughly 7% (see Fig. 4.5k and 4.15b). The samples also appear to be relatively

enriched in Pb and Zn.
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Chapter 5

Infrared Spectroscopy and Geologic Remote Sensing -

Theory, Background and ASTER Application

5.1 Introduction and scope

To understand the nature of geologic surfaces through spectral measurements the most

important and fundamental requirement is the knowledge of the processes that influence the

electromagnetic radiation upon its interaction with the geologic materials. This governs the

application of remote sensing in geologic studies directed towards spectral lithologic/mineral

identification and mapping in a given area of interest. As the present study is focused on the use

of ASTER data towards this end, it is imperative to evaluate the capabilities of the sensor in

light of the existing understanding of the underlying spectroscopic principles.

The region of the electromagnetic spectrum of greatest importance for geologic and

mineral exploration applications is the infrared (1.0 urn to about 100 urn). Therefore, in this

chapter the current state of knowledge about infrared spectroscopy as applied in geologic

remote sensing has been reviewed. The study area is a well-documented base metal (copper,

zinc, lead, and associated metals) sulfide deposit with distinct alteration mineralogy, as

discussed in detail in Chapters 2 and 4. This has guided an extensive literature review of the

application of remote sensing in mineral exploration activity around the world, with a special

focus on two aspects relevant to the present study: 1) exploration of economic mineral deposits

using remote sensing, and 2) particular application and advantage of ASTER data in such

studies. The review presents the salient aspects of geologic remote sensing with a focus on

mapping of lithologic and mineral units related with mineralization. The success of the

technique, as will be seen, lies in the explicit success of a remote sensor in credible lithologic
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and mineral mapping as this alone provides the most direct information regarding the mineral

potential of an area.

5.2 Electromagnetic radiation and geologic remote sensing

In remote sensing, Electromagnetic Radiation (EMR) is the main communication link between

the sensor and the object (Hunt, 1980). EMR displays properties ofboth particles and waves

(Harris and Bertolucci, 1989). It is represented as photons with discrete energy levels,

propagating away from the source at the velocity of light, characterized by mutually

perpendicular oscillating electric and magnetic fields, themselves perpendicular to the direction

ofwave propagation. Adetailed discussion of the physics of EMR can be found in any standard

remote sensing text (e.g., Siegel and Gillespie, 1980; Lillesand and Kiefer, 2000; Gupta, 2003;

Jensen, 2006).

The primary source ofEMR for passive terrestrial remote sensing is the Sun, which is a

blackbody (an ideal thermal radiator) at a temperature of about 6000°K. The Earth radiates

EMR as a graybody at a temperature of about 300°K. The spectral distribution of radiation

emitted by a blackbody is related to its temperature by the Planck's Law:

wbb,rj) =(c,/l5)x

J{eXT-\)j
(1)

where wbb(T,x) is radiance as a function oftemperature and wavelength in W/cm2/u.m; Xis the

wavelength in um; c, is the first radiation constant (2;rhc2); c2 is the second radiation constant

(ch/k); kis Boltzmann constant (1.38xl0"23 W/s/°K); his Planck's constant; c is the velocity of

light; and T is the absolute temperature, in °K (Kahle, 1980). The spectral distribution of

radiation for Sun and Earth are shown in Figure-5.la.
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Figure-5.1 Sources of EMR for remote sensing and atmospheric transmission (modified after
Lillesand and Kiefer, 2000).

The wavelength regions that are most useful in remote sensing of the Earth's surface are

restricted due to the composition of Earth's atmosphere (Elachi, and van Zyl, 2006; Schott,

1997) which allows only selective parts of the EMR to reach Earth's surface and travel back to

the remote sensor (see fig. 5.1b). A more detailed discussion on the atmosphere, and its

influence on remote sensing image data (in context of atmospheric correction of ASTER data),

has been presented in Chapter 6. The visible part of the EM spectrum is contained within a very

narrow part (0.4-0.7 um). The region of the EM spectrum between 0.7 um to about 100 um is

called the infrared region. In Figure-5.lb we observe that the most important 'atmospheric

windows' (Lillesand and Kiefer, 2000; fig. 5.1c) for reflected solar EMR exist in the visible
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through near infrared (VNIR) to shortwave infrared (SWIR) (0.4-2.5 um), whereas Earth's

emitted radiation is at its maximum in the thermal infrared region (7.0-15.0 urn) of the EM

spectrum. These atmospheric windows are the most commonly used wavelength ranges for

terrestrial remote sensing, as each represents unique physical phenomena. An atmospheric

window in the wavelength region 3.0-5.0 um also exists, but is hard to utilize since solar

reflected and thermal emitted radiation together contribute to the signal reaching the remote

sensor in this range. This makes the interpretation of the spectral data difficult, and therefore

this wavelength range is less commonly used.

5.3 Infrared spectroscopy of minerals and rocks

Infrared spectroscopy is the study of how the electromagnetic radiation in the infrared region

interacts with matter. Primary rock forming minerals as well as many secondary weathering

and alteration minerals exhibit wavelength-dependent (spectral) absorption features throughout

the visible and infrared regions of the EM spectrum. These features result from the selective

absorption of photons with discrete energy levels and depend on the elemental composition,

crystal structure, and chemical bonding characteristics of a mineral, and are therefore

diagnostic of mineralogy (Hunt, 1980; Clark, 1999). The spectrum of a mineral is governed by

a total effect of the following factors (Gupta, 2003):

4
- Spectra of dominant anions

- Spectra of dominant cations

Spectra of ions occurring as trace constituents

- Crystal field effect

The main diagnostic features in a spectrum are the absorption bands. There are two

main categories of processes that cause absorption of radiation at visible and infrared

wavelengths: 1) electronic processes, which occur at higher energies (or higher frequencies, or

shorter wavelengths), and 2) vibrational processes, which occur at lower energies (or lower
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frequencies, or longer wavelengths). Absorption of radiation occurs only when the energy of

the incident radiation is equivalent to the energy required to activate the process (Harris and

Bertolucci, 1989). Adiagrammatic representation for some common minerals in terms of the

dominant processes causing absorption has been shown in Figure-5.2. In the following sections

the physical bases ofthese processes have been described in some detail.
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5.3.1 Electronic processes

Electronic processes are related to changes in the distribution of electrons within and between

atomic orbitals in a crystal field (Burns, 1993). If the energy change associated with the _♦

redistribution of electrons is equal to the energy of incident EM radiation, then absorption at

that discrete energy occurs. The specific causes of these processes can be categorized into four

groups - crystal field effects, color centers, conduction bands, and charge transfer between

atoms (Hunt, 1977; Hunt, 1980; Burns, 1993; Clark, 1999). Most of the features observed in the

VNIR spectral region are due to the presence of transition metals, which are defined as those

elements that have unfilled or partially filled d or /orbitals. For a thorough review of electron

orbitals and crystal field theory, see Burns (1993). Of the transition metals, iron is most

abundant in Earth's crust. Figure-5.3 shows stacked spectra of some minerals with diagnostic

spectral features in the VNIR region. The subtle spectral differences are due to changes in

elemental composition, valence state, cation coordination number, crystal symmetry or

chemical bonding characteristics (Hunt, 1977; Bums, 1993).

Crystal field effects are due to photon interaction with the outer, unfilled dand/orbitals

in transition metals, usually iron (Burns, 1993). The d orbitals of an isolated Fe3+ ion, for

example, have equivalent energy levels. However, when Fe3+ ions are located in a crystal field,

the energy levels are spilt, allowing electrons to transfer from lower to higher levels upon

absorption of photons with the corresponding energy. The degree of separation between orbital

energy levels is primarily a function of the cation valence, coordination environment, and site

symmetry (Burns, 1993).

Spectral features due to color centers result from lattice defects caused by vacancies or

impurities in a crystal structure. The absorption of energy due to color centers usually occurs in

the ultraviolet (UV) and visible region. For example, the yellow color of many diamonds is due

to the presence of N2 in the crystal structure (Bums, 1993; Clark, 1999; Nassau, 2000).

*
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Charge transfer absorptions are caused by the transfer ofelectrons between ions. Inter-

element electron transitions can be divided into two types, 1) metal-to-metal, or 2) oxygen-to-

metal transitions (Bums, 1993). Metal-metal charge transfer can occur between the same metal

in different valence states (e.g., Fe2+ and Fe3+), or between different metals (Fe3+ and Ti3+). For

example, Fe2+->Fe3+ electronic transition is responsible for the broad 0.8 urn feature in the Fe-

rich clinopyroxene, hedenbergite (fig. 5.3). Oxygen-metal charge transfers generally occur at

higher energies (shorter wavelengths) of the UV region, but absorption band edges can

influence the visible spectrum as well, e.g. absorption band edge leading to red color due to

Fe3+ and O2" electronic transitions of hematite (Bums, 1993).

Conduction bands can occur in minerals where electrons occupy two distinct energy

levels, 1) the conduction band (high energy), where electrons are free to move about the crystal

lattice, and 2) the valence band (low energy), where electrons are bound to the atomic nucleus

(Clark, 1999). The difference between the two energy levels is called the band gap, and in

semi-conductors the band gap corresponds to photon energies in the VNIR region. Elemental

sulfur and the sulfide mineral cinnabar, for example, exhibit strong absorption of UV and short-

wavelength visible radiation resulting in their characteristic yellow and red colors, respectively

(fig. 5.3) (Clark, 1999).
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Figure-5 3Spectra of minerals with diagnostic features in the VNIR region ofEM spectrum
resultrng due to electronic processes. Labeled arrows indicate specific absorption features due
to conduction band (CB), crystal field (CF) or charge transfer (CT) effects. Spectra have been

taken horn USGS spectral library (speclib05; Clark et al., 2003).

5.3.2 Vibrational processes

Vibrational processes are related to atomic vibrations that cause a change in the charge
distribution ofamolecule. Since molecules in most minerals are ionic structures and consist of

charged particles, the vibration of these particles can result in an oscillating electric dipole
(Bums, 1993; Harris and Bertolucci, 1989; Gaffey et al., 1993). If the frequency of the electric

field component of the EMR matches the frequency of the oscillating dipole, then absorption of

+
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that discrete frequency occurs. A molecule with n atoms has 3« fundamental modes of

vibration (Gaffey et al., 1993). These vibration modes can be divided in two groups, 1) internal

modes where bond lengths and bond angles oscillate, and 2) external modes where molecule

rotates about one of the three mutually perpendicular axes or moves as a rigid unit along one of

these axes (Gaffey et al., 1993). For a molecule with 3« fundamental modes, there are 6

external modes that represent translational and rotational motion; therefore there are 3«-6

internal vibrational modes (3n-5 for a linear diatomic molecule). In solid minerals, external

modes can occur, but the frequency of these modes corresponds to wavelengths that are no

longer than can be observed through the Earth's atmosphere, so internal stretching and bending

modes for most rock-forming minerals dominate the TIR spectrum between 8 urn and 12 um

(Clark, 1999). Absorption of radiation can also occur at integral multiples of a fundamental

vibrational frequency, known as overtones, or at additive sums of fundamental vibrational

frequencies, known as combination tones (Hunt, 1980; Gaffey at al., 1993;Clark, 1999).

In the SWIR region, absorptions due to overtones and combination tones occur, and

mineralsthat contain water, hydroxyl, carbonateand sulfate molecules show diagnostic spectral

features (Gaffey et al., 1993). Molecular water may be present in a variety of sites within a

crystal structure, physically adsorbed onto mineral grains, or in fluid inclusions. Hydrous

sulfates like gypsum, opal, zeolites, and montmorillonite clays are examples of minerals with

molecular water. The internal fundamental vibration modes of liquid water occur at 2.903 um,

3.106 um, and 6.08 um (Hunt, 1977; Clark et al., 1990a), which are difficult to observe

remotely due to the presence of water in atmosphere. Overtones and combinations of these

fundamental vibration frequencies occur at 1.88 um, 1.45 um, 1.38 um, 1.14 um, and 0.98 urn,

and can be observed in the SWIRregion and used to identify certain minerals in the laboratory

(Hunt, 1977). Figure-5.4 shows a plot of some important minerals with diagnostic features

relatedto the presence of water: illite, montmorillonite, muscoviteand gypsum.
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Figure-5.4 Examples of mineral spectra with features in SWIR region of the EM spectrum
related to OH" and H20 molecules, indicated by arrows. Spectrahave been taken from USGS

spectral library (speclib05; Clark et al., 2003).

Minerals with hydroxyl ions bound to metal cations also exhibit absorption features in

the SWIR region. This constitutes a large group of minerals including alunite, jarosite, goethite,

as well as all phyllosilicate minerals. Hydroxyl has a fundamental stretching mode that

produces an absorption feature around 2.75 um, just outside the SWIR region (Hunt, 1977).

The first overtone of this fundamental mode occurs at 1.4 urn and is characteristic of minerals

with OH" anions, but nothing at 1.9 um is indicative of a mineral with OH" anions, and no

molecular water (Clark et al., 1990a) (e.g., muscovite in fig. 5.4). In laboratory measurements,

this can be used to differentiate between muscovite/illite and muscovite or sericite, but in

remote sensing measurements, atmospheric water causes strong absorption features around 1.4

um and 1.9 um, making this distinction difficult.

-»

4
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Hydroxyl anions are also bound to various metal cations within crystals. The different

cations that bond with OH" result in fundamental metal-OH stretching and bending modes that

vary with cation composition (typically Al, Mg, or Fe), and display overtones and combinations

in the SWIR region that can be diagnostic (Hunt, 1977; Clark et al., 1990a). For example,
hydrous clay minerals that have cations such as Al, Mg or Fe bonded to OH" molecules show

spectral absorption features between 2.2 um and 2.4 um due to O-H stretching plus metal-O-H

bending combination modes (Clark, 1999); Figure-5.5a shows the spectral curves of hydrous
silicate minerals in the SWIR region, for example.

Carbonate minerals, such as calcite and dolomite also exhibit diagnostic absorption

features in the SWIR due to combinations and overtones of fundamental vibrations that occur at

longer wavelengths (Gaffey, 1987; Hunt, 1977; Clark et al., 1990a). The strongest absorptions
in the SWIR occur at 2.541 um and 2.340 um for calcite, but shift to 2.516 um and 2.319 um

for dolomite due to Mg substitution for Ca. Weaker absorptions occur around 2.1 um, 2.0 um,

and 1.9 um (Hunt, 1977; Clark et al., 1990a), but are often not observed in remote sensing due

to atmospheric interference and mixing with other minerals. Sulfate minerals that are hydrated

will have absorption features in the SWIR due to the presence of either structural H20 or OH"

molecules, but non-hydrous sulfate minerals will not have absorption features in this region

(Ross, 1974; Gaffey et al., 1993; Crowley, 1991). Figure-5.5b shows SWIR spectral features of

some important carbonate and sulfate minerals expected in the geological setup of the present
study area: pyrophyllite, alunite, jarosite, calcite and dolomite.

Vegetation spectra in the SWIR are characterized by major water absorption features at

1.45 pirn, 1.94 um, and 2.47 um, with secondary features at 0.96 um, 1.12 um, 1.54 um, and

1.67 um (Ustin et al., 1999). Also organic compounds such as protein, cellulose, lignin and

starch have fundamental vibration modes in the 5.0 um to 8.0 um region and display
combinations and overtones in the SWIR (Ustin et al., 1999).
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The fundamental vibration modes for silicate minerals cause strong absorption features

in the 8.0-12.0 um region, which is known as the Si-0 stretching region (Salisbury, 1993), and

forms part of the larger TIR atmospheric window as well as the region of highest emitted

radiation of the Earth (see fig. 5.1), making it ideal for terrestrial geologic remote sensing

applications (Kahle et al., 1993; Hook et al., 1999). The spectral features in this region appear

as reflectance maxima (emissivity minima, as per Kirchhoffs law (Nicodemus, 1965)) because

the intensity of absorption features at these wavelengths is high enough to induce a 'mirror-like

opacity' resulting in high reflectance values (Salisbury, 1993). These reflectance peaks are also

called reststrahlen bands, meaning 'residual ray' (Elachi and van Zyl, 2006). The emissivity

maxima in silicates that are associated with the Christiansen frequency occur near 8.0 um, just

before the onset of the intense absorption due to Si-0 vibration. At longer wavelengths,

stretching and bending modes lead to additional spectral features. These have been summarized

in Figure-5.6. There is a complex relationship between the fundamental vibrational absorption

bands, the absorption coefficient and the refractive index of the mineral, which is reviewed in

further detail by Schanda (1986), and Elachi and van Zyl (2006).

w
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Figure-5.6 Diagram illustrating the location offeatures and the type ofvibrational process
responsible for the spectral features for silicates in the TIR region (after Hunt, 1980).
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Avery useful characteristic of the silicate rock spectra in the TIR region is that there is

asystematic shift in the emissivity minima for different rock types, and is linked with their total

silica content (Hunt, 1980; Kahle et al., 1993; Salisbury and D'Aria, 1992; Sabine et al., 1994).

The locations of the Christensen peak and the minimum band migrate fairly systematically to

longer wavelengths as the material changes from felsic to mafic (Elachi and van Zyl, 2006)

with the increasing isolation (decreasing polymerization) of Si04 tetrahedral molecules in the

crystal structure (Farmer, 1974; Hook et al., 1999). The Si04 tetrahedron consists of one silicon

atom bonded to 4 surrounding oxygen atoms in a tetrahedral arrangement and is the

fundamental building block of all silicate minerals and hence most rock types. These Si04

tetrahedra may be isolated from each other (nesosilicates), or may be linked, by shared oxygen

atoms, into chains (inosilicates), 2-dimensional sheets (phyllosilicates), or 3-dimensional

framework structures (tectosilicates) (Klein and Hurlburt, 1985). Astrong double emissivity

minimum occurs in quartz between 8.2 um and 9.2 um, with acharacteristic peak at 8.626 um

(see fig. 5.7). In general, tectosilicates such as quartz and feldspars have emissivity minima

around 9.0 um; phyllosilicates such as muscovite and clay minerals have emissivity minima

around 9.5 um; inosilicates such as hornblende have emissivity minima at around 10.0 um; and

nesosilicates such as fayalite have emissivity minima at around 11.0 um (fig. 5.7). This

systematic behavior has been exploited for quantitative silica abundance estimation using

ASTER TIR surface emissivity data as discussed in detail in Chapter 7.

Carbonates and sulfate minerals also have diagnostic spectral emissivity features in the

TIR region (Hook et al., 1999). Fundamental modes for the C032" ion occur at 7.07 um, 9.41

um, 11.36 um, and 14.71 um (Hunt, 1977; White, 1974). The 9.41 um fundamental mode is

due to totally symmetric C-0 stretching and is not active in the infrared, as it does not produce

an oscillating electric dipole (Hunt, 1977). Only the 11.36 um band is present in the TIR

atmospheric window region, but measurable variations in the wavelength position of this band

result from the cation substitution in carbonate minerals and are diagnostic of mineralogy

>
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(White, 1974; Lane and Christensen, 1997). Fundamental modes for S042" ion occur at 9.05

urn, 10.17 um, 16.37 um and 22.22 um, and cation substitution in sulfate minerals can cause

the location of resultant absorption bands to vary between 8.1 um and 10.4 um (Ross, 1974).
The strongest emissivity feature for alunite around 9.0 um is due to S-0 stretching in the S042"
molecule (Ross, 1974). Alunite also displays secondary spectral emissivity features at 8.58 um

and 9.75 um. The TIR spectra of some vegetation types display weak emissivity features due to
organic compounds like cellulose and lignin, but have very high emissivity values and low

spectral contrast (difference between maximum and minimum emissivity) (Salisbury and
D'Aria, 1992). Combined with canopy scattering, which further reduces spectral contrast,
vegetation in general behaves like ablackbody emitter (Salisbury and D'Aria, 1992).

Wavelength (um)

Figure-5.7 Examples of silicate mineral spectra with emissivity features in the TIR Spectral
features are related to Si-0 stretching vibrations within the silicate crystal structure and shift to
longer wavelengths with increasing isolation of the Si04 tetrahedra. For discussion, refer to the

text. Spectra are from Arizona State University (ASU) thermal emission spectral library
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5.4 Literature review: Geologic remote sensing for lithologic/mineral mapping

and mineral exploration

In order to see how geologic remote sensing for mineral exploration has developed and ^

improved since the succesful launch of the first Landsat satellite in 1972, a comprehensive

review of the relevant literature has been made. It may be mentioned that while active ('all

season') remote sensing has proven its merit in geologic applications in general and mineral

exploration (structural mapping) in particular, it has been kept out of the purview of this

review, since the focus of the present study is on surface compositional mapping, and not on

structural mapping. The available scientific literature on remote sensing applications in mineral

exploration and geology can be grouped into the following four categories:

1. Development of instrumentation (sensor) technology and methods of data processing

2. Multispectral remote sensing in mineral exploration, and geologic mapping

3. Hyperspectral remote sensing for surface mineral mapping -\

4. Application of ASTER data in lithologic/mineral mapping for resource exploration

A wealth of scientific literature is available on the applications of remote sensing

technology in geology, with special focus on mineral exploration activities. Most mineral

deposit models include some common elements that are relevant for remote sensing: tectonic

setting, lithological association, alteration, and structural control (Sabine, 1999). Most of the

studies using remote sensing as atool for mineral exploration have utilised the unique spectral

signatures of specific alteration minerals that serve as guide minerals in exploration. Many

mineral deposits have typical and unique alteration mineral assemblages, and most of the

alteration minerals have diagnostic spectral signatures, as discussed in preceding sections. The

utility of aremote sensor in mineral exploration activity weighs largely on its coverage of the

spectral regions where these spectral features lie.
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5.4.1 Developments in sensor and data processing technology

Operational use of orbital remote sensing in geology began after the launch of first Landsat

satellite named ERTS-1 in 1972. Beginning with just 4 spectral channels and coarse spatial

resolution, the developments in sensor technology have been phenomenal and rapid in terms of

both spectral and spatial resolutions of the sensors and data quality (radiometric parameters).

Today there is a wide selection available among remote sensing systems dedicated to

geological applications from aerial and space platforms. Available remote sensing systems have

been broadly categorized into two categories - multispectral and hyperspectral, depending upon

the number and width of spectral channels in which they record data. For example, sensors

such as Landsat MSS, TM and ETM+, SPOT MX, IRS LISS sensors, and JERS OPS are all

multispectral sensors useful in geologic applications. On the other hand there is a wide range of

airborne hyperspectral sensors with hundreds of narrow and contiguous spectral channels (see

Table-5.1). Spaceborne hyperspectral remote sensing is still in early stages of development,

though some success has been achieved with the launch of Hyperion sensor onboard the EO-1

platform in November 2000. However, poor data quality (low signal to noise ratio) has

hampered widescale use of its data.

Parallel advancements in data processing technology during the last 30 years of remote

sensing research have been made and a framework for image analysis, processing routines,

field calibration and validation of datasets, and nominal wavelength ranges for surface mineral

detection have been established (e.g., Abrams et al., 1977; Kahle and Rowan, 1980; Goetz et al.

1983; Marsh and McKeon 1983; Kahle and Goetz, 1983; Gillespie et al., 1986; Taranik, 1988;

Clark et al., 1993; Kahle et al., 1993; Hook et al., 1999; Sabine, 1999; Kruse, 1999; Hook et al.,

2001; Cudahy et al., 2000; Rowan and Mars, 2003; Hubbard et al., 2003; among many others).
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Table-5.1 Some important hyperspectral sensors for geologeologic remote sensing.
Name

AHS

AMSS

AVIRIS

CASI

DAIS 7915

GERIS

HYDICE

ISM

MAIS

MIVIS

SFSI

HyMAP
SEBASS

MASTER

HyperspecTIR
Hyperion

No. of

Channels
48

46

224

288

79

63

206

128

71

20

8

64

10

122

100

128

128

25

15

10

227

220

Spectral range
(MTl)
0.43-12.7

0.5-12.0

0.4-2.45

0.43-0.87

0.5-12.3

0.4-2.5

0.4-2.5

0.8-3.2

0.44-11.8
0.4-0.8

1.2-1.5
2.0-2.5

8.2-12.7

1.2-2.4

0.4-2.5

3.0-5.0

7.5-13.5

0.4-2.4

3.1-5.2

7.8-12.9

0.45-2.45

0.4-2.5

Bandwidth

20-1500

20-590

9.4

2-12

15-2000

16-120

7.6-14.9

12.5-25

20-800

8-500

10

10-20

35-65

40-700

5-12

10

IFOV (mrad) or Spatial
Resolution (m)
2.5 mrad

2.1-3.0 mrad
4-20 m

0.5-10 m

1.1-3.3 mrad
2.5-5 mrad
0.8-4 m

3.3-11.7 mrad
3-4.5 mrad

4-15 m

0.5-10 m

2-10 m

2m

5-50 m

0.5-10 m
30 m

5.4.2 Multispectral remote sensing for mineral exploration: Legacy of Landsat

Initial success in operational use of remote sensing for lithologic/mapping was achieved using
data from the Landsat MSS and TM (and ETM+) sensors (e.g., Abrams et al., 1983;
Podwysocki et al., 1983; Hutsinpillar and Taranik, 1988), and these sensors continue to be the
most widely used multispectral remote sensors for geologic applications.

Goetz et al. (1983) and Sabins (1999) have provided ageneral overview of the use and
potential of multispectral passive remote sensing in mineral exploration activity, with emphasis
on the application of Landsat TM data. Most studies that have utilized the Landsat data have
focused primarily in discriminating lithologies (e.g., Crosta and Moore, 1989; Qari, 1989;
Kenea, 1997; van der Meer et al., 1997; Mickus and Johnson, 2001), and identifying
hydrothermally altered areas as atool to aid in field exploration of ore deposits (see Table-5.2
for some indicative examples based on the use ofLandsat data for mineral exploration).

-4
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Table-5.2 Some pertinent examples of Landsat-based remote sensing studies for mineral
exploration.

Area and objective Data used Data processing Results Reference
South-central Landsat Band ratioing, contrast Except in case of shale Rowan, Goetz
Nevada, USA; MSS stretching and color and siltstone, good and Ashley
discrimination of compositing for visual discrimination achieved (1977)
hydrothermally discrimination between
altered rocks hydrothermally altered

and unaltered rocks
Southern Arizona, Landsat Band ratios, principal Iron-oxide-rich areas Abrams,
USA; separation of MSS and component and well distinguished, TM Brown, Lepley
lithologies, aircraft canonical simulator data found to and Sadowski
discrimination of scanner transformations be more useful for (1983)
hydrothermal data alteration mapping
alteration and simulating
structural mapping Landsat 4

TM

Central East Landsat Spectral ratioing and About 88 significant Conradsen
Greenland; iron MSS factor analysis to rust zones identified in and Harp6th
oxide staining for generate color Tertiary igneous (1984)
exploration of composites for digital province and
stockwork classification of Precambrian
molybdenum and limonitic rust zones metamorphic province
other base metals

Aquaba-Levant Landsat TM Ratioing, principal Enhanced spectral Kaufmann
structure in Wadi component analysis discrimination of (1988)
Araba-Jordan and IHS decorrelation phyllosilicates and iron
Graben; oxides through
hydrothermal decorrelation
alteration mapping processing
Hamerslay Landsat TM Principal component Discrimination between Fraser(1991)
Province, Western analysis of band ratios hematite and goethite-
Australia; rich areas achieved
discrimination and

identification of ferric

oxides

Central Mexico; Landsat TM Object oriented Best discrimination of Ruiz-Armenta
comparison of principal component hydrothermally altered and Prol-
techniques for analysis (OOPCA, volcanics from the Ledesma
spectral also called feature unaltered achieved (1998)
enhancement of oriented principal through statistical
hydrothermally component selection, decorrelation
altered rocks in a or FPCS or Crosta techniques.
vegetated area technique), spectral

decorrelation, and IHS
transform

Guanajuato district, Landsat TM Band subtraction and Hydrothermally altered Torres-Vera
Mexico; Spectral principal component rocks discriminated in and Prol-
enhancement of analysis heavily vegetated Ledesma
selected pixels to terrain and new zones (2003)
identify of argillic alteration
hydrothermally identified
altered rocks

Southern Iranian Landsat Cr6sta technique Iron-oxide and Ranjbar,
volcanic ETM+ hydroxyl-bearing Honarmand
sedimentary belt; minerals mapped and Moezifar
porphyry copper (2004)
alteration mapping
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5.4.3 Hyperspectral remote sensing for mineral identification and mapping:

AVIRIS and others

Airborne imaging spectrometers (or hyperspectral sensors) operating in the VNIR-SWIR region

such as AVIRIS (Airborne Visible Infrared Imaging Spectroradiometer; Table-5.1; Vane et al.,

1993; Green et al., 1998) and those operating in the TIR region such as SEBASS (Spatially

Enhanced Boradband Array Spectrograph System; Table-5.1; Hackwell et al., 1996) have

enabled precise mineralogical identification and mapping owing to high spectral resolution

comparable with that of laboratory spectroscopy, and superior data calibration such that adirect

comparison between remote spectral measurements and laboratory spectra of minerals became

possible. Some of the more popular geologic hyperspectral remote sensing systems are given in

Table-5.1. Among these, AVIRIS is the benchmark hyperspectral sensing system operating in

the VNIR-SWIR region. The application of AVIRIS in mineral exploration activity has been in

determining the point, local and regional distribution of a class of minerals with strong

molecular absorption features associated with hydrothermal alteration, and numerous studies

have amply demonstrated the use of its data towards this end (Carrere and Abrams, 1988; Hook

and Rast, 1990; Swayze et al., 1992; Sommer et al., 1993; Boardman and Huntington, 1996;

Farrand, 1997; Beratan et al., 1997; Crosta et al., 1998; Rowan et al., 2000; Berger et al., 2003).

AVIRIS spectra have been used to map ammonium minerals (Baugh et al., 1998), alkaline and

carbonatite rock types (Rowan et al., 1995; Bowers and Rowan, 1996), carbonate, clay, and

iron oxide mineral units and subunits found in sedimentary rocks (Boardman and Goetz, 1991;

Clark et al., 1992) andevaporate minerals (Crowley, 1993).

Hyperspectral remote sensing in the TIR region is a relatively new field. The main

applications of TIR hyperspectral sensing is in mapping the main rock-forming silicate

minerals that have their diagnostic features in the TIR region. Studies based on SEBASS and

MASTER data (Vaughan et al., 2003, 2005) have demonstrated the potential of hyperspectral

TIR sensing in mineral mapping.

4
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5.4.4 Application of ASTER data in lithologic/mineral mapping for resource

exploration

From the foregoing sections, it is evident that the best results of remote sensing for mineral

exploration can be obtained from spectral data that covers spectral regions of geologic interest,

in large number of closely spaced bands. This typically corresponds to the hyperspectral remote

sensing. Operational orbital hyperspectral remote sensing is still in its nascent stage. Existing

airborne hyperspectral remote sensing has limitations of geographic coverage, cost, and data

processing expertise which hinders the popular use of hyperspectral remote sensing for mineral

exploration. Amajor development in bridging this gap was achieved with the launch of ASTER

in December 1999, as it provides high quality, global data with unique spectral coverage in

VNIR-SWIR and TIR atmospheric windows (Yamaguchi et al. 1998). Although multispectral

by all definitions, ASTER data has provided afirst superior alternative to the Landsat TM data

widely used and understood by most geologic remote sensing specialists. In addition to its finer

spectral coverage (5 bands) of the range covered by the single 'TM band 7' (2.08-2.35um)

where absorption features of key alteration minerals lie, ASTER also provides best spectral

coverage (5 bands) of the TIR atmospheric window relevant to lithologic mapping applications

from a spaceborne platform. Hence, ASTER offers a unique advantage of complementary

geologic information (alteration minerals and lithology). ASTER multispectral data not only

offer global coverage at affordable cost, but also flexibility in data processing as it can be

handled and processed using existing image processing technology designed to handle

multispectral as well as standard hyperspectral data. Therefore, in more than one sense, ASTER

data bridges the gaps between existing multispectral and hyperspectral sensors, and can be

called ahybrid system. Since launch, numerous studies have amply demonstrated the utility of

ASTER data in geology, particularly in lithologic mapping and hydrothermal alteration mineral

detection and mapping. Some of the most demonstrative of these have been summarized and

tabulated in Table-5.3.



94

Table-5.3 Examples of ASTER data application in lithologic and alteration mapping

Study area and data Rocks/minerals mapped Reference

Mountain Pass, California, USA;
L1B VNIR-SWIR calibrated to

surface reflectance and L2

(AST_05) TIR surface emissivity

Calcitic rocks distinguished from dolomitic
rocks; Fe-muscovite distinguished from
Al-muscovite; quartzose and carbonate
rocks mapped using TIR data

Rowan and Mars (2003)

Cuprite, Nevada, USA; L1B
VNIR-SWIR calibrated to

surface reflectance

Hydrothermal alteration minerals - opal,
alunite, kaolinite, muscovite and calcite

Rowan et al. (2003)

Patagonia, Argentina; L1B
VNIR-SWIR

Hydrothermal alteration minerals -
alunite, illite, kaolinite and smectite

Cr6sta et al. (2003)

Central Andes; L1B VNIR-SWIR
calibrated to surface reflectance

Ferric-iron mineral suites (using VNIR
data) and clay-sulfate mineral
discrimination (using SWIR data)

Hubbard et al. (2003)

Beishan Mountains, China, and
Mt. Fitton, Australia; L1BTIR

Mafic-rich, quartz-rich and carbonate-rich
rocks

Ninomiya et al. (2005)

Hiller Mts., Nevada, USA and
Tres Virgenes-La Reforma, Baja
California Sur, Mexico; L2
(AST_05) TIR surface emissivity

Quantitative estimation of Si02 weight
percent

Hook et al. (2005)

Mordor, NT, Australia; L1B
VNIR-SWIR and calibrated TIR

surface emissivity

4 felsic and 4 mafic lithologic classes
mapped using VNIR-SWIR data, and 2
classes of mafic-ultramafic rocks and 4

classes of quartzose-intermediate rocks
mapped using TIR surface emissivity data

Rowan et al. (2005)

Central Brazil; L1B SWIR
calibrated to surface reflectance

Hydrothermal hydroxyl-bearing alteration
minerals in a densely vegetated terrain

Galvao et al. (2005)

Zagros magmatic arc, Iran; L1B
VNIR-SWIR calibrated to

surface reflectance

Discrimination between phyllically and
argillically altered rocks

Mars and Rowan (2006)

Infiernillo porphyry deposit,
Argentina; L1B normalized to
relative reflectance

Hydrothermal alteration zone mapping -
minerals characterizing silicic, potassic,
and phyllic zones mapped

Tomasso and

Rubinstein (2006)

Reko Diq, Pakistan; L1B VNIR-
SWIR calibrated to surface

reflectance and L2 (AST_05)
TIR surface emissivity

Hydrothermal alteration mapping - silicic
(quartz-bearing), phyllic (muscovite),
argillic (alunite) and propylitic (chlorite)

Rowan et al. (2006)

Cerro La Mina, Patagonia,
Argentina; L1B SWIR calibrated
to surface reflectance

Identification and mapping of advanced
argillic, argillic and silicic hydrothermal
alteration zones

Ducart et al. (2006)

Chadormalu paleocrater, Bafq
region, Central Iran; L1B VNIR-
SWIR-TIR

Sodic, potassic and silicic-phyllic
alteration minerals distinguished

Moghtaderi et al. (2007)

Chocolate Mts., California, USA;
L1BVNIR-SWIR-TIR

Gold-related lithologic and alteration
minerals mapped. Alunite, kaolinite,
muscovite and montmorillonite

distinguished and mapped.

Zhang et al. (2007)

y
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Chapter 6

Data Preprocessing - Atmospheric and Topographic

Corrections

6.1 Introduction and statement of purpose

One of the primary challenges in the use of passive orbital (spaceborne) remote sensing for
terrestrial applications is the accurate removal of atmospheric and topographic effects on the
signal reaching the remote sensor, so that the surface physical parameters such as 'surface
reflectance' in the solar reflective region and 'surface emissivity' in the thermal emissive
region can be retrieved. On its two-way journey through the atmosphere, the solar EMR
reaching the sensor is affected by atmospheric scattering and absorption, which severely impact
the physical interpretability of the remote sensing image data. Likewise, topographic
heterogeneity leads to directional effects on the reflected and emitted radiation, as well as
introduction of terrain adjacency effects (diffuse irradiance) on the signal reaching the remote

sensor, thereby impacting the true nature of the target radiance. It is vital to remove these
atmospheric and topographic effects from the image data prior to further image processing,
such that aphysically meaningful interpretation about the targets of interest can be made. In
remote sensing parlance, this process is usually referred to as 'atmospheric correction' and
'topographic correction', respectively, and comes under the pre-processing stage of image

analysis.

This chapter deals with the atmospheric and topographic correction of the multispectral
ASTER dataset used in this study. Existing techniques of atmospheric and topographic
correction have been explored and applied to these data and acomparative evaluation has been

made to produce the final surface reflectance and surface emissivity image data, to be used in
further detailed image analysis for lithologic and alteration mapping as reported in detail in

Chapters 7and 8, respectively.
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6.2 Atmospheric Correction

6.2.1 Overview

The data recorded by a remote sensor is a combination ofsignals representing the reflected +

emitted + transmitted radiation from material or target of interest as well as undesired

instrument noise, and atmospheric scattering and absorption effects, along with the effects of

illumination geometry and topographic variations on the Earth's surface. One of the most

important steps before remote sensing data could be used for further processing and

interpretation is the removal ofthese undesired and interfering signals, to get a true idea ofthe

material of interest and its spectral characteristics, which is the basis on which all of the

processing results depend.

Some ofthe important reasons in support ofradiometric and atmospheric correction of

high spatial resolution remotely sensed data, such as that ofASTER, in geological studies are

(Lu et al., 2002):

1. within-scene comparison of spectrally similar materials and hence in spectral

classification

2. quantitative analysis ofremotely sensed data with comparison and use with laboratory

derived reflectances for known materials

3. accurate material mapping using band-arithmetic

The measured radiance-at-sensor is controlled by the transmission of solar EMR

through the atmosphere, and is mathematically expressed as (simplified from Chandrasekhar,

1950):

Lsen,x =E0,xl n {La,x +xdpx r„ / (1- El)} 0)

Where:

9 1Lsen,x =total radiance arriving atthe sensor at wavelength (or band) X(Win" sr")
E0,x - top of the atmosphere solar irradiance (Wm")

-t
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dtaensSSs)6 (rati° °f reflCCted t0 inCidCnt in"adianCe) °f the atmosPhere ^ath radiance>
(dimedn0s7onnTeass) tranSmlttanCe (rati° °f transmitted t0 !™uent fiance) of the atmosphere
Px =spectral reflectance ofthe surface (dimensionless)
r„ =upward transmittance ofthe atmosphere (dimensionless)
El =downwelling irradiance of the atmosphere (sky irradiance, dimensionless)

The actual reflectance from an object depends on various parameters, such as the solar

elevation, surface slope and its orientation, surface anisotropy, and atmospheric constituents
(governed by the latitude and longitude, and elevation of the area). Atmospheric conditions can
vary significantly both spatially and temporally, as a result of molecular scattering and
absorption in the atmosphere. There are two main effects of atmosphere, i.e. scattering and
absorption. These effects depend on the wavelength coverage of agiven sensor system. The
main effects of the atmospheric scattering on remotely sensed data are upwelling atmospheric
radiance or path radiance (Slater, 1980) with is additive in nature, and atmospheric absorption
with multiplicative characteristics. Generally, in visible to infrared bands (as in ASTER VNIR

and SWIR) the main atmospheric effects are air molecule and aerosol particle scattering
(respectively following Rayleigh and Mie scattering patterns), which are additive and create

image haze. Air molecules are stable, but the character of aerosol particles is often variable and
their influence is difficult to estimate. In the visible bands, the multiplicative component of
atmospheric absorption caused by water vapor or other gases is very weak and can be safely
ignored. Therefore, the impact on short wavelengths is mainly from the additive atmospheric
scattering. However, in the NIR and SWIR wavelengths, the influence of atmospheric
scattering is negligible and the main atmospheric effect is due to atmospheric absorption caused
by water vapor, carbon dioxide, ozone, methane and other gases (see fig. 6.1). Normally, the
contents of carbon dioxide, carbon oxide and methane are stable, but water vapor is variable. A

good atmospheric correction model should have the capability to simulate the above
phenomena and to correct for the influences of scattering and absorption (Lu et al., 2002).
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Figure-6.1 Solar irradiance on top ofatmosphere and on Earth's surface; absorption by major
atmospheric constituents results in selective transmittance ofspecific wavelengths, leaving only

apart ofthe EM spectrum amenable to orbital remote sensing (after Chahine, 1983).

The basic model to obtain true surface reflectance from radiance-at-sensor may be

expressed asa rearrangement of equation 1, as follows:

Px

Kn
\Lsen,x LaX)

I r« J
K ,C0S^Td+^

(2)

Where:

K= correction factor for the annual variations in Earth-Sun distance computed from Julian day,

Lsen.x = radiance-at-sensor in band X,
La,x = the atmospheric upwelling radiance scattered at the sensor for the same band (path
radiance)

4



99

t«, Xd = path atmospheric transmittances of the upwelling (ground surface-sensor path) and
downwelling (sun-ground surface path) flows, respectively,

E0,x - solar irradiance at the top of the atmosphere for band X,

6Z = solar zenith angle, and

Ei = diffuse irradiance at the surface.

Here, it is useful to differentiate between the 'true' surface reflectance and the

'apparent' or 'scaled' surface reflectance. While true surface reflectance incorporates spatial

heterogeneities mostly owing to topographic variations in a scene (controlled by the variables

in the denominator in the above equation), the apparent surface reflectance is primarily an

estimate of the surface reflectance based on the atmospheric variables alone.

Two groups of calibration methods have been identified (Thome et al. 1997):

1. Absolute radiometric-atmospheric correction, and

2. Relative calibration methods

The absolute correction methods convert remotely sensed digital numbers into units of

surface reflectance or radiance by removing the effectsof atmospheric attenuation, illumination

heterogeneity due to topographic variations and solar conditions. Common models for absolute

atmospheric correction include the radiative transfer theory based algorithms/computer codes

such as 6S (Second Simulation of the Satellite Signal in the Solar Spectrum) (Tanre et al.,

1990; Vermote et al., 1994), MODTRAN (Moderate Resolution Atmospheric Radiance and

Transmittance) model, and its predecessor LOWTRAN (Berk et al., 1989; Matthew et al.,

2000), and image-based DOS (dark-object subtraction) model (Chavez, 1988, 1989, 1996;

Kaufman et al., 1997).

