EXPERT SYSTEM SHELL
FOR
ARCHITECTURAL AND BUILDING DESIGN

A DISSERTATION

submitted in partial fulfilment of the
requirements for the award of the degree

of
MASTER OF TECHNOLOGY
in

COMPUTER SCIENCE AND TECHNOLOGY

By

TEJPAL SINGH

DEPARTMENT OF ELECTRONICS AND COMPUTER ENGINEERING
UNIVERSITY OF ROORKEE

ROORKEE-247 667 (INDIA)

JANUARY, 1995

CANDIDATES DECLARATION

I he:eby certify that the work which is being presented in‘
the dissertation entitled "EXPERT SYSTEM SHELL FOR
ARCHITECTURAL AND BUILDING DESIGN" in the partial
fulfillment of the degree of MASTER OF TECHNOLOGY in
COMPUTER SCIENCE & TECHNOLOGY in the Department of
ELECTRONICS & COMPUTER ENGINEERINC; University Of Roorkee,
is an authentic record of my -own work carried oqt}l
1445 , under the guidance of Dr. PADAM KUMAR, Department of
ELECTRONICS & COMPUTER ENGINEERING, University Of Roorkee.
The matter embodied in this dissertation has not been

submitted by me for the award of any other degree or

diploma.
Date : 1%th January, 1995 v ,:M%L
Place : ROORKEE : [TEJPAL SINGH]

CERTIFICATE

This is to certify that the ébove statement made by the
candidate is correct to the best of my Rmowledge.

Date : |/th January, 1995

Place : ROORKEE [Dr. Pkﬁiﬁ‘?ﬁixﬁpTd_ﬁ—ﬂd——.—_——_—

Department Of Electronics &
Computer Engg.

ACKNOWLEDGEMENT

It is my proud privilege to express a profound sense qf
gratitude to my guide 'Dr. PADAM KUMAR ﬂor his libeial
guidance, inspiration and encouragement which I have
received on my hands- so ‘spontaneously and lavishly
throughout my dissertatioﬁ; :
I wish to thank Dr. R.C. JOSHI especially for providing
all the facilitiéS‘(from Systems, Softwares to Concepts),
without which the completion of the work would have been
impossible; \ |
I would like to thank Head of the Deptt. Dr. R.P. Aggarwal,
for providing facilities in the deptt., helpful in
completion of the project. ' v J;‘
I would also 1link to thank all the staff members of the
Dept. for their kind co-operafion.
My friends in the hostel and outside, have proved what
friendship is. When I look back on this period of my life,
I shall not be able to forget the support my family provided
me.

[TEJPAL SINGH]

CONTENTS

ABSTRACT

1. . INTRODUCTION
1.1 INTRODUCTION
1.2 STATEMENT OF THE PROBLEM
1.3 ORGANIZATION OF DISSERTATION

2. REVIEW AND GENERAL CONSIDERATION
2.1 INTRODUCTION
2.2 REVIEW
2.3 EXPERT SYSTEMS
2.4 EXPERT SYSTEM SHELL
2.5 PRODUCTION RULE SYSTEM
2.6 SEMANTIC NETWORK
2.7 DYNAMIC FRAME STRUCTURE

3. DESCRIPTION OF EXPERT SYSTEM SHELL
3.1 SOFTWARE DESCRIPTION
3.2 CHARACTERISTICS OF ESS

4. KNOWLEDGE BASE FOR BUILDING DESIGN

5. KNOWLEDGE BASE FOR ARCHITECTURAL DESIGN |

6. IMPLEMENTATION.

7. CONCLUSION AND SUGGESTIONS FOR FUTURE WORK
7.1 CONCLUSION
7.2 SUGGESTIONS FOR FUTURE WORK

REFERENCES

SOFTWARE LISTING

g N = =

10
14
14
1S
17

19
19

40

42

B1
70
90
90
92

95

98

ABSTRACT

Design is a process of producing a description of a systém or
process to satisfy a set of requirement. To support the dé%igner
in the identification and compositioh of components of a design
solutions requires both synthesis and evaluation methods. Such
methods can provide a systematic approach to design allowing the
designer to pursue more alternatives and evéiuate the alternatives
based on a discourse of criteria and value. The use of knowledge
based techniques for the exploration of synthesis and evaluation
methods maintains a separation of method and knowledge, allowing
the designer té guide the methods with qualitative or empirical
knowledge without sacrificing the benefits of a systematic

approach.

In this work an expert system shell (ESS) named SHELL has been
developed which will help the user in taking decisions and provide
him an expert advice based on the facts provided by the user
during the interaction. The ESS have a rule based inference
engine (IE) which provides decisions based on the rules applicable
for the session, which in turn depend upon the facts that hold for
the project. The.knowledge representation (KR) in the ESS is also

with the semantic networks which basically form a fact base for
the inference engine module. However it can be used independently
to provide answers to the queries which can be answered with the

help of a semantic network exploiting the inheritance properties

of the object .present in it. Two ESS modules were developed |
sharing a commoﬁ'sgmantic network. The mohules are rule based
with a difference in their learning abilities. One is a non-

learning module which requires the complete set of rules to
provided beforehand to get complete decisions or to cover all
sorts of situations. This module assumes that all the knoﬁledge
in the form or rule base or semantic net is complete and correct.
“The following cases are envisaged in this module :
The system cannot reach a decision because the facts provided to

it were conflicting ;

The system cannot provide a decision because the rule base has
no rule(s) to reach that decision ;

The system provides conflicting decisions because the facts
provided to it were not coherent ;

The system is able to provide the decisions assuming that rules
provided to it are complete and correct and so are the facts
provided. No confirmation is taken from the user i.e. the system
is closed for any feedback.

In all these cases the system never tries to learn any new
knowledge because it was never-made to do so. A new situation has
to handled explicitly by addiné new rules in it’s rule base.

The othér module capaﬁle of acquiring, automatically & by
explanation, tﬁe know how of an Architect to help him in the
design process. The module wusing an incomplete description,
provided by the designer, of the construction project to be
designed, the system tries to complete the project using the

knowledge at it’s disposal which the designer has taught it. The

following cases are envisaged :

The system cannot solve a problem because it has never learnt
how to ; .

The system cannot solve a problem because it lacks information ;
The system claims to know how to solve a problem ané submits a
solution td‘the designer for approval.

In all three cases the system learns the knowledge which it will
be able to use at a future date. The learning mechanism resembles
the learning methodology of a human being who also learns by
experience.

The two modules share thé-sgmantic net to provide the various
facts. The learning module may also be used to generate more
facts for the non-learning module or may be used to complete a
partial semantic, to be used by both of the modules at a future

date and providing a means of interaction between the two modules.

SHELL is developed not with the aim of replacing an architect or

the designer, but with the aim of providing him a tool capable of

simulating the work of an architect or helper who he has trained
himself by providing him with rules and knowledge for handling
situations. The model of the system developed is built around the
High Level Language (HLL) ’'C’ with an automatic interpretétion,

knowledge acquisition & explanation system.

CHAPTER 1

INTRODUCTION

1.1 INTRODUCTION

Computers are rapidly penetrating almost- all contemporary modern
and sophisticated professions. In some fields their influence has
been reéadily acceptable, but in others a restructuring of
disciplines seems unavoidable.

Since computer technology continues to advance rapidly due to
ever-growing & ever-absorbing consumer market, it is difficult to
start a relevant discussion based on definite and proven
assertions. Nevertheless, one dimension of such discussion is
their potential to simulate the human mind and imagination to the
opening of new phases.

In the field of Architecture, computers have been used to produce
drawings and other graphical représentations to communicate ideas
using packages like Autocad, etc.. Further use of computers. in
this field has proven to be more than a mere drafting assistance,
due to which the field of Architecture is undergoing a drastic
change as a discipline.

Architecture 1is concerned with <concept, 1ideas, judgment &
experience. All of these appear to be outside the realm of
traditional computing. Human beings discourse with each other
using models of their worlds largely unrelated to either
mathematical descriptions or procedural rgpresentations. They
make use of knowledge about objects, events‘% processes and make
declarative statements about them. These are often written down
s;mbolically. The limits of traditional computing are that it is
unablé to represent and manipulate knowledge in an explicit and
coherent - form and that it 1is wunable to perform symbolic
computation. The knowledge based systems (KXBS), however are

trying to overcome these limitations and promise to be powerful

tools in this field.

There are considerable arguments in favor of developing KBSs for
this field. The first and probably the major impetus 1in
developing KBS is the potential for increasing productivity and
improving the quality of design if low-level design decisions and
procedures can be automated by encoding the knowledge on which
they are based, since more time can now be allocated'for more
complex decisions. Other reasons, though may be just as
significant. The great majority of failures 1in building
construction are due to non-application of existing, recorded,.
knowledge, and that there is much to be gained from making that
knowledge available at the point where it is most valuable ; that
is within the medium of production of building construction
information.

There are two ways to implement a KBS. Firstly, creating a
computer program which has the required knowledge implemented in
the form of its code. Secondly cfeating an expert system (ES) or
ESS which store knowledge separately. Conventional computer
approaches from the view point of complex applications like design
sugyi} from serious drawbacks. Firstly they are usually complex
and difficult for anyone other than their designers to understand.
Secondly as they embody their knowledge .of the subject area in
terms designed for computational efficiency, such ithat this
knowledge ié‘implicit in the programs in such a way which makes it
difficult to alter or change. Thirdly, they cannot suggest their
users why they need a particular fact nor justify their results, a
very important factor for opting for an expert system in field
like Design to boost confidence of the potential users in the

decisions provided by them.

1.2 STATEMENT OF THE PROBLEM
The ES are capable of managing the coherence of the project more

satisfactorily, of conversing with the Architect in a language

closer to his own, and of establishing relations with the
technical calculation programs or engineering ESs which thus allow
a technical evaluation of the project to be made in very early
stages of design. But careful not to 1limit the creative
capacities of the Architects the automated procedures installed in
- these systems can only incorporate knowledge relating to general
Architecture and Building know how, useful to any designer for any
building project. In fact, there is no optfmal_solution, unidue
to a building design problem, an Architect who solves a problem
manipulates strong constraints {regulatory, technical, etc...) but
also weak constraints of more subjective character (economical,
sociological, aeéthetic, etc.) related to working habits and to
influence of similar problems met in the past._ That is why it
seemed important to create an ESS which incorporates general
Architecture and Building know how and which may also be
perséﬁalized by the user according to the type of project to be
carried out, his know how and his working habits. Also at
present, an Architect from say Roorkee may not be able to design
foundation of a building in Delhi due to lack of soil information
of the site. Similarly he may not be able to decide upon the type
of superstructure of the house in any other country Jjust due to
lack of information about sociological and environmental
constraints. The éim was to gather all the information at one
place and allowing an Archrfect from place X in country Y to be
able to design a house in city A of country B without any problem.
Moreéver as he at one place is able to perform the job of an
Architect, Builder, Structural engineer, etc.:this will reduce the
time of communication.of the facts from one p?rson to other, .thus
speeding up the inittial design process leading to increased
productivity as ekplained'earlier with no compromise on quality.
As the ESS SHELL is designed to highly interactive, there is no
compromise on creative capability of the Architect, nor any

rigidity in changing the design due to reQuiPements of or

constraints laid by the client based on his sociological,
economical or aesthetic needs.

An ESS design having KR in the form of both semantic networks and
production rules was chosen to form the Knowledge base (KB). The
rule. based model was chosen as it closely resembles the thinking
mechanisms of human beings. The Architect or Building designer
would not only have much convenience in using such a system., but
also will have full confidence in the decisions provfded by the
ESS. This is a very important faﬁtor in deciding whether the ESé
will be used extensively by him as otherwise the'whole purpose of
developing such a system gets defeated. HLL 'C’ was chosen as a
tool to implement the éXpeﬁt system shell because of the
language’s ability. to manipulate complex structures (used
extensively in these kind of work), to provide customized
interfacing to the external programs called by the ESS and lastly
because programs written in this language have relatively smaller
executable file size, saving on RAM usage~and providing faster
execution and loading. Keeping in view the applicétions_which
were to built around SHELL, need for incorporating various means
of representing rules (like mathematical, probabilistic, external
program & objects from semantic nets) was felt, so that much can
done by the SHELL itself without the need to 'caIll external
programs for these purposes. !

A need forJiearning ESS was felt to provide each Architect with
customized system. This system targeted as an assistant of the
architect, was expected to learn to handle new situations wiih
experiences, so that the Architect can train it by his own
concept, means and ease. This system would also use the semantic
net to reach decisions. This system was expected to update the
semantic net through its decisions thus also providing one with a

means to complete a partial semantic net intelligently.

1.3 ORGANIZATION OF DISSERTATION

The dissertation is divided into seven chapters. Chapter 1
provided a basic introduction to the situation prevalent and
introduced the problem to be handled. The rest of the
dissertation is organized as follows. Chapter 2 provides a review
of the variqus ES and ESS developed in this direction and
introduces various topics related to and incorporated in the
dissertation. Chapter 3 provides the descbiption of the ESS at
the user’s level like various facilities incorporated in the work
and provides information about the characteristic features of the
ESS finally developed. Chapter 4 & chapter S5 provide sample
extensive exampies & rules and test run result from the fields of
Architecture and Building design, Chapter 6 discusges the
software implementation of the ESS. Finally in chapter 7°
conclusions and various directions for future extensions on this

work are discussed.

M

R

sAvtarted

Reasoning
Too!
Kt}
NSRS

Fgineering
v iromment

Kis 1

Ko bexdge
Engrncering
System

CAMLHICE
QT

{158

[ERS

U9 WD
SRS

KR, SOBME

fybrid "Tool Kit"
wilh Frowes,

poals and produc-
tion rutes '

b ject~wriented
frames vith
aultiple inherit-
ance. pr-<hs:tion
rulesy

Production rules,
Baysian hypothe-
size &-lest

Frame tased with
inheritarce & pro-
cadural attachnent

Integrated product-

ion system

Rule-based,
frome-lnsad,
procedure oriented

loie programming
g LISP environ-
mnt

Ride, iccess,

object & procedure

oriented programm-
ing.

Rule lased,
oPs 83
adrls
unperative
programming

INTERFERENCING
MEDHANTSM
forard & baclovard
chaining /, pattern~
matching & logic
programming

forwart & backvard
chaining, - ‘
provides a Truth
Mainténance System.
abductive -
renscning

rule-~ based forward
chaining, & logic
programing in
Prolog

. Procedural prograntt-

ing is done by
control srategies

LANGUAGE

s

LISP->' C

;
MO LISP
CRLH/OPSS/
Mrolog -

B

LISP.
LISP -y ¢

" C-> Ma

“NISP,

Franz LISP,
Common LISP.

INTERLISP-D

Cand
Exper, LISP

TABLE-2.1A
MACRHIMES

Symbolics,

Suns VAX,

LISP Machine,
HM-FC/RT,

TI xplorer
Xerox, Vambda,
Suns, *Symbolics,
IB-RT,

TL EXPLORER,
SVAX, WP :

Cyber 180, Xerox,
VAX, Apollo, Sun,
IM-FC

VAX.\TI Fxplorer,
Symbolics, Suns
H> 9320, Apollo

AT&T,.
Micro VAX,
Sun, Apollo,
VAX, Xerox,

Lambda,

YaXs T1 Explorer -

Yerox, Apollo,

Symbolics

Xerox 1100
Series

Macintash,
Apolle,
IBM-FC,VAX,
Micro VAX,
Xerox

EXPLARATTON
FPACTLITY

txcellent graph-
ws Hrowsor

Excel lunt Graph-
ical & highly
interactive

Fxplanation, help,
Justify,& "Wy

Graphics orientesf”

trace facility

fnglish text lelp
and Explanation

Firse order pred-
icate calculus

Not evident,
Since this is a
research toal.

Must program
More a
language
than a shell

EDLTOR/USER
INTYRFACE.

Excellent Graph
ics icon editer

Stromyg Lo rules,

srepresentacion

and intertace

Line—oricnted

Krowledge taise,
frane & nule edive
ars, (I8 & Proloy
workbench

Kiowlexlpe: lyase

extitor

Varies among LISE
enviroments

Excellent Graphics

orientex

Varies amng
several
dinleces

LNAIC (RN
PXCETIC e nkae
PRI S HE T TR e

A Mo S
ey

EIRNY

Uxeot Tt Wiondow

rpentod

and ey S

cichig

Through 11!

favirornayait

iguni Xeros Ve s

Personal
Consul tant
Series

Super-
Expert

£Sp
Advisor

T

Extran

arps

C LANQUAGE
Lilegrates
Production
System

AXT-IM
Avromated
Reasoning
Tool for
Informtion
Management

tevel 5

Kappa-FC

rroduction

Rule system

Production

. Rule with

frames, -
meta-rules
anG fapping

Infers
decision

tree rules
fran examples
with support
ical structure

Logic-bused
KRL

Kncwledge
Representation
Language

IF-THEN-ELSE,
Productin
Rules,mth
capabilities

Frame-Like,
multi dimens-
ional state
space rulis
inferved from
user examgles

Production
rules vith
natural Ly
guage inter-
face

Hievarchies
of decision-
tree rules

Rules written
in lisp-Like
Syntai
(if-therelse,
while) B}
(Disjunction
and procedural
progranming)

Frores as
Scherata

Ficts & Rules
expressed in
Level 5 Prod-
wction Rule
language (PRL)

Mhysical entities
or adstract
concapts are
grouped into

2 hierarchical
strture of
classes, sub-
classes,and

- brolog

- C
- FC scheme
- “Forth for
FC'version
Pascal for
Mac version
- Prolog-2
Knowledge
tase in KRL
- C
{{dn Lank to
data progrems)
- FORTRAN
- C
= Fortran
~ P
Forvard c ~
-
wottroL
strategy -
Forvard C
chaining
Backward chain- Pascal
ing control
strategy
Inference C
" mechanisms
available in
object-oriented
and rule-based

Rules:-Forward
& Beclovard

IR,
Macintssh

IBH-RC/XT/AT
Data- General/

~ Ope VAX,

MicroVAX ‘T

IBHEC, AX-
N 0
Mecintosh

TBYFC, Prime,
VAX 117780,
Zenith, TM ™
Mainframes-

MG,
VAXIL/780,ThM
Hntruiis:

B WS/T0
Vas WS 'and.
Ultrix Unix
werkstations

ntogh-11; Sun,

DEL; 3100:RISC
H/CB, DEC VAXs

IBVIC M5,
IBM Ps/2s,

and IFC VAXs ..

26 or BH-IC

640X byte RAM

Custem text
(HM and WHY)
H]_{')(’ui“ml
and Review

"telp available
Shows logic
tables used

- User interacts

through
scripts plus
telp,

User Contro-
Ned suntire
report geénerator

Identifies all
rules used in
consulzation

Recites mtes m
mules upon 'WHY"
or' "B 'request

Respords to
"WHY'" and “HOW*
queries

May use
regular vord

Pap-up
menus’ with
integrated
graphics

Standard
Spread-sheet,

"read shead,

Menu-driven

" . sereen,“text
. animation’ -

Menu-driven -
full screen
text editor

Query based
dialog o
build rules,
system chacks
consdstency

Windows orien-
ted NL inter-
fece

Built~in
interactive
editor .

L

cmphicaldeve-

lopment “interface

Built ~in
editor,)
dialogue boxes,

' debf:g Menu

Madn Windov,

Object Browser,
Knowledge Tools
windows,

Windows for
tracing and

Incorporates
captured
plctures

Spreadshest
Screens

D Seceenor

good use of
colour graphics

Colour~coded
rext

Menu-driven
text screen
culy

Menu driven
windows

- Interface to

Sunteols
windows

Directly access-
ing CAD Packages

Run-tine
Version

Runtime
Copy

Is own
delivery
systam

Consultation
shell plus
compiled
knowledge
tase

I-Finp
aun~time
license

Runtime
Module

Run-tine
version

Run-tine
“Driver"

Sare as
machines

Sare as

machines

Sone as

mechines

S as

amchines

ART

KES O

KNCWLELGE

S.1

DX

LOOPS

OPS5 & 0PS83

PROBABILITY -

User-defined
certainty factors

User —defined
certainty factors

Certainty. factors,

Symbolic Probability

Certainty factors

Must Program

~

Not evident,

Sinco thic ic g

research tool.

Must program in

Very flexible
tool-kit for
Customizing

Flexible
environment .

May be embedded
in other program

Yes, with OPSS &
Prolog integration

'Iﬁrough links Lo
UNIX System |
languages. -

Through LISP

environment

Very flexible tool

General KR & Ctrl
Stitug_ture

USER -SOPHISTICATION

Powerful system inte-
grating frames, rules,
& poals

Development tool
requires experieced Al
Programers.

A flexible and power-
ful environment to
assist experienced
programmers in cons-
tructing expert systems

Knowledge engineer nay
select one of three
KR schemes for build-
ing user-friendly
expert systems,

Offers experienced)
programers a choice of
control strategies &
Knowledge - representation
techniques.:

Shell for computer
professionals to develop

-~ and deliver efficient

expert systems for dia-
gnosis, design & plan-
ning.

Experienced Al Programmers
have four modes: logic,
rule-hased, ron-monotonic
reasonifg, & déduction.

Powerful Knowledge

onginecring langusge to
assist experienced Al
Programers in develop-
ng Systesns.

Widely used Knowledge
engineering. providing

experienced programmers
a good environment
for tuildings ES.

(17]

(17}

(17]

{17]

M.1

Personal Consultant
Series

Super-Expert
ESP
Advisor

EXSYS

“TIMM

Extran

Level 5

Kappa-K

Certainty factors
(-100-100)

Certainty factors

Not
indicated

Several types inclu-

ding threshold

Certainty values
reliability (6-100)

» Variety of

Certainty factors

TTL-Knowledge Lirk |

% Georg;: House Glasgow

dizap, U
(44-41-552-1353)

High Probability

Confidence factors

range between (o & 100)

Must program in C or KAL

Restricted,

" rule~based tool

Can link to
external programs

Rigid spread-sheet
format

Very good through
Protog Link

Fairly rigid rule
format

Fairly rigid
example format

System development
tool

Standard rule
format

Can link to external

progranms.

Integration with
external programs.

Fairly rigid rule
format

Knowledge-based rules
written in Fnglish-like
language helpless exper-
ienced programmers write ES.

Less experienced program-

i mers can use this

EMYCIN-like shell for
writing ES upto 2000
nules.

Dovein experts & less
experienced Al programmers
may enter examples from
vhich system infers rules.

Power & flexibility of

KRL, requires some: program- -

ming @(perlence easy
for amll scale systems

Very easy to use with
excellent tutorials,- user
interface & 3000 rule
capacity.

Fasy to use shell with
good dialog to guide
domain experts in link-
ing system into degision
newworks \embedaapie).

Powerful FS shell integrated
with database, word process-
ing etc.

Complexity requires experts
only.

Good development and

operatlon environment, but
requiren Knswindgs mgmaar

to program.

Development interfaces that
support pull-down menus,
an integrated editor, and
multiple windows, -

et

Overlapping Wlndows & Pull- |

down menus. Reference :
manual contains -some. futo-
rial uuormatlon & examples
helpful £0 pew users.

/

Self-study guide is written
as a tutorial to help
new users.

Ways to access externaJ Two manuals
data files & integratéd [) User guide

external programs

2) Reference manuals

{17d

(17]

(17}

-
[

(17)

{17}

——
=
)

-

{19

(19]

(19]

(18]

CHAPTER 2

REVIEW AND GENERAL CONSIDERATION

2.1 INTRODUCTION

The earliest attempts to use computers to aid architectural and
'building design commenced nearly three decades ago. However,
unlike areas like medicine of geology, design does not have any
theoretical core ‘that can be reduced to a fixed set of
mathematical and hence traditional computing were of no help. The
result has been that Computer Aided Architectural Design (CAAD)
has received little attention in the past. Computers when
compliment the performance of human designer become a particularly
useful design aid. They provide capabilities that are not readily
available to designers who rely on traditional manual methods.
For instance, the ability to systematically enumerate alternative
solutions to a design problem or the ability to take, at the same
time, a broad spectrum of design criteria or concerns into
account. The underlying assumption is that the human cognitive
apparatus does not perform particularly well in such tasks [1].
Knowledge Based Expert systems offer the possibility of capturing
and manipulating the human knowledge, such as heuristics or rules
of £humb accumulated by the expert or a consultant after years of

problem solving.

2.2 REVIEW

A tabulated summary of the detailed features of a number of
commercially available ES and ESS is given in Table 2.1. Thé list
is not exhaustive but merely suggestive of the kind of tools.
available. Besides, it is important to realize that they are
dynamic in nature with' capabilities continually expanding in
response to customers needs and competitive pressures.

The study of various ESS revealed the following points :

(i) A trend of moving from mainframes to personal

computers (PCs).

(ii) A trend of using languages like 'C’ as compared to LISP or
PROLOG for building these tools. The primary motivation

being improved performance and portability.

(iii) A trend towards laying .emphaSis on embedability; was
apparent. The ESSs as embedded in user apb}ication far
exceeded their potential as stand alone programs. This

was achieved by the use of conventional programming
languages as against typically Artificial Intelligence
(AI) languages. \

A survey of the work in the field of ESS and various ES tools for
CAAD over the past decades is given below :

The two main features of the ESS are its KR technique and its
Inferencing mechanism or the IE. The emphasis during the study
was therefore, laid on these two points only.

Bedard and Gowri [2] examined the characteristics of engineering
design, and in particular, the building design process in an
attempt to identify the most important features to implement in a
realistic computer-based desigp system. The authors proposed a
prototype system as applied to the preliminary design of building
envelope systems. . The KR. technique wused was frames and
inferencing was done by implementing a constrained-based depth
first strategy. KnowledgeCraft was used as a programming
environment.

Pohl and Chapman [3] reported a conceptual desigh of an
Intelligent Computer—Aided.Désign System (ICADS) as an integration
.of an intelligent CAD database management system (DBMS), with a
knowledge based design generator and a multimedia presentation
facility for architectural design. The expert design generator
stored the required knowledge as rules.

Fenves et.al. [4] proposed an integrated environment that had

EXPERT
SYSTEN

HICOST -

BERT

"ELSIE

SITEPLAN

CONSTRUC
-TION
PLANEX

Expert
System
for
Multi-
criteria
Dwelling
Design

Problems

Table 2.2

SYSTEM
INPUT

Preliminary
design:
alternatives

Design of
brickwork

“Client's

project scope
needs,aesthetics
& design
flexibility

Available space

Project data

Representation
of the
building
project

B8YSTEM
OUTPUT

Cost
estimate
based on
input

Best haN
design
solution

Initial
budget,
profitabillity
of project

Site Layout
Updation of
site plan

Project
duration,

cost estimates
& schedules

Design
parameters
related to
Architecture
Acoustics
Economics

KNOWLEDGE
STRUCTURE

Frames

Rules

TOOL

LISP

AutoCAD

Saviour
shell

KEE

Know-
ledge
Craft

.Prolog

features required for an effective automation of the building
design environment (IBDE). IBDE was implemented in the form of
five knowledge based processes that communicated with each other
by means of a message blackboard and a project data store.

Hendrickson and Morse [5] presented a conceptual model for
automated interactive engineering design, considering both the
process architecture and semantic modeling aspects of the problem.
A prototype System called FLEX on that mddel operating in the
domain of floor and equipment layout was also presented. It was
developed using KEE. KEE was selected because its frame-based
object data representation was conducive to the development of the
object OPientedtblackboard proceés architecture, its facilities
for building rﬁle—based systems, and its facilities for evaluation
of hypothetical conflict-resolution alternatives.

Flemming [1] considered the 2-D layout problem from the
perspective of an ES application. The ES uses a generate and test
approach in which generalized rules serve to generate alternative
layouts and domain specific rules check the layout at various
levels of completeness for semantic integrity.

Rosenman [7] introduced = knowlédge based shell called BUILD
which was used to build three ES for design evaluation, namely;
PREDIKT for interpreting kitchen designs, CODE for checking
compliance with the building code and SOLAREXPERT for evaluating
passive- solar energy systems. The BUILD ESS was developed to
provide an environment for developing rule based ESs and include
capabilities for ekplanation, three inferencing strategies ~:
forward, backward and mixed backward & forward chaining, access to
external programs and dependency updating.

Evans [8] described the development, implementation and use of
rule based calculator, checking structural component designs.

Garret [89] proposed the use of KB techniques to provide a
representation that could easily incorporate change as well as

serve two purposes : design and design' checking. The author

implemented the same in the program called SPEX which used
blackboard architecture, in which the knowledge sources were
represented by decision tables, classifier trees, heuristic rules
for design focus and optimization techniques for constraint based
satisfaction.

Chang and Ibbs [10] described the use of probability theory,
fuzzy sets, and generalized modus ponens logic for priority
ranking in resource allocation. |

Mohan [11] commented on the lack of operational ES in the field
of construction and presented the characteristics of the state-of-
the-art ES in the field of construction management and
engineering.

Guene and Zriek [12] designed an intelligent CAAD : an apprentice
system capable of acquiring, automatically & by explanation, the
know how of an architect to help him in the design process. The
system was built around an object language and an automatic
interpretation and knowledge' acquisition system. They used a
learning apprentice -system .(LAS) named DISCTPLE. KR was by
Production rules and semantic nets.

Lee et.al. [13] created a rule based expert system used in the
stages of building desién synthesis, building defect diagnosis and
building contract interpretation. A rule-based ESS was developed
to implement the three applications concurrently. An ESS XI Plus
from Expertech was used for the development work. It has english
like syntax for implementing if-then and when-then rule

structures. It also had 'HOW" and ’WHY’ explanation facilities.

Out of the above ESs those relevant to this work are given in

table 2.2 along with their salient features.

To summarize, it may be stated that a majority of the ES
developed so far are available on the PCs, have the rule based KR

and are implemented using commercial ESSs. However, a trend was

noticed towards hybrid KR techniques i.e. ruleé?“frames, semantic
nets, etc., for design related problems. The use of blackboard
architecture, object oriented programming, fuzzy logic etc. was
being éxplor'ed. . Nevertheless, rules and inferencing techniques
for the same were popula# in the situations where the khowledge

was of a simple nature as rules were easy to understand and

inferencing from them closely resembled the human reasoning.

2.3 EXPERT SYSTEMS

Expert Systems (ES) are a class of computer programs that can
advice, analyze, categorize, communicate, consult, design,

diagnose, explain, explore, forecast, form concepts, identify,

10

Expert

Kernel or
core of
experty,
system

iE
W(

4

Acquisition
module

Knowledge
‘base

Inference engine

)

- l

Explanatory
L interface

j

|

User

Fig.&.1 Expert systems: a ground plan

1

Datobase

Machine learning
(induction strategies)

Representation of

- knowledge

Methods of -
plausible reasoning

The human interface.

interpret, Jjustify, 1learn, manage, monitor, | plan, present,

retrieve, schedule, test and tutor [14]. In short, ES are

designed to codify and aufomate the knowledge and heuristics

(based on experience and guessing ability) of human experts in a
variety of specific problem domains to enable that knowledge to ‘be

available for others to use efficiently.

Fig. 2.1 gives an top level architecture of an,ES [15].

A brief description of each of these component% is given below.
(1) User : The end user of the system which includes knowledge
engineers, experts from the same or related fields.

(i1) Explanatory Interface : It allows for human-machine
interaction;. It should be as simple and as natural as
possible. It can be anything from a simple text editor to
standard spreadsheets to menu driven screens to a natural
language interface. It is this module which allows the
user to interrogate the system, normally by posing ’HOW’
and/or ’WHY’ quesyions. "HOW' questions ask the system to
justify is line of reasoning and 'WHY' questions ask it to
explain why it requires some piece of information. Both
facilities hélp make the system more usable; but human-
machine interaction is still the weakest link in the
expert systems technology [15].

(1ii) Knowledge Acquisition Facility : It is with this facility
that knowledge acquired from the domain expert Iis
represented in the computer. This determine the way in
which knowledge may be represented. Advanced systems use
inductive methods to create rules frdm examples, thereby
discovering new knowledge [16].

(iv) Inference Engine : This controls the reasoning process of
the ES. It useé the facts and rules in the knowledge base
to derive new conclusions leading to a recommendation or a
diagnosis. It is basically made up of an interpreter that

uses the given knowledge to infer new knowledge and

12

”?75&:";\ ExpCI:t A

' Clerical
Staff

Builds:

. \t
t Adds

Titerviews . ExtendN\ ‘
- vs| Data:

& Tests

EXPERT

SYSTEM
SHELL

EXPERT
SYSTEM

Builds,-
Refines,
& Tests

fig 2.2

13

scheduler that decides the order in which the knowledge
representations are applied. Forward, backward & hybrid'
| of these two are some of the commonly used inferencing
techniques [17]. .
(v) Knowledge Base : The knowledge base consists of
information structures for encoding expertise. Usually
this is elicited from a human expert & reformulated as a
collection of rules, a network of facts or a frame based
structure. A knowledge base differs from a database in
several ways, in particular it is more active. That is,
it contains rules for deducing facts that are not
stored explicitly.
(vi) External Programs : Expert systems cannot operate as stand
alone programs when used in complex applications like
design. Therefore interfacing with external programs like

databases, procedural programs, graphical interface etc.

is must [17].

2.4 EXPERT SYSTEM SHELL ,

An expert system shell (ESS) is an ES stripped up of its domain
specific knowledge. An ES is thus domain specific, but ESS is
independent of ahy domain (though they may have features which
facilitate desigh of an ES for a specific domain). Any system in
which the. interpreter can be separated from domain specific'
knowledge can be converted into an ESS. Thus interpreter along
with a few support facilities is called an ESS [18]. ESS may also
be defined as a programming system that simplifies the job of
constructing an ES. Fig. 2.2 shows the use of ESS to create an ES

and it also shows the programs & players in an ES [14].

2.5 PRODUCTION RULE SYSTEM

The term production rule system refers to several different

knowledge representation schemes based on the general underlying

14

idea of condition-action pairs, which are also called if-then
pairs, situation-action pairs, production rule, or just plain
productions [19]. Production rules were inspired by the attempts
to model the human cognitive process. Production rule system have
been shown to be capable of modeling any computable procedure. A

production rule base system consists of the following parts :

(1) The rule base, which is composed of set of production
rules.

(ii) One or more databases(DBs), which contain whatever
information is appropriate for the particular task. Some

parts of the datgbase are permanent, whereas others only
pertain to the current problemn. '

(iii) A short-term memory buffer, which represents, the context
or current focus of attention of the production rules.

(iv) The interpreter, which determines the task toi do next or
the~ production rule to fire next. Its operation is

generally closely related to the resolution process.

2.6 SEMANTIC NETWORK

A semantic. network is a structured form of Knowledge
Representation (KR). It is a declarative form of KR. It is .
general enough to be able to describe both events & objects. They
give a simple, structural picture of a body of facts. Thus a
sémantic net is a collection of predicate calculus expressions
that can be represented by a graph structure. A semantic net has
two parts : '

(a) NODES : Entities - Instances, class, subclass e.g.
John, Mammal, Home, Floor, Foundation, Rock, etc.

(b) LABELLED ARCS : These represent relationships among
nodes .e.g. isa, owner_of, has, does, covering, are,
is, etc. The arrow on the lines point from an object
to its value along the corresponding attribute line.

The direction of the arrow is very important.

15

A sample semantic net is shown in fig 2.3.

A semantic net is a collection of frames. The individual frames
represent the collection of attributes & values associated with a
particular node. Frame add intelligence to the data
representation and allow objects to 1inherit values from other
objects. Thus an inheritance network can be created as a special
case of semantic nets. The software provides support for

creation of semantic networks & hence inheritance networks.

16

HOUSE {
haé/ haé/ &as \gives \\\

as l SHELTER \\\N

[FOUNDATION] RooM | (CEILING LIVING

is has
! PILE l {CEILING}

N

Fig 2.3

A SAMPLE SEMANTIC NETWORK

2.7 DYNAMIC FRAME STRUCTURE

A semantic net is a collection of objects related to each other &
forming a graph like structure. Each object represented as a
frame consists of no. of attributes associated with it. Take the
case of the object "Home" shown in the semantic net of fig 2.3.
It has relations "Has", "Gives" & "Used_for". Now suppose we need
some new attribute(s) also to be associated with this object
"Home". Let the new relation bé “isa" with attributes "Building",
"temple”, & "Tent”. The addition of the new attribute should be
done without altering the already present structures of other
objects. The new attributes are associated with the already
present object "Home", dynamically increasing it’'s size & without
affecting the already present database representation. Care has
to be taken while adding attributes which are already present, as
new relations not clearly visible will have to be created. After
adding the relation "isa" with three attributes in the semantic
net (see fig 2.4), each attribute gets associated with the object
"Home" in turn, thus preserving the consistency of the semantic

network. This shows the dynamics of the semantic net structure in

17

terms of the no. of relations. The structure is also dynamic in
terms of the no. of attributes with each relationships. As seen
-in the fig 2.4, the object "Home" has three occurrences of
relation "Isa" & "Has" while one occurrence of relation "Gives" &
"Used_for". Thus there are two dimensions of dynamics in this
kind of semantic net representation. This approach makes
updations much easier with no (or little) overhauling of already

present database.

HOUSE

1

|

/

has

/

has

\ \ N\ 1sa ia
has gives BUILDING

\gsa
TENT

has [SHELTER]
FOUNDATION room| — | CEILING - [LIViNG]

is has

FIE] [oooR)

Fig 2.4

/ / AN useg—\f"r TEMPLE

SEMANTIC NET OF FIG.- 2.3 AFTER ADDING NEW RELATIONS "ISA" TO OBJECT "HOME"

18

CHAPTER 3
DESCRIPTION OF EXPERT SYSTEM SHELL

3.1 SOFTWARE DESCRIPTION

This section describes the ESS SHELL from the users viewpoint.
For this this ESS can be broken up into three main modules :

(a) Module for creation of semantic net with dynamic frame

structure.

(b) Non-learning Rule based Inferencing module.

(c) Learning Rule based Inferencing Module.
(a) Module For .Creation O0f Semantic Net With Dynamic frame

structure :

module creates the DB of facts used by the two modules. The
Semantic net as a form of KR for SHELL was.chosen because it. is
very easy to communicate facts with the help of a semantic net,
Besides semantic nets can themselves be used independently tb
provide much informationlto user based on queries by.exploiting
inheritance feature of the objects in it. Various facilities
have been incorporated which exploit the inheritance feature of.
the semantic net. There is no restriction on the type of
knowledge that can be stored in the semantic [18]. The knowledge
from several independent domains can be stored in one file & thus
each isolated semantic nets form a sub-domain with a complete
knowledge being the integration of all the sub-domains. Facility
is provided which can inform one of the head objects (i.e. the
objects which have no parents but only children), so that dne can
separate each sub-domain for his purpose. The various facilities
incorporéted in this module are ;

(1) Create / Update the KB.

(ii) View the objects with their attributes, called simply

qualifiers here.
(iii) View all or only those objécts which do not occur as

attribute(s) of any other object(s).

18

(iv) Traverse the KB in any direction or randomly and view

various relations to/from each object.

(v) Find the path between two objects w.r.t. certain
relation(s) or with no fixed relations.

(vi) Have queries answered for finding a value of an object
w.r.t. a given relation.

(vii) With respect to a certain relation find objects which have
children w.r.t. that relation or find objects which are

children of some objects w.r.t. to that relation.

Object Name Relatioship

| House |{ Has]

| Foundation | Attribute 1

A
» Qualifier

| Ceiling | Attribute 2

[Room =] Attribute 3

[Floor | Attribute n

Fig. - 3.1

SAMPLE DATA I/P FORMAT

(i) Creation / Updation Of Knowledge Base :

The data is entered in the format shown in the fig“3.1l - As seen
from the fig a the information is entered as relationship of an
object (here "House") w.r.t. other objects called attributes (here
"Foundation", "Ceiling", etc.) with a certain relation (here
"has"). At this étage care has to be taken so that new data
entered does not result in KB inconsistency. If such a qualifier

already exists in the KB, the user is prompted, similarly if the

20

#20 floor is
1. mosaic
2. marble
3. concrete
4, slab

Previous(~or t), Next(-» or }), Qualifier #(N), Qualifier name (M), Exit(X)

fig3.2

2! '

relationship or object name is a qualifier is missing an error
message is given. Appropriate error messages are also given if

two attributes are same or the object and attribute name are the

same.

This facility is used not only to introduce new objects in the
semantic net, but also to add more information to the objects
already existing in the knowledge base. Eventually one is
expanding the already existing semantic net by this facility.

Viewed from the perspective of the inferencing modules one is
adding facts and thus expanding within the domain, areas on which
decisions éan be provided. If one wants proper decisions, it is
necessary to store facts using this facility properly, as any

discrepancy will lead to the inferencing modules providing false

or no decisions.

(ii) View The Objects With Thgir Attributes :

This facility displays all the objects and the attributes
associated with them w.r.t. a certain relation (fig 3.2). As seen
from the fig 3.2, one can browse around the qualifiers entered by
him by using cursor keys (for chronological order of display) or
use facilities to recall a qualifier by name or by number (each

qualifier is assigned is assigned a unique number in ascending

order when they are entered). Searching is strong in the sense
that even search string like " HoUSe haS " is able to
recall the qualifier "House has". The facility is iused to view

all the qualifiers entered with the help of the previous facility.
This facility can be used tb,gatﬁer facts from the client of the
architect about the various objects or components of building that
he want, and will not be present when the session with the ESS is

underway.

22

Any text(T), Attribute(A), Related qualifier(R), Parent(P), Exit(X)

tiqg 3.3

23

(iii) View All Or Only The Objects At The Highest Level :

A facility is provided to view all the objects which do no occur
as attribute(s) of any other object(s). These super objects (as:
they are called here) are those objects which have bnly outgoing
arcs & no incoming arcs. An example of such an ogject is the
object "House" in fig 2.3. This. facility displays all or super
objects in alphabetical order for users convenience. The facility
for tracking super objects in each sub-domains is uséful in future
traversal of the complete KB for finding any information from the
semantic net. As each object is displayed, so are the information
related to the various Pe1ationships emanating from the object.
In fig 2.3 semantic net for object "House' these will be "House
has", "House used_for" & "House gives". If an ordinary object is
displayed, the name of the qualifiers which have that object as
their attribute are also displayed. This facility can be used to

trace out the semantic net manually and check the correctness of

the KB.

(iv) Random Traversal Of Semantic Net :

This facility can be use‘ to move to any object in the KB
randomly. To start with user is presented with the options shown
in fig 3.3. The user enter a string which may be an object name
or the name of a qualifier. As an string is entered and
associated information displayed, the available to the user (fig
3.4) allows him to go to the qualifiers attribute object, see any
related qualifier or see any qualifier which are containing the
specified objecﬂ (called parent qualifiers), or he can simply move
to any unrelated object in‘the KB by entering a new search string.
Thus three degrees of freedom of movement can take place from any
point, thus allowing a flexible, manual traversal of the semantic
net to gather any information. This facility can be used to
gather information if one is not able to get information from the

remaining query answering facilities.

24

#20 floor is Present in following qualifier(s)

1. mosaic 1. (# 5) Room has
2. marble
3. concrete Related qualifiers :
4. slab 1. (#20) floor is

Any text(T), Attribute(Ad), Related qualifier(R), Parent(P), Exit(X)

fiq 3.4

25

1. House has Room
2. Room has floor

DESTINATION :
SOURCE : HOUSE

RELATION (S)

FLOOR

GENERAL SEARCH

ath between the Source and Destination.

tig 3.5

26

...Press any key

In this facility, if.the string entered is ﬁtesent both as an
object as well as a qualifier, the user is pro@ided a chance to
take decision to continue traversing from any one of them. Thus a
perfect tool is provided to. gather any information from the

semantic net depending upon one’s query.

(v) Find A Path Between Two Objects : _

A facility is provided to allow one to find a path between two
objects. One has option to specify a set of relations as a basis
of search or can even specify a search on all the relation in the
KB (fig 3.5). This is a specialized facility, wusing the
connectivity of thé objects in the semantic net forming a graph.
This facility is used to test connectivity between two objecté and
if no link is found (but was expected), one can be sure to deduce
that KB is 1incomplete. In the context of the semantic net
alone,this facility can be used to confirm or give the reasoning
that why certain fact is‘true, like if one has a semantic net for
storing facts about the animals in general, then this facility can
be used to prove on the basis of the net, why-a dog is a mammal,
for which the line of reasoning may be "Dog isa animal", "animal

are mammal".

(vi) Finding A Value Of An Object w.r.t. A Given Relation :

This facility answers queries about values of an object w.r.t. a
‘giveﬁ relation. The simplest case is of display of a qualifier
attributes. More complicated cases .involve exploitation of the
hierarchical feature of the objects in the- semantic net. For the
semantic net of fig 3.8, a sample query is shown in fig 3.7. This |
too is a specialized facility 1like the previous one. This
facility can also be used to check the correctness of the semantic
net in the sense : ‘

(a) If value(s) is (are) found, whether it is correct.

(b) If no value Af] found but one was expected.

27

Brooxiyw

Depgees

t:am

hr:xﬁfng_ove_ e

P& € Nt& R{ue

Instarca

262

FleLoer

teom,, Curengo
Traee Finges

Cuugg
Brown

{ned anco

§ ADG
Prraner .4

w‘."g-ﬂ\mwge
sy o
252
bcr&\"“ﬂ-ﬁvev BgaeeAH_ bt EQUAL
A . Hanpep '
Raver
hei
6~
135a
Y
/. g ht
bowls A.Dux.’r heig 510
MaLe
ga
: handed
- Pe%oN
Rigur

A Semanme NeTwork

{ig 3.6

28

VALUE(s) : OBJECT : PEE WEE REESE
1. .262
RELATION : BATTING AVERAGE
value 18....... Press any key to continue.......

$ig 3.7

29

These tests ultimately help increase one’s reliability in the

decisions provided by the ESS’s IE modules.

(vii) Find Objects Related To Other Objects w.r.t. To A Certain
Relationship :

This facility helps one find objects which are attached to other
objects w.r.t. a certain relationship. For a given relationship
like "isa; there are objects which form qualifiers with it,
"Corridor isa", "Bedroom isa", etc., while there are objects which
occur as attributes of these qualifiers 1like ‘“circulation",
“room", etc.. This facility can display list of names of the
either type of objécts. This facility is very useful in checking
the correctness of the semantic net w.r.t. a certain relationship,
as these facts are used by the learning IE module. The decisions
will be unreachable or may be incorrect if proper semantic net is
not maintained. This facility may also be used to find a list of
objects which are assgciated with a certain relation, a

specialized function w.r.t. a semantic net.

(b) Non-learning Rule Based Inferencing Module :
This module has rules in the form of if-then statements forming

the rule base. A sample production rule used by this module is

shown in fig 3.8.

IF

" Weather is sunny
. [Temp] > 37

THEN

Drink Water - 10/10
Take Umbrella while going out - 10/10

fig 3.8
SAMPLE PRODUCTION RULE USED BY NON-LEARNING MODULE

31

The operation of a transformation rule or production rule in a

design grammar is shown in fig h.

CONDITION RULE CONSEQUENCE
(PREMISE)
Conditionl Consequencel
Condition2 Consequence?l
Cond:tlonSY 5 [Rule] 5 Conse?uenceB
] |
fig 3.9

OPERATION OF A PRODUCTION OR TRANSFORMATION IN A DESIGN GRAMMAR

With respeét to the rule in fig 3.8, the conditions {Q fig 3.9 are
"Weather is sunny”" & "[Temp] > 37", while consequences form the
decision gaken by the ESS. Thus a rule simulates the thinking or
decision mechanism of a human being, who decideé on something
(consequences) only when conditions (premises) hold true. The
advantage of this kind of ESS is the ease of transfer of knowledge
from the domain expert to the ESS KB.

Various facilities provided by this module are :

(i) Enter new rules

(ii) Save rules

(iii) View entered rules .

(iv) Fire rules

(v) View successful/failed rules

(vi) View results or decisions reached

(i) Enter New Rules :

The user is allowed to enter rules whether temporary or permanent
to get decisions based on the facts valid for the session. The
format of the rule is shown in fig 3.8. The user has tc input

certain conditions or premises forming the "IF" part of the rule

32

as well as certain consequences forming the "THEN" part of the
rules. The "THEN" part as explained. earlier constitute the
decisions taken by the ESS. _

The user while entering the premises has two choices viz. either
use a qualifier or use a 1ogica1 mathematical expression to decide
upon the present situation. In fig 3.8 the first premise was
formed by using a qualifier "Weather is", while the second one was
formed by using a logical mathematical expression "[Temp] > 37".

For the first premise the complete gqualifier is shown in fig 3.10.

Weather is

1.'Sunny
2. Rainy
3. Normal

fig 3.10

A sample qualifier used in rule of fig 3.8

User chooses one or more instances of the qualifier to create a
premise, so that when the rules are fired, the instance which hold
at that moment will decide which decision has to be taken.

The other method of constructing a premise as already indicated
is by using mathematical expressions. The user can use any
mathematicél expression to test a condition. Besides wusing
variables, various mathematical operations supported are addition
(+), subtraction (-), multiplication (*), division (/), power ("),
modulus (%), sine (sin()), cosine (cos()), tangent (tan()), sine
inverse (asin()), cosine inverse (acos()), tangent inverse
(atan()), flooring (floor()), ceiling (ceil()), square root
(sqrt()), -exponentation (exp()) & natural® log (log()).
Relational operators supported are greater thaﬁ (>), less than
(<), "equal to (=) and not equal to (!=). Besides these the use of

parenthesis ("(" & ")") is advocated to improve legibility and

33

understanding of the expressions at a future date. The variables
entered can be initialized beforehand, given a text to explain
their real name or meaning and also their values can be displayed
at the ‘end forming part of the decision 1list. Thus for an
architect this combination can create all sort of conditions which
are required to take any decision while designing a house.

In the consequence part of the rule, the user has four options
from which he can choose. Unlike the premise construction, the
user can also any external program or describe a goal statement
with some probability. With the feature of calling an external
program, one can thus use SHELL as a central module, initiating
various activities from itself, and delegating complex tasks to
programs designed to do so. This provides convenience to the user
in a sense that, interface with other programs becomes
transparent, unlike other case where the user intervention is
necessary to pass various data either manually or explicitly. As
files are used to pass data between two programs, any amount of
data can be communicated between them in either direction. The
data communication is in terms of real numbers, with the user
specifying the names of the variables to be passed to an external
program or those returned by the external program. Thus the user
can not only handle complvex tasks, he can use this facility to
display intermediate results or designs, display error
graphically, get any data which requires complex'interaction or
which requires iterative interaction with the usé%, initialize
variables if they are larger in number or if their values depend
upon the project handled, etc.. Thus 1implications of this
facility are limited only by the imagination power of the user

The other method of consequence construction which involves using
a text associated with some probability rating in the scale of 0
to 10 is shown in fig 3.8. Probability rating of O means that the
method or conclusion is absolutely false, while a rating of 10

implies absolute correctness of a fact or method. The texts

34

associated form the decisions .of the SHELL. These texts are
displayed at the end of the firing session, along with the
probability associated (0 to 1). These consequences thus imply
certain tasks or conditions wvalid for a project with some

probability.

(ii) Save Rules : ‘

A user may sometime want to create some rules temporarily for a
session or he may want to test the wvalidity of the rules before
inducting them into permanent KB. The user is thus allowed to
create rules and save them at his discretion. Once the rules are

saved they form the part of the permanent KB.

(iii) View Rules :

User may want to view all the rules he has created till date. The
list of rules displayed also coﬁtain the temporary rules or rules
which are not yet part 6f the permanent rule base. This.facility
may be used to check the rules entered for correctness. The user
is allowed to browse around thé list of rules using cursor keys or

move randomly to -a rule by its number (fig 3.11).

