Please use this identifier to cite or link to this item:
http://localhost:8081/jspui/handle/123456789/13453
Title: | NEURAL NETWORKS FOR IDENTIFICATION OF DYNAMIC SYSTEMS |
Authors: | Rai, Jitendra Kumar |
Keywords: | ELECTRICAL ENGINEERING;NEURAL NETWORKS;IDENTIFICATION;DYNAMIC SYSTEMS |
Issue Date: | 1999 |
Abstract: | Identification is the determination of a system within a specified class of system, on the basis of inputs and outputs. Such determination means that some variables, characterizing the given system are chosen and some relation are defined in the form of formula or graphs. In this dissertation, a single layer ANN has been developed to identify the parameters of the linear dynamic system whose states and derivatives of states are given. Gradient descent algorithm has been used to learn the network. This algorithm made the learning very fast and provides global results. By this method, a non-linear system has also been identified in the form of a linear system about its operating point. Further, the effect of change in learning rate has been studied. This method has been successfully implemented on three sample systems and the results of identification of system parameter are reported |
URI: | http://hdl.handle.net/123456789/13453 |
Other Identifiers: | M.Tech |
Research Supervisor/ Guide: | Kumar, Surendar Gupta, H. O. |
metadata.dc.type: | M.Tech Dessertation |
Appears in Collections: | MASTERS' THESES (Electrical Engg) |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
EED G10031.pdf | 2.26 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.