The second class of calibration methods focuses on relative atmospheric correction.

These methods remove or normalize the variation within a scene and normalize the intensities

between images of same study area collected on different dates. The methods for relative

correction include histogram adjustment, dark-pixel subtraction, and multi-date normalization

using a regression model approach.
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According to the model characteristics and complexity, three groups of models have

been identified as following (Lu et al., 2002):

1. Physics-based calibration models: The physics-based radiative transfer models require

many simulation submodels and use a variety of parameters. Such models can produce

high surface reflectance accuracy. These models include the 6S (Vermote et al., 1997)

and MODTRAN (Berk et al., 1989) radiative transfer models. These are often very

complex and require many input parameters from the in situ field atmospheric

information acquired at the time of remote sensing dataacquisition.

2. Image-based calibration models: These include the apparent reflectance model of

Markham and Barker (1986), and the image-based DOS model (Chavez, 1988, 1989,

1996; Kaufman and Sendra, 1988; Kaufman et al., 1997), which assume that the

atmospheric impact is uniform on the whole image and that spectrally dark objects exist

in the scene. Such dark objects are required to have zero reflectance, particularly in the

infrared region; and mostly deep-water bodies, dark shadows or dense vegetation are

used as such dark objects. The image-based DOS and the improved image-based DOS

methods developed by Chavez (1988 and 1996, respectively) take into account the

additive path radiance and the multiplicative atmospheric transmittance factors (which

are ignored in the apparent reflectance model). Such models do not require any in situ

atmospheric information. Inputs required to implement these models are based on image

measurements and the information from remote sensing data header file, which records

the important information pertaining to image acquisition such as - image date, Sun

elevation and azimuth angles, and band specific gains and biases. Where an image

header is not available, the image acquisition date can be used to derive needed

parameters.

3. Relative calibration models: The third group of models is useful for relative calibration

when no information on the scene acquisition and atmospheric conditions is known, as

>
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is often the case with historic data, and include models based on: 'invariant-objects'

(Hall et al., 1991), 'histogram matching' (Richter, 1996), 'dark pixel subtraction' (e.g.

Kaufman and Sendra, 1988; Liang et al., 1997; Teillet and Fedosejevs, 1995) or

regression equations. These models use scene statistics (whole or selected part) to

generate relative reflectance from radiance-at-sensor or raw DN data.

Anumber ofcomputer programs have been written to simulate the radiative transfer

model. These include the ATREM program (short for ATmosphere REMoval), developed by

CSES, University of Colorado which is based on the 6S radiative transfer model. The ACORN

(short for Atmospheric CORrection Now; ImSpec LLC) and FLAASH (Fast Line-of-sight

Atmospheric Analysis of Spectral Hypercubes) developed by Spectral Sciences Inc. in

collaboration with ITTVIS, Inc., are both based on the MODTRAN radiative transfer model.

Similarly, most of the popular commercial off-the-shelf (COTS) image processing software,

like ERDAS Imagine and ENVI provide in-built procedures to calibrate remote sensing images

to apparent reflectance and/or relative reflectance. These software packages use image-statistics

based methods, like Flat Field (Roberts et al., 1986; Carrere and Abrams, 1988), Modified Flat

Field (Green, 1990), Internal Average Relative Reflectance (Kruse, 1987), Empirical Line

(Conel et al., 1987), and Log Residuals (Green and Craig, 1985).

6.2.2 ASTER L2 VNIR-SWIR surface reflectance data and its evaluation

Level2 (L2) standard atmospherically corrected surface reflectance data (AST_07) for the study

area produced 'on-demand' was procured from the EOS Data Gateway (EDG) and evaluated.

The on-demand L2 surface reflectance data are generated using the 9 VNIR-SWIR

bands (between 0.52 urn and 2.40 um) from an ASTER Level-IB image. According to LP-

DAAC (Land Processes Distributed Active Archival Center), USGS, the atmospheric

correction involves deriving a relationship between the surface radiance/reflectance and the

top-of-atmosphere (ToA) radiance from information on the scattering and absorbing
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characteristics of the atmosphere. Once this relationship is established, it is used to convert the

original radiance values to atmospherically corrected surface radiance and reflectance values.

The atmospheric correction algorithm for VNIR is based on a Look-Up Table (LUT) 4

approach that uses results from a Gauss-Seidel iteration of the Radiative Transfer Code (RTC)

(ASTER Algorithm Theoretical Basis Document (ATBD); Thome et al., 1999). This

methodology is based on the reflectance-based, vicarious calibration approach of the Remote

Sensing Group (RSG) at the University of Arizona, USA. The algorithm is based on the

relationship between the angular distribution of radiance, scattering and absorption in the

atmosphere, and the surface properties. The RTC used to generate the LUT for the atmospheric

correction is based on the following parameters: solarzenith angle, satellite viewangle, relative

azimuth angle between the satellite and sun, molecular scattering optical depth, aerosol

scattering optical depth, aerosol scatter albedo, aerosol size distribution parameter, and surface

reflectance. The initial versions of the algorithm relied on external climatological sources for

information on atmospheric absorption and scattering parameters. For later versions, this

information is being obtained from other Terra sensors like the Multi-angle Imaging

Spectroradiometer (MISR) and the Moderate-Resolution Imaging Spectroradiometer (MODIS).

A digital elevation model provides the slope and elevation information for accurate modeling

of surface reflectance. There are three groups of ancillary data inputs used in the atmospheric

correction of ASTER radiance and reflectance:

• Ozone data input: The NCEP/TOVS (National Centers for Environmental

Prediction/TIROS (Television & Infrared Observation Satellite) Operational Vertical

Sounder) data are acquired from a NOAA satellite, and provides the ancillary column

ozone data twice daily. Naval Research Laboratory's (NRL) Ozone Climatology data

set is the alternative data source for column ozone.

• Aerosol data input: NRL's Aerosol Climatology ancillary data.
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• Temperature, atmospheric pressure, and moisture profile data inputs: The source of

these data is the NCEP-GDAS (Global Data Assimilation System) available at every 6

hours temporal frequency. The alternative is the NRL Climatology data set. These data

sets are based on modeling, simulation, and prediction, and therefore, they are static,

monthly, averaged data sets.

Neglect of the SWIR crosstalk phenomenon (Appendix D) and inefficient compensation

for atmospheric water absorption due to absence of onboard additional atmospheric bands in

ASTER has resulted in (generally) anomalously low values in bands 5 and 7 and high values in

band 9 in these data, making them unsuitable for spectral processing, since the primary mineral

absorption features are lost due to these discrepancies. Such discrepancies have been noticed by

other workers also (e.g., Mars and Rowan, 2006). For this reason, the primary LIB data has

been put to rigorous radiometric, atmospheric and topographic corrections using existing

methods and used instead.

6.2.3 Atmospheric correction of ASTER L1B data

In the following sections, the radiometric preprocessing and atmospheric correction of ASTER

LIB data as implemented in the present study are discussed. Due to the differences in their

basic nature, data in the VNIR-SWIR region (9 bands) and the TIR region (5 bands) have been

processed separately. An overview of the preprocessing scheme adopted in this study has been

shown in Figure-6.2.
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6.2.3.1 Radiometric and geometric corrections

The image data is usually provided in the form of raw digital numbers (DNs). The procedure

used to convert the DNs to physical units of radiance is called 'sensor calibration' (Mather,

2004). Sensor calibration is a vital step, since surface reflectance estimation heavily relies on

the accuracy of the radiance values (as surface reflectance is a ratio between the incident

radiation, or irradiance, and the surface radiance/emittance of the target). The various stages of

radiometric preprocessing are described in the following paragraphs. After its launch, errors in

radiometric accuracies of SWIR bands and geolocation have been discovered in ASTER data.

The data used in the present study were obtained prior to these discoveries, and hence these

errors are present in the data. To avoid error propagation which is inadvertent in subsequent

processing and image analysis, it is vital to account for these errors. Description and correction

of these errors have been provided in this section, prior to exhaustive implementation of

various atmospheric correction techniques as described in subsequent sections.

Sensor Calibration: To convert the LI A data to scaled DNs, the ASTER Level-1A DNs are

converted on a detector-by-detector basis using the Slope/Inclination (A), Gain (G) and Offset

(D) values from the Radiometric Conversion Coefficients (RCC) table that is appended with

the Level-IA dataset in the HDF file. The RCC information determines how the Level-IA DNs

are converted into Level-IB calibrated DNs. Information from both the on-board and vicarious

calibration sources is used in the generation of RCC table. Using the following equations, LIA

data (for respective subsystems) are converted to at-sensor radiance:

Lvnir,swir =AV/G + D (for VNIR-SWIR data), and

Ltir = AV+ CV2 + D (for TIR data)

Where:

L= scaled radiance (W/m2/sr/um); A= Linear coefficient; C = non-linear coefficient; G= gain;
D = offset; V = Signal (DN value).

Both intra-telescope and inter-telescope registration correction for all the bands are

accomplished relative to the reference band for each sub-system (bands 2, 6, and 11). The
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Level-IB dataset is produced by applying the radiometric calibration and geometric correction

coefficients to Level-IA data. The Level-IB radiance dataset offers the same number of bands

at the same resolution as the Level-IA. The original radiances and supplied DN values as LIB

data are related to each other according to the following scaling procedure (Abrams et al.,

2003; ASTER User's Handbook):

(i) a DN value of zero is allocated to dummy pixels

(ii) a DN value of 1 is allocated to zero radiance

(iii) a DN value of 254 is allocated to the maximum radiance for VNIRand SWIR bands

(iv) a DN value of 4094 is allocated to the maximum radiance for TIR bands

(v) a DN value of 255 is allocated to saturated pixels for VNIRand SWIR bands

(vi) a DN value of 4095 is allocated to saturated pixels for TIR bands

To convert from DN to radiance-at-sensor, the unit conversion coefficients (UCCs,

defined as radiance per 1DN) are used. Radiance (spectral radiance; Wm sr'Vm*) is obtained

from image DN values, based on band number and gain state (specified in image header file) as

follows:

Radiance = (DN value -1) x UCC

The maximum radiances dependon both the spectral bands and the gain settingsand are

shown in Table 6.1, and the UCCs for each band are given in Table 6.2 (Abrams et al., 2003).

*
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TabIe-6.1 Maximum radiance values for all ASTER bands and all gain states Values
corresponding to the ASTER data used in this study have been shown in bold italics

Band No. Maximum rac lance (WW*sr*prrO
High Gain Mnmai r^^m i ^ : .•

1

2

3N

3B

170.8

179.0

106.8

106.8

427

358

218

218

luw uain i

569

477

290

290

Low Gain 2

N/A

4

5

6

7

8

9

27.5

8.8

7.9

7.55

5.27

4.02

55.0

17.6

15.8

15.1

10.55
8.04

73.3

23.4

21.0

20.1

14.06

10.72

73.3

103.5

98.7

83.8

62.0

67.0

10

11

12

13

14

N/A

28.17

27.75

26.97

23.30

21.38

N/A N/A

Table-6.2 Calculated Unit Conversion Coefficients for each ASTER band
corresponding to the ASTER data used in this study have been shown in bold italics. '

Band No. Coefficient (W/fm^s^umyPN)

Values

1

2

3N

3B

High Gain

0.676

0.708

0.423

0.423

Normal Gain Low Gain 1 Low Gain 2

4

5

6

7

8

9

10

11

12

13

14

0.1087

0.0348

0.0313

0.0299
0.0209

0.0159

N/A

1.688

1.415

0.862

0.862

0.2174

0.0696

0.0625

0.0597

0.0417

0.0318

6.822x1(T3
6.780x1(T3
6.590x1Or3
5.693 x1(T3
5.225 X10T3

2.25

1.89

1.15

1.15

0.290

0.0925

0.0830

0.0795
0.0556

0.0424

N/A

N/A

0.290

0.409

0.390

0.332

0.245

0.265

N/A
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ASTER SWIR Crosstalk and Correction: ASTER SWIR crosstalk defect - which is essentially

a leakage ofincident signal mainly from band 4to nearby SWIR bands - and its correction has

been discussed by Iwasaki et al. (2001) and Iwasaki and Tonooka (2005); and have been

summarized in Appendix D. The LIB data used in this study has been corrected for this defect

using a software tool obtained from ERSDAC, Japan.

The crosstalk-corrected SWIR image (bands 4-6-8 in R-G-B) is shown in Figure-6.3a.

Spectrum ofasample pixel prior to SWIR crosstalk correction is shown in Figure-6.3b, and the

corresponding spectrum ofthe same pixel after crosstalk correction is shown in Figure-6.3c. A

difference spectrum for crosstalk uncorrected and crosstalk corrected sample pixel spectra is

shown in Figure-6.3d. It can be seen that the crosstalk-corrected sample pixel spectrum has

reduced values, with greatest reduction in bands 5, 7and 9, ofthe order of0.2 W/m /sr/um.

Geolocation error and correction: Geolocation discrepancies of the order of 200-300m have

been detected in the original geocoded ASTER LIB data. Such discrepancies are greatest in

data covering areas near the poles and in topographically heterogeneous terrain, hampering

direct comparisons between topographic maps and GPS-controlled field locations. Details of

this phenomenon have been provided inAppendix D.

The geolocation error for the ASTER image data used in this research has been

corrected using the online software tool available at the official ASTER website ofJPL, NASA

(asterweb.jpl.nasa.gov) prior to rigorous atmospheric correction described in subsequent

sections. The geo-correction results have been subsequently checked using GPS data for select

field locations, and the geolocation accuracy has been found to be well within 30 m, which is

the basic spatial unit (pixel size) ofboth TM and ASTER SWIR sensors.
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6.2.3.2 Atmospheric correction of ASTER VNIR-SWIR data and reflectance

retrieval

In the following sections, the atmospheric correction and data calibration of SWIR-crosstalk-

and geolocation-corrected ASTER VNIR-SWIR data using various available atmospheric

correction techniques to obtain the final 9-band surface reflectance image data have been

described. Both relative and absolute atmospheric correction methods have been tested and

discussed. The results of different methods of atmospheric correction have been inter-compared

using reflectance spectrum of a common pixel in all the outputs, referred to as the test pixel

spectrum. The pixel represents a flat homogeneous ground surface of an abandoned helipad,

with composition similar to reddish-brown medium to fine sandy loam, and lies immediately

east of the Babai village in the southern part of the study area (for location refer to fig. 6.3a).

ENVI and ERDAS software packages have been used conjunctively for atmospheric correction

of the image data.

6.2.3.2.1 Methods of relative atmospheric correction

1. Relative reflectance using Log Residuals: Log Residuals calibration (Green and Craig,

1985) removes solar irradiance, atmospheric transmittance, instrument gain,

topographic effects, and albedo effects from radiance data. This transform creates a

pseudo reflectance image that is useful for analyzing mineral-related absorption

features. The logarithmic residuals of a dataset are defined as the input spectrum

divided by the spectral geometric mean, divided by the spatial geometric mean. The

geometric mean is used because the transmittance and other effects are considered

multiplicative; it is calculated using logarithms of the data values, hence the name 'Log

Residuals'. The 'spectral mean' is the mean of all bands for each pixel and partially

removes topographic effects. The 'spatial mean' is the mean of all pixels for each band
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and accounts for the solar irradiance, atmospheric transmittance, and instrument gain.

Figure-6.4a shows the Log Residuals-corrected spectrum of the testpixel.

2. Relative reflectance using IARR method: The Internal Average Relative Reflectance

(IARR) calibration (Kruse, 1987) normalizes the data to a scene average spectrum. This

is particularlyeffective for reducing hyperspectral data to relative reflectance in an area

where no ground measurements exist and little is known about the scene. It works best

for arid areas with no vegetation, and hence is suitable for the data used in this study.

An average spectrum is calculated from the entire scene and is used as the reference

spectrum, which is then divided into the spectrum for each pixel of the image. Figure-

6.4b shows the IARR-corrected relative reflectance spectrum of the test pixel.

3. Relative reflectance using the Flat Fieldand the Modified Flat Field techniques: The

Flat Field technique ((Roberts et al., 1986; Carrere and Abrams, 1988) is used to

normalize the data to the spectrum of a known spectrally neutral 'flat field' in the scene.

The flat field selected is usually a spectrally uniform and bland site within the scene

(Clark et al., 2002). The Modified Flat Field (MFF) method (Green, 1990), as

implemented in ERDAS Imagine software, requires that the analyst knows the material

of the flat field and has a laboratory spectrum of that material. In MFF, each input pixel

spectrum is divided by the flat field and then multiplied by the spectrum. For the study

area, 44 pixels from Babai helipad (see fig. 6.4) representing spectrally and spatially

homogeneous reddish-brown loamy sand surface were used as a flat field. Library

spectrum of this material available in the ASTER spectral library was used with the

MFF procedure to calibrate the data to relative reflectance. The results of the FF and

MFF calibration for the test pixel have been shown in Figure-6.4c and d.

4. Relative reflectance using Empirical Line method: The Empirical Line technique is a

simple slope/intercept calculation (Conel et al., 1987). This method forces the image

spectra to match the selected field/laboratory spectra. A linear regression is used for
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each band to equate DN/radiance and reflectance. This is equivalent to removing the

solar irradiance and the atmospheric path radiance. The following equation shows how

the empirical line gain and offset values are calculated (in ENVI):

Reflectance (field spectrum) = gain x radiance (input data) + offset

When the analyst has a pair or more of the spectral ground control points and

their corresponding laboratory/field spectra, a linear fit is calculated, defined by its

slope and intercept for each image band. In practice, it is necessary to select both high

and low albedo areas from the image (Roberts et al., 1985). Each (empirically derived)

line is then used to generate a look-up table (LUT) to adjust the input DNs to relative

reflectance values defined by the spectral ground control areas. The bright and dark

objects used for Empirical Line calibration of the ASTER image data used inthis study

were the Babai helipad in the southern part of the image, and a small dam in the

northern-central part of the image. The corresponding laboratory spectra used for the

materials of these areas were brown fine loamy sand, and distilled water, both taken

from the Johns Hopkins University (JHU) spectral library. The result of EL calibration

is shown using the spectrum of the test pixel in Figure-6.4e.

6.2.3.2.2 Methods of absolute atmospheric correction

1. Surface reflectance retrieval using FLAASH: FLAASH (Fast Line-of-Sight

Atmospheric Analysis of Spectral Hypercubes) is a MODTRAN4-based atmospheric

correction software package developed by the Air Force Phillips Laboratory, Hanscom

AFB and Spectral Sciences, Inc. (Adler-Golden et al., 1999). It provides accurate,

physics-based derivation of apparent surface reflectance through derivation of

atmospheric properties such as surface albedo, surface altitude, water vapor column,

aerosol and cloud optical depths, and surface and atmospheric temperatures from high

spectral resolution data. FLAASH operates in the 0.4-2.5 um spectral range. In
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FLAASH, first the MODTRAN simulations of spectral radiance are performed for

various atmospheric, water vapor, and viewing conditions (solar angles) overa range of

surface reflectances to establish look-up tables (LUTs) for the atmospheric parameters

of column water vapor, aerosol type, and visibility for subsequent use. Typically, the

1.13 um water band is used to estimate water vapor, and a ratio of in-band and out-of-

band radiance values allows estimation of absorption band depths for a range of water

vapor column densities. FLAASH also derives pressure altitudes by applying the same

method to the 0.762 um oxygen-absorption band. The radiance spectra are extracted

from the input data and compared against the MODTRAN LUTs on a pixel-by-pixel

basis to determine scaled surface reflectance. FLAASH offers an additional option of

correcting for EMR scattered from adjacent pixels. Spatially averaged reflectance is

used to account for the radiance contributions originating from parts of the surface not

in the direct line of sight of the sensor (adjacency effect; Adler-Golden et al., 1999;

Mathew et al., 2003). FLAASH provides additional flexibility when compared to the

other atmospheric correction programs used typically with hyperspectral data, such as

ACORN (Atmospheric CORrection Now) and ATREM (Atmosphere REMoval) in that

it allows custom radiative transfer calculations for a wider range of conditions including

off-nadir viewing and all MODTRAN standard aerosol models (Kruse, 2004). The

FLAASH input parameters for the ASTER VNIR-SWIR image data of the study area

have been summarized in Table-6.3 and the test pixel spectrum is shown in Figure-6.4f.

2. Top-of-Atmosphere (apparent) reflectance: Estimation of apparent reflectance from

digital satellite data for most satellite sensors involves conversion of raw binary data

(digital numbers, or DNs) to radiance-at-sensor using the gain and offset values, and

subsequent computation of the reflectance using the following basic model (Markham

and Barker, 1986, 1987) which is a simplification of the primary model shown in

A
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equation 2, and is commonly referred to as the Top-of Atmosphere (ToA) or planetary

reflectance model:

nL,d2
Px = F 2 (3)

Where:

Lx = radiance-at-sensor, d = Earth-Sun distance measured in AU, Esunx = band specific
exo-atmospheric solar irradiance, and 6Z = solar zenith angle (90°-solar elevation angle)
in radians.

The factors of atmospheric transmittance (zu, x<i\ upward and downward), path radiance

(La), and diffuse sky irradiance (Ei) have been ignored in this model, while

approximation for Khas been made as d2. For the dataset used, the parameters of the

apparent reflectance model (top-of-atmosphere reflectance) are provided in Table-6.4,

and the band-specific exo-atmospheric solar irradiances for ASTER obtained from

World Radiation Center (WRC, Switzerland) are given in Table-6.5. Test pixel

spectrum after correction using this technique is shown in Figure-6.4g.

3. Image-based DOS: Chavez (1988) suggested a method to correct for the additive 'haze'

(path radiance) effect of the atmosphere for the Landsat TM data. This method is good

for correcting shorter wavelength bands than the longer wavelengths since atmospheric

scattering is dominant at shorter wavelengths. Chavez (1989) suggested further

improvements in the original technique by specifying the model atmospheric conditions

to compute the 'haze' value. Chavez (1996) developed the method further by

incorporating the multiplicative parameters (atmospheric transmittance) also in the

correction procedure and named the technique as COST.

Using a moderate atmospheric scattering model (X']; Chavez, 1989), and assuming at

least a minimum 1% reflectance pixel exists in the scene, the haze values have been

determined for the 9 solar reflective VNIR-SWIR bands of ASTER data based on the

basic radiance to reflectance relation given in equation 2, as summarized in Table-6.6.
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The gains and offsets used in estimating the final haze parameters have been obtained

from the image metadata and the value of xd (downward atmospheric transmittance; eq.

2) has been estimated as an approximation of cos#z (with a value of 0.8122 for the

ASTER scene used in this study, where 9Z is the solar zenith angle (=35.690479

degrees); Chavez, 1996). Since ASTER bands are all nadir looking (except band 3b,

which has not been used in this study), the value of r„ (upward atmospheric

transmittance; eq. 2) has been estimated as 1.0 (ru=e'dsecm; where S is the atmospheric

optical depth, calculated in situ, and 6V is the satellite viewing angle, which is 0 in case

of nadir looking sensors). Details of the technique can be found in Chavez (1989) and

Chavez (1996). The test pixel spectrum obtained afteratmospheric correction using the

image-based DOS technique has been shown in Figure-6.4h.

Table-6.3 ENVI FLAASH input parameters for the ASTER scene used in the present study.

Parameter Value

General

Scene Center
27.833723

75.750792

Sensor and Sensor Type ASTER; Multispectral
Sensor Altitude (km) 705

Ground Elevation (km) 0.5 (default 0.0)
Pixel size (m) 15

Flight date and time
Oct. 5, 2002;
05:43:51 UTC (Z)

Atmospheric Model Tropical
Aerosol Model Rural

Water Retrieval No

Water Column Multiplier 1.000

Aerosol Retrieval 2 Band (K-T)
Initial Visibility (km) 25

Kaufman-Tanre (K-T)
Aerosol Retrieval

K-T Upper Channel Band5 (2.167 pm)
K-T Lower Channel Band2 (0.661 pm)
Max. Upper Channel Reflectance 0.10

Reflectance Ratio 0.45

Advanced Settings

Aerosol Scale Height (km) 2.00

C02 Mixing Ratio (ppm) 390.00

Adjacency Correction (yes/no) Yes

MODTRAN Resolution (cm"1) 15

MODTRAN Multiscatter Model Scaled DISORT

Number of DISORT Streams 8

Scale Factor for Radiance Image 10.0

Output Reflectance Scale Factor 10000
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Table-6.4 Acquisition parameters for the ASTER LIB dataset used in the present study.

Parameter Value

Solar direction (azimuth and elevation), deg 153.210649,54.309521
Solar zenith angle (90° - solar elevation angle), deg 35.690479

Date and time of scene acquisition Oct. 5, 2002; 05:43:51 UTC (Z)
Julian day for the acquisition date and time 2452552.738785

Earth-sun distance (d), AU 1.0000594926008028

Table-6.5 Solar exo-atmospheric irradiance values for the nine reflective bands of ASTER
(VNIR+SWIR) (Thome et al., 2001):

ASTER band (band center in um) Esunx (W/mz/sr/um)
AST 1 (0.556) 1847.00

AST 2(0.661) 1553.00

AST 3 (0.807) 1118.00

AST 4(1.656) 232.50

AST 5 (2.167) 80.32

AST 6 (2.209) 74.92

AST 7 (2.262) 69.20

AST 8 (2.336) 59.82

AST 9 (2.400) 57.32

Table-6.6 Haze value computation for ASTER VNIR+SWIR bands using the image-based
DOS technique (COST method; Chavez, 1996) under moderate scattering atmospheric

conditions (Chavez, 1989)

ASTER

Band

Number

Minimum

Scaled

Digital
Number

(DNm;„)

Minimum

Band-

specific
Radiance-

at-sensor

{'-mini

Band-

specific
Solar

Irradiance

(Esunx)

Radiance for a 1%

reflecting surface

(Lp-fx)
_ pEsu„xCOS02rdTu

nd2

Haze value for

each band

(Lftaze)
—Lm;n-Lp=f%

AST 1 53 35.152 1847 3.878358569 31.27364

AST 2 36 24.78 1553 3.261012917 21.51899

AST 3 31 25.86 1118 2.34759333 23.51241

AST 4 36 7.609 232.5 0.488207021 7.120793

AST 5 37 2.5056 80.32 0.168657152 2.336943

AST 6 35 2.125 74.92 0.157318151 1.967682

AST 7 35 2.0298 69.2 0.145307208 1.884493

AST 8 30 1.2093 59.82 0.125610942 1.083689

AST 9 35 1.0812 57.32 0.120361404 0.960839
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Figure-6.4 Comparisonof the spectra of the test pixel obtained after application of the various
atmospheric correction procedures, (a) Log Residuals, (b) Internal Average Relative

Reflectance, (c) Flat Field, (d) Modified Flat Field, (e) Empirical Line, (f) FLAASH, (g) Top of
Atmosphere apparent reflectance model, and (h) Dark Object Subtraction (Chavez) method.

The JHU library spectrum of the material constituting the pixel, i.e. reddish-brown medium to
fine sandy loam has been shown in (i). Wavelength unit is micrometers.
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6.2.3.2.3 Discussion on atmospheric correction results

Figure-6.4 shows the results of the various radiometric-atmospheric correction methods tested

above in comparison with the JHU laboratory spectrum of the main constituent of the field

material of the test pixel, i.e. reddish-brown fine sandy loam. Following observations have been

made on the basis of a comparative inspection of the spectral plots in terms of the curve shape

and absorption feature band position, as shown in Figure-6.4:

1. The Log Residuals- and IARR-corrected reflectance spectra show a very high degree of

match, primarily because the basic correction mechanism is similar in the two cases.

There is a gross mismatch between the expected sample pixel spectrum and the

spectrum for the same sample pixel using relative correction methods like IARR, FF,

and Log Residuals, in terms of curve shape, absorption band position and absolute

reflectance values. Due to these reasons, the results of these techniques were summarily

discarded.

2. The MFF-corrected test-pixel spectrum shows excellent match with the lab spectrum.

This is primarily because the same area was used in the correction procedure. An

evaluation of spectra from other known materials in the study area revealed the

consistency of the method, since the absorption features expected in those pixels were

found to be well represented.

3. The Empirical Line calibration yielded acceptable results with the main absorption

feature at band 6 well preserved. However, unexpectedly low reflectance in band 4 was

observed in the test spectrum. Because of this reason, this result was also deemed unfit.

4. The ToA (apparent reflectance) model yielded rather 'flat' results, and the expected

absorption feature at band 6 is not seen prominently in the test-pixel spectrum.

Moreover, the spectral variability anticipated between pixels with very different surface

composition was found to be very weak. Therefore this result was also discarded.
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5. The COST or image-based DOS technique was found to suffer from grave inaccuracies

in the SWIR bands. It can be mentioned that in the original method, Chavez (1996) had

used only the VIS-NIR bands (Landsat TM1-TM4). In this study too, the reflectance

values of the test-spectrum for the three ASTER VIS-NIR bands were relatively

accurate and close to the absolute reflectance values. However, since the expected

absorption feature at band 6 is lost in this technique, the result was considered unfit for

further use.

6. The output of the FLAASH corrected sample pixel spectrum has a close match with the

lab spectrum, except for band 8 and 9. The absorption feature at band 6 is rather

subdued and, there is an anomalously high reflectance in band 9, similar to that

observed in the L2 AST_07 product.

From the above observations, it can be inferred that the best correction for atmospheric effects

is possible when some information about the field area is available. Best calibration is achieved

when in situ field spectral measurements are made, or at least some knowledge of the field

material from a location identifiable on the remote sensing image is available and a laboratory

spectrum of that material exists.

6.2.3.2.4 Hybrid FLAASH+MFF correction

In view of the above, and the fact that the FLAASH-corrected data represent the best correction

in absence of any field information, the FLAASH-corrected data was further refined by

applying MFF-correction to them. This has been named as the 'Hybrid FLAASH+MFF

correction', and the result of this correction (fig. 6.5) has been selected for further processing.

Thus, the best atmospheric correction has been obtained using the hybrid method, where first

an absolute atmospheric correction was applied to the radiance-at-sensor data, with a

subsequent MFF correction to remove the effects of overcorrection for path radiance at shorter

wavelengths and atmospheric absorption near band 9.

H
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FLAASH+MFF Corrected Test-pixel Spectrum and JHU Library Spectrum
• i i i 1 i i • i | i i i i | i i i—

JHU Library
spectrum
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Figure-6.5 Spectrum of the test pixel after the Hybrid FLAASH+MFF correction. The JHU
soil spectral library spectrum of the constituent soil type (reddish-brown medium to fine sandy
loam) resampled to ASTER bandpasses has also been shown for comparison. Wavelength is in

micrometers.

6.2.3.3 Atmospheric correction of ASTER TIR data to retrieve surface radiances

Like data in VNIR-SWIR range, image data in TIR spectral window is also affected by the

atmospheric interference. The effect in this case is primarily due to multiplicative absorption,

and the contributiondue to atmospheric scattering is rather negligible. Atmospheric water is the

main constituent which attenuates the radiances sensed remotely in the TIR region. The

purpose of atmospheric correction of ASTER TIR at-sensor radiance data is to account for

these influences and to retrieve surface radiances which are to be used to estimate the surface

emissivities through one of the procedures discussed in later sections. The surface emissivity

data thus obtained forms the mainstayof all further processingto map the lithologic units in the

study area, as discussed in Chapter 7.
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In the following sections, the data preprocessing steps followed to atmospherically

correct the radiance-at-sensor data using the In-Scene Atmospheric Compensation (ISAC)

procedure have been described after radiometric recalibration of the at-sensor radiances as

discussed below.

6.2.3.3.1 Radiance recalibration

Radiometric Calibration Coefficient (RCC) versions 1.xand 2.x used for ASTER TIR products

processed before 8 February 2006 included an error caused from delay in RCC updating. This

error has been reduced for RCC version 2.09 or later, applied to products observed after

October 2002, but is large in earlier RCC versions, particularly versions 2.05 and 2.06 applied

to products observed from February 2001 to October 2002, although the error depends on a

scene observation date (Tonooka et al., 2003; Sakuma et al., 2005).

Since the ASTER scene used in the present study was acquired on October 5, 2002,

(and processed according to RCC version 2.06), in order to preserve radiometric accuracy and

precision, coefficients obtained from ERSDAC, Japan (http://deco.cis.ibaraki.ac.jp/RECAL/)

were used with the original radiances to recalibrate the data, according the following

relationship:

New Radiance = A xOriginal Radiance + B

The values of the coefficients A and B in the above relationship have been reproduced in

Table-6.7.
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Table-6.7 ASTER TIR radiance recalibration coefficients and estimated changes in radiances
and temperatures computed using original and recalibrated radiances for some standard

temperatures.

ASTER Band

Number
A B

Estimated Changes
(Upper: Radiance, Lower: Temperature)
@270K @300K @320K @340K

10 1.022966 -0.1132
-0.000

-O.OOK

+0.102

+0.56K

+0.196

+0.85K

+0.313

+1.11K

11 1.045742 -0.2380
+0.000

+0.00K

+0.203

+1.13K

+0.387

+1.72K

+0.613

+2.26K

12 1.078325 -0.4292
+0.000

+0.00K

+0.343

+1.96K

+0.647

+3.01 K

+1.014

+3.96K

13 1.044944 -0.2640
+0.000

+0.00K

+0.175

+1.18K

+0.320

+1.84K

+0.489

+2.46K

14 1.057163 -0.3339
+0.000

+0.00K

+0.204

+1.51K

+0.371

+2.37K

+0.562

+3.17K

6.2.3.3.2 ISAC Correction

The atmospheric correction of the ASTER TIR recalibrated at-sensor radiance data has been

performed using an algorithm similar to the In-Scene Atmospheric Compensation (ISAC)

algorithm (Johnson and Young, 1998; Hernandez-Baquero, 2000), as implemented in the ENVI

software package, described briefly as follows.

The algorithm assumes that the atmosphere is uniform over the data scene and that a

near-blackbody surface exists within the scene. The location of the blackbody surface is not

required for this correction. A single layer approximation of the atmosphere is used. Existence

of nil reflected downwelling radiance is also assumed. The algorithm first determines the

wavelength that most often exhibits the maximum brightness temperature. This wavelength is

then used as the reference wavelength. Only spectra that have theirbrightest temperature at this

wavelength are used to calculate the atmospheric compensation. At this point, for each

wavelength, the reference blackbody radiance values are plotted against the measured

radiances. A line is fitted to the highest points in these plotted data and the fit is weighted to

assign more weight to regions with denser sampling. The compensation for this band is then

applied as the slope and offset derived from the linear regression of these data with their

computed blackbody radiances at the reference wavelength.
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Upwelling atmospheric radiance and atmospheric transmission are approximated using

the following method. First, the surface temperature of every pixel is estimated from the data

and used to approximate the brightness temperature using the Planck function and assuming an

emissivity of 1.0. Next, a line is fitted using one of two methods - Top-of-Bins or Normalized

Regression to a scatter plot of radiance vs. brightness temperature. Top-of-Bins method fits a

line to the top of the scatter plot of radiance vs. brightness temperature. The top of the scatter

plot corresponds to those pixels whose emissivity is closest to 1.0. This Top-of-Bins fit is

achieved by doing a standard least squares regression on the top 5% of the data in the scatter

plot. On the otherhand, the Normalized Regression method first fits a line to the scatterplot of

radiance vs. brightness temperature by doing a standard least squares regression. The residuals

of this fit are then compared to a normal probability plot. Another regression is done on the

residuals in the normal plot. Points that are 3 times the Noise Equivalent Sensor Response

(NESR) away from the regression line are deemed outliers and are removed. A final regression

is done on the scatter plot using this reduced set of pixels. The atmospheric upwelling and

transmission are then derived from the slope and offset of this line (ENVI User's Guide, 2005).

Figure-6.6 shows the initial at-sensor radiance, the recalibrated radiance and the surface

radiance spectra of a pixel obtained after the atmospheric correction using the above-mentioned

procedure. The fitting method used for the estimation of the upwelling atmospheric radiance

and atmospheric transmission is the Normalized Regression method, with a corresponding

NESR value of 0.25. The estimated curves for upwelling atmospheric radiances and

atmospheric transmission for the five ASTER TIR channels are shown in Figure-6.9a-b,

respectively.
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Figure-6.6 Comparison ofresults obtained for the radiometric-atmospheric corrections of
ASTER TIR radiance data of the studyarea. Radiance unitsare in Wm"2 sr"1 andthe

wavelength is in micrometers.

6.3 Topographic correction

6.3.1 A brief review of existing techniques

The irradiation on a slope varies strongly with slope azimuth relative to the Sun, and the

reflectance ofthe slope varies with the angles ofincidence and exittance relative to the slope

normal. Topographic correction involves standardizing imagery for these two effects (Shepherd

and Dymond, 2003). Various methods oftopographic correction or topographic normalization

have been developed over the last two decades. Apart from the band-ratioing methods, these

are categorized under those dealing with Lambertian surfaces (surfaces exhibiting pure diffuse

reflection) and those with non-Lambertian surfaces (surfaces with non-uniform diffuse

reflection) (Riano et al., 2003).
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Cosine method: For horizontal to near-horizontal surfaces a Lambertian model can be assumed

and the most widely used topographic normalization method for such surfaces is the 'cosine

method' of Teillet et al. (1982), expressed as:

Ph =Pi
cos 6,

IL
(6)

Where:

pH and pT are respectively the reflectances for topographically horizontal and undulating

surfaces; 0Z is the solar zenith angle; and IL is the local illumination angle computed using the

following equation:

IL = cos0pcos8z + sin0pSin0zcos((pa-<Po) (7)

Where:

Op is the slope angle; 0Z is the solar zenith angle; <pa is the solar azimuth angle; and cp0 is the

aspect angle. The slope angle, the aspect angle are the derivatives of the Digital Elevation

Model (DEM). To compute the aspect and slope, a DEM ofthe same spatial size and resolution

as the image to be topographically corrected is used.

Civco method: As the cosine model overcorrects the image in areas of low illumination, Civco

(1989) suggested an alternate model, which is written as:

'!Lm-IL^
Ph = Pr + A (8)

Where:

ILm is the average illumination value of the studyarea.
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C method: The bidirectional reflectance distribution function (BRDF) describes how

reflectance varies according to the changes in the angles of incidence and illumination

(Sandmeier and Itten, 1997), and is applied to ascertain the reflectance variation for undulating

surfaces with variation in illumination geometry. Various methods of topographic correction

for non-Lambertian surfaces (topographically rugged terrain) have been proposed. C-correction

method has been found to be the most useful of these methods (Gupta et al., 2007). It is a

statistically based method and an improvement upon the existing statistical-empirical method

ofTeillet (1982). Mathematically, this method is expressed in the following form:

Ph = Pr
1cos#z +ck ^

IL+ ck (9)

Where, ck is the ratio between the intercept and slope ofthe regression line between IL and pT

in band k: pT = mkIL + bk; such that, ck=bk/mk.

6.3.2 C-correction of ASTER VNIR-SWIR surface reflectance image data

The 9-band VNIR-SWIR surface reflectance dataset was corrected for the influences of

topographic heterogeneities by applying C-correction to them. The c-factor values were

obtained through the following procedure. ASTER stereo DEM (AST14DEM; fig. 6.7a) was

used for the computation of DEM derivatives, such as slope and aspect (fig. 6.7b-c). These

were combined using equation 7 to compute a local illumination angle image (cos IL; fig. 6.7d)

of the study area. The cosine of the local illumination angle image data was regressed against

the input surface reflectance data and a simple linear fit was calculated for the plot, for every

band. The slope (m) and intercept (b) of the linear fit were used to determine the c-factor

(defined as b/m; Table-6.8). The topographically normalized surface reflectance image was

then calculated using equation 9. Figure-6.8 shows the results of hierarchical processing for

atmospheric and topographic correction of the ASTER VNIR-SWIR image data.
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Table-6.8 C-correction parameters for the solar reflective ASTER VNIR-SWIR bands

ASTER Band b m c = b/m

AST 1 0.098371 0.050668 1.941494147

AST 2 0.100966 0.075211 1.342440391

AST 3 0.151379 0.107363 1.409963808

AST 4 0.199021 0.138965 1.432168109

AST 5 0.179831 0.113777 1.58056143

AST 6 0.174731 0.124506 1.403401316

AST 7 0.175251 0.114804 1.52652626

AST 8 0.134875 0.100594 1.340786612

AST 9 0.108046 0.065128 1.658995101

Figure-6.7 Derivation of input parameters for the C-correction of the ASTER hybrid
FLAASH+MFF-corrected reflectance data of the study area: a. ASTER stereo-DEM

(AST14DEM); b. Slope image derived from the DEM; c. Aspect image derived from the DEM;
and d. Cosine of the Local Illumination Image (IL) computed through slope, aspect images and

solar zenith and azimuth data input in eq. 7.
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Figure-6.8 Hierarchical preprocessing of the ASTER VNIR-SWIR data used in the present
study (bands 3-2-1 in R-G-B): A. Original LIB radiance-at-sensordata; B. Image after hybrid

atmospheric correction; C. topographically normalized final reflectance image.
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6.4 ASTER TIR surface emissivity retrieval

6.4.1 Theoretical Background

ASTER's five TIR channels permit the separation of measured radiances into a single surface

kinetic temperature and an emissivity pseudo-spectrum, without having to make such broad

assumptions about the surface emissivity as required when using one- or two-channel broad

band thermal scanners, such as Landsat TM/ETM+ and Advanced Very High Resolution

Radiometer (AVHRR). Broad-band scanners are of greatest use over oceans, for which

emissivities are well known. ASTER's capability is of greatest use over the land surface, for

which emissivities are not known in advance.

TIR radiation (8-14 um) is emitted from a surface in proportion to its kinetic

temperature (T) and emissivity (e). Emissivity is an intrinsic property of the surface and is

independent of irradiance. Temperature is not an intrinsic property of the surface; itvaries with

the irradiance history and meteorological conditions. The radiance from a perfect emitter (i.e., a

blackbody for which e= 1.00) is exponentially related to temperature, as described by Planck's

Law:

B.=£
A n£ (10)

\eXT -\)

Where:

B=blackbody radiance (WmV'um"1); X=wavelength (um); c, =27chc2 (3.74xl0'16 Wm2; 1st

radiation constant); T = temperature (K); h = 6.63x10"34 Ws2 (Planck's constant) c = 2.99x108

ms"1 (speed of light); c2 =hc/k (1.44xl04 umK; 2nd radiation constant); k=1.38xl0"23 WsK"1

(Boltzmann's constant).