(iv) Fire Rules :

The rules are fired starting from the first rule to the last
rule sequentially (forward chaining) by default, unless some
condition requires soﬁe other rule(s) to be fired altering the
normal sequence of rule firiﬁg (backward chaining). Thus order in -
which the rules are fired depend upon the the types of rules
(premises and consequéhces), and their relative ordering. Thus
the order in which the same rules are placed may provide different
result or different course of interaction if, the rules aré not
serializable [23]. When firing rules, SHELL prompts the user to
provide facts only when they‘can not be deduced from the ruie,

base. This minimizes unnecessary interaction with the user.

35

Rule #1

IF
WEATHER IS SUNNY
[TEMP] > 37

THEN

TAKE UMBRELLA : Probability - 10/10 (Absolutely True)
DRINK WATER : Probability - 10/10 (Absolutely True)

revious(~or t), Next(- or i), Rule #(N), Exit(X)

4ig 3.1

36

Whenever prompted to provide a fact the user is allowed to ask the
ESS the reason by using the "WHY" facility and check the validity
of IE for its reasoning methodology. This facility again help
boost the confidence of the user in SHELL's decisions. At the énd

of the inferencing session, SHELL displays the various results it

has prepared.

(v) View Successful / Failed Rules :

These facilities act as a crude form of implementation of "HOW"
explanation facility. This can explain to ‘the user how the
results were reached, by informing him of the sudcesful and failed
rules. These facilifies can then be used to confirm the decisions
of SHELL. These modules again help boost the confidence of the
user in the SHELL's decisions. This facility may be suppressed

once the validity of the IE has been checked and confirmed brick-
to-brick.

(vi) View Results or Decisions :

The user is allowed to view the results of the previous session
at any time, if he is not able to recall the decisions reached

during the last session.

(c) Learning Rule Based Inferencing Module :
This module requires rules in the form of if-then statements. A

sample production rule used by this module is shown in fig 3.12.

37

IF

[x] has tail

[x] does barking
THEN

[x] isa dog

fig 3.12

A sample production rule used by learning module

These rules are also transformation rule like fig 3.9. The
condition in 'this case are "[x] has tail" & "[x] does barking",
while consequence form the decision taken by the SHELL. This
module differs from the non—leafning module in the sense that,
variable may be used to represent objects in the rules. This
module takes the appropriate objects from the semantic net when in
the firing session. This module thus relies heavily on the
correctness of the semantic ﬁet to reach its decisions. This
module unlike_ non~learning module automatically updates the KB
both in terms of new qualifiers & in terms of new rules, when it
learns to handle new situations. Learning ié interactive. The
user has to provide/confifm the ESS with appropriate reasons &
rules when faced with a new or conflicting situation.

This module provides various facilities listed below :

(i) Enter new rules

(ii) Save rules

(iii) View rules in the rule base

(iv) Fire rules

(v) View successful/failed rules

(vi) View results or decisions

(i) Enter New Rules :

The user can either enter all or partial set of rules applicable

to project. The rules entered if not perfect or complete lead to

38

learning situation at a later time. The format of the rule is
shown in fig 3.13. The user has to specify the relationship
explicitly, while he can use variables in place of objects to make

rules as general as possible. The format of creating the premises

and consequences is the same

{ii) Save Rules :
(iii) View Rules in the Rule Base :

These facilities serve the same purpose and have same format in

the non-learning rule based module.

(iv) Fire Rules :

The rules are fired sequentially from the first to the last rule
and this flow cannot be changed, thus only forward chaining is
supported by this module. The rules are displayed as they are
fired. The interaction with the user is to get the object name or
its instance, whose name is represented by a wvariable. Method of
minimizing this interaction is discussed in 7.2 (Suggestions for
future works). The results are displayed as the rules become
successful. The result is then used to update the semantic net if
the user grants confirmation. If the user is not satisfied with
the result, which happens in two cases i.e. if the results were
not correct or if the rules were not perfect. In the second case
a new learning session. starts leading to the refining of the
existing rules. Towards this, the user is provided with some
explanations, which SHELL thinks is causing conflicts with the
previohs successful case. The user nay then either choose one of
the explanations offered to him or may provide a new reason from
his own side. In both the cases, the system ends up learning new
things & can now handle the present condition in the future

correctly simulating the leérning methodology of a human being.

39

(v) View Successful /Failed Rules :

The aim of this facility is the same as in the non-learning

module & need no further explanation.

(vi) View results :
This facility displays all the decisions taken by the ESS which
resulted in the updation of the semantic net. The use of this

facility is the same as in the non-learning module’s corresponding
facility. |

3.2 CHARACTERISTICS OF ESS :

The shell developed has several unique characteristics besides
use of the HLL 'C’ in its construction. Some of the important

characteristics are listed below :

(1) Very user friendly environment, totally menu driven.
(i1) Special data entry routines to minimize data entry
mistakes.

(1ii) Commands invoked by pressing single keys. A
(iv) Incorporation of explaﬁation facilily (usually absent
in many ESS). ' ‘
(v) Creation of a backup file where necessary.
(vi) Powerful searching engine (a strong foundation of SHELL).
(vii) Incorporation of facilities to invoke external program
to create very powerful packages.
(viii) Very efficient in terms of memory usage.
(ix) Very fast execution.
(x) Extensive error" messages provision, to make user
~understand and rectify his mistake easily and quickly.
(xi) - Incorporation of hybrid control strategy, controlled by
the user. | _
(xii) User confirmation where mistakes in data entry are maximum.

(xiii) Use of Dynamic Node Structure semantic net to

40

A

(xiv)

(xv)

(xvi)

represent facts.
Incorporation of facilities to solve complex mathematical

expression, used extensively in complex application like

design.

Very modular and thus easily understandable for future
modifications.
Handling of cyclic rules (fig 3.14), preventing the systen
to enter into a deadlock condition. There is a danger of
system entering into deadlock because of the triggering of
backward chaining when certain facts can be deduced from

the rule base without the user intervention.

#1 if A then B
#2 if B then A

fig 3.14

Sample cyclic rules

As in the rules of fig 3.14, deadlock is broker by prompting the

user to provide data to solve B and hence solve rule #2,

will then decide the solution of rule #1.

41

which

CHAPTER 4

KNOWLEDGE BASE FOR BUILDING DESIGN

Three examples along with the test runs are presented here,
indicating the versatility of the shell to handlé different
situations.

(i) Foundation design
(ii) Cost analysis
(iii) Fault diagnosis and repair indication

All of these examples have been implemented wusing the
non-learning inferencing module,-because of the modules capability

to handle the complex rules of these problems.

(i) Foundation Design :
The rules described following can help design the foundation.
Inputs required are the various facts related to the soil

conditions, and the output is the minimum depth of the foundation.

Qualifiers Used :
#1 Base type_is
1. Rock
2. Soil

#2 Rock type_is .

1. Hard rock e.g. Granite, Trap, Diorite

2. Laminated rock e.g. Sandstone, Limestone
3. Broken bed rock,; cemented material
4

. Soft rock

| #3 Soil type_is
1. Cohesive (Clay type)

2. Non-cohesive (Sandy)

-

42

#4 Cohesive (Clay type) is
1. Dry hard stiff clay
2. Medium . clay (can be indented with thumb nail)
3. Moist clay / Sand mixture
4. Soft clay (can be indented with moderate thumb pressure)
5

Very soft clay (can be penetrated several centimeters with
thumb)

#5 Non-cohesive (Sandy) is
1. Compact Gravel / Sand Gravel
Compact dry coarse sand

Compact dry medium sand

2
3
4. Loose Gravel,
5. Fine sand/slit (Dry lumps)
8

loose dry fine sand

Variables used :

S.No. Name Text Initialized Displayed Initial-Value
1. [PI] Mathematical YES N0 3.14159
constant 7|]
2. [BC] Bearing NO YES ——
constant of
soil
3. [PHI] Angle of repose NO YES ———-
4. [MIN_DEPTH] Minimum depth NO ' YES R

of the foundation
based on s0il conditions

5. [DENSITY] A constant based NO YES _——

43

on soil conditions

External Programs called :
%* W ¥ NONE * ¥ ¥
Methods or Conclusions :

* * * NONE * % %

Rules :

Qualifiers Used :
#1 Base type_is
1. Rock
2. Soil

#2 Rock type_is

Ml. Hard rock e.g. Granite, Trap, Diorite

2. Laminated roék e.g. Sandstone, Limestone
3. Broken bed rock, cemented material
4

Soft rock

#3 Soil type_is |
1. Cohesive (Clay type)

2. Non-cohesive (Sandy)

#4 Cohesive (Clay type) is
1. Dry hard stiff clay
2. Medium clay (can be indented with thumb nail)
3. Moist clay / Sand mixture
4. Soft clay (can be indented with moderate thumb pressure)
5

. Very soft clay (can be penetrated several centimeters with

44

thumb)

#5 Non-cohesive (Sandy) is
1. Compact Gravel / Sand Gravel
2. Compact dry coarse sand
3. Compact dry medium sand
4. Loose Gravel
5. Fine sand/slit (Dry lumps)
6. Loose dry fine sand

Variables used :

S.No. Name Text Initialized Displayed;lnitial—Value
1. (PI] Mathematical YES NO 3.141583
A constant |j
2. [BC] Bearing NO YES . ———
-constant of
soil
3. [PHI] Angle of repose NO YES ———
4. [MIN_DEPTHl Minimum depth NO YES -

of the foundation
based on soil conditions
5. [DENSITY] A constant based NO YES ‘ ———-
on soil conditions
External Programs called :
* ¥ ¥ NONE * ¥ ¥
‘Methods or Conclusions :

* X % NONE LE R

Rules :
#1
IF
1 =1
THEN
(PI] = 3.141593

45

#2
IF
Base type_is Rock

Rock type_is Hard rock e.g. Granite, Trap, Diorite
THEN

[BC] = 3300

[PHI] = [PI]/180*45

#3
IF
Base type is rock

Rock type_is Laminated rock e.g. Sandstone, Limestone
THEN

[BC] = 1650
[PHI] = [PI1/180%*35

#4
IF
Base type_is Rock
Rock type_is Broken bed rock, cemented material
THEN
[BC] = 800
[PHI] = [PI]/180*35
#5

1F

Base type_is Rock
Rock type_is Soft rock
THEN

[BC] = 450

[PHI] = [PI]/180*32

46

#6

IF

Base type_is Soil
Soil type_is Cohesive (Clay type)
Cohesive (Clay type) is Dry hard stiff clay
THEN
[BC] = 450

[PHI] = [PI]/180%*30

#7

IF

Base type_is Soil '

Soil type_is Cohesive (Clﬁy type)

Cohesive (Clay type) is Medium clay (can be indented with
thumb nail)

THEN
[BC] = 280
[PHI] = [PI]/180*45
#8
IF
Base type_is Soil
Soil type_is Cohesive (Clay type)
Cohesive (Clay type) is-Moist clay / Sand mixture
THEN

[BC] = 150
[PHI] = [PI]/180*15

47

#9

IF

Base type_is Soil 7

Soil type_is Cohesive (Clay type)

Cohesive (Clay type) is Soft clay (can be indented with

moderate thumb pressure)

THEN
[BC] = 100

-[PHI] = [PI]/180%*0

#10

IF |

Base type_is Soii

| Soil type_is Cohesive (Clay type)

Cohesive (Ciay type) is Very soft clay (can be penetrated

several centimeters with thumb)

THEN
[BC] = 40 '
(PHI] = [PIl/180*40
#11
IF
Base type_is Soil
Soil type_is Cohesive (Clay type)
Non-cohesive (Sandy) is Compact Gravel / Sand Gravel
THEN |
[BC] = 450
[PHI] = [PI}/180*35
#12

IF

Base type_is Soil

Soil type_is Cohesive (Clay type)

Non-cohesive (Sandy) is Compact dry. coarse sand '
THEN

48

(BC] = 450
[PHI] = [PI]1/180*35

#13

iF

Base type_is Soil

Soil type_is Cohesive (Clay type)

Non-cohesive (Sandy) is Compact dry medium sand
THEN

{BC] = 250 ‘

[PHI] = [PI]/180*30

#14

IF

Base type_is Soil ‘

Soil type_is Cohesive (Clay type)
Non-cohesive (Sandy) is Loose Gravel
THEN

[BC] = 250

[PHI] = [PI]/180*30

#15
IF
Base type_is Soil
Soil type_is Cohesive (Clay type)
Non-cohesive (Sandy) is Fine sand/slit (Dry lumps)
THEN '
[BC] = 150

[PHI] = [PI)/180*26
#16

IF
Base type_is Soil

49

Soil type_is Cohesive (Clay type)
"Non-cohesive (Sandy) is Loose dry fine sand
THEN

[BC] = 100

[PHI] = [P1]/180*26

#17
IF
[BC] > O
THEN
(MIN_DEPTH] = ({BC]/[DENSITY])* ({(1-SIN({PHI]))/(1+SIN({PHI])))"2)

Test Runs :
#1
Facts :
(i) Base type_is Rock
(ii) Rock type_is Hard rock e.g. Granite, Trap, Diorite
(iii) [DENSITY] is given value 17
RESULTS
1. Bearing consﬁant of the soil : 3300
2. Angle of repose : 0,783398

3. Minimum depth of the foundation based on soil condition :
5.71428

4. Constant based on soil condition : 17

#2
Facts :
(1) Base type_is. Soil
(ii) Soil type_is ‘Non-cohesive (Sandy)
(iii) Non-cohesive (Sandy) is Loose Gravel
(iv) [DENSITY] is given value 17
RESULTS

1. Bearing constant of the soil : 250

50

2. Angle of repose : 0.523599

3. Minimum depth of the foundation based on soil condition :
1.63399

4. Constant based on soil condition : 17

Test Ruﬁs :
#1
Facts :
(i) Base type_is Rock

(ii) Rock type_is Hard rock e.g. Granite, Trap, Diorite
(ii1) [DENSITY] is given value 17

RESULTS
1. Bearing constant of the soil :
2. Angle of repose :
3. Minimum depth of the foundation based on soil condition :

4. Constant based on soil condition :

#2
Facts :
(i) Base type_is Soil
(i1) Soil type_is Non-cohesive (Sandy)
(iii) Non-cohesive (Sandy) is Loose Gravel
(iv) [DENSITY] is given value 17
RESULTS

1. Bearing constant of the soil
2. Angle of repose :

3. Minimum depth of the foundation based on soil condition :
4, Conatant hamed on mall eandition

51

(ii) Cost Analysis :

This hypothetical example calculates the total cost of estimated

in terms of land, infrastructure & dwelling, it also calculates

the difference in terms of cost estimated using thilmb rules & the

cost actually incurred in infrastructure

results.
Qualifires Used :

#1 Site is levelled
1. Manually
2. With Bulldozers

#2 The kind of drains are
1. Open surfaced

2. Hume pipe drains

#3 Landscaping is to be
1. Minimal
2. Moderate
3. Elabqrate

#4 Construction is to have
1. Raft Foundation

2. Pile Foundation

#5 Flooring is to be done with
1. Kotah stone

2. Mosaic

#6 Walls are to be
1. White washed
2. Distémpered

52

& displays appropriate

Variables used :

S.No. Narnie Text
1.

[Tot_cost] Total cost of
fthe project
[L_cost] Land cost
[I_cost] Infrastructure
cost
[D_cost] Dwelling cost
[DIFF] Difference in actual
and calculated cost
the infrastructure
[AI_cost]) Actual

infrastructure cost

External Programs called :

No

No
No

No
No

No

YES

YES
YES

YES
YES

YES

Initialized Displayed Initial-Value

Act_infr --> It supposingly calculates the actual infrastructure’

cost.

Methods or Conclusions :

1.

Deduced infrastructure cost exceeds actual infrastructure cost

2. Actual infrastructure cost exceeds actual infrastructure cost

3. Deduced and actual infrastructure cost are the same

Rules :

53

#1

#2

#3

IF

Site is levelled Manually

The kind of drains are Open surfaced
Landscaping is to be Minimal
Construction is to have Raft Foundation
Flooring is to be done with Kotah Stone
Walls are to be White washed

THEN
[L_cost] = [T_cost] * 0.40
[I_cost] = [T_cost] * 0.25
[D_cost] = [T_cost] * 0.35
IF

Site is levelled With Bulldozers

The kind of drains are Hume pipe drains
Landscaping is to be‘Moderate
Construction is to have Raft Foundation
Flooring is to be done with Kotah Stone

Walls are to be White washed

THEN |
[L_cost] = [T_cost] * 0.40
[I_cost] = [T_cost] * 0.35
[D_cost] = [T_cost] * 0.25

IF

Site is levelled With Bulldozers

The kind of drains are Hume pipe drains
Landscaping is to be Elaborate
Construction is to have Raft Foundation
Flooring is to be done with Kotah Stone
Walls are to be White washed

THEN

54

#4

#5

#6

[L_cost]

it

[T_cost] * 0.36

[I_cost] = [T_cost] * 0.39

[D_cost] = [T_cost] * 0.25

IF

Site is levelled Manually

The kind of drains are Open surfaced
Landscaping is to be Minimal
Construction is to have Pile Foundation
Flooring is to be done with Mosaic
Walls are to be Distempered
THEN 4 |

[(L_cost] = [T _cost] * 0.49

{I_cost] = {T_cost] * 0.21

[D_cost) = [T_cost] * 0.30

IF

Site is levelled Manually

The kind of drains are Open surfaced
Landscaping is to be Moderate
Construction is to have Pile Foundation
Flooring is to be done with Mosaic
Walls are to be Distempered
THEN .

[L_cost] = [T_cost] * 0.42

{I_cost] = [T_cost] * 0.37

[D_cost] = [T_cost] * 0.21

IF

Site is levelled Manually
The kind of drains are Hume pipe drains
Landscaping is to be Elaborate

Construction is to have Pile Foundation

55

Flooring is to be done with Mosaic

Walls are to be Distempered

THEN
[L_cost] = [T_cost] * 0.38
[I_cost] = [T_cost] * 0.38
[D_cost] = [T_cost] * 0.24
#7
IF
1 =1
THEN
([AT _cost]) = "Act_infr" ()
#8
IF
[AI_cost] > [1_cost]
THEN
Actual infrastructure cost exceeds actual infrastructure cost - 10/10
[DIFF] = [AI_cost] - [I_cost]
#9
IF
THEN
Deduced infrastructure cost exceeds actual infrastructure cost - 10/10
[DIFF] = [I_cost] - [Al_cost] ‘
#10
IF
[AI_cost] = [I_cost]
THEN

Deduced and actual infrastructure cost are the same - 10/10

Test Runs :

#1

56

#2

Facts :

N O O e WN

8.

Site is levelled Manually

The kind of drains are open surfaced
Landscaping is to be minimal
Construction is to have Raft foundation
Flooring to be done with Kotah stone
Walls are to be white washed

Total Cost is given value 180

Actual Infrastructure cost is given value 55 -

Results :

1.

N4 0 oW N

Actual cost exceeds calculated infrastructure cost
- probability 1 (i.e. Absolutely)

Total cost : 180

Land éost : 72

Infrastructure cost :. 45

Dweiling cost : B3

Actual infrastruc;ure cost : 55

Difference in actual and calculated infrastructure cost

Facts ;

© N OO W N

Site is levelled Bulldozers

The kind of drains are Hume pipe drains
Landscaping is to be Elaborate
Construction is to have Raft foundation
Flooring to be done with Kotah stone
Walls are to be White washed

Total Cost is given value 180

Actual Infrastructure cost is given value 55

Results :

1.

Calculated infrastructure cost exceeds actual cost

~ probability 1 (i.e. Absolutely)

57

10

@

Total cost : 180

Land cost : 72
Infrastructure cost : B3
Dwelling cost : 45

Actual infrastructure cost : 55

B I 2 T & 5 R - R OV B AV

Difference in actual and calculated infrastructure cost : 8

(iii) Fault diagnosis and repair indication :
This example illustates the ‘use of SHELL in buildin fault
diagnosis and to suggest a repair method. The fact base is

illustrated by means of the semantic net of fig 4.1.

Variables used :

LEE 23 NONE 3 W W

External Program called :

1. Det_crak --> Supposingly explains the cduse of crackr

2. Exp_repr --> Supposingly explains the repair method

Rules :

#1
1F
stage of building is during service
concrete member is beam
orientation of crack is transverse
crack pattern is bt3
THEN

cause of crack is excessive bending

58

4

-
cauve ot crackn is '}
axconnive bending

‘ N A condnion Y
- e shigit
) ¥ wnprave Y o
. 1”..!!!0. 3

Repalr method is
axtarnal streesing

. fig 4 apLe
cempanTIC NeT FOF exs

59

IF

#2
IF
presence of water load is yes
leakage at cracks is nil OR minor
THEN

water condition is slight

#3

IF
cause of cracks is excessive bending
density of cracks is isolated
movement of cracks is dormant
need to strengthen is yes
water condition is slight
improve appearance is no

THEN

repair method is external stressing

#4
IF
cause of cracks is excessive bending
THEN
() = "det_crak" ()

#5
IFh
repair method is external stressing
concrete member is beam
THEN
() = "Exp_repr" ()
Test Run
A test run was taken with facts which support the fact that

external stressing repalr is required.

60

CHAPTER 5

KNOWLEDGE BASE FOR ARCHITECTURAL DESIGN

Architectural design 4s a job which requires creativity .and
extensive exchange of ideas between an Architect and the client.
So based on the requirement, the learning rule based module was
used to implement an example of completing a pléﬁ. The problem is
to make the module learn how to open the door in the right
direction. The changes4made'or decisions made are projected via
the semantic net. \

‘The initial plan consisting of two rooms (a bedroom and a
livingroom) leading on to corridor (fig 5.1). The semantic net
corresponding to the initial plan is given in fig 5.2. The
architect initially provides the system with a crude rule given

below.

#1

IF
[z] isa circulation
[y] isa room
[x] isa door »
[x] belong_to [z]
[x] belong_to [y]

THEN '

[x] open_towards [y]

The architect then places door D1 between corridor and bedroom.
The system automaticaily opens the door towards bedroom (see fig
5.3) and the solution is accepted. The semantic net is updated to
fig 5.4. Fig 5.5 shows the configuration for the example
concerning the opening of a door towards a room. Fig 6 & 7 show

the solution of the situation of opening of the door between the

61

corridor
W1 w2

2L

R ELIIPIIAN TN

LT SALLAAR L VLA LAALL ARG N e e T T = ALRRUY

L

p 8 &

bedroom . Hvlngroom

A
A

pasesedi
E PRI LTI BIEI IO A IV

£1¢ 5.1 :nital Plan

188
separates
_)__

figS .2 . Semantic network corresponding 0 the initial plan.

.soparates zaparsios

(it i i it it h it s rsasitinit sttty s s g |
NISE e

corridor

w2

AMTATLTHHE VAL TR L R A BV VA WAV R

badroom . bvingroont

VSISO SIS I II S BB SRS RS I RNV IS4 4TV 4

(777"

VARV LR RPE W VTS AWRIRY VNIRRT RN . . raps

L

5'13 BE.% ::Installation of a door between the bedroom and the corridor

62

COORWAY

T

Is-a

‘f‘la 6 . 4- : The object network after the installation of the door between the bedroom and the
. corridor.

CIACULATION

Is-a

f\q 5-5 : configuration for the example concerning the opening of a door towards 2 room

)

TMTHIHNMTITHTHTETESMGMTTHETEHET ALETHTHTHEAITIGT G AT GE TS T LGS T LLTLLLE TR LSRR ALY

W1

(OIS IIIIEIIONILY,

GIITIIPI TSN IO IIITISOIIIIIIS

bedroom

N
N

. N
corridor N
N

N

‘ w2 N
DW1 Ry : DW2 E
i ¥
5 3

R A

| R N
D1 N 02 N
3 N

3 vingroom I

3 3

N N

N N

Q N

Ny N

N N

N N

ATHHTTHH I T HATH TTFHITEIETETHETHI|AGHTHTATITIITI IR I TR AT TR R L LR VLTRSS

j’; ‘j 5.6 :The system determines the direction in which the door opens between the corridor -
. and the livingroom

DOORWAY

seals

openad-by

opens-towards ‘ ROCM
is-a

separales

CIRCULATION |

separales

1
138

j.’g 5F e object Mm&k afier the installation of the door between the livingroom and the

comdor.

<4

corridor and the 1livingroom and the <corresponding semantic
network. Fig 5.8 shows the situation where a door 1is to be
installed between toilet and corridor. The solution provided by
the system is shown in fig 5.9, which is refuted by the architect
who sees the solution as opening the door towards the corridor.
The system is therefore faced with a counter example of the
application of the rule #1 and considers that its knowledge on the
direction of opening of door is still incomplete. It tries to
specialize its knowledge. It looks for differences & the
similarities existing in the configuration of the positive example
(fig 5.5) and that .of the counter example (fig 5.10). The system
proposes following explanations to the designer |
1. Toilet contains washbasin

2. D3 seal DW3

Explanation 1 is accepted as the possible solution, so rule #1 is
modified and duplicated & the new solution for opening a door 1in
case a room contains washbasin is provided viz ’'[x] open_towards
{z]’. Fig 5.11 shows the configuration of an example concerning
the direction in which a door opens between a circulation and a
room containing bathroom installations. The modified rules are

given below.

#1
IF
[z] isa circulation
[y] isa room
[x] isa door
[x] belong_to [z]
[x] belong_to [y]
[y] contains NOT washbasin
THEN

[x] open_towards [y]

65

ALLLARLALLUARRY
“ N
Ry
3 3
N }
N N
~| N
L
METEI IS TETHIH AT ITHTHH GATEA I GRS LGRS TR LLAASTTUALRAS QTR LA 8
wi N
3 N
N i N
. N corridor - N
LN T Q
N
] . w- w2 ‘N
) N
LSS Sy R
203 X Dwz PN
N o N
S 3 3
3 ! N
N : N
N
N g o2 N
N N . . N
N ‘badroom : livingroom S
N N : N
N N
N N N
N b N
} g A
N N
N N
ATTETIALLLETE NI 121 TATRAGLRETARLLRRLRLTERLLLLRABALBARVLRABVRARURBCRARVGS

'&i % 5. 8 : Instaitation of a.woilel by the designer-

' 3
N 03
N we
S
N
E
ALATEALAAEATTHALALLLTALALALTIAR LA RARA SRRV SRR VRO DwW3
S
N
3 3
8 corridot N
3 N
> W w2 3
3
< D w 1 S R A RS S P A NS Ay D W2 ‘:
3 N
3 2 H
3 3 N
. S ! N
3 E . E
K 01 8 02 3
N N N N
Q bedroom 3 livingroom ’i
N H 3
: : N
Q NN ;::
D N N
N N
N

' f‘q 5.9 - The system deermines the direction-in which the door-opens between the comidor
‘ and the wilet. :

66

CINCULATION

u..@_‘
[BATHROON ws‘TALu\TK;N]-—éI--- -@j

5'\‘3 5.!0_ : Configuration of 2 counter-example concerning the direction in which the door
i " opens between a circulation and 2 room containing bathroom. installations.

bcléﬂqs

ocpesns-lowarde
®ind-of
Is-n
CIRCULATION

[NATHROOM INSTALLAT’Oﬂ_—é—-—Is- .

F‘ % 5. \\ Configuration of an example concerning the direction in which a door opens
between a circulation and a room conwining bathroom installations.

67

|

corridor

w2

D1l

bedroom

livingroom

[][/)//1/]&’/IIJHIHZIU[IZ/[/

YR AONOSTIIEPIOITIEISIIS

O 30 A 50 S SO A \\\\\‘.‘X“\\\\\$\\\X\\\\\X\\\\\X\\K\\\\V\\)

5’3% & .12 : State of the plan after Lhc direction tn which the door opens has been modified by
the designer,

68

#2
IF
[z] isa circulation
[y] isa room
[x] isa door
[x] belohg_ﬁo [z]
[x] belong_to [yl
[y] contains washbasin
THEN |
[x] open_towards ly)

The rules are fin@d again and the new solution is presented to
the user. The modified plan after the user accepts the solution
is shown in fig 5.12. The system thus learns to handle new
situation with the help of the architect who teaches it Jjust like

a human being giving clues for handling new situation.

69

CHAPTER 6

IMPLEMENTATION
‘ I

In this chapter, the various implementation détails of.the ESS
SHELL\developed are provided. The details are p}ovide‘w.r.t. the
moduiar breakup in chapter 3.) .

(a) Module for Creation of Semantic Net Vith Dynamic Node

Structure
(b) Non-learning rule based inferencing module

(c) Learning rule based inferencing module

(a) Module for Creation of Semantic Net With Dynamic Frame
Structure :

The need was felt for storing .the' data in the semantic net
because of the hierarchical nature of the data involved in the
field of design. If we consider the fig 5.1, the facts associated
with it can be easily_and usefully conveyed with the help of the
semantic net of fig 5.2. If we take the case of the architeét who
is designs say houses and towﬁs, the facts can be depicted by the
complex semantic net of fig 6.1. The need was felt for creating a
semantic net. with dynamic frame structure, so that any no. of
relations can be associated to any object at time without any
prior information ébout the size and no. of attributes.’ All this
has to be done withoutrcompromising on disk or memory space. This
has to be done without compromising on disk or memory space. This
idea was successfully implemented with no compromise on the
flexibility and facilities provided by a semantic net. What
follows is the implementation details of each of the sub-modules
to create and use the semantic net. The various functions
associated with each modules are also des¢ribed and named.

Data structures used to create and manipulate the semantic -net

are

70

To

House

7l

figbl A SAMPLE SEMANTIC NET

typedef struct choice_list { _
int choice ; /* -~ve ch@ice for NOT choices */
struct choice_list *next ;
} SELECTION ;
B(a)

typedef struct frame {
char *name
int qualifier_no ;
int no_childs ;
char *childs[NO_CHILDS]
} FRAME ;
S(b)

.
)

struct qual_name {
char *name ;
int no_links ;

struct name_list *head ;

long int 1ine"gpr';

int no_parents ;

int traversed ;

struct parent_list *root ;

struct qual _name *left, *right ;

b

6(c) ,

struct name_tree {
char *name ;

int qualifier_no ;

SELECTION *head ; /% Used when rules are fired */

long int line_gen ;

struct name_tree *left_name, *right_name ;

struct name_tree *qual_left, *qual_right ;

72

}
6(d)

struct parent_list {
char *name ;
/* char *child_relation ;*/
struct parent_list *next ;
} s
B(e)
" struct name_list {
char *name : ,
struct name_list *next ;
b
6(f)
typedef struct {
int Fotal_texts ;
struct name_list *tos ;

} STACK ;
6(g)

typedef struct relations {

char *attribute ;

int no_left ;

struct name_list *left_head ;

int no_right ;

struct name_list *right_head ;

struct relations *left, *right ;

} RELATIONS ;

6(h)

The structure 6(b) is used to store the information about a
qualifier such as its name, its number (see chapter 3), the no. of
attributes & name of each attribute. The information about eaéh

qualifier is stored in a file & not kept in memory. The

73

information where the qualifier is stored in ‘a file and other
firing session information (explained later) is stored in the
structure 6(d). This thus creates an 1ndex f11e concept,
resulting in faster data retrieval. The structure 8(c) stores the
information about each object, like its name, no. 'iof‘e outgoing
links (i.e. no of qualifiers with that object), list of names of
each qualifier (using structures 6(f)), no. pf 1ncom1ng flnks
(decides no. of parents) & a list of each subh parent”Qualifier
using structures 6(e). Provision has been glven in’ structure 6(e)
to incorporate the name of relat1onsh1p from ch11d to‘1t sxparent

Say if we have qualifier "House has Room", then we' can also say
"Room’is_ip House“.‘ This type of inverse relatﬁonship\can also be
incorporated to provide more sophisticated applications or for
answering more typical queries involving tﬁe éemantic net. The
semantic net is simulated with the help of structures 6(b), 6(c) &
6(d) of which structures 6(c) and 6(d) constitute the binary
trges. A sample simulation is shown in fig 6.2 for the Yemantic
net of fig 2.3.

lThe functions involved in creating/updating/retrieving previous
semantic net are :

read_from_file() retrieves the previously created semantic net
from the files. This also updates the various data structures for
further use/updation. This also call modules gdx*yead(L
link_read_gdx() to read the dissected information about a
qualifier. The counterparts are w_frm_pr_ind(), y_gpr_gdx(),
gpr_w(), gdx_w() & gdx_link_w().)

w_frame(j writés a qualifier information into a :file, while
read_frm() read it. ’ ' | '

The function input_frame()} gets vafious information.‘ about
qualifiers from the user. This function call‘get_data() to get a
single qualifier information. The function aléo updates the

semantic net data structures by calling functions process_frame(),

74

[House has|— [House gives|
» ,

Each Node of Structure { House | \
6(c) T

T [House used_fo

N

» |Room has o
“House [_Rﬁ(ll\ -

K, /, . _
hes N e N\ [Fose s
Room. Ceiling

|Living]|| Shelter|

N\

|

, -.;.4._....._._-.‘.._) indicates Related Qualifiers List'

has . |

A ——— . indicates Parent Qualifiers List

(a)
Each Node of Structure

- | / AN

{House gives| [House used for|

/ N\

|[Foundation is| Room has

(b)

fig 6.2

INTERACTION OF TWO BINARY 'I:REES TO CREATE A SEMANTIC NET

which in turn calls functions add_qualifier(), add_frame(),
add_no_qualn(], add__namé__to_quali.f‘ier*(), fill relation_tree() &
qual_parent ‘add(). |

These functions update the various data structures like binary
trees & linked lists to updai;,e/cr‘eate the semantic net.

Various functions were created to retrieve a particular
information from a given data struétur‘e-, for e.g. get_object()
which returns a pointer to a node of structure 6(b) giving various
details about an object, - whose name is ©passed to it;

get_nm_qualifier() = & get_num_qualifier() which retrieve

75

information about a qualifier depending upon the qualifier name &
' number respectively; get_nodqualifiér_in_trée() & get_frm' ptr()
“retrieve structure 6(c) ‘depending uﬁon the qualifier name and
number respectively; etc.

Functions like disp /no_qualifier(), disp_name;qualifier(),'

. disp_frame(), disp_attr_info() & disp_info_qualifier() calléd
independéntly and also by the’ modules 1like show qualifiers(),
random_movement (), show_each_attributes() &
show”superqattributeé() which perform functions of displaying each
qualifiers, allowing random traversal of semantic net, displaying
information about egch or only super objects respectively.
The functions find_in_object() & value_find() are used to answer
various queries explained in chapter 3. They both use breadth
first. approach to perform their job. Care has been taken to
prevent the search from entering into cycles in the semantic net.
This approach also eliminates the consideration of the same object
again when searching, thus ending the search process earlier.
These modules use function get_object() to verify the presence of
objects entered, so that user may be intimated about the precise
error. These functions require extensive stack usage, so stack
handling routines wére éreated. .. These routines are used to
create, initialize, pop or push an stack element & free the stack
compietely. The functions implementing them are get_stack(),
clear_stack(), pop(), push() & free_STACK(), besides the function
empty_stack(), which returns the state of the stack (empty or
filled). As the structure 6(g) indicates, the stack element are
string, a choice which makes the routine capable of storing data
of any type from integers to double (after converting them into
strings). : j

Various functions which exploit the use of relation to link two
objects are left_list rel() & right_list_rel() which display
objects which relate to or are related to other objects by a givén

relation. The function disp_rel_list() displays opjecfs which are

76

related to other objects by a given relation provided the name of
the relation & extra information about the type of objectis (i.ez
whéther objects which have outgoing arcs with that relation or
those objects which have incoming arcs with that relation in the -
semantic net). The functions to read & write relation information
are read_relations(), read one rel() and write_relations(),
wrel{) & rel_w().: The functions fill _relation_tree(),
add_relation(), add_left_relation(ﬁ and add_right_relation() are
used to add new relations. The structure used heavily in .all
these operations is given 6(h). -

Other than the iabovex specified specialized functions, various
. general purpdse support functions like get char_array() (to get an
array of characters), dup_str() (to duplicate the string passed),
draw() and ver_line() (to create a window and draw a vertical line
respectively), etc. were created to provide modularity, fast

processing, efficient memory usage & ébove all reduced code

length. .
~(b) Non learning rule based inferencing module :

This module as already explained in chapter 3 uses production
rules in the form of if - then statements. The formation of rules
was explained there, here the internals i.e. functions and data

:»structures involved in performing the Job are explained.

typedéf struct {
char *qual_name ; . . {
int no_choices ;
struct choice_list *head ;
} QUALIFIER ;
6(1)

typedef struct method

char *method ;

int probability ;

77

float result_probability ;
struct method *next ;
struct method *same next
} CHOICE ;
B(J)
typedef struct |

bd

int var_expr ;
char *expression ;
char *left_part ;
char *right_part ;
char relation [3] ; /* to accomodate "<>" */
} EXPRESSION H
B(k)
typedef struct choice_list
int choice ; /* —-ve choice for NGOT choices */
struct choice_list *next ;
} SELECTION ; |
6(1)
typedef struct progs {
char *name ;
int share_count ;
int pass_no ;
struct name_list *p_head ;
int return_no ;
struct name_list *r_head ;
struct progs *next
} EXTPROG ;
B(m)
union qual_math {
QUALIFIER *ql ;
EXPRESSION *expr ;
Y s
6(n)

78

union choice_extprog_qual_math {
CHOICE *ch ; _
EXTPROG *extprog ;
QUALIFIER *ql ;
EXPRESSION *expr ;
}
8(0)

typedef struct ifs {
| int fired ; |
int act_rule_no ;
int which ;
union qual_math qm ;
struct ifs *next ;
struct ifs *left, *right ;
struct ifs *same_next ;
} IF ;
6(p)

typedef struct thens {
int fired ;
int act_rule_no ;
int which ;
union choice_extbrog_qual_math ceqm ;'
struct thens *next ;
struct thens *left, *right ;
struct thens *same_nekt ;
} THEN ;
S{C))
typedef struct rule {
int fire_rule_no ;

int act_rule_no ;

79

int no_ifs ;
int tot_ifs_fired ;
IF *rule_if ;

int no_thens ;

int tot_thens_fired ;
THEN *rule_then ; -
int fired ;
struct rule *next, *prev ;
} RULE ;

B(r)

typedef struct var_desc {
char *hame ;
char *txt ;
double value ;
int initialized ;
int displayed ;
int val_accepted ;
- int disp_ih_res ;
struct var_desc *left, *right
} VARIABLE ;
6(s)

’

typedef struct res_stack {

int act_rule_no ;
struct res_stack *next ;
} ELEMENT_RULE_STACK ;

6(t)

typedef struct-{
ELEMENT_RULE_STACK *tos, *curr_why ;
} RULE_STACK ;
B(w)

80

The structure 6(r) stores information about a rule like rule no.,
actual (fixed) and fire_rule_no (to provide provisien for future
changes in the ordering of rules), no. of 'IF’ condition and their
list (a linked list of structure 6(p)), no of 'THEN’ condition and
their list (a linked list of structure 6(q)) and the state of a
rule i.e. whether fired or not (used at the time when inferencing
session is going on). The rules are connected to each other by a
doubly linked list. The structure of ’IF’ and ’THEN’ cbnditions
have sub-structures which indicate the type of if and then
condition wviz. qualifier 'Instance,' mathematical expressions,
external progbams, or a text associated with some probability in

the range of 0 to 10. The structures 6(i) to 6{(o) provide means

to represent each of the above conditions.

#1
IF
Building is tall
THEN
Use deep foundation - 7/10

#2
IF
[no_storeyl > 3
THEN
Building is tall
- Qualifier used
#1 Building is
1. tall

2. normal

Variable [no_storey] indicates no. of floors in the building.

- fig 6.3
A SAMPLE RULE INITIATING BACKWARD CHAINING

81

The default control strategy to fi;é the rules 1is forward
éhaining, but the rules can be framed in such a way that they
produce a goal and thus triggering a chain of rules which may lead
to the goal. An example of such a rule is given in fig 6.3. As
seen in fig 6.3, the‘défault-method of firing rules will first try
to solve rule #1, but this rule requires a fact about the type of
building to be built i.e. if "building is talla, now the 1E will
search for a rule that will tell it about the étate of building
and so it sets a goal of finding the state of building. It finds
rule #2, which has.in its consequence the state of building, thus
this rule is fired\to find the state of the building. ‘Thus we
have implemented an example of backward chaining. The 1IE’s
control strategy is thus a hybrid of forward and backward
chaining. ‘

Explanation module for answering "WHY" is implemented tmrlusing
the rule stack and reciting those rules. along with their various
premises which are preséntly waiting to be solved. The "HOW"
facility is implemented in a crude form by reciting the rules
which were successful and ones which were not(along with their
first prehise which failed) . The rule stack was created using
structures 6(t) and 6(u). The field "tot_ifs_fired" of each rule
structure is used to determine the state of ruie; fired
completely, fired successfully, was unsuccessful, or is currently
under fire, by assigning special values.

What follows 1is the description and names of the important
functions used to implement this module.

new_gei_rules() is uséd to input new rules from the user. This
function in turn calls two functions get ifs() and get_thens() to
form a complete - rule. Function if_single_get() and

then_single_get() get a single premise and - consequence

82

respectively. The rules acquired are added to the list of rules
by functidn add_rule_list(). Within the function if_single_get()
and then_single_get() code is written to accept the premise or
consequence of any type viz. qualifier, mathematical expression,
external program or a text associated with a probability.
Functions which keep track of type and list of eacﬁ type of
premises and consequences are if_new rule_add(), gach_if_add(),
if_q_add_tree() and if_m_add_tree() with corresponéing functions
for the consequences of each type.

Functions to store the rule base are rules write(),

one_rule_write(), ifs_write(), one_if_write(), QUL_write(),

EPR_write(), CHE_write() and MATH write(). Corresponding
functions exist to retrieve the rule base with main function being
read_rules(). This function sets the various. data structures and
global variables to the state in which the last session ended.

Function disp_rule(), disp_ifs(), disp_thens(), disp_choice(},
disp_all_methods() and ext_all_disp() used independently and in
other functions display various informations about the rules
entered or part of rules.

Various house keeping functions like discard_rule(),
if discard{), etc. were created to use memory efficiently.

The function fire_rules() form the IE, calling function
single_rulé_fire() which fires the rules provided to it. This
function calls the function true_if() to test the status of the
premise. A rule is fired until either a premise turns out to be
false, its premise requires a fact obtainable from other rule
(indicated by functions can_fire() and can_var_fire()) or all of
its premises are true. In the last case the function fire_thens()
is called by single_rulé_fire(). The results prepared by this
functién are added to the result list by function fire_CHE_then()
and update_var_ih_res(). Function true_qualifier() checks the
premise of'a qualifier type for truth or false. This uses the

field 'head’ of structure 6(d) to deduce its results.

a2

83

The "WHY' facility if provided by the function why_answer() which
displays the rules presently in the rule stack. This uses various
rule - stack manipulation function .viz. rule_empty_stack(Y;
init_rule_stack(), prepare_for_why(), why_rulé;retrieve_stackfj,
rule_pop_stack() and rui@_push_stack(k

The functions which implement the ’HOW’ facility are
successful_rules_view() and fail_rule_detail(),which use the- field
"tot_if_fired’ of each rule structure tO'providé the answers. No
extra information is generated to explain the user its line of
reasoning for reaching & goal. The results are printed by the
module res_print(). called both independently and automatically
after the fire_ruleé() function.

Various functioﬁs were created to parse and solve complex
mathematical expressions wusing complex mathematical operators,
functions. The variables can also be used to facilitate formation
of complex rules. The #parser of the expression was implemented
using recursive decent'pgrsing principle [20, 21]. The grammar
{22] for this application was specially designed and implemented.
The function which perform parsing also used to solve an
expression, thus saving code. The backward chaining can also be
triggered if the value or a variable can be deduced from some
rule’s consequence.

The external program link is performed by spawnihg a new process
and parameter passing is with the help of files in terms of list
of real numbers. Parameters are parsed by file with
extension 'PAS’ and the parameters are received from a file by a
file with the programs name with extension 'RET’. The values of
the variables to be passed and if ‘they are not available at that
moment, than rules which initialize those variables are fired,

triggering backward chaining.

(c) Learning rule based Inferencing module :

This module like previous rules uses production rules in the form

84

of if-then statements to provide inferences. It differs from the
learning based module in terms of the type of premises and
consequences used by it to form a rule (see fig 3.12). It uses
simple structures to represent its premises, consequences and
rules.
typedef struct if_and_then {

int left_part ; /* VARIABLE or OBJECT */

char *left_object ;

int right_part ;

char *right_object ;

char *attribute {

struct,if_and_ﬁhen *hext, *prev ;

} IF_THEN ;

6(v)

typedef struct rule {
int no_ifs ;
int tot_ifs_fired ;
IF_THEN *fule_if ;
int no_thens ;
int tot_thens_fired ;
IF_THEN *rule_then ;
struct rule *next, *prev ;
} RULE ; '
6(w)

typedef struct vars_in_rules {
char *name ;
char *object ;
struct vars_in_rules *next ;
} RULE_VARS ;
B(x)

85

The " structure 6(v) is wused to represent both premises and
consequences because of their similar nature. The rule structure
is very much similar to the one in the non-learning module’s rule
structure. The structure for storing premises or conditions
contain information about the type of left part (variable -or

object name), its name, the type of right part (again variable or
object name), its name, the relation relating them. The premises
and consequences of a rule are 1linked by'doubly linked lists and
so are rules. Structure 6(x) is provided for storing information
about the variables at run time. The various-such structures are
present in a alphgbetically sorted list. Each such structure
contains variable name and the object name it is assigned for that
firing session.

The function names and description is presented below which were
used to implement this module. ‘

Rules are acquired by function get rules() whiéh calls function
gét“i}_thené() to get various premises and consequences of each
rule. |

To view rules function view rules() is called which displays all
the rules in the rule base (both permanent and the ones which are
created when system learns some thing). The individual rules are
displayed by the function dispu}ule() or no_disp_rule(). Rules
are saved explicitly by the user for the reason explained in
chapter 3 . - The function rules_write(} is involved for this
purpose. The rules are jread automatically when this module is
invoked. The function read_rules() reads the rules, initializes
and sets up various data structures and variables. This module
is called in the function initialize() which initializes all the
data structures to the state in which last session ended, opens
all. the necessary files and rads rules and the semantic net
information by invoking module read from file().

The decision process starts by invocation of the function

fire_rules() which fires rules sequentially from first to last

86

rule. Backward chaining is not incorporated, so all facts have to
presented , when the rules ére fired, specifically when a certain
premise is containing a variable is-fired, it should be known what

object is assigned to it. This fact if not previouély told, has
to be provided. The system'displays a list of probgble objects
vying for that variable. ' The rule which is currently under fire
is displayed to help user input appropriate information. The user
upon having this infofmation updates the variablé information
using add_var()}. The function solve_premise() is used to test a
premise, which uses the semantic net to test that whether two
objects in a premisé are linked to each other by the relation in
the premise. The rule i; stopped firing, when either one of its
premise turns out to false or all of the premise pfove to be true,

triggering consequences and ESS providing decisions. The results.
are displayed(function result_display())as the rules become

successful and confirmation is taken from the user. If the result

is confirmed by the user, the semantic net is updated (by function
update_semantic_net()) by adding new qualifiers as given by the
consequences of the rule. The history is saved by saving the
current status of the eéch‘variable, which can be recalled if any
conflict takes place in decisien provided by the system & user’s

choice. If the user is not satisfied byvthe ESS decision, he may
discard the ESS decision, leading to a new learning session. The
ESS first tries to find the reason why the conflict has occurred &
for this it compares the cufrent semantic net with thevnet which
existed when last time the rules wére,fired successfully. It then
displays all the diffefences-encountered as a suggestion to create
a ‘new rule. The user can. then either select an explanation
offered to him or can himself suggest a new reason. The learning
session ends there, rules are duplicated & modified in conformance
with the new situation. The rules are fired again'to arrive at

the decision according to the -modified rules & the decisions made

again are put before user for confirmation & the cycle repeats for

87

all the decisions during the Session. _
The functions find_differences() & var_differences_find() are
used to find the difference between the éuccessful case€ semantic
net and the present case. The stack is used to save the
differences. The explanations are retrieved and displayed from
the stack by the fuﬁétion disp_explanations(l. The-explanafion
accepted by the user is used to create premises, a job done by the
funcﬁion get_complementary_premises(). Rules'are duplicated by
the function dup_RULE() & new premises added to both. New
consequences are provided by the user for the new situation. If
he does’ not ﬁrgvide one, the -previous consequences are
complemépted for e.ém if‘previous.consequence was "[x] has floor",
then the complemehted consequence will be "[x] has NOT floor".
The complementation of a coﬁsequence is done by cailing the
function all_reverse_consequences().

The *HOW’ facility like previous inferencing module is implemented
by displaying successful and unsuccessful premises & by displaying
the list of variables, aiong yith the objects they are assigned.

This function is provided by successful_rule_view() and

fail rule _detail() & res_print().

Global variables use was kept to a minimum, but was not avoidable
due to overhead in passing parameters where recursion is a basic
method of reaching a solution. The global variables were used
mainly to represent certain flags used in many functions, pointers
to data structures used in many function, represent the state of
the system in terms of no. of rule, no. of qualifiers entered,
etc..

The shell has been implemented on Intel’s X86 platform using
Turbo C version 2.0. The source code was written in several
files. The project facility of Turbo C was used to compile and
link all the files. The large memory model was chosen because of

large code ‘size (some 15000 lines) and large run time RAM

88

requirements. Various files are created (some 7 files) to store
the information. Steps to minimize the no. of files is discussed
in 7.2 (Suggestion for future work). Backup file "RBK" is created
everytime rule base is updated, so that accidental updation of

rule base does not lead one with incorrect rules permanently.

89

CHAPTER 7

CONCLUSION AND SUGGESTIONS FOR FUTURE WORK

7.1 CONCLUSION

The work carried is used as central module for a Department of
Electronics (DOE) government of_INDIA project fitled "Integrated
Knowledge Based System. for CAD applications'. Results of the
various rules and problems posed to it in chapter 4 & 5 clearly
show that it can be qsed satisfactorily for Architectufal and
Building Design problems. The inferencing is fast justifying the
choice of HLL 'C’. Choice for using the rule based model along
with a semantic net for fact storage and use of both learning and
non-learning inferencing modules communicating via semantic net
proved right as a wide variéty of problems were successfuily
.solved. The developed can also be used for creating ES for
domains other than Architécture and Building construction as shown
by the rule base of fig 7.1, which is thé rule base for an ES for
meaical domain. SHELL thus is a general tool for develdping ESs
for any domain, with facilities and features incorporated which
ease the creation of ESs for Architectural and Building Design. As
SHELL is written in HLL language., it can be easily ported to any
platform which has support for the language 'C’.

#1
IF
Person is sick
Doctor is unavailable
THEN
Give him medicine - 10/10

Call him again in the morning - 10/10

90

#2
IF
Féce is green
THEN

Person is sick

#3
iF
Temperature above 100 degree
THEN

Person is sick

#4
IF
Hour is late
THEN

Doctor is unavailable

Qualifiers used :

#1 Person is

1. sick

2. well
#2 Face is

1. green

2. red

#3 Temperature is :
1. above 100 degrees
2. below 100 degrees '

#4 Hour is
1. late
2. early

#5 Doctor is

1. available’

g1

2. unavailable
fig 7.1
A SAMPLE RULE BASE FOR A HOSPITAL
7.2 SUGGESTIONS FOR FUTURE WORK
The shell at its present stage although is able to satisfy the
purpose of its creatidn, still leaves some space for future
enhancements. Also in a work of this magnitude scope for system
enhancement in terms of versatility and convenience is limitless.
Some of the major directions in which work can be carried out in
future are given below.
(1) - ' Learning module can be integrated with a CAD tool, so that
user interaction 1is limited to making changes,giving
“confirmation & teaching the system method to handle new
situations. User should no longer indicate to the system
explicitly.which instance of the objects he is presently
interested in. Other approach may be to limit the no. of
choices by looking‘ahead and trying all the combinations
which fit that wvariable in all the rules, for e.g. 1in

asking for choices for variable "[x1", one should list only

the various instances of door like "D1", "D2", etc..
(ii) The Learning module in its present state, simulates
learning by adding new premises. This 1is good, but

provision should be there to suppress previously entered
not so important premises.

