Please use this identifier to cite or link to this item:
http://localhost:8081/xmlui/handle/123456789/14951
Title: | INTEGRAL MODIFICATION OF CERTAIN POSITIVE LINEAR OPERATORS |
Authors: | Neer, Trapti |
Keywords: | Bernstein-Durrmeyertype Operators;Genuine Durrmeyer;Ditzian-Totikmodulus;Voronovskaya type theorem |
Issue Date: | Dec-2017 |
Publisher: | IIT Roorkee |
Abstract: | This thesispresentsapproximationoffunctionsbyseveralwellknownpositivelin- ear operators,bytheirgeneralizedformsandintegralmodi cations.Wedividethe thesis intoninechapters.Chapter0isanintroductorypartofthethesiswhichdeals with theupbringingofapproximationtheory,literaturesurvey,somenotationsand basic de nitionsofapproximationmethodswhichareusedthroughoutthethesis. In the rstchapter,wede neagenuinefamilyofBernstein-Durrmeyertype operatorsbasedonPolyabasisfunctions.Weestablishaglobalapproximationthe- orem, localapproximationtheorem,Voronovskaya-typeasymptotictheoremanda quantitativeestimateofthesametype.Lastly,westudytheapproximationoffunc- tions havingaderivativeofboundedvariation. The secondchapterisacontinuationofthe rstoneinwhichweintroducethe B eziervariantofgenuineDurrmeyertypeoperatorsandgivedirectapproximation results andaVoronovskayatypetheorembyusingtheDitzian-Totikmodulusof smoothness.Therateofconvergenceforfunctionswhosederivativesareofbounded variationisalsoobtained.Further,weshowtherateofconvergenceoftheseopera- tors tocertainfunctionsbyillustrativegraphicsusingtheMatlabalgorithms. In thethirdchapter,wede netheSz asz-Durrmeyertypeoperatorsbymeansof i multipleAppellpolynomials.WestudyaquantitativeVoronovskayatypetheorem and Gr uss-Voronovskayatypetheorem.Wealsoestablishalocalapproximation theorem intermsoftheSteklovmeansandVoronovskayatypeasymtotictheorem. Further,wediscussthedegreeofapproximationbymeansofaweightedspace. Lastly,we ndtherateofapproximationoffunctionshavingderivativesofbounded variation. In thefourthchapter,weintroducetheB eziervariantofDurrmeyermodi cation of theBernsteinoperatorsbasedonafunction : Wegivetherateofapproximation of theseoperatorsintermsofusualmodulusofcontinuityandthe Kfunctional. Next, weestablishthequantitativeVoronovskajatypetheorem.Inthelastsection weobtaintherateofconvergenceforfunctionshavingderivativesofboundedvari- ation. In the fthchapter,wede neasequenceofStancutypeoperatorsbasedonthe same function as de nedintheprecedingchapterandshowthattheseoperators presentabetterdegreeofapproximationthantheoriginalones.Wegiveadirect approximationtheorembymeansoftheDitzian-Totikmodulusofsmoothnessand a Voronovskayatypetheorem. In thesixthchapter,weintroducetheB eziervariantofmodi edSrivastava- Gupta operatorsandgiveadirectapproximationtheorembymeansoftheDitzian- Totikmodulusofsmoothnessandtherateofconvergenceforfunctionswithderiva- tivesequivalenttoafunctionofboundedvariation.Furthermore,weshowthe comparisons oftherateofconvergenceoftheSrivastava-Guptaoperatorsvis-a-vis its B eziervarianttoacertainfunctionbyillustrativegraphicsusingMaplealgo- rithms. ii In theseventhchapter,weconstructtheStancu-Durrmeyer-typemodi cationof q-Bernstein operatorsbymeansofJacksonintegral.Here,weestablishbasiccon- vergencetheorem,localapproximationtheoremandanapproximationresultfora Lipschitztypespace.Also,weestablishtheKorovkintype A-statistical approxi- mation theoremandratesof A-statistical convergenceintermsofthemodulusof continuity. The lastchapterisancontinuationofourworkinchapterseven.Here,wecon- struct abivariategeneralizationofStancu-Durrmeyertypeoperatorsandstudythe rate ofconvergencebymeansofthecompletemodulusofcontinuityandthepartial moduliofcontinuity.Subsequently,wede netheGBS(GeneralizedBooleanSum) operatorsofStancu-Durrmeyertypeandgivetherateofapproximationbymeans of themixedmodulusofsmoothnessandtheLipschitzclassofB ogel-continuous functions. |
URI: | http://localhost:8081/xmlui/handle/123456789/14951 |
Research Supervisor/ Guide: | Agrawal, P.N. |
metadata.dc.type: | Thesis |
Appears in Collections: | DOCTORAL THESES (Maths) |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
G28479.pdf | 1.29 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.