Please use this identifier to cite or link to this item: http://localhost:8081/jspui/handle/123456789/18037
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSingh, Avtar-
dc.date.accessioned2025-08-04T06:48:13Z-
dc.date.available2025-08-04T06:48:13Z-
dc.date.issued2021-08-
dc.identifier.urihttp://localhost:8081/jspui/handle/123456789/18037-
dc.guidePal, Siladityaen_US
dc.description.abstractNext-generationcathodesforlithium-ionbatteries(LIB)arecomposedofthepolycrystalline microstructure havingmulti-layeredthinfilmarchitectureorthecompositeswithactiveand inactiveparticlesembeddedinthematrix.Duetoinherentheterogeneities,thesecathodes generate mechanicalstressessufficientenoughtocausetheinitiationandpropagationof numerous typesoffractures.Inparticular,theemergenceofinter-andintra-granularcracks as wellasparticle-matrixinterfacedebondinghindersthetransportoflithium-ionsandelectrons, resulting incapacityfading.Therefore,addressingthemechanicaldegradationofcathode along withgeometricalconfigurationandmicro-structuralfeaturesisofmajorconcerntowards achievingenhancedandsustainableelectrochemicalperformance.Consequently,wehave developedathermodynamicallyconsistentmulti-physicsframeworktounderstandthechemo- mechanical interplaytowardsfracturebehaviorofpolycrystallinemicrostructurealongwiththe substrate/matrix. Theproposedframeworkaccountsfortheplasticdeformationofthehost lattice andthesubstrate.Achemo-mechanicalcohesivezonemodel(CZM)isformulatedto simultaneously capturethedecohesionandtransportacrossgrainboundaries,whileclassical CZM isusedbetweenthecathode/substrateinterface.Usingthefiniteelementbasednumerical framework,weexaminethemechanicalfailureandattendantvoltageprofilesforvariousmicro- structural andelectrochemicalparameters(i.e.,grainsizeandchargerate). Moreover,theproposednumericalmodelisextendedtounderstandtheroleofinter-and intra-granular fractureonthecoupledchemo-mechanicalbehaviorofpolycrystallinecathode. In thatcontext,thermodynamicsbasedcoupledchemo-mechanicalmodelisdevelopedto investigatetheevolutionofcomplexcrackpropagationandemergentvoltageprofilesfor polycrystalline cathodeparticleembeddedinthematrix.Aregularphase-fieldfractureparameter is introducedtocapturetheinter-andintra-granularcrackpropagationtogetherwiththeparticle- matrix interfacedebondingintheelectrode;thereby,thecoupledgoverningequationsarederived. Twodiffusedinterfacephase-fielddescriptorsareutilizedtodescribethegrainboundariesand particle-matrix interfaces.Subsequently,thedifferentfractureenergiesofthegrains,grain boundaries andparticle-matrixinterfacesareincorporated.Usingthefiniteelementbased numerical framework,theinteractionsbetweenthechemo-mechanicalbehaviorandattendant fracture mechanismsareaddressedtowardstheemergentelectrochemicalresponses.Various parametric studiesareperformedtoinvestigatetheeffectofgrainsizes,chargerates,and elastic modulusofthematrixontheoccurrenceofmultiplefracturemechanismswithinthe polycrystalline cathode.en_US
dc.language.isoenen_US
dc.publisherIIT Roorkeeen_US
dc.subjectLithium-ion battery;Polycrystallinecathode;Non-equilibriumthermodynamics; Bulk andinterfaces;Stressinduceddiffusion;Chemo-mechanicalcohesive;Inter-granular fracture; Intra-granularfracture;Phasefieldfracture;Straingradientelasticity;Generalized differential quadrature.en_US
dc.titleCHEMO-MECHANICAL MODELLING OF FRACTURE IN HETEROGENEOUS CATHODE FOR LITHIUM-ION BATTERYen_US
dc.typeThesisen_US
Appears in Collections:DOCTORAL THESES (MIED)

Files in This Item:
File Description SizeFormat 
AVTAR SINGH 16920001.pdf57.72 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.