Please use this identifier to cite or link to this item: http://localhost:8081/xmlui/handle/123456789/15034
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSidharth, Manjari-
dc.date.accessioned2021-08-17T11:32:00Z-
dc.date.available2021-08-17T11:32:00Z-
dc.date.issued2017-09-
dc.identifier.urihttp://localhost:8081/xmlui/handle/123456789/15034-
dc.guideAgrawal, P. N.-
dc.description.abstractIn thethesis,westudyapproximationpropertiesofsomewellknownoperatorsandtheir q-analogues. Wedividethethesisintoeightchapters.Thechapter0includestheliterature survey,basicdefinitionsandsomebasicnotationsofapproximationmethodswhichwill be usedthroughoutthethesis. In thefirstchapter,wediscussedtheSchurertype q-Bernstein Kantorovichoperatorwhich wasintroducedbyLin.Weobtainalocalapproximationtheoremandthestatisticalcon- vergenceoftheseoperators.Wealsostudytherateofconvergencebymeansofthefirst order modulusofcontinuity,Lipschitzclassfunction,themodulusofcontinuityofthe first orderderivativeandtheVoronovskajatypetheorem. The secondchapterisconcernedwiththeStancu-Kantorovichoperatorsbasedon P´olya-Eggenbergerdistribution.Weobtainsomedirectresultsfortheseoperatorsby means oftheLipschitzclassfunction,themodulusofcontinuityandtheweightedspace. Also, westudyanapproximationtheoremwiththeaidoftheunifiedDitzian-Totikmodu- lus ofsmoothness ! (f; t); 0 1 and therateofconvergenceoftheoperatorsfor the functionshavingaderivativewhichislocallyofboundedvariationon [0;1). In thethirdchapter,weintroducetheSz asz-DurrmeyertypeoperatorsbasedonBoas- Buck typepolynomialswhichincludeBrenke-typepolynomials,Shefferpolynomialsand Appell polynomials.WeestablishthemomentsoftheoperatorandaVoronvskajatype asymptotic theoremandthenproceedtostudytheconvergenceoftheoperatorswiththe help ofLipschitztypespaceandweightedmodulusofcontinuity.Next,weobtainadi- rect approximationtheoremwiththeaidofunifiedDitzian-Totikmodulusofsmoothness. Furthermore, westudytheapproximationoffunctionswhosederivativesarelocallyof bounded variation. i In thefourthchapter,weobtaintherateofapproximationofthebivariateBernstein- Schurer-Stancutypeoperatorsbasedon q-integersbymeansofthemoduliofcontinuity and Lipschitzclass.WealsoestimatethedegreeofapproximationbymeansofLipschitz class functionandtherateofconvergencewiththehelpofmixedmodulusofsmooth- ness fortheGBSoperatorof q-Bernstein-Schurer-Stancutype.Furthermore,weshowthe comparisons bysomeillustrativegraphicsinMaplefortheconvergenceoftheoperators to somefunctions. In thefifthchapterwestudytheapproximationpropertiesofthebivariateextensionof q-Bernstein-Schurer-Durrmeyeroperatorsandobtainedtherateofconvergenceofthe operators withtheaidoftheLipschitzclassfunctionandthemodulusofcontinuity. Here, weestimatetherateofconvergenceoftheseoperatorsbymeansofPeetre’s K- functional. Then,theassociatedGBS(GeneralizedBooleanSum)operatorofthe q- Bernstein-Schurer-Durrmeyertypeisdefinedanddiscussed.Furthermore,weillustrate the convergencerateofthebivariateDurrmeyertypeoperatorsandtheassociateGBS operators tocertainfunctionsbynumericalexamplesandgraphsusingMaplealgorithm. In thesixthchapter,Wediscussthemixedsummationintegraltypetwodimensional q- Lupas¸-Phillips-BernsteinoperatorswhichwasfirstintroducedbyHoneySharmain2015. WeestablishaVoronovskajatypetheoremandintroducetheassociatedGBScase(Gener- alized BooleanSum)oftheseoperatorsandwestudytherateofconvergencebyutilizing the Lipschitzclassandthemixedmodulusofsmoothness.Furthermore,weshowtherate of convergenceofthebivariateoperatorsandthecorrespondingGBSoperatorsbyillus- trativegraphicsandnumericalexamplesusingMaplealgorithms. In theseventhchapter,weobtainthedegreeofapproximationfortheKantorovich-type q-Bernstein-Schurer operatorsintermsofthepartialmoduliofcontinuityandthePee- tre’sK-functional.Finally,weconstructtheGBS(GeneralizedBooleanSum)operators of bivariate q-Bernstein-Schurer-Kantorovichtypeandestimatetherateofconvergence for theseoperatorswiththehelpofmixedmodulusofsmoothness. In thelastchapter,weestablishtheapproximationpropertiesofthebivariateoperators which arethecombinationofBernstein-ChlodowskyoperatorsandtheSz´asz operators ii involvingAppellpolynomials.Weinvestigatethedegreeofapproximationoftheopera- tors withthehelpofcompletemodulusofcontinuityandthepartialmoduliofcontinuity. In thelastsectionofthepaper,weintroducetheGeneralizedBooleanSum(GBS)of these bivariateChlodowsky-Szasz-Appelltypeoperatorsandexaminetheorderofap- proximation intheB¨ogel spaceofcontinuousfunctionsbymeansofmixedmodulusof smoothness.en_US
dc.description.sponsorshipIndian Institute of Technology Roorkeeen_US
dc.language.isoenen_US
dc.publisherI.I.T Roorkeeen_US
dc.subjectLipschitz class functionen_US
dc.subjectcontinuityen_US
dc.subjectunified Ditzianen_US
dc.subjectLipschitz type spaceen_US
dc.titleSTUDY ON COVERGENCE OF CERTAIN LINEAR POSITIVE OPERATORSen_US
dc.typeThesisen_US
dc.accession.numberG28471en_US
Appears in Collections:DOCTORAL THESES (Maths)

Files in This Item:
File Description SizeFormat 
G28471.pdf2.54 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.