(iii) The two inferencing modules at present share the semantic
net, future works could'try using the two modules ih tandem -
to build an even more powerful -system.

(iv) The shell can be implemented on a LAN or a distributed
environment, so that many people can use it 'concurrently
and perform their Jjobs concurrently. For e.g. one person
may be creating the foundation, one may be analyzing the
foundation built, one may be designing interior at the same

time, speeding up the design process. |

92

(v)

(vi)

(vii)

(viii)

(ix)

(x)

(x1)

(xii)

(xiii)

(xiv)

The explanétion facility "HOW' could be refined more & made
more versatile, to make the user understand the line of
reasoning of SHELL.

Knowledge acquisition module using inductive learning can
be added to ease creation of KB and allow smooth transfer
of knoﬁledge from the domain expert to the system.
Facilities to provide more information about the KB, like
indicating rules which contain a certain qualifier or
variable or a method etc. could be incorporated helping the
user in debugging and refining process of the rules.
Facility to rerun the system, by changing certain facts at
the end should be provided so that, user may test and
analyze the result for change in certain facts. For e.g.
the change in cost ‘if a 3 storey building is created
instead of a 2 storey building with remaining facts being
same.

Facilities to edit present rules*i.e. add or . K delete
premises to a rule, delete or move a rule, etc. shou%d be
incorporated.

A tutoring module should be included to teach a novice how
to use the shell efficiently, create rules and perform
debugging. This is a very module as writing rules is
equivalent to writing a program in any language.

Online help should be provided to make the system more
convenient to use. ‘

The application can be ported as an windows application,
having menu, mouse.support; etc. _
The source code written uses many files. Some of the files
like the files with extension "GDX", "“GPR", "REL" can be
done away with, as information contained in them can be
regenerated at some run time over head, by using the
contents of file with extension "“GEN".

Efforts can be made to get facts from the user in a

a3

graphical way. Fach premise can trigger display of various
choices & user can select one or more by using a mouse or
some other pointing device.

With the source code available‘one can make efforts to implemént
the above suggestions. Modifications may alsé be made to the
source code to customizé SHELL according to ones taste. One can
make efforts to remove redundancies in the co@é to make it more
compact and faster. The modular nature of the‘code will make the

Job of the programmer much easier in achieving these changes.

‘94

REFERENCES

[1] Flemming U., "Knowledge Representation and Acquisition in the
LOOS system", Building and Environment, Pergamon Press, Oxford,
1990, vol. 25, NO. 3, pp 209-219.

[2] Bedard C. and Gowri K., "Automating Building Design Process
with KBES", Journal of computing in Civil Engineering, ASCE
Publication, vol. 4, No. 2, April 1880. | |
[3] Pol%l J. and Chapman A., "An Expert Design Generator",
Architectural Science Review, vol. 31, 1988, pp 75-86.

(4] Fenves S.J. et.al., "An Integrated Software Environment For
Building Design and Construction", Prec. of the 5th Conference on
Computing in Civil Engineering, ASCE, pp 21-32.

[S] Morese D.V. and Hendrickson C., "Model for Communication in
Automated Interactive EngineeringnDesign“, Journal of Computing in
Civil engineering, vol. 5, No. 1, Jan 1991, pp 4-24.

(8] Carrara G. and Novgmberi G., "Knowledge Acquisition in the
Process of Architectural Design", Building and Environment;
Pergamon Press, Oxford, 1990, vol. 25, No. 3,App 199-207.

(7] Rosenman M.A., "Applications of Expert Systems to Building
Design and Evaluation", Building and Environment, Pergamon Press,'-
Oxford, 1980, vol. 25, No. 3, pp 208-219. '

{8] Evans P.M., "Rule-based applications for CFecking Standardstv
Compliance of Structural members", Building and Environment,
Perg;mon Press, Oxford, 1980, vol. 25, No. 3, pp 209-218.

(9] Garret” J.H., ‘“Application ~of Knowledge-based Sysfem -
techniques to standards representation and usage”, Building and
Envirdnment, Pergamon Press, Oxford, 1990, vol. 25, No. 3, pp 208-
218. ' |

[10] Chang T.C. and Ibbs C.W., "PRIORITY RANKING - A Fuzzy Expert
System for Priority Decision Making in Building Construction
Resource Scheduling”, Building and Environment, Pergamon Press,
Oxford, 1990, vol. 25, No. 3, pp 209-219.

95

[11] Mohan S., "Expert Systems Applications in Construction
Management and Engineering", Journal of Construction Engineering
and Management, ASCE publication, vol. 116, No. 1, 1890, pp 87-99.
[12] Guena F. and Zreik K, "An Architect Assisted Architectural
Design System", Artificial Intelligence in Design, Computational
Mechanics Publications, pp 159-179. '

[13] Tean-Jee Lee et. al., "Expert Systems for Buildings - Case

Studies of Design, Diagnosis, Contracts Interpretation”,
Architectural Science Revie&, 1994, vol. 37, No. 1, March 1994, pp
21-34.

(14] Firebaugh M., ARTIFICIAL INTELLIGENCE - A KNOWLEDGE BASED
APPROACH, PWSfKent Publighingnto., Boston, 1988.

{15] Forsyth R., "The Expért System Phenomenon", Expert Systems -
Principles and Case Studies, Chapman and Hall Computing, 2 ed., pp
3-21. ’

[16] Forsyth R., "Inductive Learning for Expert Systems", Expert
Systems - Principles and Case Studies, Chapman and Hall Computing,
2 ed., pp 187-221. _

[17] Waterman D.A., A GUIDE TO EXPERT SYSTEMS, Addison-Wesley
Publishing Company, USA, 1986.

[18] Rich E., ARTIFICIAL INTELLIGENCE, McGraw-Hill Coﬁpany, 1983.
(18] Schutzer D.A., ARTIFICIAL INTELLIGENCE - AN APPLICATION
ORIENTED APPROACH", Van Nostrand. Reinhold Company - NEW YORK,
- 1982, pp 23-36. ,
[20] Aho A.V. Ullman J.D., PRINCIPLES OF COMPILER DESIGN, Narosa
Publishing House, 1985.

[21] Barret et.al., COMPILER CONSTRUCTION THEORY AND PRACTICE,
Galgotia Publications Pvt. Ltd, 2 ed..

., MACHINES,
LANGUAGES AND COMPUTATION, Prentice Hall Inc. - NEW JERSEY, 1978.

[23] Korfh H.FL and Silbershatz A., DATABASE SYSTEM CONCEPTS,
McGraw Hill Inc, 2 ed.

(22] Denning P.J., Dennis J.B. and Qualitz J.E

[24] Kernighan B.W. and Ritchie D.M., THE C PROGRAMMING LANGUAGE,

96

PHI Pvt. Ltd., 2 ed..

[25] Kruse R.L., DATA STRUCTURES AND PROGRAM DESIGN, PHI Pvt.
Ltd., 2 ed..

[26] Schild H., TURBO C/C++ - THE COMPLETE REFERENCE,
Osborne/McGraw Hill, 2 ed.

- [27] Gottfried B.S., PROGRAMMING WITH C, Schaum Outline Series,
Tata McGraw Hill Publication Company Limited, First edition.

(28] Schild H., C - THE COMPLETE REFERENCE, Osborne/Mcgraw Hill,
First edition.

97

rage 1 -

S

[rkkxkkwe KX=YS K xdtxaxkiu/

drfncdef KZYS_INCLUZED
sdefine KEYS_INCLULDEC _

‘/* Various Definitions usacd */
fdefine ESC "\x1bh”
tdetine ENTER “\x(q’
rdefine LEFT_ARR fOxiéh
#define RIGHT_ARR Cx4d
fdefine UP_ARZ (x4
nttefire DOAM_ARS (x5
wdefina Y&S 1
wdefine NO-O
kaefine EXTENZED O
#define B3ACKSPACE OxJ%
pdefine T2UE 1
gdafine FALSE O
rdefine 3EGIN T
#define END-J
wdetinz NO_CHILDS 20
adefins MAX_LENGTH 500
fasfine CHLD 17
ddefine PARENT 2
#deafinz PRNT_CHILD 2
rntefin2 PART_PRNT &
rdefine PART_IHILD 5
#oeflina MESG_LENGTH 1540
#detine MATHA_ZRROR_STARTING 1000
enun {VARIASLE, (QBUECTY
enum {IF, THINDY
gnum {LEFT, RIGHTY ;
enur {2ULs MATH,. EPR, CHE}
2Ny {PARSINur SOLVING, RES_PREP} ;
enun {VAR, SXPR} ;
enum (3In=1, C0S, TAN, OSIN, 2LO0S. ATAM ARS.
Lt0ul ; '
2nun (LELIMITER, NLMBZR, VA
fancif :

A3

_FUKNCY ¢

Jan 1¢ 1J:4d4 16%5 Page

/xAF kA SH-oLL . H **xdtw/

ginclude <stdioc.h>
Ainclude <string.h>

o #includ2 <ctypa.h>
.Finclude <alloc.h>
#rnclucde <stcdlib.h>
Finclilude <conr0.h>
#include <dos.h>
finclude <matn.p> .
#include <e2rrnoc.h>
#include <setjmp.h>
finciucde <i1o0.n>
Finclude "keys.h"
finclude "rules.h”
Finclude "samantic.h"

~

Jan 16 10:L3 1992 p

"y
w2

[h}

—

[rxkxx JSEMANTIO JH *kxkiw/

typedef struct choice_list {

I

. int choice 7 /* =ve choice for NOT choices

*/

' struct choice_list *next ;

> SELECTION 7
typedaf struct frame { /= for JGEN file */
| : : char *nama 7 , '

int qualifier_no ;

int no_childs /

cnar *ChlldaLNO CHILD‘J ;
‘ } FRAME
struct qual_nam2 { :

’ char *name -
int no_links ;
struct neme_list *head
long int line_cpnr 7
int no_vnarents
int traversed
struct norent_lis
struct gual_name
y o
struct name_trea {
' char *name

int qualifier_no

SELECTION xhead #

long int line_gen =~

struct name_tree *left_name, *right_name’
struct name_tree *qual_left, *qual_right
Y 7

struct parent_list {

Se W

char *nanme s
/* char #*child_relation 7%/
s+ruct parent_list *next /

Yo '
struct namz_list {

Lhar *namz ;

struct name_list *next ;

>
tyoseaef struct { v

int total_texts /
struct name_list xtos s o
} STACK 7 N

typedaf struct relations {

: char *attribute /
int nc_left /
struct name_list *left_head 7
int nc_righk ;
struct name_list *right_head 7
s+ruct relations *left, *right ;
3 RELATIONS

Jan 16 19:09 1695 Page 1

[/ xAkxxxwe IM SCR,C *xxwxs*/

#inclucde ""shell.n"

/* In Jthsr Files */

struct namz2_list rget_link_noda(void)
voird list_disnosalstruct nmname_list *)
/* In This File =*/

char *get_ch_txt(int, int, int, 1int) ;

crar *ge2t_val_ver_txt(int, int, int, int) 7
crar *get_proh_txt(int, int, int, intl 7
char *input_choices(int, int, int, int) 7
veolce drawdlint,intraint,int 3
vold status_windowl(char *)
void ver_lina(int,int,1nt) ;
char #*get_char_arrayf(int) 7’
void clear_windows{void)
char *trim{char *x) ; : ‘
char *dup_str{char *) .

STACK *get_stack{void) 7/
vold push{char *, STACK =~}
char *po2(STAZK =x)

int eapty_stack (STALK %) 7
voicd clear_stack(STACK =)

void frez STACK(STACK =) ¢

char *getl_ch_txt(int x1, int y1, int x2, int y2)
{ : ‘

N Ne

struct text_info ti ;

char *txt = MNULL, *rat_txt = NULL
int response = TRUE, index = 0 /; -
int key, cur_x = 1, cur_y = 1 ¢

1n*t maxing = (x2 * y2) = 1

N u

gettextanfe(Zti)
-=-x71s "’y'i ’
x1 += ti.winleft
yl r=.txr.winton -
txt = get_char_array(maxind)
textattr(slLACK | (CYAN << 43
windowl(xl,yl,x2+x1=1,y2+y1=1)
clrscr() h
4t xtl31 = ‘\NJ° 7
a4nila(TRUE)D

<

key = getch(l i

1f{isprintl{key)) .

~

Ne wa

-
respeoenss = TRUL -
if(index == maxind)
resoorse = FALSE ¢
1f(responsa == FALSE)
continue -
else
' {
txtlindex*+] = key ;
txtlindexl = “\NO° ;
gotoxylcur_x,cur_y)
cerintf{"4c skey) 7
cur_x = wharax ()

cur_y = wharay()

-
’,

.
’

Jan 16 17:0

clse

> /x
finish :
wincaow(ti.

3 1695

Y /* suitckikeay).

b4
{ .
switch(key)
{
cas2
1

case
case
case

i

} /* elsa */

wehile (TRUE)

wginleft,

textattr{ti.attribute)

ti.wintops

txtlindex] =

gotoxyl{cur_xg
cprintf ("

0)
h. s

H
tch
= L
;
=

ex

-
7’

Q) .
EFT_ARR)

0>

‘NG’
(index % x2)
{index [/ x2)
cur_y)
"y

gotoxy{(cur_x, cur_y)

ENTER : if(index 1=
goto finis
£3C : frees(ixt)
txt = NULL™ ;
goto finish
FXTFNDED : key = ge
if(key !
‘ break
BAGKSPACE : if(index
{
=-=1nd
Cur_xX
cur_y
3
break

w [

2
’

ny

ti.winright,

ti.wuinbottom) -

gotoxy(ti.curx, ti.cury)
1t (txt == NULL)
return NULL
elss
{ - .
ret_txt ='dup_str(txt) ; '
treeltxt)
txt = NULL ‘
return ret_txt ;
3
b
char *get_val_var_txtlairt x1, 1nt y1, int x2, int y2)
1)
struct text_info ti ;
char =*txt = NLLL, *ret_txt = NULL 7
int decimal_ant = NC 7 .
int r2sponse = TRUS, index = 0 7
int key, cur_x = 1, cur_y = 1 7
int maxind = (x2 *x y2) =1 7
gettzxtinfoldti) 7
==x1, ==y1 ;
x1 *= tr.uinlaft /
vyl += ti.wintep
txt = gat_chor_array(mexind)

textattr(s

LaCK |

(3ROWN

<< 4))

Wwinaow({x1rylsx2+x1=1,y2+y1=1)

clrser () 7/

[Tl 4

txtius =

o' o,

+ o+

N

e

— ek

Ne Ne

whili=(TRJI) -

{
kay = gzeteh() 7
iflkey == “.7 || wey == “+% || key == *=7 ||
{
responsa = TIUE
iflindex == maxind)
r:2sponse = FALSE
else 1flirdex > 0 50 (kay == “+° || key ==
respgonse = FALSE »
else 1f(key == “.7 &% decimal_pt == YES)
resovonss = FALSE
1f{responsas == FALSE)
centinue J
els2
{ .
iflkey == 7,7)
decimal_ont = YES 7/
txt(1naex*+] = key »
txtlindexl = “\QO°
cotoxyf{cur_x, cur_y) 7
corintf("%c" skey) 7
cur_x = uwh2rex() 4
cur_y = wherasy() 7
>
>
21lse
{
seitch(key)
case FNTER : 1if{index != () '
gote finish
case ESC : fres(txt)
) txt = NULL
goto finish ;
case EXTENDEL 1 key = getch()
iflkay !'= LEFT_ARR)
break »
casa BACKSPACE : iflindex != 0)
{
-=index 7
if{txtlindex] ==
decimal_nt = NO
txtlindexl = “\D’
cur_x = (index
cur_y = (index / x2)
gotoxy{cur_x,
cprintf (" ")
goteoxy{cur_xs
}
br2ak 7
Y} /+ switck(kzy) */
> /* gise xf
} o/x o unile(TRUcE) */
finisn

window(ti.winleft,
textettr{ti.attrinvute)
gotoxy(tiecurx, ti.cur
1t (tx* == nULL)

ti.w2zntons ¢

7

y)

T.winright,

e Na #

%ox2)
cur_y)

cur_y)

ti,winbottom)

e 4+ o+

e

isdigit(key))

s Ne

A0 G

return NULL 7

else
{
ret_txt = dup_str{txt} 7/
freeltxt) 7/
txt = NULL -/ ’
return ret_txt »
>

nar *xga2t_preo_txtlint x1, 1nt y1, int x2, int y2)

struct tzxt_infec t

i
cnar *txt MLLLs *ret_txt = NULL 7
int respnonsa = TRKUE, anda2x = 0O
int keys cur_x = 1, cur_y =1 5
1nt maxaind = (x2 * y2) =1 7
cettextinfol’?ty) 7/ A4

-=x1, =-=-y1 ;

X1 += ti,winleft
yl += ti.wintcp
Tx1 = ga2t_char_array(amaxind) /
textattr(wHiTz | (LIGATIRAY << 400
winaow (xTryl,x2+x1=1,y2+y1=1)
clrser() 7

txtodl = N7

whila(TRUz)

N

rasnorsz = Tt

1¥(index == moaxind)
racsoonss = SALSE

1f(~esconse == FALSE)
cortinue

elss
{
txtlindex++] = key 7
txtliindex] = “\D0°
cotoxy(cur_x, cur_v)
corintf("%c" skay)
cur_x = gharax()
cur_y = wharey{()
T
>
zlse
{
swrtchlkey)
{
case zNTER : i1iflindex != 0)
toto_ finish
case ESC : free(txt)
txt = NuytLL
goto finish ;
case EXTENDE®D : key = getch()
if(key != LEFT_L4RR)
break -/
casec SACLKSPACE 1 if(index != D)

{

L)

~

c
;
L

tl.winright,

> /x switcek(key)
} /% else */
> /* wunile(TRU:) %/
finish
gindow (tr.winlaft, ti,win*ton,
textattr(ti.attributs)
getoxy{(ti,curx, t1i.cury)
Lt (txt == NuULL)
raturn NULL
2152
{
ret_txt = dup_str(txt) ;
frez2(txt) 7
txt = NULL ¢
return ret_txt
>
/
har *input_choices{int x1, int y1,
struct text_info ti
cher xtxt = NULL, =*xret_txt = NULL
int prev = 0 5
int raesponse = TRUS, index = 0
int <2y, cur_x = 1, cur_y = 1 ;
int maxind = (x2 * y2) -1 ;
gettextainfoldti)
==x1, ==-y1
x1 += ti.winleft ;
y1 *= ti.wuintcp
txt = gst_char_arrayl{maxind)

textcclor(WAITE) ;
textnackground (BFOWN)D

-

wrnGow{xl,ylsxZ+xt=1,y2+y1-1)

clrscr () ;
txtoels ‘\NQ’
wn1le(TRUE)

1

»

7

i

A

‘N7

oy

~H 1D
D~ w
[A ®)
3 O
|] b]
it

w

—

Uy

w

o,

-4 O W w
WY N D X
® O - 0

J ©

o,

ur
= T

D
)

.

txtZindex

I

|

Kay

b s

~

"o O

O w33~

H - O W

o,

(B 11

~ 3 X
N~
7\"

]

w

tocupner{getch())

N

N o

TR - AR
o

(1]

Ul

O

2
’

.
4

vy &
O oo

i

~

O
N —

~<

n
N B 23 N

0 — i

*

hreak

/

.
14

txtlindex]

~=index

“\G°

cur_x = (index % x2)
cur_y = (indeax / x2)

gotoxylcur_x, cur_y)
cprintf{" ")
gotoxy(cur_x, cur_y)

}

»
4

.
I4

tiswinbottom)

int x2, int y2)
’

f} key == ",° ||
== ‘N*)
3 {kay == * " || key ==
LSE

” , I’ I<ey - "') &g
txtlindex=11 == “+7))

= FALSE

N+
—3 .

e

e Wy

isdigit(key))

if{responsz == FALSE)
ocontinue
elsz
{
iflkey == “N’)
{
txt201 = "N°
txtC13 = 07
txtfL2] = 77
txt[{2Z] = “+°
¢ prav = H
index = 4
>
2lse
<
txtlindex] =
prev = index
>
txtlindexl = “\Q°
gotoxyl(cur_x, cur

cprintf{txt+orev)

cur_x = wherex()
cur_y = wherey()
)
2
else
{
suitch(key)
{
case ENTER
casa2 tSC
case SEXTENDED
case BACKSPAC

Ne

ke
++

~<

’

N2

»

’

s e

iflindex t= ()
gete finish

free(txt) 7

-
’

txt = NuULL -
gecto finish ;
: key = getch() 7
ifl{key != LEFY_ARR)
break ;
E 3 if(index 1= 0)

<
-=index ;
if(txtlindexd

{

txt[01 txt[2]

txt 4]
incex

Ut &

else
{
prav index ;
txtlprev) = ° °
} ,
cur_x (index % x2)
cur_y (index / x2)
gotoxy(cur_x, cur_y)
corintf(txt+orav)
txtlindex] ‘AQ°
gotexy(cur_x, cur_y)

.

i

e+ o+
e N

e

W

»

break »
2 /% switcklkay) ==/
> [+ else */ |
Y /x while(TRUE) */
finisn :
windos(ti.winleft, ti.wintop, tiewinright, ti.winbottom)
textattr(ti.attrinoute) /
gotoxy(ti.curx,s, tr.cury) -
1f{txt == NULL)
return Y2LL S

else
{
ret_*txt = dup_strtxt)
traa(tx*) ;
Txt = NJLL
return ret_txt ;
>
he .
vold ver_lina{int xs,1nt tocs,int bHottom)
<
int 1 /s

window(1,1,24,25)
for (i1=top, 1<hottom , i++*3

{
go yl{xrs1)
Ddt"hcs"("?"’) ;
.
>
>
vold cdrawlint left,aint ton,int rightr,int bottom)
{
int 3 s

windnu(1,1,80,25) 2
for (d=lett+1; j<sright;, 3++3
<

cotoxy(jrton) 7
putchar(2735) ¢
gotoxy{jsnottam)
putchar(zN8) 7
b .
for (J=top+l; Jj<sbcttonm, j++)
1

e

)
putchar{l1%s} ;
gcrtoxylrign4,j

putchar(1Zs) ;
>
gotoxy(leftston) 7 putchar (201)
gotoxy(rightston) putchar (187)
gotoxy(leftsoottom) putchar (200) 7
gotoxy(rightsoottom) utchar(188)
windou(lgtt+ls,toc+l,right=1,bottom=1)
clrscr () 7
Y /* and of drau */
vold status_window(char xusg)
{
struct text_info ti
gettextinfo(utr) -
window(1,25,20,2%)
texthackground (WHITr)

Ne N

N

I'4

v

textcolor{(3tLaCK) ;

cirscr() s

cprintf (M4 rmsg) 4 v .
winadow(ti.winleft,tr,wintoprtiswinright,ti.uinbottom)
gotoxy(tiscurxstiescury)

textattr{ti.attribute)

5

.

~.

7
char *get_char_sarray(int n)
{
char *xp »
0 = (char =) malloc{sizeof(char)«(n+1)) /
it(p == NCLL)
{
orintf("\nCLT CF MEMORY , ABORTING ! (get_char_array)") ;
fficsn(stdin) 7
geten()
ex1t(1)
xp = ‘\NQ°
return o s
>
void clear_windows(void)
{
struct text_info t1i 7/
gettaxtinfo(iti) ;
wincdow(41,3,77,23)
c.rscr() 7
window(4,2,39,23) 7

.

cirscr () ; .
windou(tisganleft tivwintossti.einrightsti.winbottom)
return

7
char *+riv{char *str)
c

int 1, k = 0 ;

crar txtodAX_LENGTHI 7
char prav '
for(izzstrlon{(str)=1 ; i >= 0 ; --i)

\

< _
1t(isspace(str{il) || discntrl(striil))
cst~{1] = “\NQ°
nlze
sre2ak ;
J
for(i=" 7/ 1 < strlen(str) 2& (isspacelstr{il) J| iscntrl(strfil)) , +

+1)

strepy (txt,rser+i) 1
for{ik=0, 120, prev="A" ; i < strlen(txt) ; ++1i)

<
~

if(issoace(txtlad) i disentrlCixt{il))
{
1fCtxtlal == ‘Nt] 4xtli) == 7 7)
txtflil = ° * 7

-

continue

»

av == txtl{i]) %% (nresv == ‘M

nueg «

3
1f(

+

[

(n
on

(§]
5]

strokd = "\u°

return str
b
char xdup_str(crar *input)
L

char *3 = gat_char_arrcy(strlen(inou*))

Na

strcoy{ors1n0ut)
return o

~

>
STACK rget_stzcex{void)

q

STACLK *p

n = (3TAZK ») ralloc(sizeof(STACK))

1t (p == NoLl)

{
Printf("\ILT OF MEMORY,
ffiush(estein) &
seten()
ex2t (1)

}

p=>totel_texts = J
a=>tos = nUiLoe »

.

r‘efu"‘ﬂ 13 F 4
7
int empty_otzck (STACK =§)

"~

vold puzsh{crar *xinfc, STACK
i

struct namez_11s5t *now_infe
new_info = ¢zt_link_node()

"new_info->nave = aup_strlan
neu_1info=>n2xt = S=>tos
S=>to0s = new_into s
t+5->1o0tal_taxts ;
return o

b

char *pop(STalk =%)

{

N

struct nama_licst *reqd_info »

cnar xtemp = NLLL
ragd_into = S->tcs
temp = read_info->name ;
S=>105 = S=otcs~>naxt
freelreqgd_1n‘o) 7
reacd_1nfo = “ulc
~=S~>total_tezxts
return tamo ,
} .
vold clear_st=2ck(STACK «5)
1
it(s->oto3)

.

’
.
4

H Na %

«2e(get_stack)™)

Ne

_cdispose(S->tos)
cs = {LLL ;

free_STACK(STACK #S)

~ar_stack (s

’

[xxwxexkx SHELL,(C *xkcktx/

#includa “s4hell.h"

extern int curr_rule_no s

struct gual_name *qualifier_trese ;

Struct nang_tlree *frame_1lrees, *no_qgual_trze »
long int curr_gen = 1, curr_gpr = 1 ;

int curr_gualifier_no = 1 ;

5TalK *res_stack

1nt passad = NO

cnar filz2_nam=204G] = "GENERAL"

FIv: »xfrm_fo, *trm_ndx_fp, *frm_pr_fp, xfrm_rel ;
/* In {ther rilas x/

vold status_uwindow(char *) 7

char xget_char_cerray(int)

void drawlint, int, 1nt, 1nt)

voia ver_line(int, int, int)

cnar *get_cn_txt(int, int, int, int)

char =xget_prob_1xt(int, int, int, int) ;

vold get_ruleslvoid) 7

’

P
E

orv(void) ’
izwl(veid) 7

*)

ONS %,
¥)

FLATIONS =)
RELATIONS *)

RELATIONS =*) 7

.
!

vold view_rules(void’

vold rules_writa2(void)

void read_rulas(veid) 7

voild fire_rules(void) -

void res_onrintl{voig)

volid release_result_man

vold succasstul_rules_v

vold fail_rulz_destarllvoid)
char *xtrin(cnar =) ;

char *dup_stri{char =x) ;

void cl_ar windows (void) 7
STACK =get_stack(voida) -

vold pusn(char *, STACK =)
char *pop(STACK #)

1nt empty_stack (STACK =)

veid fili_relation_tree(FRaN
RELATICHNS *ga2t_RELATION_nodelvoid) 7
RELATIONS *add_relation(RELAT
RELATICONS *RELATICNS_cetlcnar
voild add_left_relatlon(ch;r x,
vord add_right_ralation(crar =,
int read_raletions(void)

int write_relaticons(void) 7
void show_reiation_infolvoxd)
veld naw_rul2_save_ostion(veld) 7
/x In This File =x/

void initialize(void) /

ord read_tfrovn_frle(void) /

.

s(void)
input_frams(void)
exist_framel{char +,

int opan_file
vold
int

/

1nt gdx_read(struct qual_na
int link_read_

int gpr_rzad(struct

int get_detalvcid) ;

“tree * list_
1ncd(char *)

struct nane
int gert_ varb

Ge
.
’

giru

me *)
cdx(struct name_tree *) 7

o
-

qual_nama

ns

ma=

tree *x*x,

struct gual_name *x,

name _
x)

ntr{char *, struct name_list *)

4

int)

voia goto_line(FILE *, long int) ;

char *nam>_gatlchar *) ;

vold gual_parant_add{char *, struct qual_name *) ;

voild aad_name_tc_gualifier(char *, struct qual_name *) ;

struct name_trez » add_no_gual(struct name_tree #*, struct name_tree *)
;

struct nane_tree xadd_fraeme(struct name_tree *, struct name_tree *) ;

struct qual_name * add_qualifier(struct qual_name *, struct gual_name

*) ‘

struct nama_tre2 « get_fru_ptr(char *) |

int w fr*"v(r AME %) ;

FRa“e sreac_$rm(FILE *) 7

int w_frm_or_incd(void) 7

int w_gpr_gex(struct qual_neme *)

int gpr_w(struct quel_name *) ;

int gdx_w(struct gual_name %) J

int ¢dx_link_s(struct name_tree %)

struct gual_name * get_qgual_nodelvoid)

FRAM:z »getnoaz2(voxrd) 7

struct neme_tree xget_name_nodelvoid) ;

struct parzsnt_list =get_parent_nodelvoid) 7

struct nanz_liist *get_link_nodelvoid) /

char *nstrcoyf{char *, char *, 1nt) ;

FRAMZ xget_nw_qualifier(char *) ;

FRAMZ ~c¢et_nua_cualifier(int)

struct name_tree *gst_no_qualifier_in_trez{int)

vold disao_no_gualifier(int) ;.

vold disy_namz_quaifier(char *)

vold axsp_Tfrane(FRAME =*) /

int :how_Qchlfl ers{int}

vold rendom_mavamant{void

int show_supzr_attributes{struct qual_name *)} ; —

int shou_zacn_attributes({struct gual_name *) .

struct name_tree *disp_info_cualifier(struct gual_name *, char *, int

"
’

A *
/s

*) z

vold disp_attr_infol(struct gual_name *) ;

struct agual_name =xqual_nane_node(char *) 7

int flnd_ln_objsct(VOLGB ;

struct gquaz_nzme *get_objectlchar *, struct gual_name *) ;

voia list dlaaoc e{struct name_list x) ;

void 1nit_obg:czs(sxruct qual_name Y s

veld patn_odrnt (STACK *)

int find_out{char %, char *, struct name_list *) ;

int yet_valuaflveid) ;

int value_find{(crar *x, char *, long int)

Vold process fr:me(FQAME x)

void fre =_F TE(FRAME x)

main(int argcs char *argvil)

{
1nt ¢hoxce
int fired = N
window(1,1,:2
textcolor{wWwHI
texthbackground
clrscr()

ifCarge > 1)
{

pesseyd = Y&Q

streoy(file_n

1"

X
)

~s

e

mesargv.12) 7

a3

}
initialize ()
o /* ah1la2(!

{
choice = ‘K™
if(strenr("KR",choicel))

P

L
-

;
2xit) */

ckground (YELLAWY &
w(3,2,78,24) 7
1

PR

tcolor (8LACK)

o
~ WL T3 O W
nypoXox
t
L)

L

n22{29,3,24)
m 7

_wandow("{K)nowledge base, (R)ule base, e(X)it") ;

w <
o
c

0 e

}
choxca-= taupper(gatch()) ;
it{choice =3 “K7)

¢

“

dO'
<
cnoice = ‘A7
if(strchr ("IARESLPV" ychoice))
{
taxtcolor(BLACK)
textbackground{YELLOW)
draw(3,2,78,24) ;
ver_lin@(}?;};Eﬁ) ;
status_window{("{Idnsuts, (A)11,(R)andom,(E)ach/(S)uner,re(l)

ation,s(Platn,{VYalua (8)uit")

7
choicae = toupper{getch()) 7
switch(cheoice)
{

case EXTENGED @ getch() 7
break 7

case ‘o’ : break

case “I° : input_frama() 7 R
break 7

case ‘A7 : shcw_qualifisrs(1) ;

_ braak 7

case 'K : random_movement() ;
brezeok 7

case ‘£ : show_each_attributes(gualifier_tree)
break s

case “S§° } show_super_attributes(gualifier_tree)

‘

hreak

casz L’ : show_relation_info()
break 2

case ‘P’ : find_in_object() ;
break

case V'’ get_value()
hreak &

default : putchar(’\a’)
break 7

}
Y ahile(choice != "3°)
} f
else 1f(cnaice == ‘R")
{

1led,s(A)ve

7 (YNNI

{

chowce = “A° 7

if(strchr(“IVQSCAU“/;hoi:e))

4
~

taxtcolor{8LACK)

texthackground (YELLOW)

Grawl(3,2,78,24)
textcolor(YELLCHWY

texthackground (3LACK)

clrscr() ¢

-

s’

.
4

status_window (" (D) nput,(V)iew,fi(R)e,(S)uccesful /(Fla

rulessres(Ullts(Lduit'™)

1

>
choice = toupnerf{getch()) ;
switch{choice)
{
case EXTENDED : getch()
' break -/
casa 'G° : break /
case "I’ 1 do
{
ver‘_line(S‘?,S,EM ’
get_rules() ;
status_window("Add more Rules
do
fflush{stdin)
choice = toupper(getch())
Y while{(!(choice == “Y* ||
)y g
choice = cheoice == ‘Y’ 2 YES
> whileflchoice)
window(4,2,77,23)
clrscr ()
breaak
case “A° rules_write() ;
break 7
case 'R : ifl(curr_rule_no > 1)
{
window(4,3,77,23) ;
clrscr() /
release_result_memory() ;
fire_rules() ;
window{4,%,77,23)
res_print()
fired = YES
}
break 7
cese ‘U’ : if(fired)
{
clrscr() 7
windcw(bd,3,77,23)
res_print() ;
}
break =7
case “S° v if(fired)

O
“
"
D

Case

default

-

s

> while{choice

J

» ’

Y wnile(chorce = 7X
release_rasult_memcry
new_rule_sava_option(

Y o
) 7
)
fcloseall()
window(1,1,82,25)
textcolor{(WHITE)
textvackground(3LACK)
cirscr() ;

return 0 7

o

veild initialize(veid)
<
int succ23s ;

clrscr()

guarifier_trze = NULL

curr_gen = curr_gpr <

curr_gualifizr_no = 1 ¢
f ORI

frame_+trez = no_qgual_tr=z:2
‘
1

“success = opan_Tfiles
if(success)

{

)
int open_files{ve1d)
{

char *txt, f_namelMAX_LENGTH]

int choice, 1
int new = NO s
int x1,y1
struct text_info ti
gettextinfo(8ti) -
1f(passed)

strcay(f_nave,tile_name)

else
_ *f _name = ‘\0°
do

{

e

e

.
14

clerscr()
window(4:3,7?,23) ;
successful _rules_vieuw()

-

2

braak

if(fired)
<
clrscr() /
window{4,3,77,23)
fail_rule_detail()
*
break
view_rules() ;
break 7 .
autchar(’\a’)
break =/

new = YES
}
feclose{frm_£p) 7
1t(tnew)

{
sprantf(f_nema/,"%s5.60X",file_na3
from_ndx_tp = fopan(f_name,"r')
1f(frm_ndx_*p == NULL)

{
status_windouw("Cannot find all *he.necessery data filese.ss ABO
RTING !') ‘
fcloseall ()
exit(1) 7
}
sprintf(f_name,"%cs.iPR",file_name) /
frn_or_fo = topen{f_name,"r") ;
iflfrm_pr_fp == NULL)
{ ‘ . _
status_windcuw("Cannct fird &ll the necessary data files.... ABO
RTING ")
fclosenll () 7
exit (1) 4
)
sprintf(f_name,"%s,.REL", file_name)

frm__rel = fo‘:)en(f_ﬂam@,"r") ;
if{frm_r2l == NULL)

)

=

D

s
]

~

-

{
status_window("Cannot firnd 211 the necessary data files.... ABD
RTING ") ' |
fcloseall) 7
exit (1) ¢
>
>
elze
{
FILT =tn ¢
do

{)
sprintf(f_rane,"%s ,RUL",file_name) J
fp = fepen(f_nzm2,"r")
if(fo == NULL)

{

szrintf(f_name,"Canrot opoen V'%s,RUL\". New(N), Retry(R)
“stile_name)

status_window(f_nama) ;

ao
‘
fflush(stdin) 7
chexce = teoupner(gztech())
Y wnala(!(choice == “R7 || choice == “N"))

1f(¢cno1ce == "N7)
breck
)
Y oghile(fa =
1f(fo == NLLL)
{
sprintf(# _name,"%s.RUL",file_name)
fo = fozan(f_pamz,"u")
1f(ts == NULL)

- (EE]
- r‘u‘LL..

p
status_uwindow('"Cannot create file., « s ABORTING cos

Fress any key')
fflusn{stdin) ;

ga2tch () ¢

feloseall () 7

exit(1)

3

forintf(fp,"%d\n",1)
tclose(fp) 7

b
2ls2
read_rules() 7
)
srintf(f_name,"%s.GEt N”;fllﬁ name)
frm_fp = fopan(f_nema,"at") ;

if(frm_fp == HULL)
status_window("Error while crz2ating(onening) a naw(old) file....AB
ORTING !")
fclessall ()
ex1t(1)

) p
aturn new 7 NO : YES

b

vold input_framz(void)

{
int sure, mora2 = YES, write = NO ;
struct text_info ti /

g2 ttexkxnfo(9‘* ;

clrser() 7
sindow(3,2,73,24) ;
textcclor(CYAN) 7
texthackground(3LALK)
clirser() ;
draw(3,2,78,24) ;
ver_iine(39,3,24) ;
do
{

sure = get_data()

write += sure ;

status_windouw("Enter more gualifiers 2 (Y/M)")

do

{

more = tcuonver(getch())

> owhala(M{more == ‘Y’ || rore == “N'))
more = gore == ‘Y’ ? YES : NO ;

> wnile(more) ;
iflwrite)

{

w_Tfrm_pr_ind() ;
write_relsticns() ;

b
wlnd;u(t;.uwnleft/tl.w‘ntoaztl.w'nrlghfrtl-wlnboLtOM) ’
textattr{ti.attiribute) s
gotoxy(tiscurxstiocury)

return o
b,

void raad_fron_file(void)

L)

int firmisn = NC, donsz = NOC /

int x ¢

long ant 1n

struct qual_name »qg 7
fscanf(frm_ndx_fo,"%42d %d\r",31n,8x) 7
1f{(fzof(frm_ndx_*fp))

4
.

clrscr()
prantf("abnormal end of \"¥s.GO0X\"..... ABORTING..\n",file_name) ;

.

exit(1) ’

>
else
{
curr_gan = 1n ; ~
curr_gualifier_no = x
}
iflcurr_gen > 1)
{
wnile{!finishy
{
g = cet_qual_node() 7
finish = gdx_rz2ad{a)
1if{ldcna)
{
1f(finish)
dona = YES ¢
gpr_read(q) ; _
gualifier_treze = add_cualifier(grqualifier_tree) 7
>
3
}

read_relations{() 7
return

»
o

1int cdx_read(struct qual_name *¢)
{

long 1nt 1n

in* x

struct name_tree *p = NULL 7
cnar txt[MAX_LENGTHI 7 '
fscanf(fra_ndx_fo,"42{*\nd\r",txt) 7
g=>name = duo_str(txt) 7
fecant(trm_ndx_Tfn,"%1d\n",&1n) 7
gq=>iine_gpr = 1ln
fscarf(frao_ndx_fp,"%Zd\n",2x) +
fer(; x >0 ; --x)

{

p = get_name_nodz() ;
r

link_read_cdx(pn) 7
add_name_to_aualifier(g=>nzner,q) J
frame_tr2e = ada_framg(p,frame_tr2e) /
no_qual_tr2e = add_no_qual(o,no_guali_tree) 7

2
1f(feof(frm_ndx_*fp))
return YES

3]

al

M © 4

turn HO 4

3w

int link_read_gdx(struct name_tree
1

char txtIMAX_LENGTHI ;

int finish = HhC, x &

long int 1n /

fescanf (fra_ndx_fp, "% \nd\n",txt)

p~>namz2 = dup_str{txt)
fscanf(frin_ndx_fe,"%d\n",ix) 7

p=>qualifier_no = x ¢
fscanf(from_ndx_fo,"%ld\n",81n)
p=>lin2_gen = 1ln

return finish ;

.

int gor_read(struct qual_name *g)
{
int x »
char txtIMAX_LENGTHI ;
fscanf{fra_pr_fp,"%«{*\nJ\n")
the

~a

fscanf(frm_pr_fo,"%d\n",3%x) ;
for(; x > 0 7 =-x)
<
fscanf(frm_or_<po,"%4I*\nl\n",tx1)
qual_parent_zadd(txt,q)

-~

J
if(feof({frm_pr_fp))
return YES »
else
return NO

x13t_framelchar »txts struct

e
nt search_*fer)

N A

nt
1

-

cnar *nama_only -
int test ;
struct qual_nare *curr ;
*p = NULL
*q o= NULL S
iflsearch_for == CHLD)
{
for{curr=gualifiar
-

trae , curr ;)

-

urr=>right /

(=]
~h
—~
—~
~+
D
n

o+

H

curr=>left

curr
return YES

*xG =

3

raturn NJ #

n

el

2 / x

<
S

s2arch_for == PARENT =/

nana_only = neme_get(txt) ;
tor(curr=qualifier_tree ; curr

*p)

*

’

.

!

)

/% As "qg" already contains

gualifier names */

name_tree **p, struct qual_name **xg

stricap(txtscurr=>namne)) >)

{
1f((tast = ztricmp(nare_onlyscurr=>name)) > 0)
curr = curc=>right
zlse 1f(test < @)
curr = curr=>left ;

2lse
{
xg = curr s
1f(curr=->no_links =)
{
*p = list_get_name_ptr{(txtscurr=>head) ;
1f(xn 1= NULL)
{
if(curr=>no_parents > ()
return PRNT_CHILD
else .
return PARENT ;
}
else
{
*n = get_frm_ntr(curr=>head=>name)
iflcurr->no_parents > 0)
return PART_CHILD 7
2lsa
return PART_PRNT
. b
else
return CHLD
}
Y /x for %/
return NC J
Y /x elss of if(sesrcn_for == CHLD) */
int gzt _data(voeid) /% ra2turns YES if additions are done & otherwise
x/
{ ' . /% returns NO
*/
butes = [7

int no_of_att
int exists =
FrdME frm, ~f /
char *temp_txt ;
cener txt{MAX_LENGTHI, gen(MAX_CENGTHI 7
struct name _traz *p, *porenrnt_ptr o/
siruct qual_name xg ;
siruct pargnt_list *curr
int x1, y1s yv2s 1/ Kk &
int error = NO
struct taxt_info tl, t2 7
frm.name = NJLL 7
frmequalifier_no = U 7
frm.no_childs = u ¢
for(i=2 7 1 < NO_CHILLS ; ++1)
frmuochalds{al = NULL
gettextinfo(3tl)
windaow(4,3,23,23) 4
clear_windouws() 7/
gotoxy(d,1) 7
status_windou("Enter a text ending in a verb")

fflusn{s+din) /
cprantf(Mard '
temp_txt =

if(temp_txt == NULL)
{
clrsecr() ¢
goto finisn
1

trim(temp_txt) 7

1flstrlen(tenp_ixt) == 0)
¢oto finish o

strepy(Ixtotemp_txt) 7

free(temd_txt) ’

1t {get_verb_ind(txt) == 0)

i

.

fflusn(stain) ;
status_window("Crror:
y key to continue..") 7

getcn()
status_waindow{("")

"seurr_qualifior_nc)
get_ch_txtlwnerex{) ,uherey(),30,3) ;

Dualifiar name or Verh is missinga..

