Please use this identifier to cite or link to this item: http://localhost:8081/xmlui/handle/123456789/2754
Full metadata record
DC FieldValueLanguage
dc.contributor.authorRangisetti, Praveen-
dc.date.accessioned2014-09-29T05:37:36Z-
dc.date.available2014-09-29T05:37:36Z-
dc.date.issued2007-
dc.identifierM.Techen_US
dc.identifier.urihttp://hdl.handle.net/123456789/2754-
dc.guidePillai, G. N.-
dc.description.abstractIn this thesis the aim is to detect the high impedance fault occurring on radial electrical distribution systems using neural network based relaying scheme. A multilayer perceptron is used for distinguishing the linear and nonlinear High Impedance Faults by taking the Feature vector as input. R.M.S values of third and fifth harmonic components of feeder voltage and feeder current are used as the feature vector obtained by applying the Fast Fourier Transform on the Feeder voltage and Feeder current.en_US
dc.language.isoenen_US
dc.subjectELECTRICAL ENGINEERINGen_US
dc.subjectNEURAL NETWORKSen_US
dc.subjectFAULT IDENTIFICATIONen_US
dc.subjectARTIFICIAL INTELLIGENCEen_US
dc.titleFAULT IDENTIFICATION USING NEURAL NETWORKSen_US
dc.typeM.Tech Dessertationen_US
dc.accession.number613071en_US
Appears in Collections:MASTERS' THESES (Electrical Engg)

Files in This Item:
File Description SizeFormat 
EEDG13071.pdf2.6 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.