Please use this identifier to cite or link to this item: http://localhost:8081/jspui/handle/123456789/18851
Title: TIME SERIESFORECASTINGWITHTRANSFORMER AND INFORMERMODELS
Authors: Konduri, Issac Babu
Issue Date: Jun-2024
Publisher: IIT, Roorkee
Abstract: Timeseriesforecastingwiththehelpofadvancedmachinelearninganddeeplearn- ing models,specificallyTransformersandtheInformer,isappliedtothreediverse datasets fromtheMonashTimeSeriesRepository.Thepedestriancountsdatasetin- cludes hourlycountsofpedestriansinMelbournebeginninginMay2009,asrecorded by 66sensorsinthecity,withdataavailablethroughApril30,2020.Thesolarenergy dataset encompassessolarpowerproductionrecordsfrom137photovoltaicplantsin Alabama, sampledevery10minutesthroughout2006,capturinghigh-frequencyvari- ations insolarenergyoutput.Theelectricitydemanddatasetcontainsfivetimeseries corresponding tothehalf-hourlypowerconsumptionoffiveAustralianstates:South Australia, Queensland,Tasmania,Victoria,andNewSouthWales.Emphasizingtheim- portance ofaccurateforecasting,theresearchleveragestheTransformerandInformer model, designedforefficienthandlingoflong-sequencetimeseriesdata.Thestudy demonstrates substantialimprovementsinforecastingaccuracycomparedtotraditional models. Thesefindingshighlightthepotentialofadvanceddeeplearningmodelsto enhance decision-makingprocessesinenergyplanning,urbanmanagement,andinfras- tructure developmentbyprovidingreliableandcomprehensiveforecasts.
URI: http://localhost:8081/jspui/handle/123456789/18851
Research Supervisor/ Guide: Pillai, G.N.
metadata.dc.type: Dissertations
Appears in Collections:MASTERS' THESES (MFSDS & AI)

Files in This Item:
File Description SizeFormat 
22565008_KONDURI ISSAC BABU.pdf4.06 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.