Press an

following gualifi

i < g=>no_paren

get_frm_ptricurr=>name)

%42d) Zs\n\r'",+

goto finisn
}
exlsts = exist_frame(txt, %5, %a, PARENT)
1flexists)
{
cattextinfo(gt2) -
window(&1,3,77,23)
cirscr{) ;
switch(exists)
{
case CHLD :
case PART_CHILD textcolor (3LACKY 7
textbackground (WHITE)Y ;
cprintf{"Presant in tha
ers :\n\r')
taxtcolor (WHITZ)
textbackground (BLACK) 7
for(i=0, curr = g=>root ;
15 7 curr = curr=>next)
{
parent_nptr =
;
sprintflgen," %2d.
tis, parent_ptr->gqualifier_no, parent_ptr=>namz) -/
corintflgen)
break «
case PARENT :
case PRNT_CHILC
casze PART_PRNT @ goto_lina(frm_fpso=>line_gen) ;
f = read_frm(frm_fp) 7
if(f == NutLl)
< .
sprintfl(gen,"frror in file \"%s.GOX\",.
esn A3CRTING e \n\A")

clrser ()
nrintf(txt)
exit{1) ;

}

disp_frame(f) ;
hrzak 7
} /* suitch(exists) =*/
window{(tZ.winleft,t2.wintop,t2.winricht ,42..winbottom)
textatir(tl.attribute)
gotoxy(t7.curx,tZ.cury)
s /* 1f(exists) =/
1flexists == PARENT || exists == PRNT_CHILD)
{
status_window("This gualifier alrezdy exists... Press any key to ¢
ontinue.."”") 7
fflusn(stdin)
gatch()
coto firish
>
else

{

gotoxy(2,1) ;

textcolor(bsLACK)
textbwcxgrounq(w I7¢)
corintf (" fad Ys\n\r'",curr qu411f1 r_necs txt) ;
textmttr(t1 ﬁLt 1hute) 7
frm.nam2 = dup_str(txt) /
status_window{"Enter attributes o <ENTER> to finish'")
do
{
x1 = wharax() \
v1 = wherey() 7
errcr = NC .
cprintf (" “2d. "sno_of_attributestl)
fflush(stdin)
temp_txt = get_ch_txt{uwherex()ruherey(),25,3) 3
rfltemp_txt == NULL)
brzak 7

trim(temp_txt)

ifls+trlen(temp_txt) == Q)
braak ;

streoy(txt,tama_txt) 7

free(temo_txt) -

ye = wher@y() ;

1f(stricmp(txt,namsa
{

status_window ("Error: Jualifier % attribute names can’t he
Samee.”ress any key to continue')
fflush(stdin)

gatch ()

_get(trmonamz)) ==)

grror = Y&S
>
2lse
{
for(k=2 ; k < no_cf_attributes ; *+ik)
{
iflstrican(txt,frm.childslkl) == ()

~

status_window("Error: Two attributes can’t have s
ame nawes..Pr=ss any kay to continus')
fflush(stdin) 7

gatech() »

v

gt
for{k=yl ; k <= y2 || k <= y1+2 ; ++k)

{

gotoxy{1,k)

zlreol ()

>
ifl2rror == NC)
{
gotoxy{x1,v1) ¢
cprintf (" %ed. 4s\n\r",t+no_of_attributes,txt) 7
frm.childs{fra.no_childszs] = dup_str{txt) ;
t+frm.no_cnilds -
} .
2lce
{

e KENTERD> to finish")

i)
+
¥
~
b
o
-y
+
D
0

status_window ("Enter

getoxy(x1l,y1) 7

-
-

} whailelno_of_attributes < NO_CHILDS) P
1flno_of_attributes > 0)
{
status_window{("Are You Sursz 7 (Y/N)Y')
fflusn{stdiny 7

do
o
surz = toupnar{geten()) 7
Y while(!(sura == Y || sure == “N7))
syre = sure == 'Y* 7 YES ¢ NO
1f(isural
{
free(frmenama) 7
tor{i=0 ; 2 < frm.nc_childs ; ++i)
free(frm,cnilds{1]) 7
gote finish ;
>
}]
elsa
{

freel(frm.nama) 7
for(i=C ; i < frm.no_childs ; ++1i)
free(frm.cnildsliyl) 7
gcto finish
} .
process_framel frm) 7
Y /*x 2lss of ifl(exists =
frea(frmename) /
for(i=d ; 1 < *rm.nc_ch
free(frm.cnildscil)
fimisn :
clear _windows ()
window(tl.winlaft,tl.uinton,tT..winright,tt.winbottom)
textattr(tl.attrinute)
gotoxy{(tl.curx,tl.cury) -
status_window("") ¢

1f{no_ot_attributes

= PARENT || exists == PRNT_CHILD) =/

.

lds 7 ++31)

=3

.
’

P

sur)

[

return YE&> 7
glse
return NO -

Struct namz2_list *curr
for{curr = root ; curr ,; curr = curr=>next)
1
if(stricwo{curr=>namzstxt) ==)
raturn get_fro_ptr{txt)

return NULL &

}
1nt ¢at_voarb_ind(char xtxt)
1
int i
= gtrlen(txt)=1 ; 1 > 0 8§ txt{id '= *° * ;- ==31)

for(i
’
it (e ==)
r2turn NO &
gLse
raturn t+i 7 /% ie 1 plus position c¢f last ° “x/
2
voild gotc_lip2(FILE *fpn, long int lingz_nod
{

long int 1 »

rewind($2)

for(1 = 1 ; 1 < line_nc s ++i)
tscanf(fo,"%x{ "\ni\n") ;

rarurn ;s

7

>

char *namz2_gat{char =txt)

4
int n = gat_verb_ind(txti=1
char *p = Y

r
get_char_array(n’
nstrcpy(2/stx*tsn)

return 3
X
void guas_oarznt_add{char *p_nare, stiruct cual_name *p)
{

struct parzsnt_list *q

g = gat_narznt_node() 7
g=>name = dua_s*tr(p_nane)
g=>next = p~>root
p=>rost = g '

++p=>no_varants

return
3 N
vold add_nam2_to_qualifier{char xp_name, struct qual_name *p)
{

struct nama_list =g

a = get_lin<_noda() ;

- ~

g=>name dus_str(o_nanel ;
a=>next = p~>nzzd ;

p=>head = ¢

t+p=>no_linke ;

return .

truct namne_trez % list _get_name_pgtrichar *txt, struct name_list *root

-
>
-

struct
root)
{
if{roct ==
reot = p
else
{

ramea_

iree

* cdd_no_gual(struct name_tree *n, struct

1t(p=>qgualifier_no > root->gualifier_no)
roct->cual_rignt

else

root=>qual_

-
14
~

return root
b;

struct
t)
{

if(root ==

root = p

else

{

-
s

NULL)D

N
4

ieft

name_1tree *add_framel(struct name_tree *n.,

add_no_uuall{prroot=>qual _right)

add_no_quai(n,root=>qual_left)

struct

1flstricmp(p=>name,root=>pname) > ()
root=>right_name

else

-

retu

)

n
J
S

xroot)
{

[n =
(=] -
03 o~
[V I oY
OO

~ O
Iad

]

il

~~

n reot

NULL)D

4

truct qual_name = add_gualifier(struct qual_name *p,

add _frame(prroot=>right_name)

add_framwe(n,root=>lefi_nama)

1f(stricmp{p=>name,rocot=>nama) > 0
add_gualifier(o,roct=>right)

root-=>right

alse

root->lett

3
e

return root

-
»
-

.
z

= add_cualifier{p,roct~>left) ;

struct nawe_tree * get_fra_ontr{char #*name)

if((test =

curr

2l

-

J

+
Mmoo
2 W
W 0

*

*
|8

|

r
.
ee v

curer ;)

strican(nam2,curr=>namel)) > 0)

= curr=>right_nams ;
else 1f(tast < ()

curr =

[F)
w

U
3
[0}
7]
=~

return curr

“

J

curr=>left_name ;

int w_frama({FRAV¥e xfrm)

name_tree *

e

A TN

name_tree *roo

struct qual_name

1int succzss = YES 4
lnt 10z
seek (frm_forurs3CeK_END)
Drlngf(frm_fp;””‘\n srfrm=>nzve) ;
fprlntf(frm_fp;””l\n /fﬁn >gualifier_no)
ferantf(fro_*o,"Sd\n" s frm=>no_ CH‘ld%) /
for(i=2 ; i < frp- >no_ch11ds ; ++1)
forintf(trm_To,"4s\n",frm=>childslil))
curr_gen += (frm->no-childs+3) ;
fflush (fra_£2)

return succass s

RAMc = read_fro(FILE =fp)

A T

int x s
FRAMZ xtrm

char txtIWwAX_LINGTH] 7

1nt succass Yes 7

fromv = -eTno"e() ;
fscanf(fo,"40°\nl\n",txt) ;
fro->nanz = dup_stritxt)

n

fscanf(frm_to,"ic\n",ix) 7
from=>guelifizr _no = x
f;canf(fof“/l\n”zﬁx) ;

frm=>no_cnilds = x ;
for(x=0 ; x < fra->nc_childs 7 ++x)
{

facanf(tr,"%4{*\nl\n",txt) 7/
fra=>cnildsixl = dup_str(txt} ;
p:
if(lsuccess)
{
fr ee(‘rﬂ->n ma)
for{x=0 ; x < frm->no_cnildz 7 ++x)
fra (TFW'>c5111=_xJ) ;
free(fr ‘
frao = NULL ‘
>
return tra

\

>
int w_Tfrm_or_ind(voia)

‘
-

char toao{(MAX _LENGTHI ;
int success = YIS
int cholce = N7

fclose(frm_ndx_t2)

fclose(fram_or_fp) |
sprintf(temp, "7, 30X",f1la_name)

do
{
choice = "N
fro_ndx_fo = fopen{tanp,"uw")
1f(Frm_ndx _fp == nNLLL)
{
status_windew("Zrror: Unanle to cresate index files.. Retry 2?2 (Y
SN

ffliusn(stcdin)
do

{
¢choicz = toupoer(get

Y wnila(t(choice == *
status_uwindow("")
if{chorce == “N7)

rzturn NO
else

centinug &

—-< O
.

s
sprintf(tenp,"%s.5PR" ,file_name) 7
frm_pr_fo = fopen(temp,"w") ;
ifCtrm_pr_*o == NULL)
{
fclose(frm_ndx_~fpl) 7
status_windouw("Error: Unzhble to cre2ate files.. Retry ? (Y/N)')

fflush{stdin) /
do
e

choice = tounper(get

Y while (! ce == °

status_window (")

if(choicz == “‘N7)

raturn NO

~e

}

Y while{choice == Y
fprintf(fra_nrdx_*fn,"%41ld %d\n",curr_gsn,curr_qualifier_no)
curr_gpr = 1
g_gpr_cdx(qgualifier_trees) ;
return success s '

-

[
~
N

nt w_gpr_gdx{struct qual_name *p)

(X

int success = YES 7
iflpl=-NULL)
{
gor _wip)
gdx_wi(p)
y_gpr_gdx{p=>left) ¢

u_gpr_gdx{p->right) ;

e s

b
return success ¢
b
int gpr_w(siruct gual_neama *p)
{

struct parent_list *curr ;

int success YES, 3 &

p=>line_gpr = curr_gor ; .
fporintf(frm_or_fp,"%s\n",p=>name)
feraintf(frm_or_fp,"%a\r",p=>no_porents) ;
for(i=0, curr = p=>root ! i < ec=>no_parents %& curr ,; ++i, curr = cur
r->next)

-

1
forwntf(frm_pr_fo,"%s\n"sJcurr=>name) 7

/= Later 3 >
tprintf(frm_pr_fo,"%s\n",curr->child_relation) ,; =x/

N
>
4

curr_gpr += (p=>no_parents + 2) ;
return succ=2ss -

-

7 .

int gdx_wlstruct quasa._nomz *p)

"

int success = YES, i

sTruct nama_list *xcurr 7
forintf(frm_ndx_~feo,"%s\n",p=>nzme)
fprintf(fra_ndx_*fp,"%1d\n",p=>line_gpr) ;
ferantf(frm_ndx_*fp,"%d\n",p=>no_links) 7

for(i=0, curr = p=>nead 7 1 < p=>no_links %% curr ; #+%+i, curr = curr-
>next)

gdx_link_u(get_frm_ptr{curr=>name)) ;

.

return succazss

b
int gdx_link_w(struct name_trea *p)
{

int success = Y&S§
fprintf(frm_ndx_fp,"%s\n",0=->nzma)
forintf(frm_ndx_fo," la\n",n=>qualifizr
fprintf(fro_ndx_fp,"%1d\n",p=>l1ine_gen) /
return success
¥
struct gual_name * gat_qu

<

1l _necda(void)

)

struct qual_nare *p
p = (struct gual_name *) malloc(sizeof(struct qual_name)) ;
ift(p == NULL)

{

clrscr() :
printf("Qut of memorv. 2 s ABD

e
4
=
=
o

seaslget_gual_nodel\n
1" ;
fflush(stdin) -
getch()
exit(l) 7
3 .
p=>name = NudLL /
p=>nc_links = g-=>no_parents = 2 ;
p=>iine_gpr = 2 7
p=>nead = NULL -
p=>rocot NuLL
p=>ieft = os=->rignt = NULL 7
p=>travarsed = NO ;
raturn p -,

H

>
FRAME = getnode(void)
{
int 1
FRAME *p -
p = (FRAME *) malloc(sizeof(FRAME))
if(p == NULL)
{
clrscr () ;
printf("Qut of memory. ws s AEORTING sves (getnodeld\n")
ffilush{stain)
getch() 7
ex1t(1) 7
>
n=>namz = NULL
p=>qualifier_no = 7 ;

p=>no_childs = 07 ;

for(i=9 ; 1 < NO_CHILDS ; i)
p=>chilasfCx] = NULL
reaturn p o«
>
struct name_trez * ¢e*t_name_node(void)
{
struct name_treze *p
p = (struct names_tree *) malloc(sizecf(struct names_tre2))
iflp == NuLL)

{
clrscr()
printf("0ut of mamcry. « e o BBORTING veovelget_name_nodel)\n
"y s
fflush(stain)
c¢etecn()
ex1t(1)
}
p=>name = NULL 7
p~>iine_gsn = 0 J
p~>neacd = NULL

p->qualifier_nc = 0
p->iett_nama = p->right_name = NULL

s W

p=dgqual_left = p=>gual_right = NULL
return p
>
struct parent_list *gzt_narent_nodelveic)
.
struct parent_list *p ;
p = (struct perent_list #*) malloc(sizeof(struct parent_list)) ;
itf(p == KULL)
{
clrscer () 7 .
pintf("Qut of memory, c e AB0RTING ses.(get_parent_node)
\n")y
fflush(stdin)
getch() 7
ex1t(1)
}

p=>name = Nolb »
/* p->child_relation = HNULL ; =/
s=>next = MNJLL

return p s

-

»
4

struct name_list xget_link_node(vold)
{ .

sirdct name_list =xp ;

P = (struct neme_list *x) malloc(sizeof(struct name_list))
if(p == NULL)

¢
cirscr() : .
srantf("uut of mamory, ¢+ « ABORTING caealget_link_node)\n
")
flusn(stcdain) 7
getenh()
exxrt (1) 7
>

p=>name = NolbL
p=>next = NJLL ~
return p ;

b

char *natrcoy(char *dest, char xsrc, int n)
{

strncpy(dastsrsrcesn)
destlnl = “\3°

b
FRAME * gat_nm_qguelifier{(cktar * name)
{

struct nane_tres *p

2 = gat_fra_octr(nane) -

1f{p)
{
goto_laine(frm_fc,o=>1linz_g2n)
return raezd_Ffralfra_tp)

-

e
else
‘ return NJILL 4
B
FRAME * get_num_gualifier(int gual_no)
{
struct names_tree *p ;
P = get_no_qualifier_in_tres(gual_no) -
ifip) .
{

goto_lire(frm_fp, p=>line_gen)
return read_fralfrm_Fp)

N

Ve

else
rzturn HNJLL 7

[

truct nane_tres » ¢gat_no_gualifiesr_in_tree{int aual_no)

a2

struct nanz_tree *Ccurr -«
for{curr = no_cual_tree , curr ;)

-
I

RS

[N
3

i f(gual_ro > curr~>gualifier_no)

Jgre = qurr=>gcal_rignt

e 31f(guel_no < ~urr-\q
curr = curr=>aual_l

o

[n)
bt
[e

lifierwﬂo)

7’

@ ru ~ W

~4
-+

ol
el

7]

break 7
b
return curr
X
void disp_no_gualifier(int cu2l_no)d
{
disp_fra
eturn

m

)]

(g2t_num_caualifizsr(aual_no))

>
veld disp_namz_cuclfier{char xnamz2)
{
disp_f*fr
return

0

malget_no_gualifier(nam=))

N

-

b

vold disp_ frame (FRAME #frm)
{

int 1 ;

textcolor{(3LACK)

texthackground(WHITE)

cprantf(" sid Zs\n\r",frm=dquzlifizr_no, fra=>name)
textcolor(WrHilz) '
texthackgrourd{3LACK) 7

for(i=0 7 1 < frm->no_childs ; ++i)

corintf (" PV Ys\n\r",i+1, fro=>cnildelil) 7
return s
>
int srow_guzlifiers(int diso_no)
<

struct text_info ti

int keys x

FRAN: *f ;

char wmegylIMESG

cher xte nc_txl

iflcurr_qualyf
{

~

SNGTHI, txt[MAX_LENGTH] ;

L
.
’
e

i

1t
-
s

ier _no

aindows()
window('"No qualifier’s Entered Yot thus No movement. «aPre
a”) ;

stdin) ;

;

_window("") ;

g

o
o+
3

0

C X M~
C

J W @

U
w)
T
v -+ 3 v
LI A
C ~+ O
\—‘ﬂ'\/l

WD O <
D C

jm ~ T Ull

oW
~+

vt

¥

1f(disa_no < 1 |} disc_no > (curr_qualifier_no =1))
Fg

sorintflmsgl " (E%4d) :No such qualifier no.(nam2) in the database.
«WFrE33 any key") ;
status_window(msgl) 7
fflushnistdin)
gatecn() /
return 0 7
7
gettextanfo(ti) ;
extcolor{WHITE)
2xthackoround(3LACK)
ciear_uwindows () ;
wlnnow(a 3,77,23)
cirscr() ;
disp_nc_cualifier{(disn_nrc)
Sprlﬁtf(WS”1/"pFeV1OUS<%C or %c), Naxt{Zc or ¥%¢), Qualifier #(N), Qua
t1fiar nama(ﬂ)z Ex1t(X)",27,24,26,23) 7

do
{
status_uwindow(msgl)
Tflu5“(stdln) ’
Key = touppar(gstch(J))
switch(key)
{

case ‘N7 : windcw(1,1,80,25%)
status_windeow (")
gotoxy(1,25) ;
cprintf("Fnter qualifier &")
t2vp_txt = get_prob_txtluherex(),uheray(),80~uhe

Ne Na

rex()=2,1) :
1f(temp_txt == NULL)
hreck »
1f(strlan(temp_+xt) !'= 3)

s*trcoy(txtstemp_txt) ; .

frez(temp_txt) 7~

x = atoi(txt) 7

windew(4,2,77,23)

1f{x €1 |) x >= curr_dualifier_no)
’'e

char msgld IMESG_LENGTH]

sorintf(msgZ," (4%d):1No such cualifier no. in
the datanase. eesPrzss any key',x)

status_window(msgl) /

fflush(stdin) ;

getch () 2

di

lrscr() ;
1

disp_no_gualifier(disp_no) 7

~

’
brezk o
case ‘M’ : window(1,1,%0,25)
status_window("")

0

gotoxy(1,25)
cprintf("Enter qualifier name : ")
tgnp_*xt = get_ch_txt(wherex(),ruherey(),80~where

N N

.

x()=2,1) 7
1f(tamp_txt == NULL)
break / .
trim{temo_txt) J
ifi{strlzn(temp_txt) != Q)
strepy (txtsotemp_txt)
frea{tempo_txt) 7
window(&,3,77,23)
f
i¥f

get_nr_gualifier(ixt) 7
£ == NULLD

o~

char msg2lMESG _LENGTHI
sorintf(msg2,"(%s):No such qualifier name in
the database. «asPress any key'",stxt) ¢
status_windowl{msg?d)
fflush(stcdin)
gatch() =«
by
elsa
{
digp_no = f->aualifier_no
clrscr() 7/
disp_frame(f)

O
05
® O
-
><
.

vy

3

©

1

P
~

m
=
—t
[t
x

window(1,1,80,25%)

ver _line(39,3,24) ;
vindow(ti.winleft,ti,uintop,ti.winright,ti.uwin

Y
(]
wy
PN

O O
o
[T I T}

bottom)

-+

t4r(ti.attribute)
(*1 curxsti,cury)

axts
otoxy
2turn disp_no

3w

casz EXTEND
ualifier_no - 1
13p_no) ;
gqualifier_no ~ 1)

i1sp_no) 4

3
whila2(1)

~ -
z 7

;e
vold random_movement (v

¢

{ .
cnar IXTOMAX_LENGTHI

char =xtemp_txt 7
struct neme_treoe 1,
struct qual_name *al,
int as_attraibute = NO
g = KO ,

int keys qual_nc ;
struzt text_info ti

1flcurr_gualifier_no
{

clear_windows () 7
status_window("No
Any Key\a')
tflush(stdan)
getenh() 7
status_window (")
return
>
gettextinfol(sati)
cledar_windows() -
window(4,3,3%,23)
aoe

{

status_windecw("Any

59

/

.
’
.

4

’

getch (D))

03
5]
20

[FI T
[0

(gl g}

,‘
~c
m o
- >

i
e e

>

.

ifldisp_no == 1)

{

diso_no

curr_q

putchar(’\a®) ;

+

else
==cdisp_no s
clrser Q)
disp_no_qualifier (d

-
’

break -

w

DOWN_ ARR
ase RIGHT_ARR ifldisp_no == curr
<
disp_no = 1
putchar(’\a
}

els

;
‘) g
)

t+disp_no
clrser() 7
disp_no_cqualifier(d

break ;
>

break -

o1d?

.

z

i¥

NULL
NULL
lifier

*
4
.
4

it

2 =

NO, display_valid NO, see_chl

Fntered Yot thus No movement. eaPre

text(T), Attribute(d), Rzlated qualifier(R), P2

Sx1t(x)™)
fflush(stdir)
key =
switchr(kay)
{

case

rent(r),

‘A'

.

1ld S.No. ¢ ")

ob_Txt(wherex(),wherey(),?C*m

LL)
1) =)
_txt) 2
o

1fier{p=>nama) ;

chi_nc > tro=>no_childs)

nhildslchl_no=~11) ;

N
“+H
~

1¥(

;
tounper(geteh()) ;

5Witch{as

RTE RN 1 N) S

-y .

1flldisplay_valid)
break

2lse

nerex()-2,1)

default

window(1,1,%0,25)
status_window("'")
wotoxy(1,25)
corintf("Enter any

a
’

~ .

text

asus &s

{

. gotoxy

FRAME *frm
int ¢chl_no
window(1,1,80,25)

~s N

status_window("")

it

(1,25
cprintf("En
temp_txt =

ifltemp_txt == gy

break ;
if(strlen(temp_tx

strecoy(txt,temp

freel(temo_txt) ;
window(4,3,38,23)

chl_no = atoi(txt
frm = get_nm_qgual
iflchl_no < 1]

break ;
strepy (txt,frm=>c

see_chld = YES ;
} .
break ;
see_chld = NO
break ;
") -

tano_txt = get_ch_txt(uherex() ,wherey(),80-uh

erex()-2,1) s

ifltemn_txt == NULL)
braak 7

trim(temo_txt) /

if(strien(temp_+*txt) != 0)
streoy(txtrtemp_txt) o

free(temn_txt) ;

windouw(4,3,38,23) ;

trim(txt)

(get_verb_ind(txt) '= 0) .
as_qualifier = exist_frame(ixt,%p1,%¢1,PARENT
) g
else
as_quelifier = NC ;
as_attribute = exist_frame(txts%p2,802,CHLD) 7
iflas_attribute || as_gualifier)
{
gee_chld = NO 7
display_valid = YES 7
clear_uindows{) ,
)
1f(as_attribute €8 las_qualifier)
{
D= pl s
g = g2 s
textbackground (BLACK) -
text COLOP(NHI E)
cprintf(g- >name) ;
textattr(ti.attribute) 7
disno_attr_infela)
3
else
{
iflas_gualifier &% l'as_attribute)
<
a = gl ¢
D = disp_info_qualifier{asrtxts8as_qualif
i1er)
}
alse
{
ifl{as_attribute & as_qualifier)
) .
int first = YES, finish = NO ;
status_window("Present as both a qu
alifier and a attribute., See zllflcr(l), Attribute(a)™) 7
do
{

fflush{(stdin) /
kay = toupper(getch())

switeh(key)

cese ‘A :p = p2
a = g2
first = NO ;
clear_windows(

Ne N

~r
~s

texthbackground

(3LACK) #

textcolor(WHIT
g) s

cprintf(g=>nan
e)

textattr(ti.at
triputz)
disp_attr_info

(gq)
break ;
case ‘Q° : g = a1 ;
first = NO ;
clear _windows (
)

P = disp_info_

qualifier(gstxtryas_qualifier) 7

break 7

case £SC :

case ENTER &

case ‘T’ : 1if('first)

finish = Y
:SI
break 7

3

. status_window ("Qualifier(Q), Att
Crisute(d), Travel(T)")

} while(!finish)

else
{
if{las_attribute %8 las_gualifier

7
char mesg(100] ;
clear _windows() ;
sprintfimasg,"(%s):No such att

ribute or cualifier, ees.Press any key",txt)
status_window{mesg) ;
fflush(stdin) 7
getch()
display_valid = NO
p = NULL »

a = NULL 7

b
3

bra2ak ; /= case ‘T° x/
caze “C7 1 {f(taiscley_valid)

break
1f(a~>no_links == ()
break
1f{a=>no_linrks == 1)
{

clear_uwindows() ;
as_gqualifier = -1

p T dizso_info_qualifier(grg=>head=>name,&as_qg
ualifi=r)

LN

(]
p—t
]
[{¥)

A~

int correct = NO, 1 7
char a_nol20)

struct name_tree *nt ;
struct name_list *curr
window(1,1,80,25)
status_window (")
gotoxy(1,25)
corintf{"Enter qualifier #")

temp_txt = gat_prob_txt(wherex(),wherey(),8

Se wa

C-wherex()=2,1) +
if{temp_txt == NULL)
break 7
if(strlen(temp_txt) != 0)
strepy(a_ncstemn_txt)
free(tamn_txt) ;
qual_no = atoilg_no)
if(gual_no < 1)
corract NO /
2lsa
{
for(i = 0, curr
links &% curr 7 ++i, curr = Curr=>ngegxt)
{

1f{n = NULL &% stricmp(p=->name, ¢

11

g->head ; 1 < a=>no_

urr=>name) == ()

continue ;
else
{

nt = get_fram_ptrlcurr=>name)

iflnt=>qualifier_no == gual_n
o)
(

, correct = YES 7

D = nt .,
b3

-
»
-

b

status_window (")
if(correct)
7

N

clear _windows () 7
window(&,3,38,23)
as_gualifier = =1

disn_info_gualifier(gsp=->name,&as_qualif

.
’
»

’

s

Sraak 4/ 2

case ‘P 1 if('disnlay_valid)

break s

if(g=>no_parents ==)
Dreaik s

if{g->no_carents == 1)

{

er) s

U=wh2rex(3=2,1) ;

parents

ier) s

bottem)

&% curr ; t+1.,

casze ‘X’
case ENTER
as £SC

’

hreak 7

x e

o~
fun
w

ar_windows() ;
gzt_fro_ontr{g=>rocot=>name) ;
auxl_name_node{name_get{g=>root=>name)) ;
as_dgualifier = =1 7
disp_info_qualifier(g,p=>name,%as_qualifi

(&)
1

i

int coerrect = NO/s 1 7

char g_nol201 4

struct name_tree *nt ;
struct parent_list *curr
window(1,1,80,25%)
status_window("") 7

gotoxy(1,25%)

corintf("Enter qualifiesr #")
temp_txt = get_prob_txt(wherex(),uherey(),8

"

if{temp_txt == NULL)

hraak 7

if(strien{temps_txt) = O)
strcoy(g_nortemn_txt) 7
“free(temp_txt)
gual_no = ztoi(g_no) ¢
iflagual_no < 1)
correct = NO /
alse
{ |
for{i = 0, curr = g=>root ; 1 < ¢g=>no_
curr = curr=>next)
{
nt = get_frm_ntr{curr=>name) ;
if{nt=>qualifier_no == qual_no)
{
correct = YES
B = nt s
brezak 7
}

b
status_window (')
if{cerrzct)

{
clear _windows ()
windew(4,3,38,23) 7
g = qual_name_node(name_get(p=>name))
as_aualifier = =1 ;
disp_info_cualifier{g,p=>name,%as_qualif

»

7

2N

s

-y

/* case

status_wincdow("")

clear_windows () 7
vindow(ti.winleftrstiswintoprtiswinright,tizwin

textettr(ti.attribute) &
gotoxy(ti.curxs,tivcury) 7
return

1int show_super_attributes(struct qual_name *g) /* g is "gualifier_tre
a'' x/ ’ .
{ /* when it’s called fi
rst =/

int finisn = NC / '
1f(curr_gualifizr_ro

11

"
-
s

clear_windouws () ;
status_window("No qu
Cre

-

t

n 0y

liflier’s Entered Yet thus Nc¢ Super Objects.
55 Any vey\a'")
lush(stdin) /
ten()
ratus_window (")

gturn Y=S

.

finisn = shouw_super_sttributes(g=>left) ;
1f(!finish)

{

if(g=>no_parents == ()

{ .

int kay 7/
clear_windows() ;
windouw(4,3,38,23) 7
tcxtcolor(BlACK) H

exthackground(WHITE) ? ' _ ,
bprlntf("uttrloufp nasre :\n\r') 7}
texthackground{3LACK)
textceoicr {(WHITE)
cprintf(". %Zs", a=>nzame) ;
disp_attr_infalqg)
textbackground (YELLOW)Y
' status_windouw("®r2ss asny koy to continues weese<ESC> to Exi
") s '

.

finish = shouw_suwn2r_attributes(g->right)

1nt show_zacn_attributes(struct aqual_name =*xg) /f* g is "qualifier_tree

{ : /* when it’s called fi
rst *x/
int ftinisn = NC 7/

1flcurr_zualifier_no

,

{
clear_windouws() 7

thus No. Objects. Pre

.lIII<ESC> to Exi‘t")

1 gual_nams *g, char *name

_cualifier(name))

status_windew ("No qualifier’s Entared Yet
ss Any Key\a'")
fflusr{stdan) ;
getch()
status_window("")
return Y:z5
b
it(g 1= LdLu
{
tinish = show_each_attributes(g->left)
yf(ltinish)
{
int kay
cloar_windows() 7
windoul4s,3,3%,23)
textcolor (BLACK) 7
texthackground(WHITEY
corintf(M"attrivute name \n\r")
texthackeround(BLACK)Y 7
textcolor(wHITE)
cprintf(” Ye'", g=>name) ;
dlss_=2ttr_info(g) ;
taxthackeround (YELLOW) 7/
. status_window("Prass any K2y to continue.
V4
ffiusnletain) »
key = ;etch() 7/
1flkey == “XTENDED)
Jetcn() 7
1f(kay == T5()
finisrn = YES
b2
1f(fipisn)
finisn - show_each_attributes{g=>right) 7
return tinish
b;
struct nams_tre: x diso_info_quelifier(struc
s 1Nt *as_a)
{
struct text_info ti <
struct nam2_%re2:2 *xp
struct gual_rare *xgl1 7/
gettex+1nfo(ti) 7
xas_a = ex1st_franalname, p,2q1,PARENT)
a = al »
switch(xas_a)
{
cas2 TARENT :
casa PRNT_CHILD
case CHLD 2 = get_from_pitr(name) ;
disp_ frame(“ﬁt _nm
diso_ ttr_lnto(q) ;
break -/
ase PART_CHILS :
case PART_°PnT 1 oo = NULL «

sindow(4,3,36,23)
recr() 7

gxtcclor (WHITE)

x 3ack round (3LACK) 7

corintf("%s\n\r",name)
tsxt ttr(ti.attribute)
cerintf(" No such attribute or qualifier™)

© D e po

P o)

Ns wa

~a

disp_sttr_infolg)
break

i

b
status_window("") 7
window{ti.winlaft,tr.wintoos,tiswinright,tiswinbottom) 2
textattr(ti.attributel)
gotoxy{ti.curxsti.cury) »
eturn p s

3
P

vold disp_attr_info{struct cqual_name *qJ

{
int i
struct text_infs t1 7
struct nam~_tree xp s
gettextanfol(atid) /

.

gindow(41,3,77,23)
1t{g=>nc_parants)
{
struct narent_list *curr ;s
textcolor(bLACK) 7
textbackgreund{(wrITE)
carintf("?resent in following qualifier(s) :\n\r")
textcolor(4HITE)
texthackground {RLALK)
for(curr = a=>root, 1=0 ; curr ; curr = curr=>nazxt)
{
2= ge2t_frm_ntr(curr=>namel

=

corintf (" tod. (872d) %s\n\r",++i, p-dqualifier_no, p=>name)

}
b
itlg=>no_linke)
<

struct name_list *curr ;
1f{g=>no_narznts)

cprintf("\n\r")
textcolor(5SLaCK}
texthackground(WrITE)
corintf("lelated zualifiers :\n\r")
textcolor{wHITE)

»

texthe ckground(ELACK) ;

for{curr=g=>hza 1=3 5 curr ;7 curr = curr=>next)
{
D = ga2t_frm_otr{curr—>name) ;
corintf (" %dd. (&#%2d) Zs\n\r'",++i, p=dqualifier_no, n->name)
;
by

hi
gindow(ti.winleft, t1.wintocstiwinright,ticwinbottom)

textettr(ta.attribute)
gotoxy(ti.Curxstiecury) 7

J

return 7

struct qual_name *qual_namwe_node(char *g_name)

1

by
1
L

struct qual_name *curr
int te2st ;
for(curr=gualifier_tree ; curr ;)

{

if((test = stricap(g_namescurr=>name)) > 0)
o curr = curr=>rizht
else 17(test < ()
curr = curr=>left ;

return curr ;
nt find_in_object(void)

int correct = YES, recsult = NO
char xtxt = NLLL
struct text_info ti
cnar *1n_object = NULL, *what_shject = NULL 7
int xsy -
struct qual_name *p = NULL
struct name_list #*relations = NULL 7
if(curr_gualifiszr_no == 1)
]
{

Y
.

N
clear_windouws{()

status_window("No qualifier’s Entered Yet thus No Paths.

Any Keyl\a')
flusn(stdin) -

~h

-

zturn YzS

2

ar_windows{() »

corract = Y&S
status_window("ZIn
window(b4 2,38, 23)
txt = get_ch_txt(
1f(txt == NULL)D

return NC 7
tram(txt)

ter J2stination Oblject")
’

—
~
—
~
W
AW 4]
~
N
3

)

~

1f(strlen(txt) == M)
it
frae(txt)
rzturn NO -
}
2 = get_oYvjyect(txt, cuzlifier_trea)
1f{2 == NULL)
{

int cneoica
status_window("No such ¢hject in the KB,
o

{

Retry 7

CY/N)'™)

Press

.

fflusk{stdin)
choice = toupner(get
—— — ,

ch
~wnila(!(croice N’

vt

LS

[¢Y]
p
o
x
~+
~
~

< h

o finish

QN+
t
+

e 2
(o

r

~

choice == ‘N7
t

FJ
B) 4 XY

©
n
{0

corra2ct = NO

[{}]
[
v N

-

wnat_object = duon_stritxt) -
frea(txt) ;

txt = NULL /
wincow(al,3,77,2%)Y
textcolor(3LAaCK)
corintf ("SESTINATION : ')
tex*tcolor(WHITF)
cerintf("Xs\n\r" ,unat_chject) -
x = wherax{) 7

; .

H

erey ()

W

Y wunile(lcorrect)
do
{
correct = YES
status_window("Enter Scurce Object'")
mindO.JCLIZ\/zO/.,B)

i
e

AT

Txt = gat_ch_txt(1,1,35,20) 7/
1€ {txt == NULL)
<

int cnoice -
correct = HQO ;

status_windeocw("Ratry 7 (Y/N)!") 7}

<]
{
Tflush(stcdin) 7
’ choica = toupper{gatch()) 7
> snil2!{cnoice == ‘N” || choice == ‘Y)) ;
if{choicae == “‘N7)
{ .
e2(uboat_ocoject) -
gote flnl:n ;
>
>
else
<
trim(txt) 7
1f(strlen(txt) == 2)
{
int cheoice o
frea(txt)
txt = NULL »~
corract = NC -
stoetus_waindow("Reatry 2 (Y/N)") 7
) -¢lo
<

ffiusnlstcdin)

choice = *oupper(gztch()) 7

> wniled{!(choicas == ‘N’ || choice == ‘Y*)) ;
1f{choice == "N°)
{
freze(whet_conject)
‘goto finish »
s
}
else
{
1f(stricmp(4txt, what_object) == ()

status_window("Source % ODestination Objects are same.

e Press any kay'") ¢
fflusn(stdin) 7
geten()
corrsct = NO

status_window("")
continue

()

get_object(txt, qualifisr_tree) -
NULL)

P
1f

{p
{
i1nt cheice »

status_window("No such object in the KB, Reztry ? (Y/
NYY S

a0

fflush{stdin)

choica = tcupperfaetch())

3 whila(!'(cheica == ‘N’ || choices == “Y*)) ;
se{txt) 7

+ = NULL ¢/
{choice ==
{

_chjec dun_str(txt) 7
e2(txt

t = NULL
window(s1,3,77,23) ;
textcolor{BLECK) °,
gotoxy{x,y)
corintf("\n\rSOURCE :+ ") ;
textcolor(4dITE)
corintf("%s\n\r" ,2ar_object) ;
X whaerax()

y = wharay() ;

t =
) ;

in
fr
T X

N
it
.~

L

LY
>
4

»

> whilz(lcorrzct)
status_window ("cnter ralation(s) for search (<KENTER> or <ESC> for gen
eral aewrrh)”)
window(4,3,37

.

tram{txt) 7
1f{strlen(txt)

{

1

1t
[gn]
~r

elations = NuytlL

(D]

fo—)

[

D -3
)

char =temp
struct nama_lis
tenp = strtek(t
unilegtemp)
1f(relations == NULL?

{

n = g2t_link_ncde()

n=>ramz2 = dup_str{temp) 7

relations = tail = n

+ xn = NULL, =*tail = NULL
xt,", ") »

N

als,
struct name_list *curr
for(curr=relations ; curr ; curr = curr=>next)

1f(stricmp{tamprcurr=>name) ==)
breesk

link_node () 7
= gdup_stri{temp) ;
xt = n /

v

temn = strtok{\NOTL",)
b3

txt)
NULL 7

[
-

H o~

fra
txt
>
window(%1,3,77,23) 7
textcolor (3LACK)
gotoxy(xsy) 7
carintf("\n\rRaL TION(S) D B
1f(relations == NuLL)
<
taxtcoior(CYAN) &
corintf("GENERAL SEARCH")
3

struct nawme_list *gq = r2lzticns

textcolor(uwHITE) 7

corintf("%s",qg~>name)

G = g=>next

for(; g 7 a=g->next) .
corintf(", %4s",a=->nzme) ;

3}

P

wincow(4,
clrscer()

stetus_window("Plgase wait eawsess Iam searching"”) 7
res_stack = cat_ztackl) 7

init_ongects{qualifiar_1r
°

-

Loy
“r<3) s [}

Lre

7

e

£

result = find_out{uwhat_
1f(result == AC)
1"

) -
cts in_objects, relations)

status_uwindou('"No link batween thz Source and Destination. seaPr
@ss any kay")
fflusr(stdin) ;
geteh()
status_windouw("") 7
>
else
{
status_windgow("Peth batween the Source and Destination, esePre
53 anhy key'")
window(4,3,%32,2%) ;
patn_arntlres_stack) 7
fflushistdain) 7/
getch ()
status_windeow (") /.
2
ifl{result)
res_stack = Nolo s
freelunat_ocoject) 7
fres{an_oojact) ;
list_dispose{relations);

=

relations = NubLu -
‘.

i

-+
e

window(ti.winleft wintop, ti.winright, *ti.uwinbottom)
text=tir(ti,attri ‘

cotoxy(ti.curx, ti.cury)
return rasult J

-

J‘ '

struct qual_nzawe =xget_onizct(char *names struct qual_name *root)
{ .

struct gqual_neme xcurr = root
int test ¢

for(; curr ;)

{

1f((tast = stracmp(namas,curr=>nare)) > 0)

curr 3 curr-o>rignt ;
elese 1f(tzst <)
curr = curr=>left ;
2ls2
Dreak

>

r2turn curr

ry < N

>

v

P

AS

~

’
v
1

o1cd list_disnose(struct nama_list *p)

it{p)
{

1Y

list_daspos2(p=>next)

free(2)
p = NULL
2

return

o1c¢ anit_objyectsistruct zual_name *p)
1f(p)
{
p=>traversed = NO ;
init_objects(p->12ft) ;
init_onJects{p=>right) ~
2}

return ¢
o1¢ path_prnt(STACK *S)
int 1 7

crar *part_ras 7
for{i = J 7 lampty_ t ck (S) 7

{
part_rés = pop(S)
textcolor(RLACK) -
textbackaground (wHITE) 7 :
cprintf(MZ2d. %s\n\r", ++i, part_res) 7
freelpart_res)
part_res = hNULL /

e

N
1int find_out(char xwhat, char *in, struct name_list *ralations)

L

int no_cnilds, found NO 7
char *gual_verb = NULL

struct gquai_nema %o = NulL
struct name list *curr = NULL /
FRAME *p = NULL 7/

g = get ﬂbject(ln; urlifier_trez) ',

1f(g~>traverssad)

*

return NQ 7
else

w

g-=>travers
for{curr = qg=>* ead ;
<
1f(r2lations == NULL)
qual_varb = dud_str{curr->name)

’
urr &%y Yfound J curr = curr=>next)

2ise
{
struct name_list *r = NULL 7/
for(r = relations 7 r ; r = r=>next)

gual_verb = c¢et_crar_arrey(strlen(in)+strlen(r=>name)+3)

sorintf{gqual_verb,"%s %s",insr=>name) ;
iflstricmoCaual_verbscurr=>name) !'= 0)
{
fres(qual_vern)
gual_verb = NULL /
continue /

¥
else
break -
)]
1f(gqual_verb == NULL)
continue
}
o = get_nm_gualifier(qual_vern) ;

-

for(ao_cnilds = 0 7 ne_crilds < p=>no_childs &% !found ; *++no_chi
Lds)

1

~

if(stricmp(uwhatsn~>childslno_childsl) == 0)
{

tound =Y
) path = ge
Lno_cnildsl) + 33 7
sorintflpath,"7s
push(patnsra2s_st

(@]
TN,
oy

r_array(strlen(aual_verhb) + strlen(p->childs

)

s;/aual_verb/D‘>childstno_childs]) H
k) ;

';‘/]
ac
tree{path)

>
}
1¥ (1 found)
{
tfor{no_cnilds = 0 ,; no_childs < p->no_childs && !found ,; *++no_
chilas) ‘
{ _
found = find_out{whztsp~>childsino_childsl,relations)
1¥{(found) '
{
char *path
path = get_char_zarray(strlanl{gual_verh) + strlen(p->chi

ldscno_c¢nilasl) + 3) &
sprintflpath,"%s %s",qual_verb,p=>childslno_childs]) 7
push(pathsres_steck) 7
free{natn)
}
>
}
frea(gual_vern) ; .

-

qual_vern = MULL »

}
return founda
b
1nt yet_value(void)
< .

int corract = YES, resuit = NO

char *xtxt = NULL »

struct taxt_info ti ;

char xin_objact = NLLL, *reletion = NULL ;
int xsy

struct gual_namwe *p = NULL 7

1fl(curr_gualitier_no == 13

~

clzar_windows() 7
status_sindou("No qualifier’s Entered Yet thus No Queries. Pre
ss Any Key\a')
fflush(stain) ~
getcn() - -
status_winaouw (")
return YI&% /
>
gettextanfo(iti) 7
Cigar_winaows () 7
do
{
corract = Y=S5 7/
status_wincou(MEnter Objzct name")
windou(bs,7,31,2%) 5
txt = gat_cn_txt{(1,1,35,20) ;
1fF(txt == NULL)D
soto finmisn ;
tram(*txt)
1f(strien(txt) == 0)
{
frea(txt) 7/
¢oto finisr
}
o = gat_oorject(txt, gualifier_tree)
1fip == Nuli) .
{-]
int chaicz «
status_winccw ("o such object in the K8, Retry ? (Y/NI") ;
do
{
ffiushnlstdin) 7
choice = toupper{getch()) ¢
Y wnilae(l(choice == "N’ || choice == “Y*)) ;
frae(txt) 7
txt = NULL s
if(chorice == “N7)
goto finisn
2lse
corr2ct = NC
>
2lssz
{ -
in_cojact = dup_str(txt)
fraao(txt)
+xt = NLLL »
window(41,2,77,23%)
tzxtcolor{FLACK)
corintf("0aJECT "y
textzelor (WwHITZ)
corintf("4as\n\r'",in_ghiect) ;
x = sherex()
y = uneray()
b
> whnila(lcorrect) »
ao

{

corract = YES

-

status_windcw("Enter relaticn Name')
windowl4,%,30,¢3) 2

txt = get_ch_txt{1,1,35,20) ;

1f(txt == HLLL)

{
int croirce s
corract = K0 «
stetus_wincow(MRetry 2 (Y/N)}")
c¢to
{
tfliusr(stdin)
choice = toudper(getch())
Y yhila(t(cnoice == ‘"N’ || choice == “Y’))
1f(chorca. == “N7)

7

fr22(in_object) 7
g0to finmish 7/
>
Gis2
<
trindtxt)
lTés*rlan(t xt) == 0>

1"t choica s

S frez(txt)

txt = hUiLlL -

carract = NO

status_wandow ("Retry 2 (Y/N)") 7

fflusn({stdin) -
checice = tcecupperlgatecn())
s owrila{!ll{cheice == "N ||
1f¥(cnoice == ‘N7°)
{
free(ir_object)
co*o tinish

>
b
2ls2

4
char *t2m3 = NULLL
t2an = strtok(txt,"s, ")
relation = duv_str(temp)
free(*xt ;
txt = NULL S
”1nccw(q111/77/23) ’
textceclor{(BLACK)
cotoxy({xeyd) 7
coerintt{"\n\rIELATION : ")
textcoror(wHITE)
carintf("’s\n\~",rela*tion)

b

>
Y wnilz{lfcoarrz2ct) .
winoowl(d,5,5%,25) 7
clrscr ()
status_window("Plzos?2 wol*t sieuses lam searching'™)

0

init_objectslaualafrier_tra2z) /
resvlt = valuz_find(in_object, relation,1) 7
if{rasult == NC)
{
status_window("Cannot find any Value, .. .Prass any key\a")
tfflush(stdain) ;
getch()
status_window("") ;
>

clear_windows ()
free{an_oaject)
free(relation) ;
finish
Jindos(ti.winlaft, ti.win%top, ti.winright, ti.winbottom) 7/
textattr(ti.attribute) 7
gotoxy(ti.curx, *i.cury) ;

raturn ra2sult

e wa

-
»
-

1nt valua_tind{char *chject, char *relations, long int tries)

{

int no_chald=, found = NC ;
char *qguai_vars = NULL -

struct gual_nzas *g = NULL /
struct name_list *curr = NULL 7

RAME %5 = NJLL ;
1f(tries == 1) /* i.,2. First CALL */

{ .
++tries
g = ga2t_ooject(objectraualifier_tree) 7
if{g=>traversad)
return V¢ ;
else
gq=>travesrzed = YES |}
qual_varn = g2t _crar, arrmy(trlen(object)+strlen(relation)+3) ;
sorintflaucl_vern,""s " s",objectsrelation) ;
for{curr = g=>nzad 7 curr §& ! found ; curr = curr=>next)
{
1f(stricmp(gual_varbscurr=>nane) == 03
{
found = YES 4
> T 32t _no_gualafier(gual_vern)
froe(oual _very) 5
gual_varb = NoLL
windew(4s,5,3%,23)
taxtcolor{wAIT) 7
texthbackgrouna(3LAZK)
corintt(M"VALUELs) \n\r")y
toxtonackground (YELLOW)
taxtcolor (CYAN)
for(no_childs = C 7 re_childs < p=>no_childs 7 ++no_childs)
corintf("%2ds ¥s\n\r'",no_childs+1,p=>childs{no_childsl)
;
5ttus_window("Valuz 12esevess Press any key to continue.
casass'')

ftlusnh(s+din) 7
gaten()
strtus_windsw (')
return found 7/

e{gqual_varh) }
gual_varsp NULLS
qual_vary

N

ay(strlzn(object)+strien{"instance”)+3) ;

r
sprintf(qual _verb,"%s instance',objzct) /
for{curr = g=>head 7 curr ;7 curr = curr->next)
{
if(stricaplauali_verbscurr=>name) == ()
{
found = value_*find{aual_ varb,relatlon/trlea) ;
free(gual _ verh) H
qual_vszrb = NULL /
raturn found ;
+
3

4
free(gual_verb) ;
al_verb = RULL
return NO ; /+ No inztance relation ¥/

elea /* Now object passad is "object"+("isa" or "instance) =/

{
struct nama_tree xtamp = NULL 7
qual_verb = namz_gatlobject) ;7 _ .
g = Jet_chjzct(aual _verbrgualifier_treze) ;
1ft(g=>traversed Ji triass++ != 2)
{ i
fres{qual_vernh) 7 v
gual_verb = NULL /
return NO
A Y
b
else

->traversed = YES
R get_nm_ gualifier(object) ;
tor(ho_childs = 0 J no_childs < p->no_childs 8& !found ; ++no_ch
1lds) '
Z .
gqual_verb = get_char_array(strlen{p->childslno_childs])+strl
enl{rzlation)+3) ‘

sprintflqual_verb,"%s %s",p=>childs{no_childsl,relation) ;
temp = getr_TFra_ntr(auzl_verh)
ifltamp)

{

found = Y&S 7

p = get_nm_gualifier(qual_verb) 7

sindow(4,3,3%8,23) ;
textcoler(WHITZ)
texthackground (BLACK) 7
corintf ("VALUE(s) \n\pr")

axthackground (YFLLOW) 7

textcolor(CYAN) 7
for{nc_childs = 0 ; nc_childs < p=>no_childs ; ++no_child

s)
corantf("%2d, %s\n\r",no_childs+1,n=>childs(no_childs

i)

status_window("Value 15casaes. Press any key to continu
Convnnens') 4

fflush(stdin) 7

cateh()

status_window('"")

return foung

[T

el

i;)
{
free(gqual_verb)
qual_verh = NULL /
>

b
for{no_chilas

1]

O 7 ro_childs < p=>no_childs &% !found ; ++no_ch
1lds)
{
qual_vearb

en("isa™)+s)

H
)

et_char_zrray(strlen(p=->childs{no_childs])+strl

sorantf(oual_verb,"%s 1sa"”,0->childslno_childsl) ;

temp = gat_frm_str{auzl_verb)

1f(temp)

found = value_find(qual_verbsrelationstries) ;
>
raturn found ;
>

),
void process_frame(FRAME *p)
{

struct gual_name *a, *s
struct naw2_tres *n, *pr
int 1, present ;

cnar *name = NULL ;
name = namz_get{p~>name) ;

N N

g = get_cojzctlname, qualifier_traa)
if{g == NULL))
{

g = get_qual_nodz() ;
g=2nan2a = neme
gqualifier_tree
3
n = get_name_ncde() ;
n~>name = dun_strlp=>dnamz) ;
pP=>qgualifier_nc = n->qualifier_no = curr_cualifier_no++ ;
frame_tree = add_frame(~,frame_1trea)
no_gqual_trez = ado_no_auxl{n,ne_qual_tres)
add_name_to_auelifiar(n->namegr,c)
fili_relation_tree(n) -/
for(i=0 ; i < p->nco_chiids 7 ++1)

.
-

TR

add_qualifier{g, qualifier_trez) /

14

present = 2xist_frame(a=>childs{il,*r,3%s,CHLD) 7
it{loresant’
s

~
.

s = get_gual_noda() 7
s-=>name = dup_str(o=->cnilds{il) ;
qualifier_trez = 2ad_qualifier(s,qualifier_tree) ;
b
gual _parent_add{p~>ncma,
b
n=>line_gen = curr_gen ~
u_Trameln)
retern
b
vold frea FOAME(FRAN: *2)

1

Wy
-~
e

[*xx% RE_ATIONS.C *»%x/

gincliudez "shz2ll.n"

gxtern FIle **frm_ral ;
extern cnar file_ram2Cl 7
RELATIONS #»r2letion_troe
/* In Jotn2r Filss */

char =nama_ge*(char *) ;4
int get_varn_ind(char *) 7
char wdup_str(char *) -
struct nana_list +g24_link_no«
vold status. _windouf{char =)
char *get_ ch_txt(znk/ int, i
char =xtrim(cnar x)

/* 1n Thig File =/

void fill_relotior_tree(FRAME *x) 2

RELATICNS *ge+t _RIL ATION nodelvoid)

RELATIONS *aﬁﬂ_rexctloq(mclﬂTTONS *, RELATIONS *)
RELATIONS =22paTICw3_gat(char *)

vold add_left_ralationr(char %, RELATIONS =*) 7

vold add_rignt_raletion(char *, RELATIONS *)

int write_ral-tions(void) 7

1nt w_rel(RSLATIONS *)

int rel_ w(R-LlT’“Pb *)

te(veid) 7

ntr int) o

ant _relations(void) =/
RELATIONS ureaa_one r2X(vec1rd) 7
struct nana_list *laft_list_relf(char *) ; -

struct name_list 1right_1ist rel{char *)
void d¢splay rel_list(char *, int) ;

vold dxso_re;_list(struct name_list *head)
void show_relatior_irfolveld)

int can_left_zidel{char *, char *) ;

int can_richt_sia2(char *, char x) ¢

volid fill_relztior_trea(FPaMt *p)

-

4

int 1, 1nd = gzt
ReLATIONS *r = K
shar xnams
1f(r == NJLL?

~
.
L

.

verh_ind(n=>nzmne) ;
LATICNS g2t (n->name+ind) 7

.
r

r o= get_RKRTLATICN_nca2() 7
r=>atsripute = duod_strio=>nama+indl)
relation_t*rze = gdd_r=lation(r, relation_tree) 7

-~

),

name = name_get(n->nam2)

add_left_relation(nane,r)

for{i = 0 , i < v=~>po_cnilds ; ++i)
add_ricght_relation(a->childslil,r) ;

Or"\

}
RELATIONS *get_RELATION_nod2{void)
L

ReLATIONS *o &
p = (RELATIONS «) malloc(siz2of(RELATIONS))
1tp == NJLL)

{

.