The radiance R from a real surface, however, is less by the factor s: Rx = e^Bj,. ASTER

integrates radiance emitted from a number of surface elements. This radiance is attenuated

during passage through the atmosphere, which also emits TIR radiation. Some of this radiance
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is emitted directly into the scanner (path radiance); some strikes the ground and is then

reflected into the scanner. For most terrestrial surfaces the reflectivity p and 8 are complements:

px = l-£x (Kirchhoffs Law). For most terrestrial surfaces, the value of emissivity is in the range

-0.7 < e < 1.0 (Prabhakara and Dalu, 1976), although surfaces with s < 0.85 are restricted to

deserts.

It is necessary to compensate for atmospheric effects, including Ej (eq. 2), if T and ex.

are to be recovered accurately. Incident radiance from adjacent scene elements (pixels) varies

with terrain roughness (Li et al., 1998) but is typically less than E; and is usually ignored. The

basic problem in estimating T and e from remotely sensed data is that the data are under-

deterministic: there are more unknowns than measurements (because there is an emissivity

value for each image band, plus the kinetic temperature and atmospheric parameters).

Historically, the chief reason for TIR measurements has been to estimate surface kinetic

temperatures. This task is made easier if the emissivities are known a priori because the

remote-sensing problem can then be made deterministic. Suitable targets thus include the

oceans, for which emissivities have been measured independently and are essentially the same

everywhere (e.g., Masuda et al., 1988).

6.4.2 Review of the existing techniques for separation of T and £

Historically the main reason for TIR measurements has been to estimate temperatures. This

task is deterministic for important scenes for which emissivity is not in question. Inversion of

the TIR equations for T and e has been attempted using various deterministic and non-

deterministic approaches. The former are restricted to areas for which one or more of the

unknowns are known, such as for the oceans, snowfields and glaciers, and closed-canopy

forests and include the 'split-window' techniques. Most ocean-temperature studies have

utilized data from AVHRR, which has two channels, at 10.3-11.3 urn and 11.5-12.5 um,

thereby 'splitting' the TIR spectral window. Joint analysis of the two 'split-window' channels

*
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can compensate for atmospheric effects while solving for T (e.g., Barton, 1985; McMillan and

Crosby, 1984; Prabhakara et al., 1974). Split-window algorithms rely on empirical regression

relating surface radiance measurements to water temperatures.

Several authors have examined extending the split-window technique to land surfaces

(e.g., Price, 1984; Becker, 1987; Vidal, 1991). They all conclude, however, that large errors

arise there due to unknown emissivity differences. Over land, the unknown emissivities are a

greater source of inaccuracy than atmospheric effects. Inaccuracy of only 0.01 in e causes

errors in T sometimes exceeding those due to atmospheric correction (Wan and Dozier, 1989).

In general, land emissivities cannotbe estimated this closely, and must be measured if accurate

kinetic temperatures are to be recovered. As a result, the usefulness of split-window methods

for land is limited and the non-deterministic nature of TIR remote sensing needs be addressed

head-on. Many geologic studies, however, have utilized enhancements such as decorrelation

stretching that do not recover T and e (Kahle et al., 1980; Abrams et al., 1991). A spectral-

unmixing approach has been used to separate a non-linear measure of T from e (Gillespie,

1992), but the separation is imperfect. Kealy and Hook (1993) have reviewed some of the

techniques of temperature-emissivity separation. The inversion techniques for the problem of

land-surfaces aregrouped under those, which (Gillespie et al., 1999; ASTER TES ATBD) -

a) Determine spectral shape but not T

b) Require multiple observations under different conditions

c) Assume a value for one of the unknowns

d) Assume a spectral shape

e) Assume a relationship between spectral contrast and e

All of the above approaches require independent atmospheric correction. The

temperature-independent spectral indices (TISI) of Becker and Li (1990), thermal log residuals

and alpha residuals (Hook et al., 1992); and spectral emissivity ratios (Watson, 1992a; Watson

et al., 1990) recover spectral shape. The day-night two-channel method (Watson, 1992b) solves
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the problem of indeterminacy in principle. In practice, however, this approach magnifies

measurement 'noise' greatly and requires 'pixel-perfect' registration between the two images.

Other techniques have been based on an assumed value for a 'model' emissivity at one

wavelength (Reference Channel method; Lyon, 1965), or an assumed maximum emissivity

(£max) value at an unspecified wavelength (Normalized Emissivity Method, or NEM) (Gillespie,

1985; Realmuto, 1990). One of the methods required only that the emissivity be the same at

two wavelengths (Barducci and Pippi, 1996). However, this assumption is commonly violated

for ASTER, with only five channels. The 'alpha-derived emissivity' (ADE) method utilizes an

empirical relationship between the standard deviation and mean emissivity to restore amplitude

to thealpha-residual spectrum, thereby recovering T also (Hook et al., 1992; Kealy and Gabell,

1990; Kealy and Hook, 1993). As the ADE method relies on Wien's approximation for

inversion, slope errors are introduced into the e spectrum. The Mean-MMD method

(Matsunaga, 1994) avoids Wien's approximation and uses a modified ADE empirical

relationship based on the minimum-maximum emissivity difference (MMD).

6.4.3 Computation of the surface emissivity image of the study area

Attempts have been made to estimate surface emissivities using the atmospherically corrected

ASTER LIB radiance data for the study area. Three of the techniques described in the previous

section - the Reference Channel (Kahle, et al., 1980), the Normalized Emissivity Method

(Realmuto, 1990) and the Alpha Residuals (Kealy and Gabell, 1990; Kealy and Hook, 1993)-

are available in ENVI, and have been tested on the ASTER TIR radiance image data. The input

requirements and resulting surface emissivities for individual methods have been discussed

briefly as follows.

The Reference Channel emissivity technique assumes that all the pixels in one channel

(band) of the thermal infrared datahave a constant emissivity. Using this constant emissivity, a

temperature image is calculated and these temperatures are used to calculate the emissivity
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values in all the other bands using the Planck function. In the present study, a constant

emissivity value of 0.96 has been used for band 1.

The Emissivity Normalization (NEM) technique calculates the temperature for every

pixel and band in the data using a fixed emissivity value. The highest temperature for each

pixel is used to calculate the emissivity values using the Planck function. For the ASTER data

of the study area, NEM-derived emissivities have been computed using a fixed emissivity value

of 0.96.

Alpha Residuals technique produces alpha residual spectra that approximate the shape

of emissivity spectra. Wien's approximation of the Planck's Function is used so the equation

can be linearized with logarithms. The temperature and emissivity terms are separated and

means are used to subtract the temperature term out (ENVI User's Guide, 2005). The alpha

residual spectra are a function of emissivity only and have a similar shape asemissivity spectra

buthave a zero mean. Therefore emissivity spectra have to be scaled for direct comparison with

alpha residual spectra. Emissivity spectra can be calculated from alpha residual spectra using

empirical data as described in the Kealy and Hook (1993).

6.4.4 ASTER Level 2 standard surface emissivity product (AST_05): TES

algorithm

A standard L2 surface emissivity dataset (AST05) of the study area generated using the

Temperature and Emissivity Separation (TES) algorithm (Gillespie et al., 1998, 1999; ASTER

TES ATBD) with the 5-band LIB TIR radiance data have been acquired from the EOS Data

Gateway (EDG), and evaluated in this study. A briefdescription of the TES algorithm has been

given below.

The TES algorithm hybridizes two established algorithms by first estimating the

temperature and band emissivities using the Normalized Emissivity Method, and then
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normalizing the emissivities by their average value. Next, an empirical relationship adapted

from the Alpha Residual method is used to predict the minimum emissivity from the spectral

contrast (min-max difference or MMD) of the normalized values, permitting recovery of the

emissivity spectrum with improved accuracy. TES uses an iterative approach to remove

reflected sky irradiance. Input to TES consists of land-leaving radiances (compensated for

atmospheric absorption and path radiance) and downwelling sky irradiance. Based on

numerical simulation, TES can recover temperatures within about ±1.5 K, and emissivities

within about ±0.015 (Gillespie et al., 1999). Limitations arise from the empirical relationship

between emissivity values and spectral contrast, compensation for reflected sky irradiance, and

ASTER's precision, calibration, and atmospheric correction (Gillespie et al., 1998).

6.4.5 Selection of the final surface emissivity data

The Reference Channel method-, the Emissivity Normalization method-, the Alpha Residuals

method-derived surface emissivity images and the standard L2 AST_05 surface emissivity

image procured from EDG have been compared with each other and with a reference library

spectrum. JHU spectral library spectrum of a peak quartzite has been used to check the quality

and accuracy of each result. Figure-6.9a-d shows the emissivity spectra of a common quartzite

pixel in all different image datasets, and the corresponding JHU library spectrum for pink

quartzite has been shown in Figure-6.10e. From the figure it is evident that while all methods

preserve the spectral shape, and are similar, the differences exist in terms of spectral slope, and

the depth of the main Si-O absorption feature centered near band 12. Alpha Residuals-derived

data was rejected since the absolute emissivity values had no direct physical use in quantitative

terms. The AST_05 standard surface emissivity product exhibits closest match in terms of

shape and absolute values to the library spectrum, and hence it has been used for further

processing as described in detail in Chapter 7.

*
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Figure-6.9 Comparison of surface emissivity
estimation results: a. Reference-channel-

derived image-; b. Emissivity Normalization-
derived image-; c. Alpha Residuals-derived

image-; d. L2TES standard emissivity
product (ASL05) based image-spectra for the
dominant rocktype (pure/pink quartzite) from
a common pixel; and e. Reference spectrum

(JHU spectral library) for the same rock type.



Chapter 7

ASTER TIR Data Processing for Lithologic Mapping

7.1 Statement of purpose and introduction

In this chapter the potential of ASTER TIR data in qualitative and quantitative lithologic

mapping has been explored. The presence of diagnostic spectral features (reststrahlen band or

minima in emissivity curves) of rock forming silicates, sulfates and carbonates in the thermal

infrared range (7-15 urn) allows their detection, identification and mapping using remote

sensing techniques. Also, the property of a systematic shift in the spectral signatures of silicate

minerals, based on their crystal structure has been used to estimate their absolute quantitative

distribution using thermal infrared remote sensing. As mineralization in the area is closely

associated with major structures as well as host lithology (Chapter 2), the success of lithologic

mapping has an important bearing on its utility in identification of favorable sites for mineral

exploration activity in the area.

7.2 Lithologic mapping using ASTER TIR data

Most of the important rock-forming silicate minerals have their diagnostic spectral features in

the TIR region (7.0-14.0 um) (Lyon, 1965; Hunt and Salisbury, 1974, 1975, 1976; Salisbury

and D'Aria, 1992). The variation in silicate mineralogy from felsic to mafic is represented as a

shiftof the mainspectral feature (Si-0 stretching region or reststrahlen band, Hook et al., 1999)

towards longer wavelengths (see fig. 7.1). This characteristic has been utilized in mapping

silicate mineralogy using multi/hyperspectral TIR data. Another spectral feature in silicate

mineral spectra between 8.5 and 12.0 urn occurs due to the H-O-Al bond at 11.0 um, and is

characteristic of clay minerals.
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The test area represents metamorphosed rocks with almost pure silicates (quartzites) on

one end, and impure carbonates (actinolite-diopside marbles and other calc-silicates) and mafic

rocks (amphibolites) on the other. The intrusives in the area range from leuco- to mesocratic

granites and granodiorites, to melanocratic amphibolites. The rocks are variously weathered.

Scanty to nil vegetation cover for most rocky surfaces and a semi-arid climate and makes the

study area favorable for remote lithologic mapping. ASTER TIR LIB radiance-at-sensor and

L2 processed surface radiance/emissivity data of the study area have been variously digitally

processed to generate lithologic maps, as discussed in the following sections. The scheme of

processing has been designed to hierarchically grow from simple to advanced methods of data

processing, to exhaustively evaluate their relative merits with the ASTER data.
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Figure-7.1 Emissivity spectra of (a) dunite, (b) gabbro, (c) diorite, (d) granite, (e) pink
quartzite, (f) dolomitic marble. Biconical reflectance spectra from JHU spectral library have
been converted to emissivity using Kirchhoff s law. The corresponding spectra resampled to

ASTER TIR bandpasses have been shown in dashed lines, and the positions of the bands have
been marked on the top. Wavelength is in um.
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7.2.1 ASTER TIR Decorrelation Stretch

Unlike image data in the VNIR range, the bands in multi-channel thermal images are, in

♦ general, highly correlated. The thermal infrared surface radiance is a function of both the

surface temperature and surface emissivity. In general, surface temperature variations across

the scene are limited to <30% (Gillespie etal., 1986) and emissivity variations among geologic

materials are minimal (ranging from 0.7 to 0.9). This means that the variation in the radiance

values for the same pixel in different bands is relatively small, which results in low contrast and

hue-saturation differences. To overcome this, a process called Decorrelation Stretch (DCS) is

usually applied (Gillespie et al., 1986; Gillespie, 1992). DCS suppresses surface temperature

effects which dominate the radiant spectral flux measured in all bands, and at the same time

enhances the subtle spectral features arising from emissivity variations. In DCS, data from

three ormore bands are transformed to principal components and then stretched to equalize the

variance along three statistically independent axes. The stretched data are then transformed

back into the approximate original RGB coordinate system for display as a color composite

image. Resulting images represent variations in spectral reflectance (for VNIR-SWIR data), or

emissivity (for TIR data), by hue and overall albedo, or surface temperature, by intensity

(Sabine, 1999). DCS has been widely used with data from TIR instruments, especially Thermal

Infrared Multispectral Scanner (TIMS) (e.g., Kahle, 1987; Kahle et al., 1988; Sabine et al.,

fe 1994; Hook et al., 1998; Ramsey et al., 1999; Vaughan et al., 2005). The 'standard' DCS

channels are selected such that wavelength channels centered about 10.5 urn (TIMS band 5),

9.2 urn (TIMS band 3), and 8.3 um (TIMS band 1) are assigned to red, green and blue colors,

respectively.

DCS has been applied to the five recalibrated radiance-at-sensor TIR channels of the

ASTER LIB data of the study area, using three at a time and assigning them to the RGB color

scheme. As with the TIMS data reported in literature, the best results of DCS have been

obtained for RGB composites 13-12-11 (band centered about 10.657 um in red, 9.075 um in
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green, and 8.634 um in blue) and 14-12-10 (band centered about 11.318 um in red, 9.075 um in

green, and 8.291 um in blue). An RGB composite of TIR bands 14-12-10 has been shown in

Figure-7.2a, whereas Figure-7.2b shows the DCS equivalent of the same.

On the DCS image, the more siliceous surfaces appear in reds and pinks, such as the

peak quartzites and the alluvium. This is due to the fact that band 12 lies close to the main

Reststrahlen feature (emissivity minimum) for silica (centered about 9.0 urn; fig. 7.1), while

bands 14 and 10 form the edges. For example, the orthoquartzite (peak/pure quartzite) ridges of

the Alwar Group occurring dominantiy along the western limb of the Babai anticline, and the

aolian sands of the Thar Desert lying towards the west of the study area, are all shown in

prominent red/pink hues. Mafic rocks and clay-rich surfaces appear in blue-violet and magenta-

purple hues, respectively. This is because clay has a low emissivity for band 14 (11.32 um),

and relatively high emissivity values in bands 12 (9.08 um) and 10 (8.29 um). Areas in shades

of green are most likely to be mixtures of arable soil/regolith rich in iron, and vegetation

(mostly cropland). Mineralogically, the green+red areas on the DCS 14-12-10 image are most

likely to represent the mineral albite, which has an emissivity minimum around 8.43 um,

shoulder of the minimum at about 9.0 jam, and general emissivity high beyond 10.0 um. The

intermediate hues represent mixtures ofthese surfaces. The inherent horizontal banding in the

TIR data can be seen more pronouncedly in the DCS images. The spatial resolution (90 m) of

ASTER TIR poses a great limitation in absolute interpretation of the lithology, as discussed in

detail later. Nevertheless good qualitative lithological discrimination has been achieved through

DCS processing.
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1—

Figure-7.2 ASTER LIB TIR recalibrated radiance-at-sensor image: a) 14-12-10 in RGB, and
b) DCS of the same. Notice the dramatic improvement in hue and contrast differences after

DCS processing, allowing better visual discrimination of the surfaces.
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7.2.2 Quartz, carbonate and mafic indices

Ninomiya et al. (2005) proposed three lithologic indices for ASTER TIR raw radiance-at-

sensor data - quartz index, carbonate index, and mafic index - and advocated that even

atmospherically uncorrected radiance data can yield valuable information about these lithologic

groups. In this study, the LIB atmospherically uncorrected recalibrated radiance-at-sensor,

ISAC-corrected surface radiance, and L2 surface radiance data over the study area have been

used incalculation of the three indices, asreproduced below (Ninomiya et al., 2005):-

1. Quartz index: QI = - =
AST_Bl0xAST_Bl2

2. Carbonate index: CI = =
AST _B\A

3. Mafic index: MI =^T _B12,(AST _Bl4f
(AST_B\3)4

In above equations, ASTBn (where, 10 < n < 14) stands for the ASTER band n. The

results of the computation of these indices have been shown in Figure-7.3. It can be readily

observed that while there is a general correspondence between the quartz and mafic indices for

the three datasets, there are considerable discrepancies in the index for carbonate rich rocks,

which appears to over-map such areas. This can be explained if we look at the emissivity

spectrum of mafic carbonate rocks (dolomitic marble; fig. 7. If). The spectrum is representative

of calcite and dolomite, the two principal carbonate minerals. The emissivity low for

carbonates lies close to the emissivity low for the ultramafic rocks (e.g., dunite). For coarse

spectral resolution data as in ASTER TIR, the emissivity minima for carbonates and

mafic/ultramafic rocks almost coincide. In addition to this, in the study area, the carbonate

rocks are rarely pure; they are mafic-rich and are interbedded with para-amphibolites. In

general, the mafic index has been found to work consistently well for all the three datasets.

However, the atmospherically corrected LIB radiance data have yielded unusually low quartz

distribution relative to that obtained using radiance-at-sensor and surface radiance data, which

could be due to inaccurate atmospheric correction for band 11.
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Figure-7.3 Quartz, carbonate and mafic indices have been shown as a-c as single indices; and
as R-G-B composites as d-f, for recalibrated radiance-at-sensor data, ISAC-corrected surface

radiance data, and L2 surface radiance data, respectively. Note the differences in distribution of
greens, and topographic effects on the three RGB composites.



151

7.2.3 Spectral processing ofASTER TIR surface emissivity data

The 5-band standard ASTER L2 surface emissivity data (AST_05) obtained from LP-DAAC's

EOS Data Gateway (EDG) produced after applying the Temperature and Emissivity (e)
Separation (TES) algorithm (Gillespie et al., 1998) to the LIB radiance-at-sensor data, has been

spectrally processed using ahierarchical method proposed by Kruse and Boardman (2000) and

Kruse et al. (2003) as integrated within the ENVI software (ENVI User's Guide, 2005). The

sequential steps involved in the spectral processing have been shown in Figure-7.4. There are

primarily two major steps involved in the spectral processing - selection of the spectral end-

members (minerals/rocks), and the suitable classification algorithm for spectral mapping.

In view ofthe absence ofany field spectral data, the mineral/rock end-members have

been derived from the image, itself, using an automated technique called Pixel Purity Index

(PPI™), described in later section. While the technique is useful in the absence of any field

spectral data, it also minimizes the differences that might exist in a controlled laboratory

spectral measurement; and the pixel averaged field spectrum of the same material, and the

results are, in general, more representative of the variability inherent within the remotely
observed scene.

Two classification algorithms have been used for spectral classification of the end-

members: 1) the Spectral Angle Mapper (SAM), and 2) the Mixture Tuned Matched Filtering
(MTMF™). The sallent features of these algorithms have been provided in re,evant sections jn

the following paragraphs. The results of the classification have been discussed (partly in this

chapter, and in greater details in Chapter 9) by comparing them with the geological map of the
area, and the ground-truth (Chapter 4).
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7.2.3.1 MNF transformation

The Minimum Noise Fraction (MNF) transform is commonly used with hyperspectral or

imaging spectrometer data todetermine the inherent dimensionality of image data, to segregate

noise in the data, and to reduce the computational requirements for subsequent processing

(Boardman and Kruse, 1994). The MNF transformation algorithm implemented in ENVI has

modified from Green et al. (1988) and comprises of two cascaded Principal Components

Transformations (PCTs). The first PCT, based on an estimated noise covariance matrix,

decorrelates and rescales the noise in the data. This step results in transformed data in which

the noise has unit variance and no band-to-band correlations. The second step is a standard PCT

of the noise-whitened data. For the purposes of further spectral processing, the inherent

dimensionality of the data is determined by examination of the final eigenvalues and the

associated images. The data space can be divided into two parts: one part associated with large

eigenvalues and coherent eigenimages, and a complementary part with near-unity eigenvalues

and noise-dominated images. By using only the coherent portions, the noise is separated from

thedata, thus improving spectral processing results (ENVI User's Guide, 2005).

The five MNF bands obtained after application of the MNF transformation to the five-

band surface emissivity dataset have been shown in Figure-7.5a-e, and the eigenvalues plot of

these bands has been shown in Figure-7.5f. It can be seen from the figure that mutually

exclusive lithologic information is contained in MNF bands 1, 4 and 5, whereas MNF bands 2

and 3 suffer fromthe effectsof scan-banding. Figure-7.6a and b showMNF bands 1-2-5 and 1-

4-5 as RGB composites. It can be seen that there is an interesting correspondence between the

MNF band composite 1-2-5 and the DCS images shown in Figure-7.2. Mafic rocks have been

distinctly mapped in MNF band 5 (blue hues), whereas MNF band 1 generally maps the

siliceousrocks (orange and red hues, quartzites and aolian sands).
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Figure-7.6 MNF bands composites: a) 1-2-5 in RGB, and b) 1-4-5 in RGB. Notice the unique
distribution of the blue pixels corresponding to the amphibole-bearing rocks, and the reds,

pinksand oranges pertaining to the siliceous rocks as marked on the reference geologic map
(Figure-2.3, Chapter 2)
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7.2.3.2 PPI and end-member selection

Pixel Purity Index (PPI™) is a commonly used technique to find the most spectrally pure

(extreme) pixels in multispectral and hyperspectral images (ENVI User's Guide, 2005). The

spectrally purest pixels typically correspond to mixing end-members. The PPI™ is computed

by repeatedly projecting ^-dimensional scatter-plots onto a random unit vector. The extreme

pixels in each projection, i.e. the pixels that fall onto the ends of the unit vector, are recorded

and the total number of times each pixel is marked as extreme is noted. A PPI™ image is

created in which the DN of each pixel corresponds to the number of times that pixel was

recorded as extreme.

PPI™ has been calculated for the five MNF bands having dimensionality above a

threshold of 0.15. Using a PPI™ threshold of 2.500, 5000 PPI iterations yielded 15,756 pure

pixels. The plateau shape of the PPI™ curve indicates minimal variation in the number of

extreme pixels determined with successive PPI™ iterations, and therefore the values can be

safely regarded as representative of the end-member distribution in the image. The PPI™ plot

and image have been shown in Figure-7.7a-b, respectively.

In ENVI, the end-member selection is usually done by examining the w-dimensional

scatter-plot using the n-Dimensional Visualizer™ tool, which interactively displays the pure-

pixel data cloud in tt-dimensions with flexible user control, and allows selection of groups of

data clusters which correspond to the potential end-members. Preliminary examination of the

10,000 pure pixels in the n-Dimensional Visualizer™ showed that the default end-members

identified were sufficiently distinct (see fig. 7.8a) and could be used perse. In the present case,

the number of possible image end-members is 6 (the number of image end-members is limited

to n+l, where n is the number of bands used in the PPI™ iteration, for the present case n

represents the 5 MNF bands). The spectra of the six image end-members have been shown in

Figure-7.8b.
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Figure-7.7 Results of the PPI™ calculated using the 5 MNF bands of the ASTER surface
emissivity dataset: a) PPI™ plot, and b) color representation of the distribution ofpure/extreme

pixels in the image. Hotter colors represent higher DN values, or pixels which have been
identified as extreme in greater number of PPI™ iterations, identified by the accompanying

legend.
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Figure 7.8 a) The PPI™-derived pure pixel n-dimensional scatter-plot seen using n-
Dimensional Visualizer™, and b) the average spectra of clusters lying on theextreme ends of

the axes, identified as the image end-members.
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7.2.3.3 End-member identification using ENVI Spectral Analyst™

In order to identify the unique spectra of the image end-members representing specific rock

types, ENVI's Spectral Analyst™ module along with a reference spectral library has been

employed. The Spectral Analyst™ uses ENVI techniques, such as binary encoding (Mazer et

al., 1988), Spectral Angle Mapper (SAM) (Kruse et al., 1993), and Spectral Feature Fitting

(SFF™) (Clark et al., 1990b, 1992; Crowley and Clark, 1992) to rank the match of an unknown

spectrum to the materials in a spectral library (ENVI User's Guide, 2005).

Two reference spectral libraries have been compiled after converting the hemispherical

reflectance spectra from the JHU spectral library to emissivity spectra using the Kirchhoff s

law (Nicodemus, 1965) and contain emissivity spectra of well characterized 324 minerals, 25

soil types, 34 coarse-grained igneous rocks and 25 coarse-grained metamorphic rocks. The JHU

spectral library mineral spectra, however, are measured as bidirectional (biconical)

reflectances, which cannot be used for quantitative estimation of emissivities through the

application of Kirchhoff s Law, as only hemispherical reflectances can be used in this way.

They can, nevertheless, be used with full confidence 'qualitatively' (i.e., in terms of the curve-

shape, and not the absolute values) for most remote sensing applications where spectral

'curves' are required to identify the unknown materials, as in the present case. Appendix B

provides the details about the spectral measurement procedure and salient features of the

individual categories of spectra contained in the JHU spectral library. The spectra have

subsequently been resampled to the bandpasses of the ASTER TIR channels. SAM and SFF

have been given equal weights (0.5 each) in determining the overall best fit score.

It has been observed, however, that this automated technique is only moderately

successful due to the following reasons:

1. The materials (mineral/rock/soil) with best spectral match scores do not necessarily

represent the actual surface materials, as their mapped abundances are significantly

higher than what can be expected. This owes to the fact that the diversity of surface
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materials is in reality wider than the number of end-members determinable (in this case,

6) through PPI™ approach, which is restricted to n+\. This shortcoming can be

overcome if the end-member spectra are supplied externally, such as through field

measurements. Alternatively, by using smaller subsets of the image individually with

PPI™, an end-member spectral library can be created with a greater diversity and range

of end-member spectra. As for the former, no field spectra for the study area have been

collected, and due to coarse spatial resolution and smaller size of the study area the

latter method was not considered suitable for the ASTER emissivity dataset; although

this technique has been used for the higher spatial resolution VNIR-SWIR data

(discussed in detail in Chapter 8).

2. Owing to the differences in the individual match scores between the two matching

techniques used (SAM and SFF™), instead of a single best match a range of materials

could be predicted with relatively equal or marginally different, overall scores.

Similarly, by using different library spectra, different materials receive the top scores

(see Tables 7.1 and 7.2 for a comparison among the top three best matches obtained

using one of the two reference spectral libraries, and the inherent ambiguities). It has

been found that more than one reference spectra representing mineralogically widely

different rocks/soils receive the same overall scoredue to the unequal scores for the two

individual techniques. It has been observed that where the unknown spectrum has well

defined diagnostic 'absorption' features, SFF™ yields results with a better match, and

for spectra without any diagnostic feature, SAM match results appear to be superior. As

no single technique could be considered sufficientlyaccurate, it becomes necessary that

the decision about the candidacy of a particular reference spectrum for its match to the

unknown end-member spectrum be made with great caution. Therefore, the closest

matches have been examined interactively individually with the unknown spectrum in

both normal and continuum (Clark and Roush, 1984; Clark, 1999) removed mode, with
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a background support of the field knowledge, to assign the reference material spectrum

to the unknown spectrum.

Table-7.1 Top three Spectral Analyst™ matches to the six end-member spectra using reference
spectral library containing JHU mineral, rock and soil spectra.

Serial Unknown image Top three reference spectral Overall SAM SFF

number end-member

spectrum ID
library materials with the
best overall scores

score score score

1 n-D class mean # 1 Alunite 0.995 0.992 0.998

Nepheline 0.994 0.993 0.994

Augite 0.993 0.992 0.994

2 n-D class mean # 2 Nepheline 0.982 0.980 0.985

Saponite 0.981 0.980 0.982

Augite 0.980 0.970 0.990

3 n-D class mean # 3 Granite 0.971 0.971 0.971

Alunite 0.960 0.928 0.992

Tremolite Schist 0.957 0.959 0.955

4 n-D class mean # 4 Quartz 0.995 0.989 1.000

Quartz 0.992 0.982 1.000

Chloritic Gneiss 0.990 0.981 1.000

5 n-D class mean # 5 Alunite 0.974 0.970 0.979

Tremolite Schist 0.974 0.949 0.998

Alunite 0.972 0.961 0.983

6 n-D class mean # 6 Jadeite 0.984 0.988 0.979

Jadeite 0.976 0.986 0.966

Augite 0.973 0.953 0.992

TabIe-7.2 Top three Spectral Analyst™ matches to the same sixend-member spectra using
reference spectral library containing JHU rock and soil spectra alone.

Serial

number

Unknown image
end-member

spectrum ID

Top three reference spectral
library materials with the best
overall scores

Overall

score

SAM

score

SFF

score

1 n-D class mean # 1 Augite-hypersthene andesite
Mafic basalt/diabase

Syenite gneiss

0.982

0.978

0.972

0.988

0.992

0.987

0.976

0.963

0.958

2 n-D class mean # 2 Augite-hypersthene andesite
Mafic basalt/diabase

Granodiorite

0.967

0.951

0.941

0.982

0.983

0.974

0.951

0.919

0.909

3 n-D class mean # 3 Felsic granite
Tremolite schist

Intermediate monzonite

0.971

0.957

0.956

0.971

0.959

0.975

0.971

0.955

0.937

4 n-D class mean # 4 Chloritic gneiss
Brown loamy fine sand
Reddish brown fine sandy loam

0.990

0.989

0.989

0.981

0.979

0.978

1.000

1.000

1.000

5 n-D class mean # 5 Tremolite schist

Intermediate monzonite

Quartz monzonite

0.974

0.965

0.961

0.949

0.971

0.958

0.998

0.959

0.963

6 n-D class mean # 6 Augite-hypersthene andesite
Granodiorite

Mafic basalt/diabase

0.964

0.958

0.950

0.975

0.986

0.954

0.953

0.931

0.946
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Keeping these observations in mind, the best matches to the unknown image-derived

end-member spectra obtained through Spectral Analyst™ in combination with geologic

background knowledge of the study area (Chapter 2 and Chapter 4) have been shown in Figure-

7.9a. Figure-7.9b shows the same spectra convolved to ASTER TIR bandpasses. It can be

readily observed, that low spectral resolution of ASTER TIR and inadequate coverage of the

main spectral feature (between 9.3 um and 10 urn) limits the use of ASTER data in finer

mineralogic identification.

Note: The names of the spectral matches ('felsic' granite and 'mafic' diabase), shown in the

figures and used subsequently, are the ones present in the reference spectral library (JHU

spectral library). The same nomenclature has been retained so that the specificity of the sample

used in building the spectral library is retained and the corresponding mineralogic

characteristics of the samples can be identified and referenced by anyone. The nomenclature

does not relate with the actual nature of the rock types (since granite is essentially felsic, and

diabase is essentially mafic!).

>
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Figure-7.9 a. Best Spectral Analyst™ matches to the six unknown image end-members; b. The
same spectra resampled to the ASTER TIR bandpasses. Notice the loss of some important

spectral features between 9.3 um and 10 um due to coarse spectral resolution of ASTER TIR
data. Wavelength is in micrometers.
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7.2.3.3 SAM classification

The Spectral Angle Mapper (SAM) is a physically-based classification algorithm that uses an

H-dimensional angle to match pixels to reference spectra (Kruse et al., 1993). The algorithm

determines the spectral similarity between two spectra by calculating the angle between the

spectra, treating them as vectors in a space with dimensionality equal to the number of bands.

This technique, when used with calibrated reflectance data, is relatively insensitive to

illumination and albedo effects. SAM compares the angle between the end-member spectrum

vector and each pixel vector in ^-dimensional space. Smaller angles represent closer matches to

the reference spectrum. Pixels further away than the specified maximum angle threshold in

radians are not classified.

Using a threshold of 0.05 radians with the PPI derived image end-member spectra, a

SAM classified lithologic map has been generated as shown in Figure-7.10. In this image, the

surfaces classified as 'mica schist' collectively represent the metapelites (schists and phyllites).

The surfaces classified as 'maficdiabase' are primarily amphibolite rocks and other such rocks

rich in amphibole minerals. Surfaces classified as 'felsic granite' are basically quartz-rich rocks

and soils with some feldspar and muscovite. Pure quartzites are clearly classified as 'pink

quartzite'. The aolian sands of the western part of the study area have been clearly classified as

brown to dark brown sand, whereas the cultivated regions in the eastern part and the weathered

metapelites, carbonates and arkosic quartzites in the central part of the study area have been

classified as brown to dark brown sandy loam. The SAM classification is limited by the number

of spectral end-members used to train the classifier. As more spectral end-members are used to

classify the image, the spectral diversity of the diverse surface materials can be more fully

realized.
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Figure-7.10 Spectral lithologic map generated using SAM on ASTER TIR surface emissivity
data and the six spectral image end-members determined using PPI™.
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7.2.3.4 MTMF™ processing and classification

Matched Filtering or Orthogonal Subspace Projection technique (Harsanyi and Chang, 1994;

Boardman et al. 1995) is commonly used to find the abundances of user-defined end-members

using a partial unmixing approach. In this method not all of the end-members in the image need

to be known. This technique maximizes the response of the known end-member and suppresses

the response of the composite unknown background, thus matching the known signature. It

provides a rapid means of detecting specific materials based on matches to library or image

end-member spectra. This technique may find some false positives for rare materials.

A modified version of this technique, called the Mixture-Tuned Matched Filtering

(MTMF™) has been implemented in ENVI. MTMF™ performs matched filtering that also

adds an output 'infeasibility' image to the results. The infeasibility image is used to reduce the

number of false positives that are sometimes found when using matched filtering. Pixels with a

high infeasibility are likely to be matched-filter false positives. Correctly mapped pixels will

have a matched-filter score above the background distribution around zero and a low

infeasibility value. The infeasibility values are in noise sigma units which vary in DN scale

with matched-filter scores. The results of MTMF™ processing appear as a series of gray-scale

images (two for each selected end-member). The matched filtering floating point results

provide a means of estimating the relative degree of match to the reference spectrum and the

approximate sub-pixel abundance. Pixels with a high matched-filter result and high infeasibility

are 'false positive' pixels and do not match the target (ENVI User's Guide, 2005).

For the study area, the MTMF™ processing of the ASTER surface emissivity data has

been used to produce six abundance (MTMF™ score) images and their respective six

infeasibility score images, as shown in Figure-7. lla-1. These images have been interactively

stretched using linear stretch for better visual discrimination. Table-7.3 shows the MTMF™

score ranges and the thresholds used in individual cases to produce the final classification

output.
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Table-7.3 MTMF™ scores and thresholds used for classification ofthe six image end-
members.

MTMF End-member Score Range Threshold

MTMF End-member1 -0.989424 to 1.031486 0.095

MTMF End-member2 -0.919444 to 1.217289 0.150

MTMF End-member3 -0.913721 to 1.288750 0.450

MTMF End-member4 -0.931269 to 1.459700 0.500

MTMF End-member5 -1.447824 to 1.821196 0.250

MTMF End-member6 -2.047239 to 1.789476 0.250

Since the MTMF™ results are separate grayscale images in the form of match results

for individual end-member spectrum, in order to show the results collectively, the thresholded

MTMF™ results were first density-slice color-coded, saved as class images, and converted to

vector polygons. The vector files were then saved as regions of interest (ROIs) and displayed

over a higher resolution ASTER band 1image to produce the final MTMF™-classified image

output, as shown in Figure-7.12.

Since the MTMF™ results for the last two end-members (brown to dark brown sand,

and brown to dark brown sandy loam overlap the pixels thresholded for the other classes, and

also because their general distribution is wide and non-lithology-specific, they have not been

shown onthe final MTMF™ class image.



H

173

Figure-7.11 a-f Matched Filter processed images for the six image end-members; g-1 their
respective infeasibility images.
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Figure-7.12 Classified output of MTMF™ processing of ASTER L2 surface emissivity data.
The background is ASTER band 1 image, with spatial resolution of 15 m. Notice the

limitations posed by coarse 90 m spatial resolution and effects of vegetation on spectral classes,
especially the class 'Mica Schisf. Excellent discrimination has been achieved between the two

surface lithologic categories of mafic and felsic rocks, shown respectively in green and
blue/yellow colors. Quartz-rich surfaces with some micaceous/clay content have been mapped

as class 'Felsic Granite'.
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7.3 Silica weight percent estimation using ASTER TIR surface emissivity data

In the preceding sections, methods of qualitative estimation of surface lithology using ASTER

TIR radiance/emissivity data have been described. Studies utilizing thermal infrared data have

demonstrated that it is possible to distinguish between rock types based on differences in

silicate mineralogy (Kahle and Rowan, 1980; Lahren et al., 1988; Abrams et al., 1991; Watson

et al., 1996; Cudahy et al., 1999; Hook et al., 1994; Bandfield, 2002). Quantitative estimation

of mineralogic or chemical abundances using TIR data is a relatively new and under-explored

field. More recent studies have used the shift in the emissivity minimum to estimate the weight

percent silica of igneous rocks (Gillespie et al., 1986; Sabine et al., 1994; Hook et al., 2005).

Variations in silicate mineralogy are particularly useful in geological mapping because they are

an important criterion in classifying and interpreting igneous rocks as well as sedimentary and

metamorphic rocks derived from them.

In the following sections, two independent methods of silica weight percent mapping

using ASTER TIR surface emissivity data have been described. Method 1 is a novel and rather

broad-based approach that utilizes the spectral modeling of the surface-emissivity spectra with

a reference curve derived from spectral library data to empirically determine the coefficients of

a linear fit and applying the relationship to unknown emissivity data to map the silica weight

percentages. A variety of curve-fitting models have been tested to determine the best spectral

model to estimate the emissivity minimum for individual pixel spectrum and using this

information to empiricallyestimate the silica weight percentages for an unknown pixel. Method

2 is based on Metal Mining Agency of Japan's (MMAJ) original 'K-value' method, which is an

empirically derived linear relationship between ASTER TIR surface emissivity and Si02

concentrations of 194 fresh/weathered rock/mineral samples, determined chemically (MMAJ,

2001). The two results have subsequently been compared in specific context of the study area.
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7.3.1 Theory and previous studies

Reststrahlen band: The reflectance and emissivity spectra ofminerals/rocks exhibit diagnostic

features at various wavelengths caused by the interaction of EM energy with the atoms and

molecules that make up the minerals and rocks and provide a means for their remote

discrimination and identification. The various atomic/molecular processes involved have been

described in Chapter 5. In case of infrared wavelengths, the interaction generally leads to the

promotion of molecules from vibrational ground state to excited state. Different Si-0 bonded

structures vary in their interaction with EM energy in thermal infrared wavelengths.

Collectively, the Si-0 spectral features in the thermal infrared are referred to as the

'Reststrahlen Band'. The emissivity minimum for this band occurs at shorter wavelengths (8.5

um) for tectosilicates (e.g., quartz and feldspars), and progressively longer wavelengths for

phyllosilicate, inosilicate, sorosilicate, and nesosilicate structures (Hunt, 1980). Because

framework/tectosilicates dominate the felsic igneous rocks and chain silicates dominate the

mafic igneous rocks, the minimum for the reststrahlen band shifts to shorter wavelengths as

S1O2 content increases (fig. 7.1).

Development of the method: In order to take advantage of the systematicity of shift in the

reststrahlen minimum in igneous rock composition, it is necessary to establish a technique for

the determination ofthe minimum as well as the most suitable chemical parameter. Gillespie et

al. (1986) determined the minimum using a Gaussian function. Sabine et al. (1994) expanded

on Gillespie's work by evaluating the relationship between the Gaussian minimum and a

variety ofchemical and modal parameters. Sabine et al. (1994) found that highest correlation

existed between the Si02 content and the Gaussian minimum. The Gaussian minima for the

samples used by Sabine et al. (1994) were determined from emissivity spectra derived from

Thermal Infrared Multispectral Scanner (TIMS) data over Desolation Wilderness, northern

Sierra Nevada, California, where the main rock units comprise granitoids with Si02 weight

percentages ranging from 50% to 70%. The TIMS instrument is a multispectral scanner that
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acquires data in 6 wavelength channels in the thermal infrared (7.0-13.0 um), and is a

forerunner to the ASTER instrument. In order to determine the weight percent Si02, Sabine et

al. (1994) regressed the emissivity minima from the TIMS emissivity spectra against the weight

percent Si02 obtained from field samples. Sabine et al. (1994) determined a linear relationship

between the minimum wavelengths, which was obtained by fitting a 3-term Gaussian function

(Berk et al., 1998) to TIMS data, and the weight percent Si02, which was obtained by chemical

analysis of samples from locations in the TIMS imagery. They also showed the fit values for

the spectra of the field samples. Since the input data used by them were area and sensor

specific, the inherent artifacts made the findings of only limited applicability and use. Hook et

al. (2005) further generalized the approach by applying the method to the spectra of 35 igneous

rock samples from ASTER spectral library instead of spectra from any specific sensor. The

Si02 weight percent of these samples lie in the range of 43% to 76%. Hook et al. (2005) used

the following Gaussian functions to determine the emissivity minima of the library spectra:

f(x) = A0e2 (3-term Gaussian) (1)

f(x) = A0e 2 + A3 (4-term Gaussian) (2)

Where:

x- A
z , and x = wavelength (um)

A2

Aq through A->, are the fit values for the Gaussian function fix). The 4 terms of the

Gaussian function correspond to the amplitude, position of the minimum value, area enclosed

by the function and offset, respectively.

