Please use this identifier to cite or link to this item:
http://localhost:8081/jspui/handle/123456789/18851| Title: | TIME SERIESFORECASTINGWITHTRANSFORMER AND INFORMERMODELS |
| Authors: | Konduri, Issac Babu |
| Issue Date: | Jun-2024 |
| Publisher: | IIT, Roorkee |
| Abstract: | Timeseriesforecastingwiththehelpofadvancedmachinelearninganddeeplearn- ing models,specificallyTransformersandtheInformer,isappliedtothreediverse datasets fromtheMonashTimeSeriesRepository.Thepedestriancountsdatasetin- cludes hourlycountsofpedestriansinMelbournebeginninginMay2009,asrecorded by 66sensorsinthecity,withdataavailablethroughApril30,2020.Thesolarenergy dataset encompassessolarpowerproductionrecordsfrom137photovoltaicplantsin Alabama, sampledevery10minutesthroughout2006,capturinghigh-frequencyvari- ations insolarenergyoutput.Theelectricitydemanddatasetcontainsfivetimeseries corresponding tothehalf-hourlypowerconsumptionoffiveAustralianstates:South Australia, Queensland,Tasmania,Victoria,andNewSouthWales.Emphasizingtheim- portance ofaccurateforecasting,theresearchleveragestheTransformerandInformer model, designedforefficienthandlingoflong-sequencetimeseriesdata.Thestudy demonstrates substantialimprovementsinforecastingaccuracycomparedtotraditional models. Thesefindingshighlightthepotentialofadvanceddeeplearningmodelsto enhance decision-makingprocessesinenergyplanning,urbanmanagement,andinfras- tructure developmentbyprovidingreliableandcomprehensiveforecasts. |
| URI: | http://localhost:8081/jspui/handle/123456789/18851 |
| Research Supervisor/ Guide: | Pillai, G.N. |
| metadata.dc.type: | Dissertations |
| Appears in Collections: | MASTERS' THESES (MFSDS & AI) |
Files in This Item:
| File | Description | Size | Format | |
|---|---|---|---|---|
| 22565008_KONDURI ISSAC BABU.pdf | 4.06 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