Aariat < ("\ILT OF MEMCRY, ABORTING ! eealget_RELATION_node)')

lﬂ) ‘

fflusn (st
getch()
ex1t(1>

>
p=>attribut
p=>nc_left

i

NULL ;

p=>no_right = 0 ;
p-=>left_he2d = p->right_haad =
p~>left = p->richt = NULL

.

return P

i w

L

RELATIONS *xadd_relation(PFLATIONS xp, RELATIONS *root)

{
if(root == NULL)
root = p

else
{
if(straicme(n=>attrinvuter, root=->attribute) > 0)
root=>rid®ht = add_relation(prroot=>right) ;
elsa
root=>left = add_relation(prroot=>left)
}

return root -

} .
RELATIONS #*RcLATIONS _get{char *zttributa)

ReLATIONS *curr = relation_tree !
int tezst
for(,;, curr ;)
<
1if({test = stricmp(attribute, curr=>attribute))
curr = curr->right
2152 1f(test <()
curr = curr=>izft
alse
break -
g
return curr ;

J
void add_lzft_relation(cher *pama2, RFLATIONS *r)
{
sStruct name_list *p
itl{r=- >*bft_nead == NULL)D

{
P = get_link_ncde()
PW=>nams = dunwst ri{name) 7
r-=>lsft_nh» = 2
t+r=->no0_12 tt ’
>
else
{
struct newa_list xcurr = r=>left_head
int tz2st
if((test = stricmo(namas,curr=>nam=)) == ()
return
@ls2 if(test < 7)
{
p = cet_link_nrod=2{() 7
c=>name = dus_stri{namz) ;
2=>2neXT = r=>le2ft_head ;

>

0

r=>left_nead
tHr=>no_l2ft
return

it
3
~a

Nyl

L]
[y
t

2
{
struct name_list #*prev ;
for{curr=prevar=>left_hzad ; curr ; prev = curr, curr
= curr->n2xt)

<
if((te2st = stricmo{names,curr=>nama2)) == () .
return
zlse if(test < O)
break =/
b
p = get_link_nzde() »
p=>namz = dup_str(name) '
prev=>nex*t = p
p=>next = curr
t+r=>no_latt ;
return
3
b
-t
vold add_rignht_relationl(char <*nam2, RELATIONS =*r)
{
struct namez_list *o
if(r=>right_nead == NULL)
{
o = gat_link_node()
J=>nang = dup_stri{name) ,
r=>right_rzad = p -,
t+r=>no_rigrt ;
>
2lse
{
Struct rere_list *curr = r=>right_haad 7

= ztricap{nane,curr->nam2)) == {)

ra2turn
elsas 1if(test <)

{
W T g2t_link_node ()
p=>ngmas = dup_str(name) -
p2=>n2xt = r-=>right_head s
r=>right_read = 2 7
t+r=>po_richt ;
raturn s
3

2lze

7
sTruct reve _list *prev

for{curr=crevsr=>right_head ; curr ; prev = curr, curr

{

1f((test strican(namescurr=>name)) == 0)
return
else 1f(test < 0)

break ;

D = ¢g2t_link_noda()
p=>name = dup_strname) 7

+ .
¢ o~ D s

[v]
-3
4]
<
]
v
2
3]
x

p=>next curr
T+r=>no_rigcht ;
return ;

3
b3
}
int wrlte_relations(void)
{

cnar temp{MAX_LENGTH] ;
1nt succzss = YES

int choice = “N*

fclose(frm_rel) ;

sprantf(temp,"%s REL"/Til2_name)

do

choice = ‘N’
fro_rel = f
1f{frm_rel
{
status_uwindcw("Error: Unchle to create relation file.. Retry ?
(Y/N)"Y 2
fflush{stdin)
do .
{
choice = toupner{getech())
} while(!{choice == ' IR
status_windeow (")
ift{choice == ’'N7)
return NQ
2lsz

continue

;
an

it O

I}

l""

n(t
NUL

=

;.
choice == “N7))

~ e

}

} whila(choice == “Y") ;
success = w_rel(relation_treg)
return success

7

int w_rel(R ELATICJ) o)

{
int success = YES
ifdpt= wNuULL)

{

rel_uw(p) 7
w_rel(p->left) 7
w_rel(p >right) s
>

eturn success

[

int ral _w(RELATIONS *2)
4

struct namz2_11
int succass = S/, o1
ferintt(fra_rzl,"%s\n",0=>attribute)
forintf(fra_rel,"%4d\n",n->no_left) ;

fer(1=0, cure = p->left_nead ; i < np->no_leoft &% curr ; ++i, curr = ¢
urr=>next)

t *curr g
. .
9

1s
Y
ls

v
S
-

fprintf(fra_rel,"%s\n",curr->name)

Y

>
fprintf(frm_rel,"4d\n",p=>no_right) ;

for(1=0, curr s 9o~>right_h2ad ; 1 < p->no_right &% curr ; ++i, curr =
curr=>naxt)

,

t .
forintf(iry_rel,"%cs\n"scurr=>nama) ;
J (
return 3uccess

int read_relaticons{void)
int succzss = YES
RELATICNS *r = NULL
do
{
r = r2ad_onz_rel() 7
1f{r)
relation_tree = add_relation(r,relation_tre2)
Y uhila(r) ¢

return success
3 :
rELATIONS *read_one_rel(void)
{

int 1 »

char txtIMESG_LENGTHI »

RELATIONS =xp = NLLL s

5
EL
fscanf(frm_rel."20*\nl\n",txt) /
1f(feof(frm_rel))
{
‘P o= get_RELATION_node()
p=2attrinute = dup_str{txt) 7
tscanf{fra_rel,"4d\n",31)
tor(;, > 0 ; ==1)
¢

fscanf(frm_rel,"AI"\nl\n",txt) ;
ada_left_relation(txt,p) 7
3
fscanf(frao_rel,"..d\n",.1) 7
for(; v > 0 ; ==1)

{
fscanf(fra_rel,"%2%\ni\n",txt) ;
add_right_relation(txtr,p)

¥ .

return o

}
else .
return NJLL 7
} .
struct name_list *left_list_rellchar *xattribute)
ReLATIONS *r = RELATICNS _get(attribute) 7
1fCr == NuLl)
return NULL 7
2lse
return r=>l2ft_head
>
struct nans_lis

+

*r1cht_liszt rel(char *attribute)

- -~

L3]

<

-

RELATIONS *r = RELATIONS _get(attribute)
if(r == NJLL)

return HULL s
215

re‘urn r=>right_head ;
)
vold display_rel_list(char *attribute, int left_or_right)
{
struct nam2_list *p ;

textcolor(3LACK)
texthackground (WHITE)
if{left_or_right =2 LEFT)
{
cprantf("The following cccur in left side of \"%s\" :\n\r\n\r",att
ribute)
p o= laft_list_rel(attribute) ;
)
else
{

cprintf("The fellowing occur in right side of \"%s\" :\n\r\n\r",
¥4

p = rignt_list _rellettribute)

) - -
disp_rel_list(p) ¢]

return

by

vold disp_rel_list(struct name_list *head)
¢

struct name_list xcurr = haad /

.

int 1 = 1

textcolor(BLACK) ¢

texthackground(B8ROWN)

cpraintf(" (s, ,its)

texibackground(CYAN)

cprantf(" %s",curr=>name) 7

fer{curr = curr=>next /; curr ; curr = curr=>next)
{

texthackground (BROWNY 7
cprantf(", (LZd)",1i44) 2
texthackground (CYAND &
cprintf (" Ls",curr=>neme)
b3
coprintf("\n\r")
return ;5

.

b
vord show_relation_infolvold)
<
struct text_info ti 7
char *txt ;
gettextinfo(dti) /
window(&4,3,77,23) »
textbackground (BLACK) 7
clrscr ()
status_uwindos("éntar the relation ') 7

txt = get_ch_txt(1,1,20,2)
1f{txt == NULL)
goto finisr’,

{
trin(txt)
1f(3trlen(txt) == M

{

‘Fréaf(txt) ’
z0to tinish
’
5

[T]

7
ndow("(L)eft side or (R)ight sidela')

- .

ffiusn(sidin) ;
cheice = toupper(getch())
> while(!(choice == "L’ |} choice == “R?’))
clrscr () 7
disploy_rel_list(txt, choice == ‘L’ 2?2 LEFT : RIGHT) ;
fres(txt)
status_window("Press any key to continue') ;
fflush(stdin) '

getch()
status_window("")

+
4

W N

e
{
free(txt)
status_windcw("Ne such Relation, .«Press any key to

[13)
[

continuz®) /
ffiush{stdin) -
getch()

status_uincdcuw (") .}

>
finizn : ¢clrscr () ;
window(ti.winleft, ti.wintop, ti.winright, ti.winbottom)
textattr(ti.attributa)
jotoxy(ti.curx, ti.cury) ; (

return -
} .
int can_ieft_sidel{char rtxt, char *3ttribute)
{

leftr_list_rel(attribute) ;

1]

amz_list xcurr, *head

= haad 7 curr s curr curr->next)
1if({test = stricmp(txt, curr=>name)) == D)
return YES 7
else 1f(test < Q)
bresk 7
J
return ND
>

int can_right sidelchar xtxt, char *attribute)

<
-

struct name_list *currs *head = right_list_rel(attribute)

L]

o

lad

ez
v

i

AN

A\ Y}

curr ¢
icnp(txt,

V)

curr = curr=>next)

curr=>name)) ==

a3

[hxkexrx YON=LEARNING MOCULE xtxxtxx/

[Rk ok kKK ok RULES.H xkXrAkhKx [

typedef struct <
char *qual_name ;
1nt no_croices s
struct cnoice_list *head
3} "UALIFIER
typada2f struct method {
char #*mz2thod -
int probability
float result_probability »
struct method *next 7
struct method *same_next 7
> CHOICE
typeaat struct ¢
1Nt var_expr

char *gxpression

char xleft_part

¢har *righ?t_part ;

cnar relation [33 7 /% to accomodate "<>'" */

} EXPRESSION
typedef struct choice_list { ‘
int choice 5 /% =ve choice for NOT choices
* /
ct choice_list *next
LECTION ;
typadef struct progs {
char *namg
int share_ccunt ;
int pass_no -
struct name_list *on_head J '
int re2turn_no
struct name_list *r_kead /
struct pregs *naz2xt s
> EXTPROG -
union gqual_ma+tr {
JUALIFIER *al s
FXPFRISSION *2xpr 7

\ .

Fl ’
union cholica_oxtoron_gual_math {
CHOICZ *ch ;
EXTPRNG *extnrog s
QUALIFIER *xgl ;
EXPRESSICH *expr

~a

typedaf struct ifs {
int fired
-

int act_r ~

1nt which

uniecn qual_math gun ;
struct 1fs xnext ;

struct ifs *laft, *right ;

struct ifs =*xsame_next ;

¥ IF
typeu2t struct *thens
int fired o
int =2ct_rule_no

typedef struct

IF

(V1 20 T3 B ¥3 B 4y

*rule_1if

_extprog_gual_math cagm
*naxt
«laft,

.
’

*right /

~same_naxt »

la
a_n
;

_fired

4

int no_thens ;

int tot_thens_fired
THEN =#rule_then 7

int
str
} RU

typedef struct var_desc

typedef

/
) fe?
typade]

struct res_

=

tack

»

fired
uct rule
LE ¢

{

char *n

char =t

double value s
initialized

int displayed

-
1Ny

*nextrs

ame

xt

no
o]

.
4
.

’

r’

-
’

.
’

.
4

*prav ;

.
rd

int val_accented /

int
struct
} VARTAR
C
int
struct

var _desc *left, *right ;

LE

-

act_rule_no ¢
res_stack

disp_in_res ;

*naxt

} ELEMENT_RULE_STACK ;

‘;)uct {
_ ELEMENT RULE_STACK *tas,
¥ RULE_STACK

*curer _why

.
’

4

J Rk koK K k% NON”'E&QN
RULES.

IEEE R EE T T

Finclude "sha21ll.n"
extern 1n* cudrr_gua
exterr cnar fii2_na

extern VARIAZLE

int readd_variaibles

FILE *v_c_*Tp, *v_cC_
long int curr_dat

ANt pParsing_soiving
int curr_ruls_no =

1nt curr_choica_no

int curr_prog¢_rc =

1Nt new_rulzs_cddad

IF *g_1f_root, *m_1
THEN *a_than_rcots

ctXTPR3G *e_he?o_
RULE *rule_hzad,

VARIABLE =ver_root

*r

*var _head,

thens

ING MOJULE »*rxdxis/

*xkdkkxkw/

lifier_no 7

mel4ll 7

~var_tail -
= NO
ndx_fn

N

—
™

1

1
= NO «

f_root
*m_than_roct, *o_hzad

_tail_then /

il 7

~then, *o_tail_then

*2
ule_ta

f

CHUICE =head_methods, *tail_metnca /
VARIABLE #*v_traz ;
/* In Uthar *19 s */

vold status_sincdow(char =3
crar *get_cnar_array(int)

sid draw(ints int, 1nt, int)
v01d ver Minz(int, 1nt, int)
char *du?_str(char x) 7
void cledr_uwindows(void)
char *trgm(ch?r *)

void disp_tram2(FPAME =) ;

FRAME *g%t_nm_qualifier(char) g
FRAME *ggt_nuv_quelifier(int) ;

char = cl%an_sxoression(char +)
EXPFLSOICY *1f_split_exnression(char *) ;
char x ge _left_part(char *, int %)

int Lf__p— o2_2xpression(EXPRESSION)
10Nt parsa_ exa*(cn ar *)
void look_nbw_vcrlables<5XPQESSION *) 7
vold procgss_ver{chszsr *x) ;

int 2xist_variahlel(char *)

VARIASZ_Z *get_veriablelehzr %)

VARIASLEI *ada_variable(VARIABLE *, VARIABLE %)
VARIASLE *j321_new_variable(char *)

ARTAZLc *pet_VARIABLE _node(void)

volid vars_ra2ad{void)

vold vars_urite{void) s
void free_var~*1st(vA“1A3 Eox)

char *get_cr_txt(int, int, int, int) ;
char wxget_val_var_+txt(aint, ints, int, int)
chnar *get_onrob_txt(int, int, int, int)
char *inpul_choyrces{int, int, irt, int)
struct nanwe_list xget_link_nodalvoid) /
volrd list_dispose{struct nome_list *)
/* In This %1le +/

I x1f_singla_cet(int) 7

vold diso_¢_rule(CualIFIER %3

1nt add_choica(ZUALIFIER *, int, int)

-
’

1% +ga2t _1fs{int =*) ;
THLMN *
THceN x
vold n

izt _thaers(int =)
i 2t{int)

-

(void) 7

w4
J
0}
o9
1y
P
o]
"
-

(

=
volc discerd_rula(RUL® *)
voild 1T_ualrscard(IfF x) 7
volicg A1f_singiz_dascardllF =3 7
vold tnen_disceral(TrHed *3
voird than_3sinale_daiscard(THEN +=) 7
void JUL_<daispoass(LudalIrFler *3 7
vold selecticons_cdaisoose(SELFCTICN *)
voiad SclLolTION_dispos2(3ELICTION *)
vold MATH_cd13303z(LXPRESSION +)
voxrad CHCIZ: _aispos2(CHOICE *)
veilad EPE_dispr2sz(*XTPROG *)
vord new_rule_add(RULE *)
void add_rules_l1ist(RULE *)
veld 1f_na2w_rala_aaa(IF =) 7
void szch_1*f_3da(IfF x)
IF =a2af_q_add_=xr=22(IF <, I %)
IF *x7 _m_add_+*re2(lc *, TF *x)
voild thnen_n2d_roiz_ada(THEN *) 7
vold each_than_z2adc¢ (THEN %) 7
THEN *1Trhren_qg_xzdc_=2trz2{(THEN *x, THEN *x)
THEN *»then_m_=>cdd_tr22{(THEN *, THEN *)
voild then_c_adg_list(TFcth x3
vold then_e_add_.1i3t{(=XTPROG)
void add_tz _m2rtroc_1ist(CHQOICE) 7
void dispg_m_rule(FXPRESSION *)
voxrcd cdisp_c_rul=20LnaIle *x)
vold disp_2_rul20(0XTPROG *)
IF »~gety, I _rouzlvoxrcd) 7
THeEM *g{‘.‘t_T"*':_r‘oc%:*(vnici) ,
SELECTICN »get_SYLECTION_rodal(void)
QUALerEa *a2t _JOGLIFIER _rodelveord)
RULE *cet_RIJLI _rodeflvorad)
SXTPROCG #3732t _~“XTPXCG_nodedl{vozc) 7
CAUICE =*xget_CIHCIC*_nodelvoid) 7
EXPReSSISHN *g21_MATH _~noda2(void) 7
void view_ruizslv~1idl
RULE *no_rulz_getl(int) ;
Rlbz xno_cisp_rolzlint) 2
voicd disp_rul=2(QyLs <«3
volc dispo_1ts(IF =) ;
vold vizw_1f_sin_gla(Ir =)
volcd daisp_thoens(TriN *)
vold vies_then_single(THEN %)
volcd aizo_a1l_ma2thodsi{void) 7
voia di1sp_chocic2(lAQICE =)
CROUICIZ #*#g=t_cnocica2_nolint)
void rules_writzl(void) -
int cne_rulez_urit2(RULE %, FILE =)
1nt 2fs_wrate(IF *x, FILE %) ;
1ntT tnegns_uwraitedl{ThreN %, FILE «)
int cnz2_r1*_writz2(IF =, FILE =3} ;
int ong_tTraen_ur1t2(TrRZEIN *x, FILE =) ;
int GUL_write(QULALIFIER =, FILE *)
1int IFR_write(EXTPRCG =*=, FILE *) 7
int CrHz_writ2(CH0ICE *, FILE =x) 7

we N

int HATH _write (EXPRESSION *, FILE *})

S
void read rulzs(veoid)
F

’
RJULE #*rzadg_onz_ruia(FILE =) 7
I° *xread_1fs{int, FILE =) J
THEN *r=aa_thans(int, FILF x)

2
I x1f_cne_razd(SILE %) 7
sn_on2_r2ad(FILE *)
K * Lul_read(cILE *) 7
xTpR_razd(FILE *) 7
CHUICE *lHe_read(FilLc *)
EXPReSSION *MaTH_reed(FILE *)
vold Ccoy(char x, char x) 7
vold ext_all_diso(veid)
EXTPROS *g2+t_srocg_nolint) 7
EXTPRCS xname_ext_prog_getlchar *)
17 *1f_singla_¢2t(ant key)
{

cnar *ch tx
char s <

t 7 /xtxtIMAX_LENGTHI*/
ST_LENGTHI

t_info t1

t = YES, done = NO / .
int gual_no = 1, x, x1, y1, tyre_choice = YES, no_choices = Q ;
IF *rule_1f = Null »

JUALIFIER x5 = NULL

EAPRESSION xo = NULL 7

FRAME +f = NuLl

gettextinfoliti) ;

window(42,/3,77,23)

switch(kgy)

{

s

L]
w
(3]
3

;7 aqual_no = 1 ,

1f{curr_gualifier_no > 1)

f = get_num_qualifier(oual_no) 7
elser
b \
\ status_uwincdow('"No Qualifiers added y2te saal.Pr
@ss any ny.”) ; '
\ fflush(etdin) ;

' gatch () ~
status_window("'")
rule_1if = NULL ;
brezk +

>
clrscr ()
disp_frame(f)
x1 = wherex()
yt = wherey()
cdo
{
done = NO 7
corract = YE ’
sprintf(msg,"Pravious{%c or %c), Next(%c or %c).,
sualifier “(H), Qualifier name(M), Choices(C)",27,24,26,25)
status_window(msg) 7
fflush(stdin) /
key = toupper(getch())
switch(key)
I

~

Na we he

]

)
~+
i
=
(@]
A X

default : corra

(w2
-
(6]
or
-
~-

case £S5C s

ase ENTER : done = YES /
rule_if = NULL
breaks

case “N° : window(1,1,80,25)
status_windcw ("")
gotoxy(1,¢5)

cprintf("snter qualifier #")

fflush{stdin)

ch_txt = get_prob_txt(wherex()

-
’

.
rd

s whaerey(), 5, 1)
if(ch_txt == NULL)
{
correct = NO
break 7

x = atoilch_txt) 7
window(43/3/77,23) ’
if{x <1 || x >= curr_qualifie
r_nol-
{
sprintfimsg,"(%s): No such

gualifier no. 1n thez database. ..Press anry key'",ch_txt) ;
status_windowlmsg) 7
fflush(stdin)
gatch() »
status_window (")
correct = NO 7/
break -

els

(5

.

gqual_no = x ;
z f = get_num_qualifier(qua
1 _nol) ;7 {
clrscr ()
disp_frame(f)
x1 wherex ()
v wherey()

-
»
4

i
e Na N

hreak
case "M’ : window(1,1,80,25)
status _window (")

agotoxy(1,25)
corintf("Snter qualifier name

s N

LD B
fflush(stdind) ;
ch_txt = get_ch_txt(wharex(),
wherey(), s9=gherex()=2, 1) ;
if{ch_txt == NULL)
{
correct = NO ;
break 7
}
trim{ch_+txt) 7
window(43,2,77,23)
ifl{strlen{ch_txt) =
{

H o~

)

gualafiar 1n detabase. ..Press any key'",cn_txt)

cas

flgual_no == 1)
{
qual_no = curr_gualifiar_no =1 ;

putchar{’\a’) ;

>

lse

“=qual_no ;

= get_num_qgunlifier(qual_no) 7
lrscr()

1$p_frame(f) ;

1

wnerex ()

1]

JEEY
1

~w

wherey ()

reak ;

1tlaual_no == curr_gualifizr_no

aual_no = f=>gualifier_no
clrscr()
disp_frame(f) ;

break 7

corrsct = NO ,

break 7
}
= get_nm_qualifier(ch_txt) ;
(f == NULL)
c .

sprintf(msy,"(%s): No such

status_window(msgqg) /
fflush(stdin) ;
getch{}

correct = NO ;

break

3

"

= wherex ()
wheray () ;

ot

key = getch()
switch(key)
e

~

default : correct

- break ;
case UP_ARR :
case LEFT_ARR : i1

d

case OOWN_A&RR
case RIGHT_ARR :

guai_no = 1 ;

x

autchar{‘\a’) |

}
¢lse
ttyual_no /
f = get_num_qual1f13r(qu31_ﬁo) ;

clrscr()

disp_frama(f)

x1 = wherax() ;
y1 = wnear2y() 7/
break 7

/

xts" L")

ken)

f->no_cnilds)

FIER _node()
= dup_sir(f=>namre)

add_choice(p,x,tyne_choice)

} /x switch{key) =*

break 7
status_window("Znter choice no

‘ch_txt = input_choices(x1+2,y1

07
NULL)

no_choices =
if(ch_txt '=
{
trim(ch_+*xt) s
if{strlen(ch_txt) != Q)
{ .
char *next_token ;
p o= NULL »

next_tcken = strtok(ch_t
if(next_token != NULL)

{
if(*next_token == ‘N’

type_choice = YE
x = gtecil{next_to
if(x > 0 8% x <=

{
P = get_QUALI

p=>qual_name

no_choices +*=

‘tr‘tOk('\d'/” ,'")) Iz N

cken)

f=>no_cn1lds)

.
’

CALIFIEZER _noda()

aus_str{f->name)

amz2

= ada_choice(osxstype

¢
;
vices
NULLY */
C)y x/
}
bra
casa ‘M7 o+ do
{
esion, [Varl"™)

uLL)

3
vhile((next_token

S

{

x = atoi(next_t
if(x > 0 8% x <

{

1f(p == NULL
{
Tp = oget_Q
p=>qual_n
}
no_choices +
choice)
>
}
if{p == NULL)
{
clrser()
disp_frame(f) 7
correct = NO
break 7
hs
else
done = YES
rule_if = get_IF_node
rule_if->which = QUL
p=>no_choices = no_ch
rule_if“>qm.qlr= p s
Y /% if{next_token !=
} /x if(strlen{ch_txt) !=
Y/ iflech_txt '= NULL) =/
hreak 7 /* case “C° =»/
}orx switeh(key) */
if(tdone)
correct = NO ;
else
correct = YzS »
while(lcorrect) ; /% do x/
alk s /* cese Q7 */
/* while(!ldone) 7 =/
donz = YES ;
status_window("fnter » logical mathematical expr
ch_txt = get_ch_*xt(x1+2, y1, 26, 14) ; >
iflech_txt == NULL)

-
break

|8
clean_expression(ch_txt)

i

r_txt) ;

T = NULL

if_split_expression{ch_txt) ;
== NULL)

sta2tus_windouw("Erroneous Expression. eeePre
ss any kay to ratry\a') 7/
ffluzsh(stdin)
getch()
free{ch_txt) 7
ch_txt E ONULL
done = NO ;

continuaz

correct = 1if_parse_zsxpressicn(qg) /

i
if{lcorrect)
¢

.

~MATH disnose(g) 7
a = NULL
freaf{ch _+txt)

N

ch_txt = NULL ;
done = NO
continue
>

look _new_variableslg) /
rule_if = get_IF_noda()
ruls_if=>which = MATH »
rulz_if=->am.expr = o 7
} wunile(ldene) ¢
break ; /* case "H™ x/
} 7+ szuitcer(key) *f
wincow(tisvinlatt, tiswintop, ti.winright, ti.winbottom)
textattir{ti.2tirihute) 7
return rule_17 #

y

vold disp_q_rulz(UALIFIER *x3)

1

ScleCTICN *curr ¢
FRAME *trm ;
cprantt (" "5 ",o=>qual_name)
curr = p=>r236 s
1t(curr=>choica < J)
cprintf("N2T ")
frm = ga2t_nm_qualifier(n->qgual_nanz) ;
cpraintf (" s"sfra=>childslabs(curr=>choicel)~11) ;
curr = curr=>next '
for(,curr;, curr = curr=->naxt’
corinst (" or %
cprintf("\n\r") ;

s, fra=>childslabs(curr=->choicel-11)

return ;

}

int add_cho1c2(UALIFIES *p, ant choice, int type)
{

SelLtlTION =xcurr, *prevs, *x /

int unigue = YFS
x = get_SelolTILu_nood2() 7
xm>choice= type == NOQ ? -choice : choice ;
if(p=->head == NULL) -
p=>hzad = x o
else
{
1f(cnoice == o=>nezd->choice)
{
unigua2 = NI 7
returnr uniguz s
}
1f{zns(s=>nzad=>choice) > abs(choicz2))
{
Xx=>naxt = p->heac s
a=>hzad = x
b
else
4
for(arev = curr = p=>head ; abs{choice) > abs(curr=>choice)
46 curr ; Jray = curr, curr = curr=>next)
;
if(ens(choice) = abs{curr=>choice)) /* To remove duplicate
s x/
x=->next = prav->next

Lrav=>naxt = X o«

(")

-

s
2 -

e

2

NO

unigque

St

ra2iurn vrigu? o

IF rget_14s5(1nt *ng_1¥3)
{
IF *nsed = WJLlL, xtail = NULL, *curr = NULL 7
int if_y 7
int kay
*no_ifs = 1 ¢

status_window("Jualifier(Q), Matn(M), done <ENTER>") ;

oy

tftlusn{stdin)
Kzy = toupper{gatch()) ;
Y oonila(t(kay == “2° ||
1f{kzay 1= ENTER)

ENTER))

~
D
~
H]
"

-

~

==
©
~
1
#

]

{
curr = 1f _single_get(kay) 7
1ft(curr 1= NULL?
{
1f(head == Null)
nzad = tail = curr ;
els:

tarl = curr ;

bg
curr=>act_rule_no = curr_rulz2_no
gotoxy{lr,af_y) '
su‘tch(»urr >uhichn)

P
case SUL : disn_g_rulelcurr=>am.ql) ;
braak
case MATH 1 disp_m_rulelcurr=>gm.expr) 7
break
>
++(xno_1ifs) ;
1f_y = wheray() ;
Y /% iflcurr != NULL) =/

> /% itlkey '= ENTER) =/

2

el

(7]

preak
> whils (TRUE)Y =+
gotoxy(4,1f_y) 7
eturn head -

HeN *get_tnzns(int *no_thens)

-~

THEN *haad NULL, *tail) = NULL, *curr = NULL /

int tnen,y

int ke M

s*ruct text_info ti -
gettex infolity)
*no_thens = 7 ¢
then_y = wherey() J

do
(\ .
status window(“@ualiflﬂr(Y, Math(M), choice(l), External program(
£)s cdone <eNTck>"™)
do
{ N
fflusn(stdin)

; \
key = toupper{gsten()) 7
Y whale(l(key == 27 || key == “M° || key == “C° || key == “E’ |
| key == =NTE®)) I\
rflkey '= ENTER)
¢ .
curr = then_csaincla_i2t{kay) ;
if(cure = NulLL)
e
1f(head == Null)
n2ad = tail = curr ; -
2lse
{
tarl=->naext = curr ;
tail = curr ;
>

curr=>act_rule_nc = curr_rule_no ;
gotoxy(l,then_y) ;
switch(curr=>wnich)
{
case Mo 1 disn_g_rule(curr- >ceqm.al) ;
br»ck ;

ase MATH 1 diso_m_rula(curr=>ceam.expr)

break s
case EPR ¢ disp_z_rulel(curr->ceqgm.ex*orog)
bresk 7 '
case CHE : disp_c_rulel{curr=>czqgqm.ch)
breazk = :
- >

t+(*xnc_thens) ;
then_.y = wheray () 7
Y /x 1f(curr Pz NULL)Y */
> /= it({key !'= INTER) x/
lse '
oraak s
Y wuhite(TRUE)Y
window(ti.winlett, ti.uwintop, ti.winright, ti.winhottom)
textottr{ti.attributa) ; ‘
return head ;
7
THeh *then_single_get{int kay)

<
~

U

{1}

char =ch_txt ; /*txt[MAX_LENGTHI*/
char msgiM=ESG_LENGTHT
struct text_info ti ;
int correct = YES, done = NO
int qual_no = 1, x, x1, y1, type_choice = YES, no_choices = 0
THIN *ruiz_then = NULL ;
QUALIFTER] +p = NULL /
EXPRESSION *g = NULL /
CHOiCe =c = NULL /
EXTPROG *e = NULL
FRAME xf = MULL ;
gettextainfo(Zti)
winaowl{43,3,77,23) 7
sultch(ikay)
{

case “C” : clrscr() ;
iflcurr_choice_nc > 1)
{
textcoler(B8LACK)Y |
texthackground (WwHITE)
_ cprintf("Cheices :\n\pr")
N textattr{WHITE | (SLACK <<4)) ;
disp_2all_methous()
stetus_window("Choice £{(N), New(W)") ;

do

{

kay = toupperf{getch())
Y while(f{key == "N° [|] kay == "W’ || key == E
NTzR)) .

1f{key == ENTER?

braak s

= N7

1f{key =
{
window(1,1,80,25) ;
status_window (")
: cotoxy(1,25) ¢
cprirtf("Enter Choice #") ;
fflush(stdin) ;
ch_txt = get_prob_txt(wherex(), wherey(), 4,1

-~
~

ERRATA

5.No. Fage Present Fead As

1 3 As the ESS BHELL is designed As the ESS SHELL is
to highly designed to be highly

2 12 -' fig b | fig 5.9

) | 44 to 45 Fules L Not required 1

]
'

Methods or Conclusions

4 91 Test Runs : [Not required]
Resuits

5 952 | Cost of estimated Lost of project

& 58 buildin i lding

7 6% [x1 open_towards [v] ' T oper _towards [z

8 48-50 Inovule g0 to g1t5

. Soil +ype-in Non-cohesive
Seil dype-la copesive 47

¢ tlevy ype) - Cbandy)

if(ch_txt == NULL)
break -
elsze
{
x = atoi(ch_txt) ;
¢ = get_cheica_nol(x) »
1f(c == NULL)D
{
free(ch_txt) 7
ch_txt = NULL /
break
}
2ls»
CHRICE *tamn = ¢
¢ = get_CHQOICE_node() 7/

»

c->method = dup_str(temp=>method) 7
do
{
status_window("") 7
gotoxy(1,25)
cprintf{("Enter any no. betweeen
@) & 13(abesolutely True) : ")y 3

ch_txt = get_prob_txt{wherex() uw

-
=

oy
-l
12

O(Absclutely

nerey(),3,1) 7
: ifleh_txt == NULL)

break »
x = atoil(ch_txt) 7
Y} while(x < 0] x > 10) /¢
if(ech_txt == NULL)
{
tree(c=>metnod)
free(c) / ’ -
¢ = NULL »
rule_then = NULL
break
3
alse
{
c=>probabillity = x 7
rulzs_then = get_THEN_node() 7/
rule_tnhen=>which = CHE ;
rdl2_then=>ceqgm.ch = ¢ /
add_to_method_list(c) 7
' >
bs

3

).
/* 1.e. 2 New Method is being chosen */
stztus_windoe("Enter a text")
clrscr() 7
ch_txt = cet_ch_txt(2,2,25,14) ;
iflch_txt !'= NULL) '

{

trim(ch_tx1)
if(strlen(ch_txt) 1= 0)
{

¢ = get_CHOICE ncaz() 7
c=>mathod = ch_4txt
o

- {

window(1,1,80,25) ;
cstatus_window("™)
goetexy(1,25)
cprintf ("Fnter any no. hetweeen Q(Absolute
ly False) % 13(apsclutaly Trus) @ ") J
en_txt = get_prob_txt{uwherex(),wherey(),3,
1)
1flen_txt == NULL)
breal ;
X = +0.;.(Ch txt) .
Y while(x < Il x > 10) &
if(ch_txt == NULL)
{

>method)

n = NyglLL

[y

c=>probability = x
rule_then = get_THEN_node() 7
rule_then->whicn = CHE ;
rule_then=>cegm.Cch = ¢ -
add_to_mathod_list(c) 7
)
Y /x if(strlen(ch_txt) != 0) */
Y} /% 1f{ch_txt '= NULL) #/
windcw(43,3,77,23)
break ; /% czse “C’7 x/
case £ ¢ clrser()
iflcurr_prog_no > 1)
I

tccler(BLACK)

+back round (WHITE)

+T(”: ternal Program(s) :\n\r'")
thr(WHITE | (3LACK <<4))
1_disa() »

_uindow("Program #(N), New(W)™)

e Oy~
P SN VI S {5 B €))
A X 3OX X
P
0y a1y

Ul 4

W @

[nX

O
1)
A

oy

NTERD)Y

+ -
+ -+
A N KT
3R
vt
LUV <
A~
"
| IO R I 1 |

N

ey
®
R
H

window(1,1,30,23)

status_window ("'")

cotoxy(1,25%) 7

corintf("Enter Program R") ;

fflush{stcdin)

ch_txt = get_prob_txt{wherex(), wherey(), 4,1

1flch_txt == NULL)
break 7
else
{ ’
x = atoi(ch_txt) 7
2 = get_prog_nol(x) ;
1f{e == NULL)
{
free(ch_txt) /
ch_%xt = NULL /
break
}
else
{

++e=>share_count ;
rule_tnen = ge2t_THEN_node()
rule_tnen=->which = EPR
rule_then=>cegm.extprog = e

-

s

break 7

4
o

p;
} .
status_windou("Enter the Program’s name") ;
clrscr () ;
ch_txt = get_ch_txt(2,2,26,14) ;
iflch_txt 1= NULL)

4

-
.

trim{eh_txt) 7
1flstrlen{ch_tx*) 1=)
{
char *temp = NU
« struct name_lis
e = name_ext_or
ifle 1= NULL)
{
++po=~>gharas_count
rula_then = got THEN_node ()
rule_then->ghich = EPR ;
rule_than=>cegm.extprog = e
b fres(ch_+txt)
ch_txt = NULL -
break -

L
t *n = NULL., #*eond = NULL 7

og_getlch_txt)

[

N2

N~

e = get_EXTPROG_node() ¢

e->share_count = 1 ;

e~>name = dun_strlch_txt) ;

freelch_+xt) /

ch_txt = NULL

status _window("Enter the list of variables
like CVv13,0v2) or CV12) (V2]) to be passed") ;

ch_*txt = get_ch_txt(2,2,26,14)

ifch_txt = NuLL)

4

triv{ch_txt) 7
1f{strlen(ch_txt) !'= 0B)

3

~

~ e

temp = strtok{ch_txt,'", ")

(1

ghile(tamp)

4
if(e=>n_head == NULL)
‘
n = get_link_node() -
n=>name = dup_str(temp) 7
process_var (temp) ;
++te=>pass_no s
e~>p_head = 2nd = n
}
2lse
{ .
* struct name_list *curr = NUL
Lo .
for(curr = eo=>p_head s curr
; curr = curr->next)
1f{stricmp{(temprcurr=>nam
e) == ()
braak 7
iflcurr == NULL)
{
n = get_link_node() /
n->name = dun_str(tamp) /
process_var(temp)
tte->pass_no s
and=>next = n ;
end = n
>
>
+emp = strtok{\Q,", ") 2
> /x while(tamp) */
freelch_txt) 7
ch_txt = NULL 7
’ Y /* if(strlen(ch_txt) !'= 0) =/
Y /> ifl{ch_*xt '= NULL) =/
status_window("Enter the list of variables (1
ik2 LV12,7v21 or (V13 I¥22) returned by program')
ch_txt = got_ch_txt(2,2,26,14)
1f(eh_txt = NULL)
<
trir(ch_txt) 7
if(strlen(ch_tx1t) 1= ©)
e
temp = strtoklch_txt,", ")
thile(temp)
{
if{e->r_head == NULL)
{
n = gat_link_node() ;

n=>name = dup_str{temp) 7
procass_var(temp) -
tte=->return_no s

2=>r_head = end = n &

o W

else
{
struct name_list *curr = NUL
/
for(curr = e=>r_head ; curr

; curr = curr->next)
if(stricmp(temprcurr=>nam

) ==)
break
if(curr == NULL)
{
n = get_link_node()
n=>name = dun_ str(temp) ’

process_va r(temp)
++¢->r3turn_no ’
end=>next = n

end = n 7

3
tenp = strtok(°\Q°,", ")
> /x while{temp) x/

free(ch_1txt) &
ch_txt = NULL »
>y /x 1f(strlen(cr txt) 1= 0) */
Y /* iflen_txt != NULL)Y */
rule_then = get_THEN_node()
rule_then->uhich =

H
rule-then >cegmeextp
then_e_add_list{e) ;

Y /x iflstrlen(cnh_txt) != 0) */

Y/ 1flen_txt = NULL) =/

break -
‘$Y 1 gqual_no =1 7

)
o)
- s

O
A7)
Ui
w0
¥.

iflcurr_gqualifier_no > 1)
f = get_num_gualifier(qual_no)

stztus_window("No Qualifiers added yet. oessPr
¢35 any ka2y.'")
fflusr{stdin)
getcen() 7
status_window(''")
rulz_then = NULL ;
break ; .
}
clrseri)
disp_frame(f)
x1 = wharex()
y1 = wherey ()
do

4
LS

s vr N

done = NO ;
correct = Y&S
sprintf(msa,"Pravicus{%c or %c), Next(%c or %c).
quarifrer #(N), Jualifier name(M), Choices(C)",27,24,25+,25)

status_windowimsg)
fflush(stdin)
key = tounnar(getch())
sui*ch(kay)

{

de2fault @ ¢

®w 73
2 |
®©
O
—~
]
=
o
~a

casa ESC

case ENTFR NO ;

[.%
Q
3
©
H

rabzray (), ,usl)

r_no)

gualifier no, 1n

l_no)

")

nerey (s .0=unarax()=2,1)

o
7]
w
W

.
’

getoxy(1,25) 7
cprintf(’
ch_txt = get_prob_txt(uherex()

o}
[

rgle_then =
break,

window(1,1,83,25) ;

status_window("")

" e

tnter qualifizsr #")

window(43,3,77,23)

ifleh_txt == NULL)
{
correct = NO ;
brzak -
}
x = atoi(ch_txt) ;
if(x < 11 x >= curr_qualifie
{

sprintf{msg,"(%s): No such

«.Press any key",ch_txt)

status_window(msg) 7
fflush{stdin)
getch()
status_window ("'")

correct = NO

*

break 7

»
’

111

»

gual_nc = x 7
f = get_num_qualifier(qua

clrser()

disp_frame(f) ;
x1 = wherex() 7
vl = wherey()
}

break
wincdow(1,1,80,25)
status_window("'")
gotoxy{1,25)
corintf("Enter qualifier name

e Ne

ch_txt = get_ch_txt{wherex{) ,uw

window(43,3,77,23)
iflcn_txt == NULL)
:

cerrect =

break ¢

)
trim(ch_txt

)
if(strlien(ch_txt) == Q)
L
correct = NO

break -/

-

m_qualifier(ch_txt) ;

(
sprintf(msz,"(%s): N¢ such
qualifier in database., ..Press any key'",ch_tx%)

‘ status_window({msg)
fflush(stdin)
gztch() ;
correct = NO *

. break
>
qual_no = f->qualifier_no ;
cirscr() ;
disp_frame(f)
x1 = wherex ()
- v wherey ()
break
case EXTENDED : key = getch()
switch{key)
¢

~

-

Ns N N

i

1

default : correct
= NO
break

case UP_ARR :
case LEFT_ARR : i

i

it

—
~r

f(qual_no
{
qual_no = curr_gualifier_nc -1

putchar('\a’)

b2

)
lza
==qual_nao

f
= gzt _nuv_qualifier{qusl_no)

¢
lrscr() 7

d
1sp_trame(f) 7

X
1 = wharex() ;

Y
T = wheraey() ;

b
reak 7

case DOWN_ARR
case RIGHT_ARR
1flgual_no == curr_gualifier_no = 1)

\
quai_nc = 1 ;

putcrar("\a’) ;

(]

ttqual _no
T o= get_num_quallfler(qual_no) ;
clrscr() ;

disp_frams(f) ;

x1 = wnerex() ;
y1 = wherey() ;
break
} I switch(key) =
/

break ;
Postatus window("Enter choice no

’ .

2

coc
(s), NOT+number(s), done <ENTER>™)

e Yy

ch_txt = input_choices(x1+2;y1
726,14) ;

=0 ;
NULL)

he_choices
iflch_+4xt !
trim(ch_+xt) ;
if(strlen(ch_txt) != a
{
char *naxt_tckan ;
p o= NULL ;

next_token = strtok{ch_t

P VAL A I

1f(next_tcken != NULL)
e

>

if{*next_token == ~y~

)
type_choice = NO H
else
{
type_choice = y&
S
X = atoilnext_to
ken) ;
iflx > 0 g8 x «=
f~>no_chilas)
{
P = get_QUALI
FIER _roda() ;
’ P=>qual_name
= dup_strt=>nzze) ;
No_cheoices +=
add-cnozce(pzx,type_choice) p
b
)

: while((next_token = g
trtok("\y’," D ERE IS,

{

X = atoi(next_t

ckenl) 7

ifdx > 0 83 x <
=z f=>no_childs)

Fa
1f(p == NULL
)
! ‘ {
P = get_Q
LALIFIzR _nod=2()
: p=>qual_n
am2 = dup_str{f->name)
}
no_choices +
= add_choiceln,x,typa_choice) ;)
>
ifén == NULL)

»

clrser()
disp_frame(f)
correct = NO

break -
}
glse
done = YES
rule_then = gat_THEN_
noda() 7
: rule_then=>which = QU
L s
p=>no_choices = no_ch
oices
rule_then=>cegm.qgl =
Py .
Y /* if(next_token !I=
NULL) */ '
; >/ if{strlen{ch_txt) !=
0) =/
Y /% if(ch_txt !'= NULL) %/
break , /* case ‘C° =/
Y /% switch{kay) =/
if(ldone)
cerract = NO |
else
correct = YES
> while(lcorrect) 7 /* do */
break - /% cese L7 */
case "M’ 1 do /x wnile!ldona) ; =x/
<
donz = YES ¢
status_windouw("Enter a variable‘s name within []
"y
ch_txt = cet_cn_txt(x1+2,v1,26,14)
if(ch_txt == NULL)
braak 7

clean_expra2ssion(ch_txt) /
if(*ch_txt == "\0")
{
froa(ch_+txt)

ch_txt = NULL ;

.

donpz = NOQ
continue J

bz
1M (reh_txt == (7 &3 ch_txtlstrlen(ch_txt)-1]

IPRDD

{

free(ch_txt) ;
ch_txt = NULL /
donz2 = NO
continue s

1D
-
(5 I

Iy

{
if(strlen(ch_txt) <= 2)
{
freelch_txt) ;
ch_*xt = NULL /
done = NO }
continue

W o

€&

o
=

-
o 2
N o+

i
= 1 ch_txt[jl 7 ++3)

€.

(
{
ifCisalnumCch_txtC31) |} ch_txt(jl

continue ;
else if{ch_txtljl == "] && ch_txt

ealk 7

o
© 3

[
ot
1

{

freelch_+txt)
ch_txt = NULL

done = NO
break 7

char *temp = ch_txt ;
status_window("Enter Expression/V
alue you want to assign this variable in this rule")

clrscr() »
ch_txt = get_ch_txt(x1+2,y1,26,14

) 4
ifleh_txt == NULL?
{
freel(temp)
break 7
>

clean_expression(ch_txt) ;
if(rch_txt == “\Q")
{
free(ch_txt) 7
en_txt = NULL /

free(temp)

dene = NO
continusz

}
done = parse_axprlch_txt) ;
1f(donz)

{

g = get_MATH_node() 7/
> g=>left_part = temp
=>right_pnart = ch_txt ;
, g=>relation{0] = *=°,y->relati

onZ1d = “\u’ 7
look_new_variables(g) /
rule_thcn = get_THEN_node() »
rula_then=>yhich = MaTH ;
rule_then=>cegm.expr = q 7

}
2lze
{
free(ch_txt) 7
freaz{temp) ;
}
> /% else */
Y /* elssz *x/
Y /* glse *f
} while(ldeone)
breax ;

¥ /* su1tch(key) =/
window(ti.winleft, ti.wintop, ti.winright, ti.winbottom) /
textattr(ti.at4rabute) -
return rule_then ;
e
veld new_get_rules(void)
{ .
int ¢noice = YES, again = N0, discard = NO -/
RULE #*nzw_rule -/
Ir xif_head -/
THEN *than_hzad »
int i, no_ifz, no_tn2ns, yl1, v2 ;
struct text_info ti ;
gettext lhTO(*tl) ;
wirdow (4, 3,3%,235
taxthackground{(bLACK) 7
clear_windows{) /
textcclor(BLACK) 7
texthackground(WHITE) 7
corintf("Rule #4d\n\r",curr_rulz_no) ;
gotoxy(snerex (Jruheray())
cprintt ("\n\r IsAn\r")
textattr(wHITﬁ | (BLACK << &)Y
if_nzad = get_ifs(ino_1ifs) 7 o
1f(no“ifs)

s
[N

.

[IIRTa]
i1

[aF) |

.

status_window("No \"IS\" par+. esePress any key")
ffiusn(stdin) 7

getcn()

return

“

7
textcclor(SLACK)

textdackgrouna (a%ITE) 7
cpraintf("\n\r ThENADNPT)
textattr{ndIT:z | (3LACK << 4)) ¢
y1 = wherey()

new_rule = ¢at_RuULZ_node() 7
new_rule=->no_ifs = no_ifs ;
new_rule=>rulz_1f = 1f_head ;

do
{
then_nead = gat_tnens{déno_tnrens) ¢
acain = 40
ifl{no_thars == ()
{
status_uwincow("No \V"THEN\" part. ...Again ? (Y/ND") 7
cdu
{
fflush(cstdin)
acarr = toupper(getch())
Y whila2(!Cacain == ‘Y’ || again == “N7))
2yain = again == YT 2 YES : WO
it({again)
{
tori{ye = wheray(),1 = y1 ;i <= y2 ; ++i)
clrezol{)
gotexy(l,y1) 7
Y
else
{
fre2_var_listlvar_head)
var_rzad = var_*ail = NULL /
discard = YES ¢
>
}

Y wnile(aga1in)
it(idiscard)
{

status_wincdow("Adre You sure 72 (Y/N)")
{
fflush{cstdin)

choicz = toupner(getch()) ;
> wnilaCl(choice == ‘Y’ || choice == “N’))
b
1f{chorce == ‘N’ || discard == YES)
{

discara_ruizlnaw_ruls) ;
free({nzw_rule)
new_rule = NULL
free_var_list{var_head

)
var _hzad var_tail = NuULL

[-
i

i

»
f—

{ v
naw_rui2=>rule_then = than_hezd ;
A"2w_rui2=>nc_thans = no_thens
new_rules=>fire_rulz_no = rew_rulz->act_rule_no = curr_rule_not+

new_ruiz_»ddlnew_ruls) ;
new_rdJiz»s_added += YES ;

vars_writs{) -,

>
return s
>
voicda discard_rule(RULE +*9n)
<
if{p=->no_1%s)

{
1f_discard(s~>rule_1if) 7
p=>rula_1f = MULL -/

>

1f(p—=>nc_thens)
{

then_discard(o=>rule_then) 7

p->rul:z_then = NULL 7

N
-
return
>
volid sf_caiscaral{liFf +*p)
1

it(p = NJILL)D
Fe

¥

1f_single_discard(p) 7 '
1¥ _discardp=>next)
tres(2)
p = NULL »
>
reaturn

5
vold 1f_singlz_discardl{iIF =*xp)
4

sultch(p~>whicr)
casa UL @ QUL _disposa2(e=>gm.cl) 2
' pT>gw.al = NULL /
braak 7/
cose MATH 1 MATH _disposze(p=>gm.expbrl)
o=>gun.expr = NULL
break 2

return s

+
void tnen_discaralTHEN *pn)
{
it {p = NULL)
{
Then_single_daiscardlp) 7
tren_discerd(p~->naxt)
trealn) 7
po= NMJLL o/
>
return -
>
void then_s3intle_cviscard(THEN *p?
<
switch{(p->wnich)

case "ULL : LJlL_disposa(o=>czagm.all) 7

oD=>cegma.cl = NULL =~

brzak -
cezs2 MATH ¢ MATH _dispose(p=>cegm.expr) ;
p->cauame.2xnr = NULL
braak 7
case TPR : ECR_disco
ITXCedma e
brealk 7
CHOIZE _disnosze(p=>ceqm.ch) 7/
D=>ca2gm.ch = NULL 7
brzak 7

se(p~=D>ceqm.extoroa)
xtprog = NULL 7/

O
iy
E
®
(]
T
Tt
.

7
return s
3

-

vold JUL_dispose(QUALIFIER *n5)

(p~>qual_name) /
ections_discose(p=>hezd)
d = NJLL

selections _dispose(a->next)
SELECTION_disvosel{p) i
2= NULL

P

N

r

W

urn

<

ps
ﬂ
m
—
28
(4]
-
et
()
P
[a
}J
%}
T
o]
n
0
Pt
(¥4
f1i
-
m
]
-
{an
O
=
*
(W]
s

c

o N

frae{pl)

return
>

vold MATH _disosose(EXPRESSION *0)
{

free(p=>expraession) ;
free{p->left_part)
free(p=->rignt_part) 7/
return
}
voird CHOICZE _disvose{(CHQICE #p)
{

free(pl)

return 7
J
void EPR_dispose(EXTPROG *o)
{

1f(==p->share_count == (
{
freelp=>namz)
free(n)
if(p=>pass_no)
{

n=>pass_no = 0
list_dispose(p->n_head) 7
p=>p_haad = NullL

>

1f{p=>return_no) .

no = 3
sel{p~>r_head)
= KNULL

~ .

return s
b

volid new_rule_add(RULE +*new_rula2)

add_rule_list{new_rule)

;f_ﬁsw,rule-add(new_rule->rule_if) ;
then_new_rulz_zdd(naw_rule=>rule_then) ;
return s

) .

vold add_rule_list(RULE *p)

{

if(rule_hnead == NULL)
rule_head = rule_ta1l = p

¢ise)
{
rula_tail->next = p /
p=>prav = rule_tai1l 7
rule_tail = p ;
|

return ;

;7 .
vora 1f_nz2w_rule_add(IF »o)

”

{

IF *curr

for(curr Do oCuUrr ;s ocurr T curr=>next)
each_if_addlcurr) ;

return o,

t

>
vold each_1f_add(IF =*gp)
{
suitch{o->which)
{
case JubL 1 g_if_roct = 1f_qg_add_treelp,g_if_root)
break -
case MATH : m_1f_roet = 2f_m_add_treel(p,m_if_root) ./
bréak o
>
return ;

int tast
1t{root == NULL)
root = NULL
else
{
1f((test = strlcmp(c4>qm.ql->qualnnamefroot->qm.ql->qual-name))
> U) .
root->rignt = 1f_a_add_tree(prroot->right)
2lse 1iT(test <)

root->left = if_q_cdd_tree(psrroot=>left) ;
0 =

2.ze [/* t2s51 == 7

{
IF *curr
for{curr = roct ; curr=>same_next ; curr = curr=>same
next) -
;
curr—>szame_na2xt = o s
>
return root .
7
IF »if_m_add_tree(IFf *p, 1IF xrooct)
<

int test
itlroot == NJULL)
root = NULL
else
{ ‘
sf((test = stricap(p=>gm.expr=>left_partsroot=>gm.expr->left_par
t)) >)

root=>right = 1f_w_add_treel(p,root=>right) ;
else ifl{tast < ()
root=>left = 1if_m_add_treel(psrecot=>laft) ;
elze /x test == 0 =/ .
{ A
IF *curr ;
for{curr = rcot / curr=>same_next ; curr = curr=>same_
next)
;
curr=>szme_next = p
>
>
return rcot ;
;
vold then_new_rule_add{THEN #p)
<

N

THREN =xcurr

“for{curr = g J curr ; curr = curr->next)
cgzch_thzn_addlcurr) 7

return ;

>
-

vold z2acn_thaen_sdd (THFN *x0)

ay

-
’

<
sulten(p=>whicr’
{
case UL a_then_root = then_o_add_tree(pra_then_root) ;
break
case MATH : m_then_root = then_m_add_tree(o,m_then_root)
break 7
case TFR : then_c_odd_list(p) ;
bresak
}
return ;
>
THZN *then_g_add_tree(THEN *5, THEN *root)
{

int tast
if(ros+t ==

root = p -
eLs2

")
W
na
X0

Jan 1¢ 16107 1995 Pa

1f((t2s5+ = stricmp{p->ceam.gl=>qual_name,root=>cagm.gl=>qual_nam

reot=>richt = tnan_d_add_tree(p,root=>right) -
els2 1f(test < O)

roct=->lef? hen_a_add_treel(p,root=>left)
sise /% test == (Q «
{

THEN *curr

]
Iad

fer{curr = root 7 curr=>same_next ; curr = curr-=>same_

next)
’
curr=>same_next = n 4
s
return root ;
b
THEN xthan_m_add_tree(THEN #*p, THEN *root)
<
int test /
1f(rcot == NJLL) .
root = p
else
{

1f({test = stricap(p=>cegm.2xpr=>left_part,root=dceam.expr=>left
_partl)) > d)
root=>right = tnen_m_add_tree(p,root=>rignt)
2lse it(test < ()
roct=>left = *hen_w_add_treelpsroct=>left)
2ize /* test == ([+/
1
THEN *curr ;
for{curr = root ; curr=>same_nex¥ ; curr = curr=>same_
next)

-

4
curr=>szame_next = o ,

)

)

return roct
vord then_z2_add_list(EXTPROG +p)

2_head_tnen == NULL)

i

e_nczad_tnan @_tail_then = p 7
t+curr_nrag_no

b
else
{
e_teil_then-d>next = o ;
e_tarl_then = p
Ticurr_sreg_no ;
>
return
7
vold disp_m_rale(EXPRESSION *0)
1

corintf(" s %s Ys\n\r'",o->left_oart,p->relation,n->right_part) ;
return -«

void disp_c_ral2(CHF0ICE *p)

{

corantf(" %s : 2rcnebility = %d/10",p-d>methed,n=>probability)

it(p=>orcnanility == 10
cprintf (" (Ansolutely Truel\n\p")
glse 1¥(>->orohbahility
carint+ (" (Abso

\ elassz
carintf("\n\r'")

lute

in

return ;
>
void disd_e_rule(EXTPROC #p)

-

{
struct name_list *curr = NULL
cprantfCr(t) '
itlp~>r_nz2zd)
{
curr = 2=>r_head
cprintf{("%s" ,curr«>name)
for{curr = curr=>next ; curr ; curr = curr->next)
coryintf (", hs",scurr=>hamz2) 7
b

cprintf(") = \".is\" (",p=>name)
1flp=>p_reza)
{
curr = o-=>p_prazd ;
cprantt (" s",curr->name) ;
for(curr = curr=>next ; curr ! curr = curr=>naxt)

cprintf (", Zs',curr=>name)
N

),
cerintf{")\n\r") ;
return

b

IF *get_I7 _roacdz(veid)

‘1
IF *p 7
P = (IF %) walloclsizeof(IF))
1f(p =7 oLl)

{
“clrscr()

arintf("out of memory. «s« ABORTING
ffiusn(stdin)

getch()

exit(1) 7

3

~

>
p=>firea
pr>act_ru
P-2uwhich
p=>next = o~
return p

=4
(W]
s

LU i
[
D

i

Vo oa-
~.e
e

=~ 0
® W
1

—h 1y gl
+

= p->right = p->same_naxt NULL 7

),
Trch *yet_TH:zN_nod2{void)

{

TH=N *p

2 = (THEN *) malloc(sizzof(THEND))
if{p == NubLL)

clrscr() »

«(get_IF_nodad\n"™)

»
’

[
14

Jan 16 1J:u

7

1693 Page 290

printf("Jdut of menary. «n ABORTING
ffiusn(stdzn) ;
getch()
ex1t(1)
}
p->firza = N2 5
p->act_rile_nc = ¢
p=>which = Fip3z /
p=dnext = o=>lz2ft = n=>right = p->same_next
return o

)

2

\
A4

= _SeLeCTICON nodelveid)

;
ON =) malloc(sizeof(SELECTION))
)

.
’

ut of mamory. .« BBORTING

fflush(st7in)

SELECTICN
p = (SELZC
if(p == Yo
{
clrscr(
printf(
‘
gaten()
Cexit (1)
>
pm>cnoica
n=>next =

return p s
\

i

clrscr(

I
f

&<

)

’,

.
’

.
’

prantf("Jyut cof memcry, « o+ ABORTING

ffiusnwlstdir)

getch ()
ex1t{(1)
>

p=>qual_nan2 = NULL ;

p=>no_chol
p=>head =
return 9 7

C?SZOI

N
’
>

’

-

NullL /

RULE =xget_RUL" _nodel(void)

RdLc *p 7
p = (RULF

{

*) malloc(sizeof (RULZ))
it(p == hell)

clrscr ()

.