In their study, Hook et al. (2005) calculated the Gaussian-fit values for the full

resolution laboratory spectra and the laboratory spectra convolved to the 5 TIR bandpasses of

ASTER, and 10 TIR bandpasses of the MODIS and ASTER Simulator (MASTER) instrument.
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Inall theyused 9 different band-combinations to calculate the 3- and 4-term Gaussian fit values

to determine the effects of band selection and resolution on emissivity minimum of the 35

igneous rock spectra, and thus obtained about 630 different fit values (2 fits each for 35 spectra

and 9 channel combinations; in one case 32 spectra were used). The position coefficient of the

fit (term A\) from each sample in each dataset was plotted against its corresponding laboratory

weight percent Si02 value and a least squares fit performed on each dataset. Table-7.4 gives the

least-squares fit correlation coefficients (R2) obtained by them for the 9cases investigated.

Table-7.4 Results from fitting the ASTER spectral library igneous rock spectra with 3-and 4-
term Gaussian function. N= number ofsamples; R2 =Correlation coefficient. For Case 9, the

value ofNless than 35 indicates that the Gaussian model failed to adequately fit certain spectra
(the fit values were obtained excluding those spectra). Wavelength range shown is from the
centroid value ofthe first channel to the centroid value of the last channel (after Hook etal.,

2005).

Case Sample Set
3-term Gaussian 4-term Gaussian

N R2 N R2

1 7-14 pm (full resolution) 35 0.6617 35 0.7082

2 8-12 pm (full resolution) 35 0.7925 35 0.8034

3 MASTER 1-10 channels (7.737-12.888 pm) 35 0.8216 35 0.8307

4 MASTER 1-9 channels (7.737-12.131 pm) 35 0.7705 35 0.7867

5 MASTER 2-10 channels (8.153-12.888 pm) 35 0.4719 35 0.105

6 MASTER 2-9 channels (8.153-12.131 pm) 35 0.71 35 0.7755

7 MASTER 3-8 channels (8.604-11.289 pm) 35 0.4846 35 0.2565

8 ASTER (8.287-11.289 pm) 35 0.5832 35 0.662

9 ASTER (8.287-11.289 pm) excluding ultramafics 32 0.7581 32 0.7615

In general, they concluded that the Gaussian model fits the spectra best when the full

resolution spectra in the wavelength range 8.0-12.0 um are used. This is due to the fact that the

main reststrahlen feature for the emissivity spectra lies within this range. They also describe the

influence ofatmosphere and the importance and influence ofits correction on the spectra in the

ability ofthe Gaussian model to correctly locate the emissivity minima (Hook etal., 2005).
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7.3.2 Spectral modeling of TIR emissivity spectra

Approach and objective: This section describes an approach for determining the measure of the

shift in the emissivity minima by modeling the emissivity spectra. The basic premise of the

method has been described by Gillespie et al. (1986), Sabine et al. (1994) and most recently by

Hook et al. (2005), as discussed previously. The present work builds upon the findings of Hook

et al. (2005) and explores the universality of the approach, with special reference to the ASTER

surface emissivity data of the study area.

The two important objectives with regard to the analysis undertaken in this study are:

1. To test the curve-fitting options other than the Gaussian model to obtain the emissivity

minima values, in order to appraise the generality of the method, and

2. To see whether the approach is capable of yielding reliable results with ASTER data, as

in the present case, since these are globally available and the ability to map weight

percent silica from these data is highly desirable.

Data and tools: Spectral modeling has been carried out using the full resolution and resampled

JHU igneous rock spectral library (34 spectra, for 22 different rock types), which had been

computed from the original biconical reflectance spectra using Kirchhoffs Law. JHU biconical

reflectances are available in the wavelength range of 0.4-14.0 um (details of the JHU spectral

library have been provided in Appendix B), since the wavelength region of interest (reststrahlen

band) lies within 8.0-12.0 um wavelength region, the spectra within this region alone has been

used in modeling. The chemical descriptions of the samples used in JHU spectral library are

publicly available, and hence serve as standard data for comparative studies.

JHU spectra convolved to the system response function of ASTER TIR sensor (obtained

from the official ASTER website: asterweb.jpl.nasa.gov) have been modeled separately to see

the effects of spectral sampling and general applicability of the procedure. The curve fitting

functions explored include various forms of the Fourier, Gaussian, and Polynomial functions.
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The initial processing has involved the creation ofthe database in ASCII file format for input to

MATLAB. Segmentation of the database and initial data preparation was carried out using

Microsoft Excel and Golden Grapher software. All subsequent processing, viz. spectral

modeling has been carried out using MATLAB 7.0.1 software. Object-oriented programs have

been written in MATLAB to compute the coefficients for the curve-fitting functions that are

not available in MATLAB's CurveFit Toolbox as built-in.

Method andcurve-fittins results: To test the reproducibility of the results and to validate the

procedure suggested by Hook et al. (2005), JHU laboratory spectrum of quartz-monzonite has

been used in the present study. Initially the curve-fitting had been carried out using the full

resolution spectra within the wavelength region of 8.0-12.0 um; subsequently the spectrum of

the same rock resampled to the system response functions of ASTER has been used with

various curve-fitting functions. The results of the two exercises have been summarized in

Figures 7.13a-g and 7.14a-e, respectively. Since the resampled spectral data had only five data

values (corresponding to the five TIR bands), they could not be used with Polynomial 5th Order

upwards and Fourier 2nd Order upwards curve-fitting functions. The JHU igneous spectral

library rock types and their respective Si02 weight percentages have been shown in Table-7.5

alongwith the resultsof spectral modeling.

In Table-7.5, it can be readily seen that the modeled minima for Gaussian 3-term fitting

and Polynomial 2nd Order fitting are almost exactly alike. This is due to the fact that the

Gaussian model used in the fitting essentially calculates the coefficients bya transformation of

the original equation so as to mimic a Polynomial 2nd Order function. The steps involved in

calculation of the coefficients for the Gaussian 3-term fit function and the minima for the

Polynomial 2nd Order fit have been described as follows:

Original form of the Gaussian 3-term function:

U-Af

y=A0-e 2V ...(3)
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Taking log on the two sides transforms the equation, thus:

ln(y) = -x2+—^-x+ ln(4,)-
Z./±j Z.Ay

AT
1A 2

ax +bx + c ...(4)

The fit is actually done on equation 4, and the resultant coefficients are given as:

l
A V 2a

A
2A2b

2

c+—<-?

A0=e ^

...(5)

In case of the Polynomial 2nd Order curve fitting, the minimum of the fit (restricted to

the wavelength range used) was derived using differential calculus, and the minimum for the fit

is defined by the following equation:

*=-f, -.(6)
2a

Where b and a are the coefficients of the general form of the quadratic polynomial

function given in equation 4. The Fourier 1st Order fit results were obtained using the 'fourierl'

function available within MATLAB. For all analyzed fits, the fitting has been done using

default values for fit parameters. A bisquare robust least-squares fitting mode and the

Levenberg-Marquardt algorithm have been used in all cases. A startpoint of 0.01 for coefficient

'al' of Gaussian 4-term fit has been used for the model lab spectrum. Full details of all fit

results have been provided in Appendix C.

Results of the linear regression between the model minima derived through spectral

modeling and Si02 content for the JHU spectra have been shown in Figures 7.15a-b, 7.16a-b,

7.17a-b and 7.18, respectively for the Polynomial 2nd Order fit for the full resolution test

spectrum, and Gaussian 3-term, Polynomial 2nd Order and Fourier 1st Order fits for the

resampled test spectrum. The linear regression fit coefficients for all cases have been

summarized in Table-7.6.



Table-7.5 Results ofthe spectral modeling ofJHU igneous rock spectra. Except for polynomial 2nd order curve fitting, all other values are for JHU
spectra resampled to the ASTER TIR system response function.

S.No. Rock Type Si02 Weight
Percent

Gaussian 3-term
Polynomial 2nd Order

Resampled Full Resolution (8-12 pm)

Modeled

Minimum
Modeled

Minimum
R2 Modeled

Minimum
R2 Modeled

Minimum
R2

1 Augite-hypersthene 57.38 9.7113 7.932677 0.899879 9.712094 0.827423 9.703439 0.778378

2 Basaltic 53.3 9.9593 7.870974 0.914204 9.95954 0.949052 10.077037 0.814541

3 Anorthosite 53.41 9.9995 8.302489 0.782632 9.999143 0.765224 10.024408 0.841555

4 Aplite 75.8 8.1811 8.875575 0.988352 8.171279 0.937164 9.042101 0.739768

5 Basalt 50.54 10.379 8.193396 0.926784 10.375444 0.983383 10.64934 0.945863

6 Basalt 51.02 10.0895 7.33349 0.925425 10.091764 0.94879 10.12105 0.972581

7 Basalt 49.95 9.8118 8.290603 0.963387 9.812513 0.683494 9.752319 0.572048

8 Basalt 51.03 9.9219 8.250981 0.96707 9.925908 0.880904 9.947912 0.891777

9 Basalt 49.52 9.9856 8.311675 0.767236 9.988501 0.895064 10.006812 0.919883

10 Basalt 55.02 10.1316 7.141411 0.934455 10.133948 0.952191 10.18192 0.96178

11 Diabase 52.41 10.0074 8.456895 0.798672 10.011077 0.822244 10.034209 0.806517

12 Diabase 52.54 10.1297 7.052555 0.9053 10.131971 0.929241 10.166706 0.896783

13 Diorite 49.81 10.0329 8.11099 0.997387 10.032479 0.739976 9.983522 0.858998

14 Dunite 39.57 11.8532 8.225024 0.771672 11.971959 0.853452 16.097171 0.863052

15 Gabbro 44.2 10.1756 8.211361 0.946145 10.176262 0.845621 10.319962 0.89223

Table- 7.5 continued...
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16 Alkalic 73.44 8.5928 8.985647 0.977288 8.546343 0.906318 9.050734 0.728271

17 Granite 75.5 8.6269 8.994109 0.989545 8.54589 0.899462 9.039901 0.72508

18 Granite 69.1 8.3826 8.934305 0.993387 8.338296 0.919314 9.086725 0.737534

19 Granite 75.1 8.8057 9.056656 0.976274 8.761645 0.887281 9.196617 0.755927

20 Granodiorite 64.2 8.911 9.073971 0.989911 8.899423 0.944078 9.279372 0.744551

21 Granodiorite 56 9.6383 7.585602 0.99504 9.636568 0.972609 9.680088 0.894708

22 Ijolite 43.08 10.1208 8.360315 0.572427 10.12724 0.76787 10.061699 0.81989

23 Lamprophyre 45.94 10.1048 7.247546 0.955275 10.105619 0.990094 10.077844 0.972725

24 Monzonite 61.42 8.5857 8.948333 0.993159 8.588749 0.956623 9.22609 0.748891

25 Norite 48.42 10.0469 8.108363 0.999287 10.046304 0.741574 10.003722 0.861543

26 Norite 48.23 10.1359 7.134107 0.92996 10.139104 0.941712 10.091813 0.96376

27 Rhyolitic 75.78 9.5907 7.892435 0.963143 9.576584 0.683917 9.528899 0.720539

28 Picrite 51 11.1912 8.44952 0.452305 11.179184 0.940212 13.701049 0.907919

29 Picrite 68.9 10.9629 8.441101 0.416096 10.953725 0.949133 13.164358 0.914105

30 Quartz 73.9 8.5413 8.95095 0.999727 8.532455 0.939305 9.199014 0.716457

31 Rhyolite 70.87 9.4151 7.486278 0.947461 9.404847 0.763727 9.382595 0.638193

32 Alkalic 55.28 9.644 7.47352 0.887042 9.644118 0.886152 9.72953 0.802611

33 Nepheline 59.85 9.1906 9.198468 0.923946 9.19135 0.885268 9.6019 0.706755

34 Tonalite 63.08 8.6667 8.952438 0.946638 8.680592 0.932455 9.091145 0.705506 CO
en
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Figure-7.13 Results of spectral modeling of the full resolution JHU lab
spectrum of quartz monzonite contained within wavelength range 8-12 um.

Gaussian 3-term and 4-term fit results have been shown in a and b; c and d show
the Fourier 1st Order and 2nd Order fit results; and e-g show the results of

Polynomial 2nd Order, 3rd Order and 4th Order fits, respectively. The R2 values
have also been shown with each graph, respectively. Wavelength is in um.
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Figure-7.15 Linear regression between Polynomial curve-fit modeled emissivity minima and
corresponding Si02 weight percentages of the JHU spectral library minerals: a. using all 34

spectra; b. excludingspectra ofdunite and picrite.
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Figure-7.16 Linear regression between Gaussian 3-term curve-fit modeled emissivity minima
and corresponding Si02 weight percentages of the JHU spectral library minerals: a. usingall 34

spectra; b. excluding spectra of picrite and rhyolite.
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Figure-7.17 Linear regression between Polynomial 2 order curve-fitmodeled emissivity
minima and corresponding Si02 weight percentages of the JHU spectral library minerals: a.

using all 34 spectra; b. excluding spectra of picrite and rhyolite.
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Table-7.6 Summary of linear regression results for various curve-fitting models investigated to estimate the emissivity minima. N=no. of rock spectra
used; m and c arethe slope and intercept of the linear model (y=mx+c); i?2=regression coefficient; M>=Not Determined

JHU Igneous Rock Spectra
Curve-fitting Model

Polynomial 2na Order Gaussian 3-term Fourier 1st Order
N m c R* N m c R' N m c R'

8-12 pm full resolution
34 -3.3077 91.278 0.197

ND ND
32 -20.152 254.12 0.747

Resampled to ASTER TIR
Bandpasses

34 -9.4194 149.04 0.5494 34 -9.55 150.34 0.5407
34 8.0917 -8.8157 0.2325

30 -11.447 166.6 0.8228 32 -11.757 169.61 0.8276

& 1 •
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Discussion and selection ofthe fit model: From the full resolution test emissivity spectrum of

quartz monzonite shown in Figure-7.13, and the various curve-fitting options investigated, it

can be readily observed that while Gaussian 3-term function fails to adequately fit the spectrum

(R2 = 0.3727), Gaussian 4-term function yields very good fit (R2 = 0.9755). However,

equivalent quality fits have been obtained using the two Fourier (R2 = 0.9317 and 0.9161) and

the three successively higher order Polynomial fits (R2 = 0.9083, 0.9694 and 0.9746,

respectively). In case of the sample spectrum resampled to the 5 TIR bandpasses of ASTER,

the results reveal interesting insights. The Gaussian 3-term function here gives a good fit (R2 =

0.8909), while an almost perfect fit is attained using Gaussian 4-term function (R2 = 0.9916).

The two Polynomial functions (2nd and 3rd order) also provide very good fits (R2 = 0.9448 and

0.9886) respectively). The best fit, however, has been achieved using a Fourier 1st Order

function (R2 = 0.9924). This general improvement can be attributed primarily to low spectral

sampling and omission of subtle spectral features in the resampled spectrum.

For most practical applications, a fit with R2 value of 0.9 and above can be considered

good. Since above results imply that more than one kind of fit can be used to model the

spectrum, a more exhaustive analysis of the variations in the spectral shape becomes necessary

to check the stability of the method. Table-7.5 lists the curve-fitting fit values (R2) for the

ASTER TIR resampled emissivity spectra of other rock types in the JHU spectral library as

well as the Polynomial 2nd Order model fit for the full resolution spectra. For the various

samples, it can be seen that while Fourier 1st Order function in general gives superior fit values,

it fails in more than one cases (R2 (Ijolite) = 0.5724; and R2 (Pictite) = 0.4503 and 0.4160).

Polynomial 2nd Order function provides more consistent results. Gaussian 3-term function gives

similar results as obtained for the Polynomial 2nd Order function (for reasons described in

previous section).
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Linear regression of the various curve-fitting functions explored in this study against the

Si02 values of the samples in JHU igneous rock spectral library have been summarized in

Table-7.6. The main conclusions from the linear regression analysis are outlined as follows:

1. For the full resolution spectra, the linear fit is unacceptable when all samples are used

(R2 = 0.197), but improves significantly on omission of two ultramafic samples (dunite

and picrite) (R2 = 0.747) (fig. 7.15)

2. For the resampled library spectra, the linear fit for emissivity minima derived using

Gaussian 3-term curve-fitting (fig. 7.16) improves significantly (R2 changes from

0.5407 to 0.8216) on exclusion of 4 samples (2 each of picrite and rhyolite). Similar

effects are observed for the linear fit for emissivity minima derived using Polynomial

2nd Order curve-fitting (fig. 7.17), with R2 improving from 0.5494 to 0.8228 on

exclusion of the 4 samples (2 each; picrite and rhyolite).

3. The Fourier function is summarily rejected, since the slope of the linear fit is positive

(fig. 7.18), which is against the basic premise of the method that the emissivity

minimum progressively shifts to longer wavelengths as the silica content decreases.

From the computing efficiency point of view, a Polynomial function is better than all

other functions investigated. The polynomial fit results improve as the order of the function

increases, but at the same time the efficiency of the model deteriorates. Polynomial 2nd Order

function is the closest to the Gaussian 3-term function explored in previous studies. Also it is

stable as well as efficient. For these reasons, it has been selected for use with the 5-band

surface emissivity dataset of the study area to calculate the model emissivity minima.

Result: Using these values and applying the linear fit equation (y = -11.447x + 166.6) derived

from the JHU spectral library data, a silica weight percent image of the study area has been

generated, as shown in Figure-7.19. Pixels with negative and unreasonably high Si02 values
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(above 100% Si02; confined to shadowed areas) have been assigned a value of 0 to maintain

the color coherence of display. A histogram of the data values within 49-100%) for the silica

weight percent map generated has been shown in Figure-7.21. Three pixels had negative Si02
j

values, while 32 pixels had values above 97% Si02. Over 99.9% of the data has been found to
i

contain Si02 values within the range of 49-97% !Si02 (see fig. 7.21). About 50% of the area has

been determined by this technique to contain Si02 weight percent of 60.274%; 98.5% data is

represented by just three data values (55.017%), 60.274%) and 65.530%), which are interpreted

to represent the mafic rock bodies (calc-silicates, ortho/para-amphibolites), aolian sands and

metapelites, and quartzites, respectively.

It has been concluded that the method is successful so long as the shape of the spectral

emissivity curve can be reasonably modeled by the curve-fitting function used. Also, since the

empirical relationship used in estimating silica weight percentages for unknown surfaces has

been derived from igneous rock spectra, which may not be sufficiently representative of the

lithologic diversity contained in a terrain such as the area under investigation, discrepancies due

to inaccurate spectral modeling and unrepresentative regression coefficients cannot be ruled

out.

7.3.2 The K-value method

A silica content image of the study area has been generated using the MMAJ's original 'K-

value' method (MMAJ, 2001; Miyatake, 2002) and applying it on the ASTER L2 surface

emissivity data. The K-value has been derived using an empirical approach based on laboratory

data of 194 samples including both fresh and weathered rocks and minerals. The following

simple linear relationship has been observed between the K-value and the actual Si02 weight

percent (Miyatake, 2002):

Si02(wt%) = 57.11+ 286.88£ (7)
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The K-value in the above expression is defined as:

£10+ £11+ £12
M

£ = -log<
£13

(8)

where En is the emissivity for ASTER band n (10<n<14).

Using equations 7 and 8 with the ASTER L2 surface emissivity dataset of the study

area, a silica weight percent image has been obtained, as shown in Figure-7.20. In this map, red

and yellow huestypicallycorrespond to siliceous regions, whereasblues and violets correspond

to more mafic surface lithologies. While there is evidently an overestimation of the silica

weight percentages for a few pixels confined to areas with deep hill shadows, over 99.91%) of

the data is represented by Si02 weight percent range of 52.2% to 100%) and 98.75%> of the data

is represented by Si02 weight percent range of 52.2% to 90%> (see data histogram in fig. 7.22).

Also, the overestimation, in most part is conveniently within 5%. For minimum values (52.2%>

Si02), the error is well within 1%, since amphibolites, which are the rocks with minimum Si02

content in the area, normally contain Si02 within 52-56%) range.
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Figure-7.19 S1O2 weight percent map of the study area generated using spectral modeling of
the TIR surface emissivity spectra. The emissivity minimum in the reststrahlen band has been
modeled using a Polynomial 2nd Order function. The original 90 m resolution image has been

resized to 15 m resolution for a smoothened visualization.



IB 108.0

80.1

B52.2

75*4rE

75»4yE

201

75"S0'E

1TSVB

]Kilometers

Figure-7.20 Si02 weight percent map of the study areaobtained using the method proposed by
MMAJ (2001). The original 90 m resolution image has been resized to 15 m resolution for a

smoothened visualization. Notice the overall correspondence ofthe silica distribution with the
spectral lithological maps obtained through analysis of the ASTER LIB and L2 emissivity data,

shown in Figures-7.3, 7.11 and 7.12.



Histogram for Spectral-modeling derived Silica Weight Percent Map

1.5x10*

., ... ,• i i i i • i i i i i i i i i .

>.
o

c 1.0x10*
/ \

3
IX
0)
v.

li-

/ \

5.0x103 —1 \ —

0 i i i i i • i i i i • • i • • i i • • t

50 60 70 80

Data Value (in %)

90 100

203

Figure-7.21 Histogram for the silica weight percent map derived through spectral modeling of
the ASTER surface emissivity data by Polynomial 2nd Order curve-fitting and application ofthe

empirically derived linear regression fit relation.
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Figure-7.22 Histogram for the silica weight percent map derived using the MMAJ's K-value
relationship between ASTER emissivity and silica weight percent for the study area.
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7.3.4 Comparison of silica weight percent mapping results

As far as the qualitative distribution of Si02 is concerned, there is an overall agreement in the

maps generated using the two techniques, with high silicaareas shown in hotter colors (hues of

red) and low silica areas in colder colors (hues of blue), respectively on the two image maps. It

can be readily noticed that the silica content map derived using MMAJ's K-value technique is

relatively smoother and more realistic, since the variation of the Si02 values in nature is rather

gradational than abrupt (see the histograms in Figures 7.21 and 7.22, for the two methods).

However, the success of the method based on spectral modeling of the emissivity spectra

cannot be undermined. As noted by Hook et al. (2005), the method can be-fine tuned to give

better results if some laboratory data for the study area are available. It may also be noted for

the present study, however, that the data redundancy and discrepancies in the absolute values of

Si02 for the area could only be inferred from the available geologic information, since

laboratory estimates of the actual Si02 content for the rocks were not available.

7.4 Note on the effects of spatial resolution, vegetation and surface coatings on

ASTER-based lithologic mapping

The mixing of the mineralogic end-members in TIR is linear (Ramsay and Christensen, 1998)

and has been utilized to determine the mineralogy of rocks in laboratory (e.g., Hamilton et al.,

1997; Ruff, 1998; Feely and Christensen, 1999; Hamilton and Christensen, 2000; Wyatt et al.,

2001; Michalski et al., 2004). A number of recent studies using multispectral and hyperspectral

data in the TIR range with spatial resolution varying from about 2 m (SEBASS; Vaughan et al.,

2005) to about 6 m (MASTER; Hook et al., 2005) and 20 m (TIMS; Michalski et al., 2004)

have demonstrated the effect of spatial resolution in addition to spectral resolution on lithologic

mapping. Coarse spatial resolution of operational remote sensing data in TIR, such as that of

ASTER, makes compositional mapping rather difficult and uncertain due to undesired spectral

mixing.
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The greatest limitation is posed by the effects of vegetation on spectral emissivity of

natural surfaces, more so for the rocks, which even otherwise have low spectral emissivity

contrasts. It is known that in TIR the vegetation approximates a black body with a very high

emissivity that is invariant with wavelength (Salisbury and D'Aria, 1992). As a result, mixture

with vegetation reduces the overall contrast of the mineralogic spectral features within a mixed

pixel. The presence of vegetation may non-uniformly shallow spectra and may result in

overestimated clay abundance in partially vegetated pixels (Michalski et al., 2004). The same

factor is responsible for underestimation of quartz and feldspars, especially quartz - and

thereby the Si02 weight percentages - for mixed pixels.

Similarly, thin desert varnish (mixed layer clay minerals with subordinate iron and

manganese oxides; Potter and Rossman, 1977) coatings on rock surfaces, especially the

orthoamphibolites in context of the present study, in an arid environment reduces the

reflectance and spectral contrast with features unique to the rock (Rivard et al., 1993).



Chapter 8

ASTER VNIR-SWIR Data Processing for Alteration

Mapping

8.1 Statement of purpose

Knowledge accumulated from detailed studies of some 'type' ore deposits from across the

globe has shown beyond doubts that the majority of ore deposits are closely related to their

structural setting, host and source rocks, and the types of alteration (hydrothermal or

supergene). Many of these factors can be evaluated with large swath remote sensing. The

discussion of regional structural and lithological characteristics in Chapter 2 and ground-truth

based on field and laboratory data in Chapter 4 suggest a close genetic relationship between the

stratigraphy, structure and igneous events in Khetri Copper Belt and accompanying base metal

mineralization. Structural complexity and semi-arid climate of the area present a great

opportunity for remote investigation of the elements of mineralization outlined above.

One of the main goals of this research is to investigate the utility and capability of

spaceborne remote sensing (ASTER data) to characterize the spectral features of alteration

zones and host rocks. Structural elements have not been investigated in the present study as

such studies have already been undertaken with proven success. Regional lithologic mapping

has been successfully accomplished using the ASTER TIR data, as described in detail in

Chapter 7. The main emphasis of this chapter is on investigating ASTER's unique spectral

coverage in the solar reflective SWIR region, where the characteristic spectral features of most

alteration minerals occur, in conjunction with the three solar reflective VNIR channels, for

mapping of characteristic alteration minerals and assemblages. The work presented here is the

outcome of an attempt to exhaustively evaluate the processing techniques - both simple and

advanced - to differentiate, identify and map the alteration mineralogy in the study area.
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8.2 Spectral characteristics of target alteration minerals

In this section the spectral characteristics of the alteration minerals commonly reported from

the study area have been reviewed to aid in the extraction of the spectral information contained

in ASTER VNIR-SWIR surface reflectance data, as discussed in the following sections.

Based upon the ground-truth information collected from literature (Chapter 2), and

fieldwork and laboratory analyses of rock samples (Chapter 4), a list of alteration minerals

associated with mineralization and/orweathering of exposed rock surfaces in the studyarea has

been compiled. Many of these minerals are characteristic of hydrothermal systems associated

with igneous events, especially those of epithermal precious metal deposits and porphyry base

metal deposits typical of the island arc environments. Others are related to physical and

chemical processes of sub-aerial weathering. It must be remembered, however, that the

discrimination of the type of alteration, and its relationship with, and utility for, mineralization

is purely upon the interpretation of the expert geologist, since remote sensing simply provides

the 'evidence of occurrence' of a specific mineral in the area of interest.

Table-8.1 provides an overview of the main spectral features (absorption bands) of

these alteration minerals within the wavelength range 0.4-2.5 um, since ASTER VNIR-SWIR

bands coverthis region. Figure-8.1 shows the laboratory spectral curves of these minerals, and

the same spectra resampled to the 9 VNIR-SWIR bandpasses of ASTER. Figure-8.2 shows the

continuum-removed spectra of these minerals in full resolution and resampled modes,

respectively. The electronic processes, such as crystal field and charge transfer effects in the

VNIR (for Fe+ and Fe+ ions) and molecular vibrational processes at frequencies

corresponding to the SWIR wavelengths are the chief causes of these spectral features. The

details of these processes have been discussed previously in Chapter 5.
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Table-8.1 Spectral characteristics ofthe reflectance spectra of some target alteration minerals
in the wavelength range 0.4-2.5 um. HS/LS => high/low sulfldation

Alteration mineral (or
mineral group) Principal alteration category Diagnostic absorption bands (pm)

Sericite (muscovite) Sericitic or Phyllic (with
associated quartz) (LS) 2.205 (strong)

Clay minerals (Kaolinite,
montmorillonite/smectite,
illite)

Argillic and advanced argillic
(HS/LS)

For kaolinite: 2.165 and 2.21 doublet
(strong, main)

For smectite/montmorillonite: 2.215
(main)

For Illite: 2.205 and 2.345

Alunite Advanced argillic (alunitic) (LS) 1.764; 2.165 (main); 2.325

Biotite
Potassic (with associated K-
feldspar or adularia)

1.20 (broad); 2.335 and 2.400
doublet (weak)

Calcite/dolomite Carbonatization

For calcite: Two weak bands

centered at 1.875 and 2.000; 2.335
(strong); 2.528 (strong)

For dolomite: Two weak bands

centered at 1.855 and 1.985; 2.315
(strong); 2.496 (strong)

Chlorite group Propylitic (with some epidote
and actinolite)

0.706 (broad, weak); 1.985 (broad,
strong); 2.255 and 2.325 doublet
(main)

Scapolite (meionite -
marialite series) Scapolitization 2.225 and 2.325 (weak)

Albite Albitic 2.195 (main, weak)

Limonite group (goethite,
hematite, jarosite) Weathering

For goethite: 0.485 (narrow, strong);
0.970 (broad, strong); 2.400 (weak)

For hematite: 0.539 (strong); 0.871
(strong)

For jarosite: 0.4338 (narrow, weak);
0.930 (broad); 2.215 and 2.265
doublet (narrow, main)
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Figure-8.1 a. USGS library spectra of some key alteration minerals; b. the same spectra
convolved to the ASTER VNIR-SWIR bandpasses.
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Figure-8.2 a. Continua-removed USGS library spectra of some key alteration minerals; b. the
same spectra are shown convolved to the bandpasses of the 9 VNIR-SWIRbands of ASTER.
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Discussion: From Figures-8.1 and 8.2 it can be readily observed that though valuable spectral

information existing in the full resolution laboratory spectra is lost upon resampling to lower

spectral resolution ASTER VNIR-SWIR bandpasses, important absorption features (spectral

signatures) remain well-preserved even in the resampled spectra. Spectral band positions and

relative depths are represented better in continua-removed spectra than that in the normal

spectra. Also, it can be noticed that for minerals with similar spectral signatures (e.g., illite and

muscovite) in SWIR there is a greater possibility (almost inevitability) of ambiguous

identification when the resampled spectral data is used. Differences between such spectra exist

in the VNIR region (below 0.56 um), but unfortunately there is no band in ASTER dataset in

that wavelength region. Therefore, ambiguity in the identification of certain such minerals is

quite likely when data from SWIR region alone is used. Withal, ASTER's special capabilities

for unique alteration mineral identification owing to strategic placing of its SWIR channels

have much to gain from, as is shown in the following sections.

8.3 ASTER VNIR-SWIR surface reflectance data processing

The atmospherically and topographically corrected 9-band VNIR-SWIR surface reflectance

data have been variously digitally processed to highlight the zones of alteration, and to identify

unique mineral constitution of the surfaces in the study area. The processing flow has been

designed such that it hierarchically grows from a simple level of processing involving image

enhancement and color display of 3-band composites, to image transformation (DCS, PCA and

DPCS), band ratioing and spectral indices, logical operator-based band modeling, and finally to

advanced spectral processing and image classification methods. These techniques and the

results derived hence have been described in the following sections.
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8.3.1 Band composites

Instruments that measure radiance in the VNIR-SWIR wavelength region offer the ability to

begin image analysis by displaying images in color by assigning individual bands to the red,

green and blue color in creating 3-band color composite images. This allows rapid basic

preliminary image interpretation before having to analyze the full spectral dimensionality ofthe

dataset.

The numberof possible distinct 3-band RGB combinations of the 9 VNIR-SWIR bands

is 84 (nCr = n!/(r!*(n-r)!); n=9, r=3). Although the information from spectral curves of the

materials can be used to select the appropriate band combinations, for an area without any

firsthand information the wide range of spectral diversity restricts this approach. To overcome

this difficulty, a statistical band selection technique called the Optimum Index Factor (OIF;

Chavez et al., 1982) method has been used. The OIF ranks all possible RGB color

combinations of multispectral remote sensing data on the basis of the total variance within the

bands and the between-band correlations (Chavez et al., 1982; Chavez and Bowell, 1984).

Higher OIF values indicate superior spectral contrast in the band-composite used.

Mathematically, the OIF is expressed as follows:

ov +a, +cr,.

•(1)OIF = —£
\rKL \+ \rKM \+\riM

Where: Gy^m are the standard deviations for the three bands K, L, and M; and |a-kl/km/lm| are the

absolute values of the correlation coefficients between bands K & L, K & M and L & M,

respectively.

Applying OIF technique to the 20 distinct combinations of the 6-band SWIR, and 84

distinct band combinations of the 9-band VNIR-SWIR combined surface reflectance datasets,

the best OIF values in RGB scheme were found to correspond to 4-6-8 (for SWIR data alone)

and 6-3-1 (for VNIR-SWIR combined data) composites. Figure-8.3a-b shows these two band
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composites. The images have been linearly stretched to bring about the full color contrast.

Strong absorption of Fe-0 bearing surfaces in band 1, strong reflectance of green and healthy

vegetation in band 3, overall high rock reflectance in band 4, strong absorption by hydroxyl-

bearing minerals/rocks and vegetation in band 6, and by carbonates/chlorite in band 8 form the

spectral bases behind the distinct litho/mineralogic information content of these band-

composites.

In SWIR band-composite 4-6-8 (fig. 8.3a), red-pink hues indicate regions with

prominent OH" absorption (e.g., micaceous and clayeyrocks), while greenshades indicate areas

dominated by Mg-OH bearing rocks (carbonates and chlorite). The overall darktones represent

phyllite and schist bearing regions having low albedo and absorption for both OH" and chlorite.

The peak quartzites and alluvium with high albedo and absence of these constituents appear in

bright shades. Vegetation appears in dark colors due to general OH" absorption.

Band composite 6-3-1 helps distinguish areas with vegetation from regions having OH"

and Fe-0 absorption. Also, the superior spatial resolution of the VNIR bands (15 m) aids in

highlighting the structural complexity of the area. On this image (fig. 8.3b), the iron-bearing

surfaces have been prominently displayed in deep shades of red, OH-bearing surfaces have

been displayed in blue shades and the healthy chlorophyll-dominant vegetation in bright green

colors. The intermediate colors represent mixtures of these categories. Bright colors represent

sandy soils, desert sands and quartzites, whereas metapelites again appear in dark tones. The

main shear zone on this image appears in light blue-cyan colors whereas the amphibolites

(chloritic surfaces) and carbonates appear in bright magenta shades. Many smaller bodies of

these rocks are shownmore clearly than on the 4-6-8 composite, primarily due to betterspatial

resolution.
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Figure-8.3 RGB FCCs with maximum spectral information: a. SWIR FCC 4-6-8; b. VNIR-
SWIR FCC 6-3-1.
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8.3.2 Decorrelation stretch images

As with the image data in TIR (Chapter 7), the SWIR data also suffer from high band-to-band

correlation resulting in low spectral contrast between bands. To overcome this problem, the

decorrelation stretch (DCS) procedure (described in Chapter 7) has also been applied to select

RGB combinations of the 6 SWIR bands to highlight zones of alteration representing specific

spectral absorption features. Two DCS band composites, viz. 4-6-8 and 5-7-9, have been found

to display the most useful and explicit spectral information.

Figure-8.4 shows the DCS composite 4-6-8. The scan-blurring defects in ASTER SWIR

due to filter scratch (for details see Appendix D; Iwasaki and Oyama, 2005) appear rather

exaggerated on the DCS image, as indicated by white arrows. The DCS images exhibit the real

value of ASTER SWIR data and the power of DCS technique, as with just a simple image

enhancement important spectral information has been highlighted. Subtle color contrasts on

simple band composites appear prominently on DCS images (for example compare the normal

FCC 4-6-8 in fig. 8.3a with DCS 4-6-8 in fig. 8.4). On DCS 4-6-8, further distinction between

surfaces with similar spectral signatures can be made. Carbonate rocks appear in lighter green

to yellow hues since they lack the subtle Fe-0 absorption feature in band 4, whereas

amphibolites with chlorite-rich surfaces appear in relatively darker green shades. The main

Babai-Taonda shear zone stands out prominently in bright red-pink colors. Dark blue colors on

DCS image primarily exhibit shadows due to low sun angle and rugged topography, and for flat

areas and well-lit slopes, it represents Fe-O-rich surfaces.
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8.3.3 Band ratios, RBD images, and ratio composites

Adivision of numerical values in one band by those in another, pixel by pixel is called a band

ratio. It is the oldest and the most widely used technique in discriminating surface cover types

in a multi-band image dataset by suppressing the proportionally constant radiance values in the

bands and enhancing the differences. Rowan et al. (1974) were the first to show with Landsat-1

MSS data ofSilver Bell porphyry copper deposit area that a composite ofratios MSS1/MSS2,

MSS2/MSS3 and MSS3/MSS4 in BGR provides a powerful means for discriminating

hydrothermally altered areas from regional rock and soil units. The above approach has been

adapted for various subsequent types ofpassive remote sensing data in solar reflective region,

including ASTER.

Relative absorption Band Depth (RBD) images are a modification of the normal band

ratios, as a three-point ratio formulation (fig. 8.5). RBD images are determined for individual

absorption features by calculating ratios where the numerator is the sum of the neighboring

bands of the central band (denominator) where the absorption feature occurs. The underlying

concept for RBD is the removal of the continuum to improve the intensity of the absorption

feature (Crowley et al., 1989). However, spectrally uncalibrated data can leadto results that are

difficult to interpret (Crippen, 1988). Also, the terrain illumination differences due to

topography can produce color variations in unadjusted ratio images for spectrally identical

surface materials (Crippen, 1988; Crippen et al., 1988).

A number of band ratios and RBD indices have been proposed for ASTER (e.g., Rowan

and Mars, 2003). There are virtually limitless permutations and combinations in which the 9

VNIR-SWIR bands of ASTER can be ratioed and used together as color ratio composites

(CRCs), which suit specific requirements. Specifically for alteration mineral mapping, a list of

some of the most useful band ratios and RBD's has been compiled, as shown in Table-8.2.

Table-8.3 lists some ofthe CRCs that display specific geologic information better.
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Table-8.2 Useful band ratios and RBDs for alteration mapping using ASTER VNIR-SWIR
data.

Alteration feature Band ratio or RBD Comments

Ferric iron, Fe3+
AST_2

AST_1
Highlights general iron absorption
in band 1

Ferrous iron, Fe2+
AST 5 AST 1

AST_3 AST _2

Laterite
AST _4

AST _S
High reflectance of Fe, AI-0 in
band 4

Gossan
AST _4

ASTJ2
Fe-0 species-independent ratio

Ferrous silicates (biotite, chlorite,
amphiboles)

AST_5

AST _4
Fe-0 Cu, Au alteration

Ferric oxides (limonitic surfaces)
AST_4

AST _3
Can be ambiguous

Carbonate/chlorite/epidote
AST 7+AST 9

RBD8 = = —
AST_8

Epidote/chlorite/amphibole
AST 6+AST_9

AST_1+AST_8
Useful to delineate endoskarn

alteration

Amphibole/Mg-OH
AST 6+AST 9

AST_S+AST 8
Can confuse Mg-OH with
carbonate

Amphibole
AST _6

AST 8

Dolomite
„„„ AST 6 +AST 8
RBD7 = = —

AST_1
Useful to distinguish dolomite
from calcite

Sericite/muscovite/illite/smectite
„„„„ AST 5 +AST 1
RBD6 = = =-

AST 6

Useful to delineate phyllic
alteration

Alunite/kaolinite/pyrophyllite
mmB AST 4 +AST 6
RBD5 = = —

AST 5

Useful for argillic alteration
mapping

Phengite (high Si02 muscovite)
AST_5

AST 6
Phyllic alteration

Muscovite
AST _1

AST 6
Phyllic alteration

Kaolinite
AST J

AST_5
Argillic alteration in granitic terrain

Clay minerals
AST_5xAST_7

(AST_6)2
General formulation for OH-

absorption by clays

Hydroxyl alteration
AST_4

AST_5
Approximation of TM5/TM7

Host Rock
AST _5

AST_6
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Table-8.3 Some useful color ratio composites for alteration mapping using ASTER VNIR-
SWIR surface reflectance image data.

Feature Display color
Red Green Blue

AI-OH minerals/

advanced argillic
alteration

AST 5/
/AST_6

AST 1/
/AST_6

AST 7/
/AST_5

Clay, amphibole,
laterite

(AST 5xAST 7)/
/(AST_6)2

AST 6/
/AST 8

AST 4/
/AST 5

Gossan,
alteration, host
rock

AST 4/
/AST_2

AST 4/
/AST_5

AST 5/
/AST 6

General lithologic
discrimination

AST 4/
/AST J

AST 4/
/AST_\

AST 2 AST 4

AST 3 AST 3
General

discrimination
AST 4/

/AST_7
AST 4/

/AST 3
— —

AST 2/
/AST J

o
-J

a

p
u

<=
•~>

K

True Absorption
Band Depth

•a

Relative Absorption
Band Depth

B

RBD= (A +C)
B

C

Figure-8.5 Relative Band Depth (RBD) ratio schematic (modified after Crowley et al., 1989).

