Please use this identifier to cite or link to this item: http://localhost:8081/jspui/handle/123456789/18851
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKonduri, Issac Babu-
dc.date.accessioned2026-02-05T06:58:54Z-
dc.date.available2026-02-05T06:58:54Z-
dc.date.issued2024-06-
dc.identifier.urihttp://localhost:8081/jspui/handle/123456789/18851-
dc.guidePillai, G.N.en_US
dc.description.abstractTimeseriesforecastingwiththehelpofadvancedmachinelearninganddeeplearn- ing models,specificallyTransformersandtheInformer,isappliedtothreediverse datasets fromtheMonashTimeSeriesRepository.Thepedestriancountsdatasetin- cludes hourlycountsofpedestriansinMelbournebeginninginMay2009,asrecorded by 66sensorsinthecity,withdataavailablethroughApril30,2020.Thesolarenergy dataset encompassessolarpowerproductionrecordsfrom137photovoltaicplantsin Alabama, sampledevery10minutesthroughout2006,capturinghigh-frequencyvari- ations insolarenergyoutput.Theelectricitydemanddatasetcontainsfivetimeseries corresponding tothehalf-hourlypowerconsumptionoffiveAustralianstates:South Australia, Queensland,Tasmania,Victoria,andNewSouthWales.Emphasizingtheim- portance ofaccurateforecasting,theresearchleveragestheTransformerandInformer model, designedforefficienthandlingoflong-sequencetimeseriesdata.Thestudy demonstrates substantialimprovementsinforecastingaccuracycomparedtotraditional models. Thesefindingshighlightthepotentialofadvanceddeeplearningmodelsto enhance decision-makingprocessesinenergyplanning,urbanmanagement,andinfras- tructure developmentbyprovidingreliableandcomprehensiveforecasts.en_US
dc.language.isoenen_US
dc.publisherIIT, Roorkeeen_US
dc.titleTIME SERIESFORECASTINGWITHTRANSFORMER AND INFORMERMODELSen_US
dc.typeDissertationsen_US
Appears in Collections:MASTERS' THESES (MFSDS & AI)

Files in This Item:
File Description SizeFormat 
22565008_KONDURI ISSAC BABU.pdf4.06 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.