14

printf("Jut of memory. .« ABCRTING
frlush(stdin)
getch()
ax1t(1) ;
}
p=>fire_rulz_nc = o=>zct_rule_no = 0 ;

« o {get_THEN_noded\n")

= NULL

’

o (get_SELECTION_node)\n')

4

e (get_QUALIFIER_nodel\n')

e« (get_RULE_nodeld\n'") ;

Jan 15 10:J7 1985 Page 31

p=>no_its = 3 ;
p=>tot_1ifz_Tiraa = & ;7
p=>rule_1f = NULL /
p=>no_thens = 0 ;
p~>tot_tnans_fired = 5
p=>rule_tnen = NULL /
pm~>tired = NO

o=>next = p~2>prev = NULL -
raturn p

XTPROo *gat _ZXTPRCG_node(void)

~om o

EXTPRIC *p
p = (£XTPROu %) mallecc(sizacf(EXTPROG))
1f(p == NULL)
{
clrser()
praintf("out of memcry. .« s ABDORTING o (get _EXTPROG_noded\n") ;
fflush(stdin) ;
getch() 7
axit (1)

b .
p=~>name = NulLL ;
p=>share_count = p-=>pass_ne = p=>return_no = 0 ;
p~>p_head = p=>r_head = NULL ;
p=>next = NULL
return p s

HOICE *get_CHOICE_nodelvoid)

*~y Oy

CHCLICE =*p
p = (CHOICE x) malloc(sizeof(CHOICE))Y

1t {p == NLLL)
{
clrser()

Aarintf{"vut of memory., « s« ABORTING «e {get_CHOICE _node)\n'")
fflusn(stdin) 7 .
getch()
ax1t{1) /

3

p=>method = NULLL 7

p=>probability = 0

p=>result_probebility = 0.0 7/

p=>next = p=>same_next = NULL

return p -

~ IT W

XPRESSICN *get_MATH_node (void)

SSION *p
EXPR=zSSION %) mslloc(sizeof(EXPRESSION))
== NULL)

clrser()
orintf("0ut of mzmory, «+« AS0RTING s {get_MATH_node)\n'") ;
fflusnl{stdin)
gatch()
ex1t(1) ;
b .
p=>expression = p->left_vnart = p->right_part = NULL 7

Jan 1o 1J:67 1635 Pags 22

p=>ralation(?l = “\(’

return p oo/
JD
voi¢ view_rulzs{veid)
<

QJULE *p = rulae_hneas
struct text_info ti ;

int rule_no = 1

cnar nsgl?IMAX_LINGTHI, *txt
int kays x 7

it(curr rulﬁ no == 1)
retur .
gett=xnln o(%t) ;

textcolor(WHITE) 7
Luxtbgckground(oLa K) 7

clzar uanOws() ;
wincaowls,35,77,23) ;

curscer) ;
disp_rula(n) A
sprantflmsgl,"Previous(%c or %c), Next(%4c or %c), Rule H(N), Exit(X)"
2272¢cbr20,25)

do

{

status_windowlmsgl)

fflusn{stdin) ; ‘
Key = toupper{getch())
swrtcen(key)

{

.

.

B

© W @

‘X
ESC
NTER

"

ae an wa

[a B S NN e
L7)]
n u

'tus window('"")
cow(tl winleft, ti.wintop, ti.winright, ti.

S: Ur

ATl

winoottom)
textattr{ticattribute) -/

sotoxy{ti.curx, ti.cury)

rzturn ; !
window(1,1,80G,25)
status_window (M)
gotoxy (1,25
corintf("Enter Rule &")
fflush(stdin)

case ‘N’

e N

txt = get_vorob_txtlwherexO),eherey(),5,1)
windowl4,3,77,23)
1f(txt == NULL)}
treak 7/
x .= atoi(txt)
17(x < 1 || x >= curr_rule_no)
r

char msg2lMESG_LENGTHI /
sprint‘(msgg,’(és)' No such Rule no. ...Pres

status _window(msgl2) 7
fflusn(stdin) 7
ca2teh()
}
2lse
{
rule_no = x
clrscr() 7

ot
N

Jan 1% 1utu? 1695 Page

2 = no_disp_rulelrule_no) 7
1

.
brealk -

case EXTENDED : zwitchikey = g¢getch())

{
case UP_ARR :
case LEFT_ARR : if(rule_no == 1)
{
rule_no = curr_ru
l2_no - 1/
o = rule_tail ;
putchar{(’\a’) ;
}
else
{
=~rule_no /
p = p=>prev s
>
cirscr()
disp_rule(n) 7
break 7
casz2 O0WN_ARR
cese RI;HT_A RR : if{rule_no == curr_
rute_no - 1)
{
rule_no = 1 ;
P = rule_head ;
putchar(’\a®) /
be
zlse
{
t+rule_no 7
D = p=d>next s
}
clrscr() 7
diso_rulel(p)
break ;
3
brzak 7
} /% switch(key) */
} unile(TRUE)
bt
RUcc * po_rule_get(int fire_nc)
{ .
RuLt *curr ;
int sz2arch_from »
1f(f1re no < 1 || fire_no >= curr_rule_nc)
*urn NULL »
search_frow = fire_no > (curr_rula_no/2) ? END : BEGIN 7
if(s2arch_from == 8E3IN)
{
for{curr = rule_head ; curr ; curr = curr=>next)
1f(curr=->tare_rule_no == fire_no)
Draak s
2lse if(curr=>fire_rul2_no > fire_no)
{

¥

curr = NeLL
orzak 4

Jan 1 10:07 19S5 Pags 2u

>
}
>
eilse
{
tor{curr = rule_teil ;7 curr ; curr = curr«>grev)
{
1flcurr=>fire_rule_no == fire_no)
nreak /
¢lse iflcurr=>fire_rule_no < fire_no)
<
curr = NULL
braak
3
-‘ ‘
>
return curr 5

} . - .

Koz *no_disp_rulelint fire_no)

»

AY

RUL: =p 5

P = no_rule_qget(fire_no) .
it(p = noLL)

disp_rucaz(ol)

return o
3)
vord disp_rulz2(RULE #*p)
{

Textcoleor(8LACK)Y

textnackground (WAITEY

cprantf(”Rul: #%d\n\r\n\r IFAP\r"sp=>fire_rule_no) ;
textattr{wHITE | {RLACK <<4))

disp_1fs(o=>ryule_1%) ;
textcolor{3Lack)

7’
Textpnackground(WHITEY
cprintf("\n\r THENAN\Pr")
Textattir{wndlTe | (BLACK <<4))
disp_tnens(p=>rule_then) ;
return
+
veld di133_1%3(IF xhaad)
<
Ir *curr 7
for{curr = hsad } curr ; curr = curr=>next)
Viaw_1*f_sincle(curr) ; '

return ;

} ~
vold vieu_1f _single(IF %)

<

switlcen(p=2uwnich)

case "yl : disp_a_rule(p=>am.gl)

oregk -
case “ATH : diso_wm_rulalp=>gm.2x0r) ;
break
>
return ;
>
vold disp_thens{TrHEN *heoad)

a3
L

Jan 1& 10:07 1695 Pagsz

1
TREN *curr o

for{curr = n22d ;7 curr , curr = curr=>next)
vizw_tnen_sirglelcurr) ;
return s
3
volc¢ view_then_single(THEN *p)
{
switch(p=>whicnl
{
case UL : disp_g_rule(c=>cagma.gl) ;

break 7
cass? MATH : disp_m_rule(p=>dcagm.expr) -
brezik 7
PR ¢ disp_e_rule(p=>caam.2xtprog) -

case -
break 7
casze CHE : disp_c_rule(p=>ceam.ch) ;

break 7/

N
>
’

return »

}

vold disp_all_methods(void?
{

int i s

CHCICE #*curr
for(curr = nead_method, i = 0] curr 7 curr = curr=>rext)
< .
corintf(" X2d. ",v41i)
Ggrsoy_choicelcurr)
b
return o

)

oid disp_choicsz{(LHOICE «*

P
[»]

ir g

cprintf("Zs\n\r",p->method) ;

return s

s
CHCICE *get_checrce_nolint cheoice_no)
{ ,
1f(choicz_no < 1 || choice_no >= curr_choice_no)
return MNJLL 7/
elsez
g .
CHOIZE *curr = nead_mexhod 7
int » = 1 »
for(; curr 2§ i < choice_no J curr = curr=>next, ++i)
;
return curr -
}
} N
verd add_to_m=2thod_1ist(CAQICE *n)
1
iflnead_mnae*thoa == Null)
s .
head_=2tnod = teil_method = o /
t+curr_choice_no s
}
glse

]
il
©
(]
o

Jan 1& 13:47 1965 Pac

CHUICE =*curr
for({cur~ = hezd_method , curr ; curr = curr->next)

‘
1f(stracmo(curr=>method,p=>method) == ()
{
>=>same_naxt = curr->same_next ;
curr=>same_naxt = p
raturn
}
>

t+curr_cncice_no s

tairl_method->next = p ;
tail_method = p
}

return

vold rules_uwrite(void)

{ , o
int choicer success = YES /
char txt[MAX_LENGTHI
Filee *xrules_*p

RBuiLz =*curr

1f(n2w_rules_added == NOJ

return
sprintf(txt,"%z.RUL",fil
1

e
rules_fp = fopen(txt,'"r')
if(rules_tp '= NULL)
{
char inpIMESG_LENGTHY , outiMESG_LENGTHI /
tclosa(rules_*p)
sprantf(inp,"%s.RUL",f1le_name)
sprintt{out,"s.R3K",fila_neme)
Lopy{inorout)
>
glse
fclose(rulas_fp) -
do /% wnile(!succass) 7 */
{
gprintf(txt,"4s.RUL",file
do /* while(rules_fp == NULL
{
rules_fp = fopen(txt,"uw'") ;
if{rulss_*p =
{

2 v

sorintf{txt,"Errcr whils (overduriting file \"Zs.RUL\".

Retry ? (Y/N)",file_namz)

ao
{
fflush(stdin)
¢heace = tounper(getech{())
> wrile(!(choice == “Y" || choice == ‘N’)) ;
status_waindow (")
1f({zhcice == ’'N")
{
feclese(rules_f0n)
rzturn
>

.

7 while(rules fo == NULL)

Jan 15 1c:ie” 1¢92 Fage I7

o

)
w

forintf(rules_fp,"%Zd\n" ,curr_rule_ns)
for{curr = rule_head ;7 curr £% success
succ235s = onz2_rulz_writelcurrsrules_9*p
if(lsuccess)
sprantf(txt,”
[y sf2l2_namn) o/
tatus_winoow(txt) 7
o)

¢l
{
fflusr(stdin)
choice = touppar{getch())
Y wnile(!(c h01ce == ‘Y’ || choice == “N"))
it(choice == ")
{

cnar 1npCMESG_LENGTH]I , out{MESG_LENGTH)
fclose(rulas_fo)
sorintf(out;"z, RuL",fi

le _namea)
sprintf(inp,"%s.R3K",file_name)
Conpy(inn,out)

.
»

r2iurn . \

»
r
-
’

>
} whiie(lsuccess)

new_rules_szdded = NC 7
fc;o;-(rules_fp) ;

relurn

fomr

1nt ore_rule_writs(RJLE =xo, FILI *fpn) %

int succ2ss = YES ;
forintf(#5,"%d %Zd\n",p~>fire_rula_no, n->act_rule_no)

forintt(fp,"td\n" ,p->no_its)
success = 1fs_writel{p->rule_3if,fpl) ;
ifl{succeass)

7

-

)

tprintf(to,"Zd\n",5->no_thens)
3uccess = thens_writo(p=->rule_<hen,fp) .
),
return success

int afs_write(IF *head, FILE *fp)

U
1]
<
iad}
(Va]
-~

1Nt success
IF xcurr

’
for{curr = head J curr %% success ; curr = curr=>next
succass = one_1f_writelcurrs,fol)
return success ;
b
int thens_write(THEN *head, FILE xfn)
1

int succass = YES
THLN xCcurnr ;

for(curr = hazad ; curr 84 succ2ss J curr = curr=>next)

success = one_then_writalcurr,fp) 7
return success /
}
int one_1f_writa(IF %o, FILE +f))
{

grror while writing file \"%s.RUL\".

4

curr = curr=>next)
Y

e Retry

?

(Y

Jan 1z 1u:d7

Yis ;
“d\n'",p-dact_rul
ta\n",o=->uwhich)

int
forintf(to,"
ferintf(fa,"

3uCl25s <~

switen{p=>unichH)
{
cas2 LJuwb : swuccess =
br22ak -
cas2 'ATH : success =
break o«
>
reaturn succ23zs
¥
1Nt on2_then_urite(THEN *p, F
;
int success = YAS
fprintf(fa," "d\n",0=>act_rul
forantf(rpo,"%a\n",p=>wnich)
switcn{o=->wnic»)
<
case TuL ! success =
bhreak
Cxs2 J4ATH | success =
break
cas3z PR : success =
breo2ak s
cas2 THRE 1 success =
break 7/
b
return success
}
1nt WbLL_writz(LUALIFIER *0.,
{
int succeszs = Y=S
SebLeCTIoN *cure |
forointf(fp,"s\n",p->qual_ns=
forantf{fe,"%a\n",p->no_choi
for{curr = o=->h2ad ; curr

fprintf(fs,"sa\n",curr=>¢

rzturn successs

V4

[
{
—~

EXTPQOG * 0,

)

int succ2s3s = Y¢S
struct name_list *curr
ferintf(fo,"“s\n",p=>name) ~
forintf(fp,” d\n",p=>pass_no
for(curr = p2=>5_haad } curr

forintf (1o, "%s\n",scurr->n

ferintf(fp," a\n",c=>return_
for{curr = 0=>r_head , curr
torintt{ts,"4s\n",curr=>n:
return success ;
e
int CHE _write(IHQICE #p, FILE
{
int succass = Y=2°©

fprintf(fp," ;3s\n",o0=->mzthod)

fprantf(*£o,"%d\n" ,p=>arohability)

*

return sugccess /

-

2_no) »
‘

QUL _write(p=>gm.al,fn)

-

MATH write(p=->gm.expr,fp) 7

ILE *fp)

.

QUL _write(p=>cegqm.ql,fp) 7
MATH write{p=>cegm.expr,fp)

EPR_write(p~>ceam.extnreg,fp)

»
’ -

CHE write(p=>cegqma.ch,fp)

*fp)

1Y

curr->naxt)

N~

>

/ Cur

curr=>next)

curr=>next)

*£4)

]
4
.

.

’

,

gan 16 1J:u7 1893 Page 39

}
int MATH_writ2(EXPRESSION *p, FILE *fp)
{
int succezss = YES
forintf(fp,"%s\n",p=>laft_part) ;
forintt(fp,"%s\n",p=>r2lation) ;
forintf(fp,"4s\n"sp=>right_sart) ;
return succass
g
vord read_rules{void)
{
int success = YES, choice
char txtIMESG_LENGTHD
FILE *rules fp ;
Ruws *P ’ {
int x s
do /% while(rules_fop == RNULL) 7 */
1

sporintf(txt,"4sRUL",¥ila_name) 7/
rutes_fp = fopen(txt,"r") 7
if(rulss_fp == NULL)

4
~

sprantf{ixt,"Erraor enile openang file \"%s,.RUL\",
Y/NY',f1l2_nave)
status _window(txt)
de
fflusn(stcein) /
choice = tounper(gatch())
> whila(!{choice == ‘Y’ || choice == “N"))
status_window("")
iflchoice == "N)
{
fcloseall() 7
clrser()
ex1t(1)
7
>
Y while(rules_*p == NLLL)
fecanf(rules_ fp;”?d\n FEx)
IT(x 1= 1 %y feoflrules_%3))
{
sprintf{txt,"avnormzl end of \"%Ys.RUL\", » 2 ABORTING

any kay",fiis_nane) 7
status_uwindecuw(txt) 7
TfluSh(:toln) ’
getcn(y
fcleseall()
ex1t(1)

}

curr_rula_no = X v

for{x =1 } x < curr_rul?_no &7 succass ; ++x?

<
2 = r2ad_one_rulalrules_*fo) ;
1f(p)
nes_rule_add(p) 7
alse

L

caRetry 7 (

--.-pr‘eSS

Jan 18 1J:u?7 1965 Fagz 40
1t(lsuccass) '
{ .
serantt{txt,"File \"Zs.RUL\" corrunted.

any kay",fila_nane) -
stetus_window(txt) 7
fflusn(stdain) °,

gatch()
fcios2211()

exx1t(1)
b
fclosa(rulas_*ta)
return

KULE *read_onz_rula(FILE *fp)
{

RUbe *o »

IF =11 _nzad ;

THEN xtnen_nz2ed » : =
‘int xs ys succCess = Y
P = get_RJIL:z_ncde ()
fscanf(tp,"%¢ Za\n",8x,8y)
p=>tirz_rule_nc = x ;
p=l>act_ruia_nc =y s
focanf(fo,"id\n",ax)
g=>no_1ts = x ;
if_nead = reaa_1fs(x,fp) ;

it

<
m
oy
.

fascanf(far,"4d\n",ax) 7
p=2no_tnans T x g
then_nead = ragd_trans{x,fp) 7
p-=>rule_1t = 1f_ra2ad ;
p=>ruiz_then =
if(!lsuczess)
return NULL -~
else
raturn o -
+
-IF *read_ifs(int no_ifs, FILE #*fn)
-
{

IF =hesd = NJLL, *ta1l = NULL, *curr = NULL

whila(no_ifs=--)
{
curr = 1f_cne_read(fp) 7
1f(curr = NLLLD
{

-

1tlhead == NULL)D
nead = tail = curr
els:
{
talrl=>next = curr -
tail = curr ;
B
-‘P
elss
{

char txt{MESG_LENGTHI ;

serintf(txt,"File \"4s.RUL\" cecrrupted.

Precs any key",file_name) 7
status_wandow(txt)
fflushr{stdin) ;

«++ ABORTING

saesPress

.. ABORTING

Jan 16 1Jd:u7 1955 Page 41

gatch()
fecloseasll () »

clrser ()
ex1t(1)

\

Y /% while(no_rfs==) */
return nz2ad ;
y:

TN *read_thens(int no_thans, FILE +fp)

{
THEN *head = NULL, »tail = NULL,
wnile(no_thens==)

{
curr = then_one_rzad(fo)
iflcurr !5 NULL)
{
1f(head == NULL)
1 =

haad = tai curr
alse
{
tail~>naext = curr ;
tail = curr ;
}
>

else
{

cher txt[MESG_LENGTH)

sprintf{txt,"File \"%s
Prass any kay'",file_name)

status_window{txt) 7

fflusa(stdin) /

gatch()

fcloseall() 7

cirscr()

axit (1)
N

Y /% whiiel{no_thans==) */
return nead ;/

o = get_IF_ncda() 7
fscant(fo,"%d\n",8x) 7
p=>aci_rule_nc = x s
fscanf(ftp,"4d\n",2x)
p=>uhich = x s
switch(p=dwnich)

{

C

3

[0}

iflo=->gm.gl ==
succa2ss = NO
breaic -«

kcurr

.

’

fRULAY corrupted.

NULL)

N

ise TUL @ pedgm.al o= UL _read(fp)

NULL

-

’

chse MATH @ p=>gm.expr = MATH ra2ad{fp)
= NULL)

if(o->cm.exnr =
success = NC

creak s

«
’

.
?

.
'

o BBORTING ase.s

Jan 18 13:37 71995 Page 42

>
‘success)

f(
return NutbL

[P O]

return ©

p->act rule no =

c=>which = x

casa UL : p=>ceam.al = QUL _read(fp)
1f{p->ceam.qgl == TNULL)

-

success = NO /
break
case MATH : o->ceqgm.expr = MATH_read(fp)
if{p->ceam.expr == ULL)
success = NO
braak ;
casz2 PR : p=>ceam.extprog = ED
if{p=->czgm.extprog =
succzss = MO s
brezak =«
case CHE o->ceam.ch = CHE_read(fpn) 7
iflo=>cegm. = MULLO)
sSUCCess =
bre2ak 7

Hox
Z
C @
]
[N
R
-
O
4

ch =
NO 2
3
if{lsuccess)
return NUYLL
G‘l:"«i‘

return v -

S

A Y

b
WUALIFIER * JuUL_rzad(FILE *fp)
{

int x, succes = YES, vy &

e (B

QUALIFIER =*xp .
char txtIMAX_LENGTHI
P = get _DJQUALIFIER _node()
fscanf(fp,"420\nl\n",txt) 7
p=>qual_nama = dun_str(txt) ;
fscantf(fp,"%d\n"rax) 7
o=>no_cheocic2s = x
for(x = 0 7 x < p=>no_choicas ; ++x)J
<
fscanf (to,"Za\n",38v)
add_cnorcelpryrYZS)
b
if(lsuccass)
rzturn NULL
else

return p s

A XY

Jan 15 1J:C7 165¢¢ Pa

g
ceXTPROG *ePR_reaq{FILFT
<

int succass = YES, 1

EXTPRUG *p /
char txt[MAX_LENGTHI]
fscanf(fp, "4l *\nJI\n",
D T name_axt_prog_get
if(p == Null)
{
uct name_list =
get_=zXTPRCG_no
ane = dup_str(
hare_count = 1
scanfl(fo,"Zd\n",¥%
->pass_no = i
f{p=>pass_no’
if(v_tree NUL
vars_rzad() ;
fer(i =y ,; 1 < p=

{

fscanf(fp," %"
curr = get_lin
curr=>name =
1f{p->p_head =

P=2>n_head =
else
{
o tail->nex
tail = cu
3

fscanf(fp,"%d\n" /2
p->relurn_no = 1 -
1f(p=>rzturn_nc)

iflv_ztree == NUL
vars_rezd() ;
for(1 =0 ;7 1 < »p
{

fscanf(fp," %[~
curr = get_1l1in
curr=>name = d

1f{ p=>r_head
D=>r _head =
2lse
(‘.
tail->nex
1ail = cu
>
¥
then_z2_add_1list(p)
>
2lze
€

t+o->snare_count
fscanft(fo,"%d\n"
for(a = 9 ;7 1 <

fzcant(fp," 4l
fscanf(fp,"%a\n"

t
x_ncde() ;
t

;
txt)
{(txt)

*tail = NULL

o)
[
3
B

it

MULL .,
de (3
txt)

.
’

i)y

e N

L)
>phass_no s
Y

\nd\n",4tx

)

e

up_str{4x
= NubLbl)
tail =

s

curr

t = curr

rr s

~e

i)

L)

=>return_no ; ++i)

\n]\n"/txt) ’
k_nod=()
up_str(txt) -

rr s

;
PR B
p=>pass_no ; ++i)
ANnINn"stxtd S

s%1L)

.

’

D
-
-~

iy
(A

Jan 1¢ 10:u7 1¥35 e

for(1 = G , 12 < o=>return_no ; ++i)

fscant(ta,"%02\n2\n",txt)

>
1f(lsuccess)
return NULL
21352
reaturn o
)
CHUICE #C=z_r2ad(cILE xfp)
{
int sJccess = YESs, X »
CrOiLCz *o5
char txTIMAX_LENGTHI 7
D T get_ClANIC:_node() 7
fscanf(f2,"4°2*\ni\n"stxt) 7
p=>mzthod = dud_str(txt)
foscanf(fr,"%aAn"rax) 7
p=>prebhabilaity = X »

1t (!succass)

return NULL S
add_to_m2thod_1list(n) ;
raturn 3

>
EXPRESSION *«MaTH_read(FILE *fp)
{

int succass = YES$5 &
IXPRIZISSION *xo

char txtTHMAX_LENGTHI

0 = gl _MATA_ncael) ;
fscanf(fo, "4 "\nI\n",txt)
p=>reft_osart = dup_strtxt)
focanf(fo, "4 \ni\rn",txt)
strcpy(p->relation,txt) 7
facant(To,"A02\n2\n",txt)
p->rignt_part = dun_str(tx
it{strenr(p=>laft_part, "L’

.
’

+y
1) ’

Y 1l strehr{p=>right_part, ("))

Ll B

1f('r2ad_veriables)

vars_read() ;
read_variables = YES o

)
raturn NULL
else
reaturn o
5
vold Copy(char *sourca, char *xdast)
{
FILE =2nps =xput
char ¢
inp = fopa2n(zourca,"rb") ;
out = fooan(dest,"uwb')
it{inp == NJLL || ocut == NULL)

f{("2rrcr 1n sourcz cor destination file\n")
1)

Jan 1t 1o:07 15§85 FPage 45
¢ = gatc(ainp)

wnila{!f:0f(inpl)

RS
putclcrout)
¢ = se*clinp)
)
fiusnall() 7/
fclosa(unp) 7
fclosa(out)
retsrn s
>
LXTPRJG *get_orog_nolint prog_ng)
{

if({prog_no < 1 [}
return NULL
g2

el

Ay

EXTPROG xcurr = e _

lﬂti:1r

prog_no »= curr_ppog_no)

head_then 7

for{;, curr 2% i < prog_ro /; curr = curr=>next, ++i)
;
return curr -
>
g
voild 2xt_all_disp(void)
1
int 1/
EXTPRSG *curr
for{curr = e_head_then, 1 = 0 ; curr ;5 curr = curr->next)
c .
corintf (" %2d. ",tti)
disp_e_rulelcurr) ¢
) .
return ;
5 S
teXTPrCG *name_ext_prog_gztlchar *name)
€
EXTPRCS xcurr = 2_hesad_thenr
for(;, curr ; curr = curr=>pext)
1fl{stricmol(name,curr->namnel} == 0J)
yresk s
return curr
be
vold tnan_c_add_l1ist(THEN *p)
{
1t(o_head_<than == NULLL)
o_nzad_than = o_tail_then = 2 7/
eise
{
o_tail_then->raight = p
o_tail_then = p 7
N

retura

}

Jan 1o 101586 1652 Page 1

[xxkxdkx MOM_LZARKRING MODULE Axx%xkx/

/xxkkkhkx FIRE.(*hkxdwxtrkhx/f

-

dinciude ""shzll.h”

#inciude <dir.h>

Finclude <proczss.h>

extern RUL:Z *rule_head

extern THEN *a_tnen_root, *u_then
gxtern struct name_1tree *fraae ir
extern jmo_buf jbuf

extern 1nt parsing_solving
extern char *2xpgresslion 7

extern VARIABLE *v_1trze
CHQOICE *head_result, =z
RJLc _STALK *R_STaCK
/% In QOther Files */
vold status_windowl{char *)

char *jet_<har_arrayf{int’ 7 ,
char =dup_stri{char =*)

struct nama_<tree *get_fra_ptrlchar x)
volid cdisp_no qu llfl r(lnt) ;

FEAME ®=get_num_cualitier{int)

e

char »1input_cheilices{int, int,
SELECTION *get SELECTION_node(
void selections_disnose (SELECT
CHQICE *gat_CHO;Cc_no:e(vcl]
void disp_rul2(RULE %) J
void next_tokznl{voxd) 7
volid E(dounla =) ;
void V{dounlz *)
veid ERIRCR{1int) 7
VARIABLE #get_veariablael{cirar =*)
void updata_ver_in_res(RULF *)
vould n.amilnt/ int, ints intd -
void prapare_var{VARIAZLE =)
/* In This F1lz x/
int i1s_fired(RULE =) 7
1nt ¢ompletely_fired(RULE %)
void incr_rule_fFfired(int)
KULz *get_act_ruls_nolint)
vord faire_rulaslvoid) 7
void init_tor_fairingl(void)
volid sxngle_rule_flre(RULE *)
void Ffired_rulz(RLLE =) 7
1Nt true_ 1f(I~ *)
int true exDresslon(EXPQcSSION *) s
aud
1

AT T

-

[3]

int Iru - Aiifier(QUALIFTIER *)
THeN %xcan 1r2(TULALIFIER
t_then_naaelchar *) ;

o+ ‘-—i
~r
N

TH:N *get - ;

verd set_cneoices(QUALIFIER *)

vold get_chncices(struct name_+treoz *x)
ELECTION *add_SELECTICN(iInt, ints, SELE
1Nt test_gualifier(LULALIFIER *)

vold relv“se-result me2mory{(void) ;

vold choice_rasult_disposs(CHOICE *x)
veid sa2li_disp s(struct name_tree *) ;

O
2w

fire_tnens (TH: *) s
void fire_than_single(THIN *)

r

~

TICN %)

»
’

ag
s
i)
ny

Jan 14 Tu:idé 1595 Pag

void tire MATH_then(LXPRIZISSION =*)
2)

void fire_zPR_then(EXTFRCG *) ;
vord fire_JUL_then(ZUALIFIER #*) 7
void fire_Chdc_then(CHQICE *)

void res_osrint{void)

void init_1fs{IF =) ;

voicd 1f_1nit_one(If *) ;
void init_thans(THEN *)
void then_init_ona(THEN =) ;
int succ_Tfirzd(RULE =) 7
void succassful _rules_view(void) ;
int whether_failed_rule(RULE %) ;
void fail_rule_deteil(veid) 7
void 1n1t_vars{(VARIABLE <) 7
voild res_vars{VARIABLE +,1nt *)
THeh *var_ge*t_then_name(char *)
ELeMzNT_RULE_STACK *R_node_get_s
RULE _STACK #x_get_stack(veid)

int rule_s2npty_stack (RULE_STACK +*)
init_rule_stack (RULE_STACK *)

void prepare_for_wny (RULE_STACK =)
int why_rule_retrieve_stack (RULE_STACK *, int %) ;
int rule_pon_stack (RULE_STACK *, int %)

void rule_pusn_steck(RULE_STACK *, int)

void wny_answer (RULE_STACK =)

int 2s_Tirsd (RULE *p)

;
’
tack (void)

{
return p->tot_1ifs_fired > 0 ? YES : NO 7
>
1int completely_fired(RULE *p)
‘
return p=>tot_ifs_fired > p=>nc_ifs 7 YES : NO /x if
s+1 all rules wszre fired +/
; /* if
st1 Forced to terminate x/
veld incr_rule_fired{(int zct_rule_no)

1
RUvi »p = cet_acti_rule_nolact_rule_no) /
t+p=>tot_aifs_~Ffired ;
return s

7

riJLZ *get_act_rule_nolint act_rule_no)

-

4
-

RULEt »curr
for(curr = rulz_read ; curr ; curr = curr=>naxt)

S
it{curr=>zct_rule_no == 2ct_rule_no)
brzak ;
}
return curr
}
voica fire_ruxzs(veid)
1
RUL< *curr
1P (x_3TACK == NULL)
RoSTACK = 0 _cet_stack() 7
initt_for_firing() ;
tfor{curr = rula_bead ; curr ; curr = curr=>next)
{ .

== p=>no_1if

> p=>no_if

Jan 1% 1J:0% 19¢5

hv)
147}
)y
(D)
(o

if(completely_fired(curr))
continue -/
sangle_rule_firelcurr) 7

b
return s
b
vead inrt_Ffor_firirg(void)
{

RULE *curr
for(curr =

-

{
curr=>tot_ifs_fired = J ;
init_irfs{curr=>ruls_if)
init_thens(curr=>rule_tnen)

2

anit_vars{v_tree)

»

return
b

vold single_rule_fire(RULE *xp)

-
<4

;
rule_hzad 7 curr ;J curr = curr=>next)

-

»

int true_rul2_ifs = YES, x 7/

IF *curr 7

ruie_push_stack(R_STACK, p=>act_rul

for(curr = p->rule_if ; curr &% tru
{
+ep=>tot_ifs_fairad ;
curr->fired = YES
true_rule_ifs = true_if(curr) ot
B4

iT(!'truse_rule_ifs)

-

fired_rule(p) ;

.
’

@_no)
e_rule_ifs ;7 curr = curr=>next)

elise
{
++p=>tor_ifs_*faired :
firz_thezns{o=-drule_than)
update_var_in_ras(pn)
>
rulz_pop_stack(R_STACK, %x)
return
>
vold fired_rule(RULF +*p)
{

pP=>tot_ifs_fired += p->no_ifs + 1 7 /% TJo distinguish it from natural
complete firing =/
return ;
;
int true_iT7(i{fF =*xp)
{
int true_rula2_if = YES ;
switen(p=>whicp)

.

truz_qualifier(p=>gm.ql)

casa TUL + true_ruloe_if
;

ve_rule_if = trua_expression(p=>am.2xpr)

return true_rule_1f

7
int true_2xor2ssion{EXPRESSTION *n)

Jan 15 1u:lhs 1995 Pages 4-

{
/* char mesglMESG_LENGTHI 7%/

int 1, rasult = TRUE /

dounle left_side = 0.0 , right_sides =

.

char *tenp o

0.0

’

/% sprintf(mesc,' " Testing Sxpression \'"¥s %s %s\"",p->lecft_part,p->rela

tion/p=>rignt_pert)
status_windowl{mesg) /=*/
persing_solving = SCLVING /

dup_s*trp=>left_pert) 7

- -
Teane -

exprassion = temp -
i = setagmp(chuf)
1f(x ==)
¢ ,
naxt_token() 7
c(alefr_sicde) 7
)
free(tema)
temp = wdbLbL /
if(L)
{
ERROR (1) 7/
ra1urn NO 7/
>
temp dup_str{p=>right_vcart) ;
axprassion = tamo
1= sertjvplabuf) /
if(1 == 1))
{
next_token() ;-
t{dright_side)
}
free{tama) ;
tenp = NJLL »
it
{ _
ERRCR(1)
raturn NO
b
switen(xo=>ralztion)
{
case <7 1 rezult = lazfe
break 7
czs2 “>7 ¢ result = left_side
brealk 7
case ! 1 result = left_side
break 7
case “=°"; rasult = laft_side

braak /

/% soraintf{nasg,"“xorzssion \"%s

ny L "
s %s\

> right_side

side < rignt_side

'z right_side 7

== right_side

is

%3

«:Press a key'",p->le

fi_part,sp=>relationsp=>right_part,result ? "TRUE"™ : "EALSE")

stetus _window(mesg)
ffluen(stadain) -
getch() ;
status_window ("'")
return rosult ;
b
int

Iy

trua_gualifier(ZUALIFIER +*p)

1

int is_true = YIS ;

THEN =+o_fir2 = can_firelp)

stryct nama_trez xx = HULL J

if{to_f1irzs == NULL) /* i.z. Forward chaining */
set_cnoicas(a)

else /* le2. tockeard chalning */
{

RULS x3 ,

*

T4ezN *curr = to_*tire
tor(; curr 7 curr = curr=>gsome_next)

{
4 = gat_2ct_rule_nolcurr->act_rule_no) ;
1f{rs_*iradala))
con*tinua
singla_rule_fire(ul) 7
3

x = gat_frm_ntir(p=>qual_name) ;
1f(x=>hegad =
x/

»

set_choiczs{p) /

[

1s_truz = ta2st_cualifier(p) 7
return is_true s

;

THAeh xcan_tirz (TUALIFIER #p)
{
struct nom2_tree *x T get_frao_ptr{p->qual_name) ;
It(x=>hera '= NULL) /% i.e. alrsady aelected choices by some means *
/
return NULL /
elss

”

TR *hzad = get_then_name(p~>qual_name) 7
1f(heac == NULL)
ratur~ NULL 7
elsz /* Tast to bresak a deadlock or cycle */
1

(13

TH"N #curr = head /
for(;, curr ; curr = curr=>same_naxt)
<
ifllis_fired(ge*t_act_rule_nol(curr=>act_rule_no)))
return curr 5 /% Satter make it "return head ;" */
}
return NULL /

>

-

7
THEN =xz2t_then_name{char *qual_name)

int test
THEN xcurr
for(; curr ;)

<

if((test = stricanlqgual_namascurr=>ceam.gl=>qual_name)) > Q)

curr = curr=>rigkt ;
else 1f(test <)
curr = curr->left ;

-

c_thzn_root -

"

= NULL) /% i1.2. all *he rules failed to set the choice

. et .
Jan 1% 1u:ius 1965 Page &

return curr

}
vold s2t_chorz2s(LULLIFIZR %)

<
-

struct nane_tra22 xx = get_*frm_ctr(p=>qgual_name)
1t(x=>h2a3d ==
Iy

int cnhoic~
ao
{
clrser() 7
status_window("Znter (Cdhoice, (Wlhy") 7
c1so_no_gualifier(x=>qualifier_no) /
do

(o

;
choice == W)

rouwny (R_STACK)

-

ra_*c
sny_answer{R_STACK)

oice == “u’)

void gat_choiczs{struct neme_tree *n)
cnar xtokan, *txt ;
struct text_info ti / ’
int yl, xr, tyne_checice
ScialTIud *n2ad = NULL
SRAME xf = gt _nuw_qgualifier(p-dgualifier_no) 7
gettextinfol ti)
if{tr.w1ndotton ==

inslin2() ¢
vyl = wneray() ;
stetus _window("Enter ChoicesSaaaa') J
do /= while{nead == NULL) ; =/
{
do
{
txt = 1nput_choices(Zsylsticuwinright-ti.winlaft,ti.winbottom-ti
.Wwintcp=-y1)
s wnile(txt == NULL)Y
token = strtok(txt," ,+")
1f(xtok2r == “N7)
typa_cholica = NO 7/ .
else '
<
tyse_choice = YES

N N

X atorl(tcoken) ;
if(x > 3 38 x <= f=>no_crilds)

head add_SELECTION(x,tyne_choicerhead):

{(token = strok(\D"," ,"™)) t= wuULL)

x = atoi(token)
1¥(x > 0 %3 x <= f=>nc_childs)
nzac = add_SELECTION(x,type_choicerhead) ;

o3
free(tx*)
Txt = NULL /
Y} wnila(hera == NULLL) 7
p=>nezd = head s

.

status_window (")
return 7

§ELECTION *add _SELECTICN(Lnt cheoice, int type, SELECTION *head)
<
SELECTION *currs, *prevs, *x s
x = get_SELECTION_node() »
x=>choice = tyecez == NC ? =-cnoice : choice
if{n2ad == NuLL)
head = x 4
else
/ { ;
1flchoice == head->cholce) '
{
trez(x) 7
return head ;
T
if(abs(head=>choic2) > abs(eheice))
{
X=>nax1t1 = nead -
nead = x
b
else
{

naed 7 abs{choice) > abs{curr=>choice) 2&§&
curr=>naxt)

for{prev = curr
curr 4 prev = curr, curr

s{choica)

U\.

f(z abs{curr->choice))
{

x=>ngxt = psrev->next ;

prev=>next = x v

N L

el

2
=

fr

alx) ;

L]

1

v

.

return hesad ;

7

int t123t_cqualifier(QUALIFIER *p) \
{

1nt 9ra2sznt_nagative = NC

ScbLeCTION *currq = NUcbl, *currs = NULL ¢

struct name_tree *x = get_frmom_nctr(p~>qual_name) ;

int nagative_cenditions = p£=>hz2ad=>choice < 0 ? YES : NO /
FRAME *f = get_num_qualifier(x->qualifier_no) ;

Jan 1¢ 10:06 1985 Page %

int nc_choices_g = 0, no_choicoes_s = (Q ;
if{!'negative_cecnditions)
{
for{currg = p->head ; currg &4 l!present_negative ; currqg
next)

{
for{currs = x=>head ; currs 7 currs = currs->next)
{
1flcurrs=>choice < ()
{
if(abs(curra=>chcice) = abs(currs=>choice))
{ .
if{!present_negative)
present_negative = YES
¥
elsa
{
ifi{present_negative)
nra2sent_negative = NQ -/
break »
3
continugz ;
>

1¥{currg=>cheica == currs=>choicea)
raturn TRUL »
Y /* for(currs saeuss) */
Y /x Tor{CcuUrrd «eea.) */
1f(prasent_negative)
rzturn TRUE ;

2lse
return FALSE &
}
elssz
{
for{currc = p=>nzad ;7 curra ;7 currg = currg=>next)
{
++no_choices_a o
for(currs = x->head ; currs J currs = currs=>next)
Iy
1f(currg=>choice2 == currs->choice)
break -/

currg=>

1f(abs(currg=>choice) == abs(currs->choice) && currs=>ch

oice > J)
return FALSE 7
P /x for{currs vaoess) */
Y} /* for(eurrg wesan) */
for(no_ckroices_s = 0 , currs = x=>head ; currs 5 currs

next)
{
t+no_choicas_s5 s
1f{currs=->choica >)
raturp TeUC 7
by
1flno_croices_¢ == (f->no_childs=no_choices_g))
raturn FapSc
else
raturn TRUL
s

currs=>

Jan 15 1C:058 195%

hs]
L33
«:
[

O

void rel2asz_ra2suli_mamory(void)

{
cnolcae_rasul*_dispose(hread_result) ;
cad_rasalt = tail_result = NULL 7
sel_dispose(frame_trae) 7
/* Rest Later x/

be
vold choicz_r2sult_disposa2(CHOICE xp)
{ .
17(p 1= Nuld)
{
choica_result_discose(p->next) 7
fre=2(5)
S = mdLL s
} -
return o
3

vold s2l_disposa(struct name_trze *p)

iflp = 1Ll
{
sel_dissose(o=>1l2ft_name)
szl_daisposel(p=->right_name)
1t(o->nzad = NLLL)D
{
s2lzctions_disposal(e=>head)
a=>neac = wullb s
bs
>
return .
X
fira_tnzns(THA N *hzad)
{

Tred *curr = haad |
Rub e *p = get_3act_rule_noflhead=->act_rulas_no)
for(; curr /, curr = curr~>next)

1

t+o->tet_thuens_Ffired
curr—>ftirzcd = YES
fira_ther_sirngle(curr) .
;
return
2
vold fara_tran_<sincle{THIN *p)
1
switch{p=>unicr)
L
cas2 Tul 1 fire_QUL_then(p->ceam.al)
break
case YATH : fire_MATH_thenfp->ceqme.expr)
break
cas2 “PR : firz_tFR_ther(p->ceam.extorog)
oreaal 7
coase CHE 1 farz2_CHE_then(o=>czgm.ch) 7
braak s
>

s
I

.
£

.
I's

R
17}
[la)
[
—

>

Jan 1: 1ol 1y

volda fira_mdTH_trnen(cXPRESSION *pn)-

{
int 1
/* cnar m23gu MESG_LENGTHI 2/
cher =tand
VARIAoL. *v = Qoll 7
douible right_side = 3.0 7
/= sprint*(nesg,"f1ring Exprassion \"¥%s %s Zs\" .Press any key",p->
lett_partspo=->relationsn->right_part)
tatus_windecw(mresgl) 7%/
parsing_solving = SOLVING /
temp = dun_stri{n=>right_part) ;

axpression = ta2m2 7
1 = setimp(jbhuf) 7
1f(1 == ”)

{

next_tckan() 7
E(crlbnt_31de} ;

>
fres(tens) /
emP = NJLL 7
if(1?
{
ERROR(1) ¢
return ;
b
v = oget 12ble(p=>left_part)
veovaiue - right_side ;s

v=>val_acczpted = YES
/* spraintflmesg,"Assigned \"%g\" to \'"¥s\", eeafress a Key",v=>v
alue,v=>namz) ;

status_windos(vesa)

friusn(stuin) 7

getch{)

status_windoa (") [x/

return s
>
voild firs_z=PR_then(EXTPROG *p)
{

char mesgLMESG_LINGTH]

int status
VAK.ASLE *xv
struct nama_1

FILE ’K‘D ’

ist *curr s

cnar arivacM QIVEDT, dirIMAXDIRY, frnomelMAXFILE], oxt[MAXEXT], pathn
ame LMAXPATH] ;
/* gprantflmesce,"Calling Sxternzl Program \"%s\” .Press any key'",p-

>namg) /s
status_uwindouw(resg)
fflusn(stain) 7
getchi) 7
status_uwindow("") J*/
fnsplit(o->na2me, driver dir, frane, ext) J
1f(p~>pass_nn)

{
fnmer¢2(patrname, drivae, dirs fname, ".PAS"™)
ao
{
fp = topen(pathname,"w") 7

Jan 1% 10:J6 1955 Page 11

int cholca -
sorintf(mascy,
N)"spathname) :
status_window(masc) ¢
¢o
{

"

Error while creating file \"Z%s\". Retry 7 (Y/

ftlush{(stdir) 7
choice = teoupner(getc
Y urrle(!(choice == “Y
1f(chcice == 'N7)
returr

h())
BRE

b3

> whnala(fp == NULLY 7
for(curr = p=>p_hegad ; curr ; curr = curr=>next)
{
v = get_variablel{curr=>name) ;
1 (1 (v=>inatialized || v=>val_accepted))
prepare_varlv) ;
forintf(fp,"%la\n"sv=>value) /
>
fclos=2(fp) ; ,
}
errno = 2 4
textcolor{wrniTs)
texthackground(BLACK) 7
status = spawnlp{P_WAIT,p->name,NULL} /
window(1,1,38%,25)
textbhackground (YELLOW)
cirscr) 7
texthackground (BLACK)
draw(3,¢,75,24) 7
1f(status == =1)
{
char *ixt 4
tx1 = strerror(arrno) 7
txtl{strien(tx+)=11 = “\Q" 7
sorintflnesg,"\"%Zs\" : %s, ..Press any key",p-D>name,txt) ;
status _windouw(mesgl) 7
f€lusn{stdin) 7
ga2ten()
status_window("")

else

&
.

1¥(p=>ra2turn_no)
{
double velues
famerc2(sathname, drive, dir, frname, ".RET™)
do

{

fo = topen(oathnamer'"r")
1f(fp == NULL)

1
int c¢choica s
sprintf(mesy,"Error while opening file \"%s\", Retry ?

status_window(resg)

cdo
{
fflush(stdin) 7
choice = toudper(getch()) 7,
} while(!{choice == “Y* || choice == ‘N7")) ;

if{choice == “N")
return
}
Y urile (fp == NULL) 7
for{zurr = p~>r_head ¢/ curr 7 curr = curr=>next)
¢ 4
v = ¢et_variabla(curr=>name) ;
fscanf(fp,"%1lg\n",ivalues) ;
ve>value ¥ vaiues
v->val _accented = YES

-

7
fclose(fa) 7
>
>
ra2turn
b .
vold fire_aUt_then(QUALIFIER =p)

{
struct name_tres *xx get_frm_ptrl{o=>gual_name) '
SELECTION +*g, *curr, *prav, *y ;

for(y = p=>head s y / y = y=>next)

]

{
if(x~>nhead == NULL)D
{
g = get1_SELECTICN_node()
g=>chol1ce = y=>chaoice ;
X=>neaa = O
else

pe
if(abs{x=>head->choice) == abs{y->choica))
{
if{x=>head=>choice > 0 %% y=>choice < Q)
Xx=>head->choice *= =1
centinue s

N
if{abs(x=>h2ad=>choice) > abs{y=>choice))
{
g = gat _SELECTION_nod2() ;
g=>choice = y=>choice
a~->next = x=>head 7
x=>head = g ;

continue
\)‘

for{prev = curr x=>head ; curr 8% abs{y->choice) > abs(cur
r=>choice’ /; prav = curry, curr = curr=>next)

7
1f(abs({curr->choice) == abs(y=>chcice))
{

H

if{curr=>choics
curr=>choice *

it Vv
(]

S

~3

bs
2ls> 1flabs{curr~>cnoice) > abs(y->choice))
{

Jan 16 1J:05% 199> P

0
['a)
(0]
-—
i~

g = get_SELFCTION_noda() 7
g=>choice = y=>choice ;

g->next = prav=>next
prav=>naxt = q s
>
>
Y /* for(yeieesn) ¥/
return

>

vorda faire_CHeo_then(CHIICE #p2)

{

CHCICE *xx
1f{nead_r
{

x = get CHOICL noda() 7
x—=>metnod = p->mezthod

x=>proosability = c->probability 7
x->result_prchability = (float) x->prohability /7 10.0 ;
head_result = tail_rasult = x ;

;
esult == NULL)

>
else g
{
CHOIC® xcurr = h2ad_rezsult ‘
?orf; curr ; curr T curr=>next)
{
if(stricmp(curr=>anethod,p~>methocd) == Q)
{
1t (! (curr=>nrobability == 10 || curr=>probability == 0))
- {
if{p=>probability == 10 || n->prebability == 0)
{
curr~>result_probabiiity = (float) p->probability /
10.9 /
' ﬁcurﬂ->orobability = p->probability 7
b
2ise
" curr=>rezsult_probability *= (float} p=->probability
/18,0 :
>
return s
}
3}
x = g2t_CHOICF _noda() =~
x=>vatnod = os=>metnod
x=2praobability = »n=>proYability
x=->rasult_probanility = (float) x=>probability /7 10.0
tall_result=>rext = x 7
tarl_rasult = x s
}
return
}
vold res_print(void)
i
CACICE *curr = heac_result
int 1 =1

carscr() 7
textcolor(5LACK)
texthackground (iwm
cprintf("Rasult(s

-
i

e ot N

Jan 16 1Jd:iué 19¢5 Pags 14

textcolor (WHITF) 7/
texthackground(oLaCK) 7
forls cJurr , curr = curr=>next,+*+i)
{
cprintf("%2d. %s : probability %g¢g"siscurr=>methodscurr=>result_
propability) 7
1f{curr- >probmalxl*y == 1Q0)
corintf(" {(i.e. Adbsolutely)\n\r") ;
else if(Curr->pr0Dab‘llty == {})
corintf (" (i.2. Nevar)\n\r")
eglse
cprintf{"\n\r'")

o

.