Band ratios and RBDs with the most useful information content regarding the alteration

in the study area have been shown in Figure-8.6. Color ratio composites with best alteration

discrimination have been shown in Figure-8.7. Descriptions have been provided in the captions.
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Figure-8.4 Decorrelation stretch color composite ofSWIR band 4-6-8 highlighting spectral
information for specific mineralogy classes.
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Figure-8.6 Some band-ratio results for the study area: a. ferric iron 2/1; b. ferrous iron
(5/3)+(l/2); c. amphibole, 6/8; d. epidote, chlorite, amphibole, (6+9)/(7+8); e. Mg-OH
(6+9)/(8+8); f. carbonate, chlorite, epidote (7+9V8. The color ramp shows the relative

concentrations of the individual surface constituents mapped on ratios.
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let

Figure-8.6 (contd...) g. sericite/muscovite/illite, (5+7)/6; h. alunite/kaolinite/pyrophyllite,
(4+6)/5; the color ramp shows the relative concentrations of the surface constituents mapped on

the individual ratios.
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Red - AST_5/AST6 (phengitic)
Green - AST_7/AST_6 (muscovite)

Blue - AST_7/AST_5 (kaolinite)

'<^^M^mm

1Kilometers

Figure-8.7 Color ratio composite (CRC) ofband ratios for phengitic/sericitic, and kaolinitic
alteration in the study area; it can be seen that these minerals, which are typical of phyllic and
argillic alteration, are concentrated broadly along the main NE-SW trending cataclastic/shear

zone, and appear in light yellow-white colors. The same colors can also be seen for Chandmari
(north), about 6km due east of Khetri, and about 3km southeast ofBabai, and indicate alteration

related to possible mineralization in these pockets.
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Red- (AST_5*AST_7)/(AST_6*AST_6) (clay)

Green - AST_6/AST_8 (amphibole)

Bine - AST_4/AST_5 (laterite)

f=T ]Kilometers

Figure-8.8 CRC of band ratios highlighting, in respective colors, the concentrations of clay
minerals (red), amphiboles (green), and lateritic regolith (blue). The pink colors, as with the

CRC in fig. 8.7, have been mapped primarily along the main cataclastic/shear zone.
Amphibole-rich rocks/surfaces appear in bright green, while the lateritic surfaces in blue-cyan

colors. However, there is an ambiguity in mapping of the lateritic surfaces with vegetation.
Also, the general concentration of the clay minerals in the soils of the eastern plains has been
brought out on this CRC. Notice also the yellow-red pocket towards the north in what is now
the abandoned open-cast Chandmari mine and adjacent overburden dumps of mainly altered

andalusite schist and phyllite, with banded amphibole quartzites.
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8.3.4 PCA and FPCS processing for alteration mineral mapping

Most of the variation of radiant spectral flux measured by a sensor depends on topographic

shading and albedo effects at the surface. Principal Components Analysis (PCA) is a powerful

statistical technique that can be used to suppress irradiance effects that dominate all bands,

therefore enhancing spectral reflectance features of geologic materials (Crosta et al., 2003).

Feature Oriented Principal Component Selection (FPCS, Crosta and Moore, 1989) is a

modification of PCA. In FPCS the PC Transformation (PCT) is performed for a select

combination of bands in a multispectral dataset such that a relationship between the spectral

responses of the target materials and the numeric values extracted from the eigenvector matrix

used to calculate the PCs is established. Loughlin (1991) modified the FPCS technique for

specific use with Landsat TM data, and proposed specific combinations of TM bands which

ensured that certain materials (e.g., vegetation) were not mapped and that the target materials

were mapped on individual PCs. This approach has been applied successfully for mineral

exploration in favorable sites using Landsat TM data (e.g., Bastianelli et al., 1993; Davidson et

al., 1993; Ruiz-Armenta and Prol-Ledesma, 1998; Carranza and Hale, 2002).

Crosta et al. (2003) suggested 4-band subsets for the nine ASTER VNIR-SWIR bands

for use with the FPCS technique to uniquely map abundances of alunite (ASTER bands 1-3-5-

7), illite (ASTER bands 1-3-5-6), kaolinite+smectite (ASTER bands 1-4-6-9) and kaolinite

(ASTER bands 1-4-6-7) minerals. The spectral subsets were selected according to the position

of characteristic spectral features of these alteration minerals. The method comprised of

applying PCT to these band combinations separately, and examining the eigenvector matrices.

The principal component band having highest numeric values for input bands containing the

diagnostic spectral feature for the target material, but with opposite signs (+/-) is inferred to

represent the abundance of that material.
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In the present study, PCT has been performed on the combined ASTER VNIR-SWIR

surface reflectance dataset. Examination of the eigenvector matrix for all 9 bands shown in

Table-8.4 suggests that the PCs 7, 6 and 4 carry maximum information related to alteration

minerals. An RGB color composite of PC7-PC6-PC4 is shown in Figure-8.9. On this color

composite the carbonate/chlorite-clay-Fe-O-rich surfaces are displayed in shades of red and

orange, since PC7 has maximum loadings from bands 5, 9 and 2 (and negative loadings from

bands 8 and 6), in that order. PC6 displays amphibole-mineral rich surfaces in green, since it

has maximum positive contribution from bands 5 and 6, and negative contribution from bands

9 and 8, in that order. PC4 shows the hard rocky surfaces with overall high reflectances in band

4, as it receives highest loadings from band4 and low contributions from all remaining bands.

FPCS analysis has also been carried out for the four target minerals using ASTERband

selections proposed by Crosta et al. (2003). The respective eigenvector matrices for the target

alteration minerals have been shown in Table-8.5. In each case, the target mineral is mapped

prominently on the PC4, as indicated by highest eigenvector loadings for the bands containing

the characteristic spectral features with opposite signs (+/-) for the respective minerals. For

example, the main absorption feature of alunite occurs at band 5, with high reflectances in

adjacent bands 4 and 7. In FPCS processing of bands 1, 3, 5 and 7 targeting this mineral,

examination of the eigenvector matrix shows maximum numeric difference for bands 5 and 7 in

PC4. The results of the FPCS analysis have been shown as abundance images for individual

minerals in Figure-8.lOa-d. The main contrasting eigenvector loadings have been shown in

bold letters. For minerals with similar spectral signatures (such as illite and muscovite), the

abundance images show concentrations of theambiguous minerals together. However, the main

advantage of this technique is that with a relatively simple and robust processing, important

spectral classes can be easily mapped.

A



239

Table-8.4 Eigenvector matrix of PCT of 9-band ASTER VNIR-SWIR dataset

Eigenvector Band 1 Band 2 Band 3 Band 4 Band 5 Band 6 Band 7 Band 8 Band 9

PCI 0.135407 0.234077 0.215003 0.355756 0.380139 0.383106 0.394079 0.405155 0.378628

PC 2 0.311811 0.347419 0.78755 0.114793 -0.15878 -0.1508 -0.16989 -0.19817 -0.18049

PC 3 0.458286 0.704428 -0.48208 -0.21998 -0.07781 -0.04208 -0.05604 0.017884 0.040927

PC 4 0.15742 -0.04399 -0.31186 0.834302 0.002415 0.07717 -0.1635 -0.33419 -0.18864

PC 5 0.344642 -0.28783 0.045433 -0.1427 -0.03978 0.293718 -0.4127 -0.29854 0.654714

PC 6 0.289582 -0.14072 0.014737 -0.30338 0.554224 0.356795 0.17675 -0.35706 -0.45923

P( ' -0.4016 0.298572 0.009721 0.01117 0.461948 -0.37478 0.06757 -0.52103 0.34564

PC 8 -0.49516 0.339219 0.036487 -0.03671 0.07581 0.542826 -0.55409 0.079575 -0.15266

PC 9 -0.20131 0.139623 0.012959 -0.04399 -0.54437 0.417224 0.522317 -0.43607 0.06702

Table-8.5 Eigenvector matrices for the four target alteration minerals for the study area. For all
target minerals, the abundances are displayed in PC4 image

FPCS: ALUNITE

Eigenvector ASTER Band 1 ASTER Band 3 ASTER Band 5 ASTER Band 7

PCI 0.482047 0.473477 0.521456 0.521089

PC2 0.345923 0.670186 -0.462078 -0.466553

PC3 -0.804964 0.571543 0.113576 0.111677

PC4 0.000139 0.003011 -0.708285 0.705920

FPCS: ILLITE

Eigenvector ASTER Band 1 ASTER Band 3 ASTER Band 5 ASTER Band 6

PCI 0.482959 0.472707 0.520558 0.521841

PC2 0.299682 0.701692 -0.460366 -0.453743

PC3 -0.822470 0.533000 0.156730 0.122028

PC4 -0.022030 0.009367 -0.701796 0.711975

FPCS: KAOIJNITE-SMECTITE

Eigenvector ASTER Band 1 ASTER Band 4 ASTER Band 6 ASTER Band 9

PCI 0.456898 0.512167 0.515042 0.513479

PC2 0.888465 -0.223367 -0.288726 -0.278162

PC3 0.040718 -0.811611 0.242758 0.529810

PC4 -0.014703 0.170527 -0.769700 0.615034

FPCS: KAOLINFIE

Eigenvector ASTER Band 1 ASTER Band 4 ASTER Band 6 ASTER Band 7

PCI 0.455275 0.513282 0.515450 0.513398

PC2 0.888505 -0.212208 -0.273055 -0.301608

PC3 0.055578 -0.828892 0.329355 0.448747

PCM 0.013960 0.066690 -0.742480 0.666394
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Red - PC7

Green: PC6

Blue - PC4
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Figure-8.9 Color composite of PC7-PC6-PC4 in RGB; see the text for description.
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Figure-8.10 Mineral abundance images: a. alunite; b. illite; c. kaolinite; d. kaolinite+smectite;
obtained from FPCS processing of 4-bandspectral subsets of ASTER VNIR-SWIR surface

reflectance image data. Vertical striping due to filter-scratch defect in SWIR focal array makes
information from the western part of the study area redundant and useless.
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8.3.5 ASTER SWIR spectral indices

A spectral index (Kauth and Thomas, 1976) is one of the approaches to quantify multispectral

sensor response patterns (Yamaguchi and Naito, 2003). A spectral index is similar to PCA in

that both are orthogonal transformations of multispectral data. A fundamental difference

between these two is that the spectral indices define the transform axes to represent the spectral

patterns of interest, while PCA determines the transform axes mathematically to maximize the

variance of multispectral data (Yamaguchi and Naito, 2003). While better visual discrimination

of surface materials can be achieved using careful color combination of specific PCs, as seen in

the previous section, the physical meanings of colors in a PC composite are not clear in many

cases, since PCA result is scene dependent and the transform coefficients change from scene to

scene (Yamaguchi and Naito, 2003). In contrast, the spectral indices use pre-determined

transform coefficients (Crist and Cicone, 1984), which enables a more certain interpretation of

their physical meanings. The original spectral indices proposed for the four Landsat MSS bands

(Kauth and Thomas, 1976) were called 'Brightness', 'Greenness', 'Yellowness', and

'Nonsuch'. Over the years it has better come to be known as the Tasseled Cap Transformation

(TCT) for assessing vegetation vigor (Crist and Cicone, 1984). Jackson (1983) showed that

these indices were special cases of a class of spectral indices, formed by linear combinations of

n spectral bands, in an n-dimensional space. In general the w-th spectral index in rc-space

(m<=n) of an z'-th pixel (mY) can be represented by the following formula:

nX = mAlXn + mA&i + •••+ mArXni ••-(2)

Where: n is the total number of spectral bands, mAn is the transform coefficient of «-th band

data for the zw-th spectral index, and Xni is the «-th band data of the z'-th pixel.

Yamaguchi and Naito (2003) proposed four spectral indices for the discrimination and

mapping of four common alteration minerals using ASTER SWIR data. As the main spectral

features of the target alteration minerals are concentrated in SWIR bands 5 to 9, these five
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bands have been used by Yamaguchi and Naito (2003) to define the spectral indices for alunite,

montmorillonite, kaolinite and calcite minerals, and an index for brightness. Using simulated

ASTER data generated through spectral, spatial and radiometric convolution of an AVIRIS

scene of Cuprite, Nevada, USA, they determined the transform coefficients of the first axis,

brightness index through PCA. The second and higher order indices were calculated by them

using the Gram-Schmidt Orthogonalization method (Jackson, 1983) with reflectance spectra of

the four target minerals to obtain the transform coefficients for their respective spectral indices.

The details of the technique can be found in Yamaguchi and Naito (2003). The spectral indices

can be generated by simply multiplying the coefficients with the surface reflectance data for

respective bands and summing them, according to equation 2. However, it is utmost important

that the data calibration to surface reflectance is accurate. Two sets of transform coefficients

were proposed by Yamaguchi and Naito (2003), one with second and higher order transform

axes perpendicular to the brightness axis and not orthogonal to each other, and another with the

transform axes orthogonal to each other too. By comparing the spectral indices for kaolinite

generated using the two sets of transform coefficients with published maps they concluded that

the second set was better since it generated exclusive mineralogical information. The transform

coefficients recommended by Yamaguchi and Naito (2003) for the four alteration minerals

have been reproduced in Table-8.6 and the resultant spectral indices for the study area have

been shown in Figure-8.1 la-d.

Table-8.6 Transform coefficients for ASTER SWIRbands used in calculation of spectral
indices, (from Yamaguchi and Naito, 2003; Table 3)

Spectral Index Band 5 Band 6 Band 7 Band 8 Band 9

Alunite -0.694 -0.219 0.562 0.389 -0.048

Kaolinite 0.528 -0.795 0.212 0.174 -0.119

Calcite -0.087 -0.212 0.322 -0.659 0.640

Montmorillonite 0.138 0.284 -0.134 0.499 -0.796
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Figure-8.11 ASTER SWIR spectral indices for the study area calculated using the transform
coefficients in Table-8.6 for: a. alunite; b. kaolinite; c. calcite; and d. montmorillonite.
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8.3.6 Argillic and Phyllic alteration mapping using Boolean logical algorithms

Hydrothermal alteration of rocks is commonly manifested as alteration zones with a central

core of quartz and potassium bearing zone (silicic and potassic; with mainly K-feldspar and

biotite as main constituents), and progressively outward zones of hydrous minerals with

characteristic spectral features in the SWIR region. Immediately next to the potassic zone is a

broad phyllic zone (commonly limonitic due to oxidation of pyrite; characterized by

illite/muscovite/sericite), farther next is an argillic zone (with kaolinite and alunite as index

minerals), followed by an outermost propylitic zone (with chiefly chlorite, epidote and

carbonate minerals) (Lowell and Guilbert, 1970). The constitution of the propylitic zone is

affected heavily by the country rock composition; it is highly variable and hence difficult to

characterize. On the other hand, the silicic and potassic zones are best mapped using data in the

TIR range, and in most cases these zones are not well exposed.

With these considerations, Mars and Rowan (2006) proposed two identical Boolean

logic algorithms selectively combining the ASTER band ratios for specific mineral groups to

exclusively map rocks with argillic and phyllic alteration, and successfully applied them to a

study area in the Zagros magmatic arc in Iran. In principle, theirmethod involves the following

steps:

• Masking vegetation using VNIR band ratio 3/2

• Masking dark pixels (shadow regions) using a threshold for band4

• Mapping the 2.165 um feature for argillic and 2.200 pm feature for phyllic alteration

minerals

• Establishing a threshold to distinguish between argillic and phyllic alteration

Mars and Rowan (2006) implemented their algorithm using logical operators in

Interactive Data Language (IDL) environment of the ENVI software package. When all

constraints of the algorithms are met, a pixel is respectively classified as argillically or as
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phyllically altered. The resultant classified image is a byte image having values of 0 and 1,

respectively for false and true results.

Widespread occurrence of plutonic intrusion and complex structural setup of the region

offering weak zones for hydrothermal solutions to interact with country rock presents an

opportunity to test the approach suggested by Mars and Rowan (2006) to map argillic and

phyllic alteration zones in the study area. The range and threshold values for the band ratios

used in theiralgorithm were determined by Mars and Rowan (2006) using four ASTER scenes

of the study area in Iran, a calibration site in Cuprite, Nevada, USA, and laboratory spectra.

However, the ranges and thresholds for the band ratios of the ASTER surface reflectance

dataset of the present study area were determined empirically, and were found to deviate from

those proposed by Mars and Rowan (2006), due to differences in the nature ofsurface lithology

in the two cases. Implementation of the algorithm suggested by Mars and Rowan (2006) has

been done using the Spatial Modeler module of ERDAS Imagine image processing suite. The

method involved computation of spectral thresholds based on standard deviation and mean

from the band ratios:

3/2 - to mask vegetation

4/5 - to map 2.165 um absorption feature associated with argillic alteration

4/6- to map 2.200 urn absorption feature associated with phyllic alteration

5/6 - ratio to delineateargillicand phyllic alteration

7/6 - to map 2.200 urn absorption feature associated with argillic/phyllic alteration

The thresholds were determined using an empirical relationship [(Mean)+1.5x(Standard

Deviation)] and adjustment through visual inspection of spatial distribution coherence of

mapped pixels using various threshold values. The Boolean logical statements combining the

various steps of the algorithms for argillic and phyllic alteration mapping respectively, have

been summarized in Figure-8.12A-B. The resulting maps depicting the distribution of argillic

and phyllic alteration in the studyarea havebeen shown in Figure-8.13A-B.
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Figure-8.12 Boolean Logical Statements to map (A) argillic, and (B) phyllic alteration.
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Figure-8.13 Maps ofargillic (A, red) and phyllic (B, yellow) alteration in the study area
generated using Boolean Logical Statements shown in Figure-8.12. The background image is

ASTER band 1.
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8.4 ASTER VNIR-SWIR full spectral mapping of alteration minerals

The alteration mapping methods discussed in preceding sections relied upon an understanding

of the spectral signatures of the target alteration minerals outlined in the beginning of this

chapter. Although such methods are strongly linked to composition, they are by and large

focused only on specific wavelength regions and therefore neglect contributions from the rest

of the spectrum. Feature mapping is particularly problematic for many materials (such as rocks)

whose spectra do not contain well-defined absorptions. Instead of diagnostic features, these

spectra are characterized by their continuum shapes and/or very broad absorptions (Mustard

and Sunshine, 1999). Minerals with similar diagnostic spectral features are susceptible to

ambiguous mapping using the techniques mentioned above. However, differences in the

spectral shape (band depth and slope variations) exist for minerals with common diagnostic

spectral features, which can be effectively utilized to differentiate among them.

A number of alternative and complementary approaches have been developed to

address the above-mentioned issues, and have been grouped as either 'spectral similarity'

mapping techniques, or 'spectral detection' mapping techniques. Under a spectral similarity

search, a scene is examined to determine which pixels are most 'similar' to target spectra. The

second category of mapping methods uses the full spectral response with spectral detectors or

'matched filters' to detect a spectrum of interest by highlighting pixels with similar spectral

properties while simultaneously repressing all other background spectral signatures. As already

described in Chapter 7, the former include the Spectral Angle Mapper (SAM) algorithm (Kruse

et al., 1993) and Binary Encoding (Mazer et al., 1988), while the latter includes the Matched

Filter algorithm (Harsanyi and Chang, 1994) and its adaptation - Mixture Tuned Matched Filter

(MTMF™), as implemented in the ENVI software package. In the following paragraphs, two

of these mapping techniques (SAM and MTMF™) have been applied to the ASTER VNIR-

SWIR surface reflectance data of the study area to map the distribution of the target alteration
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minerals. The basic data preparation has involved creation of a vegetation mask to exclude the

vegetation dominated pixels from the analysis, determination of the target mineral spectra as

image end-members through PPI™ method (described in Chapter 7), and spectral end-member

identification using ENVI's Spectral Analyst™ module. These steps have been discussed in

some detail in the following sections.

8.4.1 Preparation of a vegetation mask

J
The two primary reasons for excluding the vegetation-dominant pixels from the spectral

analysis are:

1. Healthy vegetation almost completely obscures the spectral response of the underlying

ground in the solar reflective region. This is particularly so for the chlorophyll-rich

healthy vegetation, as it significantly decreases band 2 (or 0.661 um) reflectance. But

even sparse and dried vegetation significantly alters the native spectral response of the

geological materials, as some organic-compound (typically cellulose) absorption

features centered near 2.10 and 2.30um are near the wavelengths of some of the main

Al-OH and Fe, Mg-OH absorption features.

2. Since vegetation is a material of non-interest geologically, inclusion of vegetation in the

analysis can lead to loss of a possible geological end-member determinable through PPI

(since the number of determinable end-members through PPI is constrained by n+1,

where n is the number of spectral bands used).

With these considerations in view, a vegetation mask has been prepared to exclude the highly

vegetated pixels from the analysis, while simultaneously prevent loss of a spectral end-member

of geological significance. This has been achieved through generation of a Normalized

Difference Vegetation Index (NDVI) image using ASTER bands 2 and 3 with the standard



257

NDVI equation [(ASTJ - ASTJ) + (ASTJ + ASTJ)]. The range of the resulting NDVI

image (0.021161 to 0.790892) has been interactively examined with different threshold values,

and a value of 0.345 has been chosen as the best threshold to represent the vegetation-

dominated pixels. The resultant vegetation mask has been shown inFigure-8.14.
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Figure-8.14 Vegetation mask created by thresholding an NDVI image of thestudy area.
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8.4.2 Determination of target spectra

One of the most critical steps in the full spectral processing of the remote sensing image data is

the determination of the 'target' spectra to adequately and distinctly map the materials of

interest. Since in most cases the full spectral diversity of the materials present in a scene cannot

be exhaustively determined through field or laboratory spectral measurements and there is

always a risk of inaccurate atmospheric correction leading to a mismatch in field/laboratory

spectral measurements and the actual image spectra, it has been considered better to derive the

end-member class-spectra directly from the image data. The choice of the technique to achieve

this objective is highly subjective, and varies depending on the ultimate objective of the study.

The objective of this study is to map the main alteration minerals present in the study area, and

to check if their distribution has any link with base metal mineralization.

The determination of the image end-members (target spectra) in this study has been

achieved through the PPI™ approach. Emphasis has been laid upon the end-members having

greater variations in the SWIR region, as this is the main wavelength region where the

diagnostic features of the important target alteration minerals occur. Since the maximum

possible end-members determinable through PPI™ ;n me present case is 10 (using all of the 9

VNIR+SWIR bands) and no field or laboratory spectral measurements have been made, the

only possibility of expanding the end-member classes is by using smaller windows of the full

image data and determining end-members separately for each one of them. A compiled end-

member spectral library can thus be generated with a more complete representation of the

spectral diversity which can (probably) lead to a wider spectral classification. However, this

entails a risk too. Too many spectral classes render the final classified image difficult to

interpret. A careful selection and 'grouping' of the similar spectral end-members obtained

using individual windows guided by the analytical objectives can narrow-down the range and

enhance the final interpretability.
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With these points in view, the image end-members have been determined through PPI

for the following four cases:

Case 1: For VNIR+SWIR combined data (9 bands) using the full scene

Case 2: For SWIRdata alone (6 bands)

Case 3: For VNIR+SWIR combined data individually for 8spatial windows (see fig. 8.15)

Case 4: ForSWIR data alone individually for 8 spatial windows

The 8 image windows have been selected onthe basis ofapriori known mineralizations

present in the area. The end-members determined for the 8 windows in the latter two cases have

been subsequently combined to produce two separate end-member spectral libraries for use

with the supervised mapping/classification algorithms discussed later. The end-member spectra

for the four cases mentioned above have been shown in Figures 8.16, 8.17, 8.18a-h and 8.19a-

h, respectively.

8.4.3 End-member identification

Efforts have been made with varying degrees of success to identify the 151 different image-

derived end-member spectra using ENVI's Spectral Analyst™ module, as previously described

in Chapter 7. In this case, the reference spectral library used is the United States Geological

Survey (USGS) spectral library (speclib05; Clark et al., 2003). This library contains 481 spectra

of well-characterized specimens of mineral, vegetation, snow, water and manmade materials

within the solar reflective wavelength region (0.4 pm to 2.5 um). The results of the exercise

have been summarized in Tables 8.7, 8.8, 8.9 and 8.10, respectively for the four cases listed

above. As with the TIR emissivity spectra in Chapter 7, the best spectral matches have been

determined using a combination of SAM/SFF fit-method score (fit correlation coefficients) and

examination of individual end-member spectrum in normal and continuum-removed mode

along with that of the reference spectrum.
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Table-8.7 End-member spectral identification using ENVI's Spectral Analyst™ for Case 1:
Vegetation-masked full image, ASTER VNIR+SWIR 9-band reflectance data

s.

No.

PPI-derived

Unknown Image
End-member ID

Top matches based on
SAM+SFF scores (fit
values in parentheses)

Top matches based
on SFF scores (fit
values in parentheses)

Remarks and best match
based on visual inspection

1 n-D Class Mean #1 A flat spectrum with values close to 0; most likely it represents the 'shaded' Dixels
2 n-D Class Mean #2 Tremolite (0.925)

Phlogopite (0.909)
Richterite (0.881)

Fernhydrite (0.991)
Hectorite (0.991)
Tremolite (0.991)

Ferrihydrite or tremolite, and
celsian (0.972, SFF)

3 n-D Class Mean #3 Adularia (0.811)
Hematite (0.810)
Phlogopite (0.802)

Adularia (0.906)
Chromite (0.850)

Most likely surfaces with
composition similar to
adularia

4 n-D Class Mean #4 Rutile (0.938)
Cuprite (0.923)

Nontronite (0.985)
Quartz (0.961)
Microcline (0.962)

The spectrum has non-
distinct matches; distribution
of this class in the image
shows it as shaded pixels

5 n-D Class Mean #5 Corrensite (0.863)
Richterite (0.840)
Chlorite (0.832)

Labradorite (0.911)
Richterite (0.872)
Epidote (0.835)

Best visual match with

corrensite, and may actually
represent weathered
amphibolites

6 n-D Class Mean #6 Epidote (0.755)
Phlogopite (0.748)

Sphalerite (0.901)
Grossular (0.843)

Most likely a combination of
phlogopite and grossular

7 n-D Class Mean #7 Desert Varnish (0.845)
Illite (0.735)
Mizzonite (0.717)

Desert Varnish (0.926)
Albite (0.639)
Illite (0.626)

Best visual match with illite,
though absorption in band 2
is perhaps due to some
vegetation mixing

8 n-D Class Mean #8 Mizzonite (0.815)
Lazurite (0.795)
Illite (0.702)

Mizzonite (0.835)
Quartz (0.775)

Most likely either mizzonite,
or illitewith some vegetation
mixing

9 n-D Class Mean #9 Rhodonite (0.925)
Anorthite (0.875)

Sphalerite (0.982)
Rhodonite (0.962)
Anorthite (0.925)
Calcite (0.908)

Best visual match is with

anorthite spectrum; however,
it can also represent
carbonate minerals.

10 n-D Class Mean

#10

Andradite (0.887)
Jarosite (0.852)
Hematite (0.843)

Talc (0.951)
Tremolite (0.930)
Nitre (0.913)
Grossular (0.886)

The match is ambiguous,
and the likely candidates for
this spectrum can be the
Fe3+ bearing minerals.

Table-8.8 End-member spectral identification using ENVI's Spectral Analyst™ for Case 2:
Vegetation-masked full image, ASTER SWIR 6-band reflectance data

s.

No.

PPI-derived

Unknown Image
End-member ID

Top matches based on
SAM+SFF scores (fit
values in parentheses)

Top matches based on
SFF scores (fit values
in parentheses)

Remarks and best match

based on visual inspection

1 n-D Class Mean #1 A flat spectrum with values close to 0; most likely it represents the 'shaded' pixels.
2 n-D Class Mean #2 Richterite (0.970)

Tremolite (0.970)
Celsian (0.951)

Riebeckite (0.995)
Hornblende (0.987)
Tremolite (0.987)
Phlogopite (0.987)

Best visual matches is with

tremolite, and the spectrum
is most likely to represent
calc-silicates or para-
amphibolites

3 n-D Class Mean #3 Illite (0.975)
Spodumene (0.969)
Oligoclase (0.966)

Palygorskite (0.997)
Muscovite (0.996)
Spodumene (0.993)
Montmorillonite (0.984)

On visual inspection, this
spectrum is most likely to
represent muscovite/sericite,
illite, montmorillonite-bearing
surfaces

4 n-D Class Mean #4 Topaz (0.973) Topaz (0.986)
Paragonite (0.983)
Sillimanite (0.970)

Best spectral match on visual
inspection is with topaz

5

Tab

n-D Class Mean #5

e 8.8 continued...

Nepheline (0.993)
Rutile (0.989)
Hematite (0.989)
Topaz (0.989)

Phalite, bytownite,
mordenite, sepionite,
clinoptilolite, butterite,
hypersthene, and
psilomelane (1.000)
Chlorapatite, heulandite,

This spectrum has non-
unique matches. However,
based on field information

and inspection of the class-
distribution, this image end-
member is most likely to
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stilbite, saponite,
goethite (0.999)

represent iron rich surfaces
depleted in silica, and/or
zeolites in relatively higher
concentrations.

6 n-D Class Mean #6 Desert Varnish (0.937)
Grossular (0.889)
Cookeite (0.878)

Desert Varnish (0.918)
Mizzonite (0.853)
Grossular (0.837)
Cookeite (0.814)

Best visual spectral match is
with desert varnish and

cookeite, and it is most likely
to represent weathered mafic
surfaces.

7 n-D Class Mean #7 Grossular (0.979)
Oligoclase (0.952)
Dipyre (0.931)
Illite (0.931)

Mizzonite (0.995)
Grossular (0.977)
Margarite (0.946)
Tourmaline (0.939)

The best visual matches for

this spectrum are with
scapolite minerals
(mizzonite, dipyre
andmargarite), as well as
with illite and oligoclase.

Table-8.9 End-member spectral identification using ENVI's Spectral Analyst™ for Case3:
Image-subsets for 8 different mineralized areas, ASTER VNIR+SWIR 9-band reflectance data

S.

No.

PPI-derived

Unknown Image
End-member ID

Top matches based on
SAM+SFF scores (fit
values in parentheses)

Top matches based on
SFF scores (fit values
in parentheses)

Remarks and best match

based on visual inspection

1 Akwali n-D Class
Mean #1

Lazurite (10.814)
Uvarovite (0.759)
Celestite (0.738)

Celestite (0.838)
Uvarovite(0.792)
Microcline (0.754)

The steep slope between
bands 3 and 2 is suggestive
of the spectrum being that of
vegetation than these
minerals

2 Akwali n-D Class

Mean #2
Hematite (0.933)
Sphene (0.920)
Andalusite (0.915)

Brucite and gibbsite
(0.954)
Pectolite (0.943)
Hematite (0.940)

Most likely
andalusite/hematite or brucite

3 Akwali n-D Class

Mean #3
Sphene (0.949)
Hematite (0.949)
Andalusite (0.926)

Hematite (0.975)
Brucite (0.965)
Sphene (0.960)
Rhodonite (0.947)

It has closest matches with
hematite spectrum

4 Akwali n-D Class

Mean #4

Hematite (0.903)
Sphene (0.871)
Andalusite (0.867)
Phlogopite (0.822)
Corrensite (0.815)

Sphalerite (0.925)
Zincite (0.922)
Grossular (0.911)
Brucite (0.909)

Andalusite with some zinc-
rich minerals

5 Akwali n-D Class
Mean #5

Pyrope (0.852)
Andalusite (0.850)
Pyrrhotite (0.841)
Hematite (0.804)

Vesuvian (0.853)
Pyrrhotite (0.854)
Tourmaline (0.834)
Margarite (0.831)

Iron rich surfaces of mainly
andalusite-bearing rocks with
associated chlorite; pixels
occupy shaded areas (low
reflectance in band 4)

6 Akwali n-D Class

Mean #6
Andalusite (0.844)
Pyrope (0.841)
Pyrrhotite (0.833)
Desert Varnish(0.820)

Pyrrhotite (0.836)
Vesuvian (0.830)
Tourmaline (0.815)
Margarite (0.813)

Same as above, but the pixels
are in sun-lit slopes

7 Akwali n-D Class
Mean #7

Kerogen(0.883)
Covellite (0.806)
Augite (0.780)
Corrensite (0.741)

Kerogen (0.885)
Augite (0.800)
Covellite (0.752)
Albite (0.733)

Vegetation-rich pixels with
spectral matches to corrensite

8 Akwali n-D Class

Mean #8
Kerogen (0.886)
Covellite (0.859)
Mizzonite (0.826)
Hematite (0.825)
Corrensite (0.823)

Kerogen (0.891)
Augite (0.889)
Sphalerite (0.867)
Adularia (0.858)

Quartzose rocks bearing
corrensite/scapolite + alunite
(band 5 absorption)

9 Akwali n-D Class
Mean #9

Hematite (0.928)
Andalusite (0.901)
Sphene (0.886)
Pyrrhotite (0.869)

Sphalerite (0.944)
Zincite (0.938)
Grossular (0.933)
Hematite (0.930)

Iron-rich surfaces

10 Bandha n-D

Class Mean #1
Lazurite (0.740)
Uvarovite (0.742)

Celestite (0.772)
Uvarovite (0.692)

Vegetation (steep slope
between band 2 and band 3)

M
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Table-8.9 continued..

11 Bandha n-D

Class Mean #2
Andalusite (0.946)
Hematite (0.940)
Pyrope (0.936)
Sphene (0.931)

Sphalerite (0.979)
Pyrrhotite (0.970)
Grossular (0.967)

lllite+hematite-rich quartzose
rock

12 Bandha n-D

Class Mean #3
Desert Varnish (0.859)
Corrensite (0.837)
Kerogen (0.803)
Prochlorite and

nontronite (0.785]^

Desert Varnish (0.829)
Corrensite (0.799)
Quartz (0.782)
Mizzonite (0.772)

Desert Varnish on mafic
surfaces with composition of
corrensite/scapolite; and
chlorite

13 Bandha n-D

Class Mean #4
Pyrrhotite (0.925)
Richterite (0.897)
Tremolite and pyrope
(0.896)
Phlogopite (0.893)

Pyrrhotite (0.978)
Grossular (0.953)
Dipyre (0.944)

Pyrrhotite-bearing amphibole
quartzite rocks (strong band 8
absorption with a secondary
band 6 absorption)

14 Bandha n-D

Class Mean #5

Tremolite (0.908)
Phlogopite (0.906 &
0.891)
Andalusite (0.888)
Corrensite (0.887)

Hectorite, ferihydrite,
lizardite (0.990)
Tremolite, sauconite
(0.989)
Meionite (0.980)
Phlogopite (0.977)

Ferrihydrite-rich surfaces
possibly containing phlogopite
and tremolite, with some
scapolite and corrensite
(strong and singular band 8
absorption with a steeper
slope between band 6 and
band 7)

15 Bandha n-D

Class Mean #6
Dipyre (0.869)
Pyrrhotite (0.868)
Tremolite (0.855)
Phlogopite (0.848)

Dipyre (0.957)
Grossular (0.936)
Celsian (0.916)
Meionite (0.905)

Scapolite-rich surfaces

16 Bandha n-D

Class Mean #7

Lazurite (0.867)
Mizzonite (0.859)
Rutile (0.854)

Mizzonite (0.923)
Celestite (0.911)
Mizzonite (0.902)
Quartz (0.898)

Scapolite-rich quartzose
surfaces with higher
vegetation cover (steep slope
between band 2 and band 3)

17 Bandha n-D

Class Mean #8
Pyrope (0.941)
Andalusite (0.927)
Illite (0.908)
Hematite (0.901)

Witherite (0.995)
Oligoclase (0.991)
Illite (0.977)
Pyrope, tourmaline
(0.974)

lllite-rich surfaces with

associated quartz and
feldspar

18 Bandha n-D

Class Mean #9
Pyrope (0.853)
Andalusite (0.850)
Pyrrhotite (0.847)
Hematite (0.843)
Illite (0.838)

Sphalerite (0.894)
Pigeonite (0.889)
Cookeite (0.884)
Desert Varnish (0.869)

Desert Varnish on quartzose
surfaces with high iron
content, and some vegetation

19 Bandha n-D

Class Mean #10

Desert Varnish (0.837)
Corrensite (0.824)
Kerogen (0.817)
Mizzonite (0.787)

Desert Varnish (0.825)
Corrensite (0.807)
Kerogen (0.779)
Quartz (0.767)

Same as above, but with
higher density of vegetation

20 Bansiyal n-D
Class Mean #1

Kaolinite-smectite
(0.853)
Montmorillonite (0.842)
Muscovite (0.833)

Muscovite (0.975)
Illite (0.965)
Microcline (0.940)
Muscovite (0.931, 0.908)
Albite (0.895)

Clay minerals with
composition dominantiy that
of kaolinite-smectite with

muscovite and illite

21 Bansiyal n-D
Class Mean #2

Desert Varnish (0.898)
Corrensite (0.868)
Richterite (0.840)

Desert Varnish (0.901)
Richterite (0.894)
Corrensite (0.863)
Labradorite (0.855)

Desert Varnish/corrensite on
amphibole-rich surfaces
(mafic rocks)

22 Bansiyal n-D
Class Mean #3

Lazurite (0.902)
Rutile (0.828)

Rutile (0.891)
Lazurite (0.865)
Hydroxyl apatite (0.851)

Vegetation

23 Bansiyal n-D
Class Mean #4

Desert Varnish (0.869)
Pyrope (0.859)
Andalusite (0.848)
Illite (0.836)

Margarite (0.882)
Mizzonite (0.862)
Desert Varnish (0.861)

Andalusite-rich rocks with

illite/scapolite

24 Bansiyal n-D
Class Mean #5

Desert Varnish (0.902)
Corrensite (0.877)
Rutile, kerogen (0.855)
Nontronite (0.840)

Corrensite (0.898)
Desert Varnish (0.895)
Richterite (0.889)

Desert Varnish/corrensite on
amphibole rich surfaces
(mafic rocks)

25 Bansiyal n-D
Class Mean #6

Sphene (0.911)
Desert Varnish (0.910)
Andalusite, pyrope

Grossular (0.997)
Mizzonite (0.983)
Pyrrhotite (0.968)

Andalusite-rich surfaces with
scapolite
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(0.907) Dipyre (0.963)
26 Bansiyal n-D

Class Mean #7
Illite (0.906)
Goethite (0.877)
Desert Varnish (0.866)

Illite (0.979)
Quartz (0.919)
Albite (0.919)

lllite+albite-rich surfaces in

shaded areas; may also
represent gossans

27 Bansiyal n-D
Class Mean #8

Pyrrhotite (0.879)
Andalusite (0.872)
Pyrope (0.860)

Vesuvian (0.900)
Pyrrhotite (0.897)
Andalusite (0.870)

Andalusite+garnet-bearing
rocks; possibly mineralized

28 Bansiyal n-D
Class Mean #9

Lazurite (0.762)
Celestite (0.738)

Celestite (0.854)
Uvarovite (0.731)

Vegetation

29 Bansiyal n-D
Class Mean #10

Uvarovite (0.842)
Celestite (0.838)

Celestite (0.908)
Uvarovite (0.796)

Vegetation

30 Chandmari n-D

Class Mean #1

Celestite (0.633)
Uvarovite (0.597)
Lazurite (0.549)

Celestite (0.698)
Uvarovite (0.514)

Vegetation

31 Chandmari n-D

Class Mean #2

Hematite (0.920)
Andalusite (0.896)
Sphene (0.893)

Andradite (0.932)
Dolomite (0.930)
Clinochlore (0.911)

Garnetiferous andalusite

schist rich in iron oxide/sulfate

and chlorite

32 Chandmari n-D

Class Mean #3

Tourmaline (0.854)
Grossular (0.843)
Pyrrhotite (0.838)

Pyrrhotite (0.896)
Sphalerite (0.820)
Vesuvian (0.815)

Same as above

33 Chandmari n-D

Class Mean #4

Desert Varnish (0.834)
Mizzonite (0.772)
Kerogen (0.750)
Illite (0.739)

Desert Varnish (0.825)
Mizzonite (0.695)
Quartz (0.670)

lllite+scapolite-rich surfaces

34 Chandmari n-D

Class Mean #5
Kerogen, pyrrhotite
(0.791)
Epidote (0.789)
Richterite (0.779)
Hematite, rhodonite
(0.775)

Sphalerite (0.807)
Adularia, chromite
(0.782)
Labradorite (0.776)

Amphibole-bearing rocks rich
in chlorite/epidote

35 Chandmari n-D

Class Mean #6
Andradite (0.913)
Zincite (0.893)
Desert Varnish (0.884)
Nontronite (0.872)

Dolomite (0.930)
Clinochlore (0.927)
Lizardite (0.921)

Garnetiferous rocks rich in

corrensite

36 Chandmari n-D

Class Mean #7

Cuprite (0.839)
Rutile (0.836)
Desert Varnish (0.816)

Quartz (0.869)
Nontronite (0.832)
Mizzonite (0.821)

lllite+scapolite-rich surfaces;
inspection of these pixels in
the image shows that these
surfaces are actually shaded

37 Chandmari n-D

Class Mean #8

Hematite (0.810)
Andradite (0.771)
Sphene (0.761)

Gibbsite (0.805)
Andradite (0.789)
Dolomite (0.775)

Strong band 7 absorption and
a weak band 5 absorption
indicate the pixels to
represent jarosite- and
alunite-rich surfaces

38 Chandmari n-D

Class Mean #9

Hematite (0.822)
Pyrrhotite (0.814)
Andalusite (0.794)

Sphalerite (0.966)
Grossular (0.890)
Chromite (0.800)

Andalusite-bearing rocks rich
in chlorite/epidote/phlogopite
and iron-oxide (strong band 8
absorption and low overall
reflectance)

39 Chandmari n-D

Class Mean #10
Mizzonite (0.843)
Lazurite (0.830)
Kerogen (0.821)

Desert Varnish (0.830)
Celestite (0.814)
Uvarovite (0.808)

Strong band 8 absorption,
absorption in band 2, and a
weak feature around band 5

indicate that the spectrum is
representative of
chlorite/epidote/calcite-rich
surfaces with some alunite.

