Please use this identifier to cite or link to this item: http://hdl.handle.net/123456789/10663
Title: STUDY OF FROST GROWTH AROUND A CYLINDER WITH VARYING ENVIRONMENT PARAMETER
Authors: Singh, Lalit Kumar
Keywords: MECHANICAL INDUSTRIAL ENGINEERING
FROST GROWTH
CYLINDER
VARYING ENVIRONMENT PARAMETER
Issue Date: 1999
Abstract: This describes a one-dimensional model which permits the evaluation of the local properties during frost growth. To achieve this objective it is necessary to know the local coefficients of .heat transfer which are determined by solving mass and energy equations. A numerical solution is obtained for Reynold number upto 200 and buoyancy parameter upto 35. Whenever moist air comes in contact, with a surface whose temperature is below the dew point temperature of water vapour in air, moisture will condense on the surface. temperature is also below freezing, frost will form. Due to formation of frost overall heat transfer is reduces. A simple method of computing heat transfer and frost growth rates as well as the frost thickness and surface temperature as the function of time and position. The method utilizes knownconvective heat transfer correlations for horizontal -cylinder and the Lewis analogy to determine a convective mass transfer coefficient and enthalpy transfer coefficient. An iterative quasi-steady-state approach adopted to compute the air-frost interface temperature, frost properties, the partial pressure of water vapour at the frost surface and the frost thickness
URI: http://hdl.handle.net/123456789/10663
Other Identifiers: M.Tech
Appears in Collections:MASTERS' DISSERTATIONS (MIED)

Files in This Item:
File Description SizeFormat 
MIED248335.pdf2.13 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.