7 .
textcolor (CYAN) 7/
res_vars(v_tre2e,s,&i) 7
textcolor{WHITL)
status_window("Prass 2ny key tC ContinNUGisesssrsocnssnns')
fflush(stdin) /
1flgetcn() == ZXTENDED)

getch ()
return

b ,
vold init_1fs(If +*head)
{
IF *curr = negsad !
for(;, curr ,; curr = curr=->naxt)
1f_init_orelcurr) ;

aturn
b
vold if_init_one(IF *2)
{

p=>firad = N3 ;

return s

>
vola init_thens(THEN *haad)
{
THEN #*curr = head - ’
for(; curr ; curr = curr=>naxt)

then_init_onelcurr)

return o

>
vold tnen_init_cn2 (THFEN =xn)
it
2=>firsd = NO ;
relurn ;
>
1nt succe_fira2d(RULE *0)
1

return (p=>tot_ifs_fired > 3 %% o=>tot_ifs_fired == p->no_ifs + 1) 7
YES : NO
>
vold succassful _rulas_vizulvoid)
{
RULe =xcurr = r,
int no_success
for(; curr ; cu
<
1f(succ_firzca(cure))

-
S

->nex*t)

-
05
2
-
O~
.
<
s
<o
o
—
£
s}
1
0
it}
ia)
Ww
—
v

++no_succese ;
clrscr () »
diss_rulelcurr)

status_uwindew{'"Press any key 1o see next successful ruls seess

[FIRLY -
4 ’
fflush(stdin)
1f((ksy = getch()) == £5()
{
status_windou (") 7
clrscr ()
return
} i =
else it(kay == EXTENDED)
getch()
>
>
1f(no_succass == ()
{
clrscr()
status_window("No rule was a suUCCES5S. «ssPress any key to cont
inue")
>
alse
status_window ("No more successful rules. «essPress any key to

continua')
fflushn(s*tdin)
iflgeten() == EXT

ENCED) ‘
geten () 7
status_windox (") ;
return
b
int whetner_tailed_rula(RULE *p)
P)

return p=>tot_ifs_firad - (p-=>no_ifs + 1) ;
void fail_rul-_detail(void)

FULE *curr = rule_head 7

int no_failed = 0, fail_oremissz_no, key 7
char txtIMISG_LENGTHI

for(;, curr ; curr = curr->naxt)

"

{
if((fail_premise_nc = whether_failed_rule(curr)) ==)
continue s
elise
{

“++na_failed 4
clrser(} -

diso_rule(curr) 7

sprintf(txt,"Failed a2t nremisa #¥%d. «saPress any key to s
ee naxt fairled rula”",fail_oremise_no) ;

status_cindow(txt) 7

.

ffiush(stdin) 7
1f({(kay = gatch ()} == £SC)
status_window (')
clrscr() ¢
rzturn

X

Y
<r

2lss ifl{kaoy == EXTENDED) .
ga2tch()

;
1f(no_failad == 1)
{
clrscr ()
s5tatus_windouw ("No rule failed, vesaPress any key %o continue')
’
}
else
status_aindouw('"No more failed rules. asssPress any key to cont

inue")
ffiush(stain)
if{gatcn() == EXTENDED)
geteh ()
status_windouw ("'

return ;

}
veld 1nit_vars{(VARIABLE +*p3
{
1f(p) ' A
{ (4
p->val_accepted = NO
p=>disgc_in_res = NO ;
init_vars(ao->left) 7
ini1t_vars{n->right))
b
return s
7
vold raz_vars(VARIABLE *p,int *i)
{
1f(pd
{
1f(o->d1salayed 3% n->disp_in_r=s)
v(_ .
1t(o=>xnitializaed || p=>val_accapted)
corintf(M"%2d., %s ¢ Ag\n\r",{xid++,0->txt,p-D>value)
2ls2
corimtf (" 2d., %s 1 **¥has not deducable **x«\n\pr'",{(xi)++,p-
>itx1) s
b
res_vers(p=->left,i) ;
res_vars{p=->right,i) ? '
b
return
2}
THeN *var_get_tren_name{char *name)
(

int tecst
TAEN *curr =
fer(; curr ;)
{
1f((test = stricap(namescurr->ceam.expr=>left_part)) > 0)
Culfr = curr=>right
2lse 1f(test < 0)
curr = curr=>laft ;

braaik 7

Jan 1¢ 1J:36 1965 Prge 17

),

retuyrn curr

RULE_STACK =*a_c2t_stack(void)

ACK *xp ;.
L2 _STACK =x)mallec(sizaof(RUL

i
wh
-
I>
(@)
=
o
N~
Ne

clrscr()
printf{"yut of memory. veee o ABORTING «es{R_get_stack)\n")

fflush(stdin) ~
g2tch()

ex1t (1)

-

2
p=>t0& = p-=>curr_uwhy = nNutlL 7
return p

J
EL&WCNT RULE_STACK xR_node_gat_s*tack(void)

ELEMENT _RULE_STACK #*p ;
p = (ZLZMENT_RULF_STACK *)malloc(sizeof(SLEMENT_RULE_STACK)) ;
1T == HULL) ,

{

clrscr() 7

sraintf("Cut of menory. v van s ABORTING e {R_get_stack_node)
\n”) ’

fflusn(stdin) ;

w2tch()

axit(1)

p=>act_rulz_nc = C ;
p=>next = NULL
return p s

J
int rules_empty_stack(RULE_STACK =RS)
{
return RS->tas == NuULL ? YES : NO ;
2
in1t_rule_stack (RULE_STALCK #*R%3)
{
RS=>tos = R3~>curr_why = NULL 7
ra2turn
),
vold preparz_for_why{(RULI_STACK *RS)
{ .

RS=>curr_wny = RS=>%os 7/
raturn
>
Int why_ruls_retricve_stack(RULE_STACK *RS, int *act_rule_no)
< ‘
1f(RS=>curr_uwuhy != NULL)
{

KS=>curr_why=>act_rule_nc s

RS=>curr_uhy=>next ;

*act_rulz_no
rS=>curr_uhy
return Y:&s$;

(1]

Jan 14 10:356 19793 Page 1¢

{
*act_rule_no = 0 ;
return NO s

pep_stack {RULE_STACK *RS, int *act_rula_no)
if(kS=>tes != NULL)

cLEMENT _RULE_STACK +p = RS=>tos ;
kS=>tos = RS=>to5=>naxt
xact_rula_no = p=>act_rule_no ;
treel(p) 7
p = NULL

return YES

v

else
{
*act_rule_no = 3 ;
return NO /
>

3

vold rule_push_stack(RULE_STACK *RS, int act_rule_no)
1

LEIMENT_RULE_STACK »*uo ;

= R_noda_ga2t_stack () 7

2=>act_rula_nc = act_rule_no 7
p=>nz2xt = R3->tos

2S->tos = p

return ;

2

vold wny_answer (KULE_STACK #*RS)

4

1nt act_rula_no, choice = “d’s xs y, more ;
RuLE *p
cirscr ()
do
{

T

more = ghy_rule_retrieve_stack(RS, fact_rulz_no) ;
1f(more)
{

P = get_act_rule_nolact_rule_noc) ;

disp_rule(p) 7
carintf (" "\n\r\n\r')
textattr (Ox70) ;
17{i{p->tot_thans_Ffired)

corintf("Trying to zolve premise #%¢d of the zabove rule", p=->t
ot_i1fs_fired)
els2

.
’

-

cerintf("Trying to solve consequence #%d of the above rule"
s p=>%o0t_thens_faired) ; '
textcolor(wHITE) 7
texthackcrounad{aLACK)

X = wharax()

y = wharey() 7
status _window("(Wdhy, (Clontinue with firing rulas”) /
do

Jan 1% 1J:..L 1835 2age 19

choice = toupcer{gatch())
Y wnil2{!{croice == *'C’ || choice == "W’'))

.}
~ 0O

3

1f(cno1c2 == °(
rzturn

cotoxy(x, y) 7

cprintf("\n\r\n\r")

[

w
p—t
Us
i

tstatus_wzndom(”mc
te continua firirgy Rules')
fflush(stdin)
T2aten () s
}
Y wnile(choica == ‘w’

.

return o

}

(Last) Rule for your question. Press a key
;

’

o

nore)

o
<

dJan 15 1o:52 15358 oage 1
[Hxxekkx NON=L ARNING MCDULE **xxdkxx/
AR R X2 RN vit . C rxxkxx /[
Ainciuae "s3n21ll.n"

axtarn int parsing_solving ~
extern VARIA_LE =*xv_tra2e
axtern cnar file_namel4ld -
xtarn cuarr_rulz_nc 7

extern THSN *3_head_then
extarn RuL:z_3Talk =R_STALK
int m_srr_noc = C ;

struct esxcention 2xcep s

Jmpg o

1nt toxen_tyn» s

char tokenlMaxX_LEINGTHI

char *a2xprassicn s

VARIA3L: *var_hreads, *var_tail 7

char *matr_zrror_mezgill = {
“"No Error',
"Adrgument demain
"Argument
“"Overflow range
"Undzrflow rang
"Total loss of
)

/= O0f Other *iles */f

cXFPRoSSION *»g50t_MATH _nodedlvoid) 7

char *g2t_char_array{int) 7

char *dup_strichar =3

void staetus_uwindowlchrar =) 7

cnrar *get_cnh_txtlint, 1nt, int, int)

char =trimlchar) ;

char set_val_var_txtl{int, int, int, int)

RULE xget_act_rule_nolaint) -

int is_tiredl~cl: =) ;

int single_rulz_tire(RULE x2)

THeN *var_get_tren_name{char *)

vold oregara_for_wny(ULE_STACK =*)

vold wny_anssar{RULE_STACK *) 7

/* In Thris File x/

cher * clzean_szxo2orzssicn(char =3

cXFRLSSION *1f_split_exeression(char %)

char * g¢gat_l2f1_part(char *, int x)

1int 1f_parse_eoxpression(zXPRESSICN *)

int parse-exD"(char x) 7

vold look_n2s_variables(EXPRESSION *)

volc proc2ss_ve r(ch“r *) 5

int exist_variabla{(char *)

VARIABLE x. 2% _veriablelchar x3}

VAKIAZLE *add_vsriablef{VARIABLE #*, VARIABLE *)

VARIAZLE »gcet_new_va rlmb¢\(char *x) 7

VARIASL: =get_VARIASLE _nodelvoid) 7

voird R(couhbliz *)

void S{doudla x) ;

voi¢d T(dounle =3

void Fldoudlzs =) ;

voicd PC(counla %)

vore C(cdounle *x)

uft Souf

error’,

singularity

error'.,
errcr'’,
ignificance

4

Jan 1% 10:39 1965 Pagz 2 - .

voicd Aldoubla x) ;

voicd M{douplaz *)

void Y{dounbla *) ;

void report_srror{int) -/

void next_tcikznl{void) /

vold oogrationlddouble *, double *, char)
void unary_op2rztion(double *, char)
voic¢ func_oneration(doudle *, char) ;
void skip_spaces(void)

volcd FRROR(int)

void vars_writel{void) /

vord add_to_urite_var(VARIABLE *) ;
voird var_uwrite_cad(VARIAdLE *)

void vars_read(void) ~ .
void free_var_list(VARIABLE *) ;

VARIASLE xin_var_list(char *)\}

voicd update_ver_in_res (RLLE %) ;

vold can_var_*ire({char *, THEN *%x, THEN x=%x) ;
1nt return_prog{char *, EXTPROG x) ;

void prepars_ver(VARIAZLE =)

cnar =*clean_expression(char *sir)
{ .
int i, k = ¢ 7
char txtIMAX_LENGTHI
for(isstrlen(str)=-1 ; 1 >= 0 ; =-=1i)

< .
if(isspace(str{il) || discntri(striil))
stri{1l = "\0° ;
2lse
break s
>
for(iz=C 5 str{il &2 (1ssoacel(str{il) || iscntri(str(id)) ; ++1i)

7
strepy(txtrstr+2l
for(k=0, i=J + txtl1] 7 ++41)

{
if(i{issoace(txtlid) || discntrli(txtl11)))
strikt+] = txt{id /

>
strok] = ‘\U°
return str ;

)

XPRESSION #af_split_z2xporession{char *expr)

TN

int posn s

EXPRESSION *p NULL

tt

char =xleft_part = NULL, *right_nort = NULL, relation[3] ;
left_part = cet_left_part(exor,&posn) 7/
ifllleft_part)
return NULL
if(exprisosnl == “17)
;

{
vflexor{++posn]) = “=7)

4

~a

free(lizft_nart)

return NULL /

n
£
W
W

Jan 16 1u:zo: 1385 =

relaticn{0] = “!'’, relationC1] = "=, relationl2] = *\0°

+t+neosn s
bY) .
rl
}
a1se@
{
' -
relati1onlCl = 2xprinosnt+l, relationl?l = “\0°
>
if(lexprisosnl)
<

.

free(left_part) ;
raturn NULL ; ‘

}
rignt_part = ga2t_char_crray(strlen{expr) = nosn) ;
strcpy(rignt_part, a2xor+nosn) ;
p o= get_MATH_ncae() 7 '
p=>expressior = dup_strlexor) 7
p->left_ovart = left_nart ;
p=>right_part = right_pnart ;
strcopy(p=>relations, relation)
return o »

.
J
char * gat_left_part{char *expr, int xposn)
{

for{xposn = 3 ,; expri*posn] ; +txposn)

{
if(strcnr(”()!=”,expr£*posn])f
break 7
2 .
if{*posn == 0 || *posn >= (strlen(expr) =-1))
return NuLL / '
2lse
{
char *1lo = get_char_array(*posn+1) ;
strncpy(lc, exprs *oosn)
ipl*posrd = “\U°
return 1p -
3 .
1nt iT_parsea_expression(FXPRESSION *o)
c .
int corrsct = YES & .
correct = parse_zxpr{n=->left_part)

if(lcorrzct)
return NG ;
correct = oarse_expr<o~>right_ﬁart) ;

return correct /

2
int Farse_exprlchar *axpr)
1

double result >

int i ;
char xtamp = dup_strlexpr) ;

exprassion = tamo
1 = setjgnp{ibuf) ;
1t(a == ()
{
next_tckan() 7
1f(*token)

arsing_solving = PARSING
E(iresult)
if(xtokean)
i =12 ; /+ New frror ¥ +/
}
}
1t (1)
{

ERROR(1)
return NO ;

2
2lse
' return Y&5S ‘
}
vold look_new_variablaes(EXPRESSION +p)
{

char xtemp /

cnar xtoken, var_namelMAX_LENGTHI 7
int i, J = 0, var_only = YES ;
temp = p=>left_part ;

for(i=0 ; =temp , ++i, tempt+)

*temp == “[7)

~a

L token = temp++

1"
~
[}
~
~r

while({*xtenp !
. ¢
temp++
it+
)
1f(i=-j == 1)
"CRRIR(13Y ;7 /x Ewmoty ({J, i.e. Variabls name missing x/
strncpy(var_name,*token,i~j+1) ;
var _nama{a=3i+1] = “\Q° ;
process_var{var_name) -

L XY

b

¥
24

(6

e
var_only = NO

N

it
1t(var_only)
p=>ver_expr = VAR ;
plse ‘

p=>var_expr = E£XPR
temp = p-=>right_part /
for(iz=0 ; =xtamp ; ++i, tempt+)

{ \

1f(=temp == “[7)
{

token = tempt+ ;

J:ld"%;

while(x4temp !
{ :

tomp++

it

‘1)

14+
} .
roncpy{ver_name, token,i=j*1)
-

st
var_name(1-3+13 = “\Q" ;

Pprocess_var{var_name) ;

>

b
return
2
void
{
int present
VARIABLE =xp
present =
iftl{present)
return ;
2lse

<

e

BN

1f(p)

process.

var(char

H

NO 5

= NULL

~

*var_name)

add_to_write_var(n)

-
>
-

return s
2

int exist_varisa

1

»

*

4

exist_variable(var_nzame) -

P = get_nz2w_variablalvar_name) /

blel{char *var_name)

return get_veriablel(var_name) == NULL ? NO : YES

b

”

1

VARIABLE *curr

int test

for(; curr ;)

1
ifl(tes
curr

el=ze

b

1

if(curr == NULL)

VARIABLE +*add_variable(VARIABLE #*p, VARIAELE *root)

M

P

N

.
£

UL

v_1tree

-
’

VARIASLE *get_variable(char xvar_name)

ricmp(var_namnescurr=>namzl)) > 0)
r=>right -

< 0

)

z

curr=>lasft

A
~e

in_var_list

’

{var

if(stricmp(p=>name.,
root=>right = add_variable(p, roct~>right)

root=>left

cCurr =
return curr
>
i
ifl{root ==
rect =
eisa
{
else
>
raturn root
>

int answar=
char x+tx* ;
VARIABLE =*p

NC

_variablalchar

add_varieble(p,

n

root=>name)

<

me

»

4

)

»
Id

> O

roct=>left)

xvar_name)*

e

Ne

cnar mesg MESG_LENGTHI

struct tax*_info ti -
gettaxtinto(ti)
sprintflmess, "tnter
var_name)
status_window(m2sg)
winaow(43,3,77,22)
clirscr() - :
do /* wnile(txt == NULL [] strlen(txt) =
- ’ .
txt get_ch_txt(2,2,26,14)
1f(txt !'= NULL)D
traia(txt) J
1f(xtxt ==
tree(+txt)
Y wnile(txt
p->namg = dup_
p->txt tXT.s
clrscr () 7
status_window (Do You wish to initialize
do

{

]
!

\
the text associated

»
z

1]

X ’ :
= 1\01)

NULL || str
r{var_nawe)

’
= len(txt) == (
st H

fflush(stain)
answer = tounper(getch()) 7
> while(!{ansuer
iflanswuer ‘Y)

-
4

.~

p=>initialized YES

/x while(txt NULL) 7 */

e
{
txt
Y wnile(Ctxt
p=>valuz = strtod{txt,

get_val_var_1xt(2,2,25+14) 7
KNULL)Y
NULL) /

==

A

1

(6]

w

a
p=>inrtialized
carscr () 7.
status_uvwindow("Oo You wish

he 2nd 7 (Y/\NO'") 2
cdo

{
tfiush(stdrn) +
ansser = toupae
Y wnil:(!'(2nswer
Y

0 s

= N

h(

rge

LS

~< O
N =
73]
w
i
1

—

1f(ansyer ==
p=>dicolayed
else
p=>cdisolayed = NO ;
return p s :
3 ,
VARIABLET *get_VARIABLE noda(vecid)
{ .
VARIABLE =*p
P (vaxkIA3LZ
1t(p NULL)
{
clrscr ()
printf("out of memory.

Y

w
~e

s

*) mgz

lloc(sizaof(VARIABLE))

«»n ABORTING

with the New variable :

)

-

.

.
’

his

iY') answer == °N"))

“NTYY

’

4

status_window("Enter the initial value of the variable")

%s'",

e

variable ? (Y/N)") H

s

to display the value of this variable at t

«vo{get_VARIABLE node)\

n H-) ;)
fflushb(stcdin)
gaten()
ax1it(1)

.

4
.
’

NULL ;

p->name = p~>txt
p=~>vaiue = 0.C
a=>1n1tializszd = YES
p->val_accepted = NO
p=>displayed = NO ;

p=>disp_in_ros = NO ;

p=>left =" p=>richt = NULL

return p

}

vold E(double *raesult) /* £ => S { +5 | =35 } %/
{ ') : :

doudle hold ;
char op s
S{result)
while((oo
{
next_token() 7
$¢inhold)
oparation(resuit,&holdsron)
3 ,
raturn

H wa

*tcken) == "+ || ¢cp == =)

-

3

vord S{double *result) /+ S => T { *T | /T | %T >

{

cdounle hold

char op 7/

T(result)

wnile((op = *token) ==

<

next_tokzn{) ;
T(inold) |
opzration{(result,%hold,cp)

’

i
i
-
-
-
o
O
it
]

*" 1] cp

e

return s
) .
vord T(double #*result) [T => F | T =/
{ ' ‘

doudle holu

Flresult)

if(xteken =
{ .
next_tokan()

TC(sholc) 7
operation(result,3hold, ' *")

- IAI)

-

-~

¥
return ;
) .
vold F(deuble *result) f* Fo=> 0+ | -1 P x/
{ | |
char op = 0
if({=xtcken
{

1} Ne

i -

‘+7 || xtokan == ‘=") 2% token_type

op = xtokan 7
next_token() ;

*/

DELIMITER)

}

Plresult)

1f{op)
unary_opazration(result,on)
return
> ‘
voia Pldcunls *result /B => (8 | C | & *f
if(xtoken == “(° &% token_type == DELIMITER)
C . .

next_tcken()
c(result) -
1f(*xtoken 1= "))

report_srror(Q) ;

next_token() ;

}
else 2f(isdigit(*xtoken) || #*token == “,*) '
Clresult) /
else
A(result) ;
return J
>

vord C(double #*result) /* C => A fioating cr integer constant */

{ . ,

if(token_type == NUMBER) . _—
{ : '

*result = atof(token) J .
next_token() 7

-~

7
return ;
bs
void A(double xresul?) /A => VI | M xS
1f{xtoken == "[") ,
{
next_token() / :
V(result) ; /* Don’%t ne2d if only parsing is required */
1f{*xtoxken = “3°) '
‘report_arror(l) ;
next_token() ;
3 .
elsa . o

M(result) -
return ;

}

voird M(double *result) f* M => SINCE) | COSCZ) | TANCE) | ASINC(E)

ACOS(E) | ATAN(E) #/
{
char which = 0 /
if(token_typs != VAR_FUNC)
report_arror(11) ; ‘ ¢
if(toupper(xtckan) == 'A’)

{

A

1f(stricmp(token,"ASIN"Y == ()
which = ASIN
elss 1f(s<iricmp(tcken,"ACOS") == ()
wnich = ACOS
else if(stricmp(token,"ATAN") == ()
which = ATAN

1

\

else 1¢(stricop(token,"Aa8S") == ()
whicn = A8BS
zlse
reoort_error(2) ;

P

else .
{
1f(stracmp(token,"SIN") == 0)
ghicn = SIN
else if(stricmp{tcken,"C0S") == (D
which = C0OS) '
~else 1f(stricmo(token,"TAN") == ()
which = TAN
else 1f(st Plcmp(tokﬁn,”cLOO"") == 0)
whi ch = FLQOR ;
2lse if(stricmpltokan,"CEIL") == ()
which = CEIL 7
else if(stricmp{token,"EXP'") == ()
which = EXP '
\ else if(stricmp(token,"LOG") == ()
which = LOG 7
else if(stricmp(token,"SQRT") == {
) .
whicn = SQRT
else .
‘ - : report_error(2)
>
next_tcken() ;
1t (xtoken t= “(7)
report_error(10) ;
next_token()
’(r‘ :;J].T.) H
func_operation(result,uhich) -
if{*xtoken 1= "))
report_arror(9) ;
next_toxen() ;
rzturn
>
voxd ERRUR(int 2_no)
char mesglMAX_LENGTHI 7
-static char *o_messagel) = £
[* 0 %/ "Unbalanced Parenthesis, missing \'")\"",
/x T %/ - M"Veriable not terminated with \"J\"",
/% 2 «/ "Undefined function called"
/* 3 */ S"Attempt to divide by lero"
/% 4 %/ T "attemp to find \"Z\" with second operand
Laro",
/* 5 %/ ' ”In alid constant’,
/* & </ "Illeagal character in the exprassion”
/% 7 %/ "Cannot raise -ve no\‘s to any pouwer',
/x B x/ "Cznnot have cperand of ARC sinercosstan
> 1 or < =-1",
[*x 9 +/ "Uabalanced parenthzsis of a function, mi
ssing \'")\"", . ’
/% 1o %/ "Missing bracket \"{(\" with a function"
A . "Errgr in expression”,
[* 12 =/ "Unwanted character{(s) ",

/* 15 =/ . "Ewpty (1, Variable name missing",

[* Ta */ "Cznnot find Square Root of & =ve number"”

Vs .
/% 15 ¥/ "Cznnot find LOG of a non=positive number
13)
Y
switen{s_no)
‘ .
case 2
caze 11 :
case 12 : sorintfimesy,"%s : ERROR : ¥Ys. ...Press a key\a",tok

ense_massagala_nol)
' break 7
case & : sprintfimesg,"%c 1 ERROR : %8+ «aePresc -a key\a",xexp
ressionse_messagele_nol) ;
. break . .
default @ 1f(e_nc < MATH_ERROR_STARTING)

’ sorintf(mesg,"ERROR : %s. ...Press a key\a",e_mess
agele_nol) 7 ‘ : '
else -

sprintfimesqg.,

119,

hs 1 %s"sexcep.name,s,math_error_me

sglexcepa.typel) 7

: braak 7
b .

status_window(masg) ; v)y _ - ‘

ftlush(stdin) 7 _ ‘ : ‘

getch()
status_window("'")
return ;

3

void next_tckan(void)
{

char *temp = token
if(isspacs(*axpression))
skip_spaces() »
1f(strehr("x/%+4=411()",xexpression))
{ .
token_typa = DELIMITER ;
=temptt = *expressiontt
3 , .
else 1f(isalnhalxexpression)) ,
c .
tckan_tyoe
do
W {
xtemptt = *kexpressiontt .
Ywhile(isalnum(*exprassion) || *expression == °_°) ;
> \ \
se if(isdigit(*expression) || *expression ‘L)
¢ ;

VAR_FUNC

2l

int had_decimal
2 s

token_t;p = NUMBE
. de
{
*temp = *axpressiont+ ;.
ifl{xtemp == °,7)

{

1f(!had_decimal)
had_decimal = YES ;
else

NO ¢
R

-
.

report_error(S)

-

¥
++temp ,
} while(isdigit(*expression) || *expression == *‘.*) ;
b4
2lse
report_error(é) .
*temp = NJULL ' ' v \
return b
}
vold operation{double =~opl, double *op2y char op)
{ .

switcn{(on)

{

case “+7 : if(parsing_soclving != SOLVING)
{
*opl = 13,0 ;
preak 7
}
m_err_ne = 0

s Na

*0pT += *op?
. iflm_err_no)
report_error{m_err_no) 7
break 7
cese "=" : 1fl{parsing_solving != SOLVING)
{
*os1 = 13.0 4
break 7
}
w_err_no = 0 ;
*opl -== *ond ; ‘ ' ,
ifl{m_err_no)
report_errcrim_err_no) ;
break 7
52 “x’ 1 if(parsing_sclving !'= SOLVING)
- { :
<opl.-= "13.0 -
brezk 7 .
3 .
m_arr_no = 0
xopl *= *gp?
1flm_err_no)
report_error(m_err_no)
break -/
case /" : if(parsing_solving == SOLVING)
{
if(xop2 == 0.0) -
report_error(3%) ;
m_err_no = (0 7
*opl /= *op2 ;
1f(m_err_no)
regport_error{m_err_no)

(8]
D
W

Na W

n v

el

n

*opl = 13,0 &
braak ;
‘%7 i if(parsing_solving == SOLVING)
{ .

~

O
o
W o~
(0}

1f(*xen? =='0.0)

report_error(sS) ;

-
»

-

++temp ;

>} while(isdigit{(*expression) || *expression

report_error(é) ,
=temp = MUYLL ‘
rzturn ; -
}
vold operation(double =opl, double *op?dy char op)
{ .
switen(en)
{
case “+° : if(parsing_soclving != SOLVING)
. p
*opl = 13.0
preak
>3 .
m_err_nc 0 ‘
*xop1 *+= *op?2
- if{m_err_no)
report_error{m_err_no)
break »
case' "=’ : 1f(parsing_solving != SOLVING)
{
*op1 = 13.0
break -
>
m_err_no = 0 ¢
*opl == *opd ;
if{m_err_no)
report_errcr(m_err_no) 7
break »
case ‘*’ : if(parsing_soclving != SOLVING)
p .

~

1

e N

- -

*opl1.= 13,0 7
break 7 .
b
m_orr_no = 0 ;
*opl *= <opl ;
1f{m_err_no)
report_error(m _err_no)
break 7
‘/" :+ if(parsing_solving == SOLVING)
{ .
1f(*op2 == 0,0) -
report_error(3)
m_err_no =
*opl /= *op?
if(m_err_no)
report_srror(m_err_no) ;

O
0

0
L]

h

el

2

-~a
-

*opl = 12.0
break
%7 ¢ if(parsing_solving =
{ .
1f(*xcn2 == 0.0)

SOLVING)

O
o)
U s
0]

e)

.
’

resort_srror{4) ;

m_err_no = 0 ;

*opl = fmod{*opl,*op2)

if(m_err_rol
repcrt_error(m_err_ng) ;

W

else
*opl = 13.0 ;
, break -
case "~ 1 if(warsing_sclving == SCLVING)
P ,

~

1f(*on1 !'= 0.0) -
{
1f(*op1 < 0.0
repvport_errer(?7)
m_e2rr_no = Q0 7
*opl = exp(*cp2 * log(*opl1)) ;
iflm_err_ne) _
report_error{m_err_no)

L

>
return s
} ' .
voild unary_opzration(double *result, char op)
C ~ .
m_err_no = ‘
1flop == "=7)
*result = =1 ;
if{m_grr_no)
report_zrror{m_err_no)

v O

return
2

veid func_operetion{doubls *r2sult, char op)
<

swltch(opn)

~

case SIN : if(parsing_sclving '= SCLVING)

' {
*rasult = 78657
breo2ak »
b4
m_err_no = 0 ;
*regsylt = sin{*result)

. iflw_erec_no)
renort_eorrcr{m_err_no)
braak ' .
casz COS ¢ if{parsing_sclving != SCLVING)
{
*resylt = L7657
break ¢

-
>
“

AT

m_z2rr_no = 0 ;

*rosult =-cos(*result).

if(m_err_nc)
reaort_ercor(m_err_no) ’

[y

-

r

ifi{parsing_s
s

hreak

O
o)
(V2]
0]
b =3

*r2asylt =

break 7/

0

recort_error{m_err_no)

break 7

ABS

(4]
ur.

{ K
*resul

break

b,

m_err_no 0
*result fa
ifdlm_err_no)
reportterr
) break
e ASIN :if(persing_s

+
-
.

’

It -

’

(133
)

1f(fabs(*
report_
m_2rr_nc
*result
iflm_err_
report_

>
glse
 *result
break
if(parsing_

<
-

.
’

) if(fabs(*

report_
m_err_no
*result
1flm_err_

report_

*xrasult

“hreak s

¢

m_err_nc
*raosJdlt

iflm_2rr_
r2ort_

els

=

*raosult

yreak

{

e}

ifl(parsing_soclving

1fl{parsing_

2port_

—

ving !'= SOLVING)

7557

4 .
-

s

’

.

SOLVING)

13,0 :

’
bs(*result)

»
’

cr{m_err_no)

olving == SOLVING)

result) > 1)
rror{2)
0 7
asin{*rasult)
no) ‘
error(m_err_no)

.
s

([0

.
I

14

e

13.0

SCLVING)

solving

result) > 1)
error{g)

n
aces(+*result)
ne)
erro~{m_srr_no)

4

’

13.0 7

solving == . SOLVING)

fabs{*result) > 1)

-

error(8) ¢

n o}
atan(*result)
no)d

error({m_err_no)

»
A

.

4

13.0 /

iflparsing_solving == SOLVING)

‘CESE CEI{
casa SORT
' «case EX; :
case LOC :
. } |
return

~

z

=0 7

m_arr_nce

*result = floor{*result) ;
1fim_srr_no)y
: report_srror(m_err_no) ;.
}
2lse ,
*result = 13.06 »
break .
if(nvarsing_<colving 1= SOLVING)
{
*rosult = 13.0
break /
}
m_err_no = C ;.
*r2sult = ceil(*result) ;
iflm_err_no)
report_error(m_err_no) 7}
break J ' . ,
if(oarsing_sclving == SOLVING)
{ .

if{*xresult < 0.0
recort_error{l4)

m_err_no G »

*rasult sgrt({*result) 7

ifdm_err_no) '
report_errori{m_err_no)

}
els:z
*result = 13.0 7
break .
iflpersing_solvaing == SOLVING)
{
m_err_nc. = 0
*reasult = exp{*result)

ifl{m_err_no)
report_error(m_err_no) ;

e
else
*result = 12.0 ;
break -
if({parsing_solving == SQOLVING)
{
if(*result <= 0.0)
report_srror(15) ;
m_err_no = 0O ;7 =
*result = log(*razsult) 7
if(mjerr_no)
report_error{m_err_nc) ;
>
else
*resulit = 13,0 -
btreak

vold sikip_spaces(void)

{

wnile{isspace(*xexoression))

2xpressiont+

Fd

return

b
void V{(douhle *result)
{
VARIABLE *o ;
char txtOMAX_LENGTHI
sprintf(txt,"0%s1",tcken) 7
11{parsing_solving == PARSING)
{
xrosult = 13,0 ;
next_token()
return

.
’

LI

R get_variable(txt) /
1t (p~>initialized)
*result = p=>vaius /
else ‘
< .
if(!p->val_accented)
preparz_var(p) ;
*rgsult = p=>valuz
3}
clrscer() 7 A
status_window (")
next_token() /
return ;

.

t

void can_var_ .fire(char *name, THEN #*#*m_to_fire, THEN **e_to_fire)
<] :

VARIAZLE *x = get_variable(namel /
*m_to_fire = xe_to_fire = NULL ; ‘
it (!t (x=>val_accapted ||’ x->initialized)) /¥ i.e. not initialized or
already assigred vaiue by some means */ : :
{ .
THEN *head = var_get_then_nzmelname), *curr = NULL /

<
for(curr = haad ; curr ; curr curr=>same_ngxt) /* Test to break

a deadlock or cycie x/ v
vif(Iis_fgred(get_act_rule_no(curr->act_rule_no)))

{ [}
*rm_to_fire = curr
break s
3 .
tor(curr = o_haad_then ; curr ; curr = curr->right)
if{return_proglname,curr=>ceam.extprogl)
{
2f(lis_fared(get_act_rule_no(curr=>act_rule_no)))
{) o
*e_to_+1ire = curr o«
break 7
}
\ .
3
return ;
} .
int return_pragl(char *name, EXTPROG *n)
{ o
itl{p=>return_nc == ())

reaturn NC &
elsa '

{

struct nare_1list *curr = p=>r_hzad ;
for(; curr ; curr = curr->next)
{ -
if(stricmp(curr->name,name) == 0)
return YES
3 ,
return NC ;
}
by
vold report_arror{(int e_no)
< ,
longjmp(jnufre_no)
) ’ -
vold var_write_add(VARTABLE =*p) ,) .
¢ .

FIue ~var_fp = NULL /
char txtIMAX_LENGTHI 7
1NT ChOolC2s 3UCCESS YES 7
sprintf(txt,"4As.VAR" ,file_name)
do /x’whilelver _{fp == NULL) 7 =%/
{
var _fp = fopen(ixt,"a*")
1f{var_fp == NULL)

~

1

Y

sprintf(txt,"Error while (appending)uriting to file \"%s.VAR\".
seaR2try(RY, Exit{X)",file_name) ;

do
{
fflush{stdin) /
choice = toupper{getch())
> while(i(choice == ‘R’ || choice == “X")) 7
status_uwindow("")
it{choice == “X) .
{ .
fcloseall()
S clrscr () ;2
ex1t(1) / ,
>
} .
> wnhile(var_fp == NULL)
/* ftsaek(var_fp,0,SEEK_END) 7%/ .
cholca = fpraintflvar_fo,"%s\n",p=>name)
cheice = fprintflvar_fp.'%s\n",p=>txt)
choice = fprintflvar_fp,"%d\n",p=>initialized) 7
1t(p=->initialized)
choice = Tprintflvar_*o2,"%1g\n",p=>value)
choicz = forintflvar_fo,"id\n",p->displayed)
1f(lsuccass)
{

sprintf (txt,"Error while writing file \"%¥s.VAR\". L.ABORTING aa.
+Press any key'",file_name)
' status_window(txt) 7
fflusn(stdin) 7
satcn()
fcios2all()
ex1t(1)
}
flushall(),

fclosel(var_f2) 7 , X
raturn ;
)
void vars_reacd(veid).
{
FILE =xvar_*fp s
cnar txtiMAX_LENGTHI ;
int c¢noice, success = YES ¢
VARIABLE *p /
sorintf(txt,"%s.VAR"
do /x while(var_fp ==
{ .
var_fp = fopen(txt,"r'") 7
pf var_fo == NULL)
{ S
sprintf(txt,"Error while opening file \"%s.VAaR\", ««Retry(R),
tx1t(X)",f1le_name) /)
status_window(tx%) .
o
{
fflushr(stdin) ;
choice = toupper{getch()) ;
} wnile(!{choice == “R* || choice == “X"))
status_window (""™)
if(choice == “X").
{
fcloseall () 4
clrsecr () 7

N
4

Y} while(var_fp == NULL)
fscant(var_to,"A0A\nI\n",txt) ;
wnile(!f2of(var_{fp) %% success)

4

~

p = get_VARIABLE _node() »

p=>nave = dup_str{txt) 7 v - .
fscanf(var_fo,"%0 \ni\n",txt) 7
p=>txt = dup_str(ixt) 7

fscanf(var,fp;”%d\n"/;(p->initialized)) ;
if(a=>initialized) '

<

double x ;

tscanf(var_fp,""lc¢c\n",ux) 7

fp->va1ue = X s

3 ,
scanf(var_fp,”%d\n”/&(D'Sdlsplayed)) ‘
if(lsuccess) ’

{

sorintf(tx+,"Frror while reading file \"%s.VAR\". ..ABORTIN
U eassPrass any kay'",filz_name) ; N

status_uwindouw(txt) ;
fflush{stdin) ~
gatch()
clrscr()
exit(1) ¢

= add_varisblalosv_%trea)
(var_fa,"20A\nl\n",txt)

*/

[#1]
C
(4]
O
(D]
i
n
~

> /x wnile(!faofl(var_+2) R&

fclose(var_*t9)
raturn
>
vord vars_write(voxd)
{ o i
VARIAGBLE *curr = var_head, *pext = var_head->right;
for(; curr ; curr = next)

r_urit2_eadd(curr) ;
Xt = curr->right
rr=>right = NULL /
tree = add_variablelcurr,v_tree)

var_head = var_tail = NULL /

return -
> ‘
void add_to_write_var(VARIASLE =p)
Fan
ifl{var_head == NULL)
var_head = var_tail = p 7
eise
{
var_tail->right = p
var_tail = p ;
by
. return J
>
void free_var_list{(VARIABLE +*p)
. .
1f(p)
{ _ . ,
r_list{p=>right) -

be e
e B |
({1
A}

i 0 -
1)

.
4

()
o
'Zr\l
C 0 <
™ s~
—

o

return

LY

>
VARIABLE *in_var_list(char *var_name)

~
.

ARIABLE *curr = var_head 7
for{; curr ;7 curr = curr=>right)
1f{stricmn{var_namne,curr->nama2) == ()
brzak s : :
return curr
> .
1Nt matherr(struct exception *g)

{

excep = *e N
m err_no'= MATH_ERQOR_STARTINGte->tyve 7

return m_err_no ;

> . .
volrd update_var_in_res(RULE *r)
¢

VARIABLE =p ;

int 3 '

~

char xtkn, var_namelMAX_LENGTHI, *temp, *expr /
Ir *curri ;
Tr=N *curert

EXTPRIOS x2 7
for(curry = r=>rule_if 7/ curri J curri = curri=>next)
N .
iflcurri=>whach == MATH)

-
-
b :

r{curri->am,expr=>left_nart) ;

temp = 2xpr = dup_st ;
wh1l2((tkn = strchr{expr, ")) != NyULL)
PR
J = 3 7
do \
¢ .
var_namplj++] = «tkn++ ;
> owhile(Hxtkn = "3°)
var_namel(j*+] = "3° ;
- var_nameljl = "\Q° ;

-

exor = *+tkn ;
2 = gat_variable(var_name) 7
p=>disp_in_res = YES
s
free(tewp)
expr = NULL
temp = expr = dupg_str(curri->am.expr=>right_part)
while({(tkn = strchrexpr, L)) Y= NULL)

{ , .
5 =07
ce
{
Cvar_namelj++3 = *tkn++ .
Y while(*tkn '= 37" 5 ¢ '
var_namel j++] = “J°
var_namel 3l = “\0°
expr = ++tkn ; :
4 X p = get_variable(var _name) 7/
p->disp_1n_res = YES
¥

free(temp) /

expr = NULL /
>
> _ .
for(currt = r->rule_then ; currt ; currt = currt=>next)
{
iflcurrt=->uhich == MATH)
{
temip = expr = dup_str{currt=>cegm.expr—>left_part)
while({(tkn = strchrexnr, ")) != NULL)

{
J:Ot
o

{ o~ .
var_namel j++] = *tkn+t

. far.,

/ . Y while{(*tkn !
var_neme{j++] =
ver_namel 3l = “\N0° 7
2axpr = ++itkn

p = get_variable(var_nawe)

p->disp_in_res = YES

r
a{temn) ;
r = NULL -

tzmp = gxpr = dup_str(CUrrt->ceqm.expr->right_part) ;

. while((tkn = strcnrlexpr, 07)) 'Y= NULL)
{
. |
J=Gr -
cdo
/
{
var_namelj++] = *tkn++ ;

} while(*tkn '= "3°) ;
var_namnzfj++] = "1
var_nama2(jJ = "\N0°
expr = ++tkn)

P = get_variable(var_name) /
p=>disp_in_res = YES }
y 4
free(temp) ;
expr = NULL

} . A

els2 1f(currt->wyhich == EPR)

{

struct name_list =*x ;

2 = currt->ceqm.extprog

for{x = e->p_head ;7 x ; x = x=>next)
{
p = get_variable(x=>name) ;

p=>disp_in_res = YES ,

>
for(x = e=>r_head ; x ; x = x=>next)
«{
p = get_variable(x=>namel}
p=>disoc_in_res = YES o
3 .
}
>
return
b
vold prepare_var(VARIABLE +*p) :
{ .

cnar *val
THEN *m_to_fire = MNULL, *e_to_fire = NULL
can_var_firel{p->name, &m _to_fire, fe_to_fire) ;

iflm_te_fire !'= NULL || e_to_fire != NULL) /* i.e. Backward chaining
s 2ise fForward Craining */
{

RULE *¢g &

THEN *curr_fire = NULL

crar =xtmp = dup_sir(exprassion)

int min

for(; m_to_fire || e_to_fire ;)

{

min = curr_rule_no /
1f{m_to_fire)
{ \ '
q = get_act_rule_nolm_to_fire->act_rule_no) ;
iflrin > a=>fire_rule_no)

{ 5 N
min = g->firs_rulz_no :
curr_fire = m_to_fire ;
g
1t(e_to_fire == NULL)

m_to_firz = m_to_fire=>same_next ;

}
1f(=2_to_~fire) .
{
d = get_act_rule_nole_to_fire=>act_rule_no)
ifl{win > g=->fire_ruls_no)
{
THEN *temp »
min = qg->fire_rula_no
curr_Tfire = ¢_to_fire
for(temp = e_to_fire=>right ; temp ; temp = temp=>right)
B ¢ _ :
1flreturn_proclp->name,temp=>cedm.extprog))
{
if(lis_fired(get_act_rule_no(temp=>act_rule_no)))
. break ; -
3 ;
3
e_to_fire = temp
2}
else 1f(m_to_fire)
m_to_fire = m_to_Ffire->same_next ;
b \
q = got_act_rulée_nolcurr_fire->act_rule_no) ;
if(is_fired(g))
continue . '
single_rule_fire(qg)
>
expression = tmnp ;

3 |
1f{!p=->val_accepteda) /* variable could not be initialized =/
{ ’ .
int choice -
do
{
clrscr() ; ‘ '
status_uwindow("Enter (V)alue of variable, (W)hy")
textcolor(WHITE) »
texthbackground (BLACK)
cprintf("Entar \%s\ \"¥%Us\"",p=>txt,p->name)
o . ,
{ ;
ffiush{stdin)
. choice = touponer{get
} while(!(choice == °
1flchoice == “V')
brzak ;
2lsa
{
prepare_Tfor_why (R_STACK)

wuny _answar(R_STACK) 7

.
’

'

NOPR: ,
|| cheice == "W")) ;

.

c
v

“
' >

} while(choice == “W’) ;
Status_windcu (")
clrser()
Jotexy(2,2)
textcolor{BLACK)
textoackground (WHITE)
cprantt " Intar \4s\ \"%4s\" ",p~>txt,p=>name)

.
4

\

[xxkxrkrx NON=LEARNING MOCULE *wxxxxs/
/X Ax xRk KKK INTERFALC.C Kk Xk kE XK KK]

sinclude <stdiec.n>

#include <ctypez.h>:
#include <conio.n>
[xxxxxxkerixrkr Noadad For Communication Between Tuo Programs * *xxkx+#
Kk xkx~/)
ginclude <dir,h> . .
char drivelMAXDRIVED, dirlMAXDIR], filename(MAXFILED, oxt(MAXEXT]
1At return_vars(doubla) ;7 /* Returns 0 on no error and any positive v
alus otherwise */
X kAR H I KRR KF AR AR I kR Ak h kA k ok kkkhhhhk ke k kR ko hkkkhhkkkk khkkkk k&%
x*kkxxH [:
main{int argc, char *argvll)
{ .
int no »
tloat l/,bshrsag /
double Grand_arza = C J
char w_nm{101="Teju"smore ;
int 2rror = 0 ; ,
/x*xxxx%xk For parameters rec2iving and sending ***kx*x/
frenlit(argv{0l, drive, dir, filename, ext) 7/
/****tx***ﬁ*****r******************************x*****/

s

cirser () .
for(;;) ' i
{
cprintf("\n\r¥%s",é_nm) 7
carintf("\n\rNumber of walls : ')

scanf("%d",%n0) , . .o
cprintf({"\n\rwall lengtn ¢+ ') 7
scanf("Z4",41) ;
corintf("\n\rWwall B8rzadtn : ") ;
scantf("%f","0) ;
cprintf("\n\rWall height : ") 7

scanf("Z{"/,&n) s
g = no*l*bx*xh ;

Grand_area +% g s

corintf{("Total Arza :'%g Units » and Grand area : %lg Units" .
gsrurand_ar2al) ;

corintf("\n\rin\r More Wall Types : ") J

ffiuvshistdan) ;
more = getcha() 7
it{toupper{more) == ‘Y’)
continue -)
else .

bresk 7

Y

2
error = return_vars(Grand_area) 7
1flerror) '
{ /% Any Action to performed in case of failure to return v
dlue x/ '
Coarintf("\n\rFa1led To Return Values Due To some PROBLEMPre
ss any Key') ‘
fflush(stuin)

getch ()
b4

return J ;

LY

7

R R T R S Y Y ST R a)
/ * */

/x* This function Writes Values Intended for some */
/* Program 1n file with tha name of this program with */
/* extension "LRET", */
/*) S */

222222 RS R R RS RS RS SRR S A SRS RS ETEESS LY
int return_vars(double Grand_area)
{

Fite *xfo -
cnar pathnam: CMAXPATHI)
fnmerge(patnnane, drive, air, filename,".RET")

do

fopent{pathnane,"u") 7

int/chﬁice [:
“eprintf ("\n\rError while creating file \"Zs)". Retry ? (Y(N)";
pathname) 7
’ o
{
ffiush{stdin)
choice = toupner(getche()) ;
cprintf("\n\r") ;

Y while{!(choice == “Y* || choice == 'N")) ;
1f(choice == ‘N")
return 1 ;

-

);
Y whilea(fp == NULL) ¢
ferintf(fp,"71g\n",brand_areal 7
fclose(fp) 7

return 0
}]

[xxkkaxd LZARNING=MODULE *kikvhkw/

[% kxsxx [JULES,H xxrvsxxdxw/

typeaat struct if_and_than {

4

int left_part »
char *-eft ohjec
int right_part ;
char *”lqht object ;

char xattribute J :
struct if_and_then #*nexts *prev ;
Y IF_THEN

/* VARIABLE or OBJECT =/
t

typeuet struct rule ¢
int no_ifs 7
int tct i
IF_THEN x
int no_tha
int tot_thens_fired ,
IF_THEIN *rule_then
struct rule *next, *prev
> RULT /
typeaat struct vars_in_rules {
char *name ;
char *object
struct vars_in_rules *next ;
Y RULE_VARS ;

~a»

f*xkxx

IEZ ST E RS S

hinclude

LEARNINVNG-MODULE

"shell.n'"

*kkxk [

G ES.C **xxxkrtxx/

extere char filz2_name2ll /

extern struct gual_nam2 *xgualifier_tree /
kiyof *rulz2_hezd = NLLL, *rule_teil = NULL
int curr_rules_no = 1 7

1int nee_rules_added FALSE

int curr_faired_rules = O ;7 -

RULE_VARS *var_list = NULL

/% In Other Filas */

void clear_windecws{void})

voilid status_window(char x) 7/

cnar *get_ch_txt{int, 2nt, int, int)
voicd trim{char %3

char *dup_strichar x) ;

vord draulints int, int, int)
ver_lina(int ,int, ant}

vold disp_on2_1f_thren(IF_THEN %) ;

char *get_prob_txt{int, 1nt, int, int)
char #*get_char_zrrayf(int)

int can_left_sidelchar =, char *) ;
can_right_side(char
name_list *xleftt_lis+t

inzt

struct
struct name_list
FRAME

* 4

_lis

xri1ght

*get_nm_gualifier{cnar
struct name_tree

*get_frm_p

FRAME *getnode(&oxd) P

void process_frame(FRAME *)
void w_*rm_pr_1ind(void)
voeld write_relations(void)
vold free_FRAME(FEAME =)
struct qual_namzs *get_obje2c
int get_verb_ind{(char *)
STACK *get_stack{void) 7/
int empty_stack(STACK =*) 7
vold clear_stsck (STACK *)
veld free_STACK(STACLK *)
vold push{char =x, STACK =x)
/* In This File */

int get_rules{void) 7

IF_THEN *get_1if_thens(int

RULE

IF_THEN *get_IF_THEN_

-

*xget_rulzs_node(voidl 7

chor

t{chsr *,

*) g
_rellchar %3 ;
t_rel(char *) ;

*) g

tr{char %) ;

Id

struct qual_name *)

~a

*) g

noded{voicd) ;

void add_1if_then_list(IF_THEN «, IF THEN **x, IF_THEN *x)
voird add_to_rule_list(RULZ *)

IF _THEN *get_one_if_tranlvoid) ;
vold new_get_rules(veid) 7/

vord view_rulzs(veid) 7

vold rules_write(voica) 7

void read_rules(void)

vold fire_rules{voidl

volid res_onrint(void) 7

volid relzasz2_result_memoryl(void) ;
vord successful _rules.viewl{void) ;
void fail _rule_detaillvoid) ;

vold disp_rule(RuL: x, 1nt) ;

RULE =no_disp_rulelint) 7

.
’

4

voird 1f_or_than_disp(IF_THEN x) ;
void Lopy(char *, char *) ;
1nt cna_rula_write(RULE %, EILE =) ;
1Nt if_urite_thzn(IF_THEN #, FILE %)
1nt onz_if_than_urita(IF_THEN %, FILE %) ;
void reea_ruies(voad) 7
RULE *rzacd_snz_rulel(FILg =)
IF_"HEN *xrzad_3xf_thens(int, FIL
17 TAafF6 =x1f_ore_read_then(FILF
’
’

;
FILE %) ;
*)
1int singla_rule_fire(RULE *)