The steep slope between
band 3 and 2, and high band
4 reflectance indicate that the

material is probably a
quartzose rock with some
vegetation cover

40 Dhauli n-D Class

Mean #1

Uvarovite (0.745)
Celestite (0.741)

Celestite (0.898)
Uvarovite (0.795)

Vegetation

41 Dhauli n-D Class

Mean #2

Sphene (0.924)
Pyrope, andalusite
(0.923)
Hematite (0.907)

Grossular (0.993)
Pyrrhotite (0.989)
Mizzonite (0.967)
Dipyre (0.960)

Andalusite+hematite with

scapolite
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42 Dhauli n-D Class
Mean #3

Pyrrhotite (0.934)
Pyrope (0.928)
Andalusite (0.916)
Tremolite (0.910)
Hematite (0.905}

Grossular (0.984)
Pyrrhotite (0.974)
Mizzonite (0.970)
Dipyre(0.965)

Andalusite and hematite with
scapolite, illite and some
tremolite

43 Dhauli n-D Class
Mean #4

Lazurite (0.876)
Mizzonite (0.828)
Celestite (0.813)

Celestite (0.924)
Uvarovite (0.862)

Vegetation

44 Dhauli n-D Class
Mean #5

Mizzonite (0.876)
Lazurite (0.867)
Kerogen (0.841)

Mizzonite (0.919)
Quartz (0.913)

Scapolite (mizzonite)

45 Dhauli n-D Class
Mean #6

Hematite (0.891)
Andalusite (0.887)
Sphene (0.879)

Pigeonite (0.962)
Chromite (0.954)
Sphalerite (0.918)

Hematite with calcite and
scapolite; and some alunite
(?) (weak band 5 absorption)

46 Dhauli n-D Class
Mean #7

Lazurite (0.858)
Cuprite (0.809)
Rutile (0.803)

Celestite (0.870)
Uvarovite (0.866)

Vegetation dominant pixels of
possibly calcite + alunitic
composition

47 Dhauli n-D Class

Mean #8
Pyrrhotite (0.911)
Andalusite (0.868)
Pyrope (0.863)

Pyrrhotite (0.956)
Sphalerite (0.917)
Grossular (0.910)

Scapolite + Illite

48 Dhauli n-D Class
Mean #9

Pyrrhotite (0.881)
Pyrope (0.860)
Andalusite (0.857)

Pyrrhotite (0.911)
Sphalerite (0.890)
Grossular (0.881)

Scapolite + Illite + Hematite

49 Gadrata n-D

Class Mean #1

Lazurite (0.796)
Rutile (0.723)
Uvarovite (0.717)

Hydroxyl apatite (0.828)
Rutile (0.826)
Microcline (0.800)

Vegetation (steep slope
between band 3 and 2)

50 Gadrata n-D

Class Mean #2

Corrensite (0.904)
Desert Varnish (0.899)
Sphene (0.898)

Celsian (0.995)
Meionite (0.994)
Hectorite, lizardite,
ferrihydrite, tremolite
(0.977)

Tremolite + Calcite + Desert
Varnish (prominent band 8
absorption for calcite with
overall spectral curve shape
similar to tremolite)

51 Gadrata n-D

Class Mean #3

Desert Varnish (0.849)
Corrensite (0.819)
Richterite (0.812)

Desert Varnish (0.859)
Sphalerite (0.815)
Labradorite (0.813)
Mizzonite (0.809)

Corrensite + Chlorite/epidote
+ Illite

52 Gadrata n-D

Class Mean #4

Mizzonite (0.795)
Lazurite (0.768)
Corrensite (0.763)

Celestite (0.748)
Uvarovite (0.706)

Vegetation

53 Gadrata n-D

Class Mean #5

Desert Varnish (0.902)
Corrensite (0.888)
Sphene (0.887)

Grossular (0.943)
Dipyre (0.941)
Mizzonite (0.934)
Mizzonite, Celsian
(0.927)

Andalusite + illite +

scapolite/chlorite + tremolite

54 Gadrata n-D

Class Mean #6
Andalusite (0.904)
Hematite (0.901)
Pyrope (0.900)

Saponite (0.956)
Pyrophyllite (0.942,
0.938)
Topaz (0.938, 0.935)

Topaz/andalusite + amphibole
(richterite) + montmorillonite
(saponite)

55 Gadrata n-D

Class Mean #7

Pyrope (0.872)
Andalusite (0.841)
Illite (0.839)

Muscovite (0.933, 0.932,
0.927)
Illite (0.915)
Muscovite (0.912)

Muscovite + illite +

montmorillonite + kaolinite-
smectite

56 Gadrata n-D

Class Mean #8
Pyrope (0.936)
Andalusite (0.935)
Sphene (0.909)
Hematite (0.907)

Vesuvian (0.977)
Tourmaline (0.969)
Pyrrhotite (0.958)

Andalusite + illite

57 Gadrata n-D

Class Mean #9
Celsian (0.914)
Dipyre (0.912)
Grossular (0.909)
Meionite (0.906)

Dipyre (0.927)
Grossular, Mizzonite
(0.917)
Celsian (0.910)

Celsian + garnet
(grossular)/scapolite (dipyre)

58 Gadrata n-D

Class Mean #10

Pyrope (0.891)
Montmorillonite (0.881)
Kaolinite-smectite
(0.876)

Muscovite (0.961, 0.954)
Illite (0.953)
Muscovite (0.952)

Muscovite + illite + kaolinite-
smectite + albite + tourmaline

59 Kalota n-D Class
Mean #1

Uvarovite (0.726)
Lazurite (0.707)

Uvarovite (0.760)
Celestite (0.733)

Vegetation

60 Kalota n-D Class

Mean #2

Desert Varnish (0.844)
Corrensite (0.794)

Desert Varnish (0.820)
Richterite (0.779)

Amphibole (richterite) +
Corrensite + Chlorite + illite
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Richterite (0.790) Labradorite (0.720)
Corrensite (0.708)

61 Kalota n-D Class

Mean #3

Mizzonite (0.815)
Illite (0.806)
Quartz (0.791)

Desert Varnish (0.809)
Illite (0.775)
Roscoelite (0.792)
Quartz (0.758)

lllite-bearing quartzose rock

62 Kalota n-D Class

Mean #4

Corrensite (0.832)
Kerogen (0.812)
Chlorite (0.722)

Corrensite (0.823)
Kerogen (0.753)
Labradorite (0.663)

Corrensite + Chlorite +

Quartz/illite (most likely
Quartz.chlorite-schist)

63 Kalota n-D Class

Mean #5

Lazurite (0.799)
Uvarovite (0.773)

Celestite (0.845)
Hydroxyl apatite,
microcline (0.828)
Rutile (0.821)

Vegetation

64 Kalota n-D Class

Mean #6

Andalusite (0.945)
Sphene (0.928)
Pyrope (0.920)
Hematite (0.913)

Andalusite (0.979)
Vesuvianite (0.959)
Tourmaline (0.951)

Andalusite + Illite

65 Kalota n-D Class

Mean #7

Lazurite (0.705)
Mizzonite (0.690)
Uvarovite (0.686)

Uvarovite (0.690) Vegetation

66 Kalota n-D Class

Mean #8

Hematite (0.925)
Andalusite (0.908)
Sphene (0.882)

Brucite (0.957)
Hematite (0.938)
Andalusite (0.905)

Iron-oxide-rich quartzose rock

67 Kalota n-D Class

Mean #9

Augite (0.878)
Andalusite (0.874)
Hematite (0.865)
Pyrope (0.862)

Pectolite, augite (0.923)
Sodium bicarbonate

(0.918)
Gypsum (0.914)

Kaolinite-smectite, illite-rich
quartzose rock

68 Kalota n-D Class

Mean #10

Quartz (0.786)
Mizzonite (0.784)
Lazurite (0.776)

Quartz (0.823)
Celestite (0.804)
Uvarovite (0.764)

Quartz + Vegetation

69 Suredi n-D Class

Mean #1

Celestite (0.744)
Uvarovite (0.692)

Celestite (0.937)
Uvarovite (0.726)

Vegetation

70 Suredi n-D Class

Mean #2

Pyrope (0.955)
Andalusite (0.942)
Hematite (0.920)
Illite (0.917)

Tourmaline (0.992)
Pyrope (0.981)
Illite, oligoclase (0.975)

Illite, kaolinite-smectite and
iron-oxide-rich andalusite-

bearing rock/soil

71 Suredi n-D Class

Mean #3

Pyrope (0.913)
Illite (0.902)
Andalusite (0.886)

Brookite (0.944)
Marialite,
montmorillonite (0.943)
Muscovite, cordierite,
illite (0.942)

lllite/muscovite, kaolinite-
smectite, albite, tourmaline,
andalusite-bearing quartzose
rock/soil

72 Suredi n-D Class

Mean #4

Kerogen (0.789)
Corrensite (0.757)
Desert Varnish (0.729)

Kerogen (0.706)
Corrensite (0.689)
Desert Varnish (0.641)
Quartz (0.636)

Altered amphibole-rich
rock/soil with corrensite +

chlorite (prochlorite) + illite

73 Suredi n-D Class

Mean #5

Lazurite (0.852)
Mizzonite (0.809)
Rutile (0.797)

Celestite (0.893)
Microcline (0.831)
Uvarovite (0.830)

Vegetation-rich quartz/illite-
bearing areas

74 Suredi n-D Class

Mean #6

Desert Varnish (0.790)
Illite (0.740)
Mizzonite (0.739)
Corrensite (0.721)

Desert Varnish (0.747)
Quartz (0.666)
Roscoelite (0.663)

Illite, corrensite-bearing
quartzose rock/soil

75 Suredi n-D Class

Mean #7

Corrensite (0.874)
Kerogen (0.867)
Desert Varnish (0.855)
Mizzonite (0.849)

Corrensite, desert
varnish (0.879)
Richterite (0.845)
Labradorite (0.841)

Corrensite + Illite + Chlorite

76 Suredi n-D Class

Mean #8

Quartz (0.817)
Mizzonite (0.804)
Lazurite (0.791)

Quartz (0.867)
Celestite (0.854)
Uvarovite (0.804)

Vegetation

77 Suredi n-D Class

Mean #9

Andalusite (0.918)
Hematite (0.910)
Sphene (0.906)

Sphalerite (0.965)
Pyrrhotite (0.955)
Grossular (0.946)

Corrensite, chlorite-rich
andalusite-bearing rock/soil

78 Suredi n-D Class

Mean #10

Andalusite (0.927)
Pyrope (0.914)
Pyrrhotite (0.872)
Hematite (0.865)
Illite (0.854)

Andalusite (0.957)
Vesuvianite (0.932)
Pyrope (0.923)
Tourmaline (0.922)
Illite (0.895)

lllite/muscovite, kaolinite-
smectite, albite, tourmaline,
andalusite-bearing quartzose
rock/soil
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Table-8.10 End-member spectral identification using ENVI's Spectral Analyst™ for Case 4:
Image-subsets for 8 differentmineralized areas, ASTER SWIR 6-band reflectance data

S.

No.

PPI-derived

Unknown Image
End-member ID

Top matches based on
SAM+SFF scores (fit
values in parentheses)

Top matches based on
SFF scores (fit values
in parentheses)

Remarks and best match
based on visual
inspection

1 Akwali n-D Class
Mean #1

Monticellite (0.906)
Arsenopyrite (0.897)
Carbon black (0.894)

Mascagnite (0.936)
Axinite (0.934)
Monticellite (0.930)

Sulfur bearing iron mineral;
most likely pyrite; also
good visual matches with
hematite

2 Akwali n-D Class
Mean #2

Grossular (0.866)
Clinochlore (0.855)
Chromite (0.844)

Grossular (0.955)
Sphalerite (0.953)
Clinochlore (0.872)

Best visual matches with
rhodonite, prochlorite and
corrensite; likelyto
represent chlorite and
garnet

3 Akwali n-D Class
Mean #3

Hectorite (0.912)
Chrysotile (0.897)
Meionite (0.888)
Celsian, calcite (0.886)

Ferrihydrite, hectorite,
lizardite (0.981)
Tremolite (0.980)
Meionite (0.978)

Best visual matches with
celsian and richterite

4 Akwali n-D Class

Mean #4

Carbon black (0.886)
Chromite (0.884)
Dolomite (0.881)
Clinochlore (0.850)

Brucite (0.906)
Sphalerite (0.903)
Hematite, zincite (0.899)
Grossular (0.886)

Best visual matches with
almandine garnet; likely to
represent iron-oxide soils
containing garnet

5 Akwali n-D Class

Mean #5
Chromite (0.828)
Mizzonite (0.824)
Grossular, cookeite
(0.807)

Pyrrhotite, vesuvianite
(0.836)
Tourmaline, sphalerite
(0.814)
Andalusite (0.792)

Best visual matches with

cookeite (chlorite),
tourmaline and grossular

6 Akwali n-D Class

Mean #6

Anorthite (0.903)
Dolomite (0.888)
Calcite (0.875)

Grossular (0.947)
Sphalerite (0.923)
Clinochlore (0.909)

Strong band 8 absorption
and best visual inspection
indicates that this is likely
to represent chlorite or
corrensite

7 Akwali n-D Class

Mean #7

Anorthite (0.873)
Chrysotile, strontianite
(0.871)
Calcite (0.869)

Sphalerite (0.883)
Rhodonite (0.875)
Calcite (0.860)

Same as above

8 Bandha n-D Class

Mean #1

Chromite (0.852)
Cookeite (0.843)
Pectolite (0.835)
Illite (0.828)

Ammonium chlorite

(0.911)
Axinite (0.906)
Mascagnite (0.898)

Best visual match with

cookeite (chlorite) and
uvarovite (garnet)

9 Bandha n-D Class

Mean #2

Chrysotile (953)
Calcite (0.938)
Anorthite (0.935)

Phlogopite (0.972)
Rhodochrosite (0.971)
Calcite (0.960)

Best visual matches with

hornblende and prochlorite

10 Bandha n-D Class

Mean #3

Arsenopyrite (0.952)
Pyrite (0.950)
Cordierite (0.941)

Cookeite (0.982)
Mizzonite (0.978)
Grossular (0.977)

Visually, the spectrum
resembles with that of

grossular, most spectra of
topaz and oligoclase, best;
scapolite minerals also
exhibit resemblance to this
spectrum

11 Bandha n-D Class

Mean #4

Mizzonite (0.837)
Grossular (0.820)

Grossular (0.930)
Pyrrhotite (0.920)
Dipyre (0.917)

Grossular and scapolite
(mizzonite and dipyre)

12 Bandha n-D Class

Mean #5

Dolomite (0.900)
Anorthite (0.896)
Clinochlore (0.891)
Calcite (0.877)

Lizardite (0.964)
Clinochlore (0.954)
Epidote, dolomite (0.936)

Best visual matches with

rhodonite and corrensite

13 Bandha n-D Class

Mean #6

Vermiculite (0.863)
Anorthite (0.816)
Calcite (0.815)

Vermiculite (0.917)
Richterite (0.850)

Best visual matches with

cookeite, lepidocrosite and
rhodonite

14 Bandha n-D Class

Mean #7

Chromite (0.842)
Mizzonite (0.829)
Cookeite (0.828)
Illite (0.827)

Cookeite (0.848)
Pyrrhotite (0.845)

Grossular garnet +
Cookeite (chlorite)

15 Bansiyal n-D Class
Mean #1

Illite (0.873)
Montmorillonite (0.835)

Illite (0.867)
Muscovite (0.864)

Albite + Muscovite/illite +
Microcline + Kaolinite-



280

Table-8.10 continued...

Cookeite (0.828)
Kaolinite (0.818)

Microcline (0.0.859) smectite

16 Bansiyal n-D Class
Mean #2

Grossular (0.944)
Mizzonite (0.921)
Oligoclase (0.909)

Grossular (0.979)
Mizzonite (0.960)
Dipyre (0.931)

Grossular + Meionite

(scapolite) + oligoclase

17 Bansiyal n-D Class
Mean #3

Hectorite (0.883)
Calcite (0.868)
Anorthite (0.857)

Sauconite (0.989)
Ferrihydrite, lizardite
(0.986)
Tremolite (0.985)

Best visual matches with

celsian, tremolite,
richterite, and meionite; a
stronger band 8 absorption
indicates the presence of
chlorite/epidote/phlogopite

18 Bansiyal n-D Class
Mean #4

Arsenopyrite (0.922)
Syngenite (0.920)
Sillimanite, topaz (0.918)

Lepidolite (0.944)
Cookeite, illite (0.941)
Muscovite (0.936)

Albite + scapolite + topaz

19 Bansiyal n-D Class
Mean #5

Grossular (0.877)
Chrysotile (0.863)
Celsian (0.861)

Dipyre (0.887)
Grossular (0.870)
Celsian (0.867)

Grossular + dipyre

20 Bansiyal n-D Class
Mean #6

Oligoclase, tourmaline,
mizzonite (0.848)
Grossular (0.841)
Cordierite (0.835)

Vesuvianite (0.917)
Andalusite (0.897)
Pyrrhotite (0.892)
Tourmaline (0.887)

Best visual matches with

illite + desert varnish +

tourmaline

21 Bansiyal n-D Class
Mean #7

Cordierite (0.953)
Marialite (0.925)
Muscovite, oligoclase
(0.912)

Hydrogrossular (0.992)
Muscovite (0.989)
Cordierite (0.981)

Cordierite + albite +

muscovite/illite +

montmorillonite + scapolite

22 Chandmari n-D

Class Mean #1

Pyrrhotite (0.890)
Grossular (0.824)
Tourmaline (0.823)

Pyrrhotite (0.957)
Sphalerite (0.797)
Grossular (0.775)

Best visual match with

desert varnish; absorptions
in band 6 and 8 indicate

that this spectrum
represents a mixture of
illite- and chlorite-like
surfaces

23 Chandmari n-D

Class Mean #2

Dolomite (0.918)
Galena (0.907)
Anorthite (0.896)

Andradite (0.913)
Dolomite (0.912)
Clintonite (0.911)
Clinochlore (0.899)

Best visual match with

fassaite; absorption bands
are centered near band 5

and 7, this indicates that
the spectrum actually
represents a mixture of
possibly alunite and
jarosite

24 Chandmari n-D

Class Mean #3
Carbon black (0.889)
Opal (0.867)
Bassanite (0.853)

Gibbsite (0.946)
Brucite (0.926)
Hematite (0.921)

Jarosite (band 7
absorption)

25 Chandmari n-D

Class Mean #4
Cordierite (0.913)
Muscovite (0.905)
Oligoclase (0.902)

Oligoclase (0.915)
Muscovite (0.913)
Brookite, montmorillonite
(0.896)

Oligoclase + Cordierite +
Montmorillonite + Scapolite
+ Muscovite/illite

26 Chandmari n-D

Class Mean #5

Chromite (0.814)
Mizzonite (0.801)
Grossular (0.786)

Pyrrhotite (0.801)
Sphalerite (0.780)
Grossular (0.773)

Grossular (garnet) +
Dipyre (scapolite) +
Cookeite (chlorite)

27 Chandmari n-D

Class Mean #6

Pyrite (0.843)
Montecellite (0.834)
Galena (0.828)

Ulexite (0.919)
Axinite (0.913)
Mascagnite, opal (0.903)

Band 5 absorption and
general curve shape
strongly indicate the
material to be of

buddingtonitic composition
28 Chandmari n-D

Class Mean #7
Tourmaline (0.802)
Grossular (0.800)
Dolomite (0.795)

Sphalerite (0.859)
Grossular (0.854)
Pyrrhotite (0.837)
Andalusite (0.809)

Illite + Chlorite +

Andalusite

29 Dhauli n-D Class

Mean #1

Grossular (0.912)
Celsian (0.896)
Meionite (0.896)

Pyrrhotite (0.904)
Dipyre (0.894)
Andalusite (0.883)

Dipyre

30 Dhauli n-D Class

Mean #2

Chromite (0.886)
Pyrite (0.885)
Illite (0.879)

Cookeite (0.933)
Chromite (0.927)
Pigeonite (0.922)

Cookeite (chlorite) +
Meionite (scapolite)

31 Dhauli n-D Class

Mean #3

Chromite (0.854)
Cookeite (0.833)

Chromite (0.845)
Sphalerite (0.834)

Cookeite + dipyre
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Anorthite (0.828)
Mizzonite, calcite (0.825)

Pyrrhotite (0.825)
Cookeite (0.808)

32 Dhauli n-D Class
Mean #4

Vermiculite (0.855)
Mizzonite (0.848)

Dipyre (0.977)
Celsian (0.961)
Meionite (0.954)

Scapolite

33 Dhauli n-D Class
Mean #5

Mizzonite (0.846)
Grossular (0.835)
Celsian (0.797)

Grossular (0.912)
Dipyre (0.907)
Pyrrhotite (0.869)

Scapolite + amphibole
(riebeckite)

34 Dhauli n-D Class
Mean #6

Vesuvianite (0.861)
Mizzonite (0.840)
Opal (0.839)

Andalusite (0.942)
Vesuvianite (0.940)
Tourmaline (0.921)

Quartz + illite or scapolite
+ andalusite

35 Dhauli n-D Class
Mean #7

Chromite (0.863)
Grossular (0.821)
Clinochlore (0.815)

Chromite (0.907)
Sphalerite (0.881)
Grossular (0.848)

Best visual match with

rhodonite; but the likely
mineral is perhaps
prochlorite

36 Gadrata n-D Class
Mean #1

Mizzonite (0.879)
Oligoclase (0.854)
Cordierite (0.852)

Witherite (0.952)
Tourmaline (0.948)
Cinnabar (0.935)

Oligoclase + Scapolite +
Cordierite + Illite

37 Gadrata n-D Class

Mean #2
Galena (0.967)
Arsenopyrite (0.962)

Natrolite (0.985)
Kainite (0.984)
Colemanite (0.982)

Quartz/topaz + Illite +
Andalusite

38 Gadrata n-D Class
Mean #3

Meionite (0.972)
Celsian (0.962)
Dipyre (0.937)

Celsian (0.986)
Meionite (0.981)
Dipyre (0.972)

Riebeckite (amphibole) +
Dipyre (scapolite)

39 Gadrata n-D Class
Mean #4

Cookeite (0.843)
Vermiculite (0.819)
Illite (0.819)

Ammonium chlorite
(0.852)
Axinite (0.851)
Mascagnite (0.841)

Excellent matches with a
variety of likely minerals:
cookeite, topaz, desert
varnish, sillimanite, beryl,
rectorite; broad absorption
across bands 5 and 6, and
band 8 separated by a
reflectance peak at band 7

40 Gadrata n-D Class
Mean #5

Chromite (0.887)
Anorthite (0.878)
Dolomite (0.877)
Cookeite (0.876)

Sphalerite (0.923)
Chromite (0.923)
Grossular (0.894)

Andalusite +

chlorite/grossular

41 Gadrata n-D Class

Mean #6
Oligoclase (0.955)
Marialite (0.929)
Cordierite (0.925)

Witherite (0.999)
Oligoclase (0.973)
Tourmaline (0.949)
Illite (0.948)

Oligoclase + Scapolite +
Tourmaline + Illite +

Cordierite

42 Gadrata n-D Class

Mean #7

Chrysotile (0.979)
Anorthite (0.967)
Calcite (0.955)

Chrysotile (0.997)
Rhodochrosite (0.995)
Calcite (0.995)

Because of a distinct band
8 absorption, a variety of
minerals are likely
candidates for this

spectrum: Ferroan
Chamosite (chlorite) +
Hornblende + Celsian +

Labradorite + Phlogopite +
Calcite

43 Kalota n-D Class

Mean #1
Grossular (0.944)
Oligoclase (0.927)
Cookeite (0.926)

Grossular (0.962)
Mizzonite (0.952)
Dipyre (0.944)

Grossular + Dipyre +
Oligoclase + Cookeite

44 Kalota n-D Class
Mean #2

Cookeite (0.862)
llite (0.846)
Hydrogrossular (0.824)

Cookeite (0.877)
Mizzonite (0.874)
Oligoclase (0.866)

Scapolite + Chlorite +
Cordierite + Muscovite

45 Kalota n-D Class

Mean #3

Mizonite (0.889)
Grossular (0.878)
Tourmaline (0.864)
Oligoclase (0.862)

Vesuvianite (0.932)
Pyrrhotite (0.912)
Tourmaline (0.907)
Mizzonite (0.894)

Desert Varnish +

Grossular + Oligoclase +
Tourmaline + Illite +
Cordierite

46 Kalota n-D Class

Mean #4

Cookeite (0.798)
Vermiculite (0.772)
Illite (0.750)

Cookeite (0.779)
Topaz (0.727)
Ammonium chlorite
(0.708)

Cookeite + Topaz +
Sillimanite + Rectorite

47 Kalota n-D Class

Mean #5
Opal (0.923)
Montmorillonite (0.884)
Bassanite (0.884)

Sanidine (0.954)
Hematite (0.944)
Chalcedony (0.941)

Quartz/chalcedony

48 Kalota n-D Class Grossular (0.967) Dipyre (0.987) Grossular + oligoclase +
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Mean #6 Oligoclase (0.959)
Meionite (0.955)
Celsian (0.949)

Grossular (0.985)
Celsian (0.977)

labradorite + albite +

celsian + quartz

49 Kalota n-D Class

Mean #7

Anorthite (0.915)
Dolomite (0.896)
Chrysotile (0.887)
Calcite (0.885)

Lizardite (0.973)
Clinochlore (0.919)
Anorthite (0.909)
Epidote (0.908)
Phlogopite (0.907)

Chlorite/epidote

50 Suredi n-D Class

Mean #1

Chromite (0.859)
Grossular (0.778)
Clinochlore (0.769)
Carbon black (0.760)
Dolomite (0.758)
Cookeite (0.757)

Chromite (0.869)
Sphalerite (0.830)
Pigeonite (0.786)

Chlorite + Phlogopite +
Celsian

51 Suredi n-D Class

Mean #2

Oligoclase, Cordierite
(0.941)
Marialite (0.933)
Mizzonite (0.921)

Tourmaline (0.993)
Pyrope (0.985)
Illite (0.978)
Oligoclase (0.976)

Oligoclase + Grossular +
Illite + Scapolite + Albite

52 Suredi n-D Class

Mean #3

Chromite (0.886)
Chrysotile (0.876)
Anorthite (0.874)

Vermiculite (0.914)
Mizzonite (0.905)
Dipyre (0.904)

Meionite + Grossular +

Cookeite + Celsian

53 Suredi n-D Class

Mean #4

Oligoclase (0.957)
Grossular (0.945)
Marialite (0.928)
Albite (0.917)

Tourmaline (0.979)
Mizzonite (0.962)
Pyrrhotite (0.962)

Oligoclase + Grossular +
Andalusite + Illite

54 Suredi n-D Class

Mean #5

Chromite (0.889)
Pyrite (0.885)
Carbon black (0.881)
Cookeite, ilite (0.871)

Pigeonite (0.925)
Chromite (0.917)
Ammonium chlorite

(0.911)

Cookeite + Grossular +

Albite + Oligoclase

55 Suredi n-D Class

Mean #6

Mizzonite (0.887)
Cordierite (0.878)
Illite (0.873)
Oligoclase (0.866)
Muscovite (0.855)

Witherite (0.975)
Ologoclase (0.955)
Tourmaline (0.943)
Mizzonite (0.937)

Tourmaline + Oligoclase +
Cordierite + Marialite

(scapolite) +
Muscovite/illite +

Montmorillonite +

Grossular

56 Suredi n-D Class

Mean #7

Illite (0.854)
Cookeite (0.836)
Hydrogrossular (0.812)
Muscovite (0.812)

Muscovite (0.863)
Oligoclase (0.852)
Illite (0.837)

Muscovite +

Montmorillonite +

Cordierite + Albite +
Grossular
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8.4.4 SAM classification

Using a threshold angle of0.05 radians and the end-members derived from the image through

PPI for the four cases described above, Spectral Angle Mapper (SAM) classification has been

performed on the ASTER reflectance image dataset. For Cases 1 and 2, since the number of

end-members was limited, no grouping was necessary. However, as there was a rather large

number of spectral classes for Cases 3 and 4 which could potentially render the classes too fine

to differentiate ina single classified map, it was deemed necessary to reduce the actual number

of truly distinct end-member spectral classes by grouping similar classes of the 8 different

subsets. Thus, based upon the end-member spectral identification using the Spectral Analyst™,

the number of distinct spectral classes for Case 3 was reduced from 78 to 28, and for Case 4 it

was reduced from 56 to 32. The SAM classification results for the four cases obtained thus

have been shown in Figures 8.20, 8.21, 8.22 and 8.23, respectively for the four cases identified

and described earlier. It can be readily observed that due to filter-scratch in SWIR focal array

the upper left part of the classified images in Figures 8.21 and 8.23 are difficult to interpret

meaningfully.
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Figure-8.20 SAM-classified alteration/surface mineral map of the study area for Case 1.
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Figure-8.21 SAM-classified alteration/surface mineral map of the study area for Case 2.
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Figure-8.22 SAM-classified alteration/surface mineral map of the study area for Case 3.
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Figure-8.23 SAM-classified alteration/surface mineral map of the study area for Case 4.
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8.4.5 MTMF™ processing

For Cases 1 and 2, Mixture Tuned Matched Filtering (MTMF™) processed images were

produced for the respective end-member spectral classes. Although Cases 3 and 4 were also

used for MTMF™ processing, the unmanageably large number of end-member spectral classes

in these cases made the final combination difficult due to overlaps among different classes. The

individual MTMF™ class-abundance images were interactively thresholded according to the

procedure described in Chapter 7, to combine the different end-member spectral classes into

single MTMF™ classified images, respectively for the two cases. The threshold value selection

is rather subjective and can lead to slight variations in the final mineral map product. Threshold

values can be chosen either liberally such that many pixels are classified together that are not

truly the same, i.e. inclusion of false-positives; or conservatively, which results in missing of

some pixels belonging to the true class. Some background knowledge of the field area and

basic understanding of common geologic models are helpful, but not necessary. The thresholds

values used for Case 1 and Case 2 have been chosen conservatively, as summarized in Tables

8.11 and 8.12, and the resultant MTMF™ classified images are shown in Figures 8.24 and

8.25, respectively.

Table-8.11 Case 1: MTMF™ thresholds for end-member spectral classabundance images.
End-member MTMF Range Threshold Value
n-D Class Mean #2 -1.074001 to 1.449376 0.30
n-D Class Mean #3 -0.961481 to 1.131103 0.35

n-D Class Mean #4 -0.885976 to 0.882990 0.25
n-D Class Mean #5 -1.042887 to 1.232520 0.30

n-D Class Mean #6 -0.720868 to 0.774446 0.25

n-D Class Mean #7 -1.245776 to 0.935601 0.25

n-D Class Mean #8 -0.842181 to 0.705004 0.20

n-D Class Mean #9 -0.387703 to 0.615354 0.18

n-D Class Mean #10 -0.577745 to 1.035738 0.25

Table-8.12 Case 2: MTMF™ thresholds for end-memberspectralclass abundance images.
End-member MTMF Range Threshold Value
n-D Class Mean #2 -1.077680 to 1.230945 0.30

n-D Class Mean #3 -1.332536 to 1.242485 0.35
n-D Class Mean #4 -1.405884 to 1.266271 0.30
n-D Class Mean #5 -1.215086 to 1.040985 0.25
n-D Class Mean #6 -1.560063 to 1.092695 0.35
n-D Class Mean #7 -1.546180 to 1.369403 0.30
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Figure-8.24 MTMF™-classified alteration/surface mineral map of the study area for Case 1;
prominent banding due to SWIR filter-scratch problem can be noticed in the western part of the
image. Background is ASTER band 1 image. Notice also that the class 'calcite/anorthite' also

covers the pixels representing built structures (towns; e.g. Khetri and Babai). Differences
between MTMF™ classification and SAM classification occur primarily because the

MTMF™-classified image represents 'stacked' classes, such that the top-most class is visible
whileotherclassesrepresenting the samearea (same pixels) are invisible due to overlap.
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Figure-8.25 MTMF™-classified alteration/surface mineral map of the studyarea for Case2;
banding due to SWIR filter-scratch problem is more pronounced on this map, as only SWIR

bands have been used to produce theclassification. Background is ASTER band 1 image (grey
shades). Differences between MTMF™ classification and SAM classification occur primarily

because theMTMF™-classified image represents 'stacked' classes, such that the top-most
class is visible while otherclasses representing the samearea (samepixels) are invisible due to

overlap.
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8.5 Spectral classification limitations and linear mixing

Natural geologic surfaces are often covered with non-geologic materials (e.g. vegetation) or

composed of mixtures of minerals with varying grain sizes or degrees of compaction/

solidification. These factors greatly influence remote spectral measurements and limit the

number of pixels that can be classified and mapped. This leads to a potential bias in mineral

mapping. Mixing can exist at various scales and also affects the measured infrared spectral

properties ofan area. When minerals in a field ofview are physically separated such that there

is no scattering between components, the spectral signature of the area represents the sum of

the fractions of each component and is thus a linear mixture. Intimate mixing occurs at smaller

scales when different minerals are in close contact on a single scattering surface. The presence

of rock coatings (such as desert varnish) causes another type of mixing that varies depending

on the thickness of the coating and the wavelength of the scattered radiation. And at the

smallest scales, molecular mixing occurs when a liquid, such as water is adsorbed onto a

mineral surface or vegetation (Clark, 1999). Sub-pixel abundances of different surface cover

types can all influence the nature of the spectral signature for a particular pixel. Subtle

deviations from the 'type' signature can result in 'misclassification' of the pixel.

For broadband multispectral data such as that of ASTER, only spectral shapes and

feature locations can be used for mineral identification. The Spectral Analyst™ analysis of the

end-member spectra indicated the existence of a rather complex variety of minerals, since

subtle spectral variations in image end-member spectra though principally related to the actual

mineral chemistry are affected also by the differences in solar illumination geometry and

topographic variations (despite earnest efforts to subjugate these effects). Therefore, spectra for

the same material from sun-lit and shadowed parts have been determined as different end-

members through PPI™, which highlights the pitfalls ofa fully automatic processing. Also, the

reference spectral libraries contain more than one spectrum for a single material, at different
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levels of either purity or grain-size. While determining the spectral matches of the unknown

end-members to these spectral library spectra, there is a fair chance that unrepresentative

material with better overall curve-fit scores might appear as a match. Visual inspection and

assigning is a more reliable way to determine the likely matches; but again, more than one

reference spectra can appear to resemble the unknown spectrum and can hence introduce

subjectivity in the spectral identification. Some background knowledge of the field study area

can greatly check the levels of such subjectivity, as has been practiced in this study. Since the

target alteration minerals expected in the study area were known beforehand, and the geologic

ground-truth was available, a greater objectivity became possible in determining the spectral

classes for the study area.

A mind-boggling variety of supervised classification techniques exist which can be used

to classify the image to produce mineral maps. Two of these methods used in this study (SAM

and MTMF™) are most widely used; typically with hyperspectral data for spectral analysis.

While excellent overall agreement has been observed between the spectral classification results

of two techniques, there also exist major disagreements. This can be explained as follows. The

MTMF™ classification shown in Figures 8.24 and 8.25 represent 'stacked classes', i.e. the

class pixels are not mutually exclusive. The same pixel has been found to match with more than

one end-member spectral class. Manual thresholding has not completely eliminated the chance

of overlap, and while combining the different thresholded density slices into a single classified

output, due to pixel opacity the underlying classes become 'invisible'. Perhaps a better way to

represent the MTMF™-classes is a simple combination of three class-abundance images in

RGB scheme, but in this way a single classification product cannot be generated! As discussed

in detail in Chapter 9, comparison of the SAM classification results with the geologic ground-

truth and published maps is in good agreement and thus these results represent the true spectral

classes for the study area.

i



Chapter 9

Synthesis of Results and Interpretation

9.1 Statement of purpose and introduction

In order to assess the usefulness and credibility of the results of spectral lithologic and

alteration mapping described in Chapters 7 and 8, respectively, it is necessary to analyze them

in light of existing field and laboratory evidences as described in Chapter 4. The field

relationships, major and minor mineralogy, petrographic texture, surface coatings, and trace-

metal content of the rock samples collected from the study area collectively constitute the

bases on which the spectral signatures are defined. All spectral analysis techniques are based

on the fundamental spectroscopic principles outlined in Chapter 5, and the extent to which

laboratory spectra of minerals and rocks can be simulated through remotely sensed data is

controlled largely by the degree of accurate retrieval of surface properties of reflectance and

emissivity, as described in Chapter 6. Thus, a successful implementation of remote sensing

analysis results for lithologic and mineral mapping is influenced at all stages of image analysis,

starting right from data selection, which inthe present case is thatof ASTER.

This chapter, therefore, attempts to synthesize the results of image analysis contained in

previous chapters and interprets them in a geologically meaningful way. In nutshell, the main

focus of this chapter is to describe the results of ASTER-based spectral lithologic and

surface/alteration mineral mapping through a comparative analysis of well-described geology,

field locations and laboratory data and their representation on the respective spectral maps.

Eight windows of the study area (fig. 8.15, Chapter 8), for areas with known mineralization

and analyzed field samples have been used to serve this objective. Description is based on field

evidence, hand specimen analysis and thin-section petrography. Limitations arising due to

spatial and spectral resolution inadequacies, atmospheric and topographic correction



302

inaccuracies, and spectral mixing have been discussed at appropriate places. Associations of

rock alteration with trace-metal anomalies have also been described.

9.2 Validation of spectral mapping results

As described in the following sections, the validation of spectral lithologic mapping

(qualitative and quantitative; based on ASTER TIR radiance and emissivity data analysis;

Chapter 7), and spectral surface/alteration mineral mapping (based on spectral analysis of

ASTER VNIR-SWIR reflectance data, Chapter 8) has been done by simultaneously examining

the compiled lithologic map, thin-section photomicrographs of field samples and spectral

classification results. Of the eight image windows used for validation (fig. 8.15, Chapter 8) -

viz., Akwali, Chandmari, Dhauli, Suredi, Bandha, Bansiyal, Gadrata, and Kalota - first four

represent areas with known mineralization and have been used to validate the results of

(alteration/surface) mineral mapping, since site-specific field samples from these areas have

been analyzed petrographically and geochemically. Image windows for Bandha, Gadrata and

Bansiyal have been used for validation of ASTER TIR-based lithologic mapping since these

areas contain a wider variety of rock types and associated alteration mineral assemblages, and

are thus potential zones of mineralization, as observed on various spectral mineral maps. The

window representing Kalota region has been used to see if spatially small trace-metal

anomalies present in the regolith of the area and the associated alteration are also represented

on ASTER spectral maps.
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9.2.1 Spectral lithologic mapping

Figure-9.1 shows the compiled lithologic map of the study area, a DCS image (bands 13-12-10

in R-G-B), the weight percent SiC»2 map generated using the K-value technique, and spectral

lithologic maps obtained using spectral indices of ASTER surface radiance data and the

MTMF™ classification of L2 ASTER TIR surface emissivity data (for details see Chapter 7).

Field locations of the type rock areas have been marked on the compiled lithologic map. Table-

9.1 lists the field samples, their geographic latitude-longitude, major and minor mineralogy,

SiC"2 weight percent values (pixel averaged) obtained through the spectral modeling and K-

value methods, and spectral classes for the corresponding pixels determined using Spectral

Analyst™ SAM/SFF fit-scores, as previously described in Chapter 7.
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Table-9.1 Validation of spectral lithologic mapping using ASTER TIR data (ND=Not Determined)

Sample ID
Location

(latitude/longitude)

Thin section mineralogy (ground-truth)
Spectral Analyst™-
derived Pixel

Composition
(JHU spectral
library as reference)

Weight per cent Si02
(pixel averaged)

Remarks

Major Minor
K-value

method

Spectral
modeling-
based

A1
N 27° 54' 37.4"

E 75° 45' 52.2"
Quartz Plagioclase and some opaques

Brown to dark brown

sandy loam
68.59 60.72

Differences in the

composition derived
through ASTER TIR
surface

radiance/emissivity
data analysis and
ground-truth are
attributed mainly to
the large pixel size
(90m) of ASTER TIR,
leading to spectral
mixing, and GPS
location and co-

registration errors.
Mismatches in Si02
weight percent values
obtained though the
K-value technique and
spectral modeling are
within an overall range
of 3-12%; also, values
obtained through K-
value technique are
more representative.

A2
N 27° 55' 00.8"

E 75° 46' 46.6"

Calcite,
actinolite

Quartz, opaques (magnetite?)
Brown to dark brown

sandy loam
65.36 58.72

A4
N 27° 59'13.6"

E 75° 46' 20.4"
Quartz

Stray grains of hornblende in
cavities, and iron staining
along fractures and grain
boundaries

Pink Quartzite 92.73 81.72

A5
N 27° 59' 42.7"

E 75° 46'43.1"

Andalusite,

chlorite

Quartz and opaques
(magnetite?)

Mica Schist 65.54 59.49

AM1
N 27° 55' 14.5"

E 75° 45'51.5"

Hornblende,
K-feldspar

Biotite and opaques Mafic diabase 59.55 56.22

BANDHA
N 27° 56' 44.5"

E 75° 47' 32.6"

Quartz,
feldspar

Some opaques
Brown to dark brown

sand
77.18 66.04

GRANIT
N27°55' 11.4"

E75°48' 18.7"

Quartz, K-
feldspar
(orthoclase/m
icrocline)

Some muscovite, plagioclase,
and iron-staining along grain-
boundaries

Brown to dark brown

sandy loam
70.59 61.73

PEG
N 27° 56' 5.40"

E 75° 47' 57.8"
ND (Pegmatite)

Brown to dark brown

sandy loam
75.92 65.98

Z1
N 27° 56' 38.3"

E75°47' 12.4"

ND (Amphibolite dyke cutting across arkosic
quartzites)

Mafic diabase 60.67 57.55

Z2
N 27° 56' 38.0"

E 75° 46' 58.5"
ND (Banded amphibole quartzite, type location)

Brown to dark brown

sandy loam
69.82 59.45

Z3
N 27° 56'44.1"

E 75° 46' 49.6"
ND (Calc-silicate outcrops) Mafic diabase 60.38 55.90

o
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Since field samples represent point locations whereas a pixel spectrum in ASTER TIR

data is a sum-total of the materials contained within an area of 90><90m2, and also since the

spatial variation in lithology within the study area is high, it is not possible to exactly compare

the results of spectral processing with field/lab data. However, in spite of these limitations,

lithologic units identified using ASTER TIR data exhibit an overall correspondence to the

geologic ground truth (lithologic map and petrography).

On different spectral lithologic maps (fig. 9.1b,c,e), best discrimination among the

lithologic units has been achieved among the mafic and felsic rock units. For example, the

pixel corresponding to field sample A4, which is shown as pure/ortho-quartzite on the

lithologic map and composed almost wholly of quartz as seen under the microscope, is shown

in distinct red color on the DCS image (fig. 9.1b) exhibiting strong absorption due to Si-0

bending and stretching vibration modes in bands 12 (9.075um) and 10 (8.29 lum) centered at

the main reststrahlen band (for details see Chapter 5); the same pixel has high values for the

quartz index and is shown in bright red color on the spectral index composite (fig. 9.1c); Si02

weight percent values estimated through the K-value and spectral modeling approach both

indicate significantly high Si02 content for this pixel (~ 93 wt% Si02); and the spectrum for

this pixel has been identified as that of 'pink quartzite' through Spectral Analyst™ and

classified accordingly through the MTMF™ processing. The same explanation exists for the

—y pixel where field sample AMI representing an amphibolite is located. Additionally the

pertinent amphibolite dike in the center of the study area has been distinctly mapped on the

various ASTER-based spectral lithologic maps (fig. 9.1). Ambiguity exists primarily between

carbonates and pelites with high mafic content, and amphibolites. Granite, pegmatite and

arkosic quartzite outcrops tend to appear common on spectral maps owing to an overall
ft

similarity in chemical composition. Due to relatively higher degree of weathering these rock

units have a general spectral match with that of brown sand or loam. Differences in spectral

lithology and field lithology are an outcome ofa combined influence of spectral mixing (owing
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to low spatial resolution and high lithologic heterogeneity), inaccuracies in pixel-to-pixel co-

registration within a dataset and between datasets (LIB and L2), and GPS-derived location

errors of field samples.

