Please use this identifier to cite or link to this item: http://hdl.handle.net/123456789/13734
Full metadata record
DC FieldValueLanguage
dc.contributor.authorVariganji, Suresh-
dc.date.accessioned2014-12-08T11:40:02Z-
dc.date.available2014-12-08T11:40:02Z-
dc.date.issued2004-
dc.identifierM.Techen_US
dc.identifier.urihttp://hdl.handle.net/123456789/13734-
dc.description.abstractClustering Techniques For Content Based Image Retrieval Using Mathematical Morphology" is to check the applicability of the Mathematical Morphology in Content Based Image Retrieval (CBIR) to extract the derived features of the images and to retrieve to relevant images from the image database using efficient Data Mining Clustering algorithms. The present Proposed System uses CBIR technology to retrieve the relevant images from the image database on the basis of derived feature such as color, size, shape and texture. Before CBIR was developed, the images were retrieved from large databases by appending some index or address to the images. But this did not work efficiently when user queries consisted of primitive, logical and abstract features. The purpose of this dissertation work is to check the applicability of the Mathematical Morphology in Content Based Image Retrieval to extract the shape feature from the images using Morphological operation pattern spectrum as the pattern spectrum acts as a shape descriptor for extracting features from the images. Data-Mining clustering techniques such as RObust hierarchical Clustering with linKs (ROCK) and the Clustering Using REpresentatives (CURE) were used for the image retrieval . Concept of bins was used for fast and efficient image retrieval from the image data collection.The performance evaluation of these two clustering algorithms were calculated in terms of domain size and time.en_US
dc.language.isoenen_US
dc.subjectCDACen_US
dc.subjectCLUSTERING TECHNIQUESen_US
dc.subjectCONTENT BASED IMAGEen_US
dc.subjectMATHEMATICAL MORPHOLOGYen_US
dc.titleCLUSTERING TECHNIQUES FOR CONTENT BASED IMAGE RETRIEVAL USING MATHEMATICAL MORPHOLOGYen_US
dc.typeM.Tech Dessertationen_US
dc.accession.numberG11920en_US
Appears in Collections:Dissertation (C.Dec.)

Files in This Item:
File Description SizeFormat 
CDACG11920.pdf3.07 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Admin Tools