Please use this identifier to cite or link to this item:
http://localhost:8081/jspui/handle/123456789/18851Full metadata record
| DC Field | Value | Language |
|---|---|---|
| dc.contributor.author | Konduri, Issac Babu | - |
| dc.date.accessioned | 2026-02-05T06:58:54Z | - |
| dc.date.available | 2026-02-05T06:58:54Z | - |
| dc.date.issued | 2024-06 | - |
| dc.identifier.uri | http://localhost:8081/jspui/handle/123456789/18851 | - |
| dc.guide | Pillai, G.N. | en_US |
| dc.description.abstract | Timeseriesforecastingwiththehelpofadvancedmachinelearninganddeeplearn- ing models,specificallyTransformersandtheInformer,isappliedtothreediverse datasets fromtheMonashTimeSeriesRepository.Thepedestriancountsdatasetin- cludes hourlycountsofpedestriansinMelbournebeginninginMay2009,asrecorded by 66sensorsinthecity,withdataavailablethroughApril30,2020.Thesolarenergy dataset encompassessolarpowerproductionrecordsfrom137photovoltaicplantsin Alabama, sampledevery10minutesthroughout2006,capturinghigh-frequencyvari- ations insolarenergyoutput.Theelectricitydemanddatasetcontainsfivetimeseries corresponding tothehalf-hourlypowerconsumptionoffiveAustralianstates:South Australia, Queensland,Tasmania,Victoria,andNewSouthWales.Emphasizingtheim- portance ofaccurateforecasting,theresearchleveragestheTransformerandInformer model, designedforefficienthandlingoflong-sequencetimeseriesdata.Thestudy demonstrates substantialimprovementsinforecastingaccuracycomparedtotraditional models. Thesefindingshighlightthepotentialofadvanceddeeplearningmodelsto enhance decision-makingprocessesinenergyplanning,urbanmanagement,andinfras- tructure developmentbyprovidingreliableandcomprehensiveforecasts. | en_US |
| dc.language.iso | en | en_US |
| dc.publisher | IIT, Roorkee | en_US |
| dc.title | TIME SERIESFORECASTINGWITHTRANSFORMER AND INFORMERMODELS | en_US |
| dc.type | Dissertations | en_US |
| Appears in Collections: | MASTERS' THESES (MFSDS & AI) | |
Files in This Item:
| File | Description | Size | Format | |
|---|---|---|---|---|
| 22565008_KONDURI ISSAC BABU.pdf | 4.06 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