As regards the absolute values of silica weight percent, the incongruence between the

results obtained using the K-value technique and the spectral curve-fit modeling is highlighted

in Table-9.1. The underlying reasons for this incongruence have been described in section

7.3.4, Chapter 7. However, it can be noted that even as discrepancies in absolute values exist

between the two techniques, within individual maps the variation is adequately representative

ofrelative lithologies. It has been generally observed, though, that the absolute values obtained

from the K-value technique are closer to the anticipated Si02 weight percent values (Table-

9.1).

9.2.2 Spectral surface/alteration mineral mapping

As with the spectral lithologic maps, the validation of the surface/alteration mineral maps

generated through processing ofthe ASTER VNIR-SWIR data described in Chapter 8 involves

a combined observation of the variously generated spectral maps with the compiled field

lithologic map and results ofthin-section petrography. Point locations ofthe field samples and

their pixel representation on the classified spectral mineral/alteration maps provide a means of

comparison and validation. Superior spatial resolution ofASTER VNIR and SWIR data (15 m

and 30 m, respectively) affords a higher approximation confidence and closer comparison with

the ground-truth. Since the spectral alteration mineral maps are primarily a representation of

the surface composition alone, attempts have been made to explain and correlate the

composition identified/inferred through remote sensing with the compiled field lithologic map

and petrographic evidences based on the expected alteration mechanism of parent rock and

derived materials (minerals). Also as the ground-truth for the area is site-specific (rather 'point-

/pixel-specific') due to high degree of lithologic complexity, validation has been done using

-4

i

*~
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the SAM-classified spectral mineral maps with discrete pixel classes as shown in figs. 8.20-

8.23 derived following the end-member selection criteria for the four cases as outlined in

section 8.4.2 (Chapter 8). Validation has been based on tabulation of site-specific sample/field

data, and the pixel composition for the sample-site determined through spectral analysis for the

four cases, and the composition of select field samples determined through conventional thin-

section petrography. The lithologically diverse and spatially scattered field samples used in

validation represent the eight image windows used to build the end-member spectral library for

spectral classification (fig. 8.15, Chapter 8). While all of these field samples are in the vicinity

of known mineralized pockets,of these three samples fall on or close to the main shearzone.

Table-9.2 shows the samples used in validation, their field characteristics,

corresponding pixel compositions obtained using SAM classification for the four individual

cases, and mineralogy determined through thin-section petrography. Disposition of these field

samples has been marked on the lithologic map of the study area, as shown in fig. 9.2. Figure-

9.3 shows the pixel reflectance spectra of the sample sites, with the main absorption features

marked as thick vertical lines. For each sample site, the validation has been discussed

separately.



Table-9.2 Validation of ASTER VNIR-SWIR spectral mineral mapping results.

Sample
ID

Area
Location

Coordinates
Rock Type

SAM Pixel Spectral Class Minerals identified under

microscope
Case 1 Case 2 Case 3 Case 4 Major Minor

B1 Akwali N 27 55 50.1

E 75 45 25.9

Altered

amphibolite
Amphibole,
Corrensite

Hornblende,
tremolite,
phlogopite

Corrensite, illite,
chlorite

Chlorite,
phlogopite,
celsian

Hornblende,
actinolite, K-
feldspar

Biotite and

opaques,

iron oxide
Ch2 Chandmari N 28 00 07.7

E 75 46 20.6

Limonitized

overburden

(amphibole
quartzite and
andalusite,
mica schist)

Ferrihydrite,
tremolite,
celsian

Hornblende,
tremolite,
phlogopite

Phlogopite,
tremolite,
ferrihydrite,
corrensite,
scapolite

Jarosite,
chlorite,
phlogopite,
celsian

ND

DH1 Dhauli N 27 57 55.1

E 75 53 36.6

Hematite-rich

altered calc-

silicate

Ferrihydrite,
tremolite,
celsian

Hornblende,
tremolite,
phlogopite

Scapolite,
kaolinite/illite.

hematite

Grossular,
scapolite
(dipyre,
cookeite),
oligoclase

ND

Su3 Suredi Ki

Dhani

N 27 53 53.7

E 75 46 26.6

Micaceous

quartzite
(sheared,
altered and

intruded by
pegmatites)

Illite Desert Varnish,
chlorite

Quartz, illite Muscovite, illite,
montmorillonite,
cordierite, albite

Quartz, mica Some clay
minerals

T3 Bilaiwali N27 53 14.6

E 75 45 28.1

Micaceous

quartzite
(altered and
sheared)

Illite Muscovite, illite,
montmorillonite,
oligoclase

Quartz, illite Muscovite, illite,
montmorillonite,
cordierite,
scapolite,
oligoclase,
tourmaline

Quartz,
malachite,
clay minerals

Feldspar,
some

opaques,

muscovite

BDOW Bandha Ki

Dhani

N 27 56 55.3

E 75 46 41.9

Malachite-

stained altered

quartzite

Amphibole,
corrensite

Desert varnish,
chlorite

Desert varnish,
quartz

Chlorite

(prochlorite),
garnet

Quartz Garnet (?),
malachite,
iron-oxide,
some

opaques
BUGR1 Bukri Ki

Dhani

N 27 55 21.0

E 75 48 28.3

Altered granite Adularia Muscovite, illite,
montmorillonite,

Chlorite, alunite,
quartz

Muscovite, illite,
montmorillonite,

Quartz, K-
feldspar

Muscovite,
biotite,
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oligoclase cordierite,
scapolite,
oligoclase,
tourmaline

plagioclase,
some

opaques

B15 Tutiwali N 27 55 19.9

E 75 46 21.2

Altered

amphibole
quartzite

Ferrihydrite,
tremolite,
celsian

Hornblende,
tremolite,
phlogopite

Hematite,
corrensite,
chlorite

Hematite,
garnet

Hornblende,
K-feldspar

Quartz,
biotite,
some

opaques,

iron oxide

B3/17 Kalota N 27 53 29.7

E 75 44 24.3

Altered

amphibolite
Adularia Hornblende,

tremolite,
phlogopite

Corrensite,
alunite

Chlorite,
phlogopite,
celsian

Quartz,
biotite,
muscovite,
chlorite

Plagioclase,
some

opaques,

iron oxide

Chemical description and formulae of minerals listed in Table-9.2

Mineral Chemical Formula

Adularia KAISi308
Alunite KAl3(S04)2(OH)6
Biotite K(Mg,Fe)3AISi3O10(F,OH)2
Celsian BaAI2Si208
Corrensite (Mg,Fe)9(Si,AI)8O20(OH)10nH2O
Cordierite (Mg,Fe)2AI3(Si5AI018) to (Fe,Mg)2AI3(Si5AI018)
Ferrihydrite Fe2032FeOOH2.6H20
Jarosite KFe3+3(OH)6(S04)2
Grossular Ca3AI2(Si04)3

Chlorite Group of phyllosilicate minerals:
Clinochlore: (Mg5AI)(AISi3)O10(OH)8
Chamosite: (Fe5AI)(AISi3)O10(OH)8
Nimite: (Ni5AI)(AISi3)O10(OH)8
Pennantite:(Mn,AI)6(Si,AI)4Oio(OH)8
In addition to above, Zn, Li and Ca varieties are also known.

Scapolite Scapolite, is a group of rock-forming silicate minerals composed of
aluminium, calcium and sodium silicate with chlorine, carbonate and
sulfate. It is a continuous series between Ca4(Si,AI)12024(C03,S04)
[meionite] and Na4(AI,Si)l2Q24CI [marialite]

Mineral

Hornblende

Illite

Muscovite

Oligoclase
Phlogopite
Quartz

Tremolite

Tourmaline

Desert Varnish

Chemical Formula

(Ca,Na)2.3(Mg,Fe,AI)5(AI,Si)8022(OH,F)2
(K,H3O)(AI,Mg,Fe)2(Si,AI)4O10[(OH)2,(H2O)]
KAI2(AISi3O10)(F,OH)2
(Na,Ca)[AI(Si,AI)Si208]
(K,Mg)3AISi3O10(F,OH)2
Si02
Ca2Mg5Si8022(OH)2
General formula: XY3Z6(T6018)(B03)3V3W; where X=Ca, Na,
K, vacancy; Y=Li, Mg, Fe, Mn, Zn, Al, Cr, V, Ti; Z=Mg, Al,
Fe, Cr, V; T=Si, Al, B; B=B, vacancy; V=OH, O; W=OH, F, O
A dark coating found on exposed rock surfaces in arid
environments, primarily composed of particles of clay along
with iron and manganese oxides. There is also a host of
trace elements and almost always some organic matter. The
color of the varnish varies from shades of brown to black.

Montmorillonite (Na,Ca)0.33(AI,Mg)2(Si4O10)(OH)2nH2O

U)



LEGEND

I Biot-musc-silli Gneiss
Feldspathic Quartzite

Amphibole Quartzite

I Calc-silicate/para-amphibolite
I Garn-chlo Schist
I Biot-anda Phyllite
I Orthoamphibolite/metadolerite Sills/dykes
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Kilometers

Pure-/ortho-quar1zite

I Impure Marble/Carbonaceous Shale
Undifferentiated Rock Sequence

I Granite/pegmatite/albitite
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Figure-9.2 Lithologic disposition of field samples used for validation ofthe spectral
classification results of ASTER VNIR-SWIR surface reflectance data.
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Figure-9.3 Continuum-removed pixel surface reflectance spectra offield samples used in
validation ofthe spectral mineral mapping. The broad vertical lines indicate the positions ofthe

main absorption features.

Discussion: From Table-9.2 it can be readily observed that ASTER data has been successful in

spectrally identifying most of the major mineral units actually observed in the field and in thin

sections. Ambiguities and differences in mineral identification for different cases investigated

arise primarily because of limitations ofASTER's spectral resolution resulting in multiple (and

sometimes erroneous) matches of the pixel spectrum with reference spectral library (USGS

spectral library) minerals. Also, residual effects of vegetation within an average pixel area of

30x30 m2 also add to the difficulty in exact identifications. Nevertheless, as explained in the

following paragraphs for individual field site, the results show that the ASTER data can

provide encouraging and dependable support in identifying and mapping specific minerals

which can be linked with the presence ofcertain mineral deposits.
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In the pixe! spectrum of sample Bl (fig. 9.3). which represents the altered amphibolite
rock overling the Akwali mines, absorption features centered a, bands 2, 6and 8, respectively
due ,„ Fe-0, AI-OH and Mg-OH can be observed. The pixel-class determined for this sample
site indicates 1, ,„ constitute mainly amphibole minerals (hornblende), secondary a.teration
products of biotite (phlogopite and corrensite), chlorite, which gives rise to the dominant band
8feature, and some illite, responsible for the band 6feature. Leached iron oxide on the surface
explains the subtle hand 2feature. The thin-section for this sample reveals dominantiy
hornblende with some actinolite, the feldspar ofthe rock shows clear indications of weathering
and alteration to generate clay minerals, and Fe-0 shrining along the fmctures is also observed
(fig. 4.5a, Chapter 4).

Sample Ch2 has been collected from the overburden dump adjacent to the (abandoned)
Chandmari open-pit mine towards the northern limit of the study area (fig. 4.3, Chapter 4). The
ore lode in this area lies along the contact between the garnet chlorite schist and andalusite-
mica phyllites (see fig. 9.2), and is hosted in the banded amphibole quartzites. The overburden
is highly weathered, with significant iron oxide leaching and limonitization. The spectral class
for this sample site, as determined for various cases, indicates the presence of avariety of
closely related minerals, viz. ferrihydrite, jarosite, tremolite, celsian, phlogopite, corrensite,
andalusite and chlorite. Aclose observation of the pixel spectrum for this sample site reveals
that the dominant absorption feature is in band 8, which is related to Mg-OH; also there is a
subtle band 7feature (low slope between bands 6and 7), which indicates the presence of
jarosite (fig. 9.3). Most of the candidate minerals for the spectrum characteristically have high
Mg-OH. Given the presence of sulphides, high degree of limonitization, and the lithologic
nature of overburden, the minerals mapped remotely for this site using ASTER data are
satisfactorily justified.

For the Dhauli iron ore deposit, asample DH1 has been collected from the top of the
Dhauli hill (fig. 4.3, Chapter 4). The area is astructurally complex calc-silicate counhy
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(banded amphibole-diopside marbles) with hydrothermal hematite/specularite and associated

alteration (see Chapter 4 for details). The pixel spectrum for this sample site exhibits well

characterized absorption features related to Fe-0 (band 2), Al-OH (band 6) and Mg-OH (band

8). The strong band 8 feature is indicative of both chlorite/epidote and calcite. The spectral

classes for this pixel for various cases indicate the presence of ferrihydrite, hematite, tremolite,

celsian, scapolite and kaolinite/illite. Scapolite is commonly a mineral ofmetamorphic origin,

occurring usually in crystalline marbles and is very common in calc-silicates and usually alters

to mica and kaolin. The candidate minerals for this sample site are in every way likely to be

present in the area.

Sample Su3 (fig. 4.5b, Chapter 4) is from a minor occurrence proximal to the main

cataclastic/shear zone running NE-SW of the study area (fig. 9.3). Due to pegmatite intrusion

and shearing, the fabric of the original micaceous quartzite country rock has been severely

obliterated and altered. An amphibolite rock lies adjacent to this site (see fig. 9.2). Signs ofrich

copper mineralization in the form of malachite staining have been observed from this site, as

well as clear indications ofold working in the form ofslag dumps have been seen. Spectrum of

this sample site pixel is shown in fig. 9.3. Prominent and strong absorptions in bands 6 and 8

are indicative of the presence of Al-OH and Mg-OH alteration. Spectral matches to this

spectrum determined for the four individual cases classify this pixel with those having

abundant clay minerals (montmorillonite, kaolinite), muscovite, illite, cordierite, albite,

chlorite, and desert varnish, with associated quartz (Table-9.2). Under the microscope, the

presence ofclay minerals, muscovite and quartz has been confirmed (fig. 4.5b, Chapter 4). The

desert varnish is primarily composed of particles of clay along with iron and manganese

oxides. There is also a host of trace elements and almost always some organic matter. The

presences of dark and hard surfaces in the area are in every way suitable for deposition of

desert varnish, and hence justify the spectral mapping results.

*~
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Sample T3 (fig. 4.5k, Chapter 4) lies jus, within the shear zone and represents azone of
significant altemtion, brecciation and shearing. Rich malachite staining and almost complete
alteration ofparent feldspar veins into Cay lumps mark the significant features of mis site The

micaceous feldspathic q„artzi,e, as we,, as the resuhs of spectra, Cassation arc a,so much
similar, except tha, due to absence of any major mafic body in the vicinity, the presence of
desert varnish in this area is not indicated on the spectra, maps. Spectrum of this pixel a,so
exhibits close matches with the reference spectra of scapolite and tourmaline. The fact tha, ,he
region is highly sheared and granitic intrusives lie close by; ,he indicative presence of these
minerals leaves little doubt.

The sample BDOW has been collected from an old working along aprominent gossan
zone with aregional strike of NE-SW, jus, towards me foo, zone of ,he Bagor peak quartzite
ridge (fig. 9.2). The gossan lies along the co„,ac, ofgarne.-chlorite schist and pare-amphibolite
and represents the same lithologic setting as that of the Chandmari area and is hence a
premising site of ore deposition. Slag heaps and overburden dumps of small dimensions with
malachite stains and carbonaceous coating bear testimony ,„ old workings at the site. In the
reflectance spectrum of mis sample site, two prominent absorption features centered a, ASTER
bands 2and 8can be readily observed. Asubtle feature is also present near band 6. The
minerals mapped through SAM processing of the dataset for the four cases indicate that the
Pixel is abundant in amphibo.es, corrensite, chlorite, desert varnish, as well as some garnet
with quartz. ,„ thin section of the samp.e, the presence of abundant ironside a.teration and
game, wi,h some malachite and opaques wi,hi„ amatrix of quartz has been confirmed. 1, is
inferred tha, ,he sig„a,ures of chlorite, corrensite and amphibole indicate chemical associations
which could no, ba distinctly deciphered under me microscope, bu, which strongly influence
the reflectance spectrum.
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A gossan zone parallel to the main shear zone has been identified and located in the

field. Near Karmari Ki Dhani, along the main Babai-Khetri state highway, just beside the road

there is a small old working. This minor occurrence is characterized by the presence of a small

body of granite in its neighborhood. A sample (BUGR1) from the intrusive towards the

easterly continuation of this minor occurrence near Bukri ki Dhani has been examined under

the microscope. Presence of quartz, K-feldspar, plagioclase, muscovite, biotite and some

opaques has been confirmed. The feldspar appears cloudy which shows that it is altering to

clay minerals. Reflectance spectrum of the corresponding pixel exhibits prominent band 2 and

band 8 absorptions, and weak band 6 and band 5 absorptions. A wide variety of closely related

minerals have been determined to match the spectrum of this pixel as indicated in Table-9.2,

which include muscovite/illite, montmorillonite, cordierite, oligoclase, tourmaline, adularia,

alunite, quartz and chlorite. Most of these minerals are characteristic of granites, but the

indicated presence of chlorite and alunite within the sampled site and the actual occurrence of

sulfide mineralization make it an interesting find.

Sample B15 (fig. 4.5i, Chapter 4) has been collected from the main Tutiwali-

Ladniwali-Bhootwali gossan zone (Chapter 2; Gupta, 1974) about 4.25 km NNE of Babai. The

lithologic setting in this area is similar to that in Chandmari area. Several small old workings

repeatedly testify the presence of buried mineralization in the area. Lithologically the sample

site comprises of banded amphibole quartzite in contact with garnet-chlorite schist, and

contains thin bands of calc-silicates, and para-amphibolites. Basal arkosic quartzites lie

towards the east of the site (fig. 9.2). The sample represents an altered banded amphibole

quartzite, with highly limonitized surface. The corresponding pixel spectrum ofthis sample site

has been shown in Figure-9.3, which indicates a strong band 8absorption and weak band 2 and

band 6 absorption features. Spectral analysis ofthis pixel indicates the presence of ferrihydrite,

hornblende, tremolite, hematite, corrensite, garnet and chlorite. Petrographic analysis of the

thin section of the field sample has confirmed the presence of hornblende, K-feldspar, biotite,

-»-
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quarts and iron oxide. These minerals have been remotely identified to be present in ,„e pixel
area and further corroborate the consistency and power ofthe dam and ,hc technique adopted.

Sample B3/I7 has been collected from asmall zone of altered amphibolite in comae,
wi,h metapelites rewards the north of Kalota vi.lage (flg. 9.2). Spectrum of ,he pixel
corresponding ,o me field location of the sample (fig. 9.3) indicates strong absorption due ,o
Fe-O near band 2, and due ,o chlorite/epidote/calcite near band 8. In addition ,„ ,his, weak
band 5absorption is indicative of the presence of alunite and the gentle slope between bands 6
and 7indicates the presence ofjarosite within the pixel area. The remotely identified minemls
constipating the pixel include hornblende, tremolite, phlogopite, corrensite, alunite, adularia
and celsian. Thin-section petrography offc sample has conflrmed ,he presence of hornblende
Plagioclase, quartz, biotite, muscovite, and ubiquitous iron oxide in ahighly fractured and
weathered rock.

From the foregoing discussion, i, can be concluded ,ha, in spite of limited specral
resolution, careful processing of ASTER VNIR-SWIR date can yield highly useful and
dependable lithologic and mineral maps to aid in amore focused mineral exploration activity
as well as in general geologic mapping i„ areas having poor or inadequate field maps.

9.3 Relating trace-metal anomalies with ASTER spectral maps

An anemp, has also been made ,o check the relationship between ,he ,race-me,al concentration
and detected alteration in me s,udy area. Towards this end, geochemical trace-metal analysis of
abou, 70 rock and soil samples from the study area for concentrations of copper, cobalt, lead,
zinc, molybdenum and arsenic has been carried ou, (Chapter 4). To investigate the relationship,
select samples with marked alteration and metal concen.ra.ions above the background values
for unaltered equivalents have been used. Excep. Ch2 and DH1, which were no, geochemically
analyzed, trace-metal date for the remaining 7samples used in validation of spectia.
surface/alteration mineral maps in the previous section and 2additional samples from the
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profile sampled towards the north ofKalota area (B3/19 and B3/20; altered phyllites; fig. 4.5o,

Chapter 4) having anomalous trace-metal values have been shown in Table-9.3.

Table-9.3 Trace-metal values of some field samples (for the complete list, see Appendix A).
Sample
ID

Rock Type Unit Cu Co Pb Zn Mo As

B3/17 Altered amphibolite ppm 51.6 59.1 40.5 123.4 - 27.8
B3/19 Altered phyllite ppm 1309.7 16.5 16.0 98.3 - 52.6

B3/20 Altered phyllite ppm 943.5 24.9 53.2 66.2 - 48.2
B/1 Orthoamphibolite ppm 41.8 33.8 49.1 135.4 2.5 217.5

B/15
Banded Amphibole
Quartzite

ppm 39.2 9.6 21.7 70.5 1.5 7.9

T3
Altered micaceous

feldspathic Quartzite ppm 69993.5 1.5 45.9 22.7 4.5 0.6

Su3
Altered micaceous

feldspathic quartzite
ppm 35.9 9.7 22.3 197.7 2.7 0.4

BUGR1 Granite ppm 89.8 4.2 42.6 24.4 2.1 5.1

BDOW
Altered banded

amphibole quartzite ppm 2043.9 1.2 43.1 87.8 2.8 5.2

Figure-9.4 shows the Cu values of the analyzed samples in the form of a color-coded

rasterized point distribution map (with a pixel size of30 m) over a background ofASTER band

3. Sample sites with relatively strong anomalous Cu content, viz. B3/19, B3/20, T3 and BDOW

have been shown in zoomed windows along with their positions marked on corresponding

SAM-classified spectral mineral/alteration map windows generated for Case 3 (Chapter 8). The

legend identifies the pixel-averaged Cu value ranges for analyzed sample points, and the

mineral class colors of the spectral mineral map are identified by the legend of Figure-8.22,

Chapter 8.
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Discussion: Examination of the nature of trace-metal anomalies and the associated alteration

mineralogy for the corresponding pixels determined remotely through ASTER data (Table-9.2)

indicate that while there is no direct link between the trace-metal anomalies and the presence

or absence of specific minerals or alteration zones, the concentrations of certain trace-metals

(viz., Cu, Zn and As) are linked to the relative dominance of alteration minerals typically

associated with hydrothermal alteration. For example, sample T3 has unusually high Cu

content, it is a part of the main shear zone, and exhibits rich clay alteration as well as rich

malachite staining. The remotely mapped minerals for the corresponding pixel are dominantiy

hydroxyl-bearing, with preponderance of argillic alteration minerals, such as illite and kaolinite

and phyllic alteration minerals, such as muscovite (though it is also a constituent mineral of the

host micaceous feldspathic quartzite). The same holds true for the two anomalous altered

phyllite samples from the profile towards the north of Kalota. Petrographic examination of the

thin sectionsof these samples shows rich presence of opaques and malachite. Interestingly, due

to band 5 absorption presence of alunite along with corrensite is also indicated, though

microscopic examination of the thin-sections could not confirm this. Phyllite and schist rocks

near other mineralized locations are also mapped to contain alunite. Similar explanation exists

for the altered quartzite sample BDOW, which is rich in mafic minerals (amphiboles). High Cu

values can be directly linked with the presence of malachite stains as well as to the presence of

altered biotite, chlorite, phlogopite by analogy with the other mineralized locations, such as

that in Akwali and in Chandmari.

Therefore, it can be concluded that though the geochemical anomalies cannot be

conclusively linked with the alteration mineralogy detected and mapped using ASTER data,

useful leads for such anomalies can be inferred based on the relative distribution of specific

alteration minerals.
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Chapter 10

Summary and Conclusions

Introduction and statement of purpose

Historically, remote sensing has been used by the mineral industry primarily as a tool for

preliminary regional structural and geologic reconnaissance mapping, owing to its synoptic

field coverage. Availability of reliable geologic/lithologic information and maps of alteration

minerals or mineral assemblages are two of the basic prerequisites in every mineral exploration

mission, as they alone provide the most direct clue about the existence of an economic mineral

deposit. The conventional broad-band spaceborne remote sensors, typically the Landsat

TM/ETM+, have been able to fulfill this objective in some part. Hyperspectral remote sensors,

such as AVIRIS have proven the real capability of remote sensing in reliable mapping of

surface mineralogy; but since they are mostly airborne, their data is of limited geographic

coverage; the data acquisition is highly cost-intensive; and the data require specialized

processing and expert interpretation. These limitations restrict wide-scale use of such data.

The launch of the ASTER sensor onboard the Terra spacecraft in the year 1999 (with

data availability from 2000) has given fresh impetus to the field of geologic remote sensing.

This study was undertaken in wake of this development with the aim to investigatethe extent to

which the ASTER data can be utilized towards the twin objectives of lithologic and

surface/alteration mineral mapping, with a case study in a mineralized region of India, the

Khetri Copper Belt. The study area has been well documented; and previous TM-based remote

sensing studies in the area had indicated some OH" anomaly zones. The work presented in this

thesis is an outcome of an exhaustive analysis of the ASTER data, with implementation of

some ingenious approaches to extract usable geologic information from the data.
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Study area: regional and local geology

The Khetri Copper Belt (KCB) is one ofthe main copper producing mineral regions in India.

KCB forms the northern entity of the Aravalli mountain range in Rajasthan, northwest India,

and extends for about 80 km from Singhana in the NE to Raghunathgarh in the SW. The belt is

broadly divided into a North Khetri Copper Belt (NKCB) and a South Khetri Copper Belt

(SKCB), by the transverse NW-SE Kantli fault.

KCB is covered by rocks ofthe Delhi Supergroup, which is divided into: (1) an older

Alwar Group dominated by psammitic rocks; and (2) ayounger Ajabgarh Group dominated by

pelitic rocks. The region has been affected by subsequent acidic and basic magmatism, and has

undergone metamorphism and deformation with associated base metal (copper, lead, zinc) and

iron mineralization.

The study area is located to the north of the Kantli fault in NKCB, and represents a

regionally metamorphosed terrain with low to medium grade metasedimentary rocks, such as

various kinds of quartzites (banded feldspathic quartzites, micaceous quartzites, amphibole

bearing banded quartzites, arkosic and banded arkosic quartzites, and pure quartzites) and

metapelites (schists and phyllites), and has witnessed a history of polyphase intrusions of

intracratonic felsics (granites, granodiorites and pegmatites) and mafics (amphibolites). A

major cataclastic/shear zone, called the Babai-Taonda thrust diagnonally passes across the

study area. Felsic intrusive activity has been reported along this shear zone, with associated

pockets of sulfide mineralization, and widespread hydrothermal wall-rock alterations in the

form of silicification, muscovitization-sericitization, limonitization, and sometimes

carbonatization and chloritization. Sparse vegetation cover and good rock outcrops with diverse

lithologic and alteration characteristics make the area suitable for remote sensing analysis.

Detailed study of the different mineralized areas present in the study area have been

carried out in the form ofliterature review, field studies and laboratory investigations offield

samples collected from these zones, which form the ground truth for validation of remote

+«
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sensing results. Three major zones of sulfide mineralization and one zone of iron mineralization

have been reported from the study area. These are - (i) Akwali zone, (ii) Tutiwali-Ladniwali

zone and (iii) Saintali ki Dhani-Karmari ki Dhani zone for copper; and (iv) Dhauli Hill zone for

iron. In addition to these zones, many minorand sporadic mineralized sites have been reported

from the study area, largely discovered in the form of old-workings. The abandoned open-cast

Chandmari mine marks the upper limit of the study area. These mineralized zones contain

different forms of surface indicators of mineralization, such as gossanized rocks containing

limonite (hematite-goethite-lepidocrocite), specks of malachite, and azurite, and many

hypogene gangue minerals such as quartz, muscovite, sericite, chlorite, carbonates; and wall-

rock alterations of different degrees and of varying intensities, leading to mineral assemblages

of both phyllic and argillic varieties of hypogene origin. Chloritization and silicification is more

widespread; accompanying chloritization is biotitization. Other associated wall-rock alterations

include carbonitization, muscovitization, sericitization, scapolitization and amphibolization.

The alterations vary with the host lithology.

Data and methodology

The study has primarily been based on the processing of an ASTER LIB dataset of the study

area. In addition to this dataset, level 2 (L2) standard data products (surface reflectance,

AST09; surface radiance, AST07; and surface emissivity, AST05), and a level 3 (L3)

standard data product (ASTER stereo DEM; AST14DEM) have also been used. Landsat TM

data of a part of the study area has been used in the preliminary phase of the study to identify

potential locations for reconnaissance fieldwork. Ancillary geodata include the topographic and

geologic base maps of the study area.

The basic GIS processing of the geodata includes georeferencing and coregistration of

various ancillary and image data, production of a digital elevation model through raster
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interpolation of digitized contour data from the topographic base-map, and compilation of a

geologic reference map of the study area by synthesizing various published geologic maps.

In order to fulfill the research objectives, the following methodology has been

adopted:

1. A detailed literature review pertaining to the study area, theoretical background of

geologic remote sensing, methods of lithologic and alteration mapping using

multispectral remote sensing, and use ofASTER inmineral exploration

2. Creation ofa GIS database ofthe image and ancillary geodata ofthe study area

3. Collection of field samples, their laboratory petrography and trace-metal

geochemistry to understand the nature of rock alteration and for verification of

remote sensing analyses

4. Precise atmospheric and topographic corrections ofthe ASTER VNIR-SWIR image

data to obtain surface reflectances

5. Assessment of the existing methods to obtain surface emissivites from ASTER TIR

radiance data and comparison with the standard L2 TIR surface emissivity data

6. Spectral processing of ASTER TIR data for qualitative and quantitative lithologic

mapping including generation ofsilica weight percent map for the study area using

existing as well as novel approaches

7. Spectral processing of the ASTER VNIR-SWIR surface reflectance data to

determine alteration and bedrock mineralogy ofthe exposed surfaces

8. Integration of the results of spectral processing and their validation on the basis of

published, field, and laboratory ground-truth

+*
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Field and laboratory studies: oetrograohic and geochemical analyses

As image analysis and ground check are independent operations, the fieldwork and laboratory

A analyses (petrographic and trace-metal geochemical) have been conducted to develop a ground-

truth database of the study area. This data has been used for validation of the results of ASTER

image analysis.

The fieldwork has involved collection of location data as well as recording significant

field characteristics of the study area, site-by-site. Field samples have been collected to analyze

the petrographic/ mineralogic and trace-metal content of the rocks. The primary objective has

been the identification of major and accessory minerals, and alteration type and mineralogy,

wherever possible. Another objective of petrographic studies has been the identification of the

type of alteration: primary (hypogene) or secondary (supergene). In most part, secondary

(supergene) alteration in the form of chemical weathering is either the main cause of alteration,

or has obliterated the pre-existing primary (hypogene) alteration. Relict traces of primary

(hypogene) alteration have been observed in some samples. The results of petrographic

analyses in conjunction with the geological literature have been used in selecting the target

alteration minerals for the study area, and their corresponding library spectra have been used in

spectral classification of the ASTER VNIR-SWIR image data. The alteration mineral

assemblage of the study area consists of both hypogene and supergene varieties, and include

muscovite/ sericite, chlorite, biotite, clay minerals (kaolinite, montmorillonite, illite (?)), albite,

goethite (iron oxide), limonite (ironoxyhydroxide), jarosite (iron sulfate), and scapolite

minerals.

Trace-metal concentrations have been used to see whether the metal content has any

relationship with the alteration, and hence if alteration can be used as a direct evidence of

mineralization. It has been observed that the relationship is in general harmonious, and samples

with discernible alteration have significant metal anomalies too, though the individual metal

concentrations vary widely depending on the lithology.
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Infrared Spectroscopy and Geologic Remote Sensing - Theory, Background and

ASTER Application

The primary diagnostic spectral features (absorption bands) of most minerals and rocks are

concentrated in the infrared region of the electromagnetic spectrum. A detailed review has been

carried out to understand the atomic and molecular processes responsible for these spectral

features exhibited by the minerals. Following this, a review of the applications of multispectral

and hyperspectral remote sensing in geology, with focus on the remote identification and

mapping of lithologic and mineral units has been carried out.

Two main categories of processes that cause absorption of radiation at visible and

infrared wavelengths have been explained: 1) electronic processes, which occur at higher

energies (or higher frequencies, or shorter wavelengths), and 2) vibrational processes, which

occur at lower energies (or lower frequencies, or longer wavelengths). Electronic processes are

related to changes in the distribution of electrons within and between atomic orbitals in a

crystal field, and can be categorized into four groups - crystal field effects, color centers,

conduction bands, and charge transfer between atoms. Most of the features observed in the

VNIR spectral region (0.4-1.0 um) are due to the presence of transition metals, especially of

different valence states of iron. Vibrational processes are relatedto atomic vibrations that cause

a change in the charge distribution of a molecule, and typically dominate the spectra in SWIR

and TIR regions. In the SWIR region (1.0-2.5 um), absorptions due to overtones and +*

combination tones occur, and minerals that contain water, hydroxyl, carbonate and sulfate

molecules show diagnostic spectral features in this region. Typically, hydrous clays and

phyllosilicate minerals such as muscovite exhibit diagnostic absorption features in the SWIR

region. The fundamental vibration modes for silicate minerals cause strong absorption features

in the 8.0-12.0 urn region, which is known as the Si-0 stretching region and also the region of

highest emitted radiation of the Earth, making it ideal for terrestrial geologic remote sensing

applications. Carbonates and sulfate minerals also have diagnostic spectral emissivity features
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in the TIR region. A very useful characteristic of the silicate rock spectra in the TIR region is

that there is a systematic shift in the emissivity minima for different rock types, and is linked

with their total silica content.

Minerals with diagnostic spectral features in the VNIR and SWIR regions are

commonly associated with primary (or hypogene) and secondary (or supergene) alteration

related to mineralization. Minerals with diagnostic absorption features in the TIR are the

primary rock-forming minerals and offer direct understanding of the lithology. ASTER covers

these spectral regions in 14 discrete bands (9 in VNIR-SWIR, 0.5-2.4 pm; and 5 in TIR, 8.0-

11.5 um) and hence presents a unique advantage in terms of complimentary geologic

information in a single data package.

Data preprocessing: Correction of atmospheric and topographic effects

Before the data can be used for detailed spectral analysis, it is vital to compensate for the

radiometric, atmospheric and topographic influences on the target radiance reaching the remote

sensor. Atmosphere selectively absorbs and scatters the solar radiation in different wavelength

regions. The main topographic effects are in the form of differential terrain illumination and

terrain adjacency effects.

Sensor calibration is necessary to convert the digital number (DN) values of the image

to the units of at-sensor radiances. In the shorter wavelength VNIR region, the atmospheric

scattering is the dominant mode of atmospheric influence on the radiances recorded by the

remote sensors; this effect is primarily additive in nature. On the other hand, in the SWIR and

TIR regions, the main atmospheric effects are in the form of atmospheric absorption, which are

characteristically multiplicative in nature. Data preprocessing involves removal of these

atmospheric influences such that an estimate of the true target radiance and reflectance (in the

solar reflective VNIR-SWIR region), or emissivity (in the TIR region) can be made. A number

of methods have been developed over the years to address this objective. These have been
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grouped under relative and absolute atmospheric correction methods. Relative methods are

generally scene based, with no external inputs and include such methods as Log Residuals

(LR), Flat Field (FF, and Modified Flat Field, MFF), Internal Average Relative Reflectance

(IARR), etc.; whereas, the absolute methods are based on the physical laws of radiative transfer

and commonly require external inputs in the form of local atmospheric data, and include

various radiative transfer codes (RTCs) such as MODTRAN (Moderate Resolution

Atmospheric Radiance and Transmittance) and 6S (Second Simulation of the Satellite Signal in

the SolarSpectrum), and the image-based DarkObjectSubtraction (DOS) technique.

The radiance in TIR is a function of temperature and emissivity. While emissivity is an

intrinsic property of the surfaces, temperature varies with the impending irradiance and

meteorological conditions. Planck's function describes the relationship of the two. Retrieval of

emissivities from radiance data in the TIR is primarily an underdetermined inversion problem,

as the number of unknowns is one more than knowns. In this research, a review of the literature

on separation of temperature and emissivity from radiance for the sensors acquiring data in the

TIR region has been carried out, including the most recent TES algorithm which is currently

being used to generate the ASTER L2 TIR surface emissivity product (AST_05), used in this

study.

Preprocessing the ASTER VNIR-SWIR and Landsat TM data (used in the initial stages)

has involved application of the known methods of atmospheric correction to select the best "*"*

correction. The methods of relative atmospheric correction applied include LR, FF, MFF,

IARR, and Empirical Line method. The absolute atmospheric correction has been attempted

using the FLAASH program (based on the MODTRAN RTC), a modified version of the 6S

RTC (used for the TM data correction), the Markham-Barker apparent reflectance model, and

the image-based DOS technique. Comparison of the corrections has been done by plotting the

pixel spectra of a flat homogeneous surface within the image (the Babai helipad) after

application of various atmospheric correction procedures, and examining the plots with
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reference to the JHU library spectrum of reddish-brown medium to fine sandy loam, which is

the dominant surface composition of the pixel sample used in constructing the plots. Best

correction for both data types (ASTER VNIR-SWIR and TM) have been observed in case of

the FLAASH-corrected image spectrum. The FLAASH-corrected 9-band ASTER VNIR-SWIR

apparent reflectance image data has been subsequently refined by applying the MFF correction

to force a match between the image spectra and the library spectra. This approach has been

called the hybrid FLAASH+MFF correction.

Atmospheric correction of the recalibrated ASTER TIR at-sensor radiance data has

been done using the In-Scene Atmospheric Compensation algorithm. The resulting image has

been used with three different temperature and emissivity separation algorithms (viz., the

Reference Channel method, the Normalized Emissivity Method or NEM, and the Alpha

Residuals method) to retrieve surface emissivities. The results have been compared with the

standard L2 AST_08 surface emissivity image data produced after applying the TES algorithm

of Gillespie et al. (1998). Spectra of a common pixel on different correction outputs have been

plotted along with the JHU library spectrum of the constituent rock type (pink quartzite) to

evaluate the success of individual approach. It has been found that the results of the TES

algorithm, which combines the NEM and minimum-maximum difference (MMD) methods, are

relatively better than the individual approaches, and hence the L2 AST05 data were retained

for further emissivity spectral analysis for lithologic mapping applications.

ASTER TIR data processing for lithologic mapping

A detailed analysis of the ASTER TIR LIB radiance-at-sensor and L2 surface

radiance/emissivity data of the study area using the available methods and approaches has been

carried out. Beginning with the decorrelation stretch (DCS) processing of TIR LIB data, which

has been used to enhance the color contrast of the highly correlated TIR bands to improve

qualitative lithologic discrimination, the processing has involved computation of band ratios
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and spectral indices to map the quartz-rich, mafic-rich, and carbonate-rich lithologic areas, and

finally a full spectral analysis of the surface emissivity data has been performed. Methods

based on band ratios and indices have shown that good lithologic discrimination can be

achieved even with relatively raw radiance data. Especially widely differening lithologies, such

as felsic and mafic varieties, are clearly distinguished on the TIR index images.

Spectral emissivity data has been used to generate a spectral lithologic map of the area

with the spectral classes determined from the image itself using the iterative pixel-purity index

(PPI™) method. Determination of the likely lithology of the end-members so determined has

been a rather subjective exercise since the numerical spectral fitting approaches like SAM and

SFF™ suffer from bias and inherent inconsistencies. However, these methods have been

greatly useful in an approximate identification of the dominant spectral groups. Using a 5-band

spectral emissivity dataset, 6 spectral end-members have been determined and Spectral Analyst

matches for these end-members have been identified using a reference spectral library

consisting of JHU coarse igneous, coarse metamorphic and soil hemispherical reflectance

spectra, converted into corresponding emissivity spectra using Kirchhoffs Law. Best matches

have been obtained for the reference library spectra of the following rocks/soils: Felsic Granite,

Mafic Diabase, Pink Quartzite, Mica Schist, Brown to Dark Brown Sand, and Brown to Dark

Brown Sandy Loam. Spectral classification has been achieved using two methods, viz., SAM

and MTMF. The results in general have excellent overall agreement with each other.

Two methods of quantitative silica weight percent estimation have been tested. The first

method uses spectral modeling of the surface emissivity spectrum for a given sample through a

curve-fitting process to estimate the minima of the reststrahlen band, and utilizes the systematic

shift observed in this minimum towards longer wavelengths with decreasing silica content in

the igneous rocks as an extrapolation to determine the unknown silica weight percent for a

known emissivity minimum. Ofthe various curve-fitting functions investigated, Polynomial 2nd

Order function was found to be the most consistent and computationally feasible model. The

**
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second method is based upon the K-value equation of the Metal Mining Agency of Japan

(MMAJ). The results from the two techniques have been found to be in excellent overall

agreement with the silica content expected for the lithologic classes known for the area, as

shown in the geologic map. However, no conclusions about the success of the methods in

determining absolute values of the silica content could be drawn since no reference field data

was available.

The main conclusions drawn from the analysis of the ASTER TIR data for lithologic

mapping in the study area, and the recommendations for further improvements have been

summarized as follows:

1. The absence of any spectral channel between 9.0 and 10.5 pm region because of the

atmospheric ozone absorption limits the capability of high altitude ASTER's TIR

multispectral data. Inclusion of data within this region is necessary to adequately model

the main reststrahlen feature in the emissivity spectra of geologic materials.

2. The availability of field spectral information, most desirably in situ with the satellite

overpass, can greatly improve the mapping results. Field spectra can be used in addition

to the image derived end-member spectra to fully realize the spectral diversity contained

in the region. They can also be used with the quantitative silica weight percent

estimation to improve the absolute values determined using the methods described.

3. Though the TES algorithm used to generate the standard ASTER L2 surface emissivity

product is fully validated and has been shown to be robust and reliable for most surface

cover-types. However, the validation of the algorithm it has so far been done only for

flat areas, such as ponds and playas (Gillespie et al., 1998). Since the study area is a

topographically high relief terrain, the results of the temperature and emissivity

separation are likely to be erroneous. It has been observed that this inaccurate separation

leads to flattening of the spectral signature in shadowed areas. The curve-fitting

techniques for silica abundance estimation generate non-representative values for such
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spectra. Also, the pixels in the shadows tend to have elevated silica weight percent

values due to this phenomenon. Thus, the TES technique works best in flat areas and for

images acquired during the noon time. ASTER data is acquired during the early

morning hours, therefore, the effects ofhill-shadowing limit the overall success ofthe

TES for rugged topographic areas.