1Nt solve_oarenise(IF_THEN =)

void result_display(IF_THEN *) ;
RULE _VARS #ga* _variable(char *) ;
RULE_VARS *~pt_var_nodelvoid) 7
void zad_var(“uLE_VARS *)

char *guass_varl{char *, int) }

char *get_diso_options(struct name_list x)
1nt used_oonject_in_var{char =) ;
vold free_var_list(veid) ;

void frze_ea ch_vsz ' (RULE_VARS x)
1nt suce_fire :d (RULE %)
int Jhether_fziled_rule(RULE *)
volid new_rula_save_option(void)
RULE *aud_RJo: (RULE =)

IF_THEN xdud_IF_THENS{IF_THEN %)
vold init_tor_firing(void)
void R[Wlc_o1spose{RULE *)

vold IF_disposa_THIN(IF_THEN *)
vold upd&te_senc tic_nz 2t (IF _THEN =)

-

void sava success_var de:c(voxd) ;
RdlLe_VARs *razd_success_var _desc(void)
“void find_ ditfere wces(wULu_VARS *, STALCK =) ;
voild var_dlrferencenfind(char x, char *, STACK) ;
Nt cdrsn_exolainations(STALCK *)

void new_rzasons{void) :
void get_comalamentary pramises{int, STACK x, IF_THEN *x%, IF_THEN ##)

’

(D

s

1

»

char *ge2t_var_for_obgect(char =)

VOolG raversa_zonsequence(IF_THEN *)

voizd ell_reverse-consequence(IF_THEN *)
int get_ruizslveiq)
{

int no_1fs = J, no_thens = (/

IF_TroN *2f _rule = NULL, *than_rule = NULL ¢

struct taxt_info t1i
gettextinfo(lty)
vindow(4,3,32,2%)
texthackground(3Lacky
clear_windows()
textcolor(5LACK)
texLowckgrand(A*IT&) ;
corintf("kULl s \n\r\n\r",curr_rule_no) ;
corintf{"I=s\n\r"y ;
if_rule = get_if_tnens(ino_ifs) ;
if{no_1ifs)

{

cprintt ("\n\rTHENANAR")

then_rule = gst_1f_thens(2nc_thans) ;

1f(no_thars)

~

RuLc *p = get_rule_nod2()
+tcurr_rulz_no

y=>nc_1ifs = no_ifs /
2=>ruls_if = 1f_rule ;
e=>no_tra2ns = no_tha2ns
a=>rulz_tre2n = then_rule 7
edd_to_rule_list(p) -
++ney_rulas_addad

refurn YES

()

2
{
IF_aiscose _THENCLIf _rulz)
if_rule = NULL /
}
} -
textattr(ti.sttributs) 7
return N2
2
IF_ThnfN xj3et_if_thens{int *no_if_thens)

el

w

<
IF_THeN *p = NULL, #*head = NULL, *tail = NULL 7
struct taxt_:info ti ;
1INt Xry »
x = whara2ax() 7
y = una2ray{()

gettextinto(t1)
windou(e1,2,77,23) ;
textcolor{WwHITE)
textoackgrednd (ELACK) J

clrser () 7

de
{
J = g2t_one_1if_then() 7/
1)
{

t++no_1f_thens

add _1f_tren_list(p, Shead, &tail)
u¢ndowx41,/3 £23)

cotexyli{x,y) 7

diso_ora_1if_then{p) =

x. = wharax() ;
y = wheray() ;
window(43,3,77,23)

b
> wnilae(p = NULL)Y
windouw(ti.airlef+t, ti.wintops ti.winright, ti.uinkottom)
textattr(ti.attributs)
gotoxy(x,y)

f/
return nazd ;
b
RULE *¢get_rul:_nrodelvoid)
{
Rdlbz *p = NolLbL ;
D = (RULE %) malloc(sizaof(RULE))
iflp == NuLL)
{

drintf("0ut of memory. «..AB0RTING eeo(get_rule_noded\n") J

fflus~{(stdir) 7
gaten() /
3X1't(1) ’
}

p=>no_its = 9=>no_tnens = (0 ;
p=>tot_1fs_fired = p~>tot_thens_
a=>rule_1f = p->rule_tren = NULL

p=>nex* = p=>prev = NULL -
return 3 7

F_THEN wgat_IF_THEN_noda(void)

T

IF_THEN *p = NULL ¢
o = (IF_TnEw *) malloc(sizeof(IF_THEN))
1f{p == HoLL)

s

{
srintf("out of memory., ...ARORTING ce.{get_IF_THEN_node)\n"
)
fflusn(stcin)
gaten()
ex1t(1)
}

a=>left_nart = o->right_part = VARTABLE /

n=>12ft_osject = p=>right_object = p=Ddattribute = NULL /
a=>naxt = 2->prev = NULL /

return p ;

}

zoid aad_to_rule_list(RULF =*p)

if{rula_nzaa == NULL)
rule_nead = rule_tail = p 7

eisze
{
rula_tail->pexi = g -
p=>orav < rule_tail 7
rulzs_tail = p J
>
return /
s
vord add_if_ther_list(IF_THEN #*p, IF_THEN #*xhead, IF_THEN #**tail)
2
if{*heaa == MNLLL)
xhead = =t2i1l = p ;
else
{
(*taxrll=>dnext = p ;
p=>orev = xtail /
xtall = o ;
_ >
return s
}
IF_THEN #*2et_on2_1if_then(void)
{

int choice

IF_THeN *o = NULL ¢

cnar =txt = NuULL 7

int x, vy

status_windce("Left dart 13 (V)ariable or (0)hject, <ENTER> or <ESC>
to finisn™)

do
{

fflusn(stdan) 7
choi1c2 = tounner(getch()) /
} wniia(!{choice == "V’ || choice == ‘0" || choice == ENTER || choi
ce == S)) s

ifl{choice == ENTSR || cnoice == £S§C)
return NULLL /
zlse
{
sultch(choica)
{
cass V' i1 status_window("Enter a Varianle name within (]

’ e.ge LXJ") S
txt = get_ch_txt(2,1,26,14) ;
it{txt == NULL)
raturn NULL

trim(txt)
if(strlen(txt) == ()

{
' fras{txt) ;
return NULL &

N
p = get_ IF_THEN_node() ;
p=>lz2%t_port = VARIABLE
p=>left_object = dup_str(txt) ;
free(txt) ; ‘
txt = NULL ;
break

case ‘07 status_windouw("Enter an Object’s name’)
txt = get_ch_txt(2,1,26,14) .
if(txt == NULL)
raturn NULL ¢
trin(tixt)
iflstrlen(txt) == (0)
P
frea(txt)
return NULL
}
p = get_IF_THEN_node() ;
n=>laft_part = QBJECT
p=>left_object = dun_str(txt) ;
free(txt) ;
txt = NULL ¢/
break -
+

~
»
4

cotoxy(2,18)
corintf("4ss ", p- Slaft _ob
x = wherax() ;

y = wnera2y() ;

status_windouw("Enter the attribute, For NOT conditions => ‘lattribute
_rama”'")

do

ct) s

(n

Sy
~

txt = get_ch_txt(2,1,2n,14)

trin(txt) -/
1f(strlan(ixt) == 3)
{
frec(txt) -
Txt = NuLl 7
continue -

[V

21
Dreszk -
hY

-

Y ounile(TeU)

’
p=>attripbute = get_cnar_array(strlen{(txt)+1)

ifletxt == V%)

{ . ,
p=>attributac(l = =7 4
strcoy(p=>attrioutetl txt+1)

else

p=>attrinuteldl = "+°
strcoy(n=->attributei txt) /
b

free(txt) 7

txt = NULL

gotoxy{x,y) 7

cprintf("ss "so=>attiributet+l) ;

if{p=>attributalli == "=")

cprintt ("N2T ") 7

x = wynera2x() 7

y = wheray{)

status_window{"Right part is (V)ariable or (0)bject’™)
o

A

fflusa(stdin) ;
cholcz2 = toupper{gatch()) 7/
} owunil={1(choice == "V’ || choice ==
switch(croics)
{
<

g. LXx2I™)

VRV
32 /

: status_uwindow("Enter

e iy

‘0°))

a Variable

txt = get_ch_txt(2,1,26,14)

NULL)

trim(txt)

if(strlen(txt) == 0)

{
free(txt)

’

txt = NULL /

centinus

hbreak

(o

} while(TRLE)
p=~>right_oart =
o=>right_objzct

.
’

;
VARIASLE
= dun_str(txt)

.
4

’

name

within {3/

(<3

froe(txt)
+xt = NULL
brzak 7
status_window("Enter an Dbject’s nama2")
de
L
txt T get_ch_txt(2,1,26,14) 7
if(txt == NULL?D
continue ;
alse {
tram(ixt)
if(strlen(txt) == ()
{
free{txt)
txt = NULL 7

continue -

s}
7}
i
(6]

-
<

-
L]

W

el

) break 7
3

2

Y} whila (TRUEY
p=>right_part = O0BJECT
p=>right_object = dup_str{txt) ;
frea(txt)
txt = NULL /

brezk
3

clrscr ()

return p

b
void disp_onz_if_then(IF_THEN *3)

{

cprint*f(” Ys %s%4s 4s\n\r",e-d>left_object, p=>attributetl,p=Dattribu
teLda == =7 2 " NOT" 2 MM, p=>right_object) 7
return
>
voia view_ruizs{void)

.

Rulz =p = rule_head ;

struct text_info ti

int rulz_no = 1 ;

crar msglIMAX_LENGTHI, xtxt

1Nt K2y, x o
if(curr_rula_nsc == 1)
return ;

gettextinfol4ti) 7
textcolor{WwHITE)
textoackground (BLACK) 7
clear_windouws () 7
wincvow(4,2,77,22) ;
clrscr()
disp_rul2(o,rula_noc) ;
sprintf$(msol,"Previous(%c or %c), Next(¥%c or %c), Rule H(N), Exit(X)"
127,247,25,25)

te

stetus_wincdowl{msgl) -~
ftlusnh(stdin)

Key = touonper(getch()) -

surttcnikey)

{
Casé 'X’ H
case I5C :
casz MTER ¢ status_window("'")
window(ti,winleft, ti.wintop, ti.winright, ti.
winbottom) /
textattr(ti.attribute)
gotexy(tiwscurxs, ti.cury)d) ;
return
case ‘N7 : window(1,1,30,25)
status_window ("") ;
gotoxy{(1,25)
cprintf("Enter Rule #") 7
fflush(stdin) 7
txt = get_prob_txtlwherex(),wherey(),6,1) ;
window(4,32,77,23)
if(txt == NULL)
break 7
x = stoi(txt)
1if(x <1 || x >= curr_ruls_no)
{
char msgl({MESG_LENGTHI 7
sprintfimsgd,"(%s): No such Rule noe +..”Pres
s any Key'rstxt) ;
status_window(msgd) 7
fflush{stdin) =
getch() 7
}
glse
P i
rule_no = x ;
clrscr () 7
n = no_disp_rule(rule_noc) ;
}
break i
case EXTENDIED : switch(key = getch())
. r
casa UP_ARR :
case LEFT_ARR : if(rule_no == 1)
{
rule_no = curr_ru
la2_no = 1 ¢
p = rule_tail ;
putchar(’\a’)
}
else
{
==rule_no -
D = p=>prev s
clrser() 7
disp_rule(p, rule_no
)
brezic ;4
case DOWN_ARR
coase RIGHT_A4RR : if(rule_no == curr_

1

rule_no -

' {

rule_no = 1 ;

P = ruls_head
putcrar(’\a’)

e Se

“

; else
{
++rule_no s
P = o=>next
>

clrscr ()
disp_rulel(p, rule_n

W

o)
break 7
3
break 7
} /x switcnlkey) */
} wnil2(TRUE) &
7
KULE #no_rule_get(int rule_no)
{
RULe *curr
int se2arch_from, count-.= 0
1flrulz_no < 1 || rule_no >= curr_rule_no)
return NULL
searcn_trom = rule_nc > (curr_rule_no/2) 7 END : BEGIN /
ifl{search_from == 23EGIN)
{
for(curr = rule_head, count = 1 ; curr 88 count < rules_no ; curr =

curr->nexts, ttcount)
s

>
else .
{ . v
tor{curr = rule_tails count = curr_rule_no=(rule_no+1) ; curr 2%
count / curr = curr-=>prevs, ==count)
;/
>
return curr
>
RULE #*no_disp_rule(int rula_no)
¢ ;
RULE *p
P = no_rule_getl(rule_no) ~/

1t(p I'= NULL)
disp_rule(p, rule_nol) ;

return p s

}
volrd drsp_rule(RULE =xp, int rulz_no)
< .

textcolor(RLACK)

texthackground{(WHFITE)

corantf("Quia &xd\n\r\n\r IFAn\r'", rule_no) 7
textattr(WHITE | (8LACK <<4))
1f_or_then_diss(n->rule_if) 7

textcolor(2LACK)
texthackgrouna (d
corintf("\n\r g
textattr(wdlTe | (&

- T
o ol S I

4
=2
()
st
e
N e

return

’
vold if_or_tnan_disc(IF_THEN +heac)
{
I _ThaN *cure
for(curr = n curr ; curr = curr=>naxt)

’
ad »
than(curer) o

vola rules_sgrita(veid)
{
int ¢noic2, success = YES 4
char tXTLMAX_LINGTHI
FILE =rules_<c s
RuLe xcurr ¢
1f(new_rulas_addec
return s
sprintf(txt,"4s.QUL",file_name)
rules_fs = topen(txt,"r") ;
if(ruless_fo 1= NULL)
{
char inp tESG_LENGTH] , out[MESG_LENGTHY
s_tp) J
sorintflanp,"4s.RUL",file_name)
sprintflout,"%s.R8K", file_name)
Copyl(ipasout)

== NO)

s wa

-

iv)
-
i
o

fclose(rules_=Ip). s
do /* while(!success) ; </
{
sorantt(txt,"%s.RUL",f1i]
de /% while(rules_1p ==

sorintf{txt,"Error while (overdwriting file \"%s.RUL\". .
Retry 7 (Y/NJ'",filz_name) o
do

R{stdin) ¢
2 = touonariget
- .

H
1}
.
<
.
~
N
~a

¢
Y* || choice

fclose(rules fn)
return

J‘

by
s wnile(rules_tfo == HLLL)
forintflrulas_$n,"0d\n"scurr_rulz_no) ;
for(curr = rule_head ; curr %% succe2ss ; curr = curr=>next)
sJccess = one_rule_writelcurr,rules_fon) 7
1f(!success)

(txt,"C€rror while writing file \"%4s.RUL\"., ..Retry ? (Y
INY"sfale_name) :

status_winace(txt) 7

cdo
{
fflush{stdin) /
choicz = touparer(getchr()) 7
> wnile (! (choice == “Y" || choice == ‘N"))
1f(cnoice == "N’)

~

{

char inplYESCG_LINGTHI » outIMESG_LENGTHI
fclosz{rules_*fn) ;
sorlntf(outz”KS.?UL”;file _Name
sorintf(inp,"%s.R3K",file _name
Copy(inprout) ;

return 4

)
)

e N

(W]

~

by

Y} whila(!success)
new_rules_added = NO 7
fclosel(rules_fo)

reaturn s

nt one_ruls _write(RULE *p, FILE ~fp)

A A

int sugcess = YeS &
fprintf(fp,"%a\n"ro=->no_1i%s)
success = 1f_write_theni{on->rule_if,fe) 7
1f{success)

{

forintf(fo,"%d\n"sp=>no_trens)
success = if_writa_then(e~>rule_then,fp)
} .
return success -

S 4
Es

int 1f_write_then(IF_THEN *hesds, SILE *fp)

int success =

Y
IF_THEN *curr ¢
d

for{curr = nha2ad ; curr 2& success / curr = curr=>naxt)
success = cne_1f_then_writel(curr,fpo) 7
S s

>
int one_if_tnen_write{(IF_THEN +*p, FILE *fp)
L
int success = YES ¢
forantf(fo,"%d\n",sp->left_nart) 7
fprintt(fo,"dis\n" fﬂ*sl eft_object) ¢
fprintflfp,"%s\n",rp=2attributz) -
fprointf(fp,"%d\n" ,o->r13rt nart)
forantf(fo,"%s\n",p=->raght_object) 7

return success s
s
void read_rulss(vord)
{
1nt succ¢cass = YIS, choice
cnar txtiRSyG_LENGTHT 2
FILE *rules_7*p
Rule *n 7
int x
do /* while(rules_fTfp == NULL) [=/

{
sorintf(txt,"%s.2UL",file_name)
ruias_to = fonen(txt,"r") ;
1f(rules_fp == NULL)

{

sorintf(txt,"Error whila opening file \"%s.RUL\".
Y/n)Y",f1l2 _name)
status_window(txt) 7
G0
{ .

fflusr(stain) -
choice = toupper(getch(})) 7/
Y ynile(!(choice == Y’ || choice == "N7)) ;
ctatus_uwindow("")
if(cnoice == N7
‘L
tcloseall ()
cirscer () 7
ax1t (1) &

)
3 o
} whila(rules_*p == NULL) 7
fscanflrules_Tfe,"%d\n"/,8x) 7
it{x !'= 1 55 f20f(rules_~fnl) .
{
sprintf{txt,"adbnornal 2nd of \"%s,.RUL\". « +AB0RTING

any key"sfii2_name) J
stetus _window(txt) 7
fflush(stdin) ;
getch() 7
fclos2all) ¢

ex1t(1) ’
>
curr_rulz_no = x ;
for{x = 1 ,; x < curr_rule_no %& success , ++x)
1

P = raad_ona_ru.
add_to_rule_list

sprantt(txt,"F1le \V"%s.RULN" corrunted, «» ABORTING
any x2y",fila_name) ;
status_uwindow(txt) 7
fflusn(stdin)
y2tch()
fcios2all()
ex1t(1)
>
fclose(rules_4p)
return

UrE *read_ona_rule(FILE =xfp)

X N

RULE »p
It _TheN *if_then_neaa 7

int x, succaess = YES

P = gst_rule_ncde()
fscanf(fa,"sc\n",i5x)

ssRetry 7 (

-a--P?‘@SS

«sasPress

n=>no_1ts

t
b
~

if_then_need = r
p->ruia_it = if_
fscanf(ta,"sa\n",u
p=>no_tnans = x
it_then_hzad = read
p=>ruls_tnen = 1f
it{!succesc)
reaturn NULL /
2lse
return o 7/

i)
o
}_l
~h
3’
L)
L
o
-~
>
~
(V)
~
N

rd
o 3
LI)]
)
Ui
e o~
Pad
~
4
[}
S~
~a

J
IF_THEN »read_1f_thens(int no_1if_thens, FILE xfp)
{
IF_TAcN *heaa = MNullL, *t2il = NULL, *curr = NULL 7
shile(no_1f_tnens--
{

curr = 1f_cna_rzad_then(fp) ;
iflcurr t= NULL)

{ .
r1f{haad == NyULL)
naad = tail = curr ;
2lsz
<
tail=>next = curr
ta1i = ocurr
15
}
elze
{

Cher txtoME
sorintf(tx
Press any ka2y''sfrlz_ne
“‘*tuv n

"hs RUL\N" corrupted. «ABORTING cunw

} /% wnilz2(no_if_<tranc==) +/
return hzad ;

b

IF_THEN =xif_ogne_r=2ad_then(FILT *fp)

¢

int success = YES ;
IF_TAcN =

int x o

char IxtIMESS_LENGTH]
DT get_IF_ THEN _roda() ;
fSCahf(TD/ "wa\n' "yox) s
p=>left_nart = x 7
fscanf(ta,"4°2\nl\n",txt) ;
pe>laft_object = dup_str(txt) ;
fscanf(fo,"42"*\n2\n",txt) ;
p=>attribute = dup_strixt)
fscanf(fao,"%d\n",ax)

p=>right_part = x
facantf(to,"A0A\nd\n",¥txt) /

.
’

p=>right_ohj:ct = dup_str(txt) 7

1t ('success)

return Noll 7
else
return 3 -
J
vold Copy(cnar *source, char *dest
{
FIL. xxn2, *out
cnar ¢ s
ino = fosznl{sourca,"rh") ;
out = fonan(dest,"uwb") ;
1flirp == NoLL [{ cut == NULL)
{
printf("Zrror 1n sourc: or aestination file\n'")
ex1t(1) 7
>
c = gatc(inn)
while(!f20f(inp))
1
nutclcrout) 7
¢ = getclinp) 7
>

flushell()
fclose(ang) -
fcloselout)

return s
’

void frze_var_list(void)

{

free_zach_var(var_licst

var_list = NULL ¢

return s

“h
5
6]
w
[g4]
o
Oy
.3'
<
[4)

fres_szacn_voar{p=>next)

tra2(5=2name)
frealn->onject)

free(s)
o= LJLL s

void fire_rulzs(void)

RuLL *curr ;

struct taxt_ipfo ta
gettextinfo(iti) ;
ver _line(23,3,24) ;
winoow(4,3,3%,23) ;
init_for_firing() 7
for{curr_firad_rule

<

~e

-

ar (RULE_VARS *2)

a

Os curr = rule_head

*rcurr _fired_rule s
single_rule_farelcurr) ;

;

curr

.
’

»
’

curr

-

curr=>next)

window{ti.winlatt, Ti.wintop, ti,uwinr
textattr(tr.2%tr2abute) 7
gotoxy(tr.curxstl.curyl 7
return
1nt singla_rula_far2(RULL #*p)
{
IF_THeMN *curr /
int succass = YES
clrscr()
diso_rul2los,curr_firad_rule) ;
forl{curr = 2=>rule_if 7 curr %% succe
pa=>tot_1fs fired+t ¢
success = Solve 0rem1Sﬂ(curr) ;
;
if(!lsuccass)
p=>tot_1fs_firsd += p->no_1ifs+1 ;
2lse
{
1nt choice #
++p->tot_1fs_f1red ;
ssult_display(p->rule_then)
.,x+cclor WHITE)
textrackarcund (BLACK) # .
status_window("Correct 7 (Y/N)")
do
ftiusn{stdin)
choicz = toupper(gotch()) ;
s wnile(!(croice == "Y* || choic
if(croica == “N7)
{
RiLZ »r = NULL
RULE_VARS *nead_history = NULL
I=_THEN *new_corszquances = NiJ
/* char 2rev{iCCI, preszzntT100
/*x struct text_info ti ;7 */
STACK *expl_steck = NULL
int re2ason_no = -1, no_tnans =

’

r dup_RULE(p)

/*r******x******w*i***/

MODIFY PREVIOUS RULES #*Axaknhk/

/*******x*x1**/

[*xkxxkxx TAKE NEW PREMISES &

ig

S8

2

.

I 4

LL
]

0

’

t, ti,winbottom)
»
; curr = curr=>next)
\
= ‘N°)Y 5
;
*/

.
14

nead_history = read_success_var_desc() 7
exal_steck = get_stack()
find_differences(head_historyrexpl_stack)
r2ason_no = dison_zxplainations{exgl_stack) ;
1f(reason_no == 0 || re2ascn_no == =1)

‘\

IF_THEN *new_oremises = NULL /
int no_ifs = 0 ;
atus_windou("Prass any key to enter more premises,

ona2s dlaolayed abova™)

cirscr()

.
4

diso_rulel(p, curr_Ffirad_rul
taxtcolor{3LACKY
textbackground (3ROWN)Y 7
cprintf("\n\r iIf (New to

ba

apoanded)\n\r')

Frevoi

textcolor(WHITS)
texthackground(BLACK)
fflush(stain) ;
getch () 7
ney_pramises = get_if_theans(fno_1ifs)
p=>no_3ifs += no_ifs ;
iflne_a1fs)
;

IF _THEN *head_compl_premizes = NULL, *curr_compl_premise
s = NULL, *curr ., *taix_gomp‘,bremises = NULL
for{curr = new_nremises ; curr ; curr = curr=>next)

-

{
curr_compl_vremises = dun_IF_THENS(curr) ;
add«lf_thenmxls~<curr_compl_uremisesz&head_compl_pre

mi &tarl_compl_nremises)

U
]
Ui

ell_reverse_conseuuence(head_compl_premises) J
rr = s

ter{cu p=>rulz_if curr=>next ; curr = curr=>next)
;
curr=~>nzxt = new_pramnises
forl{curr = r=>rule_if /7 curr=>nsxt /7 curr = cuyrr=>next)
; .
curr->naxt = head_compl_premises ;
r->no_1ifs = p=>no_ifs ;
}
>
else

{
IF_THIN *oremisel = NULL, *premise2 = NULL, *tail = NULL

get_complementary_cremises{reason_no, expl_stack, &premis
els spremiseld) ;

for(tzail = p=>rule_if ; tail->next /7 tail = tail=>next)

;
+tp=>no_1ifs ¢
add_1if_then_listlorzmisel,ip=>rule_if,&tail) ;
for(tail = r=>rule_a1f 7 tail=>next ; tail = tail=>next)

;
ttr=>no_1fs »
add_1f_then_list(oremiseZ,%r=>rule_1if,8ta2il)

4. .
status_uwindow("Prass any key to enter new consequences, Prevoi
us ones dispiayad above')
clrscr () ¢
disp_rule(r, curr_ruls_no)
taxtcolor{BLACK)
texthackground (BROWN)D)
cprintf("\n\r THEN (New 1.2. Replaceaments)\n\r')
taxtcolor(WHITE) 7
textbackground(bLACK) ;
fflush{stdin) /
gzten()
new_conseguences = get_
1f{r2y_conseguances ==

all_rasverse_conse
elsea

{

IF_disnose_THEN(r=>rulzs_then) ;
r=>rule_then = new_consaguences -«

-

1f_trens(&no_ tnenc) ;

gquence(r=>rule_then) ;

r=>no_thens = no_thens
¥
/* diso_rulelp, curr_fired_rule) ;
dizp_rulelr, curr_rule_no) /; =x/
t+curr_rule_no s .
ada_te_rule_list(r) ;
t+n2us_rulas_added »
/ * atkaxtﬁn fo(uti)
.uxnclon(1,3,77,23%
status_sindow("Ceompare Chjects 72 (Y/N)'") ¢
Tflusa(stdin)
while(tcupperlgetch()) == “Y¥Y*)
{
clrszer() ¢
status_window("Enter The Previous Object™) 7
gztslorav) »
clrscr()
status dlnd“u(” ‘nter Ths Present Object'") 7
gets{presant)
1f(te moty stack(exol_stack))
clear stack (axol atscl) ;
var_difference_find(prev, present, expl_stack) ;
rzason_nc = ﬁlsp_exmlalnatlonz(expl_:tu k) 7
status_window("Conmnpare more Objects 2?2 (Y/N)')
fflush{stdin)
windo;(tl.winleft, ti.winton, ti.winright, ti.winbottom)
textattr(ti.attributel 7
gotoxy{ti.curx,ti.cury) 7 =/
free_STACK(expl_stack) ;
expl_steck = NulL
free_sach_var(head_history) ;
head_ristory = NULL
/* Fire modified rule also */
p=>tot_ifs_fired = 0
single_rule_fire(p) 7
)
else
{
sava_succass_var_desc()
update_semantic_net(o=>rule_then)
b
}
return. success s
b2
int solva _premise(IF_THEIN #*premise)
{
char *lefr_pert, *righi_vart /
int len, 1 4
FRAAE xfro = NULL -
it(premise=>left_part == VARIAZLE)
{
RULE_VARS *v = get_variehble(premise->left_object)
1f(v == NULL) '
\

y

chnar *mzme

truct text_info ti -
”BYT°XLlﬁfO(g*l)
sincdow(sl1,%,77,

<

3

-\

-
4

texthackground (8LACK)

cirscr()

t=xtcolcr(jLA”K) ;
axthackoround (WHITE)

cJ*‘ntf’"" iect “rom One Of The Below

Va\r\p\r"spre m1:e*>;eft OJJQC*) ;

-

~or Thg

pam2 = cuess_ vﬁr(DPenl’ﬁ' >attributetl, LEFT)

wlnCOw(;l.&lﬂlefs ti.wirtop,

textattr{ti,attribute) ;
gotoxy(ti.curxstl.cury) ;

v = z2t_var_rode() ;

ti.winright,

v=>nam: = duo _stri{premisa=>left_obhject)

v=>0hl)act = pamz

add_var(v) ;
b

ti.winbottom)

len = s*rizn(v->object) * sirlen(premise->attribute)

left_oart = zat_char_array(lent?)

ectspra

!

-

se~>right

arlntf(;aft b rL/””s 8" sv=>0b e
}
z2lse
{
len = s*rlon(oremise->left_ob jec
;
ieft_mart = ¢eot_char_array(len+1) ;
sprintt{iz2ft_opart,
etl)
}
ifl{premize~>raght_part == VARIABLE)
{ .
RULE_VARS *y = get_variable(pren
1ty == NuLl)
{
cnar *ngwve
struct text_info ti 7
gattextirfo(sti) ;
winacwu(41,%3,77,23) ;
textoackground{3LacK) ;

cirscr ()
taxtecolor(LACK)
texihackground {(w41Ts)

carintt("S=12¢ct From One Of The Selow For The Variable \"Ys

\n\r\n\r"/orevise=>right_object)
nane = cu2ss_var(pranise=>3t
gindow{ti.virleft, ti.wint
textattr(ti.attribute)
gotoxyl{ti.curx,ti.cury) ;

v = ¢et_var_nodal() ;

v=rnaas = dun_strpremise~>ri

v=>0bJ2¢%t = naang
add_var{v) ;
}

ien = strlenlv=>objzct)

right_nart = c2t_char_array(lent]
sprintf(right_part,"%s",v=>chject

} _
els

v

{

2P,

)
)

s2n = s*trlen(pramise=>right_object) 7

right_oart = get_char_arrzy(lentl) ;

mise=dattributet?)

object)

tributetl, RIGHT)
ti.winright,

ti.winbottom)

’

’

.
4

Variable \'"%s\"

t) + strlen(premise->attribute)

\Ol

"%s %s"spremise=->left_object,premise=>attribut

L3
.

sprintflrignt_oart,"%s",premise->right_object)

oW

.

frm cat_nm_qualifier{left_pert) ;
for(i = o ; 1 < frm=>no_childs ,; ++i)
if(stricna{frm=>childslil, right_snert) == Q)
braak + '
free(left_part) /
freelright_part)
1f(1 < fro=>no_childs)
return premise~>attributa{0] == “+° 2 YES : NO ;
else
return premise->attributeld] == "4’ 72 NC 1 YES
J
RULE_VARS xget_varizblel{char *nam=)

S *curr = var_laist

= curr=>next)

-5
e Y
~
2]
e
3
~
]

tricmp{namescurr~>namz)) == ()
"

~y

return NJULL
b
RULE_VARS #*get_var_ncdel{void)
{
RULZ_VARS *p
p = (RULE_VARS *) malloc(sizeof(RULE_VARS)) /
1fip == MULL)
{
printf ("Out of memory. ...ABORTING ceslget_var_node)\n") ;
Tfiush{stdin) 7
getch() ;
exit (1)
3

p=>name = p=>objsct = NULL
P=>next = NULL -

raturn p ;
by

verd add_var(PULE_VARS =*p)

{

RuLe _VARS *currs, xprav
1f(var_list == NULL)

0

var_list = p

else
{
1f(stricap(p=>name, var_list=>name) < 0)
< .
p=>na2xt = var_list ;
var_list = o ;
>
¢lse
{
for{curr = nrav = var_list ;7 curr 7 prav = cuyrr, curr = cur
r=>na2xt)
{

if(stricmo{p=>namascurr=>nama) <)

braak

3
p=>next = prev=>next
pDrav=>next = p ;

>

char *guess_var(char +*attribute, int left_or_right)
<
struct namz_list *head
cnar *name
if(left_or_rignt
head = left_lis
else

—

= |)
ro ttributa)

EE
1(a

r+l!

head = left_list rnl(at;rlbute H

name get_dlsp,optﬂonsileud) ;

return name '
P
char #*get_disp_opticns(struct name_list *head)
{

int i,js total = 0 7 .
struct name_list *curr s

cnar xnane, mesgL120] 7

char *txt
struct text_info ti1l 7

int x =, .
for{curr = nha2ad ;7 curr ; curr = curr=>next)
{
if(lused_chject_in_var{curr=>nams)’
<

++total 7
textcolor(BLACK) ¢
texthackground(BROWN) &

1f{tortal == 1)
orlnt*(”(ﬁ d)",totaly
alse

corintf (", (B5d)",total)

taxthackground(CYAN) 7
cprinti (" %s",curr->nama2) ;

}
>

serintf(mnesg,"Enter the objz2ct no. (1 to %d) : ",total)

gettextinfol(8til?
window(1.1,30,25)
status _window ('")
textcolor (WHI TE) 7
textnackground(BRGWN) 7
gotoxy(1,25) ;
cprintf(masg) 7
X = wnerex() ;

e Na hs

i= -1
o
{
fflush(stdin)
o
{

txt = get_ch_txt(x,2%,80=x~2,1)

.

4

Y owhalae(ixt == NULL)
trim(txt) s
1f(stmlen(txt))
= ator{txt) ;

free(txt) ;
txt = NULL /

Y while(i < 1 {1 1 > tet
window(tit.winleft, tit1.uz
textattr(til.attribute) 7
gotoxy(til.curxetil.cury) 7
for(j = O, curr % head ;7 curr 7 curr = curr=>next)

. .
if(lused_objact_in_varlcurr=>name))

”

i
iy

.
4

1)
tons tit.winright, tit.winbottom) 7

-
3
n

)

¥
name = dup_strlcurr=>namel) ;
return namsz

Il

b
int used_object_in_var(char *object)

RJULE_VARS +*curr = var_list ;
for(; curr ;s curr = curr->next)
4

it

[H
(o]
~

1f(stricmp(object, curr=>chject)
hreak -

b
return curr == NULL 7 NO : YES

oid result_disolay(IF_THEN *conseguence)

Lagn S i

int 1 7/

IF_THEN *curr ;
textcolor{3RIuWN) /
texthackground(WHITE) 7

cprintf"\ni\riasult @ AnArin\r") ;

Textcolor(WHITE) 7

texthackground{(BROWN)

for(i = 1, curr = conseqguance ; curr , *+*i, curr = curr=>next)

-
~

corintf("%2d. "si) 7
if{curr~>left_part =

= YARIABLE)

RULE_VARS #*v = gat_varisble(curr->left_object) ;

cprintf("%s ",u=-d>chbject) ¢
}
alse
{
corintf("¥%s ",curr=>left_object) /
3

corintf("%s%s ", curr=>attribute+l, curr=>attributel0] == "= 2 "
NuT" . HH) ,»
it{curr=>richt_cart == VARIARLE)
RULS _VARS %y = get_variable(curr=>right_object) ;
corin+t("ss ",v=>ohject) s

X

>
<

W

|
24

{
cprintf("%s ",curr=>right_object)
b
corintf ("\n\r")
s
return s
}
vold res_print(void)
<

RULCE_VARS *curr = var_list /

cirscr() 7

for(; curr 7 curr=curr=>naxt)

corin*f("Varzable \"Z%Zs\'" was assigned Obhjsct \"Zs\"\n\r",curr=>nanm

es curr=>onject) ;
status_window("Press any key to continue ™)
fflusn(stdin) 7
gztch{)

return
3
void relzase_result_memory{void)
{
free_var_14is+()
return

>
int succ_faired(RULE *p)

{

return (p-=>tot_ifs_fired > 0 8% o=>tot_ifs_fired == p=>no_ifs + 1) ?
YES : NO /

-

Fa
voird successful_rules_view(void)
{
RuLc *xcurr = rulz_head
int no_success = G0, key, 1 7
for(i = 1 ;7 curr 7 *+%1, curr = curr=>next)
{
iflsucc_firedl(curr))
{
+t+no_success s
cirscr () &
disp_rulelcurr,i) 7/
statds_window("Frass any key to sse next successful rule secea
ll) ;
fflush(stdin) 7
if((kay = getcn()) == ESC)
{
status_window (")
clerscr ()
raturn
}
else af(kzy == ZXTENDED)
gateh ()
¥
by
1f(no_success == 1)
<
clrser() 7 :
status_uwindow("NOo rulas wss 2 success, vseaPress any key to cont
inu2')

[

i
(B

i

sindow("No nore successful rule

tn

status_
continue') 7
fflusn(stain)
1f(gaten() ==
getch ()

Ll

ZXTENOED)

status_window (") 7

return

}
int wnather_farled_rule(RJLE *p)
1

return p->tat_ifs_fired = (p->no_ifs + 1)
voird fail_rulza_detail(velid)

{
RyLg *curr = 2_head ‘
int no_faxlzd 0, fail_premise_nc, keys, 1 4
char txt MzS%_LENGTHI 7
curr 5 t*i,

rul

for(i =1/ curr = curr=>naxt)

<

if((#ail_premise_nc = whetrer_failed_rulef{curr))

cecntinue

alse
t+no_failed -
clrser () ¢
disy_rulelcurer,1i) 7

sarintf(txt,"Failed at premise #%d.
fzrlad rule",fail_premise_no)
stetus_window(txt) »
tflush(stdin) ;
1¥((key = getch()) ==

1

&2 NeX?t

_window (")

tus
scr{) ;
urn

EXTENGED)

(o

b
1flno_faiiad

{
clrscr () ;
status_wirdow("No rule failed,

’ ’
i
else
status_window("No more failed rules.
inue')
friusn{s%aind)
17(g2tch() == EXTENDZD)

gaten () 7
status_window("")

rzturn
)

veia naw_rul2s_save_option(void)

{

sesePress any key to

«rePr2ss any key 1o s

...;Press any key to continue')

cseePrass any key to cont

if(newu_rulas_addzd)

-

<
int croica
status_uwindow('"Last chance to save new rule(s), Save 2 (Y/N)\a'")

>

ao
‘h
fflusn(stdin) /
cnoice = toupper(gatcn()) /
Y while(!'(choice == “Y* || choice == ‘N")) ;
if(choice == “Y*)

»

rules_uritz() J

()

by

return s

b3
4

RULE *dup_RULEZ(RULE =xn)

urr = p-=>rule_if

{
RULE *r = NULLL &
IF_THEN =1t = NULL, *curr = NULL, =xtail = NULL 7
r = get_rulz_ncda() 7
r=>no_ifs = p=>nc_ifs ¢
for(c ; curr ; curr = curr~>next)
{

it = dup_IF_THENS(curr)
add_if_then_list{(it, ir->rule_if, Rtail)
>
r=>no_thens = o->no_thans
for(curr = p=>rule_then, tail = NULL ; curr ; curr = curr->next)
{
it = dup_IF_THRENS{ curr) 7
add_if_then_list(it, &r->rule_then, &tail) ;
}

return r
F_THEN <dup _IF_THENS(IF_THFN *u0)

IF_THEN *1t = NULL 7

it = get_IF_ThEN_ncde()

it=>lefr_part = p=->left_part - .
it->laft_object ;

it O

- dun_stri{p->left_obliect) ;
1t=>attribute = dup_strip->attribute) ;¢
i1t=>right_nart = p=>right_nart ;
11=>right_object = dup_strip=>right_ochject) ;
return 1t '
>
vold init_for_firing(void)
{

RULS *curr

forlcurr = rule_head ;, curr ; curr’'= curr~->next)

”

{
curr->tct_ifs_fired = curr->tot _tnens_fired = 0 7
) :
return
b
vold RyLt_disonose(RULE *r)
< .

IF_dlsbose_THEN(r‘>rule_if) ;
IfF_dissose_TreN(r=>rule_than) ;
r=>ruls_it = NULL 7

r=>ruyl2_tnen = NULL 7

free(r) ~
r = NULL /
return s

Jn .
vord IF_dispose_THENC(IF_THEN +*p)
{

ifp)

{
15 _digo0s2_THEN(p~->next)
trae(a=>12ft _object) 7
free(p=>attributel /
tree(p=>right_objesct) ¢
free(n) ;

po= ayLbL ;
return

}
voicd ugsdate_sementic_net(IF_THEN *consecqusnce)
~
<

char xlaft_part, *richt_onert, templ2003

IF_THEN *curr

for{curr = conseqguence s CuUrr ; curr = curr=»>next)
{

1flcurr=>laft_vart == VARIABLE)
‘

le (gurr-)left_object) ;
sprintf(temp,"%s ”/v->o!ject) ’

KULE_VARS *v = get varla
if(cdrr~>attributal0] ==

.

1‘(urr=>atiriputel0l == "+
srintf(temn,"%s "scurr=>left_object) ;

iflcurr=>attributa(0] == "+
cat{teaprcurr~>attribute+ty
t_nart = dup_sir(temn)

if(curr=>rignt_part == VARIASLE)

LE_VARS *v e urr=>ricght_object) 7
-f(cqrr >attribute

rrekrt_part

H

= l+l)

if(curr—>1tt"ibu O] =
str(curr->right_object) ;

right_nart = duo

1flcurr=>attributelll == "+7)

e
struct name_trae *n = get_Tfra_ptr(left_part) ;
1f{n == NULL)

1
FRAME +frwm = NULL
fra = getrode()
fru->nama = left _part ;

frm=>no_cnilds 17
fro=>chilas{C] right_part ;
srocess_Tframe(frm)
o_Fro_pr_ind() ;
write_relations() ;

1

b
>
}
return
}
voia save_success_var_desc{veid)
{
RuLE_VAKS *curr = var_iist »
File xfp = NJLL ;
char tenplvsSe_LENGTH] ;
sprintf(te naz'o 2SOV, €1le _name)
de
(
fp = fonen(tamp,"uw") 7
1f{fp == ryuLL)

{
int chaice /
stetus_window("Lnable to szve History.... (R)etry or (A)hort")

do
{
fflush{stdin) ;
choic2 = tounner(ga2*tcn())
} wn‘le(‘(chozce == ‘RY || choice == ‘N7)) ;
1f{choicez == ’'n")
{

{
fclosz22110) ;
cindos(1,1,23,25) 7
clrser () 7
ex1t(1) 7/
>
}
Y whilaf(fp == MNulL)
for{curr = var_i13* ; curr ; curr=curr=>next)
forintf(fp,""s\n%s\n"scurr->name, curr=>object)

fclose(tn)

return o
b
RULE_VARS *read_succass_var_desc(void)
{

RULE_VAKS +*curr, *hzaa = NULL, *tail = NULL 7
FILE *fp = NULL »

char tenorwc\G LENGTHI
sprintf{temp,"4s.5av",fila_nama) 7

do
{
fp = fonen(temp,"r'") J
1f(fp == NLLL)
{
int choice
status_uindow("Unable to ooen History file.... (Rletry or (A)h
ort")
do

{

{

if(stricmpl(niztf=->childs{il, currf=->childs{jl) ==
{
seme = YES ;
brazk -«
>

1f(lszma)
{
pusnihrstf=>childslilsexpl_stack) ;
push{"=",exsl_stack) 7
pushlcurrf=->names2expl_stack)

)
b
else
{
cush(ristf=->childsl{ilrexpl_stack) 7
push("=",2xpl_stack} 7
nusr(txt,axpi_s*tack)
>
}
tree_FRAME(currf)
free_FRAMZ(nistf)
MistT = currt = NoLL 7
}
for(p = curro->hz2ad 7 p 7 p = £=>2next)
{

currf = get_nm_guclifier(p->name) ,
sprintf(ext,"%s %" ,orevsep=dname *+ get_verb_ind(p=>name))
hrstf = et _nm_gualifrer(txt)
for(i = 7 ;7 i < currf=>no_.childs ,; ++1i)
{
1if(nisti
{
tor(y = 3, samz = NO ; j < nistf=>no_childs ; ++j)
{
1f({stricmolhistf->childsl{3jl, currf=>childs{il) ==

>
it (!
‘ {

same)

sush{currf->cnildslidsexpl stack)

push{"+",exnl_stzck)
gcush{currf=>namesexpl_stack) J

}

pushlcurrf=>childslils,exnl_stack) 7
push("+",exnl_stack)
push{currf=>nam2,2xpl_stack)
}

~3»

>
“res_FRAME(histf) /
free_FRAME(curef) ;
his+tf = currf = NULLL /

0

<<

o~ N

fflusn{stdin)

choica = toupner(getchk()) 7
Y ouwnile(t{choice == "R’ || choice == ‘N"))
ifl{choice == “}°)

fcloseall ()
window(1,1,382,28%) 7
clrscr() ;
ax24 (1)
bs
>
Y while(fo == NULL)
facanf(fr,"422\ni\n",tamn) ’
while(!f20f(¥p))
{ .
curr = cat_var_node{) ¢
curr=>name = duo_s*r(tzan)
fscanf(fa,"%5A\n\n",tems)
curr->chject = dun_str(taap)
if(haad == NULL)

~e

head = tedil = ocunr

als

w

4
tzrl=>next = curr
t211 = curr

>
4

facant(tp,"XIA\RINN" ytemp)

} e
fclosa(fa) ; 7
return/r};;{ﬁi ; (
ci1gsFind_differences(RULE_VARS xhead_var_history, STACK *expl_stack)

RULE_VARS *nist = head_var_history, *curr = var_list ;
for{, curr s’ nist ; curr = curr=>next, hist = his

{

~

var_diffsrence_find(bist~>object, curr=>ohject, expl_stack) ;

7
return ;
oia var_diffarence_find(char *prev, char *present, STACK *expl_stack)
struct gual_name *histo = NULL, *curro = NULL /

FRAML *nistt = NULL, *curr® = NULL
struct nan2_list *p = NULL 7
ant 1/ J - samre = NO 7
char txt.13vl ;
histo = 3zt_object(prav, qualifier _tree) ;
curro = get_oshijectlpresents quzlifier_tree)
foer(n R1ste~=>head 7 D ; 0 T 2=>2next)
hist* gat_nm_gualifi
spraintf(ixt,"%s %s",pr
currf = get_nm_gualifie
for(i v s 1 < histf->
{
itlcurrf)
{
tor(J = ¢, sewe = NO 7 3 < currf->no_childs 7 ++3)

1

H

er{p=>nawme) s

esent,p->name + get_verb_ind(p=>name)) /
r{txt) 7

ne_childs 5 ++1)

{
if(stricmplhniztf=>childsfil, currf=>childs({jl) == Q)
{

~

3

'

<
ra2a

o) W
i
—
11
w
~-

)

bg
}
1f{lsama)
{ .
pusn{histf->childslil,expl_stack) /
sush{"=",ex3l_steck)
cush(currf->name,expl_stack) 7

3
>
elsa
{
push(ristf=>childslilrexpl_stack) /
push("=",expl_stack) 7
ousn(txtrexpli_s*tack) ;
>
}
free_FRAME(currf) ¢
fres_FRAME(nistf)
histf = currf = NULL 7
}
for(p = curro=>head 7 p ; p = o=>next)
{
currf = get_nm_cualifier(p=>name) ;
sprintf(ixt,"%s %Zs"/sprevsp=dname + get_verb_ind(p=>name))
histf = get_nm_gqgualifier{ixt) ;
for{(i = 2 ; i < currf=>no_childs ; ++1i)
{
1f{nistf
{
tor{(j = 0, same = NO / J < higstf=>no_childs ; ++3)
{ .
1fl{stricanlhistf=>childs{jl, currf->childslil) ==)
{
same = YES 7/
braak
>
>
1f(isame)

({ '
susnlcurrf=>cnildslalrexnl_stack) 7
oush{"+",exnl_stack)
cush(currt->namersexpl_stack)

}
B4
alse
{
push(currf->childslilrexnl_stack) ;
pusa("+",expl_stack) 7
cusn(currf=>namz2,expl_stack) ’
}
3
free_FR2AME(histf)
free_FRAME(currf) ;
his+f = currf = NULLL /

MULL 7

2
t_info t1
o t1i) J
2,77,63)
tcclor (8LACK) ;
exthackground(wHI
cprintf ("cXPLAINAT
textcolor(WhITE) J
Ctexthackoround(3ROUN)Y
axpl_stack=>t

TE)
IONS :\aNr\n\r"™)

ae

for(curr = os , curr
{
cporantf("42d. Hs",++total,
curr = curr=>next -«
if (kcurr=>name =z “=7)
cprintf (" NOT'™Y
curr = curr->naxt ;

cprintf (" %s\n\r",scurr=>name)

J
if(total == C)

(
{

’

.
’

’

curr =

curr=>nams)

curr=>next)

L]

status_window{'"No differences encountzred,

ffluen{stain)
getch{() ¢
choicz =
hs

-1 s

else

L

char *txt J

struct textlinfo ti1 7
int x s
gettextinfo(gtil)
ndoal1,1,80,235)
status_window("™)
cotexy(1,25) »
cprintf("Fnter the rzasaon no.

v
g1

e % W

ftlush{stdin) 7
de

{

Ixt = ¢

> while(
tein{txt)
if(strlen(txt))
atoi(txt)

2t_ch
txt =

T == NULLY

choice =
frea{itx?®)
txt o= NULL 4
} wrilelchoice <
vincdow(til.winleft,

N

Xt (X,R25,80~x~

choicae
til.winton,

{(Enter

AR

\"D\"

.
’

> total)

til,winright,

«e.Press any key")

for & new reason)

til.winbottom)

-
-

.
’

"

textatir(til.attributa) 7

gotoxy(tit,curx,til.cury)

bs
grndow(ti,winleft,r ti.wintop, ti,winright, ti.winbotiom) 7
textattr{ti.ottrinute) 7/ .

gotoxy(ti.curxs,tiscury) ;
return ¢cno>xicz -

’
vold get_conolemenrtary_oremises(int r
“misel, IF_THzN *xpramisel)

%)

ason_nos STACK *S, IF_THEN x#*pre

{
struct namg_list *curr = NULL -/
char *xrigrt_oart, *left _part, *attributel, *attribute2, verhb(50], x*xva
riavsie s

int 1 J
char typo2 o
for{curr = 3->tos, 1 = 1 ; 1 < rzazon_no ; ++i)

<

curr = curr=>next~>next->naxt ;

}
sprintflvaroy,"%s"scurr=>name+get_verb_ind{curr->name)) 7
curr=>nanziget_vaerb_ind(curr=>namel)-131 = "\0’
left_part = curr-=>name ;

w

curr = ¢curr=>naxt ;
tTyne = Xzurr->name
curr = curr=>next s

curr—>name -
st char*array(
(

right_oart
attrinutal

H

strlien{verh)+1) .,
strilen{verb)+1)

atiriosutel = ¢2t_char_array
if(type == “+7)
{
sprintf(a*tribute 1/ ~%s",verb) :
sprintf{attributs +4s" ,verh) ;
2
else
{
sprintt(zttributel,"+%s",verh) ;
sprintt{attraibuteZ,"=%4s"sverh) ;
>
varlaale = z2t_var_for_object(left_part) ;
*premisel = get _IF_THEN_node() .
xpranise? = get_IF_THEN_noda() ;
(xpremiszl)->leti_part = VARIASLE ;
(*pramlsa1)'>lsft_object = duo_str{variable)
(*premiszl)~>attribute = attributel
(xpremiset)=>ri¢ht_oart = 05JECT; :
(xprer1s2l)->right_object = dup_str{right_nart) ;
(xpravisa>d)->lef{_part = VARILBLE
(xpremisac¢)=>left_object = duo_str{variable) 7
(xpremri1s2d)~>attribute = attrihute? ;,
(*kpremisad)=>ricght_part = 0SJECT,
(*Dremis35)"\rlgnt_object = dup_stri{right_part) 7
eturn
}
char *x¢get_var_for_objzctl{char *object)
{

Rutec _VARS *curr = var_list
tor(; curr - CUrr = curr=>naxt)
1f(stricuwo(ebject, curr->aobject) == J)

return curr=>pawne s
gturn "ITI"
x Lator *xkikkkdkkkxxkxkxkkdk > potyrn NYLL 5 */

- -

d reverse_consaguence(IF_THEN *consegueance)

vord all_reverse_consegurnce(IF_THEN *head_then)
{
IF_THEIN xcurr
for{curr = ha2ad_then / curr ;] curr = curr=>next)
revarsa_consequenc2(curr) ;

	Title
	Abstract
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Chapter 7
	References