4. Small, but important, inaccuracies due to remnant atmospheric contributions affect the

overall utility of the spectral data. Atmospheric correction with in situ atmospheric

radiosonde measurements and aradiative transfer model need to be used to adequately
compensate for the local atmospheric conditions.

5. Ahigher spatial resolution for the TIR data is highly desirable. Spectral mixing has

been known for pixel sizes as small as 2 m(SEBASS; Vaughan, 2005), and have

immense influence on the uniqueness of surface composition mapping, as well as on the

confidence of the results.

6. Though the region represents an arid climate with little vegetation cover, even small

spectral mixing with vegetation due to large pixel size (90 m) greatly subdues the

diagnostic spectral features and hampers the distinct mapability of surface composition

through remote sensing approaches. The same holds true for the surface coatings,

especially desert varnish, which is widespread in arid environments, such as the present

study area. Higher spectral resolution with better NEAT is expected to overcome most

of these problems.

ASTER VNIR-SWIR data processing for surface/alteration mineral mapping

One of the primary advantages ofASTER over TM data is the improved resolution ofthe

important SWIR region (2.0-2.5 um) where the diagnostic signatures of the main alteration

minerals are present. In place ofjust one broad TM band (2.08-2.35 um); ASTER records data

>^r
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in 5 strategic bands in the SWIR 2.0-2.5 um wavelength region. This makes the ASTER data of

special utility in mapping of alteration minerals related with most kinds of mineralizing

environments.

The second primary objective of this study has been mapping of alteration using

ASTER data. Towards this end, the composite 9-band ASTER VNIR-SWIR reflectance data

obtained after the hybrid FLAASH+MFF atmospheric correction and C topographic correction

has been processed using various image processing techniques to uniquely identify and map the

surface/alteration minerals present in the study area. Like the TIR data processing, in this case

also, the processing has been designed to exhaustively evaluate the potential of methods from

simple to advanced, in extracting usable alteration mineral information from the remote sensing

data.

A list of target alteration minerals has been prepared, based on the review of literature

(Chapter 2) and the field and laboratory investigations undertaken during the study period

(Chapter 4), which includes sericite (or muscovite; belonging to the sericitic or phyllic

alteration, with associated quartz), various hydrous clay minerals such as kaolinite,

montmorillonite/smectite and illite (belonging to the argillic alteration), alunite (belonging to

advanced argillic alteration), biotite (for potassic alteration), calcite/dolomite (for carbonate

alteration), chlorite group (belonging to the propylitic alteration), scapolite group of minerals,

> * albite (for the albite alteration), and various minerals belonging to limonite (goethite, jarosite

and hematite; associated with weathering of rocks). The spectral characteristics of these

minerals have been studied to select appropriate ASTER band combinations for processing.

The processing flow has been designed such that it hierarchically grows from a simple

level of processing involving image enhancement and color display of 3-band composites, to

image transformation (DCS, PCA and DPCS), band ratioing and spectral indices, logical

operator-based band modeling, and finally to advanced spectral processing and image

classification methods.
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Based on the optimum index factor (OIF) approach, two band combinations have been

selected - ASTER bands 6-3-1, for the 9-band VNIR-SWIR combined dataset, having

enhanced discrimination of Fe-0 and OH"altered areas; and ASTER bands 4-6-8, for the SWIR

dataset, displaying the distribution of Al-OH and Mg-OH bearing surfaces, respectively

showing clay/muscovite and chlorite/carbonate alterations. Improved color discrimination for

the above band composites and the respective mineralogical and alteration information has

been obtained using the DCS processing.

A comprehensive list of ASTER band ratios and RBDs reported in the literature has

been evaluated. Good discrimination between ferric and ferrous iron, Al-OH, and Mg-OH

alteration has been obtained through band ratioing. Ambiguities between the distribution of

mafic-rocks having chlorite alteration and carbonate rocks rich in mafic content have been

observed. This is because the absorption of both chlorite and calcite occur in ASTER band 8,

making them difficult to distinguish on ratios, since the ratios and RBDs utilize only specific

parts ofthe full mineral spectrum, hence ignore the subtle differences in the spectral shapes.

Principal component analysis (PCA) and its variant feature-oriented principal

component selection (FPCS) have been used to distinguish and map the distribution of OH"

bearing alteration minerals with spectral features in the SWIR region. Alteration maps for

alunite, illite, kaolinite+smectite and kaolinite have been prepared through the FPCS procedure.

Due to the problem of SWIR filter scratch (Appendix D), sub-vertical banding in the derived *

maps has made the interpretation difficult in the western parts. However, it has been observed

that most of these minerals are concentrated within the main shear zone passing through the

study area, as well as in the feldspathic quartzites. Spectral indices based on the five ASTER

SWIR bands within the wavelength range 2.0-2.5 um have been prepared to map the

distribution of alunite, kaolinite, montmorillonite and calcite.

An attempt has also been made to combine the individual band ratios for specific

mineral species through Boolean logic to map them as categories of argillic and phyllic
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alteration. The resulting argillic and phyllic alteration maps indicate that most ofthe minerals

belonging to these alteration types are concentrated along the main shear/cataclastic zone, and

appears to coincide with the felsic magmatic activity. Although the host country rocks

(micaceous feldspathic quartzite) also contribute to the indicated alterations, the apparent

zoning between the two categorties (inner argillic and outer phyllic) favors the common

hydrothermal alteration model.

Full spectral processing ofthe VNIR-SWIR reflectance dataset has been carried out to

uniquely identify and map the individual surface/alteration minerals based on their spectral

shape and absorption features through a hierarchical process involving Minimum Noise

Transform (MNF) computation, using the MNF results in the extraction ofimage end-members

(image spectral classes, or unique surface compositions) through PPI™, identification of the

image-derived end-member spectra through Spectral Analyst™, and generation of spectral

maps through Spectral Angle Mapper (SAM) and Mixture Tuned Matched Filtering

(MTMF™) classifiers.

Prior to this processing, an iterative vegetation mask has been prepared through

Normalized Difference Vegetation Index (NDVI) computation using bands 3 (NIR) and 2 (red)

to exclude vegetated pixels from spectral processing for two reasons: firstly, vegetation

significantly alters the native spectral response of the geological materials, as some organic-

compound (typically cellulose) absorption features centered near 2.10 um and 2.30 um are near

the wavelengths ofsome ofthe main Al-OH and Fe, Mg-OH absorption features; and secondly

because vegetation is of non-interest in this analysis, and inclusion of vegetation would mean

loss ofa possible geologic image end-member determined through the PPI™ processing.

In order to expand the size of image end-member spectral classes such that the diverse

spectral categories present within the area are brought out more representatively, and because

no field spectral measurements were available for the area, a novel method has been devised.

Eight image windows for areas having different and diverse surface cover types have been
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selected, and the image end-members have been determined for each of these image windows.

The bands used in the spectral analyses of these areas have been divided into two categories:

full 9-band VNIR-SWIR spectral data, and 6-band SWIR spectral data alone. The resulting

end-member spectral classes have been selectively grouped to avoid 'crowding' of related

spectra and have been used to construct two separate reference end-member spectral class

libraries. Thus, four cases have been designed for spectral classification of the ASTER VNIR-

SWIR data, namely:

1. Case 1: For VNIR+SWIRcombined data (9 bands) using the full scene

2. Case 2: For SWIR data alone (6 bands)

3. Case 3: For VNIR+SWIR combined data individually for 8 spatial windows (see

fig. 8.15)

4. Case 4: For SWIRdata alone individually for 8 spatial windows

Identification of the end-members has been done using ENVI's Spectral Analyst™

module, using the ASTER-convolved USGS mineral library spectra as reference. Two spectral

fit techniques (SAM and SFF™) have been used to identify the image end-member spectra

based on the fit score for each in relation with the corresponding known reference library

spectra. This technique of automated spectral identification suffers from certain limitations and

bias. The reasons for this bias have been identified as follows:

1. Owing to the differences in the individual match scores between the two

matching techniques used (SAM and SFF), instead of a single best match a

range of materials could be predicted with relatively equal or marginally

different, overall scores.

2. It has been found that more than one reference spectra representing

mineralogically widely different rocks/soils receive the same overall score due

to the unequal scores for the two individual techniques. It has been observed that

A
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where the unknown spectrum has well defined diagnostic 'absorption' features,

SFF yields results with a better match, and for spectra without any diagnostic

feature, SAM match results appear to be superior.

As no single technique could be considered sufficiently accurate, the decision about the

candidacy of a particular reference spectrum for its match to the unknown end-member

spectrum has been made by interactively examining the individual end-member spectrum in

both normal and continuum-removed mode, with abackground support of the field knowledge,

to assign the reference material spectrum to it. Subsequently, SAM and MTMF™ classified

images for the four cases identified above have been obtained.

Synthesis of results and interpretation

In order to assess the usefulness and credibility of the results of spectral lithologic and

alteration mapping it is necessary to analyze them in light of existing field and laboratory

evidences. The results of ASTER-based spectral lithologic and surface/alteration mineral

mapping have been synthesized and interpreted in a geologically meaningful way through a

comparative analysis of well-described geology, field locations, and laboratory petrographic

and trace-metal data constituting the ground-truth, and their corresponding representation on

the respective spectral maps.

The results of ASTER TIR data-based spectral lithologic mapping and quantitative

silica abundance estimation have been found to agree with the geologic ground truth in most

part. Major lithologic units, viz., pure quartzites, mica schists and phyllites, mafic and felsic

intrusives, respectively amphibolites and granites/granodiorites have been uniquely identified

and mapped on the spectral lithologic maps. For areas with vegetation-mixed surface cover and

good soil development, the TIR image spectra have exhibited close matches with the brown

loams and sands. Quantitative silica abundance estimation is in good agreement with the

expected values for the rock units observed on geologic maps and in field samples, although
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differences in the range of3-12 % have been observed between the results of the two individual

techniques used in the analysis.

Synthesis and interpretation of the results of surface/alteration mapping using the 4

ASTER VNIR-SWIR data have been done by simultaneously examining the compiled

reference lithologic map, mineralogical and textural data obtained from microscopic study of

the thin-sections of field samples with their GPS-locations, and spectral classification results

for eight image windows. Nine field samples have been used to validate the results of spectral

alteration/surface mineral mapping, Of the eight image windows used for validation, viz.,
J

Akwali, Chandmari, Dhauli, Suredi, Bandha, Bansiyal, Gadrata, and Kalota - first four

represent areas with known mineralization and have been used to validate the results of

(alteration/surface) mineral mapping, since site-specific field samples from these areas have

been analyzed petrographically and geochemically; the last four contain a wider variety of rock

types and associated alteration mineral assemblages, and are potential zones of mineralization,

as observed on various spectral mineral maps. The field samples used in validation represent

areas with known mineralization and have been taken from widely separated parts of the study

area. From comparative examination of mineral assemblages indicated in the classification

results for four cases used in VNIR-SWIR spectral analysis, it has been observed that ASTER

data has been successful in spectrally identifying most of the major mineral units actually

observed in the field and in thin-sections. Ambiguities and differences in mineral identification \*

for different cases investigated have arisen primarily because of limitations of ASTER's

spectral resolution resulting in multiple (and sometimes erroneous) matches of the pixel

spectrum with reference spectral library (USGS spectral library) minerals. Also, residual effects

of vegetation within an average pixel area of 30x30 m2 also add to the difficulty in exact

identifications. The results show that the ASTER data can provide fast and dependable support

in identifying and mapping specific minerals which can be linked with the presence of

economic mineralizations.
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An attempt has also been made to check the relationship between the trace-metal

concentration and detected alteration in the study area. To investigate the relationship, select
samples with marked alteration and metal concentrations above the background values for
unaltered equivalents have been individually examined. Their spatial association with the host

lithology, and alteration mineralogy identified in thin-sections and on different spectral maps
has indicated apossible connection. Three areas with samples having anomalous Cu values

have been examined to check this connection. It has been observed that while there is no direct

link between the trace-metal anomalies and the presence or absence of specific minerals or

alteration zones, the concentrations of certain trace-metals (viz., Cu, Zn and As) are linked to

the relative dominance of alteration minerals typically associated with hydrothermal alteration.

It has been concluded that though the geochemical anomalies cannot be conclusively linked

with the alteration mineralogy, useful leads for such anomalies can be inferred based on the

relative distribution of specific alteration minerals, and ASTER data can be effectively utilized
for this purpose.

Summary of Conclusions

In connection with the objectives ofthis research, the results ofASTER data processing and the

concomitant observations have led to the following broad conclusions:

1. ASTER data significantly improves the ability of remote detection, identification and

mapping of specific minerals related with the processes of hydrothermal alteration

hitherto undistinguished using other spaceborne remote sensors, especially the Landsat

TM/ETM+. The broad 'OH"' alteration class detected using the popular TM7/TM5

ratios can be resolved in terms of specific Off-bearing mineralogy (clays, illite and

phyllosilicates) by ASTER's 6 SWIR bands.

2. The capability to remotely map silicate mineralogy using spaceborne thermal remote

sensing data was abig gap in geologic remote sensing. This gap has been filled to some
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extent by ASTER. It is the only spaceborne remote sensing system providing

multispectral data in this geologically important region of the EMR.

3. The success of remote identification and mapping of surface materials is governed by

the unique retrieval of their spectral signatures. Credible radiometric, atmospheric and

topographic corrections are vital in the reliable application of remote sensing in

geology. This study has demonstrated that methods of atmospheric correction utilizing

principles of radiative transfer can effectively achieve this objective, but availability of

local atmospheric data for the image (constrained by date, time and area) are necessary.

Useful improvements can be made by combining image-based approaches with these

methods.

4. The credibility of spectral lithologic mapping results is largely influenced by the spatial

resolution. The factors ofspectral mixing in relatively large areas represented ina single

90x90 m2 pixel of the ASTER TIR data lead to spectral flattening and loss ofabsorption

features. This is an area with a scope offurther improvement. Also, the absence ofany

spectral channel between 9.0-10.5 pm due to atmospheric absorption limits the utility of

the data.

5. Results of quantitative silica abundance estimation have shown the capability of

ASTER TIRdata in reliable lithologic mapping. These results, when combined with the

results of spectral analysis, can greatly reduce the inherent subjectivity in a remote

sensing based lithologic mapping exercise. There is a good scope for future

improvements in the methods investigated, and the results can be improved based on the

knowledge and availability ofactual silica values from field sites.

6. Alteration mapping based on ASTER VNIR-SWIR data processing has revealed the

specific advantages of ASTER over the existing spaceborne multispectral remote

sensors. Unique identification and mapping of a variety of surface minerals has been

achieved. The results canbe improved if supplementary field spectral data areavailable,
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since these can be used to construct atruly representative end-member spectral library
for the study area, used in spectral classification.

7. Association of trace-metal anomalies with the alteration mineralogy patterns can

provide an indirect, yet crucial clue in mineral exploration. ASTER data can be used in

regional mapping of alteration minerals and knowledge of such associations, in

conjunction with the lithological and structural analogies, can provide the most direct

leads in prospecting for mineral deposits in relatively under-explored or virgin terrains.
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APPENDIXA

Geochemical Data of Analyzed Samples (ICP-MS trace-metal concentrations)

SamplelD RockType UNIT Cu RSD Co RSD Pb RSD Zn RSD Mo RSD As RSD

B3/3 Qtzt ppm 6.437027 1.317133 17.15743 40.89444 2.281656 3.751969

B3/3S Qtzt ppm 35.32562 0.7 2.880525 0.9 30.00755 0.8 58.31899 0.3 1.748369 1.6 25.93478 3.2

B3/4 Phyl ppm 66.51186 9.994071 17.12055 57.48419 NA 3.952569

B3/4S Phyl ppm 70.58627 3.6 14.66275 5.7 32.84902 6.2 102.4451 7.8 NA 4.084314 0.1

B3/8 Ambl ppm 13.72817 30.61579 22.22397 137.1262 2.148054 5.843254

B3/8S Ambl ppm 34.46792 1.4 36.71858 1.3 37.0867 0.5 150.3918 1 2.119792 2.2 159.3794 2.3

B3/9 Phyl ppm 34.23913 11.89526 20.76087 53.36759 NA 16.69565

B3/9S Phyl ppm 80.82387 0.4 30.67906 1.1 34 1.8 62.36791 0.6 NA 43.97847 1.3

B3/14 Ambl ppm 16.50225 36.36224 21.9757 176.7018 0.800708 2.493124

B3/14S Ambl ppm 57.52507 0.3 41.43182 0.6 40.40415 0.4 196.6404 0.1 2.551875 0.4 221.4912 1.7

B3/15 Ambl ppm 68.26084 59.69793 22.60537 136.465 1.156971 1.815476

B3/15S Ambl ppm 131.3349 0.7 40.69047 1.7 39.07371 0.7 131.6304 0.3 2.113791 1.4 198.6201 1.1

B3/17 Phyl ppm 42.21373 32.97843 23.51373 84.97647 NA 22.78431

B3/17S Phyl ppm 51.59136 3.6 59.15521 5.4 40.47348 3.7 123.4499 6 NA 27.82515 3.6

B3/19 Phyl ppm 1309.747 16.53137 16.00588 98.32353 NA 52.64314

B3/19S Phyl ppm 1399.893 2.8 22.79297 1.6 25.62891 1.8 134.832 4.8 NA 101.3652 2.5

B3/20 Phyl ppm 943.5214 24.94942 53.24514 66.22957 NA 48.24903

B3/20S Phyl ppm 585.0455 2.6 26.32277 2.4 72.42178 3.3 117.2 7.3 NA 24.35446 2.8

B3/21 Ambl ppm 12.77519 4.354372 16.17818 59.91796 2.821936 3.413519

B3/21S Ambl ppm 48.97801 0.3 8.880859 0.9 32.59432 0.4 77.24286 0.2 5.019879 1.3 1.414063 1.8

B3/22 Carb ppm 3.331524 6.627014 13.70235 79.14979 2.970714 1.774067

B3/22S Carb ppm 7.864804 0.5 18.74307 1 37.5165 1.3 124.1779 1.2 4.204464 2.2 3.733333 2.3

B3/23 Scst ppm 26.81584 11.89307 55.61584 121.1208 NA 3.714851

B3/23S Scst ppm 27.11591 1.1 20.44401 1.3 75.11591 1.7 150.8723 0.3 NA 5.125737 3.9

B3/24 Scst ppm 25.99802 11.81225 75.96245 74.08498 NA 5.784585

B3/24S Scst ppm 30.81349 3.6 15.34325 4.4 82.29563 3.3 94.99802 6.3 NA 6.539683 0

B3/25 Scst ppm 26.59843 8.074803 57.44291 162.376 NA 3.202756

B3/25S Scst ppm 49.29528 6.6 10.47441 6.2 70.1063 5.2 591.5236 7.6 NA 9.354331 3

B3/26 Scst ppm 10.71912 13.98406 23.69721 81.72709 NA 0.958167

B3/26S Scst ppm 10.71912 28.5 13.98406 4.7 23.69721 7.6 81.72709 35.9 NA 0.958167 3.7
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PEG Peg (type) ppm 37.29563 1.7 0.732143 4.4 37.43056 2 29.56746 0.6 4.652778 2.1 3.65873 0.9

Tl Altered MiQz ppm 379.5527 0.6 4.11332 4.2 24.5825 1.5 29.86282 2.3 3.326044 1.7 0.461233 2.5

T2 Altered MiQz ppm 6523.44 1.4 54.91287 2.8 34.7604 2.1 143.8792 0.8 3.138614 1.9 0.550495 2.1

T3 Altered MiQz ppm 69993.55 0.9 1.562624 0.7 45.96024 1.1 22.75547 2.2 4.487078 2.5 0.614314 1.7

T5 Altered MiQz ppm 285.9724 6.4 4.73622 2.2 28.56693 1.1 27.62402 1.3 3.031496 0 0.474409 0.7

T6 Altered MiQz ppm 74.38171 3.1 1.385686 2 20.92445 0.4 14.44732 1 1.248509 5 0.314115 2.5

Sul Altered MiQz ppm 2021.837 0.5 78.42043 1.4 28.63654 1.4 47.22004 1.4 4.996071 2.5 2.184676 6.3

Su2 Altered MiQz ppm 388.7435 0.5 3.795229 3.2 24.97217 1.7 46.09543 2.1 5.491054 2.4 0.298211 1.7

Su3 Altered MiQz ppm 35.91929 3.9 9.787402 1.6 22.27559 2 197.7559 0.7 2.71063 1 0.403543 1

Su4 Altered MiQz ppm 174.86 0.9 32.43787 1.7 34.643 1.8 29.32544 1.8 2.913215 1.4 0.589744 2.2

Su5 Altered Peg ppm 531.2711 0.7 65.02947 0.8 35.18861 0.8 47.02554 0.7 3.212181 4.3 7.072692 2

Su6 Altered MiQz ppm 157.7008 1.3 5.769685 2.1 42.9626 0.4 46.8878 1.4 1.352362 1.4 0.572835 1.1

Su7 Altered MiQz ppm 1989.992 1.5 4.207101 0.7 27.12032 1.3 53.67061 1.4 7.404339 0.7 4.019724 0.8

Su8 Altered MiQz ppm 786.7183 0.9 276.5258 0.7 25.25198 1.1 43.87103 0.5 3.732143 2.9 2.628968 1.4

Su9 Altered Carb ppm 35.30452 1.9 13.44401 2.5 21.25344 1.9 69.03733 1.5 3.373281 1.6 0345776 1.3

SulO Altered MiQz ppm 514.7854 0.5 39.00591 1.9 42.06102 1.5 43.46457 0.6 2.809055 2.3 0.744094 0.7

Sull Altered MiQz wC ppm 191.6102 1.65 37.11024 1.7 32.18504 2.9 41.27953 0.5 11.05709 3.7 0.801181 1.7

Sul2 Altered MiQz ppm 48.91749 1.7 7.227898 1.7 35.01375 0.8 33.25737 1.6 7.801572 1.6 0.304519 0.7

Sul3 Altered MiQz ppm 6543.109 0.4 157.8221 0.8 27.24308 1.6 81.29842 1 8.132411 1.1 14.70158 0.7

Sul4 Altered MiQz ppm 6599.42 0.4 556.2387 1.4 33.34911 2.2 76.3215 2.3 1.783037 6.3 8.224852 1.2

Sul5 Altered MiQz wC ppm 1502.757 0.9 222.9427 1.3 27.03557 2.3 79.96245 0.8 5.644269 1 2.250988 1.5

AMQ AmQz ppm 529.1443 0.5 11.26482 2.2 35.90316 1.1 29.43874 2.5 0.788538 6.7 0284585 0.9

Gl Gossan ppm NA NA NA NA NA NA

G2 Gossan ppm 1333.227 1.7 6.813121 1.9 1363.276 2.4 474.0676 1.2 11.39761 1.6 27.0159 0.3

Tul Qtzt ppm 162.5536 2.4 100.1647 2 40.15278 4.2 156.746 2.4 2.134921 5 7.595238 2.3

BUGR1 Granite ppm 89.89412 1.2 4.233333 1.7 42.63725 1.2 24.49216 1.1 2.092157 2.3 5.14902 0.9

BANDHA ArQz ppm 42.18738 1 2.676529 1.4 22.72978 0.9 27.5286 1.6 2.418146 3.9 3.001972 2.2

Zl Ambl ppm NA NA NA NA NA NA

Z2 AmQz ppm NA NA NA NA NA NA

Z3 Carb ppm NA NA NA NA NA NA

BDOW Altered Carb ppm 2043.968 1.8 1.285149 15.2 43.08119 1.4 87.83366 1.7 2.778218 0.7 5.223762 0.7

BDOW1 Altered Carb ppm 5470.085 0.8 8.615842 2.7 26.7901 0.7 245.8099 0.8 1.748515 0.8 15.8198 2.2

X2 Soil (Babai Helipad) ppm NA NA NA NA NA NA

Qtzt=Quartzite, AmQz=Amphibole Quartzite, ArQz=Arkosic Quartzite, MiQz=Micaceous Quartzite, wC=Graphitic, Ambl=Amphibolite,
Carb=Carbonate, Scst=Schist, Phyl=Phyllite, Peg=Pegmatite, NA = NotAnalyzed



APPENDIX B

Specifications of Johns Hopkins University (JHU) Spectral

Library Data

Two different kinds of spectral data are present in this library. Spectra of minerals

measured in bidirectional (actually biconical) reflectance (see Salisbury et al., 1991). These

spectra, recorded from 2.08-25 micrometers, cannot be used to quantitatively predict emissivity

because only hemispherical reflectance can be used in this way. This means that the library

spectra do not provide a quantitative measure of the infrared radiation scattered in all

directions, as do the relatively few directional hemispherical reflectance spectra described in

the next section. However, laboratory and field measurements have repeatedly shown that

biconical reflectance measurements may be used qualitatively to predict emissivity (Lyon,

1964; Hunt and Vincent, 1968, Bartholomew et al., 1989). That is, the shape of the spectral

curves in JHU mineral library can be used to predict the shapes, but not the absolute intensities,

of spectral curves in emittance. Thus, these mineral spectra may be used qualitatively in

spectral searches ofremote sensing data to identify unknown minerals.

All other spectral data (for rocks, vegetation, etc.) were measured in directional

hemispherical reflectance. Under most conditions, the infrared portion of these data can be

used to calculate emissivity using KirchhoffsLaw (e = 1-R), which has been verified by both

laboratory and field measurements (Salisbury et al., 1994; Korb et al., 1996).

The apparently seamless reflectance spectra from 0.4 to 14 micrometers of rocks and

soils were generated using two different instruments, both equipped with integrating spheres

for measurement of directional hemispherical reflectance, with source radiation impinging on

the sample from a centerline angle 10 degrees from the vertical.

were
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Unless specified otherwise, all visible/near-infrared (VNIR) spectra were recorded

using a Beckman Instruments model UV 5240 dual-beam, grating spectrophotometer at the

U.S. Geological Survey, Reston, Virginia, USA. The data were obtained digitally and

corrected for both instrument function and the reflectance of the Halon reference using

standards traceable to the U. S. National Institute of Science andTechnology. Measurements of

such standards indicate an absolute reflectance accuracy of ±3 percent. Wavelength accuracy

was checked using a holmium oxide reference filter and is reproducible and accurate to within

±0.004 um (one digitization step). Spectral resolution is variable because the Beckman uses an

automatic slit program to keep the energy on the detector constant. The result is a spectral

bandwidth typically <0.008 pm over the 0.4 to 2.5 um spectral range measured, but slightly

larger at the two extremes of the range of the lead sulfide detector (0.8-0.9 pm and 2.4-2.5

pm). This instrument has a grating change at 0.8 pm, which sometimes results in a spectral

artifact (either a small, sharp absorption band, or a slight offset of the spectral curve) at that

wavelength.

Two similar instruments were used to record reflectance in the infrared range (2.08 to

15 pm). Briefly, both are Nicolet FTIR spectrophotometers and both have a reproducibility

andabsolute accuracy better than±1%overmost of the spectral range. Early measurements of

igneous rocks with an older detector were noisy in the 13.5-14 pm range and do notquite meet

this standard. Because FTIR instruments record spectral data in frequency space, both ±^

wavelength accuracy and spectral resolution are given in wavenumbers (cm"). Wavelength

accuracy of an interferometer type of instrument is limited by the spectral resolution, which

yields a data point every 2 wavenumbers for these measurements. The X-axis was changed

from wavenumbers to micrometers for all of these data before the infrared segment was joined

to the VNIR data from the Beckman.

Spectra from the Beckman and the FTIR instruments were compared in the overlap

range of 2.08-2.5 pm. If the difference was greater than 3%, measurements were repeated.
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Typically, however, the agreement was within the 3% limit. In view of the greater accuracy of

the FTIR measurements, any small discrepancy between the two spectral segments was

resolved by adjusting the Beckman data to fit the reflectance level of the segment measured by
the FTIR instruments.
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APPENDIX C

Results of ASTER TIR Spectral Modeling

£na^^^ °fqUartZ monzonlte within the "^lengthwemobtaLd ™ *"**"' cun/e-fittin3 options the following results

General rule: Robust =Bisquare; Algorithm (where applicable) =Levenberg Marquardt
1. Gauss 3-term

General model:

f(x) = a*exp(-((x-bl)/cl)A2/2)
where x isnormalized by mean 9.538 and std 1.008

Coefficients (with 99% confidence bounds):
a= 6.861 (-777.2,790.9)
bl = 104.2 (-5584, 5792)
cl = 50.88 (-1340, 1442)

Goodness of fit:
SSE: 0.3718

R-square: 0.3727
Adjusted R-square: 0.3663
RMSE: 0.04367

2. Gauss 4-term

General model:

f(x) = a*exp(-((x-bl)/cl)A2/2) + dl
where x is normalized by mean 9.538 and std 1.008

Coefficients (with 99% confidence bounds):
a= -0.1596 (-0.1671,-0.1521)
bl = -0.4217 (-0.4438, -0.3996)
cl= 0.9325 (0.8791,0.986)
dl= 0.9451 (0.9372,0.9529)

Goodness of fit:
SSE: 0.01454

^ v R-square: 0.9755
Adjusted R-square: 0.9751
RMSE: 0.008658

3. Poly2
Linearmodel Poly2:

f(x) = pl*xA2 + p2*x + p3
where x is normalized bymean 9.538 and std 1.008

Coefficients (with 99% confidence bounds):
pl= 0.0212 (0.01777,0.02464)
p2 = 0.04237 (0.03916, 0.04559)
p3= 0.8134 (0.8088,0.818)

Goodness of fit:

SSE: 0.05437

R-square: 0.9083
Adjusted R-square: 0.9073
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RMSE: 0.0167

4. Poly3
Linear model Poly3:

f(x) = pl*xA3 + p2*xA2 + p3*x + p4
where x isnormalized by mean 9.538 and std 1.008 i

Coefficients (with 99% confidence bounds):
pi = -0.02007 (-0.02233, -0.01782)
p2= 0.03865 (0.0364,0.04091)
p3= 0.06781 (0.06345,0.07217)
p4 = 0.806 (0.8033, 0.8087)

Goodness of fit:

SSE: 0.01815

R-square: 0.9694
Adjusted R-square: 0.9689
RMSE: 0.009672

5. Poly4
Linear model Poly4:

f(x) = pi *xA4 + p2*xA3 + p3*xA2 + p4*x + p5
where x is normalized by mean 9.538 and std 1.008

Coefficients (with 99% confidence bounds):
pi = 0.008726 (0.005339, 0.01211)
p2= -0.03564 (-0.03941,-0.03188)
p3= 0.03056(0.02181,0.03932)
p4 = 0.08232 (0.07597, 0.08866)
p5= 0.8066 (0.8023,0.811)

Goodness of fit:

SSE: 0.03147

R-square: 0.9469
Adjusted R-square: 0.9458
RMSE: 0.01277

6. Fourierl

General model Fourierl:

f(x) = aO+ al*cos(x*w) + bl*sin(x*w)
where x is normalized by mean 9.538 and std 1.008

Coefficients (with 99% confidence bounds): ^ -*
a0= 0.8603 (0.8517,0.869)
al = -0.05563 (-0.06393, -0.04733)
bl = 0.05062 (0.04714,0.05411)
w= 1.289 (1.175, 1.402)

Goodness of fit:

SSE: 0.04047

R-square: 0.9317
Adjusted R-square: 0.9307
RMSE: 0.01444

7. Fourier2

General model Fourier2:

f(x) = aO + al*cos(x*w) + bl*sin(x*w) +
a2*cos(2*x*w) + b2*sin(2*x*w)

where x is normalized by mean 9.538 and std 1.008
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Coefficients (with 99% confidence bounds):
a0= 0.8537 (0.7517,0.9557)
al= -0.0377 (-0.1539,0.07851)
bl= 0.05827 (0.01208,0.1045)
a2= -0.01255 (-0.0289,0.003797)
b2= -0.003437 (-0.04012, 0.03325)
w= 1.124 (0.6003, 1.647)

Goodness of fit:

SSE: 0.04974

R-square: 0.9161
Adjusted R-square: 0.9139
RMSE: 0.0161

B. For the ASTER-resampled 5-band emissivity spectra of quartz monzonite within the
wavelength range 8-12 um, on application of different curve-fitting options the
following results were obtained:

General rule: Robust =Bisquare; Algorithm (where applicable) =Levenberg Marquardt

1. Gauss 3-term

General model:

f(x) = a*exp(-((x-bl)/cl)A2/2)
wherex is normalized by mean9.59and std 1.297

Coefficients (with 99% confidence bounds):
a= 4.122 (-1230, 1238)
bl = 45.44 (-8610, 8701)
cl= 25.57 (-2419,2471)

Goodness of fit:

SSE: 0.001709

R-square: 0.8909
Adjusted R-square: 0.7818
RMSE: 0.02923

2. Gauss 4-term

General model:

f(x) = a*exp(-((x-bl)/cl)A2/2) + dl
wherex is normalized by mean 9.59and std 1.297

Coefficients (with 99% confidence bounds):
a= -0.1547 (-2.056, 1.746)
bl= -0.519 (-7.779,6.741)
cl= 0.8807 (-13.33, 15.09)
dl= 0.9516 (-0.995,2.898)

Goodness of fit:

SSE: 0.0001316
R-square: 0.9916
Adjusted R-square: 0.9664
RMSE: 0.01147

Important Note: The startpoint selection greatly affected the gaussian 4-term fit. Astartpoint of
0.01 for coefficient 'a' generated the best fit output.

3. Poly2
Linear model Poly2:

f(x) = pl*xA2 + p2*x + p3
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where x is normalized by mean 9.59 and std 1.297
Coefficients (with 99% confidence bounds):

pi = 0.02969 (-0.1759,0.2352)
p2= 0.04905 (-0.07512,0.1732)
p3= 0.8266 (0.638, 1.015)

Goodness of fit:

SSE: 0.0008646

R-square: 0.9448
Adjusted R-square: 0.8896
RMSE: 0.02079

4. Poly3
Linear model Poly3:

f(x) = pl*xA3 + p2*xA2 + P3*x + p4
where x is normalized by mean 9.59 and std 1.297

Coefficients (with 99% confidence bounds):
pi = -0.03256 (-1.134, 1.069)
p2 = 0.04392 (-0.9329, 1.021)
p3= 0.08226 (-1.15, 1.314)
p4= 0.8239 (0.0407, 1.607)

Goodness of fit:

SSE: 0.0001788

R-square: 0.9886
Adjusted R-square: 0.9543
RMSE: 0.01337

5. Poly4
R-square: 1.0
The fit uses all available datapoints, and hence marks the upper limit for the 5-band ASTER
TIR dataset

6. Fourierl

General model Fourierl:

f(x) = aO + al *cos(x*w) + bl *sin(x*w)
where x is normalized by mean 9.59 and std 1.297

Coefficients (with 99% confidence bounds):
a0= 0.8661 (0.3001, 1.432)
al = -0.04684 (-0.8497, 0.7561)
bl= 0.05045 (-0.3471,0.448)
w= 1.622 (-14.77, 18.01)

Goodness of fit:

SSE: 0.000119

R-square: 0.9924
Adjusted R-square: 0.9696
RMSE: 0.01091

7. Fourier2

Did not converge; as at least 6 datapoints are needed to calculate 6 coefficients.



APPENDIX D

ASTER Data Defects

1. SWIR crosstalk (Iwasaki and Tonooka, 2005): In remote sensing, the term 'crosstalk'

refers to the phenomenon of the leakage of optical or electrical signals from one band to

other bands. ASTER data suffers from the problem of crosstalk in the SWIR bands.

ASTER SWIR crosstalk was not recognized until the satellite was launched and the

acquired images were analyzed. In ASTER SWIR instrument (focal plane of each band is

shown in fig. 1), since band 4 exists in 1.6 pm region, it has stronger reflection as well as

wider band width than bands 5-9, which makes radiation incident on band 4 about 5 times

stronger than that of the other bands. 'Ghosts' are generated when the strong incident

radiation into band 4 goes through an interference filter, reflects near the border of the

detector surface, circuit surface and interference filter, and reaches detectors of other bands

after going through multiple reflection on filter or the detector surface. In case of the SWIR

detector, areas simultaneously observed by its bands slightly differ one by one and it does

not fall on exactly the same point on the ground because of which the ghosts shift in the

along-track direction.

A method for the correction of this defect has been suggested (Iwasaki and

Tonooka, 2005) and has been implemented in the form of a software tool available from

ERSDAC of Japan. The basis of the algorithm lies in assuming that the phenomenon is

reduced by subtracting the along-track-shifted blurred image of band 4 from each image of

the affected bands. In the actual software, the crosstalk image is calculated by two

dimensional Gaussian distribution with amplitude, and x and y standard deviations as

parameters. Default values of the parameters are shown in Table-1 (for version 1.0 of the

software). Amplitudes of band 5, 6, 7, 8 and 9 are estimated to be 9-15, 3-6, 2-4, 3-6 and 9-

15%, respectively.

Table-1 Default Crosstalk parameters (ver 1.0) (Iwasaki and Tonooka, 2005)

Band
Parameter (default)

a ox <*y

5 0.09 28 20

6 0.03 30 26

7 0.02 34 30

8 0.03 30 26

9 0.09 28 20

a: amplitude ofleaked incident radiation ofband 4 to other bands (%)
ax,y: a ofGaussian function (cross-track and along-tract direction) (pixel)
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2. Filter scratch in SWIR (Iwasaki and Oyama, 2005): Figure-1 shows the focal plane

configuration of the SWIR. Each band is arranged in parallel on the focal plane, and the

time for which each band observes the specific ground target is different. Since the cross-

track position of the specific detectors is different for each band due to the Earth's rotation,

the degenerated area becomes distinct upon band ratioing (see examples of this effect in the

decorrelation images, spectral indices, RBD images, and band ratio images of the study

area, shown in Chapter 8). The faint scratch on the interference filter (fig. 1), which is

attached on the detectors, causes these artifacts. This problem was found before the launch

because the gain coefficient is largerat the scratched area, indicating that the scratchon the

filter causes back scattering of the incident light, and hence larger gain is needed for

compensation. This scratch also causes forward scattering, making the image under the

affected area slightly blurred.

X-axis (flight direction)

Y-axis
* Band 7

Band 8

Band 9

Band 4m.
Boresight Band 5

Band 6

Filter scratch

Figure-1 Focal plane array of ASTER SWIR detectors and effects of SWIR crosstalk and
filter scratch; discussion in text

3. Inflight straylight in VNIR and SWIR (Iwasaki and Oyama, 2005): In addition to the

ghost phenomenon (unwanted radiation) due to crosstalk in SWIR, the image of band 4

also suffers from straylight that originates from its focal plane. The straylight components

are also observed in VNIR images. The reflection from the dichroic filter used for spectral

separation in VNIR is found to be the reason for the straylight. In band 4 (SWIR) the

straylight originates from an aluminum film under the detector, which is employed to

double the sensitivity of the PtSi-CCD detector. The detectors are arranged in the cross-

track direction, and thus the stray light component is larger in the horizontal direction. The

radiometric sensitivity is determined during ground calibration using an integrating sphere,

but the on-axis (inflight) straylight influences the detected incident light; necessitating its
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correction to ensure radiometric accuracy. Iwasaki and Oyama (2005) have suggested a

simple method, which is equivalent to the van Cittert method of deconvolution (van Cittert,

1931), for the correction of this effect. The straylight components in their method were

estimated using the image obtained during lunar observation, and the improvement in

image quality was examined after straylight correction.

4. Inflight straylight in TIR (Tonooka, 2005): In the thermal infrared (TIR) region, straylight

is caused by emission from an outside source or the instrument itself, and is often

investigated in laboratory testing. In the case of the five TIR bands of ASTER, straylight

testing on the ground was conducted by viewing a heated panel through a hole bored in a

water-cooled panel, and the results showed that straylight effects were at most less than

0.4% of the input radiance (JAROS, 1996). However, straylight characterization for TIR

sensors is generally lessaccurate than for reflective sensors, mainly because zero-radiation

targets cannot be prepared for laboratory testing unlike the case for reflective sensors,

though ray-tracking methods can be used for TIR sensors as well as for reflective sensors.

Thus, straylight effects on TIR sensors are not always well-known in comparison with

reflective sensors.

The digital number (DN) obtained by each ASTER/TIR band is radiometrically calibrated

by a quadratic function with three radiometric calibration coefficients (RCCs) for each of

50 detectors. Since the ASTER/TIR instrument has a single onboard blackbody and cannot

view deep space, only the offset coefficient can be adjusted by viewing the blackbody

before every Earth observation. The blackbody is set to 270 K for the offset adjustment.

The gain coefficient is periodically measured by long-term calibration (LTC) in which the

blackbody is observed at270, 300, 320, and 340 K. Not every LTC result is applied to the

level-1 products. Recent studies have demonstrated that the level-1 products contain a

calibration error caused by delays in updating the gain coefficients in the level-1 software

(Tonooka et al., 2003; Tonooka et al., 2005). A user-based recalibration method has been

developed to correct for these delay-induced errors (Tonooka et al., 2003), and

implemented to determine the recalibration coefficients for the 5 TIR bands, and can be

found from the ERSDAC website (www.ersdac.or.jp) for a specified acquisition date and
radiometric database version ID for a particular scene.

5. Geolocation error: Geographic coordinates for each ASTER scene are stored within the

image data files. Latitude/longitude values are assigned to certain image pixels, based on
knowledge of spacecraft attitude and pointing, instrument pointing, and line of sight
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vectors for each detector. Over the last 5 years, several small errors that can affect the

accuracy of these coordinates have been detected, viz.:

1.An error in the value of the Earth rotation rate caused a geolocation error in the day

time scenes of up to 300 m near the poles, but less than 100 m below 70 degrees

latitude.

2. Not compensating for nutation of the earth's rotation axis caused an acquisition-date-

dependent longitude error of up to 200 m.

3. Altitude compensation: ASTER coordinates areprojected to the WGS-84 ellipsoid,

rather than the real earth's surface. In the most extreme case for areas of high relief

(Tibet, for example), and maximum off-nadir viewing, the relief displacement in

longitude can be 400 m. Compensation requires a digital elevationmodel.
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